344 Chapter 7 = Designing Sequential Logic Circuilts

such as chanael Jength moduotation and DIBL. Figore 7-22b plots the transient respanse
for different device sizes and cenfinms that an individual W/L ratio of greater than 3 is
required to overpower the feedback and switch the state of the Jatch.

7.3 Dynamic Latches and Registers

Storage in a static sequential circuit refies on the concept that a cross-coupled inverter pair pro-
duces a bistable element and can thus be used 10 memorize binary values. This approach has the
useful property that stored value remains valid as long as the supply voltage is applied to the
circuit—hence the name stafic. The major disadvantage of the static gate, however, is its com-
plexity. When registers are used in computational structures that are constantly clocked {such as
a pipelined datapath), the requirement that the memory should hold state for extended periods of
time can be significantly relaxed.

This results in a class of circuits based on temporary storage of charge on parasitic capaci-
tors. The principle is exactly identical to the one used in dynamic logic—charge stored on a
capacitor can be used to represent a logic signal. The absence of charge denotes a 0, while ifs
presence stands for a stored i. No capacitor is ideal, unfortunately, and some charge leakage is
always present. A stored vaiue can thus only be kept for a limited amount of time, typically in
the range of milliseconds. If one wants to preserve signal integrity, a periodic refresh of the value
is mecessary: hence, the name dynamic storage. Reading the value of the stored sigaal from a
capacitor without distupting the charge requires the availability of a device with a high-input
impedance.

7.3.1 Dynamic Transmission-Gate Edge-Triggered Registers

A fully dynamic positive edge-triggered register based on the master—slave concept is shown in
Figure 7-23. When CLK = 0, the input data is sampled on storage node 1, which has an equiva-
lent capacitance of C,, consisting of the gate capacitance of 7, the junction capacitance of 77,
and the overlap gate capacitance of 7. During this peried, the slave stage is in a hold mode, with
node 2 in 2 high-impedance (floating) state. On the rising edge of clock, the transmission gate 7,
turns on, and the value sampled on node 1 right before the rising edge propagates to the output @
(note that node 1 is stable during the high phase of the clock, since the first transmission gate is

CLK

CLK
4 b
r 4 I B
D Tii J_C! @c §?‘2 ._I_C b‘: ¢
1L T L

CLKE CLK
Figure 7-23 Dynamic edge-triggered register.

Dell Ex. 1025
Page 233

7.3 Dynamic Latches and Registers 345

turned off). Node 2 now stores the inverted version of node 1. This implementation of an edge-
triggered register is very efficient because it requires only eight transistors. The sampling
switches can be implemented using NMOS-only pass transistors, resulting in an even simpler
six transistor implementation. The reduced transistor count is attractive for high-performance
and low-power systems.

The sctup time of this circuit is simply the delay of the transmission gate, and it corre-
sponds to the time it takes node 1 to sample the D input. The hold time is approximately zero,
since the transmission gate i5 turned off on the clock edge and further inputs changes are
ignored. The propagation delay {r,_,) is equal to two inverter delays plus the delay of the trans-
mission gate 75,

One important consideration for such a dynamic register is that the storage nodes (i.e., the
state) have to be refreshed at periodic intervals to prevent
losses due fo charge leakage, diode leakage, or subthreshold currents. In datapath circaits, the
refresh rate is not an issue, since the registers are periodically clocked, and the storage nodes are
constantly updated.

Clock overlap is an important concern for this register. Consider the clock waveforms
shown in Figure 7-24. During the 0-0 overlap period, the NMOS of T and the PMOS of T, are
simultaneously on, creating a direct path for data to flow from the D input of the register to the @
output. In other words, a race condition occurs. The cutput O can change on the failing edge if
the overlap period is large—obvicusly an undesirable effect for a positive edge-triggered regis-
ter. The same is true for the 1-1 overlap region, where an input-cutput path exists through the
PMOS of T} and the NMOS of 7.,. The latter case is taken care of by enforcing a fold time con-
straint, That is, the data must be stable during the high-overlap peried. The former situation (00
overlap} can be addressed by making sure that there is enough delay between the D input and
node B, ensuring that new data sampled by the master stage does not propagate through to the
siave stage. Generally, the built-in single inverter delay should be sufficient. The overlap peried
constraint is given by

=4

Loverlapo-g < Ity Hip +ir {1.3)
Similarly, the constraint for the 1-1 overlap is given as:

Lhate = Lovertapt-1 (1.6

renrrmnnend 1 EQ,0) OVETIRD
CLK rd

{1,1} overlap
4

CLK

Figure 7-24 Impact of nonoveriapping clocks.

Dell Ex. 1025
Page 234

346 Chapter 7 » Designing Sequential Logic Circuits

WARNING: The dynamic circuits shown in this section are very appealing from the perspec-
tive of complexity, performance, and power. Unfortunately, robustness considerations limit their
use. In a fully dynamic circuit like that shown in Figere 7-23, a signal net that is capacitively
coupled to the internal storage node can inject significant noise and destroy the state. This is
especially important in ASIC flows, where there is little control over coupling between signal
nets and internal dynamic nodes. Leakage currents cause another problem: Most medern proces-
sors require that the elock can be slowed down or completely halted, to conserve power in Jow-
activity periods. Finally, the internal dynamic nodes do not track variations in power supply volt-
age. For example, when CLX is high for the circuit in Figure 7-23, node A helds its state, but it
does not track variations in the power supply seen by 7;. This results in reduced noise margins.
Most of these problems can be adequately addressed by adding a weak feedback inverter
and making the circuit pseudestatic (Figure 7-25). While this comes at a slight cost in delay, it
improves the noise immunity significantly. Unless registers are used in a highly-controlled envi-
ronment (for instance, a custom-designed high-performance datapath), they shouid be made
pseudostatic or static. This holds for all latches and registers discussed in this section.

CLK

A

T

CLK

Figure 7-25 Making a dynamic latch pseudostatic.

7.3.2 C?MOS—A Ciock-Skew Insensitive Approach

The C*MOS Register

Figare 7-26 shows an ingenious positive edge-triggered register that is based on a master-slave
concept insensitive to clock overlap. This circuit is called the C*MOS (Clocked CMOS) register
[Suzuki73], and operates in two phases:

1. CLK = 0 {CLK = 1) The first tristate driver is turned on, and the masler stage acts as an
inverter sampling the inverted version of D on the internal node X. The master stage is in
the evaluation mode, Meanwhile, the stave section is in a high-impedance mode, or in a
1old mode. Both transistors M, and M, are off, decoupling the output from the input. The
output ¢ retains its previous value stored on the output capacitor Cp,.

2. The roles are reversed when CLK = 1: The master stage section is in hold mode {(M;-34,
off), while the second section evaluates {M;—M; on). The value stored on Cp, propagales
to the eutput node through the slave stage, which acts as an inverter.

The overall circuit operates as 2 positive edge-triggered master—slave register very similar
to the transmission-gate-based register presented eartier. However, there is an important difference:

Dell Ex. 1025
Page 235

7.3 Dynamic Latches and Registers 347

Voo Von

1 ny
—q Mz —(1 .“i’ifa

] o
CLK |, CLE |

X
D o—o }_I___‘

CLE —| 143 T cLEx -
] =

[—
+

Mg
}TC C
M?z £2
] =

Ms

=

Master stage Slave siage
Figure 7-26 C?MOS master—slave positive edge-triggered register.

A CMOS register with CLK-CLE clocking is insensitive to overlap, as long as the
rise and fall times of the clock edges are sufficiently smail

Te prove this statement, we examine both the (00} and (1-1) overlap cases {(see Figure 7-24).
In the {0-0) overlap case, the circuit simplifies to the network shown in Figure 7-27a in which
both PMOS devices are on during this period. To operate correctly, none of the new data sam-
pled during the overlap window should propagate to the output (, since data should not change
on the negative adge of a positive edge-triggered register. Indeed, new data is sampled on node X
through the series PMOS devices #,-4;, and node X can make a O-to-1 transition during the
overlap period. However, this data cannot propagate to the output since the NMOS device A, is
furned off, At the end of the overlap period, CZX = [and both # and A tun off, putting the
slave stage in the hold mode. Therefore, any new data sampled on the falling clock edge is not
seen at the slave output Q, since the slave state is off till the next rising edge of the clock. As the
circuit consists of a cascade of inverters, signal propagation requires one pull-up followed by a
pull-down, or vice versa, which is not feasible in the situation presented.

The (1-1) overlap case where both NMOS devices M, and M, are turned on, is somewhat
more contentious {see Figure 7-27b). The guestion is again if new data sampled during the over-
lap period (right after clock goes high) propagates to the Q output. A positive edge-triggered reg-
ister may only pass data that is presented at the input before the rising edge. If the D input
changes during the overlap period, node X can make a I-to-0 transition, but cannot propagate
further, However, as soon as the overtap period is over, the PMOS A turns on and the 0 propa-
gates tooutput, which is not desirable. The problem is fixed by imposing a hold-time constraint
on the input data, D; or, in other words, the data D should be stable during the overlap period.

In sum, it can be stated that the C2MOS latch is insensitive to clock overlaps because those
overlaps activate either the pull-up or the pull-down networks of the latches, but never both of
them simultaneously. If the rise and {all times of the clock are sufficiently siow, however, there

Dell Ex. 1025
Page 236

348 Chapter 7 » Designing Sequential Logic Circuits

Voo

Q

{(a) (G-0) Overlap {b) (1-1} Overlap

Figure 7-27 C*MOS D FF during overlap petiods. No feasible signal path can exist
between fnand D, as illustrated by the arrows.

exists z time slot where both the NMOS and PMOS transistors are conducting. This creates &
path between input and output that can destroy the state of the circuit. Simulations have shown
that the circuit operates correctly as long as the cleck rise time (or fafl time) is smaller than
approximately five times the propagation delay of the register. This criterion is not too stringent,
and it is easily met in practical designs. The impact of the rise and fall times is illustrated in
Figure 7-28, which plots the simulated transient response of a C2MOS D FF for clock slopes of,
respectively, 0.1 and 3 ns. For slow clocks, the potential for a race condition exists.

30 L e R I
251"
28

L5

Volts

1oF

05 F
¥

0.0 P

-0.5 — :
& 2 4 6 8
Time (05}

Figure 7-28 Transient response of C?MOS FF for 0.1-ns
and 3-ns clock rise/all times, assuming In=1.

Dell Ex. 1025
Page 237

7.3 Dvynamic Latches and Regislers 349

Dual-Edge Registers

So far, we have focused on edge-triggered registers that sample the input data on only one of the
clock edges (rising or falling). It also is possible to design sequential circuits that sample
the input on both edges. The advantage of this scheme is that a lower frequency clock—half the
original rate—is distributed for the same functional throughput, resulting in power savings in the
clock distribution network. Figure 7-29 shows a modification of the C*MOS register enabling
sampling on both edges. It consists of two parallel master—slave edge-triggered registers, whose
outputs are multiplexed by using tristate drivers.

When clock is high, the positive latch composed of transistors A,-, is sampling the
inverted I input on node X. Node ¥V is held stable, since devices A4, and M, are turned off. On
the falling edge of the clock, the top slave latch MM, turns on, and drives the inverted value of
X to the @ output. During the low phase, the bottom master latch (3, M, My, M,,) 18 turmed on,
sampling the inverted D input on node ¥ Note that the devices M, and A, are reused, reducing
the load on the D input. On the rising edge, the bottom slave laich conducts and drives the
mverted version of ¥ on node . Data thus changes on both edges. Note that the slave latches
operate in a complementary fashion—that is, only one of them is turned on during each phase of
the clock.

Yoo

Figure 7-29 C2MOS-based dual-edge triggered register.

Dell Ex. 1025
Page 238

350 Chapter 7 * Designing Sequentiai Logic Circuits

Problem 7.5 Dual-Edge Registers

Delermine how the adoption of dual-edge registers influences the power dissipation in the clock-
distribution network.

7.3.3 True Single-Phase Clocked Register (TSPCR}

In the two-phase clocking schemes described earlier, care must be taken in routing the two clock
signals to ensure that overlap is minimized. While the C2MOS provides a skew-tolerant solution,
it is possible to design registers that only use a single phase clock. The True Single-Phase
Clocked Register (TSPCRY), proposed by Yuan and Svensson, uses a single clock [Yuan89]. The
basic single-phase positive and negative latches are shown in Figure 7-30. For the positive laich,
when CLK is high, the latch is in the transparent mode and corresponds to two cascaded invert-
ers; the latch is noninverting, and propagates the input to the output. On the other hand, when
CLK =0, both inverters are disabled, and the latch is in hold mode. Only the pull-up networks
are still active, while the pull-down circuits are deactivated. As a result of the dual-stage
approach, no signal can ever propagate from the input of the latch to the output in this mode. A
register can be constructed by cascading positive and negative latches. The clock load is similar
to a conventional transmission gate register, or C°MOS register. The main advantage is the use
of a single clock phase. The disadvantage is the slight increase in the number of transistors—12
transistors are now required.

As a reminder, note that a dynamic circuit in the style of Figure 7-30 must be used with
caution, When the clock is Jow {for the positive latch), the output node may be floating, and it is
exposed to coupling from other signals. Also, charge sharing can occur if the output node drives
transmission gates. Dynamic nodes should be isolated with the aid of static inverters, or made
pseudostatic for improved noise immunity.

As with many other latch families, TSPC offers an additional advantage that we have not
explored so far: The possibility of embedding logic functicnality into the latches. This reduces

Yoo Vop Voo Yoo

up
|

: Ont
L L <

Figure 7-30 True Single- Phase Latchas.

{nﬁd CLK_{

-

.uJ [] iTJ |

Dell Ex. 1025
Page 239

7.3 Dynamic Latches and Registers 351

Voo Vop Vop

" P

He
.

M i
| i1 Fww@ L{
]

El
=
T

i

f;:_‘ CLt_’*f_‘

CLK_’ CLK_{

In —‘ _{
Iy —{

[T 1]
ISR

-1}—@ T 1

i
i
—_

(a} Including legic into the latch {b} AND latch
Figure 7-31 Adding logic to the TSPC approach.

the delay overhead associated with the laiches. Figure 7-31a outlines the basic approach for
embedding logic, while Figure 7-31b shows an example of a positive latch that tmplements the
AND of f; and In, in addition to performing the latching function. While the setup time of this
latch has increased over the one shown in Figure 7-30, the overall performance of the digital cir-
cuit (that is, the clock period of a sequential circuit) has improved: The increase in sefup time
typically is smaller than the delay of an AND gate. This approach of embedding logic into
Iatches has been used extenmsively in the design of the EV4 DEC Alpha microprocessor
[Dobberpuhi92] and many other high-performance processors.

Example 7.3 Impact of Embedding Logic into Latches on Performance

Consider embedding an AND gate into the TSPC laich, as shown in Figure 7-31b. In a
$.25-um technology, the setup time of such & circuit, using minimum-size devices is 140
pS. A conventional approach, composed of an AND gate followed by a positive latch, has
an effective setup time of 600 ps (we treat the AND plus latch as a black box that performs
both functions). The embedded logic approach thus results in significant performance
improvements,

The TSPC fatch circuits can be further reduced in complexity, as illustrated in Figure 7-32,
where only the first inverter is controlled by the clock. Besides the reduced number of transis-
tors, these circuits have the advantage that the clock load is reduced by half. On the other hand,
not all node voltages in the lateh experience the full logic swing. For instance, the voltage at
node A {for V;, = 0 V} for the positive latch maximally equals ¥V, — V5, which results in a
reduced drive for the output NMOS transistor and a loss n performance. Similarly, the voltage

Dell Ex. 1025
Page 240

352 Chapter 7 » Designing Sequential Logic Circuits

593 Yoo Yop Voo
F CLK_! — L ow m CLE"{
T &
— —

1
gt L

{2) Positive latch (b} Nesgative latch

Figure 7-32 Simplitied TSPC latch {also called split output}.

onnode A (for ¥, = Vpp) for the negative latch is only driven down to |V, This also limits the
amount of ¥y, scaling possible on the laich.

Figure 7-33 shows the design of a specialized single-phase edge-iriggered register. When
CLK =0, the input inverter is sampling the inverted D input on node X, The second (dynarnic)
inverter is in the precharge mode, with M, charging up node ¥ to V. The third inverter is in the
hold mode, since Mg and M, are off. Therefore, during the low phase of the clock, the input to
the fimal (static) inverter is holding its previous value and the output { is stable. On the rising
edge of the clock, the dynamic inverter M,—Mj evaluates, If X is high on the rising edge, node ¥
discharges. The third inverter M;~M, is on during the high phase, and the node value on ¥ is
passed to the cutput Q. On the positive phase of the clock, note that node X transitions to a low if
the D input transitions to a high leve}. Therefore, the input must be kept stable until the value on
node X before the rising edge of the clock propagates to Y. This represents the hold time of the
register {note that the hold time is less than 1 inverter delay, since it takes 1 delay for the input to
affect node X). The propagation delay of the register is essentially three inverters, because the

Vop Yoo Yoo

T 1

—d | ¥ CL&% My —d | My
73N Fheo

D_“CZ{{_C* a, X ;5 cu<_¥ M

]]

—’—'I M, CL&'{ My 4-‘—1 My

Figure 7-33 Positive sdge-triggered register in TSPC.

Dell Ex. 1025
Page 241

7.3 Dynamic Latches and Registers

353

value on node X must propagate to the output {2. Finally, the setap time is the time for node X to
be valid, which is one inverter delay.

WARNING: Similar to the C*MOS latch, the TSPC latch malfunctions when the slope of the
clock is not sufficiently steep. Slow clocks cause both the NMOS and PMOS clocked transistors
to be on simultaneously, resulfing in undefined values of the states and race conditions. The
clock slopes should therefore be carefully controlled. I necessary, local baffers must be intro-
duced to ensure the quality of the clock signals.

Example 7.4 TSPC Edge-Triggered Register

Transistor sizing is critical for achieving correct functionality in the TSPC register. With
improper sizing, glitches may occur at the cutput due to a race condition when the clock
transitions from fow to high. Consider the case where D is low and 7 = 1 {{ = (). While
CLK is low, Y is precharged high turning on M, When CLX transitions froms low to high.
nodes Y and Q0 start to discharge simultaneously (through MM and M,—M,, respec-
tively). Onee Y is sufficiently low, the trend on @ is reversed and the node is pulled high
again through M, In a sense, this sequence of events is comparable to what happens when
we chain dynamic logic gates. Figure 7-34 shows the transient response of the circuit of
Figure 7-33 for different sizes of devices in the final two stages.

This glitch may be the cause of fatal errors, because it may create unwanted events
{for instance, when the output of the latch is used as a clock signal input to another regis-
ter). It also reduces the contamination delay of the register. The problem can be corrected
by resizing the relative strengths of the pull-down paths through Af,~M; and M.~M,, so
that ¥ discharges much faster than ©. This is accomplished by reducing the strength of the
M—Mg pull-down path, and by speeding up the A.,—M puli-down path.

3.0 —T ;
My Ms | My, M,
. O
20 { Dol 2 | Criginal | 05pm | 2um
! 7 Widik

= v
= 4 Modifiedi lpm lum
-~ 1] Width

1.0 { —

j Qon‘,e.f'nm}
j Qma{?x}fmf :
G‘{] I F ' ! .
3.0 0.2 0.4 0.6 0.8 10
Time (ns)

Figure 7-34 Transistor sizing issues in TSPC (for the register of Figure 7-33}.

Dell Ex. 1025
Page 242

354 Chapter 7 = Designing Sequential Logic Circuits
7.4 Alternative Register Styles*

7.4.1 Pulse Registers

Until now, we have used the master—slave configuration to create an edge-triggered register. A
fundamentally different approach for constructing a register uses puise signais. The idea is to
construct a short pulse arcund the rising (or falling) edge of the clock. This pulse acts as the
clock input to a latch {for example, Figure 7-352), sampling the input only in a short window.
Race conditions are thus avoided by keeping the opening time (i.e, the transparent period) of the
latch very short. The combination of the glitch-generation circuitry and the latch results in a pos-
itive edge-triggered register.

Figure 7-35b shows an example circuit for constructing a short intentional glitch on each
rising edge of the clock [Kozu$6). When CLK = 0, node X is charged up to Vi, (M) is off since
CLEG is low). On the rising edge of the clock, there is a short period of time when both inputs
of the AND gate are high, causing CLKG to go high. This in turn activates My, pulling X and
eventually CLKG low (Figure 7-35¢). The length of the pulse is controlled by the delay of the
AND gate and the two inverters. Note that there exists also a delay between the rising edges of
the input clock {CLK) and the glitch clock (CLKG), which also is equal 1o the delay of the AND
gate and the two inverters. If every register on the chip uses the same clock generation mecha-
nism, this sampling detay does not matter. However, process variations and load variations may

Yoo Vop
! 1
——Cl M; —4 Mg ¥
- CLE et 28
e L |
D |CLKG CLEG Af
—s ‘i ‘ME —{ MS S- 7 x CLKG
| | :]7 . Doy |
1 M} i M4 Mﬁ’ [
(a) Register (b} Glitch generation
E !
CLK i
CLKG i |
{c} Glitch clock
Figure 7-35 TSPC-based glitch latch-iming generation and register.
Dell Ex. 1025

Page 243

7.4 Alternative Reqgister Styles® 355

cause the delays through the glitch clock circuitty to be different. This must be taken into
account when performing timing verification and clock skew analysis (the topics of Chapter 10).

If the setup time and hold time are measured in reference to the rising edge of the glitch
clock, the setup time is essentially zero, the hold time is essentially equal to the length of the
pulse, and the propagation delay (1,_,) equals two gate delays. The advantage of the approach is
the reduced clock load and the small number of transistors required. The glitch-generation
circuitry can be amortized over multiple register bits, The disadvantage is a substantial increase
in verification complexity. For this circuit to function properly, simulations must be performed
across ail corners to ensure that the clock pulse always exists (i.e., that the glitch-generation cir-
cuit works reliably). Despite the increased complexity, such registers do provide an aiternate
approach 0 conventional schemes, and they have been adopted in a number of high-perfor-
mance processors {e.g., [Kozubsl).

Another version of the pulsed register is shown in Figure 7-36 (as used in the AMD-K6
processor [Partovi®6]). When the clock is low, M and 3/, are off, and device P, is turned on.
Node X is precharged to 'V, the output node (Q) is decoupled from X and is held at its previous
state. CLXD is a delay-inverted version of CLK. On the rising edge of the clock, Af5 and M turn
on while devices 4| and M, stay on for a short period, determined by the delay of the three
inverters. Daring this interval, the circuit is transparent and the input data D is sampled by the
latch. Once CLED goes low, node X is decoupled from the D input and is either held or starts to
precharge to Vpp, through PMGOS device . On the falling edge of the clock, node X is held at
Vo and the output is held stable by the cross-coupled inverters.

Note that this circuit alsc uses a pulse generator, but it is integrated into the register, The
transparency period also determines the hold time of the register. The window must be wide
enough for the input data to propagate to the Q output. In this particalar circuit, the setup time
can be negative. This is the case if the transparency window is longer than the delay from input
to output. This iz attractive, as data can arrive at the register even after the clock goes high,
which means that time is borrowed from the previous cycle.

CLK c|

Figure 7-36 Flow-through positive edge-triggerad register,

Dell Ex. 1025
Page 244

356 Chapter 7 = Designing Sequential Logic Cireuits

Example 7.5 Setup Time of Glitch Register

The glitch register of Figure 7-36 is transparent during the (1-1) overlap of CLK and
CLED. As a result, the input data can actually change after the rising edge of the clock,
resulting in a negative setup time (Figure 7-37). The D-input transitions to low after the
rising edge of the clock, and transitions to high before the falling edge of CLKD (i.e., dui-
ing the iransparency periad). Observe how the output follows the input. The output © does
20 to the correct value of Vi, as long as the input D is set up correctly some time before
the falling edge of CLKD. When the negative setup time is exploited, there can be no guar-
antees on the menotonic behavior of the cutput. That is, the output can have multiple tran-
sitions around the rising edge, and therefore, the output of the register should not be used
for driving dynamic logic or as a clock as a clock to other registers.

Wy T

25
20

15}
10}

Volts

03

0.0

~gsl— f :
00 02 04 06 88 10

Time {ns)

Figure 7-37 Simulation showing a negative setup time for the glitch register.

Problem 7.4 Converting a Glitch Register to a Conditional Glitch Register

Modify the circuit in Figare 7-36 so that it takes an additional Enable input. The goal is 10 convert the reg-
ister to a conditional register which latches only when the enable signal is asserted.

7.4.2 Sense-Amplifier-Based Registers

In addition to the smasrer—siave and the glitch approaches to implement an edge-triggered regis-
ter, a third technigue based on sense ampiifiers can be used, as introduced in Figure 7-38
[Montanare96].> Sense-amplifier circuits accept small input signals and amplify them to gener-
ate rail-to-rail swings, They are used extensively in memory cores and in low-swing bus drivers
to either improve performance or reduce power dissipation. There are many technigues to con-
struct these amplifiers. A common approach is to use feedback—for instance, through a set of

*Ig a sense, these sense-amplifier-based registers are similar in operation to the glitch registers—that is, the first siage
generates the pulse, and the seeond latches it

Dell Ex. 1025
Page 245

7.4 Alternative Register Styles* 357

i f—L’V[}
CLK i

Figure 7-38 Positive edge-triggered register based on sense amplifier.

cross-coupled inverters. The circuit shown in Figure 7-38 uses a precharged front-end amplifier
that samples the differential input signal on the 1ising edge of the clock signal. The outputs of
front end are fed into a NAND cross-coupled SR fip-flop that holds the data and guarantees that
the differential outputs switch onty once per clock cycle. The differential inputs in this imple-
mentation don't have to have rail-io-rail swing.

‘The core of the front end consists of 2 cross-coupled inverter (Ms—M;), whose outputs (L,
and L,) are precharged by using devices M, and M, during the low phase of the clock. As a
result, PMOS transistors 37, and M, are turned off and the NAND §ip-flop is holding its previ-
ous state, Transistor M| is similar to an evaluate switch in dynamic circuits and is turned off to
ensure that the differential inputs do not affect the output during the low phase of the clock. On
the rising edge of the clock, the evaluate transistor turns on and the differential input pair (M,
and M} is enabled, and the difference between the input signals is amplified on the output nodes
on L; and L;. The cross-coupled inverter pair flips to one of its stable states based on the value of
the inputs. For example, if /N'is 1, L, is pulled to 0, and L, remains at V. Due to the amplifying
properties of the input stage, it is not necessary for the input to swing all the way up t© Vpp,
which enables the use of low-swing signaling on the input wires.

The shorting transistor, My, is used to provide a DC-leakage path from either node L, or L,
io ground. This is necessary to accommodate the case in which the inputs change their value after
the positive edge of CLK has occurred, resulting in either Z; or L, being left in a high-impedance
state with a logical low-voltage level stored on the node. Without the leakage path, that node
wounld be susceptible to charging by leakage currents. The latch could then actuaily change state
prior to the next rising edge of CLK This is best illustrated graphically, as in Figure 7-39.

