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such as channel length modulation and DIBL. Figure 7-22b plots the transient response 
for different device sizes and confirms that an individual WIL ratio of greater than 3 is 
required to overpower the feedback and switch the state of the latch. 

7.3 Dynamic Latches and Registers 
Storage in a static sequential circuit relies on the concept that a cross-coupled inverter pair pro­
duces a bistable element and can thus he used to memorize binary values. This approach has the 
useful property that a stored value remains valid as long as the supply voltage is applied to the 
circuit-hence the name static. The major disadvantage of the static gate, however, is its com­

plexity. When registers are used in computational structures that are constantly clocked (such as 
a pipelined datapath), the requirement that the memory should hold state for extended periods of 

time can be significantly relaxed. 
This results in a class of circuits based on temporary storage of charge on parasitic capaci­

tors. The principle Is exactly identical to the one used in dynamic logic-charge stored on a 
capacitor can be used to represent a logic signal. The absence of charge denotes a 0, while its 
presence stands for a stored I. No capacitor is ideal, unfortunately, and some charge leakage is 
always present. A stored value can thus only be kept for a limited amount of time, typically in 
the range of milliseconds. If one wants to preserve signal integrity, a periodic refresh of the value 

is necessary; hence, the name dynamic storage. Reading the value of the stored signal from a 
capacitor without dis1upting the charge requires the availability of a device with a high-input 

impedance. 

7.3.1 Dynamic Transmission-Gate Edge-Triggered Registers 

A fully dynamic positive edge-triggered register based on the master-slave concept is shown in 
Figure 7-23. When CLK = 0, the input data is sampled on storage node 1, which has an equiva­

lent capacitance of C 1, consisting of the gate capacitance of / 1, the junction capacitance of T1, 

and the overlap gate capacitance of T1• During this period, the slave stage is in a hold mode, with 
node 2 in a high-impedance (floating) state. On the rising edge of clock, the transmission gate T2 

turns on, and the value sampled on node I right before the 1ising edge propagates to the output Q 

(note that node I is stable during the high phase of the clock, since the first transmission gate is 
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Figure 7-23 Dynamic edge-triggered register. 
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turned off). Node 2 now stores the inverted version of node I. This implementation of an edge­
triggered register is very efficient because it requires only eight transistors. The sampling 
switches can be implemented using NMOS-only pass transistors. resulting in an even simpler 
six transistor implementation. The reduced transistor count is attractive for high-performance 
and low-power systems. 

The setup time of this circuit is simply the delay of the transmission gate, and it corre­

sponds to the time it takes node l to sample the D input. The hold time is approximately zero, 

since the transmission gate is turned off on the clock edge and further inputs changes are 
ignored. The propagation delay (tc-,) is equal to two inverter delays plus the delay of the trans­
mission gate T2. 

One important consideration for such a dynamic register is that the storage nodes (i.e., the 
state) have to be refreshed at periodic intervals to prevent 
losses due to charge leakage, diode leakage, or subthreshold currents. In datapath circuits, the 

refresh rate is not an issue, since the registers are periodically clocked, and the storage nodes are 
constantly updated. 

Clock overlap is an important concern for this register. Consider the clock waveforms 
shown in Figure 7-24. During the 0-0 overlap period, the NMOS of T, and the PMOS of T2 are 
simultaneously on, creating a direct path for data to flow from the D input of the register to the Q 
output. In other words, a race condition occurs. The output Q can change on the falling edge ff 
the overlap period is large-obviously an undesirable effect for a positive edge-triggered regis­
ter. The same is true for the 1-1 overlap region, where an input-output path exists through the 
PMOS of T1 and the NMOS of T2• The latter case is taken care of by enforcing a hold time con­
straint. That is, the data must be stable during the high-overlap period. The former situation (0-0 
overlap) can be addressed by making sure that there is enough delay between the D input and 

node B, ensuring that new data sampled by the master stage does not propagate through to the 
slave stage. Generally, the built-in single inverter delay should be sufficient. The overlap period 
constraint is given by 

t,werlap0-0 < tn +tn + tT2 

Similarly, the constraint for the 1-1 overlap is given as: 
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Figure 7-24 Impact of nonoverlapping clocks. 
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turned off). Node 2 nowstores the inverted version of node 1. This implementation of an edge-
iriggered register is very efficient because it requires only eight transistors. The sampling
switches can be implemented using NMOS-only pass transistors, resulting in an even simpler
six transistor implementation. The reduced transistor count is attractive for high-performance
and low-power systems.

The setup time of this circuit is simply the delay of the transmission gate, and it corre-

sponds to the time it takes node 1 to sample the D input. The hold time is approximately zero,
since the transmission gate is turned off on the clock edge and further inputs changes are
ignored. The propagation delay (¢,_,) 18 equal to two Inverter delays plus the delay of the trans-

mission gate Ty.
One important consideration for such a dynamic register is that the storage nodes (.e., the

state) have to be refreshed at periodic intervals to prevent
losses due to charge leakage, diode leakage, or subthreshold currents. In datapath circuits, the

refresh rate is not an issue, since the registers are periodically clocked, and the storage nodes are
constantly updated.

Cleck overlap is an important concern for this register. Consider the clock waveforms

shown in Figure 7-24. During the 0-0 overlap period, the NMOSof T, and the PMOS of T, are
simultaneously on, creating a direct path for data to flow fromthe D inputof the register fo the G
output. In other words, a race condition occurs. The output @ can change on the falling edge if

the overlap period is laree—obvicusly an undesirable effect for a positive edge-triggered regis-

ter. The sameis true for the 1-1 overlap region, where an input-output path exists through the
PMOSof T, and the NMOS of 7.. The latter case is taken care of by enforcing a fold time con-
straint. That is, the data must be stable during the high-overlap period. The formersituation (0-0
overlap} can be addressed by making sure that there is enough delay between the D input and

node 8, ensuring that new data sampled by the master stage does not propagate throughto the
slave stage. Generally, the built-in single imverter delay should be sufficient. The overlap period
constraint is given by

|

FavertapdeG ~ fy hippy + tps (7.3)

Similarly, the constraint for the 1-] overlap is given as:

Frota > fovertapt—1 (7.6)
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Figure 7-24 Impact of nonoverlapping clocks.
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WARNING: The dynamic circuits shown in this section are very appealing from the perspec­

tive of complexity, performance, and power. Unfortunately, robustness considerations limit their 
use. In a fully dynamic circuit like that shown in Figure 7-23, a signal net that is capacitively 

coupled to the internal storage node can inject significant noise and destroy the state. This is 
especially important in ASIC flows, where there is little control over coupling between signal 
nets and internal dynamic nodes. Leakage currents cause another problem: Most modern proces­

sors require that the clock can be slowed down or completely halted, to conserve power in low­

activity periods. Finally, the internal dynamic nodes do not track variations in power supply volt­
age. For example, when CLK is high for the circuit in Figure 7-23, node A holds its state, but it 

does not track variations in the power supply seen by / 1• This results in reduced noise margins. 
Most of these problems can be adequately addressed by adding a weak feedback inverter 

and making the circuit pseudostatic (Figure 7-25). While this comes at a slight cost in delay, it 
improves the noise immunity significantly. Unless registers are used in a highly-controlled envi­
ronment (for instance, a custom-designed high-performance datapath), they should be made 

pseudostatic or static. This holds for all latches and registers discussed in this section. 
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Figure 7-25 Making a dynamic latch pseudostatic. 