Dell Ex. 1025
Page 246

358 Chapter 7 » Designing Sequentiai Logic Circuits

Ex }) Initially —"l E

high . ._ “1

impedance \] ‘__ I _1 E
10 [L__woy,

ot e,

wio shoriling {7 wisherting
device Inputs change (CLK still high} device

AE% » T

1l

L
o

§1 80 .
L2 a0 11
izakage ;}atiz E—— _{ leakage path j i— _] E
0 s1 6} L, L g0 f—‘ 1-9 L4

-—{ — w—] -1

1* L 0+1 1-8 8+1
: ¥
V

Lyis isolated so charge accumulates The leakage current atiempls o
until £.;/L, change state, charge L,/L4, but the DCpath
causing L, to change state as well. through the shorting iransistor
As a result, the fip-flop cutputs change. allows it to leak away to ground.

Figure 7-38 The need for the shorting transistor #,.

7.5 Pipelining: An Approach to Optimize Sequential Circuits

Pipelining is a popular design technique often used to accelerate the operation of datapaths in
digjtal processors. The concept is explained with the example of Figure 7-40a. The goal of the
presented circuit is to compute log{la + bY), where both a and b represent streams of numbers
(i.e., the computation must be performed on a large set of input values). The minimal clock

period T, necessary to ensure correct evaluation is given as

R

r. =1

s -

+1 (2.7

q+t £t

nd fegic

where £, and 1 are the propagation delay and the setup time of the register, respectively. We
assame Ehat the reggsters are edge-triggered D registers. The {BIM 1,4, Stands for the worst
case delay path through the combinational network, which consists of the adder, absolute value,
and logarithm funetions. In conventional systems (that don’t push the edge of technologyl, the

Dell Ex. 1025
Page 247

7.5 Pipelining: An Approach to Optimize Sequential Circuits 359

£ w—

=l REG |

.
»

b —m

= REG |

o
-
S

=
{
[REG |

s
ks

b —

- REC |

Q
e

BB > log - ;:11 Cut
4
CLK
(a} Reference cireuit
5 O
I ! —> fog (i Out
24 4
CLK CLK CLX

(b} Pipelined version

Figure 7-40 Datapath for the computation of log{la + 5.

laiter delay is generally much larger than the delays associated with the registers and dominates
the circuit performance. Assume that each logic module has an equal propagation delay. We note
that each logic module is then active for only one-third of the clock period (if the delay of the
register is ignored). For example, the adder unit is active during the first third of the period and
remains idle (no useful computation) during the other two-thirds of the period. Pipelining is a
technique to improve the resource utilization, and increase the functional through-put. Assume
that we introduce registers between the logic blecks, as shown in Figure 7-40b. This causes the
computation for one set of input data to spread over a number of clock-pericds, as shown in
Table 7-1. The result for the data set (a4, £,) only appears at the output after three clock periods.

Table 7-1 Example of pipelined computations.

Clock Period Adder Absolute Value Logarithm
1 a+ by
2 a+ by ey + &)
3 G+ by |y + Byl lag(la, + B,]}
4 ay+ by lag+ &4 logllay + bo)
5 as + bs fag+ Byl logflas + B4}
Dell Ex. 1025

Page 248

360 Chapter 7 ¢ Designing Sequential Logic Circuits

At that time, the circuit has already performed parts of the computations for the next data sets,
{a,, by} and (a,, b3). The computation is perforraed in an assembly-line fashion-—hence the name
pipeline. ’

The advantage of pipelined operation becomes apparent when examining the minimum
clock period of the moedified circuit. The combinational circuit block has been partitioned into
three sections, each of which has a smaller propagation delay than the originai function. This
effectively reduces the value of the minimum allowable clock period:

T?}zf}i,pfpe = fc—(,: + max(z;}fladﬁ” 'fpzi.nb.\-‘ {p;z’.z’ﬂ\g) +i, (?3}

Suppose that ail logic blocks have approximately the same propagation delay, and that the
register overhead is small with respect o the logic delays, The pipelined network outperforms
the original circuit by a factor of three under these assumptions (i.e., T, .= T,/3). The
increased performance comes at the relatively small cost of two additional registers and an
increased latency. This explains why pipelining is popular in the implementation of very high-
performance datapaths.

7.5.1 lLaich- versus Register-Based Pipelines

Pipelined circuits can be constructed by using level-sensitive latches instead of edge-triggered
registers. Consider the pipelined cireuit of Fgure 7-41. The pipeline system is implemented
using pass-transistor-based positive and negative latches instead of edge-triggered registers. That
is, logic is introduced between the masier and slave latches of a master—slave system. In the fol-
lowing discussion, we use the CLXK-CLK notation to denote a two-phase clock system without
loss of generality. Latch-based systems give significantly more flexibility in implementing a
pipelined system, and they often offer higher performance, When the CLK and CLX clocks are
nonoverlapping, correct pipeline operation is obtained. Input data is sampled on C, at the nega-
tive edge of CLK and the computation of logic block F starts; the result of the logic block F is
stored on C, on the falling edge of CLK, and the computation of logic block G starts. The non-
overlapping of the clocks ensures corvect operation. The value stored on G, at the end of the
CLK low phase is the result of passing the previous input (stored on the falling edge of CLK en
C)) through the logic function F, When overlap exists between CLK and CLZE, the rext input is
already being applied to F, and its effect might propagate to C, before TLK goes low {assuming
that the contamination delay of F is small). In other words, a race develops between the previous
input and the current ene. Which value wins depends upen the logic and is often a function of
the applied inputs. The latter factor makes the detection and elimination of race conditions non-
trival in natare.

3 Latency is defined here as the number of clock cycles it takes for the duta to propagate from the input to thie oulput. For
the example at band, pipelining increases the latency from | o 3. An increased lntency is generaiy acceptable, butit can
cause z global performance degradation if not treated with care.

Dell Ex. 1025
Page 249

7.5 Pipelining: An Approach to Optimize Sequential Circuits

CLK

3671

Wu’

N T e — — . —

Compute F compute G

||]»~(«|-)

Figure 7-41 Operation of two-phase pipelined circuit, using dynamic registers.

Vop Von

o
L\-‘
£

—

T 1
|]
B PR e o N o A o o

g
b

CLE@{

1

Figure 7-42 Pipslined datapath, using C3OS latches.

CL_{C__{
—3

7.58.2 NORA-CMOS—A Logic Style for Pipelined Structures

The latch-based pipeline circuit can also be implemented by using C?MOS latches, as shown in
Figure 7-42. The operation is similar to the one discussed in Section 7.5.1. This topology has

one additional important property:

[
)

A C*MOS-based pipelined circuit is race free as long as all the logic functions F
(implemented by using static logie) between the latches are noninverting.

The reasoning for the preceding argument is similar to the argument made in the con-
struction of a C°MOS register. During a (0-0) overlap between CLK and CTLE, all C*MOS
fatches simplify to pure pull-up networks (see Figure 7-27). The only way a signal can race

Dell Ex. 1025
Page 250

362 Chapter 7 + Designing Sequential Logic Circuits

«
&
3

Voo Yop

I

LT 1,
pe
i
1
—

CLK

s
|
5

I|H}w~<

r
l
D
||H 1

]

T R
i
I

,i_‘l”"L__T”"

Figure 7-43 Potential race condition during (0~0) overlap in C30S-based design.

from stage to stage under this condition is when the logic function F is inverting, as iflustrated
in Figure 7-43, where F is replaced by a single, static CMQOS inverter. Simnilar considerations
are valid for the (1-1} overlap.

Based on this concept, a logic circuit style called NORA-CMOS was conceived
[Gonealves83]. It combines C?MOS pipeline registers and NORA dynamic logic function
blocks. Each module consists of a block of combinational logic that can be a mixture of static
and dynamic logic, followed by a C*MOS latch. Logic and latch are clocked in suck a way that
both are simultaneously in either evaluation, or hold {precharge) mode. A block that is in evalua-
tion during CLK = [is called a CLK module, while the inverse is called a CLK module. Exam-
ples of both classes are shown in Figure 7-44a and 7-44b, respectivelv. The operation modes of
the modules are summarized in Table 7-2,

A NORA datapath consists of a chain of alternating CLK and CLK modules. While one
class of modules is precharging with its cutput latch in hold mode, preserving the previous
output value, the other class is evaluating. Data is passed in & pipelined fashion from medule
to medule. NORA offers designers a wide range of design choices. Dynarmic and static logic

Table 7-2 Operation modes for NORA logic modules.

CLK block CLK biock
i.ogic Latch Logic Latch
CLE=0 Precharge Heaid Evaluate Evaluvate
CLK =1 Evaluate Evaluate Precharge Hold

Dell Ex. 1025
Page 251

7.5 Pipelining: An Approach to Optimize Sequential Circuits

VYoo Voo

I

I
CL%
PUN Out
Iy }

In; — pON
]#}3 p— CLK z

il mp L

Combinational legic Latch
{a} CLK-nwdule

VD D VDD VBD

adf el AP

.l
|
I |]__I_{Bur

Iny — ppN
Iny CIE :i:_

[—il;

Jm N
S
>

[

1
W L

(b} CLK-moduie
Figure 7-44 Examples of NORA-CMCS modules.

363

can be mixed freely, and both CLK,, and CLK, dynamic blocks can be used in cascaded or in
pipelined form. Although this style of logic avoids the extra inverter required in domino
CMOS, there are many rules that must be followed to achieve reliable and race-free opera-

tion. As a result of this added complexity, the use of NORA has been limited
performance applications.

to high-

Dell Ex. 1025
Page 252

364 Chapter 7 *» Designing Sequentizal Logic Circuits

7.6 Monbhisiable Sequential Circuits

In the preceding sections, we have focused on 2 single type of sequential element: the latch (and
its sibling, the register). The most important property of such a circuit is that it has two stable
states—hence, the term bistabie. The bistable elemeat 15 not the only seguential circuit of inter-
est. Other regenerative circuits can be catalogued as astable and monostable. The former act as
oscillators and can, for instance, be used for on-chip clock generation. The latter serve as pulse
generators, also called one-shat circuiss. Another interesting regenerative circuit is the Schair
trigger. This component has the useful property of showing hysteresis in its de characteristics—
its swiiching threshold is variable and depends upon the direction of the transition (low to high
or high to low). This peculiar feature can come in handy in noisy environments.

7.6.1 The Schmitt Trigger

Definition
A Schanitr trigger [Schmitt38] is a device with two important properties:

1. ¥ responds to a slowly changing input waveform with a fast transition time at the
output.

2. The voltage-transfer characteristic of the device displays different switching thresholds for
positive- and negative-going inpur signals. This is demonstrated in Figure 7-45, where a
typical voltage-transfer characteristic of the Schmitt wigger is shown (and its schematics
symbol}. The switching thresholds for the low-to-high and high-to-low transitions are
called V,,, and V,, , respectively. The hysteresis voltage is defined as the difference
between the two.

One of the main uses of the Schimiit trigger is to turn a noisy or slowly varying input signal into
a clean digital output signal. This is illustrated in Figure 7-46. Notice how the hysteresis sup-
presses the ripging on the signal. At the same time, the fast low-to-high {and high-to-low) transi-

E’{z:m.! VO I
|
: i Tut
_ i
X ; i
/ R
Ve Vs Vin
{a} Voltage-iransfer characteristic (b} Schematic symbol
Figure 7-45 Noninverting Schmitt trigger.
Dell Ex. 1025

Page 253

7.6 Nonbistable Sequential Circuits 365

Vi 3 er:

1
i

i, :

Figure 7-46 Nuise suppression, using a Schmitt trigger.

tions of the output signal should be observed. Steep signal slopes are beneficial in general, for
instance for reducing power consumption by suppressing direct-path currents. The “secref”
behind the Schmitt trigger concept is the use of positive feedback.

CMOS Implementation

One possible CMOS implementation of the Schmitt trigger is shown in Pigure 7-47. The idea
behind this cireuit is that the switching threshold of a CMOS inverter is determined by the
(R, 7k} ratio between the PMOS and NMOS transistors. Increasing the ratio raises the thresh-
old, while decreasing it lowers ¥V}, Aduapting the ratio depending upon the direction of the
transition results in a shift in the switching threshold and a hysteresis effect, This adaptation
is achieved with the aid of feedback.

Suppose that V), is initially equal to §, so that V,,, = 0 as well. The feadback loop biases the
PMOS wansistor M, in the conductive mode, while M, is off. The input signal effectively con-
nects to an inverter consisting of two PMOS transistors in parallel (M, and M) as a pull-up net-
work, and a single NMOS transistor (M) in the pull-down chain. This modifies the effective
transistor ratio of the inverter to &,/ (ks + 4}, which moves the switching threshold upwards.

i

o
§
i

4

Figure 7-47 CMOS Schmitt trigger.

Dell Ex. 1025
Page 254

366 Chapter 7 = Designing Sequertial Logic Circulls

Once the inverter switches, the feedback loop turns off 3, and the NMOS device M; is
activated. This extra pull-down device speeds up the transition and produces a clean output sig-
nal with steep slopes.

A similar behavior can be observed for the high-to-low transition. In this case, the pull-
down network originaily consists of M, and M, in parallel, while the puli-up network is formed
by M,. This reduces the value of the switching threshold to Vi,

Example 7.6 CMOS Schmitt Frigger

Consider the Schmitt trigger of Figure 7-47, with M, and M, sized at | gm/0.25 pm, and
3 wm/0.25 pm, respectively. The inverter is designed such that the switching threshold is
around Vp,,/2 {= 1.25 V). Figure 7-48a shows the simulation of the Schmitt trigger assum-
ing that devices M, and M, are 0.5 wm/0.25 um and 1.5 um/0.25 um, respectively. As
apparent from the plot, the circuit exhibits hysteresis. The high-to-low switching point
(Vy_= 0.9 V) is lower than Vp,/2, while the low-to-high switching threshold {(V,, =
1.6 V) is larger than V,,/2.

It is possible to shift the switching point by changing the sizes of M; and M,. For
example, to modify the low-to-high transition, we need to vary the PMOS device,
The high-to-low threshold is kept constant by keeping the device width of M at 0.5 um.
The device width of M, is varied as & X 0.5 pm. Figure 7-48b demonstrates how the
switching threshold increases with raising values of L.

2.5 25 ; . —
20+ — 201 —
— 13 Vits ~ i3 —
Z 1 12]
> ok Vo 4 > b é ™ -

=11 P
] N 5 ,5'/ k=3 -
0.5+ - 05|~ - rO

k=4
P SRR S | R B .. . 2
08 0.0
0.0 0.5 140 1.5 2.0 2.5 0.0 4.5 ib 15 28 25
Vi V) Yiu (V)

(a) Voltage-transfer characteristics with hysteresis. {1} The effect of varying the ratio of the

PMOS device M, The width is £ X 0.5 um.

Figure 7-48 Schmitt trigger simulations.

Dell Ex. 1025
Page 255

7.6 Nonbistable Sequential Circuits 367

Problem 7.7 An Alternative CMOS Schmitt Trigger

Another CMOS Schemilt trigger is shown in Figure 7-49. Discuss the operation of the gate, and derive
expressions for V,,_and V.

VDD

T

M,

frn —

[T 11

Figure 7-39 Aliernate CMOS Schmitt frigger.

7.6.2 Monostable Sequential Circuits

A monostable element is a circnit that generates a pulse of a predetermined width every time the
quiescent circuit is triggered by a pulse or transition event. It is called monosrable because it has
only one stable state (the quiescent one). A trigger event, which is either a signal transition or a
pulse, causes the circuit fo go temporarily into another quasi-stable state. This means that it
eventually retwrns to its original state afier a time period determined by the circuit parameters.
This circuit, aiso called a sne-shor, is useful in generating puises of a known length. This func-
tionality is required in a wide range of applications, We have already sean the use of a one-shot
in the construction of glitch registers. Another well-known example is the address transition
detection {ATD) circuit, used for the timing generation in static memories. This circnit detects a
change in a signal or group of signals, such as the address or data bus, and produees a pulse to
initinlize the subsequent circuitry.

The most common approach to the implementation of one-shots is the use of a simple
delay element fo control the duration of the pulse. The concept is illustrated in Figure 7-50. In
the quiescent state, both inputs to the XOR are identical, and the output is low. A transition on
the input canses the XOR inputs to differ temporarily and the output to go high. After a delay 7,
{of the delay element), this disruption is removed, and the output goes low again. A pulse of
leagth #, is created. The delay circuit can be realized in many different ways, such as an RC-
network or a chain of basic gates.

Dell Ex. 1025
Page 256

368 Chapter 7 * Designing Sequential Logic Circuits

in DELAY [)

I 4 _ED-{;% f | S S

Figure 7-50 Transition-triggered one shot.

7.6.3 Astable Circuits
An astable circuit has no stable states. The output osciflates back and forth between two quasi-
stable states, with a period determined by the circuit topology and parameters (delay, power sup-
ply, etc.). One of the main applications of oscillators is the on-chip generation of clock signals.
(This application is discussed in detail in a later chapter on timing.)

The ring oscillator is a simple example of an astable circuit. It consists of an odd number
of inverters connected in a cireular chain. Due to the odd number of inversions, no stable opera-
tion point exists, and the circuit oscillates with a period equal to 2 X ¢, X N, where N is the num-
ber of inverters in the chain and , is the propagation delay of each inverter.

Example 7.7 Ring Oscillaior
The simulated response of a ring oscillator with five stages is shown in Figure 7-51 (all
gates use minimum-size devices), The observed oscillation period approximately equals
0.5 ns, which corresponds to 2 gate propagation delay of 50 ps. By tapping the chain at
various points, different phases of the oscillating waveform are obtained. (Phases 1, 3, and
5 are displayed in the plot.} A wide range of clock signals with different duty-cycles and
phases can be derived from those elementary signals, using simple logic operations.

3-{! . I ¥ i
2.5
2.0

135

A by

Volts

-~

Figure 7-51 Simuiated waveforms of five-stage ring osciliator.
The cutputs of stages 1, 3, and & are shown.

Dell Ex. 1025
Page 257

7.6 Nonbistable Sequential Circuits 369

g\ I\ LA
- < D DC

In] D (#7114

V{T}!k’ —'| M 3
L

Figure 7-52 Voliage-controlied osciliaior based on current-starved inveriers.

The ring oscillator composed of cascaded inverters produces a waveform with a fixed
oscillating frequency determined by the delay of an inverter in the CMOS process. In many
applications, it is necessary to confrol the frequency of the oscillator. An example of such a cir-
cuit is the voltage-controlled oscillator (VCO), whose oscillation frequency is a function (typi-
cally, nonlinear) of a control voliage. The standard ring oscillator can be medified into a VCO by
replacing the standard inverter with a curreni-starved inverier like the one shown in Figure 7-52
fleong871. The mechanism for controlling the delay of each inverter is to Iimit the current avail-
able to discharge the load capacitance of the gate.

In this modified inverter circuit, the maximal discharge current of the inverter is limited by
adding an extra series device. Note that the low-to-high transition on the inverter can also be
controlled by adding a PMOS device in series with M,. The added NMOS transistor M., is con-
trolled by an analog control voltage V_,,, which determines the available discharge current.
Lowering V,,, reduces the discharge current and, hence, increases 1,4, The ability to alter the
propagation delay per stage allows us to control the frequency of the ring structure. The contrel
voltage is generally set by nsing feedback techniques. Under low-operating current levels, the
current-starved inverter suffers from slow fall times at its output. This can result in significant
short-circuit current. We solve this problem by feeding its output into a CMOS inverter or, better
vet, a Schinitt trigger. An extra inverter is needed at the end to ensure that the structure oscilates.

Example 7.8 Current-Starved Inverter Simulation

Figure 7-533 shows the simulated delay of the current-starved inverter as a function of the
control voltage V.. The delay of the inverter can be varied over a large range. When

the control voltage is smaller than the threshold, the device enters the subthreshold region.

Dell Ex. 1025
Page 258

370 Chapter 7 » Designing Sequential Logic Circuits

tpy1, (nsec)

0.5 0 15 28 25
yc:r! {V)

Figure 7-53 1, of current-starved inverter as a function of the control voltage.

This resuits in large variations of the propagation delay, as the drive corrent is exponen-
tially dependent on the drive voltage. When operating in this region, the delay Is very sen-
sitive to variations in the control voltage and hence to noise,

Another approach to implement the delay cell is to use a differential element as shown in
Figure 7-54a. Since the delay cell provides both inverting and noninverting outputs, an oscillator
with an even number of stages can be implemented. Figure 7-54b shows a two-stage differential
VCO, where the feedback loop provides 180° phase shift through two gate delays, one nomin-
verting and the other inverting, therefore forming an oscillation. The simulated waveforms of
this two-stage VCO are shown in Figure 7-34¢c. The in-phase and quadrature phase outputs are
available simultaneously. The differential-type VCO has better immunity to common mode noise
(for example, supply noise) compared with the common ring oscillator. However, it consumes
more power due to iis increased complexity and its static current.

7.7 Perspective: Choosing a Clocking Strategy

A crucial decision that must be made in the earliest phases of chip design s to select the appro-
priate clocking methodology. The reliable synchronization of the various operations oceurring in
a complex circuit is one of the most intriguing challenges facing the digital designer of the next
decade. Chooesing the right clocking scheme affects the functionality, speed, and power of a
circuit.

A number of widely used clecking schemes were infroduced in this chapter. The most
robust and conceptually simple scheme is the two-phase master—slave design. The predominant
approach is te use the multiplexer-based register, and to generate the two clock phases locally by
simply inverting the clock. More exotic schemes such as the glitch register are also used in prac-
tice. However, these schemes require significant fine-tuning and must only be used in specific
situations. An example of such is the need for a negative setup time to cope with clock skew.

The general trend in high-performance CMOS VLSI design is therefore to use simple
clocking schemes, even at the expense of performance. Most automated design methodologies

Dell Ex. 1025
Page 259

7.8 Summary 371

Vo— V,+
i+ -—3 *—iw—
U3
¢/
e
Vl?r;‘ "‘{ 4
(a} Delay cell {b) Tvo-stage VCO

Volts

Time (ns}

{c) Simulated waveforms of two-stage VCO

Figure 7-54 Differential delay element and VCO topology.

such as standard cell employ a single-phase, edge-triggered approach, based on static flip-flops.
Nevertheless, the tendency towards simpler clocking approaches alse is apparent in high-
performance designs such as microprocessors. The use of latches between logic to improve cir-

cuit performance is commeon as well.

7.8 Summary
This chapter has explored the subject of sequential digital circuits. The following topics were

discussed:

» The cross coupling of two inverters creates a bisfable circuit, alsa known as a flip-flop. A
third potential operation point turns out to be metastable; that is, any diversion from this
bias point causes the flip-fiop to converge to one of the stable states.

* A latch is a level-sensitive memory element that samples data on one phase and holds data
on the other phase. A register, on the other hand, samples the data on the rising or falling
edge. A register has three important parameters: the setup time, the hold time, and the

Dell Ex. 1025
Page 260

372 Chapter 7 = Designing Sequential Logic Circuits

propagation delay. These parameters must be carefully optimized, because they may
account for a significant portion of the clock period.

« Registers can be static or dynamic. A static register holds state as long as the power suppfy
is turned on. It is ideal for memory that is accessed infrequently (e.g., reconfiguration reg-
isters or control information). Static registers use either multiplexers or overpowering to
enable the writing of data.

* Dynamic memory is based on temporary charge storage on capacitors. The primary advan-
tage is reduced complexity, higher performance, and lower power consumption. However,
charge on a dynamic node leaks away with time, and dynamic circuits thus have a mini-
mum clock frequency. Pure dynamic memery is hardly used anymore. Register circuits are
made psendostatic to provide immunity against capacitive coupling and other sources of
cireuit induced noise.

» Registers can also be constructed by using the pulse or glirch concept. An intentional pulse
{using a one-shot circuit) is used to sample the input around an edge. Sense-amplifier-
based schemes also are used to construct registers; they should be used as well when high-
performance or low-signal-swing signaliing is required.

« Choice of clocking stvie is an important consideration. Two-phase design can result in race
problems. Circuit techniques such as C2MOS can be used to efiminate race conditions in
rwo-phase clocking. Another option is to use true single-phase clocking. However, the rise
time of clocks must be carefully optimized to eliminate races.

» The combination of dynamic logic with dynamic latches can produce extremely fast com-
putational structures. An example of such an approach, the NORA logic style, is very
effective in pipelined datapaths.

s Monostable structures have only one stable state; thus, they are useful as pulse generators,

» Astable multivibrators, or oscillators, possess no stable state. The ring oscillator is the
besi-known example of a cireuit of this elass.

= Schmist triggers display hysteresis in their dc characteristic and fast transitions in their
ransient response. They are mainly used to suppress noise.

7.9 To Probe Furiher

The basic concepts of sequential gates can be found in many logic design textbooks {e.g.,
[Mano821 and [Hill74]). The design of sequential circuits is amply documented in most of the
traditional digital cirenit handbooks. [Partovi(1] and {Bernstein®8] provide in-depth overviews
of the issues and solutions in the design of high-performance sequential elements.

References

[Bernstein98} K. Bemstein et al., High-Speed CMOS Design Styles, Kluwer Acadernic Publishers, 1998,

{Dopperpuhi92] B. Dopperpuhl et al., *A 200 Miz 64-b Dual Issue CMOS Microprocesser,” JEEE Journal of § ofid-
State Cirewits, vol. 27, no. 11, Nov. 1992, pp. 1555-1567.

[GiesekeS7] B. Gieseke et al, “A 600 MHz Superscalar RISC Miercprocessor with Out-of-Order Execution,” JEEE
Internarional Solid-Siate Circuits Conference, pp. Y16-177, Feb, 1997,

Dell Ex. 1025
Page 261

7.8 To Probe Further 373

[Gongalves83] N. Gongalves and H. De Man, “NORA: a racefiee dynamic CMOS technigue for pipelined logic struc-
tuees,” JEEE Journal of Solid-State Cirenits, vol. SC-18, no. 3, June 1983, pe. 261-266.

[HIIT4] F. Hill and G. Peterson, Jntroduction to Switching Theory and Legical Design, Wiley, 1974,

[feong87] D. Jeong et al,, “Design of PLL-based clock generation cirouits,” JEEE Journal of Solid-Siate Circuics, vol.
SC-22, no. 2, April 1987, pp. 255-251.

[Kozu96] 8. Kozu et al., “A 100 MHz 0.4 W RISC Processor with 200 MHz Mukipiy- Adder, using Pulse-Register Tech-
nigue,” IEEE ISSCC, pp. 140-141, February 1996,

{Mano82} M. Mane, Compurer System Architecture, Prentice-Hall, 1982,

{blontanarc$6] J. Mentanaro et al., “A 160-MHz, 32-b, 0.5-W CMOS RISC Microprocessor” [EEE Journal of Sofid-
State Circuits, pp. 1703-1714, November 1996,

[Mutoh93] 8. Mutoh et al., “1-V Power Supply High-Speed Digital Circuit Technology with Multithreshold-Voltage
CMOS," IEEE Journal of Solid State Cireulzs, pp. 847-854, August 1995,

{Partovi96] H. Partovi, “Flow-Through Latch and Edge-Triggered Flip-Flop Hybrid Elements,” IEEE I85CC, pp. 138—
13%, February 1996,

{Partovi1] H. Partovi, “Clocked Storage Elements,” in Design of High-Performance Microprocessor Circuirs,
Charndakasan et al., ed_, Chapter 11, pp. 207-233, 2001,

{Schmitt38] 0. H. Schmitt, “A Thermienic Trigger” Journal of Scientific Instruments, vol. 13, Tanuury 1938, pp. 24-26.

[Suzuki?3]Y. Suzuki, K, Qdagawa, and T. Abe, “Clocked CMOS calculator circvitry” IEEE Journal of Solid Siate Cir-
cuits, vol. SC-8, December 1972, pp. 462468,

[¥uan89] I. Yoan and Svensson C., “High-Speed CMOS Circuit Technigue,” JEEE J55C, vol. 24, no. , February 1989,
pp. 62-70.

Dell Ex. 1025
Page 262

Dell Ex. 1025
Page 263

PART

“Art, it seems to me, should simplify. That, indeed, is very nearly the whole of the higher artistic

process; finding what conventions of form and what of detail one can de without and vet pre-
serve the spirit of the whaole”
Willa Sibert Cather,

On the Art of Fiction (1920).

“Stmplicity and repose are the qualities that measure the true value of any work of art”
Frank Lioyd Wright.

Dell Ex. 1025
Page 264

Dell Ex. 1025
Page 265

CHAPTER

8

Implementation Strategies
for Digital ICs

Semicustom and siriciured design methodologies
ASIC and system-on-a-chip design flows
Corfigurabie hardware

8.1
8.2
8.3
8.4

8.5

8.6
87
8.8

Introduction
From Custom to Semicustom and Structured-Array Design Approaches
Custom Circuit Design

Cell-Based Design Methodology

8.4.1 Standard Cell

8.4.2 Compiled Celis

8.43 Macroceils, Magacelis, and Intellectual Property
8.44 Semicustom Design Flow

Array-Based Implementation Approaches
851 Prediffused {or Mask-Programmable} Arrays
8.5.2 Prewired Arrays

Perspective—~The Implementation Platiorm of the Future
Summary
To Probe Further

ar77

Dell Ex. 1025
Page 266

378 Chapter 8 « Implementation Strategies for Digital ICS

8.1 Iniroduction

The dramatic increase in complexity of contemporary integrated circuits poses an enormous
desisn challenge, Designing a multimillion-trapsistor circuit and ensuring that it operates cor-
rectly when the first silicon returns is a daunting task that is virtually impossible without the help
of computer aids and well-established design methodologies. In fact, it has often been suggested
that technology advancements might be outpacing the absorption bandwidth of the design com-
munity. This s articulated in Figure 8-1, which shows how IC complexity (in logic transistors} is
growing faster than the productivity of a design engineer, creating a “design gap.” One way (o
address this gap is to increase steadily the size of the design teams working on a single project.
We ohserve this trend in the high-performanee processor world, where teams of more than 500
people are ne longer a surprise.

Obviously, this approach cannot be sustained in the long ferm—just imagine all the design
engineers in the world working on a single design. Fortunately, about once in a decade we wit-
ness the introductior of a novel design methodology that creates a step function in design pro-
ductivity, helping to bridge the gap temporarily. Looking back over the past four decades, we
can identify a number of these productivity leaps. Pure custom design was the norm in the early
integrated circuits of the 1970s. Since then, programmable logic arrays (PLAs), standard cells,
macrocells, module compilers, gate arrays, and reconfigurable hardware have steadily helped to
ease the time and cost of mapping a function onto silicon. In this chapter, we provide a descrip-
tion of some commonly used design implementation approaches. Due to the extensive nature of
the field, we cannot be comprehensive—doing so would require a textbook of its own. Instead,
we present @ user perspective that provides a basic perception and insight into what is offered
and can be expected from the different design methodologies.

The preferred approach to mapping a function onto silicon depends largely upon the func-
tion itself. Consider, for instance, the simple digital processor of Figure 8-2. Such a processor

10000,000 [=== Logic Transistors/Chip 106,600,000 .
" -
Z 10 4 1,000,000 f-————-TransistorStaff Month————; 10,060,000 g
& 106000} 58%/Yr. compound 1000000 &
T Complexity growth rate &
S asp 10000 _y// 10 g
=] ixd
b 1000 =] 10,000 £
2 / x =
e 100 % 1000 =
2] / % g
,3 250 10 | 21%.*’lecpmpound —} 106G 3
Productivity growth rate LW
Ve T 10
s I s B T s B~ N S S = S S o S o B B = O |
RERS52232288835¢8

Figure 81 The design productivity gap. Technology {in logic transistors/chip)
outpaces the design productivity (in transistors designed by a single design
engineer per month). Source: S1A [SIA27].

Dell Ex. 1025
Page 267

8.1 Introduction 379

MEMORY |~—

CONTRCGL

INPUTOQUTPUT

DATAPATH

Figure 8-2 Composition of a generic digital processer. The arrows
represent the possible interconnections,

could be the brain of a persenal computer (PC}, or the heart of a compact-disc plaver or cellular
phone. It is composed of a number of building bloecks that occur in one form or ancther in almost
every digital processor:

* The datapath is the core of the processor; it is where all computations are performed, The
other blocks in the processor are support units that either store the resuits produced by the
datapath or help te determine what will happen in the next cycle. A typical datapath con-
sists of an interconnection of basic combinational functions, such as logic (AND, OR,
EXOR) or arithmetic operators (addition, multiplication, comparison, shift). Iatermediate
results are stored in registers. Different strategies exist for the implementation of data-
paths—structured custom cells versus automated standard celis, or fixed hard-wired versus
flexible field-programmabie fabric. The choice of the implementation platform is mostly
influenced by the trade-off between different design metrics such as area, speed, energy,
design time, and reusability.

*» The conirel module determines what actiens happen in the processor at any given point
in time. A controller can be viewed as a finite state machine {FSM). It consisis of registers
and logic, and thus is a sequential circuit. The logic can be implemented in different
ways—either as an interconnection of basic logic gates {standard cells), or in a more situc-
tured fashion using programmable logic arrays (PLAs} and instruction memories.

* The memory module serves as the centralized data storage area. A broad range of differ-
ent memory classes exist. The main difference between those classes is in the way data can
be accessed, such as “read only” versus “read—write,” sequential versus random access, or
single-ported versus multiported access. Arother way of differentiating between memories
is related to their data-retention capabilities. Dynamic memory structares mast be
refreshed periodically to keep their data, while static memories keep their data as long as
the power seuce is turned on. Finally, nonvolatile memories such as flash memories con-
serve the stored data even when the supply voltage is removed. A single processor might
combine different memory classes. For example, random access memory can be used to
store data, and read-only memory may store instructions.

Dell Ex. 1025
Page 268

380

Chapter 8 « Implementation Strategies for Digital ICS

» The interconnect network joins the different processor modules to one another, while the
input/output circuitry conneets to the outside wotld. For a long time. interconnections
were an afterthought in the design process. Unfortunately, the wires composing the inter-
connect network are less than ideal and present a capacitive, resistive, and inductive load
to the driving circuitry. As die sizes grow larger, the length of the interconnect wires also
tends to grow, resulting in increaging values for these parasitics. Today, automated or
structured design methedologies are being introduced that ease the deployment of these
interconnect siructures. Bxamples include on-chip busses, mesh interconnect structures,
and even complete networks on a chip. Some componenis of the interconnect network typ-
ically are abstracted away on schematic block dingrams, such as the one shown in
Figure 8-2, yet are of critical importance to the well-being of the design. These include the
power- and clock-distribution petworks. Early planning of these “service” networks can
go a long way toward ensuring the correct operation of the integrated circuit.

The structure of Figure 8-2 may be repeated many times on a single die. Figure §-3 shows

an example of a sysfem on a chip, which combines all the functions needed for the realization of
a complete high-definition digital TV set. [t combines two processors, memory units, specialized
accelerators for functions such as MPEG {dejcoding and data filtering, as well as a range of

I SDRAM/SGRAM |
[MAIN MEMSR‘; INTERFACE |

< TRIMEDIA
VLIW CPU

H] MPEG-2 COPROCESSOR |

<->] HDVO E_—‘*

PIBUS
CVPIMEMORY BUS

o ' A <[spvibEoour mig
— . TSVIDEO IN @ | | aubcoure ne
l DVDD f*—* —| SPDIF OUT mg
1 rC = I~ aupiowg M

1 SSI ["H*[PCUXIC INTERFACE l*“"

Figure 8-3 The “Nexperia” system on a chip [Philips88]. This single chip combines a
general-purpose microprocessor core, a VLIW {very large instruction werd; signal
processer, a memory system, an MPEG coprocessor, multipie accelerator units,

and input/output peripherals, as well as two system busses.

Dell Ex. 1025
Page 269

SR |

8.1 Introduction 381

peripheral units, Other applications such as wireless transceivers or hard-disk read/write units
may even include some sizable analog modules.

Choosing an effective implementation approach strengly depends upon the function of the
modules under consideration. For example, memeory units tend to be very regular and structured.
A module compiler that stacks cells in an arraylike fashion is thus the preferred implementation
approach. Controllers, on the other hand, tend to be wnstructured, and other implementation
approaches are desirable. The choice of the implementation strategy can have a tremendous
effect on the quality of the final product. The challenge for the designer is to pick the siyle that
meets the product specifications and constraints. What worles well for one design may well be a
disaster for another one.

Exampie 8.1 Trading Off Energy Efficiency and Flexibility

A design that embraces flexibility {or programmability) is very atiractive from an applica-
tion perspective. It allows for “late binding,” in which the application can still be changed
after the chip has gone to fabrication. Flexibility makes it possible to reuse a single design
for multiple applications, or to upgrade the firmware of a component in the field, reducing
the risk for the manuofacturer. In contrast, a hard-wired component is totally fixed at manu-
facturing time and cannot be modified afterwards.

So, why not use flexible or programmable components for every possible design? As
always, there is no free lunch. Flexibility comes at a price in both performance and energy
efficiency. Providing programmability means adding overhead to implementation. For
exaimple, a programmable processor uses stored instructions and an instruction decoder to
make a single datapath perform multiple functions. Most designers are not aware of the
large cost of flexibility. The impact is illustrated in Figure 8-4, which compares the energy

1G0-108G

T Application-specific processor

5 (eg DS
= Embedded mictoprocessor

Energy Efficiency (in MOPS/mW)

None Somewhat Fully Flexibility
flexible flexible {or application scope}

Figure 8-4 Trading off flexibility versus energy efficiency {in MOPS/mW or millions of op-
erations per mJd of energy) for different implementation styles. The numbers were collected
for a 0.25 um CMOS process [Rabaey00lL

Dell Ex. 1025
Page 270

382 Chapter 8 = Implementation Sirategies for Digital ICS

efficiency—the number of operations that can be performed for a glven amount of
energy—of various implementation styies versus their flexibiliry—that is, the range of
applications that can be mapped onio them. A staggering three orders of magnitude in
variation can be observed, This clearly demonstrates that hard-wired or implementation
styles with limited flexibility (such as configurable or parameterizable modules} ave pref-
erable when energy efficiency is a must.

In this and the following three chapters, we discuss, respectively, implementation tech-
niques for random logic aud conuvollers (this chapter), interconnect {Chapter 9), datapaths
{Chapter 11}, and memories {Chapter 12). Observe that the choice of the implementation
approach can have a tremendous effect on the guality of the fnal preduct. Important aspects in
the design of complex systems consisting of multiple blocks and thus deserving special attention
are synchronization and timing (Chapter 1) and the power distribution network (Chapter 9).
The distribution of cleck signals and supply current has become one of the dominant problems
in the design of state-of-the-art processors. A number of Design Methodology Inserts, inter-
spersed between the chapters, address the design challenge posed by these complex components,
and introduce the advanced design automation tools that are available to the designer. Inserts F,
G, and H discuss design synthesis, verification, and test, respectively.

8.2 From Custom to Semicustom and Structured-Array
Design Approaches

The viability of a microelectronics design depends on a number of {ofien) conflicting facters,
such as performance in terms of speed or power consumption, cost, and production volume. For
example, to be compstitive in the market, a microprocessor has to excel in performance at a low
cost to the customer. Achieving both goals simultaneously is only possible through large sales
volumes. The high development cost associated with high-performance design is then amortized
over many parts. Applications such as supercomputing and some defense applications present
another scenario. With ultimate performance as the primary design goal, high-performance cus-
tom design techniques often are desirable. The production volume is small, but the cost of elec-
tronic parts is only a fraction of the overall system costs and thus not much of an issue. Finally,
reducing the system size through integration, not performance, is the major objective in most
consumer apphications. Under these circumstances, the design cost can be reduced substantially
by using advanced design-automation techniques, which compromise performance, but mini-
mize design time. As noted in Chapter 1, the cost of a semiconductor device is the sum of tweo
CGTE{pGHéHiSZ

» The nonrecurving experise (NRE}, which is incurred only once for a design and includes
the cost of designing the part.

*» The production cost per part, which is a function of the process complexity, design area,
and process yield.

Dell Ex. 1025
Page 271

8.3 Custom Circuit Design 383

Digital Circuit Implementation Approaches !

s

I Custom ! i Semicustom E

i
I Cell based i

!

I Standard cells Mactocolls | | Pre-diffused " Preavired

| Compilad celis : {Gate Arrays) T (FPGA's)

Array based

Figure 8- Overview of implementation approaches for digital
integrated circuils {(after [DeMichelio4]).

These economic considerations have spurred the development of a number of distinct implemen-
tation approaches ranging from high-performance, handerafted design to fully programmable,
medium-to-low performance designs. Figure 8-5 provides an overview of the different method-
ologies. In the sections that follow, we discuss first the custom design methodology, followed by
the semicustom and array-based approaches.

8.3 Custom Circuit Design

When performance or design density is of primary importance, handcrafiing the cireuit topology
and physical design seems to be the only option. Indeed, this approach was the only option in the
early days of digital microelectronics, as is adequately demonstrated in the design of the Intel
4004 microprocessor {see Figure 8-5a). The labor-intensive nature of custom design translates
into a high cost and a long fiine to marker. Therefore, it can only be justified economically under
the following conditions:

* The custom block can be reused many times {for example, as a library cell}).

+ The cost can be amortized over a large volume. Microprocessors and semiconductor mem-
ories are examples of applications in this class.

+ Cost Is not the prime design criterion, as it is in supercomputers or hypersupercomputers.

With continuous progress in the design-automation arena, the share of custom design reduces
from year to year. Even in the most advanced high-performance microprocessors, such as the
Intel Pentium® 4 processor (see Figure 8-6), virtvally all portions are designed automatically
using semicustom design approaches. Only the most performance-critical modules such as the
phase locked-loops and the clock buffers are designed manually. In fact, library cell design is the
only area where custom design stilf thrives today.

The amount of design aulomation in the custom-design process is minimal, vet some
design tools have proven indispensable. In concert with a wide range of verification, simulation,
exiraction and modeling tools, layout editors, desiga-rule and electrical-rule checkers—as

Dell Ex. 1025
Page 272

384 Chapter 8 » Implementation Strategies for Digital ICS

i

Figure 8-6 Chip microphatograph of Intel Pentium® 4 processor. §i contains
42 million transistors, designed in a 0.18-um GMOS technology. Hs first
generation runs at a clock speed of 1.5 GHz {Courtesy Intel Corp.}.

described earlier in Design Methodology Insert A—are at the core of every custom-design envi-
ronment. A excellent discussion of the oppertunities and challenges of custom design can be
found m [Grandman97].

8.4 Cell-Based Design Methodology

Since the custom-design approach proves to be prohibitively expensive, a wide variety of design
approaches have been introduced over the years to shorten and automate the design process.
This automation comes at the price of reduced integration density and/or performance. The fol-
lowing rule tends to hold: the shorter the design time, the larger is the penalty incurred. In
this section, we discuss a number of design approaches that still require a full run through the
manufacturing process for every new design. The array-based design approach discussed in the
next section cuts the design time and cost even further by requiring oaly a limited set of extra
precessing steps or by eliminating processing completely.

The idea behind cell-based design is o reduce the implementation effort by reusing a fim-
ited library of cells. The advantage of this approach is that the cells only need to be designed and
verified once for a given technology, and they can be reused many times, thus amortizing the
design cost. The disadvantage is that the constrained nature of the library reduces the possibility

Dell Ex. 1025
Page 273

8.4 Celi-Based Design Methodology 385

of fine-tuning the design. Cell-based approaches can be partitioned inio a number of classes
depending con the granularity of the library elements.

841 Standard Cell

The standard-cell approach standardizes the design entry level at the logic gate. A library con-
taining a wide selection of logic gates over a range of fan-in and fan-out counts is provided.
Resides the basic logic functions, such as inverter, AND/NAND, OR/NOR, XOR/XNOR, and
flip-flops, a typical library also contains more complex functions, such as AND-OR-INVERT,
MUX, full adder, comparator, counter, decoders, and enceders. A design is captured as a sche-
matic containing only ceils available in the library, or is generated automatically from a higher
level description language. The layout is then automatically generated. This high degree of auto-
mation is made possible by placing strong restrictions on the lavout options. In the standard-cell
philosephy, cells are placed in rows that are separated by routing channels, as illustrated in
Figure 8-7. To be effective, this requires that all cells in the library have identical heights. The
width of the cell can vary to accommodate for the variation in complexity between the cells. As
iltustrated in the drawing, the standard-cell technigue can be imtermixed with other lavout
approaches to allow for the intreduction of moedules such as memories and multiplers that do
not adapt easily or efficiently to the logic-cell paradigm.

An example of a design impiemented in an early standard-cell design style is shown in
Figure 8-8a. A substantial fraction of the area is devoted to signal routing, The minimization of
the interconnect overhead is the most important goal of the standard-cell placement and routing
tools. One approach to minimizing the wire length is to infroduce feed-through cells {Figure 8-7)
that make it possible to connect between cells in different rows without having to route around a
complete row. A far more important reduction in wiring overhead is obtained by adding more

Feedihrough cell Logic celi

f{imnvEaissi
\ ﬁ](:}iizzlg

T
I—li—l Functional

module

{RAM,
\ :D:‘ multipiier, ...}

Figure 8-7 Standard-cell layout methodology.

Rows of cells
A

Dell Ex. 1025
Page 274

388 Chapter 8 < implementation Strategies for Digital ICS

B0

Figure 8-8 The evolution of standard-cell design. (a} Design in a three-layer metal
tachnology. Wiring channels represent a substantial amount of the chip area.

{b) Design in a sgven-layer metal techriology. Routing channels have viriually
disappeared, and all interconneciion is laid on top of the logic celis.

interconnect lavers. The seven or more metal Iayers that are available in contemporary CMOS
processes make it possible to all but eliminate the need for routing channels. Virtually all signals
can be routed en top of the cells, creating a truly three-dimensional! design. Figure 8-8b shows a
fraction of a standard-cell design, implemented by using seven metal layers, The design achieves
more than 90% density, which means that virtually all of the chip aren is covered by logic cells,
and that only a limited amount of the area is wasted for interconnect.

The design of a standard-cell library is a time-intensive undertaking that, fortunately, can
be amortized over a large number of designs. Determining the composition of the library is a
nontrivial task. A pertinent question is, Are we better off with a small Iibrary in which most
cells have a Hmited fan-in, or is it more beneficial to have a large library with many versions of
every gate {e.g., containing two-, three-, and four-input NAND gates, and different sizes for
each of these gates)? Since the fan-out and load capacitance due to wiring are not known in
advance, it used to be common practice to ensure that each gate had large current-driving capa-
bilities, (l.e., employs large output fransistors). While this simplifies the design procedure, it
has a detrimental effect on area and power consumption. Today’s libraries employ many ver-
sions of each cell, sized for different driving strengths. as weil as performance and power con-
sumption levels. It is left fo the synthesis tool to select the comrect cells, given speed and area
requirgmenis.

To make the library-based appreach work, a detailed documentation of the cell library is
an absolute necessity. The information should not only contain the layout, a description of func-
tionality and terminal positioning, but it also must accurately characterize the delay and power
consumption of the cell as a function of load capacitance and the input rise and fall times. Gen-

Dell Ex. 1025
Page 275

8.4 Celi-Based Design Methodology 387

erating this information accounts for a large portion of the library generation effort. How to
characterize logic and sequential cells is the topic of “Design Methodology Tnsert £

Example 8.2 A Three-Input NAND-Gate Cel

To llustrate some of the preceding observations, the design of a three-input NAND stan-
dard-cell gate, implemented in a §.18 pm CMOS technology, is depicted in Figure 8-9.
The library actually contains five versions of the cell, supporting capacitive loads from
0.18 pF up to 0.72 pF and ranging in area from 16.4 um? to 32.8 wm®. The cell shown rep-
resents the low-performance, energy-efficient design corner, and uses high-threshold tran-
sistors to reduce leakage. The NMOS and PMOS transistors in the pull-down (-up)
networks are both sized at a (W/L} ratio of approximately 8.

Figure 8-8 Three-input NAND siandard cell (Courtesy ST Microelecironics}.

Observe how the layout strategy follows the approach outlined in Figure D-2. Sup-
ply lines are distributed horizontally and shared between cells in the same row. Input sig-
nals are wired vertically using polysilicon. The inputfoutput terminals are located
througheut the cell body (as exemplified by the pin terminal in the layout drawing}, in line
with the over-the-cell wiring approach of today’s standard-cell methodology.

Dell Ex. 1025
Page 276

388 Chapter 8 = Implementation Strategies for Digital ICS

The standard-cell approach has become immensely popular, and is used for the implemen-
tation of virtually all logic elements in today’s integrated circuits. The only exceptions are when
extreme high performance or low energy consumption is needed, or when the structure of the
targeted function is very regular (such as a memory or a multiplier). The success of the standard-
cell approach can be autributed to a number of developments, including the following:

+ The increased quality of the antomatic cell placement and routing tools in conjunction
with the availability of multiple routing layers. In fact, it has been shown in a number of
studies that the antornated approach of today rivals if not surpasses manual design for
complex, irregular logic circuits. This is 2 major departure from a couple of ysars ago,
when automated layout carried a large overhead.

The advent of sophisticated logic-syrthesis tools. The logic-synthesis approach allows
for the design to be entered at a high level of abstraction using Boolean equations, stale
machines, or register-transfer languages such as VHDL or Verilog. The synthesis tools
automatically wanslate this specification into a gate netlist, minimizing « specific cost
function such as area, delay, or power. Early synthesis tools-—such as those used in the
first half of the 1980s—focused mostly on two-level Jogic minimization. While this
enabled automatic design mapping for the first time, it Hmited the area efficiency and the
performance of the generated circuits. It is only with the arrival of udiitevel fogic synthe-
sis in the late 1980s that antomated design generation has realty taken off. Today, virtually
no designer uses ihe standard-cell approach without resorting to automatic synthesis. A
more detailed description of the design synthesis process can be found in “Design Meth-
cdolegy Insert F° which foliows this chapter.

In the early days of MOS integrated circuit design, logic design and optimization was a manual and labor-
intensive task. Karnaugh maps and Quine-McCluskey tables were the techniques of choice at thaf time, In
the late 1970s, a first approach toward automating the tedious process of designing logic circuits emerged,
trigeered by two impertant developments:

+ Rather than using the ad hoc approach to laying out logic circuits, a regular structured design
approach was adopted called the Progranmable Logic Array or PLA, This methodology enabled the
automatic layout generation of two-level logic circuits, and, more importantly, it did se in a predict-
able fashion in terms of area and performance.

= The emeraence of automated logic synthesis tools for two-level logic [Brayton84] made it possible
to translale any possible Boolean expression into an optimized two-level {sum-of-preducis or prod-
uct-of-suems} logic structure. Tools for the synthesis of sequential circuits followed shortly thereafter.

The idea of siructured logic design gained 2 rapid foothold, and already in the mid-1980s it was
adopted by major microprocessor desiga companies such as Intel and DEC. While PLAs are only sparingly
used in today's semicustom logic design, the topic deserves some discussion (especially since PLAs might
be poised for a come-back).

The concept is best explained with the aid of an example. Consider the following logic functions, for
which we have transformed the equations into the samwof-products format by using logic manipulations:

Dell Ex. 1025
Page 277

8.4 Cell-Based Design Methodology 3389

o= 3p%, +3,

- (8.1)
I = 3,000 + X5 + x50,
Product terms
XaXy
AND T2 OR
plane plane
1
: Y
Z‘S\ fu h
X Xy X3

Figure 8-10 Regular two-level implementation of Boolean functions.

One important advaniage of this representation is that a reguler realization is easily conceived, as
llustrated in Figure 8-10. A first layer of gates implements the AND operations—also called product lerms
or minterms—while a second laver realizes the OR functions, called the sionterms. Hence, a PLA is a rect-
angular macrocell, consisting of an array of iransistors aligned to form rows in correspondence with prod-
uct terms, and columns in correspondence with inputs and outputs. The input ard cutput columns partiticn
the array into two subarrays, called AND and OR planes. respectively.

The schematic of Figure 8- 10 is not directly realizable since single-layer logic functions in CMOS
are always inverting, With a few simple Boolean manipulations, Eq. {8.1) can be rewritten into a NQR—
NOR format:

fo = (p+x)+x,

Fr= Qb x4+ 2+ (394 3,)

Probiem 3.1 Two-Level Logic Representations

It is equally conceivable to represent Eq. (8.1} in a NAND-NAND format. In general, the NOR-NOR rep-
resentation is preferred due to the prohibitively stow speed of large fom-in NAND gates. The NAND—
NAND configuration is very dense, however, and thus can help to reduce power consumption. Derive the
NAND-NAND representation for the exampie of Eg. (8.2).

>

Translating a set of two-level logic functions into a physical design now bails down to a “programuning”
task—ihai is, deciding where to place transisters in both the AND and the OR planes. This task is easily auto-
mated—hence, the early success of PLAs. An automatically generated PLA implementation of the jogic func-
tions deseribed by Eq. (8.2) is shown in Figure 8-11. Unfortunately, the regular structure, while predictable,

Dell Ex. 1025

Page 278

390 Chapter 8 « Implementation Strategies for Digitat ICS

Yo AND plane OR plane GND
a s B E E R '

i
o
{
L

4
3]
H [0
!

PR —

Pull-up devices Puil-up devices
Figure 8-11 PLA layout implementing Eqg. (8.2}.
brings with it a lot of overhead in area and delay (as is quite visible in the layour), which was its ultimate demise
in the semicustom design world, Those who are curious on how these AND and OR planes are actually imple-

mented must wait untdf we get to Chapler 12, where we discuss the iransistor-level implementation of PLAs.
- |

8.4.2 Compiled Cells

The cost of implementing and characterizing a library of cells should not be underestimated.
Today’s libraries contain from severat hundred to more than a thousand cells. These cells have to
be redesigned with every migration to a new technology. Moreover, changes happen during the
development of a single technology generation. For example, minimum metal widths or contact
rules often are changed to improve yieid. As a result, the complete library has to be laid out and
characterized again. In addition, even an extensive library has the disadvantage of being discrete,
which means that the number of design options is limited. When targeting performance or
power, customized cells with optimized transistor sizes are attractive. With the increased impact
of interconnect load, providing cells with adjusted driver sizes is an absolute necessity from both
a performance and a power perspective {Sylvester98]—hence, the quest for automated {or com-
piled} cell generation.