7.3.2 C2M0S-A Clock-Skew Insensitive Approach 

The C2M0S Register 
Figure 7-26 shows an ingenious positive edge-triggered register that is based on a master-slave 
concept insensitive to clock overlap. This circuit is called the c'MOS (Clocked CMOS) register 
[Suzuki73], and operates in two phases: 

1. CLK = 0 ( CLK = l ): The first uistate driver is turned on, and the master stage acts as an 

inverter sampling the inverted version of D on the internal node X. The master stage is in 

the evaluation mode. Meanwhile, the slave section is in a high-impedance mode. or in a 
hold mode. Both transistors M1 and M 8 are off, decoupling the output from the input. The 

output Q retains its previous value stored on the output capacitor Cl2. 
2. The roles are reversed when CLK = I: The master stage section is in hold mode (M3-M4 

oft), while the second section evaluates (M,-M8 on). The value stored on Cu propagates 
to the output node through the slave stage, which acts as an inverter. 

The overall circuit operates as a positive edge-triggered master-slave register very similar 
to the transmission-gate-based register presented earlier. However, there is an important difference: 
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WARNING: The dynamic circuits shown in this section are very appealing from the perspec-
tive of complexity, performance, and power. Unfortunately, robustness considerationslimittheir
use. In a fully dynamic circuit like that shown in Figure 7-23, a signal net that is capacitively
coupled to the internal storage node can inject significant noise and destroythe state. This is
especially important in ASIC flows, where there is little control over coupling between signal
nets and internal dynamic nodes. Leakage currents cause another problem: Most modem proces-
sors require that the clock can be slowed down or completely halted, to conserve power in Jow-
activity periods. Finally, the internal dynamic nodes do nottrack variations in power supply volt-
age. For example, when CLK is high for the circuit in Figure 7-23, node A holdsits state, burit
does not track variations in the power supply seen by /,. This results in reduced noise margins.

Mostof these problems can be adequately addressed by adding a weak feedback inverter
and making the circuit pseudostatic (Figure 7-25). While this comes at a slight cost in delay,it
improves the noise immunity significantly. Unless registers are used in a highly-controlled envi-
ronment (for instance, a custom-designed high-performance datapath), they should be made
pseudostatic or static. This holds for all latches and registers discussed in this section.
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Figure 7-25 Making a dynamic latch pseudastatic.
 

7.3.2 C*MOS—A Ciock-Skew Insensitive Approach

The C°MOSRegister

Figure 7-26 shows an ingenious positive edge-triggered register that is based on a master-slave
conceptinsensitive to clock overlap. This circuit is called the CMOS (Clocked CMOS) register
(Suzuki73], and operates in two phases:

1. CLK = 0 (CLK = 1): Thefirst tristate driver is turned on, and the master stage acts as an
inverter sampling the inverted version of D on the internal node X. The masterstage is in
the evaluation mode. Meanwhile, the slave section is in a high-impedance mode, or in a

hold mode. Both transistors M, and M,are off, decoupling the output from the input. The
output @ retains its previous value stored on the output capacitor C,>.

2, The roles are reversed when CLX = 1: The master stage section is in hold mode (,-M,
off), while the second section evaluates (4/,—Mg on). The value stored on C,, propagates
to the output node through the slave stage, which acts as an inverter.

The overall circuit operates as a positive edge-triggered master-slave register very similar
to the transmission-gate-basedregisterpresented earlier. However, there is an important difference:
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Figure 7-26 · C2M0S master-slave positive edge-triggered register. 

A c2M0S register with CLK-CLK clocking is insensitive to overlap, as long as the 
rise and fall times of the clock edges are sufficiently small. 

To prove this statement, we examine both the (0--0) and (1-1) overlap cases (see Figure 7-24). 

In the (0-0) overlap case, the circuit simplifies to the network shown in Figure 7-27a in which 
both PMOS devices are on during this period. To operate correctly, none of the new data sam­
pled during the overlap window should propagate to the output Q, since data should not change 
on the negative edge of a positive edge-triggered register. Indeed, new data is sampled on node X 
through the series PMOS devices M 2-M4, and node X can make a O-to-1 transition during the 

overlap period. However, this data cannot propagate to the output since the NMOS device M7 is 
turned off. At the end of the overlap period, CLK = l and both M7 and M 8 turn off, putting the 
slave stage in the hold mode. Therefore, any new data sampled on the falling clock edge is not 

seen at the slave output Q, since the slave state is off till the next rising edge of the clock. As the 
circuit consists of a cascade of inverters, signal propagation requires one pull-up followed by a 
pull-down, or vice versa, which is not feasible in the situation presented. 

The (1-1) overlap case where both NMOS devices M3 and M7 are turned on, is somewhat 
more contentious (see Figure 7-27b). The question is again if new data sampled dming the over­

lap period (right after clock goes high) propagates to the Q output. A positive edge-triggered reg­
ister may only pass data that is presented at the input before the rising edge. If the D input 
changes during the overlap period, node X can make a 1-to-O transition, but cannot propagate 
further. However, as soon as the overlap period is over, the PMOS M8 turns on and the O propa­
gates tooutput, which is not desirable. The problem is fixed by imposing a hold-time constraint 

on the input data, D; or, in other words, the data D should be stable during the overlap period. 
In sum, it can be stated that the C2MOS latch is insensitive to clock overlaps because those 

overlaps activate either the pull-up or the pull-down networks of the latches, but never both of 
them simultaneously. If the rise and fall times of the clock are sufficiently slow, however, there 
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Figure 7-26 ‘CMOS master-slave positive edge-triggered register.

A C’MOSregister with CLK-CLK clocking is insensitive te overlap, as long as the
rise and fall times of the clock edges are sufficiently small.

To prove this statement, we examine both the (04)} and (1-5) overlap cases (see Figure 7-24).
In the (0-0) overlap case, the circuit simplifies to the network shown in Figure 7-27a in which
both PMOS devices are on during this period. To operate correctly, none of the new data sam-

pled during the overlap window should propagate to the output G, since data should not change
on the negative edge ofa positive edge-triggered register. Indeed, new data is sampled on node X

through the series PMOS devices A7,-@,, and node X¥ can make a 0-to-1 transition during the
overlap period. However, this data cannot propagate to the output since the NMOSdevice 44, is
turned off, At the end of the overlap period, CLK = | and both 4, and A, turn off, putting the
slave stage in the hold mode. Therefore, any new data sampled on the falling clock edge is not
seen at the slave output Q, since the slave state is off till the next rising edge of the clock. As the
circuit consists of a cascade of inverters, signal propagation requires one pull-up followed by a

pull-down, or vice versa, which is not feasible in the situation presented.

The (1-1) overlap case where both NMOS devices M, and M, are turned on, is somewhat
more contentious (see Figure 7-27b). The question is again if new data sampled during the over-
lap period (right after clock goes high) propagates to the Q output. A positive edge-triggered reg-

ister may only pass data that is presented at the input before the rising edge. If the D input
changes during the overlap period, node X can make a 1-to-O transition, but cannot propagate

further. However, as soon as the overlap period is over, the PMOS M, turns on and the 0 propa-
gates tooutput, which is not desirable. The problem is fixed by imposing a hold-time constraint
on the input data, D; or, in other words, the data D should be stable during the overlap peried.