A nurmber of automated approaches have been devised that generate cell layouts on the 2y,
given the transistor netlists, but high-quality automatic cell layout has remained elusive. Earlier
approaches relied on fixed topologies. Later approaches allowed for more flexibility in the tran-
sistor placement (e.g., [Hill85]}. Layout densities close to what can be accompiished by a human

Dell Ex. 1025
Page 279

8.4 Cell-Based Design Methodology 391

designer are now within reach, and a number of cell-generation tools are comumercially avail-
able—for example [Cadabra01, Prolifichit]:

Example 8.3 Automatie Cell Generation

The flow of a typical cell-generation process is illustrated with the example of a simple
inverter (using the Abracad tool [Cadabra(i1]).

« The cell schematics are developed first. The Spice netlist is the starting point for the
automatic layout generation. The generator examines the netiist and starts with tran-
sistor geometries. In case of a CMOS inverter, the cell containg just two transistors
{see Figure 8-12a) .

» The tool proceeds along the same lines that a designer would follow. The transistors
are placed in a cell architecture with predefined topology rules (Figure B-12b). This
architecture is commen for all the cells in the library, including the celi height,
power rails, pin placements, routing and contact styles.

= The cell is routed symbaolically (Figure 8-12¢).

* The routing is rearranged, and the cell is compacted to meet design rules and library
preferences {Figure 8-12d}

+ The &inal step cleans the cell of any remaining design rule errors and produces the
final layout (Figure 8-12e).

@ ®) (@ ©

Figure 8-12 Automatic cell layout {a) initial transistor geomelries, (b) placed transistors
with flylines indicating intended interconnactions, () initially routed cell, and {d) compacted
cell, (&) finished cell.

Dell Ex. 1025
Page 280

382 Chapter 8 « Implementation Strategies for Digital ICS

8.4.3 Macrocells, Megacells and Intellectual Property

Swandardizing at the logic-gate level is attractive for random logic functions, but it turns oui to be
inefficient for more complex structures such as multipliers. data paths, memories, and embedded
microprocessors and DSPs. By capturing the specific nature of these blocks, implementations
can be obtained that outperform the results of the standard ASIC design process by a wide mar-
gin. Cells that contain a complexity that surpasses what is found in a typical standard-cell library
are called macioeells (o, sometimes, megacells). Two types of macrocells can be idestified:

The Hard Macro represents a module with a given functionality and a predetermined physical
design. The relative location of the transistors and the wiring within the modude is fixed. In
essence, & hard macro represents a costom design of the requested function. In some cases, the
macro is parameterized, which means that versions with slightly different properties are avail-
able or can be generated. Multipliers and memories are examples: A hard multiplier macro may
not only generate a 32 X 16 multiplier, but aiso an 8 x 8 one.

The advantage of the hard macro is that it brings with it all the good properties of custom
design: dense layout, and optimized and predictable performance and power dissipation. By
encapsulating the function inte a macromodule, it can be reused over and over in different
designs. This reuse helps to offset the initial design cost. The disadvantage of the hard macro is
that it is hard to port the design to other techrologies or to other manufacturers. For every new
technology, a major redesign of the block is necessary. For this reason, hard macros are used Jess
and less, and are employed mainly when the automated generation approach is far inferior or
even impossible. Embedded memories and microprocessors are good examples of hard macros.
They typically are provided by the IC manufacturer {who also provides the standard cell library),
or the semiconductor vendor who has a particularly desirable functien to offer (such as a stan-
dard microprocessor or DSP).

In the case of 2 macro that can be parameterized, a generator called the module compiler is
used 1o create the actual physical layout. Regular structures such as PLAs, memories, and multi-
pliers are easily constructed by abutting predesigned leaf cells in a iwo-dimensional array topol-
ogy. All interconnections are made by abutment, and no or little extra routing is needed if the
cells are designed correctly, which minimizes the parasitic capacitance. The PLA of Figure 8-11
is an example of such a configuration. The whole array can be constructed with a minimal num-
ber of cells. The generator itself is a simple software program that determines the relative posi-
tioning of the various leaf cells in the array.

Example 84 A Memory Macromodule

Figure 8-13 shows an example of a *hard” memory macrocell. The 256 x 32 SRAM block
is generated by a parameterizable module generator. Besides creating the layout, the gen-
erator also provides accurate timing and power information, Modern memory generators
also include an amount of redundancy to deal with defects.

Dell Ex. 1025
Page 281

8.4 Cecll-Based Design Methodology 393

Figure 8-13 Parameterizable memory “hard” macrocell. This partieular instance stores
256 % 32 {or 8192} bits. The decoders are located on the botiom. All eight address bits, as
well as the 32 data input and ocutput ports are placed on the right side of the cell. The total
area of the memory module, implemented in a 0.18-um CMOS technology, equals a mere
0.094 mm? (courtesy ST Microelectronics).

A Soft Macro sepresents a module with a given functionality, but withowt a specific physical
implementation, The placement and the wiring of a soft macro may vary from instance to
instance, This means that the timing data can only be determined after the final synthesis and
placement and routing steps—in other words, the process is unpredictable. Yet, through intrinsic
knowledge of the internal structure of the module, and by imposing precise timing and place-
ment constrainis on the physical generation process, soft macros most often succeed in offering
well-defined timing guarantees. While stepping away from the advantages of the customn design
process and relying on the sermicustom physical design process, soft macros have the major
advantage that they can be ported over a wide range of technologies and processes. This amor-
tizes the design effort and cost over a wide set of designs.

Soft-macrocell generators come in different styles depending on the type of function they
target. Virtually all of them can be classified as structural generators: Given the desired function
and values for the requested parameters, the generator produces a netlist, which is an enumera-
tion of the standard cells used and their interconnections. It also provides a set of timing con-
straints that the placement and routing tools should meet. The advantage of this approach is that
the generator exploits its knowledge of the function under consideration o come up with clever
structares that are more efficient than what logic synthesis would produce. For example, the
design of fast and area-efficient maltipliers has been the topic of decades of research.! The mul-
tiplier generator just incorporates the best of what the multiplier literature has to offer into an
automated generation tool.

'Multiplier design is explained more thoroughly in Chapter 11, which discusses the design of arithimetic structures,

Dell Ex. 1025
Page 282

394 Chapter 8 » Implementation Strategies for Digital ICS

Example 8.5 Multiplier Macromodule

Two instances of an 8 x 8 multiplier module with different aspect ratios are shown in
Figure 8-14. The modules are generated using the ModuleCompiler tool from Synopsys
{ModuleCompiler01]. As can cbserved from the layout, a common standard-celt method-
ology is used to generate the physical artwork. The contribution of the macrocell generator
is to translate the compact input description into an optimized connection of standard cells
that meets the thning constraints. This “soft” approach has the advantage that modules
with different aspect ratios can easily be generated. Also, porting between different manu-
facturing technologies is relatively easy.

Figure 8-14 Multiplier “soft” macrc modules. Both layouts implement an 8 x 8 booth multiplier,
hut with different aspects rafios. The compact input description to the compiler is shown in the gray
box en top.

The availability of macromoduies has substantially changed the semicustom design land-
scape in the 21 cenmiry. With the complexity of ICs going up exponentially, the idea of building
every new IC from scratch becomes an uneconomic and nonplausibie proposition. More and more,
circuits are being built from reusable boilding blocks of increasing complexity and functionality.
Typically, these modules are acquired from third-party venders, who make the functions available
through royalty or licensing agreements. Macromodels distributed in this style are called inteffec-
tuak property {or [P) modules. This approach is somewhat comparable {0 the software world, where
a large programming project typically makes intensive use of reusable software libraries. Good
examples of commonly available intellectual property modules are embedded microprocessors
and microcontrollers, DSP processors, bus interfaces such as PCI, and several special-purpose
functional modules such as FFT and filter modules for DSP applications, errer-correction coders
for wireless communications, and MPEG decoding and encoding for video. Obviously, for an P
module to be useful, it has to not only deliver the hardware, but it also has to come wilh the appro-

Dell Ex. 1025
Page 283

8.4 Celi-Based Design Wethodology 395

priate software tools (such as compilers and debuggers for embedded processors), prediction mod-
els, and test benches. The latter are quite important because they represent the only means for the
end user to verify that the module delivers the promised functionality and performance.

The design of a system on a chip is rapidly becoming an exercise in reuse af different lev-
els of granuiarity. At the lowest level, we have the standard cell library; at a level higher, we have
the functional modules such as multipliers, datapaths and memories; next, we have the embed-
ded processois; and finally, the application-specific megacells. With more and more of the sys-
tem functionality migrating onto a single die, it is not surprising to see that a typical ASIC
consists of a blend of design styles and modules, embedding a number of hard or soft macrocells
within a sea of standard cells.

Example 8.6 A Processor for Wireless Communications

Figure 8-15 shows an integrated circuit implementing the protocol stack for a wireless
indoor communication system [Silva0il. The majority of the arvea is occupied by the
embedded microprocessor {the Tensilica Xtensa processor [Xtensa01}) and its memory
system. This processor allows for a flexibie implementation of the higher levels of the pro-
tocol stack {Application/Network}, and enables changes in the functionality of the chip,
even after fabrication. The memory modules are generated using module compilers pro-
vided by the process vendor. The processor core itself is antomatically generated from a
higher tevel description in Verilog, and uses standard cells for its physical implementation.
The advantage of using the “soft-core” approach is that the processor instruction set can be

<SP
Q.%B—i Tost L Baseband gg-;

Interface Lrseriace

___________________ g

Proweod

| CIEBIE i
P [ERDIRAMI] CPU MAC | | Audio
ETEB DRAR]

E |

‘
:
i
i
i i
i i
i z {m-chip Metwork I ;
: i
!
i
] i
I i
!
i
i

E E

Flash)
4el 1 1/O Bus

Figure B-15 Wireless communications processor—an example of a hybrid ASIC design
methodology. The processor combines an embedded microprocessor and s memory sys-
tem with dedicated hardware acoelerators and /O modules. Observe also the on-chip nat-
work module [Sivadi].

Dell Ex. 1025
Page 284

396

Chapter 8 ¢ Implementation Strategies for Digital ICS

tailored 1o the application, and that the processor itself can easily be ported to different
technologies and fabrication processes.

Impiementing the computation-intensive paris of the protocol (MAC/PHY) on the
microprocessor would require very high clock speeds and would unnecessarily increase the
power dissipation of the chip. Fortunately, these functions are fixed and typically do not
require a flexible implementation. Heace, they are implemented as an accelerator module in
standard cells. The hard-wired implementation accomplishes the task of implementing a
huge number of computations at a relatively low power level and clock frequency. The
designer of a system on a chip is continucusly faced with the challenge of deciding what is
more desirable—after-the-fabrication flexibility versus higher performance at lower power
levels. Fortunately, tools are emerging that help the designer to explore the overall design
space and analyze the trade-offs in an informed fashion [Silva01]. Observe aiso that the chip
contains a set of YO interfaces, as well as an embedded network module, which helps to
orchestrate the traffic hetween processor and the various aceelerator and I/O modules,

The generation process of a macro module depends on the hard or soft nature of the black,

as well as the level of design entry. In the following sections, we briefly discuss some com-
monly: used approaches.

8.4.4 Semicustom Pesign Flow

So far, we have defined the components that make up the cell-based design methodology. In this
section, we discuss how it all comes together. Figure 8-16 details the traditional sequence of
steps to design a semicustom circuit. The steps of what we call the design flow are enumerated
in the figure, with a brief description of each:

I

Lo

. Design Capture enters the design into the ASIC design system, A variety of methods can

be used o do so, including schematics and block diagrams; hardware description lan-
guages (HDLs) such as VHDL, Verilog, and, more recently, C-derivatives such as Sys-
temC; behavioral description languages followed by high-level synthesis; and imported
intellectual property modules.

. Logic Synthesis tools translate modules described using an HDL language into a netlist.

Netlists of reused or generated macros can then be inserted to form the complete netlist of
the design.

. Prelayout Simwulation and Verification. The design is checked for correctness. Perfor-

mance analysis is performed based on estimated parasitics and layout parameters. If the
design is found to be norfunctional, extra iterations over the design capture or the logic
synthesis are necessary.

. Floor Planuning. Based on estimated module sizes, the overall outlay of the chip is cre-

ated. The global-power and clock-distribution networks also are conceived at that time.

Dell Ex. 1025
Page 285

8.4 Cell-Based Design Methodology 397

Dresign Capture RBehavioral
HDL :
Pre layout) -
Simulation ' Y Struetural
= E{E\
=2
=
2
—
= .,
g F%oc.rpiannmg_ . g
a Post layout = Y
Simulation g = .
£ Placement Physical
1 ¥
Circuit Extraction %4__._ Routing £
Tape out

Figure 8-16 The Semicustom {or ASIC) design flow.

5. Placementi. The precise positioning of the cells is decided.

. Routing. The interconnections between the cells and blocks are wired.

7. Extraction. A model of the chip is generated from the actual physicai layout, including
the precise device sizes, devices parasitics, and the capacitance and resistance of the wires.

8. Pestlayout Simulation and Verification. The functionality and performance of the chip is
verified in the presence of the layout parasitics. If the design is found to be lacking, itera-
tions on the foorplanning, placement, and routing might be necessary. Very often, this
might not selve the problem, and another round of the structural design phase might be
necessary.

9. Tape Out. Once the design is found to be meeting all design goals and functions, a binary
file is generated containing all the information needed for mask generation. This file is
then sent ouf to the ASIC vendor or foundry. This important moment in the life of achip is
called tape cur.

o

While the design flow just described has served us well for many years, it was found fo be
severely lacking once technology reached the 0.25-1im CMOS boundary. With design technol-
ogy proceeding into the deep submicron region, layout parasitics—especially from the intercon-
nect--are playing an increasingly important role. The prediction models used by the logic and
structural synthesis tools have a hard time providing accurate estimates for these parasifics. The
chances that the generated design meeis the timing constraints at the first try are thus very small
(Figure 8-17a). The designer (or design team) is then forced to go through a number of costly
iterations of synthesis followed by layout generation until an acceptable artwork that meets the
timing constraints is obtained (Figure 8-17b and ¢). Each of these iterations may take several
days—iust routing a complex chip can take a week on the most advanced computers! The

Dell Ex. 1025
Page 286

398 Chapter 8 » Implementation Strategies for Digital ICS

{a) Initiaf design {h) Intermediate design {c) Final design

Figure 8-17 The timing closure process. The white lines indicate nels with timing
violations. In each iteration of the design process, timing errors are removed by
optimizing the logie, by insertion of buffers, by constraining the placement, or by
streamiining the routing until an error-free design is obtained [Avanti0l].

number of needed iferations continues to grow with the scaling of technology. This problem,
calted timing closure, made it obvious that new solutions aod a change in design methodology
were required.

The common answer is to create a tighter integration between the logical and physical
design processes. If the logic synthesis tool, for example, alsc performs some part of the place-
ment—or directs the placement—more precise estimates of the kayout parameters can be
obtained. Figure 8-18 shows an example of a design environment that merges RTL synthesis
with first-order placement and routing. The resulting nellist is then fed into an optimization tool
that performs the detailed ptacement and routing, while guaranteeing the timing constraints are
met. While this appreach has shown to be quite successful in reducing the number of design iter-

RTL (Timing}) constraints

| |

Physical synthesis

L ——_—_

Neilist with
place-and-route info

Macromodules
fixed nethists

" Place-and-routé
Optimization
3

{' Artwark

Figure 8-18 |ntegrated synthesis place-and-route reduces the number
of iterations to reach timing closure in deep submicron.

Dell Ex. 1025
Page 287

sl

8.5 Array-Based Implementation Approaches 395

ations, it throws quite a challenge at the design-tool developers. With the number of parasitic
effects increasing with every round of technology scaling, the design optimization process that
must take all this into account becomes exponentially complex as well. As a result, other
approaches might be required as well. In the coming chapters, we will highlight “desizn solu-
tions” that can help to alleviate some of these problems. An example is the use of regular and
predictable structures, both at the logical and the physical level.

8.5 Asray-Based Implementation Approaches

While design automation can help reduce the design time, it does not address the time spent in
the manufacturing process. All of the design methodologies discussed thus far require a com-
plete run through the fabrication process.This can fake from three weeks to several months, and
it can substantially delay the introduction of a product. Additionally, with ever-increasing mask
costs, a dedicated process run is expensive, and product economics must determine if this is a
viable route.

Consequently, a number of aliernative implementation approaches have been devised that
do not require a complete run through the manufacturing process, or they avoid dedicated pro-
cessing completely. These approaches have the advantage of having a lower NRE {nonrecurring
eipense} and are, therefore, more attractive for small series. This comes at the expense of lower
performance, lower integration density, or higher power dissipation.

8.5.1 Prediffused (or Mask-Programmable) Arrays

In this approach, batches of wafers containing arrays of primitive cells or transistors are manu-
factured by the vendors and stored. All the fabrication steps needed to make transistors are stan-
dardized and executed without regard to the final application,

To wansform these uncommitted wafers into an actual design, only the desired intercon-
nections have to be added, determining the overall function of the chip with only a few metalli-
zation steps. These layers ean be designed and applied to the premanufactured wafers much
move rapidly, reducing the turnaround time to a week or less.

This approach is often called the gate-array or the sea-of-gates approach, depending on
the style of the prediffused wafer. To illustrate the concept, consider the gate-array primitive cell
shown in Figure 8-19a. It comprises four NMOS and four PMOS transistors, polysilicon gate
connections, and a power and ground rail. There are two possible contact points per diffusion
area and two potential connection points for the polysilicon strips. We can turn this cell, which
does not implement any logic function so far, into a real circuit by adding some extra whres on
the metal layer and contact holes. This is illustrated in Figure 8-19b, where the cell is turned into
a four-input NOR gate.

The original gate-ariay approach® places the cells in rows separated by wiring channels, as
shown in Figure 8-20a. The overall look is similar to the traditional standard-cel] technique. With
the advent of extra metallization layers, the routing channels can be eliminated, and routing can

*This appronch is often called the channeled gaie array.

Dell Ex. 1025
Page 288

400 Chapter 8§ » Implementation Strategies for Digital ICS

int In2 I3 hd

Polysilicon

4

PMOS

RERTI
'

.
= 8 iMetal

f Possible
: g/ contact GND

B. gl 8 ©

;) 8 NMOS
{a) Primitive gate-array cel! (b} Programmed cell, implementing
a four-inpul NOR

Figure 8-19 An example of the gate-array approach.

Cell Celi

[\‘ﬁ 3 Rowsof \II
. uncommitied »

[] I cells -

1 | Routing
{ 1 chanmnel

(a) Channelled (b} Channelless (or sea of gates}

Figure 8-20 Gale-array architectures.

be performed on top of the primitive cells—occasionally leaving a celf unused. This channeliess
architecture, also called sea of gates (Figure 8-20b), vields an increased density, and makes it pos-
sible 1o achieve integration levels of millions of gates on a single die. Another advantage of the
sea-of-gates approach is that it custemizes the contact layer between metai-1 and diffusion andf
or polysilicon, in contrast to the standard gate-array approach where the contacls are predefined
(see Figure 8-19a). This extra flexibility leads to a further reduction in cell size.

The primary challenge when designing a gate-array (or sea-of-gates) template is to deter-
mine the composition of the primitive cell and the size of the individual transistors. A sufficient
number of wiring tracks must be provided to minimize the number of cells wasted to intercon-
nect. The celf should be chosen so that the prefabricated transistors can be utilized to a maximal
extent over a wide range of designs. For example, the configuration of Figure 8-19 is well suited
for the realization of four-input gates, but wastes devices when implementing two-input gates.

Dell Ex. 1025
Page 289

8.5 Array-Based implementation Approaches 401

Cxide iselation

zZ BB B BER BB PMOS
A = : =
PMOS
NMOS
NMOS
) NMOS
EEZ B3 BEE &8 4
{#) Sen-of-gate cell using {b) Cell using the gale-isolation
oxide-isolation between approach and supporting
gales multiple iransistor sizes

Figure 8-21 Examples of sea-of-gates primitive cells {from [Veendrick&2]).

Multiple cells are needed when implementing a flip-flop. A number of alternative cell siructures
are pictured in Figure 8-21 in a simplified format. In one approach, each cell contains a Hmited
number of transistors ffour to eight). The gates are isolated by means of oxide isolarion {also
calied geametry isolation). The “dog-bone” terminations on the poly gates allow for denser rout-
ing. A second approach provides long rows of transistors, all sharing the same diffusion area. In
this archifecture, it is necessary to electrically turn off some devices to provide isolation between
neighboring gates by tying NMOS and PMOS transistors to GND and Vg, respectively. This
technique is called gate fselation. This approach wastes a number of transistors to provide the
isolation, but provides an overall higher transistor density.

Figure 8-22 shows the base cell for a gate-isolated gate array {from [Smith97]}. The cell is
one routing track wide, and contains ope p-channel and one n-channel transistor. Also shownisa
base cell containing all pessible contact positions. There is room for 21 contacts in the vertical
direction, which means that the cell has a height of 21 tracks.

It 1s worth observing that the cell in Figure 8-21bH provides two rows of smaller NMOS
transistors that can be coanected in parallel if needed. Smaller transistors come in handy when
implementing pass-transistor logic or memory cells. Sizing the transistors in the cells is a clear
challenge. Pue {0 the interconnect-oriented nature of the array-based design methodology, the
propagation delay is generally dominaled by the interconneet capacitance. This seems to favor
larger device sizes that cause a larger area loss when unused. On the other hand, it is pessible to
construct farger transistors by putting several smaller devices in parallel.

Mapping a logic design enio an array of cells is a largely automated process, involving
logic synthesis followed by placement and routing. The guality of these tools has an enormous
impact on the final density and performance of a sea-of-gates implementation. Utilization fac-
tors in sea-of-gates structures are a strong function of the type of application being implemented.
Utilization factors of nearly 100% can be obtained for regular stroctures such as memories. For

Dell Ex. 1025
Page 290

402 Chapter 8 » Implementation Strategies for Digital iICS
& TR VDDEE| |
it [frET M 2
; i a4
4 continuous i "5\\,": s
1 p-diff strip : \ _Q ;-‘:\ P
i S e
i NEWN # 8
S Pds e 9
o I ¥ S WJ
N NENEN 48 10
N Y
L i
IL EJIEEY : {3 n-well
%7 continuous "*"’Z’g 3 p-welt
A pedifl swip ':"f % e 7 n-dife
g 1282 M 1S I3 peditt
- et S 4 v i poly
W A (A f’;; 7 =
[ded contact for e SN EY & m2
[l isolater SEEEE i3 me
5 : ?‘ 19 & contact
b (4] 20
B GND[TF! 21
Figure 8-22 Base cell of gate-isolated gate array {from [Smith87]).
— y I - T
= W ™
N U
;;' T T 03] Ej’ /f/Egi g 72|
- AP e 2E7 7 A} 1 = 1
_"f » 5 A rrrrrrs or e B s '%/ 3 //i'l/ CLR
> ég.'}.;;l'j T TR T MR —
-] - - v s = g Q
e T el el 18 P = [<1
= e
~H x| Zj W Pz s L 7 L
SleLk B s S A) e
= / 9"/%}/ ﬁ;/é% /F‘\Q
T s - 1 .
f <] E S i 177778 R
- /7! £ I E:f Zld [-
i DOE T Wl 1 @ f 73 |4
2{ ;:al‘ 1{2"""155 2} {/i
A 4 ik 3 T) :l Z ¢’ |
— N T AT = |7 /-11_{!ﬁf5_5-r
) e e TR T A
N
Vi 4

Figure 8-23 Flip-flop implemented in a gate-isolated gate-array library.
The base call is shown on the left (from [Smith977).

other applieations, utilization factors can be substantially lower (< 75%), due largely to wiring
restrictions, Figure 8-23 shows an example of a fiip-flop macrocell, implemented in a gate-

isolated, gate-array library.

Dell Ex. 1025
Page 291

8.5 Array-Based Implementation Approaches 403

Similar to the scenarios unfolding in the standard-cell arena, designers of sea-of-gate
arrays discovered that a design with a large number of gates also has large memory needs.
Implementing these memory cells on top of the gate-array base-cells is possible, but not very
efficient. A more efficient approach is to set aside some area for dedicated memory modules.
The mixing of gate arrays with fixed macros is called the embedded gate-array approach. Other
modules such as microprocessor and microcontrollers are also ideal candidates for embedding.

Example 8.7 Sea-of-Gates

An example of a sea-of-gates implementation is shown in Figure 8-24. The array has a
maximum capacity of 300 K gates and is implemented in a 0.6-um CMOS technology.
The upper left part of the array implements a memory subsystem, which results in a regu-
lar modular layout. The rest of the array implements random logic.

Figure 8-24 Gate-array die microphotograph (LEA300K) (Courtesy of LS| Logic.)

Dell Ex. 1025
Page 292

404 Chapter 8 = Implementation Strategles for Digital ICS

In the 1980s and 1990s, when the majority of the chips were less than SC,000 gates, design cycles ofien
could be measured in weeks or a few months. The two- or three-week savings in turnaround time for a gate-
array design was then a significant portion of the total design cycle, more than encugh to offset the addi-
tional die size. With today’s deep-submicron processes and muitimillion-gate complexities come longer
design times, and the smail reduction in wrnaround fime is no longer much of an issue. Furthermore, metal-
lization has become the most Hime-consuming and yield-impacting part of the semiconductor manufactur-
ing process, reducing further the advantage that gate arrays had to offer. Conseguently, gate arrays have Jost
a lot of their luster. Another alternative for rapid prototyping—ihe prewired arrays discussed in the next
section—has arisen, and it has taken a large portion out of the gate-array market,

Still, beware of dismissing the idea of the mask-programmable logic module as a thing of the past. A
regular and fixed layout style has the advantage that load factors, wiring parasitics, and cross-coupling
noise are easily and accurately estimated. This is in contrast to the standard-cell approach, where these val-
ues are ultimately only known after placement, routing, and extraction. One may consider populating sec-
tions of a large chip with a regular logic array consisting of uncommitted (prediffused) logic cells
superimposed by a wiring grid. The acteal programming of the module is performed by placing vias at pre-
defined positions, As shown in Figure 8-23, the use of a via-programmable cross-peint switch makes it pos-
sible 10 overlay a wide variety of wiring patlerns on a regular repetitive wiring grid. It is the opinion of the
authors that prediffused arrays have quite some life left into them.

Vig-programunable eross point

metal-5 metal-6

via programmable

Figure 8-25 Via-programmable gate array. Vias are used to dedicate a generic
wiring grid to a specific wiring pattemn, resulting in predictable arrays [PileggiO2].

B.5.2 Prewired Arrays

While the prediffused arrays offer fast road to implementation, it would be even more efficient
if dedicated manufacturing steps could be avoided altogether. This leads to the concept of the
preprocessed die that can be programmed in the field (i.e., outside the semiconductor foundry} to
implement a set of given Boolean functions. Such a programmable, prewired array of cells is
called a field-progrananable gate aviay (FPGA). The advantage of this approach is that the man-
ufacturing process is completely separated from the implementation phase and can be amortized
over a large number of designs. The implementation itself can be performed at the user site with

Dell Ex. 1025
Page 293

8.5 Array-Based implementation Approaches 405

negligible turnaround time. The major drawback of this technigue is & loss in performance and
design density, compared with the more customized approaches.

Two main issues have to be addressed when attempting to implement a set of Boolean
functions on top of a regular array of cells without requiring any processing steps:

I. How do we implement “programmable” logic—that is, logic that can commitied 1o per-
form any possible Boolean function?

2. How and where do we store the program—also called the configuration—that dedicates
the programmable array to a certain logic function?

The answer to the second question depends on the memory technology used. Since memory
technology is the topic of a later chapter, we limit ourselves here to a high-level overview, In
general, theee different techniques can be identified:

= The write-once or fuse-based FPGA. The logic array is committed to a particular fanc-
tion by blowing “fuses”™ or by short-circuiting “antifuses.” A fuse is a connection efement
that is short-circuited by default. A large current causes it to blow, and then it becomes an
open circutt. The antifuse has the opposite behavior. An example of an antifuse implemen-
tation is shown in Figure 8-26 [El-Ayat89]. The advantage of the write-once approach is
that the area overhead of the program memory (i.e., the fuses) is very small. But it has the
unportant disadvantage of being one-time progranmmmable. Circuit corrections or exten-
sions are not possible, and new components are required for every design change.

* The nonvolatile FPGA. The program is stored in nonvolatile memory, which is memory
that retains its value even when the supply voltage is turned off, Exampies include
EEPROM (Electrically Evesable Progranmnoble Read-Only Menmory) or Flash memories.
Once programmed, the logic remains functional and fixed until a new programming round.
The disadvantage of this approach is that noavolatile memories require special steps in the
manufacturing process, such as the deposition of ultrathin oxides. Also, high voltages

aniifuse polysiicon ONO dieleciric

a+ antifuse diffusion
||

2A

Figure 8-26 Example of aniifuse. A 10-nm-thin layer (< 10 nm) of ONG
{oxide—-nitride—oxide) dielectric is deposited between conducting polysilicon
and diffusion layers. The circuit is open by default, unless a large programming
current s forced through it. This causes the dielectric to melt, and a permanent
connection with fixed resistance is formed {from [Smith97]).

Dell Ex. 1025
Page 294

406 Chapter 8 » Implementation Strategies for Digital ICS

{> 10 V) are needed for the programming and erasure of the memory cells. Generating
these high voliages and distributing them through the logic array adds extra complexity to
the design. ’

+ The Volatile or RAM-Based FPGA. This popular approach to programming the logic
array employs volatile static RAM (random-access memory) cells for the storage of the
program, Since these memories lose their stored contents when the FPGA is powered
down, a reloading of the configuration from an external permanent memory i necessary
every time the part is turned on. To program the component at start-up time, programming
data is shifted serially into the part over a single line (or pin}. For all practical purposes,
one can consider the FPGA RAM cells to be configured as a giant shift register during that
period. Once all memories are loaded, normal execution is started. The cenfiguration time
is proportional to the number of programmable elements. This can become excessive for
today’s larger FPGAs, which often feature more than one million gates. Recent parts
therefore rely more and more on a parallel programming interface, allowing multiple cells
to be programmed at the same time,

in contrast to their nonvolatile counterparts, volatile FPGAs do not have special
manufacturing process requirements, and can be implemented in a regular CMOS process.
In addition, designers can reuse chips during prototyping. Legic can be modified and
upgraded once deplayed in the field-——a customer can be sent a new configuration file to
upgrade the chip, instead of sending a new chip. In addition, logic can be dynamically
medified on the fly during execution. The latter approacth is called reconfiguration, and it
became quite popular in the late 1960s. In some sense, this brings a paradigm that was
extremely successful in the world of programming {as embodied by the microprocessor) 1o
the domain of logic design.

As for the first question, the answer is somewhat more extensive, Implementing a complex cir-
cnit in a programmable fashion requires that both the fogic functions as well as the interconnect
between them are realized in a configurable fashion. In the coming sections, we first discuss dif-
ferent ways of implementing programmable logic, followed by an overview of programmable
interconnection. Finally, we detail a number of specific ways of putting the two together.

Pregrammable Logic

Similar to the situation in semicustom design, two fundamentally different approaches towards
programmable logic are cugrently in vogue: array based and cell based.

Array-Based Programmable Logic Earlier we discussed how a programmable logic array
(PLA) implements arbitrary Boolean logic functions in a regular fashion (see page 388). A simi-
lar appreach can be applied to field-programmable devices as well. Consider, for example, the
logic structure of Figure 8-27. A circle (0} at an intersection indicates a programmable connec-
tion—that is, an interconnect point that is either enabled or not. An inspection of the diagram
reveals that it is equivalent to a PLA, where both the AND and OR planes can be programmed
by selectively enabling connections. This approach aliows for the implementation of arbitrary

Dell Ex. 1025
Page 295

8.5 Array-Based Impiementation Approaches 407

Is 4 H Lk Programmable

‘Q ‘{Z ‘;ljz ‘_’EZ xk S\IZ OR array

L b

UUCUUUUUUUUUUUUT

b P

Programmalble AND array \)H}'\T}v
O30:0 Gy
-4~ Indicates programmable connection

Figure 8-27 Fuse-programmabile logic array (PLA).

logic functions in a two-level suni-of-prodizcts format. The AND plane creates the required min-
terms, while the OR plane takes the sum of a selected set of products to form the outputs. To
inciude a given input variable (for instance, J,) in a specific minterm, just close the switch at the
infersection of the input signal and the minterm. Similarly, a minterm is inciuded into an output
by closing the appropriate connection in the OR plane. The functionality of PLA is resiricted by
the number of inputs, cutputs, and minterms.

We can envision variations on this theme, some of which are represented in Figure 8-28.
The dot {*} at the intersection of twoe lines represents a nonfusible, hard-wired link. The first
structure represents the PROM architecture, in which the AND plane is fixed and enumerates all
possible minterms. The second structure, called a programmable array logic device (PAL), is
located at the other end of the spectrum, where the OR plane is fixed, and the AND plane is pro-
grammable. The PLA architecture is the most generic one for the implementation of arbitrary
logic functions. The FROM and PAL structures, on the other hand, trade off flexibility for den-
sity and performance. Which structure to select depends strongly on the nature of the Boolean
functions to be implemented. All these approaches are generally classified under the common
term of pregrammable logic devices (or PLDs).

The single-array architecture of the PLA, PROM, and PAL structures in Figure 8-27 and
Figure 8-28 becomes less aftractive in the era of higher integration density. First of all, imple-
menting very complex logic functions on a single, large array results in a loss of programming
density and performance. Secondly, the arrays shown implement only combinational logic. To
realize complete, sequential subdesigns, the presence of registers and/or flip-flops is an absolute
requirement. These deficiencies can be addressed as follows:

Dell Ex. 1025
Page 296

408 Chapter 8 « Implementation Strategies for Digital ICS

Programmable
CR array 5 04 {3 L 4y Iy Fixed OR array
e A,

1
2}
}’:].,.
£tz
;‘:1._
21
2

OUUUOUUOUOUUOU00

———

&

2

QOOT00000DUUTDDUU

23

Fized AND array vvv\/ Prngrammabée AND array UV\}\/

PROM 0:0:0,0, PAL 040,040

l

<4 Indicates programmable connection
-4 Indicates fixed connection

Figure 8-28 Alternafive fuse-based programmable logic devices (or PLDs).

1. Partition the array into a number of smatler sections, often called macrocells.
2. Introduce fAip-flops and provide a potential feedback from output signals to the inputs.

One example of how this can be accomplished is shown in Figure 8-29. The PAL consists of &
macrocells, each of which can select from 7 inputs and features, at most, j product terms. Hach
macrocell contains a single register, which also is programmiable—it can be configured as a D, 7,
J-E, or a clocked 5-R flip-flop. The & output signals are fed back to the input bus, and thus form
a subset of the { input signals.

The PLA approach to configurable logic has two distinct advantages:

+ The structure is very regular, which makes the estimation of the parasiiics quite easy, and
enables accurate predictions of area, speed, and power dissipation.

« It provides an efficient implementation for logic functions that map well into a two-level
logic description. Functions with a large fan-in fall into that category. Examples of such
are finite-state machines used in controllers and sequencers.

On the other hand, the array structure has the disadvantage of higher overhead. Every intermedi-
ate node has a sizable capacitance, which negatively affects performance and power. This is
especially true when parts of the array are underutilized—that is, if only some of the minterms
are actively used.

Dell Ex. 1025
Page 297

8.5 Array-Based Implementation Approaches

programmable AND array (2i X j&) *

| i e O |

i
4
! D
i
i
i
H
;

.
k macroeells *
.

macrocell

Figure 8-29 Schematic diagram of a PAL with /inputs,
jminterms/macrocell and & macrocells {or outputs) [Smithe7].

409

Example 8.8 Example of Programmed Macrecell

Figure 8-30 shows an example of how to program a PROM module. The structure is pro-
grammed to realize the logical functions used earlier during the discussion on PLAs (Bg, (8.1));

fo = xgx 4+ %,

5

XX Xs ot Xo + XpX,

ROM KW

o
&4

QU000 00000U0DU0TU

@ : progranuned node k/\}vv i

NANAF fa

Figure 8-30 Programming a PROM.

Dell Ex. 1025
Page 298

410 Chapter 8 « Implementation Strategies for Digital ICS

Observe that only a fraction of the array is used as the number of input (3) and out-
put (23 variables are smaller than the dimensions of the 4 X 4 array. Unesed input variables
are tied either to O or 1. The farge dots in the output planes represent programmed nodes.
The reader is invited to repeat the exercise for the PLA and PAL medules presented in
Figure 828 and Figure §-29,

Cell-Based Programmable Logic The sum-of-products approach resuits in regular structuzes,
and is very effective for logic functions that have a large fan-in such as finite-state machines. On
the other hand, it performs rather poorly for fogic that features a large fan-out, or that benefits
from a multilevel logic implementation. (Arithmetic operations such as addition and multiplica-
tion are an example of such), Other approaches can be conceived that are more in line with the
multilevel approach favored in the standard-cell and sea-of-gate appreaches.

There are many ways o design a logic block that can be configured to perform a wide
range of logic functions. One approach is to use mualtiplexers as function generators. Consider
the two-input multiplexer of Figure 8-3], which implements the logic function £

F=A-3+B-5 (8.3

By carefully choosing the connections between the variables X and ¥ and the input ports 4, B,
and § of the mukltiplexer, we can program it to perform ten vseful logic operations on one or
more of those inputs (see Figure 8-31).

Configuration
A B S| F=
6 0 0 0
\ r x 110l x
A 0 0 ¥ 1 Y
%,..F 0 Y X XY
PO I X 0 Y| XY
i Yy o x| Xy
/r Y 1 X JXA+Y
P I ¢)_?
[I A I
A | 1
{a} (b

Figure 8-31 Using a two-input multiplexer (a) as a configurable logic block.
By properly connecting the inputs A,8, and S to the input variables Xor Y,
or to 0 or 1, 10 different logic functions can be obtained (b).

Dell Ex. 1025
Page 299

8.5 Array-Based Impiementation Approaches 411

S
S1

Figure 8-32 Logic cell as used in the Actel fuse-based FPGA.

A number of multiplexers can be combined to form more complex logic gates. Consider. for
example, the logic cell of Figure 8-32, which is used in the Actel ACT family of FPGAs. It consists
of three two-input multiplexers and a two-input NOR gate. The cell can be programmed to realize
any two- and three-input logic functions, some four-input Boolean functions, and 2 lateh,

Example §.9 Programmable Logic Cell

It can be verified that the logic cell of Figure 8-32 acts as a two-input XOR under the pro-
gramming conditions that follow, Assume the multiplexers select the bottom input signal
when the controf signal is high. We have the following:
A=LB=0:C=0,D=1SA=8B=nl:50=51=In2

As an exercise, determine the programming required for the two-input XNOR function. A
three-input AND gate can be realized as follows:

A= B=l;C=0D=0:5A=m2,S8=0;50=51 =In3
Finally, the largest function that can be realized is the four-input multiplexer. 4, B, €, and
D act as inputs, while 4, 88, and (50 + 51} are control signals,

The “multiplexer-as-functional-bleck” approach provides configurability through pro-
grammable interconnections. The fookup fable (LUT) method employs a vastly different strat-
egy. To configure a fully programmable medule with fan-in of { for a specific function, a two-bit
large memory, called the lookup table, is programmed to capture the (ruth table of that function.
The input variables serve as control inputs to a multiplexer, which picks the appropriate value
from the memory. The idea is illusirated in Figure 8-33 for a twoe-input cell. To implement an
EXOR function, the lookup fable iz loaded with the cutput column of the EXOR truth table, this
is “0 1 1 07. For an input value of “0 (", the multiplexer selects the first value in the table (“0™),
etc. With this approach, any logic function of two inputs can be realized by a simple (rejpro-
gramming of the memory.

Dell Ex. 1025
Page 300

412 Chapier 8 » Implementation Strategies for Digital ICS

Cut

Memory

Inl in2
(a) (&)

Figure 8-33 Configurable logic celi based on lookup table. {a) cell schematic;
(b) programming the eell to implement an EXCR function,

As in the case of the multiplexer-based approach, more complex gates can be constructed.
This is accomplished by either combining a number of LUTs, or by increasing the LUT sizes, or
a combination of both. Additional functionality is provided by incorporating flip-fiops.

Example 8.1 LUT-Based Programmable Logic Cell

Figure 8-34 shows the basic cell, called a Configurable Logic Block or CLB, used in the
Xilinx 4000 FPGA series {Xilinx4000]. It combines two four-input LUTs feeding a three-

4

— S

ity Tinfits (St £¢

Gy s Bepasa
|_ CONFROL
Ga— oo DIk = e
2 i —F
FUSNCTEON G N G o a
UF
i
Gy — Shot) _’«>c,_|'\
. M
i
7 — k} ; ._[/ 3
LOGIC 1 e
L FusCTION LI ! £ =
FU: H B | H
33 1
AND -

;
|
=2

P Eypass
‘: | conrrre.
F3ed LOGT : o 30 xa
FURCTION ¢ i L3 o 2 Q
el Hy

Fa—ti FRFE

#®
1ELOCK: H
1

Tl Sontroied
oy Configusstion Pragram

Figure 8-34 Simplified block diagram of XC4000 Series CLB (RAM and Carry-logic
functions not shown} [Xilinx4GG0).

Dell Ex. 1025
Page 301

8.5 Array-Based Implementation Approaches 413

input LUT. The cell features two flip-flops, whose inputs can be any one of the LUT out-
puts F, G, or H, or an extra external input D, and whose outputs are available at the XQ
and ¥ cutput pins. The X and ¥ outpuls export the outputs of the LUTs and make it possi-
ble to build more complex combinational functions. The cell has four extra inputs
{C1...C4} that either can be used as inputs or as set/reset and clock-enable signals for the
flip-flops.

Progranumable Interconnect

So far, we have discussed in some depth how o make logic programmable. A compelling ques-
tion is how to make interconnections between those gates changeable or programmable as well.
To fuily atilize the available logic cells, the interconnect network must be flexible and routing
bottlenecks must be avoided. Speed is another prerequisite, since interconnect delay tends to
dominate the performance in this style of design. At the same time, the reader should be aware
that programmable interconnect comes at a substantial cost in performance in area, perfor-
mance, and power. In fact, most of the power dissipation in field-programmable architectures is
attributable to the interconnect network [George(1].

Once again, we can differentiate between mask-programmable, one-time progranmnable
and reprogrammable approaches. It also is worth differentiating between local cell-to-cell inter-
connections and global signals, such as clocks, that have to be distributed over the complete chip
with low delay. In the local-area class, programmable wiring can be classified into two major
aroupings: array and switchbox routers.

Array-Based Programmable Wiring In this approach, wiring is grouped into routing chan-
nels, each of which contains a complete grid of horizontal and verticat wires. As interconnect
wire can then be programmed into the structure by short-circuiting some of the intersections
between horizontal and vertical wires (see Figure 8-35). This can be accomplished by providing
a pass transistor at each of the cross points. Closing the interconnection means raising the con-
trol signal—by programming a *1” into the connected memory cell M {see Figure 8-36). This
approach is prohibitive and expensive because it requires a large number of transistors and con-
trol signais. Also, the large number of transistors connected to each wire leads to a high fan-out,
translating into delay and power consumption. A fuse is a more effective programmable connec-
tor. In this approach, each routing channel as a fully connected grid of horizontal and vertical
interconnect wires, and a fuse is blown whenever a connection is not needed. Unfortunately,
interconnect networks tend to be sparsely populated, which requires the intenuption of an exces-
sive number of switches and results in prehibitively long programming times.

To circumvent this problem, an antifuse can be used (as in Figure 8-26). Antifuses only
peed to be enabled when a connection is required in the routing channel. This represents a small
fraction of the overall grid. Notice in Figure 8-35 how only two antifuses are needed to set up a
connection, Be aware that this figure hides the programming circaitry. This operation is 2 cne-
time event and cannot be undone. The array-based wiring approach has thus been most success-
ful in the write-once class of FPGAs, Circuit corrections or extensions are not possible, and new

Dell Ex. 1025
Page 302

414 Chapter 8 + Implementation Strategies for Digital ICS

Programmed interconnection / Inpuifoutpul pin
; \ . .
: ! A 5
L |1/
Intercennect | Cell o : : T
point 2 | 2 8 ? a
i : : i !
\\é ; T 7 i | 5
- &-—0 Qe @ © |
{ H 1 i]] i .
—o——4—6—0 0-—5 . Qg0 Horizontal
— : o tracks
i 5 -
B :] B ! =4 B ::]
: : !
£
! 5 E %
{ i
’__.Y___._)

Vertical tracks

Figure 8-35 Array-based programmabie wiring.

Figure 836 Programmable interconnect point. The memory cell conirois the
interconnection. A stored 0 and 1 mean an open or a ciosed circuit, reapectively.
The memary call can be nonvoiatile (EEPROM] or volatile (SRAM).

components are required for every design change. Providing true field (re)programmability
requires a more efficient routing strategy.

Switch-Box-Based Programmable Wiring It’s easy to imagine more efficient programmable-
routing approach once we realize that the fully connected wiring grid represents major overkill.
By restricting the number of routing resources and inlerconnect points, we can still manage to
wire the desired interconnections, while drastically reducing the overhead. The disadvantage of
this approach is that occasionally an interconnection cannot be routed. Most often, this can be
addressed by remapping the design—for instance, by choosing another group of logic cells for a
given function.

A large number of local interconnections can be accounted for by providing a mesh-like inter-
connection between neighboring cells. For instance, the outputs of each logic celt {LC) can be distrib-
uted to its neighbors o the north, east, south, and west. To account for interconnections between
disjoint cells or to provide global interconnections, routing channels are placed between the cells con-
taining a fixed number of uncommitted vertical and horizental routing wires {(Figure 8-37). At the
jurctons of the horizontal and vertical whves, RAM-programmable switching matrices (S-boxes) are

Dell Ex. 1025
Page 303

8.5 Array-Based Implementation Approaches 415

O e I ECCRRES S
I T | 1
1 C 5 E ; T E({é‘ 1 C
I m—,i-,-.‘_l :__J_I'“‘F‘“"il) A
= T o B 7
ic g e i Jwpcr
r H 1 { r . ;
i H gg_ . -_;.;/ Switch matrix (S-box)
S8 BN S N S S BT
T2y ’QQ} (L0t E‘Lgﬂn-‘““ e
P i g A
peed HEe Py .
e i o LC |7 1 Lo |1 - Connect matrix {C-kox)
H 1 -: | e
pu o g f o FEarT LA
| ket et Qg yunpay Loty A ——— 111
: i i c s
! Logic ;_ B gé_;_?__‘g Programmable interconnect point
H & jr Y Sar k| 3
; Tile H B 1 1 r
i e |t M eC |lcr
¢ H B i ‘1| P
e it & 5 Tl

Figure 8-37 Programmable mesh-based interconnect network {Gourtesy Andre Dehon
and John Wawrzyniek.).

provided that direct the rowting of the data. Cell inputs and cutputs are connected to the global inter-
cennect network by RAM-programmable interconnect points {C-box). Figure 8-38 provides a more
detailed view, showing the transistor implementation of the switch and interconnect boxes. Be aware
that the single pass-transistor immplementation of the switches comes with a threshold-voltage drop.
While advantageous from a power perspective, this reduced signal swing has a negative impact on the
performance. Special design techniques such as zero-thieshold devices, level restorers, or boosted
conirol signals might be required.

The mesh architecture provides a fiexible and scalable means Tor connecting a large num-
ber of components. It is quite efficient for local connections, as the number of switches traversed
by a single interconnection is small and the fan-out is small. However, the mesh network does
not lend itself well to globat interconnections. The delay ceused by the combination of the many

L
(i gt 2

Figure 8-38 Transistor-leve! schematic diagram of
mesh-based programmable routing network {Courtesy
Andre Dehon and John Wawrzyniek.).

Dell Ex. 1025
Page 304

416 Chapter 8 = Implementation Strategies for Digital ICS

[P pad =
X e, X e
e Eete e
--i_ rull o5 Le
», -

> ¥ Wire with

- 5 doubled pitct
X P oubled pitch
B 20

i

FCRE
XA

e,

===t F Pay

a3
)4
i
L~ 1} ~
R FnEE]
i - I

3 T

1
-

et

fiebs
B
52
rﬁ"ﬁ';
-~

t
1
T
T
1

Pl g, gl 0 0

Figure 8-3% Programmable mesh-based interconnect architecture
with overlaid 2 x 2 grid (Courtesy Andre Dehon and .John Wawrzyniak.).

switches and the large capacitive load becomes excessive. Most mesh-based FPGA architectures
therefore offer alternalive wiring resources that allow for effective giobal wiring. One appreach
for accomplishing this task is shown in Figure 8-39. In addition to the standard S-box-to-S-boex
wiring, the network also includes wires connecting S-boxes that are two steps away from each
other. Eliminating one S-box from an interconnection decreases the resistance. Similatly, we can
include long wires that connect every 4%, 8%, or 16™ S-box. What we are creating, in fact, is a
number of overlaving meshes with different granularity (single pitch, double pitch, etc.). Long
wires are, by preference, mapped on the wiring meshes with the farger pitch.

Putting It All Together

A complete fisld-programmable gate array can now be assembled by joining logic-cell and inter-
connect approaches. Many alternative architectures can be {and have been) conceived. The most
imporiant decision to make at the start is the configuration style {write once, nonvelatile, vola-
tile}. This puts some constraints on the types of cells and interconnects that can be used. Giving
a complete overview is out of the scope of this textbook, so we lmit ourselves to two popular
architectures, which are llustrative for the fisld. The interested reader can find more information
in [Trimberger94], [Smith97], {Bewz99], and [CeorgeDl].

The Altera MAX Setles [Altera01] The MAX family of devices (Figure 8-40) belongs to the
class of nonvolatile FPGAs {often called EPLDs, or Electrically Programmnable Logic Devices).
It uses 2 PAL module, (as introduced in Figure 8-29) as the basic logic module. The module
{called the Logic Array Block or LAB in Altera language) varies little over the members of the
family: a wide programmable AND array followed by a narrow fixed OR array and programma-
ble inversion. A LAB typicaily contains 16 macrocells.

The major differentiation lieg in the interconnect architecture between the LABs. The
smaller devices {(MAXS000, MAX7000) use an array-based roufing architecture. The back-

Dell Ex. 1025
Page 305

8.5 Array-Based Implementation Approaches 417

[s]alajuainiin]n]nizia ninfnng

r
o
o]
!

LA

0]
o]
o o
g :
0 =] LAB
g g (logic array block)
2 |LaB LAB| 2
0 a .
5] i L
2 g L
c |LAB LAB| O LA
Altera & 8 L 16
MAX Buuuaauqbnmsauuuuu ; i~ Macrocelis
Chipwile intercennce: * per LAB
{a) [(b}
- System System
e clock{s} clear
LA | L ! | Macrocelt 1
(local " 7 7 Macroceli 2
- | array} Programmable 3 [Tlock, clear,
2 inversion - | preset, enabie
. Product
PR term § D_ H OUT,
" ;D 3, select o Macroceli
o T H b output
SR o] i | Paraliel expander
e Shared to next macrocell
Cpe gqexpmlder Macrocell [eedback
B A Other
o 14 | % § 1 macroceils
S R | ¥in LAB
(c}

Figure 8-40 The Aliera MAX Architecture. {g) Organization of logic and interconnect;
{b} LAB module; {¢} 2 MAX family macrocell. The expanders increase the number of
products available by teking another pass through the logic array (from [SmithS7]).

bone of the routing channel is formed by the outputs of all the macrocells, complemented
with the direct chip inputs. These can be connected to the inputs of the LABs through pro-
grammable interconnect points. The advantage of this architecture, called the Progranunable
Interconnect Array or PIA, is that it is simple, and the routing delay between the blocks is
totally predictable and fixed (see Figare 8-41). The disadvantage is that it does not scale very
well. This is why the larger members of the series (MAX9000) have to resort to another
scheme. With the number of macrocells reaching up to 560, the single-channel approach runs
out of steam, and becomes slow. A mesh-based routing architecture has been opted for
instead. Individual macrocells can connect to both row and column channels, which are quite
wide (48 to 96 wires).

The EPLD approach delivers up to 15,000 logic gates, and typically is used when high
performance is a necessity, Other architectures become desirable when more complex functions
hiave to be implemented.

Dell Ex. 1025
Page 306

418 Chapter 8 = Implementation Strategies for Digital ICS

column channel row ¢hannel

B . H
D [PIA Ej gai\gﬁ[}ﬂ:ﬂﬂaﬂﬁal)uﬂ:ﬁiiﬁfg
ooyl Ooooo
I} C o Ld L &
i el a 3
0 i : 2N
E Las LAB2 g gEE - Li :
5 N 2 B .
3 (. 27T a A
0 O g0 L‘ o
4 A e SN—— — i3 o —F o
o PIA 5 =
0 il 2 7 L &
£ — & e 3
1 P =
g — %~ TABE [g j [E
[imbn it e I] Fosoooosnnonnononoooon.

{a) (b}

Figure 8-41 Interconnect architectures used in the Altera MAX series. {a} Array-based
architecture used in MAX 3006-7000; (b} Mesh architecture of the MAXS000.

The Xilinx XC40xx Series This popular RAM-programmable device family combines the
lookup table approach for the implementation of the logic cells, with a mesh-based interconnect
network. The largest part in the series (XC40853) supports almost 100,000 gates using a 36 % 56
CLB array. The architecture of the CLB was shown in Figure 8-34. An interesting feature is that
the CLB can also be configured as an array of Read/Write memory cells, using the memory
lookup tables in the F* and G’ blocks. Depending on the selected mode, a single CLB can be
configured as either a 16 X 2, 32 x 1, or 16 x | bit array, This feature comes in handy, because it
is typical for large modules of logic to need comparable amounts of storage.

The mterconnect architecture is also quite rich, and combines a wide variety of wiring
resources, as shown in Figure 8-42. The overlaid meshes consist of wire segments of lengths
1, 2, and 4. Some components also support direct connections, which link adjacent CLBs with-
out using general wiring resources. Signals routed on the direct interconnect experience miai-
mum wiring delay, as the fan-out is small. These Directs are especially effective in the
implementation of fast arithmetic modules, which feature many eritical local connections. To
address global wiring, long fines are provided that form a grid of metal inferconnect segments
that run the entire length or width of the array. These are intended for high fan-out, time-critical
signal nets, or nets that are distributed over long distances {such as buses}. In addition, special
wires are provided for the routing of the clocks.