In sum,it can be stated that the C°MOSlatchis insensitive to clock overlaps because those
overlaps activate cither ihe pull-up or the pull-down networks of the latches, but never both of
them simultaneously. If the rise and fall times of the clock are sufficiently siow, however, there
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D Q 

(a) (0-0) Overlap (b) (1-1) Overlap 

Figure 7-27 C2M0S D FF during overlap periods. No feasible signal path can exist 
between In and D, as illustrated by the arrows. 

exists a time slot where both the NMOS and PMOS transistors are conducting. This creates a 
path between input and output that can destroy the state of the circuit. Simulations have shown 
that the circuit operates correctly as long as the clock rise time (or fall time) is smaller than 
approximately five times the propagation delay of the register. This criterion is not too stringent, 
and it is easily met in practical designs. The impact of the rise and fall times is illustrated in 
Figure 7-28, which plots the simulated transient response of a C2MOS D FF for clock slopes of, 
respectively, O. l and 3 ns. For slow clocks, the potential for a race condition exists. 
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Figure 7-28 Transient response of C2M0S FF for 0.1-ns 
and 3-ns clock rise/fall times, assuming In = 1. 
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Figure 7-27 C®MOS OFF during overlap periods. No feasible signal path can exist
between in and D, asillustrated by the arrows.

exists a time slot where both the NMOS and PMOStransistors are conducting. This creates a

path betweeninput and output that can destroy the state of the circuit. Simulations have shown
that the circuit operates correctly as long as the clock rise time (or fall time) is smaller than
approximately five times the propagation delay of the register. This criterion is not too stringent,
and it is easily met in practical designs. The impact of the rise and fall times is illustrated in
Figure 7-28, which plots the simulated transient response of a C’MOS D FF for clock slopes of,
respectively, 0.1 and 3 ns. For slow clocks, the potential for a race condition exists.
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Dual-Edge Registers 

So far, we have focused on edge-triggered registers that sample the input data on only one of the 
clock edges (rising or falling). It also is possible to design sequential circuits that sample 
the input on both edges. The advantage of this scheme is that a lower frequency clock-half the 
original rate-is distributed for the same functional throughput. resulting in power savings in the 
clock distribution network. Figure 7-29 shows a modification of the C2MOS register enabling 
sampling on both edges. It consists of two parallel master-slave edge-triggered registers, whose 
outputs are multiplexed by using tristate drivers. 

When clock is high, the positive latch composed of transistors lvJ1-li,14 is sampling the 
inverted D input on node X. Node Y is held stable, since devices M9 and M 10 are turned off. On 
the falling edge of the clock, the top slave latch M,M8 turns on, and dtives the inverted value of 
X to the Q output. During the low phase, the bottom master latch (M1, M4, M9, M1o) is turned on, 
sampling the inverted D input on node Y. Note that the devices M 1 and ,'vl4 are reused, reducing 
the load on the D input. On the rising edge, the bottom slave latch conducts and drives the 
inverted version of Yon node Q. Data thus changes on both edges. Note that the slave latches 
operate in a complementary fashion-that is, only one of them is turned on during each phase of 
the clock. 
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Figure 7-29 C2M0S-based dual-edge triggered register. 
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Dual-Edge Registers

So far, we have focused on edge-triggered registers that sample the input data on only one of the
clock edges (rising or falling). It also is possible to design sequential circuits that sample
the input on both edges. The advantage of this scheme is that a lower frequency clock—half the
original rate—ts distributed for the same functional throughput, resulting in power savings in the
clock distribution network. Figure 7-29 shows a modification of the C7MOSregister enabling
sampling on both edges. It consists of two parallel master-slave edge-triggered registers, whose
outputs are multiplexed by usingtristate drivers.

When clock is high, the positive latch composed of transistors 47,44, is sampling the
inverted D input on node X. Node Y is held stable, since devices M, and M,, are turned off. On
the falling edge of the clock, the top slave latch W.-M, turns on, and drives the inverted value of
X to the @ output. During the low phase, the bottom masterlatch (44,, M,, My, Myp) is tured on,
sampling the inverted D input on node X Note that the devices M, and Mf, are reused, reducing
the load on the D input. On the rising edge, the bottom slave latch conducts and drives the

inverted version of Y on node @. Data thus changes on beth edges. Note that the slave latches
operate in a complementary fashion—thatis, only one of them is turned on during each phase of
the clock.
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Figure 7-29 C?MOS-based dual-edge triggered register.
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Problem 7.5 Dual-Edge Registers 

Determine how the adoption of dual-edge registers influences the power dissipation in the dock­
distribution network. 

7.3.3 True Single-Phase Clocked Register (TSPCR) 

In the two-phase clocking schemes described earlier, care must be taken in routing the two clock 
signals to ensure that overlap is minimized. While the C2MOS provides a skew-tolerant solution, 
it is possible to design registers that only use a single phase clock. The True Single-Phase 
Clocked Register (TSPCR), proposed by Yuan and Svensson, uses a single clock [Yuan89]. The 
basic single-phase positive and negative latches are shown in Figure 7-30. For the positive latch, 
when CLK is high, the latch is in the transparent mode and corresponds to two cascaded invert­
ers; the latch is noninverting, and propagates the input to the output. On the other hand, when 
CLK = 0, both inverters are disabled, and the latch is in hold mode. Only the pull-up networks 
are still active, while the pull-down circuits are deactivated. As a result of the dual-stage 
approach, no signal can ever propagate from the input of the latch to the output in this mode. A 
register can be constructed by cascading positive and negative latches. The clock load is similar 
to a conventional transmission gate register, or C2:rvt0S register. The main advantage is the use 
of a single clock phase. The disadvantage is the slight increase in the number of transistors-12 

transistors are now required. 
As a reminder, note that a dynamic circuit in the style of Figure 7-30 must be used with 

caution. When the clock is low (for the positive latch), the output node may be floating, and it is 
exposed to coupling from other signals. Also, charge sharing can occur if the output node drives 
transmission gates. Dynamic nodes should be isolated with the aid of static inverters, or made 

pseudostatic for improved noise immunity. 
As with many other latch families, TSPC offers an additional advantage that we have not 

explored so far: The possibility of embedding logic functionality into the latches. This reduces 

Yoo VDD V'vo 

'" C:t r-9 14 r-9 Om 

CL~ T In 

"'1~~ l:( ~ 
- Out 

..L 

I 
_i_ 

Figure 7-30 True Single-Phase Latches. 
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(a) Including'logic into the latch (b) AND latch 

Figure 7-31 Adding logic to the TSPC approach. 

the delay overhead associated with the latches. Figure 7-3la outlines the basic approach for 
embedding logic, while Figure 7-3lb shows an example of a positive latch that implements the 
AND of 111 1 and ln2 in addition to performing the latching function. While the setup time of this 
latch has increased over the one shown in Figure 7-30, the overall performance of the digital cir­
cuit (that is, the clock period of a sequential circuit) has improved: The increase in setup time 
typically is smaller than the delay of an AND gate. This approach of embedding logic into 
latches has been used extensively in the design of the EV4 DEC Alpha microprocessor 
[Dobberpuhl92] and many other high-performance processors. 

Example 7.3 Impact of Embedding Logic into Latches on Performance 

Consider embedding an AND gate into the TSPC latch, as shown in Figure 7-3 lb. In a 
0.25-µm technology, the setup time of such a circuit, using minimum-size devices is 140 
ps. A conventional approach, composed of an AND gate followed by a positive latch, has 
an effective setup time of 600 ps (we treat the AND plus latch as a black box that performs 
both functions). The embedded logic approach thus results in significant performance 
improvements. 

The TSPC latch circuits can be fmther reduced in complexity, as illustrated in Figure 7-32, 
where only the first inverter is controlled by the clock. Besides the reduced number of transis­
tors, these circuits have the advantage that the clock load is reduced by half. On the other hand, 
not all node voltages in the latch experience the full logic swing. For instance, the voltage at 
node A (for V;,, = 0 V) for the positive latch maximally equals V00 - VT,,, which results in a 
reduced drive for the output NMOS transistor and a loss in performance. Similarly, the voltage 
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Figure 7-31 Adding logic to the TSPC approach.

the delay overhead associated with the laiches. Figure 7-31a outlines the basic approach for
embedding logic, while Figure 7-31b shows an example of a positive latch that implements the
AND of fr, and In, in addition to performing the latching function. While the setup time of this
latch has increased over the one shown in Figure 7-30, the overall performance ofthe digital cir-

cuit (that is, the clock period of a sequential circuit) has improved: The increase in setup time
typically is smaller than the delay of an AND gate. This approach of embedding logic into
latches has been used extensively in the design of the EV4 DEC Alpha microprecessor
[Dobberpuh!92} and many other high-performance processors.

Example 7.3 Impact of Embedding Logic into Latches on Performance

Consider embedding an AND gate into the TSPC latch, as shown in Figure 7-31b. In a
0,25-[1m technology, the setup time of such a circuit, using minimum-size devices is 140
ps. A conventional approach, composed of an AND gate followed by a positive latch, has

an effective setup ime of 600 ps (wetreat the AND plus latch as a black box that performs
both functions). The embedded logic approach thus results in significant performance
improvements.

The TSPC fatch circuits can be further reduced in complexity, as illustrated in Figure 7-32,
where only the first inverter is controlled by the clock. Besides the reduced numberof transis-

tors, these circuits have the advantage that the clock load is reduced by half. On the other hand,
not all node voltages in the latch experience the full logic swing. For instance, the voltage at
node A (for V,, = 0 V)} for the positive latch maximally equals Vj, — Vp, which results in a
reduced drive for the output NMOStransistor and a loss in performance. Similarly, the voltage
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Figure 7-32 Simplified TSPC latch (also called split output). 
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on node A (for V;,, = V vol for the negative latch is only driven down to j V TPI .This also limits the 

amount of Vvo scaling possible on the latch. 
Figure 7-33 shows the design of a specialized single-phase edge-triggere<l register. When 

CLK = 0, the input inverter is sampling the inverted D input on node X. The second (dynamic) 
inverter is in the precharge mode, with M6 charging up node Y to V DD· The third inverter is in the 
hold mode, since M8 and M9 are off. Therefore, during the low phase of the clock, the input to 

the final (static) inverter is holding its previous value and the output Q is stable. On the rising 
edge of the clock, the dynamic inverter M.-M6 evaluates. If Xis high on the rising edge, node Y 
discharges. The third inverter MrM9 is on during the high phase, and the node value on Y is 
passed to the output Q. On the positive phase of the clock, note that node X transitions to a low if 
the D input transitions to a high level. Therefore, the input must be kept stable until the value on 
node X before the rising edge of the clock propagates to Y. This represents the hold time of the 
register (note that the hold time is less than I inverter delay, since it takes I delay for the input to 
affect node X). The propagation delay of the register is essentially three inverters, because the 
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Figure 7-33 Positive edge-triggered register in TSPC. 
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on node A (for V,, = Vpp) for the negative latch is only driven down to |Vyp! .This also limits the
amount of Vp scaling possible on the latch.

Figure 7-33 showsthe design of a specialized single-phase edge-iriggered register. When
CLK = 0, the input inverter is sampling the inverted D input on node X, The second (dynamic)
inverter is in the precharge mode, with M, charging up node ¥ to Vppy. The third inverteris in the
hold mode, since M, and Mg are off. Therefore, during the low phase of the clock, the input to
the final (static) inverter is holding its previous value and the output Q is stable. On the rising
edge of the clock, the dynamic inverter M,—M, evaluates. If X is high on therising edge, node ¥
discharges. The third inverter MM, is on during the high phase, and the node value on ¥ is
passed to the output Q. Onthe positive phase of the clock, note that nede X transitions to a low if
the D inputtransitions to a high level. Therefore, the input must be kept stable until the value on
node X before the rising edge of the clock propagates to ¥. This represents the hold time of the
register (note that the hold timeis less than ] inverter delay, since it takes | delay for the inputte
affect node X). The propagation delay of the register is essentially three inverters, because the
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Figure 7-33 Positive edge-triggered register in TSPC.
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value on node X must propagate to the output Q. Finally, the setup time is the time for node X to 
be valid, which is one inverter delay. 

WARNING: Similar to the C2MOS latch, the TSPC latch malfunctions when the slope of the 
clock is not sufficiently steep. Slow clocks cause both the NMOS and PMOS clocked transistors 
to be on simultaneously, resulting in undefined values of the states and race conditions. The 

clock slopes should therefore be carefully controlled. If necessary, local buffers must be intro­
duced to ensure the quality of the clock signals. 

Example 7.4 TSPC Edge-Triggered Register 

Transistor sizing is critical for achieving cmTect functionality in the TSPC register. With 
Improper sizing, g1itches may occur at the output due to a race condition when the clock 
transitions from low to high. Consider the case where D is low and Q = l (Q = 0). While 
CLK is low, Y is precharged high turning on M7• When CLK transitions from low to high, 
nodes Y and Q start to discharge simultaneously (through M,-M5 and M7-M8, respec­
tively). Once Y is sufficiently low, the trend on Q is reversed and the node is pulled high 
again through M9. In a sense, this sequence of events is comparable to what happens when 
we chain dynamic logic gates. Figure 7-34 shows the transient response of the circuit of 
Figure 7-33 for different sizes of devices in the final two stages. 

This glitch may be the cause of fatal errors, because it may create unwanted events 
(for instance, when the output of the latch is used as a clock signal input to another regis­
ter). It also reduces the contamination delay of the register. The problem can be corrected 
by resizing the relative strengths of the pull-down paths through M,-M5 and M7-M8, so 
that Y discharges much faster than Q. This is accomplished by reducing the strength of the 
M.,-M8 pull-down path, and by speeding up the M,-M5 pull-down path. 

M4,Ms 
I M7,M8 ! 

Original 0.5 µ.m i 2µ.m 
Width I 

Modified lµrn lµ.rn 
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Time (ns) 

Figure 7-34 Transistor sizing issues in TSPC (for the register of Figure 7-33). 
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value on node X must propagate to the output @. Finally, the setap timeis the time for node X to
be valid, which is one inverter delay.
 

WARNING:Similar to the C7MOSlatch, the TSPC latch malfunctions when the slope of the
clock is not sufficiently steep. Slow clocks cause both the NMOS and PMOSclocked transistors

to be on simultaneously, resulting in undefined values of the states and race conditions. The

clock slopes should therefore be carefully controlled. If necessary, local buffers must be intro-
duced te ensure the quality of the clock signals. 

Example 7.4 TSPC Edge-Triggered Register

Transistor sizing is critical for achieving correct functionality in the TSPC register. With
impropersizing, glitches may occur at the output due to a race condition when the clock
transitions from low to high. Consider the case where D is low and @= | (@ = 0). While
CLK is low, Y is precharged high turning on>. When CLX transitions from lowto high.
nodes Y and Q start to discharge simultaneously (through ,—44, and Mj—Mg, respec-
tively). Once Y is sufficiently low, the trend on Q is reversed and the node is pulled high
again through Mg. In a sense, this sequence of events is comparable to what happens when
we chain dynamic logic gates. Figure 7-34 shows the transient response of the circuit of
Figure 7-33 for different sizes of devices in the final two stages.