One topic we have ignored so far in our discussion of configurable array structures is the
input/foutput architecture. For maximum usability, it is crucial that the 1/O pins of the component
are flexible, and that they provide a wide range of options in terms of direction, logic levels, and
drive strengths. One style of input/foutput block (IOB), used in the XCT4000 series, is shown in
Figuse 8-43. 1t can be programmed to act as an input, output, or bidirectional port. It includes a
flip-flop that can be programmed to be either edge triggered or level sensitive. The slew-rate

Dell Ex. 1025
Page 307

8.5 Array-Based Implementation Approaches

412

N

Clack

\%

N4

N

Quad Long Global Long Deuble Singie Global Carry

4

Dhreet
Clock Chain Connect

Figure 8-42 interconnect architecture of the Xilinx XC40C0 serigs. The numbers
annotated on the diagram indicate the amount of each of the resources available.

Sttt d ettt bttt enlenies Ensures that the part

Skow re
comtrod

‘lip-ilep

b Q
i CE

N/
A"

i
3

Ouigut
buétar

*
<

Lapr
buffer

clock
1
L j‘—(_ Fiig-
| flop
1, : (kich
e
Clack !
crable i CE <
ek T

1
! supports multipie voliage

Figure 8-43 Programmabie input/output Block of XC400G series.

control provides variable drive strengths and allows for & reduction in the rise—fall time for non-

critical signals.

Example 811 FPGA Complexity and Performanee

To get an impression of what can be achieved with the volatile field-programmable com-
ponents, consider the Xilinx 4023, It contains approximately 1000 CLBs organized in a
32 x 32 array. This translates into 2 maximum equivalent gate count of 25,080 gates. The
chip contains 422 Kbits of RAM, used mostly for programming. A single CLB is specified
o operate at 250 MHz. When taking into account the interconnect network and attempting
more complex logic configurations such as adders, clock speeds between 20 and 30 MHz

Dell Ex. 1025
Page 308

420 Chapter 8 = Implementation Strategies for Digital ICS

Figure 8-44 Chip microphectograph of XC4025 volatile FPGA {Courtesy of Xilinx, Inc.).

are attainable. To put the integration complexity in perspective, a 32-bit adder requires
approximately 62 CLBs. A chip microphotograph of the XC4025 part is shown in
Figure 8-44. The horizontal and vertical routing channels are easily recognizable.

Prewired logic arrays have rapidly claimed a significant part of the logic component market.
Their arrival has effectively ended the era of logic design using discrete componenis represetted
by the TTL logic family. It is generally believed that the impact of these components is increas-
ing with a further scaling of the technelogy. To make this approach successful, however,
advanced software support in terms of cell placement, signal routing, and synthesis are required.
Also, one should not ignore the overhead that flexibility brings with it. Programmable logic is at
least 10 times less afficient in terms of energy and performance with respect o ASIC solutions.
Hence, its scope has been mostly restricted to prototyping and small-volume applications so far.
Yet, flexibitity and reuse are alluring. Field-programmable components are bound to see a sub-
stantial growth in the years to come.

8.6 Perspective—The Implementation Platform of the Future

The designer of today’s advanced systems-on-a-chip is offered a broad range of implementation
choices. What approach is ultimately chosen is determined by a broad range of factors:

Dell Ex. 1025
Page 309

8.6 Perspective—The Implementation Platform of the Future 421

» performance, power and cost constraints

* design complexity

* testability

* time 1o market, or more precisely, ime to revenue

* uncertainty of the market, or Iate changes in the design
+ application range to be covered by the design

* prior experiences of the design team

A number of these factors seem to mmply a rend towards more flexible, programmable compo-
nents that can be reused and that can be modified even after manufacturing, Af the same time,
solutions that offer the best “bang for the buck” most often end up the winners. Too much flexi-
bility often results in ineffective and expensive solutions, which rapidly end up on the dust heap.
Finding the balance between the two extremes is the ultimate challenge of the chip architects of
today.

On the basis of these observations, it seems logical to assume that the implementation
platform of the future will be a combination of the strategies we have discussed in this chapter,
providing impiementation efficiency and fexibility when and where needed. The system on a
chip is becoming a combination of embedded microprocessors with their memory subsystems,
D5SPs, fixed ASIC-style hardware accelerators, parameterizable modules, and fexible logic
implemented in FPGA style. How these components are balanced is a function of the application
requirements and the intended market,

Example 8.12 Examples of Hybrid Implementation Platforms

Figure 8-45 shows two contrasting implementation platforms for wireless applications.
The first device, the Virtex-I Pro from Xilinx [XilinxVirtex01] is centered around a large
FPGA atray. A PowerPC microprocessor is embedded in the center of the array. The pro-
cessor provides an effective implementation approach for application-level functionality
and system-level control. To provide higher performance for signal processing applica-
tions, an array of embedded 18 x 18 multipliers is added, These dedicated components
offer a significant performance, power, and arca advantage over a pure FPGA implementa-
tion of the same function. Finally, a number of very fast 3.125-Gbps transceivers are pro-
vided, allowing for high-speed serial communication off chip.

A somewhat contrasting approach is offered in the design of Figure 8-45b
[Zhang(0]. The center of this device is an ARM-7 embedded microprocessor, acting as the
overall chip manager. Functions that need high performance and energy efficiency are off-
loaded to a configurable array of functional units such as multipliers, ALUs, memories,
and address generators, These components can be combined dynamically into application-
specific processors. The chip also provides an embedded FPGA array for functions that
nead bit-level granalarity.

Dell Ex. 1025
Page 310

422 Chapter 8 » Implementation Strategies for Digital ICS

) Q

Memik Memlk s

IEEREA

&1

3 o : T
Z 4 2 :
2! 3
LT ¥ e S W -

(EEEE R

.
[at]

:
tnsutinee
ARM

@ Hierazehical Swilehisox —— Lewal-2 Mok

AR RY CVTTE

O Universid Switchbox — bevel-d Mo

SE3i3IRSAEENSEREILGAA NN AG4 AL R EL Ry ErN o qi a0

{b} The Main chip combines embedded microprecessor, configurable sceclerniors, and FPG A {ZhanglG].

Figure 8-45 Examples of hybrid implementation platiorms.

Dell Ex. 1025
Page 311

8.8 To Probe Further 423

8.7 Summary

In this chapter, we have briefly scanned the complex world of design implementation strategies
for digital integrated circuits. New implementation styles have rapidly emerged over the fast few
decades, presenfing the designer with a wide variety of options. These design techniques and the
accompanying tools are having a major impact on the way design is performed today, and make
possible the exciting and impressive processors and application-specific circuits to which we
have become so accustomed. We have touched on the following issues in this chapter:

s Custom design, where each transistor is individually handcrafted, offers the implementa-
tion from an area and performance perspective. This approach has become prohibitively
expensive, and should be reserved for the design of the few critical modules in which
extreme performance is required, or for often-reused library cells.

= The semicusiom approach, based on the standard-cell methodology, is the workhorse of
today’s digital design industry. The advantage is the high degree of automation. The chal-
lenge is to deal with the impact of deep-submicron technologies.

* To deal with the increasing complexity of integrated circuits, designers increasingly rely
on the availability of large macrocells such as memories, multipliers, and microprocessors.
These modales are often provided by third-party vendors, and they have spurned a new
industry focused en “infellectual property”

* Starting a new design for every new emerging application has become prohibitively
expensive. The majority of the semiconducter market now focuses on flexibie solutions
that allow a single component to be used for a variety of applications, either through soft-
ware programming or reconfiguration. Configurable hardware delays the time when the
required function is actuatly committed to the hardware. Different approaches toward late
binding also have been discussed. Delaying the binding time comes with an efficiency
penalty: The more Bexibility that is provided, the larger the impact on performance and
power dissipation.

Undoubtedly, new design styles will come on the scene in the near future. Becoming familiar
with the available options is an essential part of the learning experience of the beginning digital
designer. We hope this chapter, although compressed, entices the reader to further explore the
numerous possibilities. One final observation is as follows: Even with the increasing automation
of the digial circuit design process, new challenges are continuously emerging—chatlenges that
require the profound insight and intuition offered only by a human designer.

8.8 To Probe Further

The literature on design methodologies and automation for digital infegrated circuits has
exploded in the Iast few decades. Several reference works are worth mentioning:

* ASIC and FPGA design methodologies: [Smith97]
* FPGA architectures: [Trimberger94], [George01]

Dell Ex. 1025
Page 312

424 Chapter 8 » Implementation Strategies for Digital IC5

» System on a Chip: [Chang99]
= Design methodology and technology: [Bryant01]
» Design synthesis: [DeMicheli®4d]

State-of-the-art developmenis in the design automation domain are generally reporied in the
IEEE Transactions on CAD, the IEEE Transactions on VLSI Systems, and the IEEE Design and
Test Magazine. Premier conferences are, among others, the Design Automation Conference
(DAC) and the International Conference on CAD (ICCAD). The web sites of the major Elec-
tronic Design Autemation Companies (Cadence, Synopsys, Mentor, etc.) provide a treasure of
information as well.

References

[Altera0l] Aliera Device Index, ktip:Awwwecltera.comdéproducisidevicesidev-index.find, 2001.

[AvantiC1] Satern Bfficient and Concurrent Logical and Physical Optimizatien of SeC Timing, Area and Power,
hup:tiewwsynopsis.comfproducavirgfsaturn_dsFaml.

[Betz91 V. Batz, 1. Rose, and A, Marguards, Archirectine and CAD for Deep-Submicren FPGAs, Kiawer International
Series in Bngineering and Computer Science, Kluwer Academic Publishers, 1999,

[BeaytonB4] R. Brayton et al, Legie Minimization Algorithms for VLS Swhesis, Kluwer Academic Publishers, 1984

[Bryant01] R. Bryant, T. Cheng, A. Kahng, K. Keutzer, W. Maly, R. Newton, L. Pileggi. J. Rabaey, and A. Sangiovanai-
Vincentelli, “Limitations and Challenges of Compurer-Aided Design Technology for CMOS VLSL” /EEE Pro-
ceedings, pp. 341-363, March 2001,

[Cadabra0l] AbraCAD Automated Layout Creation, Mip.fAvww.cadabratech.con/Pid=145products, Cadabra Design
Automation,

[Chang99] H. Chang et al., “Surviviag the SOC Revolution: A Guide to Platform-Based Design,” Kluwer Academic
Publishers, 199G,

[DeMicheli9d] G. De Michell, Synrhesis and Optimization of Dighal Cireuits, McGraw-Hill, 1994,

fEl-AyaiRSt K. El-Ayat, “A CMOS Electricaily Configurable Gate Armay,” FEEE Journal of Solid Srate Cirenits, vol. 8C-
24, no. 3, pp. 752-762, June 1989,

[George0l] V. George and 1. Rabaey, Low-Energy FPGAs, Klwwer Academic Publiskers, 2001,

[Grundman9?] W. Grundmann, I, Dobberpuly), R. Alimon, and N. Rethman “Designing High-Performance MOS8 Pro-
cessors Using Full Custom Techniques,” Proceedings Design Automation Conference, pp. T22-727, Anaheim,
June 1997,

[FEH85] D, Hill, “82C—A Hybrid Automatic Layout System,” Proe. ICCAD-33, pp. 172-174, November 1983,

[MeduleCompiler01] Synopsys Module Compiler Daeasheet,
ftip:ffenvwsynopsys.comipreductsidatapath/datapath.himi, Synopsys, inc.

[Phikips99] The Nexperia System Silicon Inplementation Platfarrs,
hitpthvwiesemicondictors.philips.comiplatforms/nexperia/, Philips Semiconductoss.

[Piteggi02] Pileggi, Schmit et al., “Via Patterned Gate Array)” CMU Center for Sificon System Implementation Techni-
¢zl Report Series, a0, CSST§2-15, April 2002.

[Prolific0t] The ProGenensis Celt Compiler, kutp/iwww prolificine. convprogenesisfitnd, Prolific, Inc.

[Rabaey001 I. Rabaey, “Low-Power Silicon Architectures for Wireless Applications,” Proceedinigs ASPDAC Conference,
Yokchama, fanuary 2000,

{SilvaDilJ. L. da Silva Jr., §. Shamberger, M. 3, Ammer, C. Gag, 8. Li, R. Shah, T. Tuan, M. Sheets, J. M. Rabaey,
B. Nikolic, A. Sangiovanni-Vincenielli, P. Wright, “Design Methodology for PicoRadio Netwerks,” Prac.
DATE Conference, Menich, March 2000,

Dell Ex. 1025
Page 313

8.8 To Probe Further 425

[Smith97} M. Smith, Application-Specific fmtegrated Cironits, Addison-Wesley, 1997,
[SylvesterS8] D, Sylvester and K. Keuszer, “Gelting to the Bottons of Deep Submicron.” Proc, ICCAD Conference, pp. 203,

San Jose, November 1998,

{Trimbergerdd] S. Trimberger, Field- Froprammalbie Gute Array Technoiogy, Klnwer Academic Publishers, 1994,
{Veendrick92] H. Veendrick, MOS [C's: Fram Basics 1o ASICS, Wiley-YCH, 1992,

{Xilinx4060] The Xilinx-4000 Product Series, fip:fvwvivxiling comiapps/ 4000 2em, Kilinx, Inc.

[Xiinx Virtex01] Virtex-II Pro Platform FPGAs,

Netprffonvw xitinx.comixinxil_prodear_landing page jspPiile=Virtex-U+Pro+ FPGAs, Xiling, Inc.
{Xtensat] Xiensa Configurable Embedded Processer Core, ftip:ivivwtensilica.conftechnology. fumi, Tensilica,
{Zhang00] H. Zhang, V. Prablu, V. George, M. Wan, M. Benes, A, Abnous, and J. Rabaey, *A 1 V Heterogenecus

Recenfigurable Processor IC for Baseband Wircless Applications,” Proc. F8SCC, pp. 68-69, Febraary 2000,

Exercises

For problems and exercises on design methodology, please check hitp:/hwre.cecs.berkeley.cdu/IcBaok.

Dell Ex. 1025
Page 314

Dell Ex. 1025
Page 315

DESIGN METHODOLOGY INSERT

E

Characterizing Logic
and Sequential Cells

The challenge of library characterization
Characterization methods for logic cells and registers

Cell parameters

The Importance and Challenge of Library Characterization
The quality of the results produced by a logic synthesis tool is a strong function of the level of
detail and accuracy with which the individual cells were characterized. To estimate the delay of
a complex module, a logic synthesis program must rely on higher level delay models of the indi-
vidual cells—Talling back to a full circuit- or switch-level timing model for each delay estima-
tien is simply not possible because it tzkes too much compute time. Hence, an important
component in the development process of a standard-cell library is the generation of the delay
models. In previous chapters, we learned that the delay of a complex gate is a function of the
fan-cut (consisting of connected gates and wires), and the rise and fall times of the input signals.
Furthermore, the delay of a cell can vary between manufacturing runs as a resalt of process
variations.

In this insert, we first discuss the models and characterization methods that are commonly
used for logic cells. Sequential registers require extra timing parameters and thus deserve a sep-
arate discussion.

427

Dell Ex. 1025
Page 316

428 insert E » Characterizing Logic and Sequential Celis

Characterization of Logic Cells

Unfortunately, no common delay model for standard cells has been adopted. Every vendor has
his own favored methods of celi characterization, Even within a single tool, various delay med-
els often can be used, trading off accuracy for perfermance. The basic concepts are, however,
quite similar, and they are closely related to the ones we introduced in Chapters 5 and 6. We
therefore opt to concentrate on a single set of modals in this section—miore precisely, those used
in the Synopsys Design Compiler {DesigrnCompiler01], one of the most popular synthesis tools.
Once a model has been adopted, it has to be adopted Tor all the cells in the block; in other words,
it cannot be changed from cell to cell.
The total delay consists of four components, as Hlustrated in Figure E-1:

(vt

I3 represents the infrinsic delay, which is the delay with no output loading. Dy is the wransition
component, or the part of the delay caused by the cutput load. Dy is the fraction of the delay due
to the inpur slope. Finally, D 1s the delay of the wire following the gate. All delays are charac-
terized for both rising and falling transitions.

The simplest model for the fransition delay is the linear defay model of Chapter 5. We have

D T= R{Iriver(zcguw + Cwire)’ (Ez)

where 2C,,, is the sum of ail input pin capacitances of gates connected to the output of this
gate, and C,,,, is the estimated wire capacitance. The slope delay Dy is approximated as a linear

function of the transition delay D of the previous gate, written as
DS = SS 'D'[};maf (E.3)
where Sy is the slope-sensitivity factor, and Dy, is the transition delay of the previous stage.

The characterization of a library cell must therefore provide the following components,
each of them for both rising and falling transitions, and with respect to each of the input pins:

D¢ Slope delay. Delay at D Connect delay. Time
input A caused by the from state transition at C
transition delay at B. to state tramsition at D.

- S

—>e
= -
_%>°7 / D7 Transition defay.

D,:Intrinsic delay Incurred ~ CAvsed by output pin

from cell input to cell output, [ading and vutput pin
drive.

Figure E-1 Delay componenis of a combinational gate [DesignCompilerGil.

Dell Ex. 1025
Page 317

insert E » Characterizing L.ogic and Sequential Cells

= intrinsic delay
* input pin capacitance

* equivalent cutpur driving resistance

» slope sensitivity

429

In addition to the cell models, the synthesis tools also must have access to a wire model.
Since the length of the wires is unknowsn before the placement of the cells, estimates of C,;,, and

R

wire

wire is most often proportional to the number of destinations it has 1o connect.

are made on the basis of the size of the block and the fan-out of the gate. The length of a

Exampie E.1 Three-Input NAND Gate Cell

The characterization of the three-input NAND standard cell gate, presented earlier in
Example 8.2, is given in Table E-1. The table characterizes the performance of the cell as a
function of the load capacitance and the input-rise {(fall) tirne for two different supply volt-
ages and operating temperatures. The cell is designed in a 0.18-m CMOS technology.

Table E-1 Delay characterization of a three-input NAND gate {in ns}
as a function of the input node for two operation corners (supply-
voltage—temperature pairs of 1.2 V~125°C, and 1.6 V—40°C}.

The parameters ars the load capacitance C and the input rise {fall)
time T, (Courfesy ST Microslactronics.)

Path 1.2V-125°C 1.6 V-40°C

Inl—tyy 0.073 +7.93C + 03177 0.020 +2.73C + 0.253T
ety 0.069 + 8.43C +0.364T 0.018 + 2.14C + 0.292T
2t 0.101 + 7.97C + 0.318T 0.026 + 238C + 0.255T
I2—tyyy 0.097 + 8.42C + 0.325T 0.023 + 2.14C + 0.269T
I3—tp 0.120 + 8.00C + 0.318T 0.031 + 2.37C + 0.2587
W3ty 0.110 + 8.21C + 0.280T 0.027 + 2.15C + 0.2237

While linear delay models offer good first-order estimates, more precise models are often
used in synthesis, especially when the real wire lengths are back annotated onto the design.
Under those circumstances, nouvlinear models have to be adopted. The most common approach
is to capture the nonlinear relations as lookup tables for each of these parameters. To increase
computational efficiency and minimize storage and characterization requirements, only a lmited
set of loads and slopes are captured, and linear imterpolation is used to determine the missing

values.

Dell Ex. 1025

Page 318

430 Insert E = Characierizing Logic and Sequential Celis

Example E.2 Delay Models Using Lookup Tables

A (partial) characterization of a two-input AND cell {AND?), designed in a 0.25-um
CMOS technology (Courtesy 3T Microglectronics) follows, The delays are captured for
output capacitances of 7 fF, 35 fF, 70 fF, and 140 fF, and input slopes of 40 ps, 200 ps,
800 ps, and 1.6 ns, respectively.

celllAND) {
area : 36
pin(Z) {
direction : output |
function : "A%B";
max_capacitance : 0.14000 ;

timing() {
refated_pin : "A" ; /¥ delay between mput pin A and cuiput pin Z %/
cell_rise {
values{ "0.10810, 0.17304, 0.24763, 0.39554",\
"0.14881, 0.21325, 028778, 043607\
"0.25149, (0.31643, 0.39060, 0.33805", %
"0.35255, 0.42044, 0.49596, 0.64469" }; }
rise_transition {
values("0.08068, 0.23844, 0.43923, 0.84497".\
"0.08447, 0.24008, 0.43926, (.84814"
“0.10291, 0.25230, 0.44753, 0.85182",%
012614, 0.27258, 0.46551, (0.86338" ¥}
cell_fail{table_1) {
values{ "0.1 1655, (L18476, 0.26212, 0.41496™
"0.15270, 0.22015, 0.29735, 0.43039",
"0.25893, 0.32845, 0.40535, 0.535701",7
"0.36788, 0.44198, 0.52075, 0.67283" 3}
fall_transition{table_I) {
values{ "0.06850, 0.18148, 032692, 0.62442" .\
"0.07183, 0.18247, 032693, 0.62443"
"0.09608, 0.19935, 033744, 0.62677",\
"0.12424, 0.22408, 0.35705, 6.63818" 11}
intrinsic_rise : 0.13305 ; /¥ unloaded delays */
intrinsic_fall ; 0,13536 ;
}
timing{ {
related_pin : "B" ; /¥ delay between input pin A and output pin Z %/

Dell Ex. 1025
Page 319

Insert £ » Characterizing Logic and Sequential Cells 431

intrinsic_rise : 0.12426 ;
intrinsic_fall : 0.14802 ;
}
}
pin(A) {
direction : input |
capacitance ; 0,00485 ; /* gate capacitance */
}
pin(B) {
direction : input ;
capacitance : 0.00519 ;
}
}

Characterization of Registers

In Chapter 7, we identified the three important timing parameters of a register. The serap time
(7,)} is the time that the data inputs (D input) must be valid before the clock transition {in other
words, the 0 to 1 transition for a pesitive edge-triggered registery. The hold time (1,,,;,) is the time
the data input must remain valid after the clock edge. Finally, the propagation defay (1,_) equals
the time it takes for the data to be copied to the Q output after a clock event. The latter parameter
is illustrated in Figare B-2a.

Latches have a bit more complex behavior, and thus require an exira timing parameter.
While 7_p, corresponds to the delay of relaunching of data that arrived to a closed latch. 1p,_
o equals the delay between D and { terminals when the latch is in transparent mode
{Figure E-2b).

The characterization of the 1o_; (t5_p) delay is fairly straightforward. It consists of &
delay measurement between the 50% transitions of Cik {D) and Q, for different values of the
input slopes and the output loads, oot anlike the case of combinational logic cells.

/—\
B 0— —p o
—i> Cik — ik
{a} (b

Figure E-2 Propagation delay definitions for sequential components:
(a) register; (b} latch.

Dell Ex. 1025
Page 320

432 Insert E ¢ Characterizing Logic and Sequential Cells

Clt /

{a}
1T /
C_Q ______ N teeg
iSu | zD-(_‘
—_—
i
®

Figure E-3 Characterization of sequential elements: {3} determining the setup
time of a register; (b} definition of setup and hold times.

The characterization of setup and held times is more elaborate, and depends on what is
defined as “valid” in the definitions of both setup and hold times. Consider ithe case of the setup
time. Narrowing the time interval between the arrival of the data at the I input and the Clk event
does not lead to instantaneous failure (as asswmed in the first-order analysis in Chapter 7}, but
rather to a gradual degradation in the delay of the register. This is documented in Figure E-3a,
which illustrates the behavior of a register when the data arrives close to the setup time. If D
changes long before the clock edge, the i, delay has a constant value. Moving the data transi-
tion closer to the clock edge causes 7_g, to increase. Finally, if the data changes too close to the
clock edge, the register fails to register the transition altogether.

Clearly, a more precise definition of the “setap time” concept is necessary. An unambig-
uous specification can be obtained by plotting the 7, delay against the data-to-clock offset,
as shown in Figure E-3b. The degradation of the delay for smaller values of the offset can be
observed. The actual definition of the setup time is rather precarious. If it were defined as the
minimum D-Clk offset that causes the flip-flop to fail, the logic following the register would
suffer from excessive delay if the offset is close to, butl larger than, that point of failure.
Another oplion is to place it at the operation point of the register that minimizes the sum of the
data-clock offset and the f._g delay. This point, which minimizes the overall flip-flop over-
head, is reached when the slope of the delay curve in Figure E-3b equals 48 degrees
[Stojanovic9].

Dell Ex. 1025
Page 321

Insert E » Characterizing Logic and Sequential Celis 433

While custom design can take advantage of driving flip-flops close to their point of
failure—and take all the risk that comes with it—semicustom design must take a more conserva-
tive approach. For the characterization of registers in a standard ceil Iibrary, both setup and hold
times are commonly defined as data-clock offsets that correspond to some fixed percentage
increase in fo_, typically set at 3%, as indicated in Figure E-3b. Note that these curves are dif-
ferent for 0-1 and 1-0 transitions, resulting in different setup (an hold) times for 0 and 1 values.
As with clock-to-cutput delays. setup times also are dependent on clock and data slopes, and
they are represented as a two-dimensional table in nonlinear delay models. Identical definitions
hold for latches.

Exampie E.3 Register Setup and Hold Times

In this example, we examine setup and hold behavior of the transmission gate master-slave
register introduced in Chapter 7. (See Figure 7.18.) The register is loaded with a 100-fF
capacitor, and its setup and hold times are examined for clock and data slopes of 100 ps.
The simulation results are plotted in Figure E-4. When data settles 2 “long time” before
the clock edge, the clock-to-output delay equals 193 ps. Moving the data transition closer
to the clock edge causes the /-_, delay to increase. This becomes noticeable at an offset
between data and clock of about 150 ps. The register completely fails to [atch the data
when data precedes the clock by 77 ps. The sum of D-Q offset and the ¢r, is minimal at
93 ps. A 5% increase in fo_ is observed at 125 ps, and this time is entered in the library
as the setup time for this particular slope of data and clock. This characterization of setup
time adds a margin to the design of about 30 ps. From these simulations, we also can
determine that this register has a hold time of 15 ps.

5068
__ 400 L
2
& Minimum D—Q delay
= 300
& / \--
5 -
2 L1051 £
5 200 =t e M-
o‘ -
5 o — gy —

160

g
—200 -150 —10n —50 0 50 160

Data-to-Clock Offset fps]

Figure E-4 Characterization of the clock-to-auinut delay, setup and hold limes
of a transmission-gate latch pair.