This glitch may be the cause offatal errors, because it may create unwanted events

(for instance, when the output of the latch is ased as a clock signal input te another regis-
ter). It also reduces the contamination delay of the register. The problem can be corrected

by resizing the relative strengths of the pull-down paths through Af¢,;~M, and M.~M©,, so
that ¥ discharges much faster than Q. This is accomplished by reducing the strength of the
M,—-Mz,pull-down path, and by speeding up the 44,pull-down path.
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7.4 Alternative Register Styles* 

7.4.1 Pulse Registers 

Until now, we have used the master-slave configuration to create an edge-triggered register. A 
fundamentally different approach for constrncting a register uses pulse signals. The idea is to 
construct a short pulse around the rising (or falling) edge of the clock. This pulse acts as the 

clock input to a latch (for example, Figure 7-35a), sampling the input only in a short window. 
Race conditions are thus avoided by keeping the opening time (i.e, the transparent period) of the 
latch very short. The combination of the glitch-generation circuitry and the latch results in a pos­

itive edge-triggered register. 
Figure 7-35b shows an example circuit for constructing a short intentional glitch on each 

rising edge of the clock [Kozu96]. When CU(= 0, node Xis charged up to Vvv (MN is off since 
CLKG is low). On the rising edge of the clock, there is a short period of time when both inputs 

of the AND gate are high, causing CLKG to go high. This in turn activates MN, pulling X and 
eventually CLKG low (Figure 7-35c). The length of the pulse is controlled by the delay of the 

AND gate and the two inverters. Note that there exists also a delay between the rising edges of 
the input clock ( CLK) and the glitch clock ( CLKG), which also is equal to the delay of the AND 
gate and the two inverters. If every register on the chip uses the same clock generation mecha­
nism, this sampling deiay does not matter. However, process variations and load variations may 

Voo Voo 
-1-

r-4l3 CLK 
Von 

I 
Q [:, D CL~ Mz CL~ Ms X 

-- -
(a) Register (b) Glitch generation 

I I 

CLK I ' 
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Figure 7-35 TSPC-based glitch latch-liming generation and register. 
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7.4 Alternative Register Styies*

7.4.1. Pulse Registers

Until now, we have used the master-slave configuration to create an edge-triggered register. A
fundamentally different approach for constructing a register uses pulse signais. The ideats to
construct a short pulse around the rising (or falling) edge of the clock. This pulse acts as the
clock input to a latch (for example, Figure 7-35a), sampling the input only in a short window.
Race conditions are thus avoided by keeping the openingtime (i.e, the transparent period) of the
latch very short. The combination of the glitch-generation circuitry and the latch results in a pos-
itive edge-triggered register.

Figure 7-35b shows an examplecircuit for constructing a short intentional glitch on each
rising edge of the clock [Kozu96]. When CLK = 0, node X is charged up to Vpn (My is off since
CLKGis low). On the rising edge of the clock, there is a short period of time when both inputs
of the AND gate are high, causing CLKG to go high. This in turn activates MZ, pulling X and
eventually CLKG low (Figure 7-35c}. The length of the pulse is controlled by the delay of the
ANDgate and the two inverters. Note that there exists also a delay between the rising edges of
the input clock (CLK) and the glitch clock (CLKG), which also is equal to the delay of the AND
gate and the two inverters. If every register on the chip uses the same clock generation mecha-
nism, this sampling delay does not matter. However, process variations and load variations may
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Figure 7-35 TSPC-based glitch latch-timing generation and register.
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cause the delays through the glitch clock circuitry to be different. This must be taken into 
account when performing timing verification and clock skew analysis (the topics of Chapter 10). 

If the setup time and hold time are measured in reference to the rising edge of the glitch 
clock, the setup time is essentially zero, the hold time is essentially equal to the length of the 
pulse, and the propagation delay (1,-q) equals two gate delays. The advantage of the approach is 
the reduced clock load and the small number of transistors required. The glitch-generation 
circuitry can be amortized over multiple register bits. The disadvantage is a substantial increase 
in verification complexity. For this circuit to function properly, simulations must be performed 
across all corners to ensure that the clock pulse always exists (i.e., that the glitch-generation cir­
cuit works reliably). Despite the increased complexity, such registers do provide an alternate 
approach to conventional schemes, and they have been adopted in a number of high-perfor­
mance processors (e.g., [Kozu96]). 

Another version of the pulsed register is shown in Figure 7-36 (as used in the AMD-K6 
processor [Partovi96]). When the clock is low, M3 and M6 are off, and device P1 is turned on. 
Node Xis precharged toVDD• the output node (Q) is decoupled from X and is held at its previous 
state. CLKD is a delay-inverted version of CLK. On the dsing edge of the clock, M3 and M6 turn 
on while devices M 1 and M4 stay on for a short period, determined by the delay of the three 
inverters. During this interval, the circuit is transparent and the input data D is sampled by the 
latch. Once CLKD goes low, node Xis decoupled from the D input and is either held or starts to 
precharge to V DD through PMOS device P2. On the falling edge of the clock, node Xis held at 
V DD and the output is held stable by the cross-coupled inverters. 

Note that this circuit also uses a pulse generator, but it is integrated lnto the register. The 
transparency period also determines the hold time of the register. The window must be wide 
enough for the input data to propagate to the Q output. In this particular circuit, the setup time 
can be negative. This is the case if the transparency window is longer than the delay from input 
to output. This is attractive. as data can anive at the register even after the clock goes high, 
which means that time is borrowed from the previous cycle. 

Figure 7-36 Flow-through positive edge-triggered register. 
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cause the delays through the glitch clock circuitry to be different. This must be taken into
account when performing timing verification and clock skew analysis (the topics of Chapter 10).

If the setup time and hold time are measured in reference to the rising edge of the glitch
clock, the setup time is essentially zero, the hold time is essentially equal to the length of the
pulse, and the propagation delay (7,_,) equals twe gate delays. The advantage of the approachis
the reduced clack load and the small numberof transistors required. The glitch-generation
circuitry can be amortized over multiple register bits. The disadvantage is a substantial increase
in verification complexity. For this circuit to function properly, simulations must be performed
across ail corners io ensure that the clock pulse always exists(i.e., that the glitch-generation cir-
cuit works reliably). Despite the increased complexity, such registers do provide an alternate
approach to conventional schemes, and they have been adopted in a number of high-perfor-
mance processors (e.g., [Kozu96]).

Another version of the pulsed register is shown in Figure 7-36 (as used in the AMD-K6
processor [Partovi96]). When the clock is low, M, and Af, are off, and device P, is turned on.
Node X is precharged to¥,,, the output node (Q) is decoupled from X and is heldatits previous
state. CLKD is a delay-inverted version of CLK. On the rising edge of the clock, Af, and M, turn
on while devices 47, and Af, stay on for a short period, determined by the delay of the three
inverters. During this interval, the circuit is transparent and the input data D is sampled by the
latch. Once CLKD goes low, node X is decoupled from the D input andis either held orstarts to
precharge to Vp,p, through PMOS device ?,. On the falling edge of the clock, node ¥ is held at
Vpp and the output is held stable by the cross-coupled inverters.

Note that this circuit also uses a pulse generator, but it is integrated into the register. The
transparency period also determines the hold time of the register. The window must be wide
enough for the input data to propagate to the Q output. In this particular circuit, the setup time
can be negative. This is the case if the transparency window is longer than the delay from input
to output. This is attractive, as data can arrive at the register even after the clock goes high,
which meansthat time is borrowed from the previous cycle.
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Figure 7-36 Flow-through positive edge-triggered register.
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Example 7 .5 Setup Time of Glitch Register 

The glitch register of Figure 7-36 is transparent during the (1-1) overlap of CLK and 
CLKD. As a result, the input data can actually change after the rising edge of the clock, 
resulting in a negative setup time (Figure 7-37). The D-input transitions to low after the 
rising edge of the clock, and transitions to high before the falling edge of CLKD (i.e., dm0 

ing the transparency period). Observe how the output follows the input. The output Q does 
go to the correct value of V DD as long as the input D is set up correctly some time before 
the falling edge of CLKD. When the negative setup time is exploited, there can be no guar­
antees on the monotonic behavior of the output. That is, the output can have multiple tran­
sitions around the rising edge, and therefore, the output of the register should not be used 
for driving dynamic logic or as a clock as a clock to other registers. 