Dell Ex. 1025
Page 322

433 Insert £ « Characterizing Logic and Sequential Cells

References

[DesignCompilerdi] Design Compiler, Product Information, hgp:Avwvw.syrepsys.conproductsfogic/
design_compilenhund, Synopsys, Inc,

{Stajanovicd9} V. Stojanovig, V.G. Okiobdzija, “Comparative analysis of muster-siave katches and flip-flops for bigh-
performance and low-power sysiems,” JEEE Journal of Selid-State Circuits, vol. 34, no. 4, April 1989,

Dell Ex. 1025
Page 323

DESIGN METHODOLOGY INSERT

F

Design Synthesis

Circuit, Logic, and Architectural Synihesis

Cne of the most enticing proposals one can make to a designer who has to generate a circuit with
tough specifications in a short time is to offer him a tool that automatically rranslates his specifi-
cations into a working circuit that meets all the requirements. One of the main reasons that semi-
conductor circuits have reached the mind-boggling complexity they have today, is that such
synthesis tools actually exist—at least to a certain extent. Synthesis can be defined as the trans-
formation between two different design views. Typically, it represents a translation from a
behavioral specification of a design entity into a structural description. In simple terms, it trans-
Iates a description of the function 2 modale should perform (the behavior) into a composition—
that is, an mterconnection of elements (the structure). Synthesis approaches can be defined at
each level of abstraction: cirenit, logic, and architecture. An overview of the various synthesis
levels and their impact is given in Figure F-1. The synthesis procedures may differ depending on
the targeted implementation style. For example, logic synthesis translates a logie description
given by a set of Boolean equations into an interconnection of gates. The techniques involved in
this process strongly depend on the choice of either a two-level (PLA) or a multilevel (standard-
cell or gate-array} implementation style. We briefly describe the synthesis tasks at each of the
different modeling levels. Refer to {DeMicheli94] for more information and a deeper insight into
design synthesis.

435

Dell Ex. 1025
Page 324

436 insert F = Design Synthesis

Architeciural Level Logic Level Circuit Level

=

= o

= P b

E { x|
2 coelf[iFntz"! y L c i
-

2

i

] . N

Architecture Cireait
Synthesis Synthesis

z

2

-

B

a

51

=

b

o

Figure F-1 A taxonomy of synthesis tasks.

Circuit Synthesis
The task of circuit synthesis is to translate a logic description of a circuit into a network of tran-
sistors that meets a set of timing constraints. This process can be divided into two stages:

1. Derivation of transistor schematics from the logic equations. This requires the selection
of a circuit style {complementary static, pass transistors, dynamic, DCVSL, etc) and the
construction of the logic network. The former task is usually up to the designer, while the
Iatter depends upon the chosen style. For instance, the logic graph techrigue introduced in
Design Methedology Insert D can be used to derive the complementary pull-down and
pull-up networks of a static CMOS gate. Similarly, antomated techniques have been devel-
oped to generate the pull-down trees for the DCVSL logic style so that the number of
required transistors is minimized [Cha86].

2. Transistor sizing to meet performance constraints. This has been a recurting subject
throughout this book. The choiee of the transistor dimensions hag a major impact on the
area, performance, and power dissipation of a circuit. We have aiso learned that this is a
subtle process. For instance, the performance of a gate is sensitive to a number of layout
parasitics, such as the size of the diffusion area, fan-out, and wiring capacitances. Not-
withstanding these daunting challenges, some powerful transistor-sizing tools have been
developed [e.g., Fishburn83, AMPS99, Northrop01]. The key to the success of these tools
is the accuraie modeling of the performance of the circuit using RC equivalent circuits and
a detsiled knowledge of the subsequent layout-generation process. The latter aflows for an
accurate estimation of the values of the parasitic capacitances.

Dell Ex. 1025
Page 325

Insert F » Design Synthesis 437

While circuit synthesis has proven 1o be a powerful tool, it has not penetrated the design world
as much as we might expect. One of the main reasons for this is that the quality of the cell library
has a strong influence on the complete design, and designers are reluctant {0 pass this important
task to antomatic tools that might produce inferior resnlts. Yet, the need for ever-larger libraries
and the impact of transistor-sizing on circuit performance and power dissipation is providing a
strong push for a more pervasive introduction of circuit-synthesis tools.

Logic Syathesis

Logic synthesis is the task of generating a structural view of a logic-level model. This model can
be specified in many different ways, such as state-transition diagrams, state charts, schematic
diagrams, Boolean equations, fruth iables, or HDL (Hardware Description Language)
descriptions.

The synthesis techniques differ according to the nature of the circuit (combinational or
sequential) or the intended implementation architecture {multilevel logic, PLA, or FPGA). The
synthesis process consists of a sequence of optimization steps, the order and nature of which
depend on the chosen cost function—ares, speed, power, or a combination of these. Typically,
togic optimization systems divide the task into two stages:

1. A rechnology-independent phase, where the logic is optimized using a number of Boelean
or algebraic manipulation techniques,

2. A rechnology-mapping phase, which takes into account the peculiarities and properties of
the intended implementation architecture. The technology-independent description
resulting from the first phase is translated into a gate netlist or a PLA description,

The rwo-level minimization tools were the first logic-synthesis technigues to become widely
available. The Espresso program developed at the University of California at Berkeley
[BraytonB4] is an example of a popular two-level minimization program. For some time, the
wide availability of these tools made regular, array-based architectures like PLAs and PALs the
prime choice for the implementation of random logic functions.

At the same time, the groundwork was laid for sequential or state-machine synthesis.
Tasks involved include the state minimization that aims at reducing the number of machine
states, and the stafe encoding that assigns a binary encoding to the states of a finite state machine
{DeMicheliod],

The emergence of smuliileve! logic synthesis environments such as the Berkeley MIS tool
{Brayion87] swung the pendulum fowards the standard-cell and FPGA implementations that
offer higher performance or integration density for a majority of random-logic functions,

The combination of these techniques with sequential synthesis has epened the road to com-
plete register-transfer (RTL) synthesis environments that take as an input an HDL. description (in
VHDL or Verilog—see Design Methodology Insert C) of a sequential circuit and produce a gate
nethist [Carlson81, Kurup97]. Saying the logic synthesis has fundamentally altered the digital cir-
cuit design landscape is by no means an understatement, It alsc is fair to say that the tool set that

Dell Ex. 1025
Page 326

438 Insert F = Design Synthesis

made this major paradigm change in design methodology ultimately happen is the Design Com-
piler environment from Synopsys. Even after being in place for almost two decades, Design Com-
piler continues to dominate the market and represents the synthesis tool of choice for the majority
of the digital ASIC designers. Built around a core of Boolean optimization and technology map-
ping, Design Compiler incorporates advanced technigues such as timing, area and power optimi-
zation, cell-based sizing, and test insertion [Kurup97, DesignCompiler].

Example F.1 Logic Synthesis

To demonstrate the difference between two-level and multilevel logic syntbesis, both
approaches were applied to the following full-adder equations, which will be treated in
substantial detail in Chapter 1.

S={(A®R®C,

{E.Iy
C,=A-B+A-C,+8-C;

The MIS-II logic synthesis environment was employed for both the two-level and
multifevel synthesis. The minimized truth table representing the PLA implementation is
shown in Table F-1. It can be verified that the resulting network corresponds to the preced-
ing full-adder equations. The PLA counts three inputs, seven product terms, and {wo out-
puts. Observe that no product terms can be shared between the sum and carry outputs. A
NOR-NOR implementation reguires 20 transistors in the PLA array {17 and 9 in the OR
plane and AND planes, respectively}, This count does not include the inpur and output
buffers.

Table F-1 Minimized PLA truth table for full adder.
The dashes (—) mean that the corresponding input
does not appaar in the product term.

A B C; s C,
i i 1 i -
0 0 i H -
it | 0 1 -
1 0 0 1 -
H 1 - - 1

Dell Ex. 1025
Page 327

Insert F < Design Synthesis 439

Figure F-2 shows the multilevel implementation as generated by MIS-IL. In the technol-
ogy-mapping phase, a generic standard-cell library was targeted. Implementation of the adder
requires only six standard cells. This corresponds to 34 {1} transistors in a static CMOS imple-
mentation.' Observe the usage of complex logic gates such as EXOR and OR-AND-INVERT.
For this case study, minimization of the arca was selected as the prime optimization target. Other
implementations can be obtained by targeting performance instead. For instance, the critical tim-
ing path from €, to €, can be reduced by signal reordering. This requires the designer to identify
this path as the most critical, a fact that is not obvious from a simpie inspection of the full-adder
eguations.

: 1 Cell boundary

Figure F-2 Standard-cell implementation of full adder, as
generated by muitilevel logic synthesis,

Architecture Synthesis

Architecture synthesis is the latest development in the synthesis area. It is also referred to as
behavioral or high-level synthesis. Its task is to generate a structural view of an architecture
design, given a behavioral description of the tagk to be executed, and a set of performance, area,
and/or power constraints. This comresponds to determining what architectural resources are
needed to perform the task (execution units, memories, busses, and controllers), binding the
behavioral operations to hardware resources, and determianing the execation order of the opera-
tions on the produced architecture. In synthesis jargon, these functions are catled allocation,
assignment, and scheduling {Gajski92, DeMicheli94). While these operations represent the core
of architecture synthesis, ether steps can have a dramatic impact on the guality of the solution.
For example, optimizing transformations manipulate the initial behavioral desciiption so that a
superior solution can be obtained in terms of area or speed. Pipelining is a typical example of
such a ransformation. In a sense, this component of the synthesis process is simitar {o the ase of
optimizing transformations in software compilers.

'How to implement a static complementary CMQS EXOR gate with only nine transistors is left as an exercise for the
readler.

Dell Ex. 1025
Page 328

440 insert F = Design Synthesis

Example .2 Architecture Synthesis

To itlustrate the coneept and capabilities of architecture synthesis, consider the simple
computationsl flowgraph of Figure F-3. It describes a program that inputs three numbers
a, b, and ¢ from off-chip and produces their sum x at the output.

Two possible fmplementations, as generated by the HYPER synthesis system
{[Rabacy211). are shown in Figure F-4. The first instance requires four clock cycles and

input €

input]

inputy a.

Ihpui! Lo,

£ ¢ E%_\)u A oupl

"/% ‘: el i\ y oltput
i P

inputi b M

iput

Figure F-3 Simple program performing the sum of three numbers,

adder81#out{result}

i
H
adders? |
i

| [Re0) e

i f.

S S,
i I F
E y | TranslecUnit_ |

I 1
! Ripple Carry I 1 [Beffer
: Adder | bus_1 :
i I § Reg
' [Repl Reg 1 : i 4
[A . F o i
; i Buffer i }Tr:Sta%:ei i loUnuga | __ loUnmigol | IoUnkst
I buffer ; 1) N i
! ; i [Buffer] ! | {Buffer} ! [Buffer]|
R S ; DN SO S DY S O

ING {data input) INT INO N2
{2) Four-cycle implementation {b} One-cycle implemsntation

Figure F-4 Two alternative architecturas implementing the sum program.

Dell Ex. 1025
Page 329

insert F « Design Synthesis 441

time-shares the input bus as well as the adder. The second architecture performs the pro-
gram in a single clock cycle, To achieve this performance, it was necessary to pipeline the
algorithm; that is, multiple tterations of the computation overlap. The increased speed
translates as expected to a higher hardware cost—one extra adder, extva registers, and a
more dedicated bus architecture, including three input ports. Both acchitectures were pro-
duced automatically, given the behavioral description and the clock-cycle constraint. This
imcludes the pipelining ransformation.

While architecture compilers have been extensively researched in the academic commu-
nity {e.g., [DeMan86], [Rabaey9!]), their overall impact has remained Himited. Commercial
mtroductions have been largely unsuccessful. A number of reasons for this slow penetration can
be enumerated:

» Behavioral synthesis assumes the availability of an established synthesis approach at the
register-transfer level. This has only recently come to a widespread acceptance. In addi-
tion, the discussion about the appropriate input language at the behavioral level has cre-
ated a lot of confusion. The emergence of widely accepted input languages such as
SystemC can change the momentum.

» For & long time, architecture synthesis has concentrated on a limited aspect of the overall
design process. The impact of interconnect on the overall design cost, for example, was
long ignored. Also, limitations on the architectural scope resulted in inferior solutions
apparent to every experienced designer.

« Most importantly, the revolutionary advent of the system-on-a-chip has outstripped the
evolntionary progress of the synthesis world. The hybrid nature of embedded system
architectures that combine embedded processors with ASIC accelerators ultimately limits
the usability of architectural synthesis. Current logic and sequential synthesis tools proba-
by suffice for the accelerators. The challenge has shifted to the synthesis of the sofiware
that runs on the embedded processors, chip-level operation systems, driver generators,
interconnect network synthesis, and architectural exploration.

Notwithstanding these observations, architectusal synthesis has proven to be very successful ina
number of applieation-specific areas. The design of high-performance accelerator units in areag
such as wireless communications, storage, imaging, and consumer eclectronics has benefited
greatly from compilers that translate high-level algorithmic functions into hard-wired dedicated
solutions.

Example F.3 Architectural Synthesis of Wireless-Conumunications Processor [Silva01]

An advanced baseband processor for a wireless modem is generated automatically from a
high-level description in the Simulink eavironment ([Mathworks01]}. Simulink and
Mathlab are tools used extensively in the world of communications design. Capturing the

Dell Ex. 1025
Page 330

442 Insert F = Design Synthesis

) %fﬁc ﬁmiﬁl

oy i
st
P ot &
Byl
> 5ol g1 _3hizin SEwee el e
ook

Figure F-5 Architectural synthesis of wireless baseband processor from Simulink {a} {o sificon
{b). The core area of the chip, which is pad limited, measures only 2 mm?in a 0.18 um CMOS tech-
nology, and counts 600,000 transistors. The high transistor density (6.3 transistorium?®) demon-
strates the effectiveness of today's physical design tools.

Dell Ex. 1025
Page 331

Insert F » Design Synthesis 443

design specifications in that environment is a major help in bridging the chasm betweea
systems and implementation engineer, The transhation process from Simulink to imple-
mentation is managed by the “Chip-in-a-day” design envivonment [DavisQl]. This tool
manages the synthesis of the individual blocks from behavior to gate level, intreduces the
chip floorplan, performs the clock tree generation, and oversees the execution of the phys-
ical synthesis. The overall generation and verification process takes little more than 24
hours. A similar approach has also proven to be very successful in the mapping of high-
level signal-processing functions on rapid-prototyping platforms such as FPGAs. The Sys-
tem Generator tool from Xilinx, Inc, for instance, maps modules such as filters, modula-
tors, and correlators, described in the Mathworks Simulink environment, directly onio an
FPGA module [SystemGenerator].

To Probe Further
For an in-depth overview of design synthesis, please refer to [DeMicheli94].

References

[AMPS99] AMPS, Intelligemt Design Optimization, fup:Avwsynopsys.comproducis/analysis/anps_ds.him!,
Synopsys, Inc.

[Brayton84] R. Brayton et al., Logic Minimization Aigorithms for VLSF Syathesiz, Kluwer Academic Publishess, 1984,

[Brayton87] R. Brayton, R. Rudell, A. Sangiovanai-Vincentelli, and A. Wang, “MIS: A Multilevel Logic Optimization
System,” IEEE Trans. on CAD, CAD-6, pp. 1062-81, November 1987,

[Carlson%1] 8. Carlson, Intreduction to HBL-Based Design Using VHEDE., Synopsys, Inc. 1991,

[Cim86) K. Chu and D. Pulfrey, “Desiga Procedures for Differential Cascode Logic,” IEEE Journal of Solid State Cir-
crifs, vol. 8C-21, no. 6, Dec. 1986, pp. 1082-1087.

[Bavis01] W.R. Davis, N. Zhang, K. Camera, E Chen, D. Markovic, N. Chan, B. Nikolic, R W. Brodersen, “4& Design
Eaviroament for High Throughput, Low Power. Dedicated Sigaal Processing Systems,” Proceedings CICC 2001,
San Disgo, 2061,

[DesignCompiler] Design Compiter Technical Datasheet, g synapsys.coméprodneisflogic/
design_compileriimi, Synopsys, Inc.

[DeMan§6] H. De Man, J. Rabaey, P. Six, and L. Claesen, “Cathedral-1i: A Silicon Compiler for Digitai Signal Process-
ing,” IEEE Design and Test, vol. 3, so. 6, pp. 13-25, December 1986,

[DeMicheli®4] G. De Michelt, Svathesis and Optimization of Bigital Cirewits, MceGraw-Hili, 1994,

[Fishbura®5] J. Fishburn and &, Dunlop, “TILOS: A Polysomial Programming Approach to Tranststor Sizing,” Proceed-
ings ICCAD-85, pp. 326328, Santa Clara, 1985,

[Gaiski92] D, Gajski, N. Dutt, A. Wu, and S, Lin, High-Leve! Synthesis—Introduction to Chip and System Design, Klu-
wer Academic Publishers, $992.

[Kurup97] P. Kurub and T, Abassl, Logéc Synthesis using Synepsys, Kluwer Academic Publishers, 1997,

[MathworksO1] Matiab and Simulink, Atp:/dvwse matiworks. com, The Mathwarks

{Northrop01} G. Nosthrop, P Lu, "A Semicustom Design Flow in High-Performance Microprocessor Design,” Proceed-
ings 38" Design Antomarion Conference, Las Yegas, June 2001.

[Rabaey®11 i, Rabaey, C. Chu, P. Houng and M. Potkonjak, “Fast Prototyping of Daapatii-Intensive Architectuces,”
IEEE Desipn and Test, vob. B, pp. 4051, 1901

Dell Ex. 1025
Page 332

444 Inseit F » Design Synthesis

{SilvaQt] J.L. da Siiva I, §. Shamberger, M.J. Ammer, €. Guo, §. Li, R. Shah. T. Toan, M. Sheezs, .M. Rabaey, B.
Nikolic, A. Sangiovanni-Vincestelli, B Wright, “Design Methodology for PicoRadio Networks,” Proceedings
DATE Conference, Munich, March 2086,

[SystemGenerator] The Xiiinx System Generator for i}Sf’,
hGnpfwowilinx.comAxdnaidl_prodear_product jspPitle=systeim_generator, Xiling, Ine.

Dell Ex. 1025
Page 333

CHAPTER

10

Timing Issues in Digital Circuits

Impact of clock skew and jitter on performance and functionality
Alternative timing methodologies
Synchronization issues in digital IC and board design

Clock generation

10.1 introduction

10.2 Timing Classification of Digitai Systems
10.2.1 SBynchrenous interconnect
10.2.2 Mesochronous Interconnect
10.2.3 Plesiochronous interconnect
10.2.4 Asynchronous Interconnect
10.3 Syncnronous Design—An In-Depth Perspective
10.3.1 Synchronous Timing Basics
10.3.2 Sources of Skew and Jitter
10.3.3 Clock-Distribution Techniguss
10.3.4 Latch-Based Clocking® -
10.4 Seff-Timed Circuit Design*
10.4.1 Self-Timed Logic—An Asynchronous Technigue
10.4.2 Completion-Signal Generation
10.4.3 Seli-Timed Signaling
10.4.4 Practicai Examples of Self-Timed Logic
10.5 Synchronizers and Arbiters*
10.5.1 Synchronizers—Concept and Implementation
10.5.2 Arbiters

491

Dell Ex. 1025
Page 334

492 Chapter 10 = Timing Issues in Digital Circuits

10.6 Clock Synthesis and Synchronization Using a Phase-Locked Loop”
10.8.1 Basic Concept
10.68.2 Building Blocks of a PLL
10.7 Future Directions and Perspectives
10.7.1 Distributed Clocking Using DLLs
10.7.2 Optical Clock Distribution
10.7.3 8ynchronous versus Asynchronous Design
10.8 Summary
10.8 To Probe Further

10.1 Introduction

All sequential circuits have one property in common—a well-defined ordering of the switching
events must be imposed if the circuit is to operate correctly. If this were not the case, wrong data
might be written into the memory elements, resulting in a funetiena! failure. The synehronous
system approach, in which all memory elements in the system are simultaneously updated using
a globally distributed periodic synchronization signal {that is, a global clock signal), represents
an effective and popular way to enforce this ordering. Functionality 1s ensured by imposing
some sirict constraints on the generation of the clock signals and their distribution to the mem-
ory elements distributed over the chip; nencompliance often leads to malfunction.

This chapter starts with an overview of the different timing methodologies. The majority
of the text is devoted to the popular synchronous approach. We analyze the impact of spatial
variations of the clock signal, called clock skew, and temporal variations of the clock signai,
called clock jitter, and introduce techniques to cope with both. These variations fundamentaliy
limit the performance that can be achieved using a conventional design methedology.

At the other end of the specirum is an approach called asynchronous design, which aveids
the problem of clock uncertainty altogether by eliminating the need for globally distributed
clocks. After discussing the basics of asynchronous design approach, we analyze the associated
overhead and identify some practical applications. The important issue of synchronization
between different clock domains and interfacing between asynchronous and synchronous sys-
temns also deserve in-depth treatment. Finally, the fundamentals of on-chip clock generation
using feedback are introduced, along with trends in timing.

10.2 Timing Classification of Digital Sysiems

In digital systems, signals can be classified depending on how they are related to a local clock
[Messerschmitt90][Dally28]. Signals that transition only at predetermined periods in time can
be classified as synchronous, mesochronous, or plesischronous with respect to a system clock. A
stgnal that can transition at arbitrary times, on the other hand, is considered asynchronous.

10.2.1 Synchronous Interconnect

A synchronous signal is one that has the exact same frequency as the local clock and maintains a
known fixed phase offset to that clock. In such a timing framework, the signal is “synchronized”
with the clock, and the data can be sampled directly without any uncertainty. In digital logic

Dell Ex. 1025
Page 335

180.2 Timing Classification of Digital Systems 493

CLK v ¥

I
i

R, Combinational ~ R,

Cf}z L ngc Cun! Out

Figure 10-1 Synchronous interconnect methodology.

design, synchronous systems are the most straightforward type of interconnect. The flow of data
in such a circuit proceeds in lockstep with the system clock, as illustrated in Figure 10-1.

Here, the input data signal 7z is sampled with register R, to produce signal C;,, which is
synchronous with the system clock, and then it is passed along to the combinational logic block.
After a suitable setting period, the output C,,, becomes valid. Its value is sampled by R, which
gynchronizes the output with the clock. In a sense, the certeingy peried of signat C,,—the
period during which data are valid—Iis synchronized with the system clock, This allows register
R, to sample the data with complete confidence. The length of the uncertainty period, or the
period during which data are not valid, places an upper hound on how fast a synchronous
system can be clocked.

10.2.2 Mesochronous Interconnect

A mesochronous signal-—meso 15 Greek for “middie”—is a signat that not only has the same fre-
quency as the local clock, but also has an unknown phase offset with respect to that clock. For
sxample, if data are being passed between two different clock domains, the data signal transmit-
ted from the first module can have an unknown phase relationship to the clock of the receiving
module. In such a system, it is not possibie to directly sample the output at the receiving module
because of the uncertainty in the phase offset. A {mesochronous) synchronizer can be used to
synchronize the data signal with the receiving clock, as shown in Figure 10.2. The synchronizer
serves to adjust the phase of the received signal to ensure proper sampling. :

In Figure 10-2, signal D, is synchronous with respect to Clk,. However, D and £, are
mesochronous with Cik, because of the unknown phase difference between Clk, and Clky, and
the unknown interconnect delay in the path between Block A and Block B. The role of the syn-
chronizer is to adjust the variable delay line such that the data signal D, {a delayed version of
D) is aligned properly with the system clock of Block B. In this example, the variable delay ele-
ment is adjusted by measuring the phase difference between the received signal and the ocal
clock. Register R, samples the incoming data during the certainty period, after which the signal
£, becomes synchronous with Clk,,.

10.2.3 Plesiochronous Interconnect

A plesiochronous signal is one that has a frequency that is nominally the sane as that of the local
clock, yet is slightly different. (In Greek, plesic means “near.””) This causes the phase difference
o drift in time. This scenario can easily arise when two interacting modules have independent
clocks gemerated from separate crystal oscillators. Since the transmitted signal can arrive at the
receiving modale at a different rate than the locat clock, one needs to utilize a buffering scheme
o ensure that atl data are received. Typicaily, plesicchronous interconnect occurs only in distributed

Dell Ex. 1025
Page 336

494 Chapter 10 « Timing Issues in Digital Circuils

Variable
Delay Line

Block A % Interconnect| O
FZ Delay D,

Controt

Figure 10-2 Mesochronous communication appreach using variable delay line.

C“’T‘ “ Recovery C“’“f °

4 ¢ l
A Receiving
Criginating { l
Module FIFO Mcdule

Figure 10-3 Plesiochronous communications by using a FIFQ,

systems that contain long-distance communications, since chip- or even board-level circuits typ-
ically utilize a commeon oscillator to derive local clocks. A possible framework for plesiochrenons
interconnect is shown in Figure 10-3.

In this digital communicatiens framework, the originating module issues dafa at some
unknown rate C), which is plesiochronous with tespect to C,. The timing recovery unit is
responsible for deriving clock C; from the data sequence and buffering the data in a FIFQ. As a
result, C, will be synchroneus with the data at the input of the FIFO and will be mesochronous
with C,. Since the clock frequencies from the originating and receiving modules are mis-
matched, data might have to be dropped if the transmit frequency is faster, or data can be dupli-
cated if the transmit frequency is slower than the receive frequency. However, by making the
FIFO large enough, as wel as periodically resetting the system whenever ag overflow condition
occurs, robust communication can be achieved.

10.2.4 Asynchronous Interconnect

Asynchronous signals can transition arbitrarily at any time, and they are not slaved o any local
clock. As a result, it is not straightforward to map these arbitrary transitions into a synchronized
data stream. It is possible to synchronize asynchronous signals by detecting events and by intro-
ducing latencies into the data stream synchronized to a local clock. A more natural way 1o han-
dle asynchronous signals, however, is simply to climinate the use of local clocks and utilize a
seH-timed asynchyenous design approach. In such an approach, communication between mod-
unies is controlled through a handshaking protocal that ensures the proper ordering of operations.

When a logic block completes an operation {Figure 13-4), it wili generate a completion
signal DV to indicate that output data are valid. The handshaking signals then Initiate a data
transfer to the next block, which latches in the new data and begins a new computation by assert-
ing the initialization signal 7. Asynchronous designs are advantageous because computations are

Dell Ex. 1025
Page 337

10.3 Synchronous Design—An In-Depth Perspective 495

Data Self-Timed Self-Timed)
Reg Logic Reg Logic
23 AN
Reg 4 ov 1} ov}
:I Interconnect Circuit ; Interconnect Circait1 E
Ack
handshaking
signals

Figure 13-4 Asynchronous design methodology for simple

pipeline interconnect.
performed at the native speed of the logic, and block compatations occur whenever data become
available. There is no need to manage clock skew, and the design methadology leads to a very
modular approach in which interaction between blocks simply occurs through a handshaking
procedure. However, these protocels result in increased complexity and overhead In communi-
cation, which impacts performance.

10.3 Synchronous Design—An In-Depth Perspective

10.3.1 Synchronous Timing Basics

Yirtually all systems designed today use a periodic synchronization signal or clock. The genera-
tion and distribution of s clock has a significant impact on the performance and power dissipa-
fion of the system. For the time being, let us assume a positive edge-friggered system, in which
the rising edge of the clock denotes the beginning and completion of a clock cycle. In an ideal
world, the phase of the clock (i.e., the position of the clock edge relative to the reference) at var-
ivus points in the system is exactly equal, assuming that the clock paths from the central distri-
bution point to each register are perfectly balanced. Figure 10-5 shows the basic structure of a
synchroncus pipelined datapath. In the ideal scenario, the clocks at registers 1 and 2 have the
same period and transition at the exact same time.
Assume that the following timing parameters of the sequential circuit are available:

* The contamination or minimum delay (¢, _ ;) and the maximum propagation delay of the
register (7. _).

» The setup {7} and hold times (#,,;;) for the registers.

* The contamination delay (7,) and the maximum delay {1;,,,.) of the combinational logic.

* The positicns of the rising edges of the clocks CLK, and CLXK, (t,5, and f,.. respectively),
relative to a global reference.

i Al Comb y R2Z
7 ombinationa
b g Logic D g
AN
CLE 1‘ foris ch;.gz
f&q !x’og;'c
fc-:g,cf" tl'og?a‘,cd

fs«, Lhold

Figure 10-5 Pipelined datapath circuit and timing parameters.

Dell Ex. 1025
Page 338

496 Chapter 10 = Timing lssues in Digital Circuits

Under the ideal condition that £y, = #.,, the minimum clock period required for this sequentiai
cireuit is determined solely by the worst case propagation delays. The period must be long
enough for the data to propagate through the registers and logic and to be set up at the destina-
tion register before the next rising edge of the clock. As we saw in Chapter 7, this consiraint is
given by the following expression:

T>Tc~q'§'ra‘agic+{ssr (161}

At the same time, the hold time of the destination register must be shorter than the minimum
propagation delay through the logic network:

Thota <1¢ —ged + rlﬂgic, cd (18-2)

Unfortunately, the preceding analysis is somewhat simplistic, since the clock is never ideal. The
different clock events furn out to be neither perfectly periodic nor perfectly simultaneous. As a
result of process and environmental variations, the clock signal can have both sparial and rempo-
ral variations, which lead to performance degradation and/or circuit malfunction.

Clock Skew

The spatial variation in arrival fime of a clock transition on an integrated circuit is commoonly
referred 1o as clock skew. The ciock shew between two points / and j on an IC is given by § (i, /) =
1; — t;, where ; and £, are the positions of the rising edge of the clock with respect to the reference.
Consider the transfer of data between registers R1 and R2 in Figare 10-3, The clock skew can be
positive or negative depending upon the routing direction and position of the clock source. The
timing diagram for the case with positive skew is shown in Figure 10-6. As the figure illustraies,
the rising clock edge is delayed by a positive § at the second register,

Clock skew is cansed by static mismatches in the clock paths and differences in the clock
load. By definition, skew is constant from cycle to cyele. That is, if in one cycle CLK; lagged
CLK, by &, then on the next cycle, it will lag it by the same amount. It is important o note that
clock skew does not result in clock period variation, but only in phase shift.

The ¢lock-skew phenomenon has strong implications for both the performance and the fune-
tionality of sequential systems. First, consider the impact of clock skew on performance. We can
see from Figure 10-6 that a new input /n sampled by R1 at edge @ will propagate through the com-

’ TCLK + &
Teix
CLK, @ @ l
.l
CLK, &y @
S by

Figure 10-6 Timing diagram to study the impact of clock skew on performance
and functionality. In this sample liming diagram, 8 > 0.

Dell Ex. 1025
Page 339

10.3 Synchronous Design—An In-Depth Perspective 497

binational logic and be sampled by R2 on edge @. If the clock skew is positive, the time available
for asignal to propagate from R to R2 is increased by the skew & The output of the combinational
logic must be valid one setup time before the rising edge of CLK, (point @). The constraint on the
minimum ¢lock period can then be derived as follows:

T+821,_ +l. +1 or T2i. il +i,—0 {10.3)

3 s

This equation suggests that clock skew actually has the poiential to improve the perfor-
mance of the circuit. That is, the minimoem clock period required to operate the circuit reliably
reduces with increasing clock skew! This is indeed correct, but unfortunately, increasing skew
makes the circuit more susceptible to race condifions, which may harm the correct operation of
sequential systems.,

This can be illustrated by the following example: Assume again that input fz is sampled on
the rising edge of CLK| at edge @ into R1. The new value at the output of R propagates through
the combinational logic and should be valid before edge @ at CLK,. However, if the minimum
delay of the combinational logic block is smeail, the inputs to R2 may change before the ciock
edge @, resulting in incomect evalvation. To avoid races, we must ensure that the minimum
propagation delay through the register and logic is long enough that the inputs to R2 are valid for
a hold time after edge @:. The constraint can be formally stated as

5 + Lhotd < t.{c—q, <d) + f(fogs’r:,cd)
or (10.43

d< E‘(c— g, cd) + f(f&gi’t‘, cd) Thald

Figure 10-7 shows the timing diagram for the case in which 8 < 0. For this case, the 1ising
edge of CLK, happens before the rising edge of CLK|. On the dsing edge of CLK, a new input
is sampled by R1. The new data propagate through the combinational logic, and they are sam-
pled by R2 on the rising edge of CLK,, which corresponds to edge @. As Figure 10-7 and Eq.
{(10.3) clearly show, a negative skew adversely impacts the performance of a sequential systen:,
However, assuming ¢, + 0 <fi._, ooy + Hogic, cay @ NEGative skew implies that the system never
fails, since edge @ happens before edge @1

Toigt 8

cix, D M“l Teik @ —‘
cLi, @ vy l @ [

Figure 10-7 Timing diagram for the case when § < §. The rising edge
of CLK, arrives earlier than the edge of CLK,.

Dell Ex. 1025
Page 340

498 Chapter 10 + Timing {ssues in Digital Circuits

; Rl R2 K3
[Do Ct}mﬁz;:lczmm? DO D O
Fa it FaX
CLK f fcu\, f oLk < f foris
ée!ay detay

{a) Positive shew

i Rl Combinational - I } K
1t abinationd Combinational__, e
b ¢ \Lagic //} Do Logic Do ’
A FaY FaY
1‘ fee i % ek, f foLi;
T ~EE %
delay deluy CLK

{b) Negative skew

Figure 10-8 [Positive and negative clock skew scenarios,

Example scenarios for positive and negative clock skew are shown in Figure 16-8.

» § > 0—This correspends to a clock routed in the same direction as the flow of the data
through the pipeline (Figure 10-8a). In this case, the skew has to be strictly controlled and
satisfy Eq. . If the constraint is not met, the cirenit maifunctions independently of the
clock period. Reducing the clock frequency of an edge-triggered circuit does not help get-
ting around skew problems! It is therefore necessary to satisfy the hold-time constraints at
design time. On the other hand, positive skew increases the through put of the circuit as
expressed by Eq. (10.3). The clock petiod can be shortened by 8. The extent of this
improvement is limited, as large values of 8 seon provoke violations of Eq. .

= & <« 0—When the clock is routed in the opposite direction of the data (Figure 10-8b), the
skew is negative and provides significant immunity to races; if the hold time is zero or
negative, races are eliminated because Eq. is unconditionally met! The skew reduces the
time available for actual computation so that the clock period has to be increased by [8]. In
summary, routing the clock in the opposite direction of the data avoids disasters, but ham-
pers the circuit performance.

Unfortunately, since a general logic circuit can have data flowing in both directions (for
example, circuits with feedback), this solution to eliminate races does not always WOrk.
Figure 10-9 shows that the skew can assume both positive and negative values, depending on the
direction of the data transfer. Under these circumstances, the designer has to account for the
worst case skew condition. In general, routing the clock so that only negative skew occurs is not
feasible. Therefore, the design of a low-skew clock network is essential.

Dell Ex. 1025
Page 341

10.3 Synchronous Design—An In-Depth Perspective 499

Negative skew

Positive skew

CLK

Clock distribution

Figure 10-8 Datapath structure with feedback.

Exampie 10.1 Propagation and Contamination Delay Estimation

Consider the logic network shown in Figure 10-10. Determine the contamination and
propagation delays of the network, given a worst case gate delay of .. We also assume
that the maxirnum and minimum delays of the gates are identical.

The contamiination delay is easily found; it equals 2z, and is the delay through
OR| and OR,. On the other hand, computation of the worst case propagation delay is not
as simple, At first glance, it would appear that the worst case corresponds to path &, and
its delay is 5¢,,,. However, when analyzing the data dependencies, it becomes obvious
that patly & can never be exercised. Path @ is called a false parh. If A = 1, the critical path
goes through OR,| and OR,. If A =0 and B = 0, the critical path is through /,, OR, and OR,
(corresponding to a delay of 3¢,,,). For the case in which A = 0 and B = I, the longest path
goes through 1|, OR,, AND, and OR,. In other words, for this simple {but contrived) net-
work, the output does not even depend on inputs £ and I¥ {that is, there is redundancy).
Therefore, the actual propagation delay is 4¢,,,,. Given the propagation and contamination

delay, the minimum and maximum allowable skew can be easily computed.

A path@
Pl E

D
Figurs 10-10 Logic network for computation of performance.

Dell Ex. 1025
Page 342

500 Chapter 10 » Timing Issues in Digital Circuits

WARNING: The computation of the worst case propagation delay for combinational logic, due
to the existence of false paths, cannot be obtained simply by adding the propagation delays of
individual logic gates. The critical path is.sirongiy dependent on circuit tepelogy and data
dependencies.

Cleck Jitter

Ctock jirter refers o the temporal variation of the clock period at a given point on the chip—that
is, the clock period can reduce er expand on a cycle-by-cycle basis. It is strictly a temporal
uncertainty measare, and it is often specified at a given point. Jitter can be measured and char-
acterized in a number of ways and is a zerg-mean random variable. The absolute jitter (8.,
refers to the worst case variation (absolute value) of a clock edge at a given location with respect
to an ideally periodic reference clock edge. The cycle-ro-cyele fitter (Ty,,,} typically refers to the
time-varying deviations of a single clock period relative to an ideal reference clock. For a given
spatial location i, it is given as T (1) = ' g0t = ¥ o — Torgs Where £y, yand £ represent
the arrival time of the n + 1™ and the " clock edges at node 7, respectively, and Ty is the nom-
inal clock period. Under the worst case conditions, the magnitude of the cycle-to-cycle jitter
equals twice the absolute jitter (2%,,).

Jitter directly impacts the performance of a sequential system. Figure 10-11 shows the
nominal clock period, as well as the variation in period. Ideally, the clock period starts at edge @
and ends al edge ®, with 2 nominat clock period of T 5. However, the worst case scenario hap-
pens whea the leading edge of the current elock period is delayed by jitter (edge @), while jitter
causes the leading edge of the next clock period to occor early (edge @). As a result, the total
time available to complete the operation is reduced by 21, in the worst case and is given by

TCLK - Z{js‘r{er = 1. g + glagic +ig, or Tz r|:'—q + glia'g:'(: t it ijiuer (18‘5)

Equation {10.5) illustrates that jitter directly reduees the performance of a sequential circuit.
Keeping it within strict bounds is essential if one is concerned about performance.

@ Terk @

CLE @ "’@ @ "%rjisrcr l
®

wf—-

gitiids

i REGS Combinational ‘j ’
7] —

A Laogic /e

CLK '? Bogic
fom " . g, o6 tfogfc. ol
fsu! Lhotd

fister

Figure 10-11 Circuit for studying the impact of jitter on perfarmanca.

Dell Ex. 1025
Page 343

10.3 Synchrenous Design-—An In-Depth Perspective 501

The Combined Impact of Skew and Jitter

In this section, the combined impact of skew and jitter is studied for conventional edge-triggered
clocking, Consider the sequential circuit shown in Figure 10-14.

Assume that as a result of the clock distribution, there is a static skew 8 between the clock
signals at the two registers (assume that & > 0). Furthermore, the two clocks experience a jitter of
timer- Lo determine the constraint on the minimum clock period, we must look at the minimum
available time to perform the required computation. The worst case cecurs when the leading
edge of the current clock period on CLK, happens late (edge @) and the leading edge of the next
cycle of CLK, happens early (edge @). This results in the following constraint:

TC,{.X +8 "‘?“{jz'lmr 2 ?c—q + {fsgic + ?,ﬂ{

oF {(10.6)
T2t et~ B8+2L;

] Jitrer

This equation iHlustrates that positive skew can provide a performance advantage. On the other
hand, jirrer always has a negative impact on the minimum clock period. !

To formulate the mintmwin delay constraint, consider the case in which the leading edge of
the CLK, cycle arrives early {edge @), and the leading edges the current cycle of CLK, arrives
late (edge ®). The separation between edges @ and @& should be smaller than the minimum
delay through the network. This results in

6 + Lrnid + Z?js'z?er < ;{C—- t, cd} + I{logic, red}

or (10.7)
B< e g ey H i ~Thatg— 21

iogic. cd) Jitter

®G ®0

50
e

CLK,

ak, | e L 110 L

Figure 10-12 Seguence circuit with a negative clock skew (§).
The skew is assumad to be larger than the jitter.

“This analysis is definitely for the worst case. [t assumes that the jitter vahies at the source and the destination nodes are inde-
pendent statistical variables. In reality, the ¢lock edges involved in the kold-time analysis are derived from the same clock
edge and zre statistically dependent. Taking this dependence into account reduces the timing constraints substantiaily.

Dell Ex. 1025
Page 344

502 Chapter 10 » Timing Issues in Digital Circuits

(@) Power Supply . >
< fnterconnect

Capacitive Load

Devives !
T
= G Temperature @) Coupling to Adjacent Lines
(’ ;D l (D Clock Generation

Figure 10-13 Skew and jitter sources in synchronous clock distribution.

This relation indicates that the acceptable skew is reduced by the jitter of the two signals.

Now consider the case in which the skew is negative {8 < (0}, as shown in Figure 10-12,
Assume that |8} > tier- 1t can be verified that the worst case timing is exactly the same as in the
previous analysis, with § taking a negative value. That is, negative skew reduces performance.

10.3.2 Sources of Skew and Jitler

A perfect cleck is defined as a pericdic signal that simultancously triggers various memory ele-
ments on the chip. However, due to a variety of process and eavironmental variations, clocks are
not ideal. To illustrate the sources of skew and jitter, consider a simplistic view of a typical clock
generation and distsibution network, as shown in Figure 10-13. A high-frequency clock is either
provided from off chip or generated on chip. From a central point, the clock is distzibuted using
multiple marched paths to low-level sequential elements. In this picture, two paths are shown,
The clock paths include the wiring and the associated distributed buffers reguired to drive inter-
connect and foads. A key point o realize in clock distribution is that the absolute delay through
a clock distribution path is not important; what matters is the relative arrival time at the regis-
ter points at the end of each path. It is perfectly acceptable for the clock signal to take mukiple
cycles to get from a central distribution point to a low-level register as long zs all clocks arrive at
the same time at all the registers on the chip.

There are many reasons why the two parallel paths don’t result in exactly the same delay.
The sources of clock uncertainty can be classified in several ways. First, errors can be divided
into two categories: systematic and random. Systematic errors are nominally identical from chip
to chip and are predictable (for instance, variation in total load capacitance of each clock path).
In principle, such errors can be modeled and corrected at design time, given sufficiently good
models and simulators. Short of that, systematic errors can be deduced from measarements over
a set of chips, and the design can be adjusted to compensate. Randora errors are due to manufac-
turing variations that are difficult to model and eliminate (for instance, dopant fluctuations that
result in threshold variations}.

Mismatches may also be characterized as stazic or time varying. In practice, a continuum
exists between changes that are slower than the time constant of interest and those that are faster.
For example, temperature gradients on a chip vary on a millisecond time scale. A clock network

Dell Ex. 1025
Page 345

10.3 Synchronous Design—An In-Depth Perspective 503

P i A R2
) e
5 0 czrlgzgiat1ca{ D ol
Fa¥
f oL, 1‘ feigs
® G ©
Terg+8 |
ek
CLK, l :lff i l [__
OR6); OO
[
CLK, I_““E Litter ‘
@® @©

Figure 10-14 Sequential cireuit o study the impact of skew and jitter
on edge-triggered systems. In this example, a positive skew {8) is assumed.

tuned by a one-time calibration is vulnerable to the time-varying mismatch caused by the vary-
ing thermal gradients. Gn the other hand, thermal changes appear essentially static to a feedback
network with a bandwidth of several megahertz. Another example is fielded by power-supply
noise. The clock net is usually by far the largest signal net on the chip, and simultaneous transi-
tions on the clock drivers induce noise in the power supply. This high-speed effect does not cre-
ate a time-varying mismatch, because it is the same at every clock cycle and affects each rising
clock edge the same way. Of course, this power-supply glitch may still cause static mismateh if
it is not the same throughout the chip. The various sources of skew and jitter introduced in
Figure 10-13 are described and characterized in detail in the sectiens that follow.

Clock-Signal Generation (1}

The generation of the clock signal itself causes jitter A typical on-chip clock generator, as
described at the end of this chapter, takes a low-frequency reference clock signat and produces a
high-frequency global reference for the processor. The core of such a generator is a veliage-
contrafied osciflator (VC(0). This is an analog circuit, sensitive to intrinsic device noise and
power-supply variations, A major problem is the coupling from the surrounding noisy digital cie-
cuitry through the subsirate. This is especially a problem in modern fabrication processes that
use a lightly doped epitaxy on the heavily doped substrate {to combat latch up). This causes sub-
sirate noise o travel over large distances on the chip [Maneatis00]. These noise sources cause
temporal variations in the clock signal that propagate unfiltered through the clock drivers 1o the
fiip-flops, and result in cyele-ro-cyele clock-period vatiations.

Manufacturing Device Variations (2}

Distributed buffers are integral components of the clock distribution networks. They are required
to drive both the register loads and the global and local interconnects. The matching of devices in
the buffers along multiple clock paths is eritical to minimizing timing uncertainty. Unfortunately,
as a result of process variations, device parametess in the buffers vary along different paths, result-
ing in static skew. There are many sources of variations that contribute, such as oxide variations

Dell Ex. 1025
Page 346

504 Chapter 10 = Timing issues in Digital Circuils

(which affect the gain and threshold}, dopant variations, and lateral dimension {width and leagth)
vartations. The doping variations can affect the depth of junction and dopant profiles and cause
electrical parameters {such as device threshold and parasitic capacitances) to vary.

The orientation of poiysilicon also can have some impact on the device parameters, Keep-
ing the orientation the same across the chip for the clock drivers is therefore critical. Variation in
the polysilicon critical dimension is particularly important, because it translates directly into
MOS transistor channel length, impacting the drive current ard switching characteristics. Spatial
variation usuaily consists of a waler-level (or within-wafer) variation and a die-level {or within-
die} variation. At least part of this variation is systematic and therefore can be modeled and com-
pensated for. The random variations, however, ultimately limit the matching and lower bouad of
the skew that can be achieved.

Inferconnect Variations (3}

Vertical and lateral dimension variations cause the inferconnect capacitance and resistance to
vary across 2 chip. Since this variation is static, it causes skew between different paths. One
important source of interconnect variation is the Jues-layer Dielectric {ILD} thickness variation,
In the formation of aluminum interconnect, layers of silicon dioxide are interposed between lay-
ers of patterned metallization. Oxide is deposited over a layer of patierned metal features, gener-
ally resulting in some remaining step height or surface topography. Chemical—mechanical
polisting {CMP) is used to “planarize”™ the surface and remove the topography resuiting from
deposition and etch (as described in Chapter 3 and shown in Figure 10-15a). While at the fea-
ture scale {i.e., over an individual metal line), CMP can achieve excellent planarity, there are
fimitations on it over a global range. This is due primarily to variations in the polish rate, which
is & function of the ¢ircuit layout density and pattern effects. Figure 10-15b shows this effect—
the polish raie is higher for the lowerspatial-density region, resufting in a smaller dieleetric
thickness and higher capacitance.

The assessment and control of variation is of critical importance in semiconductor process
development and manufacturing. Significant advances have been made to develop analytical

py = low g = high

t=1ti
AU A U A VAR A I
Oxide Meial
I A o

t=12
— U U L
t=13
I |
1 Hl i
{a} Idealiy (b) In reality

Figure 10-15 Inter-level Dielaciric (ILD) thickness variation due o density
{Courtesy of Buane Boning.).

Dell Ex. 1025
Page 347

10.3 Synchronous Design—An in-Depth Perspective 508

models for estimating the ILD thickness variations, based on spatial density. Since this compo-
nent is often predictable from the layou, it is possible to actually correct for the systematic com-
ponent at design time (e.g.. by adding appropriate delays or making the density uniform by
adding “dummy fills”). Figure 10-16 shows the spatial pattern density and ILD thickness for a

Metal & Fattom Density

4%

&
]

[
&

Puttem Oensity (%)

¥ [microm}

X (ricrans

LD Hicknzes Betwees Metal § and Meinl §

ILEX thickness (microns)

¥ (@micronsa}

Ximicrans}

Figure 10-16 Paltern density and ILD thickness variation for a high-performance
microprocessor. {Couriesy of Duane Boning)

Dell Ex. 1025
Page 348

506 Chapter 10 = Timing Issues in Digital Circuils

high-performance microprocessor. The graphs show a clear correlation between the density and
the thicknass of the dielectric. Hence, clock distribution netwerks must exploit such information
in order to reduce clock skew. -

Other interconnect variations include deviations in the width of the wires and line spaciag,
which result from photolithography and etch dependencies. At the lower levels of the metaliiza-
tion hierarchy, lithographic effects are more important, while etch effects that depend on width
and layout are dominant at the higher levels. The width is a critical parameter because it directly
impacts the resistance of the line, and the wire spacing affects the wire-to-wire capacitance. A
detailed review of device and interconnect variations is presented in [Boning00]. Recent proces-
scrs use copper interconnects, in which Hne thickness variations are also seea to be highly pat-
tern dependent due to CMP dishing and erosion effects [Park(0).

Environmental Variations {4 and 5)

Envircnmental variations probably are the most significant contributors to skew and jitter. The
two major sources of environmental variations are temperature and power supply, Temperature
gradients across the chip resolt from variations in power dissipation across the die. These gradi-
ents can be guite large, as shown in Figure 10-17, which displays a snapshot of the surface tem-
perature of the DEC 21064 microprocessor. Temperature variation has become an important
issue with cleck gating, where some parts of the chip may be idle, while other parts of the chip
are fully active. Clock gating has become popular in recent vears as a means to minimize power
dissipation in idle modules (as described in a later section). Shutting off parts of the chip leads to
large temperature variations. Since the device parameters {such as threshold and mobility)
depend strongly on temperature, the buffer delay for a clock distribution network can vary dras-
tically from path to path. More importantly, this component is time varying, since the tempera-
ture changes as the logic activity of the circuit varies, Hence, it is not sufficient to simulate the
clock networks at worst case corners of temperature; instead, the worst case variation in temper-
ature musi be simulated. An interesting question is whether terperature variation contributes to
skew or to jitter. Clearly, the difference in temperature is time varying, but the changes are rela-

Figure 10-17 Temperature variation {snapshot} over DEC 21054 microprocessaor.
The highest temperature occurs at the central clock driver {Herrick00].

Dell Ex. 1025
Page 349

10.3 Synchronous Design—An In-Depth Perspeclive 507

tively slow (typical time constants for iemperature changes are on the order of milliseconds).
Therefore, it is usually considered as a skew component and the worst case conditions are used.
Fortunately, by using feedback, it is possibie to calibrate the temperature and to compensate for
this effect.

Power-supply variations, on the other hand. are the major source of jitter in clock distribu-
tion networks. The delay through buffers is a very strong function of power supply, as it directly
affects the drive of the transistors. As with temperature, the power-supply voltage is a strong
function of the switching activity. Therefore, the buffer delay varies strongly from path to path.
Power-supply variations can be classified into slow- (or static) and high-frequency variations.
Static power-supply variations may resulf from fixed currents drawn from various modules,
while high-frequency variations result from instantaneous fR drops along the power grid due to
fluctuations in swiiching activity. Inductive effects on the power supply also are a major concern
since they cause voltage fluctuations. Again, clock gating has exacerbated this problem, because
the logic transitions between the idle and active states can cause major changes in current drawn
from the supply. Since the power supply can change rapidly, the period of the clock signal is
modulated on a cycle-by-cycle basis, resulting in jitter. The jitter on two different clock points
may be correlated or uncorrelated, depending on how the power aetwork is configured and the
profile of switching patterns. Unfortunately, high-frequency power-supply changes are difficult
to compensate for, even with feedback techniques. Consequently, power-supply noise funda-
mentally limits the performance of clock networks. To minimize power-supply variations,
high-performance designs add decoupling capacitance arcund major clock drivers.

Capacitive Coupling {6 and 7)

Changes in capacitive load also contribute to timing uncertainty. There are two major sources of
capacitive-load variations: coupling between the clock lines and adjacent signal wires, and vari-
ation in gate capacitance. The clock network includes both the interconnect and the gate capaci-
tance of latches and registers. Any coupling between the clock wire and adjacent signal results in
timing uncertainty. Since the adjacent signal can transition in arbitrary divections and at arbitrary
times, the exact coupling to the clock network iz not fized from cycle to cycle, causing jitter.
Another major source of clock uncertainty is the variation in the gate capacitanece contributed by
the connecting sequential elements. The load capacitance is highly nonlinear and depends on the
applied voltage. For many latches and registers, the clock lead is a function of the current state
of the latch/register (e, the values stored on the internal nodes of the circuit), as well as the
next state. This causes the delay through the clock buffers to vary from cyvcle to cycle, which
causes jitter.

Example 10.2 Data-Dependent Clock Jitter

Consider the circuit shown i Figure 10-18, where a minimum-sized local clock buffer
drives a register. (Actually, each cloek buffer drives four registers, thongh only one is
shown here.) The simalation shows CKb, the output of the first inverter for four possible

Dell Ex. 1025
Page 350

508 Chapter 10 » Timing Issues in Digital Circuits

CK CKb

4 A 3 ‘
D >

T T

CKb -
CLK D l[> CK ' | =
g'
> 52 03 04

time {ns)

Figure 10-18 impact of data-dependent clock load on clock jitter for iransmission-
gatle register.

transitions (0 = 0,0 - 1, 1 = G and § — 1}. The jitter on the clock based on data-depen-
dent capacitance is illustrated. In general, the only way to deal with this problem is to use
registers that do not exhibit a large variation in load as a function of data—{for example,
the differential sense-amplifier register shown in Chapter 7.

10.3.3 Clock-Distribution Techniques

1t is clear from the previous discussion that clock skew and jitter are major issues in digital cir-
cuits, and can fundamentally limit the performance of a digital system. It is therefore necessary
to design a clock network that minimizes both. While designing that clock netwerk, a close eye
should be kept on the associated power dissipation. In most high-speed digital processers, a
majority of the power is dissipated in the clock network. To reduce power dissipation, clock net-
works must support clock conditioning—that is, the ability to shut down paris of the clock net-
work, Unfortunately, clock gating results in additional clock uncertainty (as described earlier).

In this section, an overview of basic constructs in high-performance clock distribution
techniques is presented, along with a case study of clock distributien in the Alpha microproces-
sors. There are many degrees of freedom in the design of a clock network, including the type of
material used for wires, the basic topology and hierarchy, the sizing of wires and buffers, the rise
and fall times, and the partiticning of load capacitances.

Fabrics for Clocking

Clock networks typically include 2 network that is ased to distribute a global reference to vari-
ous parts of the chip, and a final stage that is responsible for lecal distribution of the clock
while considering the local load variations. Most clock distribution schemes exploit the fact that
the absolute delay from a central clock source to the clocking elements is irrelevant—only the
relative phase between two clocking points is important. Therefore, one commen approach to
distributing a clock is to ase balanced paths {called frees).

Dell Ex. 1025
Page 351