3.0 
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l'! 1.5 

'$ 1.0 
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0.0 

-0.5 
0.0 0.2 0.4 0.6 0.8 1.0 
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Figure 7-37 Simulation showing a negative setup time for the glitch register. 

Problem 7~6 Converting a Glit-ch Register to a Conditional Glitch Register 

Modify the circuit in Figure 7-36 so that it takes an additional Enable input. The goal is to convert the reg­
ister to a conditional register which latches only when the enable signal is asserted. 

7 .4.2 Sense-Amplifier-Based Registers 

In addition to the master-slave and the glitch approaches to implement an edge-triggered regis­
ter, a third technique based on sense amplifiers can be used, as introduced in Figure 7-38 
[Montanaro96].3 Sense-amplifier circuits accept small input signals and amplify them to gener­
ate rail-to-rai1 swings. They are used extensively in memory cores and in low-swing bus drivers 
to either improve performance or reduce power dissipation. There are many techniques to con­
struct these amplifiers. A common approach is to use feedback-for instance, through a set of 

31n a sense, these sense-amplifier-based registers are similar in operation to the glitch registers-that is, the first stage 
generates the pulse, and the second latches it. 
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Example 7.5 Setup Time of Glitch Register

The glitch register of Figure 7-36 is tansparent during the (1-1) overlap of CLK and
CLEP. As a result, the input data can actually changeafter the rising edge of the clock,
resulting in a negative setup time (Figure 7-37). The D-input transitions to low after the
rising edgeof the clock, and transitions to high before the falling edge of CLKD (ie., du
ing the transparency period). Observe how the output followsthe input. The output Q does
go to the correct value of Vyy as long as the input D is set up correctly some time before
the falling edge of CLKD. When the negative setup time is exploited, there can be no guar-
antees on the monotonic behavior of the output. Thatis, the output can have multiple tran-

sitions around the rising edge, and therefore, the output of the register should not be used
for driving dynamic logic oras a clock as a clock to other registers.
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Figure 7-27 Simulation showing a negative setup time forthe glitch register.

 

Problem 7.6 Converting a Glitch Register to a Conditional Glitch Register

Modify the circuit in Figure 7-36 so that it takes an additional Enable input. The goal is to convert the reg-
ister to a conditional register which latches only when the enable signal is asserted.

7.4.2 Sense-Amplifier-Based Registers

In addition to the master-slave and the elifch approaches to implement an edge-triggered regis-
ter, a third technique based on sense amplifiers can be used, as introduced in Figure 7-38
[Montanaro%6].? Sense-amplifier circuits accept small input signals and amplify them to gener-
ate rail-to-rail swings. They are used extensively in memory cores and in low-swing bus drivers
to either improve performance or reduce power dissipation. There are many techniques to con-
struct these amplifiers. A coramon approach is to use feedback—for instance, through a set of

3In a sense, these sense-amplifier-based registers are similar in operation to the glizch registers—thatis, the first stage
generates the puise, and the second latches it.g BP
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I~ 

Figure 7-38 Positive edge-triggered register based on sense amplifier. 

cross-coupled inve11ers. The circuit shown in Figure 7-38 uses a precharged front-end amplifier 
that samples the differential input signal on the rising edge of !he clock signal. The outputs of 
front end are fed into a NAND cross-coupled SR flip-flop that holds the data and guarantees that 
the differential outputs switch only once per clock cycle. The differential inputs in this imple­
mentation don't have to have rail-to-rail swing. 

The core of the front end consists of a cross-coupled inverter (M5-M8), whose outputs (L1 
and L:,) are precharged by using devices M9 and MIO during the low phase of the clock. As a 
result, PMOS transistors M 7 and M 8 are turned off and the NAND flip-flop is holding its previ­
ous state. Transistor NJ 1 is similar to an evaluate switch Jn dynamic circuits and is turned off to 
ensure that !he differential inputs do not affect the output during !he low phase of the clock. On 
the rising edge of the clock, the evaluate transistor turns on and the differential input pair (M2 
and Ms) is enabled, and !he difference between !he input signals is amplified on the output nodes 

on L, and L2• The cross-coupled inverter pair flips to one of its stable states based on the value of 
the inputs. For example, if IN is !, L1 is pulled to 0, and L2 remains at V DD· Due to the amplifying 
properties of the input stage, it is not necessary for the input to swing all the way up to V DD• 

which enables the use of low-swing signaling on the input wires. 
The shorting transistor, M4, is used to provide a DC-leakage path from either node L3 , or L4, 

to ground. This is necessary to accommodate the case in which the inputs change their value after 
the positive edge of CLK has occmTed, resulting in either L, or L4 being left in a high-impedance 
state with a logical low-voltage level stored on the node. Without the leakage path, that node 
would be susceptible to charging by leakage currents. The latch could then actually change state 
prior to the next rising edge of CLK! This is best illustrated graphically, as in Figure 7-39. 
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Figure 7-38 Positive edge-triggered register based on sense amplifier.

cross-coupled inverters. The circuit shown in Figure 7-38 uses a precharged front-end amplifier
that samples the differential input signal on the rising edge of the clock signal. The outputs of
front end are fed into a NAND cross-coupled SR flip-flop that holds the data and guarantees that
the differential outputs switch only once per clock cycle. The differential inpuis in this imple-
mentation don’t have to have rail-to-rail swing.

The core of the front end consists ef a cross-coupled inverter (4f,—Mé,}, whose outputs (L,
and L,) are precharged by using devices M, and M,, during the low phase of the clock. As a
result, PMOS transistors 44, and Mf, are turned off and the NAND @ip-flop is holding its previ-
ous state. Transistor M, is similar to an evaluate switch in dynamic circuits and is turned off to
ensure that the differential inputs do not affect the output during the low phase of the clock. On
the rising edge of the clock, the evaluate transistor turns on and the differential input pair (Mf,
and M3} is enabled, andthe difference between the input signals is amplified on the output nodes
on L, and L,. The cross-coupled inverter pair flips to oneofits stable states based on the value of
the inputs. For example,if JV is 1, £, is pulled to 0, and L, remains at V,,. Due to the amplifying
properties of the input stage, it is not necessary for the input to swing all the way up to Vpp,
which enables the use of low-swing signaling on the input wires.

The shorting transistor, Mf,, is used to provide a DC-leakage path from either node L,, or Ly,
fo ground. This is necessary to accommodatethe case in which the inputs changetheir value after
the positive edge of CLK has occurred, resulting in either Z, or L4 being lefi in a high-impedance
state with a logical low-voltage level stored on the nede. Without the leakage path, that node
would be susceptible to charging by leakage currents. The latch could then actually changestate
prior to the next rising edge of CLX! This is best illustrated graphically, as in Figure 7-39.
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The leakage current attempts to 
charge L 1!L3, but the DC path 
through the shorting transistor 
allows it to leak away to ground. 

7 .5 Pipelining: An Approach to Optimize Sequential Circuits 

Pipelining is a popular design technique often used to accelerate the operation of datapaths in 
digital processors. The concept is explained with the example of Figure 7-40a. The goal of the 
presented circuit is to compute log(la + bl), where both a and b represent streams of numbers 
(i.e., the computation must be performed on a large set of input values). The minimal clock 
period T~iit1 necessary to ensure correct evaluation is given as 

(7.7) 

where tc-q and tsu are the propagation delay and the setup time of the register, respectively. We 
assume that the registers are edge-triggered D registers. The term tpd,logic stands for the worst 
case delay path through the combinational network, which consists of the adder, absolute value, 
and logarithm functions. In conventional systems (that don't push the edge of technology), the 
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Figure 7-39 The need for the shorting transistor Mé,.

7.5 Pipelining: An Approach to Optimize Sequential Circuits
Pipelining is a popular design technique often used to accelerate the operation of datapaths in
digital processors. The concept is explained with the example of Figure 7-40a, The goal of the
presented circuit is to compute log(ja + Bb), where both a and & represent streams of numbers
(i.e., the computation must be performed on a large set of input values). The minimal clock
period necessary to ensure correct evaluation is given asrefs

T, tagtt +tin "ee (27)pd, fagic Ste

where f_, and /,, are the propagation delay and the setup time of the register, respectively. We
assumethat the registers are edge-triggered D registers. The term t,4jg: Stands for the worst
case delay path through the combinational network, which consists of the adder, absolute value,
and logarithm functions. In conventional systems (that don’t push the edge of technology}, the
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Figure 7-40 Datapath for the computation of log(la + bl). 

359 

latter delay is generally much larger than the delays associated with the registers and dominates 
the circuit performance. Assume that each logic module has an equal propagation delay. We note 
that each logic module is then active for only one-third of the clock period (if the delay of the 
register is ignored). For example, the adder unit is active during the first third of the period and 
remains idle (no useful computation) during the other two-thirds of the period. Pipelining is a 
technique to improve the resource uti1ization, and increase the functional through-put. Assume 
that we introduce registers between the logic blocks, as shown in Figure 7-40b. This causes the 
computation for one set of input data to spread over a number of clock-periods, as shown in 
Table 7-1. The result for the data set (a1, b1) only appears at the output after three clock periods. 

Table 7-1 Example of pipelined computations. 

Clock Period Adder Absolute Value Logarithm 

2 

3 

4 log(la2 + b2/) 

5 log(la3 + b,IJ 
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Figure 7-40 Datapath for the computation of log(la + Bf).

(b} Pipelined version

latter delay is generally much larger than the delays associated with the registers and dorminates
the circuit performance. Assume that each logic module has an equal propagation delay. We note
that each iogic module is then active for only one-third of the clock period (if the delay of the
register is ignored). For example, the adder unit is active during thefirst third of the period and
remains idle (no useful computation) during the other two-thirds of the period. Pipelining is a
technique to improve the resource utilization, and increase the functional through-put. Assume
that we introduce registers between the logic blocks, as shown in Figure 7-40b. This causes the
computation for one set of input data ta spread over a number of clock-periods, as shown in
Tabie 7-1. The result for the data set (a,, 2;) only appears at the outputafter three clock periods.

Table 7-1 Example of pipelined computaiions.

 

 

 

 

Clock Period Adder Absolute Value Logarithm

a
2 a2+b, la, + &)|

3 fg t by lay + Bal log(la, + 6,2

4 at by lay + B,) logfla, + b,)

5 as + bs lag + 4 logila; + 5.)a
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At that time, the circuit has already performed parts of the computations for the next data sets, 
(a2, b2) and (a3, b3). The computation is performed in an assembly-line fashion-hence the name 

pipeline. 
The advantage of pipelined operation becomes apparent when examining the minimum 

clock period of the modified circuit. The combinational circuit block has been partitioned into 
three sections, each of which has a smaller propagation de)ay than the original function. This 

effectively reduces the value of the minimum allowable clock pe1fod: 

(7.8) 

Suppose that all logic blocks have approximately the same propagation delay, and that the 
register overhead is small with respect to the logic delays. The pipelined network outperforms 

the original circuit by a factor of three under these assumptions (i.e .• T111in,pipc= Y:ui/3 ). The 
increased performance comes at the relatively small cost of two additional registers and an 
increased latency. 4 This explains why pipelining is popular in the implementation of very high­

performance datapaths. 

7.5.1 Latch- versus Register-Based Pipelines 

Pipelined circuits can be constructed by using Jevel-sensitive latches instead of edge-triggered 
registers. Consider the pipelined circuit of Figure 7-41. The pipeline system is implemented 
using pass-transistor-based positive and negative latches instead of edge-triggered registers. That 
is, logic is introduced between the master and slave latches of a master-slave system. In the fol­
lowing discussion, we use the CLK-CLK notation to denote a two-phase clock system without 
loss of generality. Latch-based systems give significantly more flexibility in implementing a 
pipelined system, and they often offer higher performance. When the CLK and CLK clocks are 
nonoverlapping, correct pipeline operation is obtained. Input data is sampled on C I at the nega­
tive edge of CLK and the computation of logic block F starts; the result of the logic block F is 

stored on C, on the falling edge of CLK, and the computation of logic block G starts. The non­
overlapping of the clocks ensures conect operation. The value stored on C2 at the end of the 
CLK low phase is the result of passing the previous input (stored on the falling edge of CLK on 
C1) through the logic function F. When overlap exists between CLK and CLK, the next input is 
already being applied to F, and its effect might propagate to C2 before CLK goes low (assuming 

that the contamination delay of Fis small). In other words, a race develops between the previous 
input and the current one. Which value wins depends upon the logic and is often a function of 
the applied inputs. The latter factor makes the detection and elimination of race conditions non­
trival in nature. 

4 Latency is defined here as the number of clock cycles it takes for the dntn to propagate from the input to the output. For 
the example at hand, pipelining increases the latency from I to 3. An increased latency is generally acceptable, but it can 
cause a global performance degradation if not treated with care. 
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At that time, the circuit has already performed parts of the computations for the next data sets,

{a,, bz) and (a3, b,). The computation is performed in an assembly-line fashion—hence the name
pipeline. :

The advantage of pipelined operation becomes apparent when examining the minimum
clock period of the modified circuit. The combinational circuit block has been partitioned into
three sections, each of which has a smaller propagation delay than the original function. This
effectively reduces the value of the minimum allowable clock period:

Tningpipe = feog + MAX yesete Fadabs> Tnetog) + box (7.8)

Suppose that ail jogie blocks have approximately the same propagation delay, and that the

register overhead is small with respect to the logic delays. The pipelined network outperforms

the original circuit by a factor of three under these assumptions (i.€., Thainpipe Fun’3). The
increased performance comes at the relatively small cost of two additional registers and an
increased latency.* This explains why pipelining is popular in the implementation of very high-
performance datapaths.

7.5.1. Latch- versus Register-Based Pipelines

Pipelined circuits can be constructed by using level-sensitive latches instead of edge-triggered
registers. Consider the pipelined circuit of Figure 7-41. The pipeline system is implemented
using pass-transistor-based positive and negative latches instead of edge-triggered registers. That
is, logic is Introduced between the master and slave latches of a master-slave system. In the fol-
lowing discussion, we use the CLK-CEK rotation to denote a two-phase clock system without
loss of generality. Latch-based systems give significantly more flexibility in implementing a
pipelined system, and they often offer higher performance. When the CLK and CLK clocks are
nonoverlapping, correct pipeline operation is obtained. Input data is sampled on C, at the nega-

tive edge of CLK and the computation of logic block F starts; the result of the logic block F is
stored on C, on the falling edge of CLK, and the computation of logic block G starts. The non-
overlapping of the clocks ensures correct operation. The value stored on C, at the end of the
CLK low phaseis the result of passing the previous input (stored on the falling edge of CLK on
C)) through the logic function F When overlap exists between CLK and CE, the next input is
alreadybeing applied to & andits effect might propagate to C, before CLK goes low (assuming
that the contamination delay of F is small). In other words, a race develops between the previous
input and the current one. Which value wins depends upon the logic and is often a function of
the applied inputs. The latter factor makes the detection and elimination of race conditions non-
trival in nature.

*Lotency is defined here as the number of clock cyclesit takes for the data to propagate from the input to the output. For
the exampleat band, pipelining increases the latency from 1] to 3. An increased latency is generally acceptable, butit can
cause a global performance degradation if not treated with care.
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Figure 7-41 Operation of two-phase pipelined circuit, using dynamic registers. 
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Figure 7-42 Pipelined datapath, using C2M0S latches. 

7.5.2 NORA-CMOS-A Logic Style for Pipelined Structures 

361 

Out .-..-~ 
Ic, 

The latch-based pipeline circuit can also be implemented by using C2MOS latches, as shown in 
Figure 7-42. The operation is similar to the one discussed in Section 7.5.1. This topology has 
one additional important property: 

A C2M0S-based pipelined circuit is race free as long as all tbe logic functions F 
(implemented by using static logic) between the latches are noninverting. 

The reasoning for the preceding argument is sim.Har to the argument made in the con­
struction of a C2MOS register. During a (0-0) overlap between CLK and CLK, all C2M0S 
latches simplify to pure pull-up networks (see Figure 7-27). The only way a signal can race 
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Figure 7-41 Operation of two-phasepipelined circuit, using dynamic registers.
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Figure 7-42 Pipelined dalapath, using C°MOS latches.

7.5.2 NORA-CMOS—A Logic Style for Pipelined Structures

The latch-based pipeline circuit can also be implemented by using C7MOSlatches, as shown in
Figure 7-42. The operation is similar to the one discussed in Section 7.5.1. This topology has
one additional important property:

A C’MOS-based pipelined circuit is race free as long as all the logic functions F
(implemented by using static logic) between the latches are noninverting.

The reasoning for the preceding argument is similar to the argument made in the con-
struction of a C7MOS register. During a (0-0) overlap between CLK and CLE, all C7MOS
latches simplify to pure pull-up networks (see Figure 7-27). The only way a signal can race
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Figure 7-43 Potential race condition during (0-0) overlap in c2M0S-based design. 

from stage to stage under this condition is when the logic function F is inverting, as illustrated 
in Figure 7-43, where F is replaced by a single, static CMOS inverter. Similar considerations 
are valid for the (1-1) overlap. 

Based on this concept, a logic circuit style called NORA-CMOS was conceived 
[Gon~alves83]. It combines C2M0S pipeline registers and NORA dynamic logic function 
blocks. Each module consists of a block of combinational logic that can be a mixture of static 
and d}'namic logic, followed b}' a C2MOS latch. Logic and latch are clocked in such a way that 
both are simultaneously in either evaluation, or hold (precharge) mode. A block that is in evalua­
tion during CLK = I is called a CLK module, while the inverse is called a CLK module. Exam­
ples of both classes are shown in Figure 7-44a and 7-44b, respectively. The operation modes of 
the modules are summarized in Table 7-2. 

A NORA datapath consists of a chain of alternating CLK and CLK modules. While one 
class of modules is precharging with its output latch in hold mode, preserving the previous 
output value, the other class is evaluating. Data is passed in a pipelined fashion from module 
to module. NORA offers designers a wide range of design choices. Dynamic and static logic 

Table 7-2 Operation modes for NORA logic modules. 

CLKblock CLKblock 

Logic Latch Logic Latch 

CLK=O Precharge Hold Evaluate Evaluate 

CLK= l Evaluate Evaluate Precharge Hold 
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Figure 7-44 Examples of NORA-CMOS modules. 
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can be mixed freely, and both CLKP and CLK,, dynamic blocks can be used in cascaded or in 
pipelined form. Although this style of logic avoids the extra inverter required in domino 
CMOS, there are many rules that must be followed to achieve reliable and race-free opera­
tion. As a result of this added complexity, the use of NORA has been limited to high­
performance applications. 
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Figure 7-44 Examples of NORA-CMCS modules.

can be mixed freely, and both CLA, and CLK, dynamic blocks can be used in cascaded orin
pipelined form. Although this style of logic avoids the extra inverter required in domino
CMOS, there are many rules that must be followed to achieve reliable and race-free opera-
tion. As a result of this added complexity, the use of NORA has been limited to high-
performance applications.
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7 .6 Nonbistable Sequential Circuits 

In the preceding sections, we have focused on a single type of sequential element: the latch (and 
its sibling, the register). The most important property of such a circuit is that it has two stable 
states-hence, the term bistable. The bistable element is not the only sequential circuit of inter­

est. Other regenerative circuits can be catalogued as astable and monostable. The former act as 
oscillators and can, for instance, be used for on-chip clock generation. The latter serve as pulse 

generators, also called one-shot circuits. Another interesting regenerative circuit is the Schmitt 
tl'igge,: This component has the useful property of showing hysteresis in its de characteristics­
its switching threshold is variable and depends upon the direction of the transition (low to high 
or high to low). This peculiar feature can come in handy in noisy environments. 

7.6.1 The Schmitt Trigger 

Definition 

A Schmitt trigge,. [Schmitt38] is a device with two important properties: 

l. It responds to a slowly changing input waveform with a fast transition time at the 
output. 

2. The voltage-transfer characteristic of the device displays different switching thresholds for 
positive- and negative-going input signals. This is demonstrated in Figure 7-45, where a 

typical voltage-transfer characteristic of the Schmitt trigger is shown (and its schematics 
symbol). The switching thresholds for the low-to-high and high-to-low transitions are 
called VM+ and V:11_, respectively. The hysteresis voltage is defined as the difference 
between the two. 

One of the main uses of the Schmitt trigger is to tum a noisy or slO\vly varying input signal into 
a clean digital output signal. This is illustrated in Figure 7-46. Notice how the hysteresis sup­
presses the ringing on the signal. At the same time, the fast low-to-high (and high-to-low) transi-

Vou 

in --8>-- Out 

VM- VM+ Vin 

(a) Voltage-transfer characteristic (b) Schematic symbol 

Figure 7-45 Noninverting Schmitt trigger. 

Dell Ex. 1025
Page 253

364 Chapter 7 * Designing Sequential Logic Circuits

7.6 Nonbisiable Sequential Circuits

In the preceding sections, we have focused on a single type of sequential element: the latch (and
its sibling, the register), The most important property of such a circuit is that it has two stable

states—hence, the term bistable. The bistable element is not the only sequential circuit of inter-
est. Other regenerative circuits can be catalogued as astable and monostable. The former act as
oscillators and can, for instance, be used for on-chip clock generation. The latter serve as pulse

generators, also called one-sket circuits, Another interesting regenerative circuit is the Schmitt

trigger. This component has the useful property of showing hysteresis in its de characteristics—
its switching threshold is variable and depends upon the direction of the transition (lew to high
or high to low). This peculiar feature can come in handy in noisy environments.

7.6.1 The Schmitt Trigger

Definition

A Sefanitt trigger [Schmitt38] is a device with two important properties:

1, It responds to a slowly changing input waveform with a fast transition time at the
output,

2. The voltage-transfer characteristic of the device displays different switching thresholds for

positive- and negative-going input signais. This is demonstrated in Figure 7-45, where a
typical voltage-transfer characteristic of the Schmitt tigger is shown (and its schematics

symbol}. The switching thresholds for the low-te-high and high-to-low transitions are
called V,,, and ¥,,_, respectively. The hysteresis voltage is defined as the difference
between the Iwo.

One of the main uses of the Schmitt trigger is to turn a noisy or slowly varying input signal inte
a clean digital output signal. This is Hlustrated in Figure 7-46. Notice how the hysteresis sup-
presses the ringing on the signal. At the sametime,the fast low-to-high (and high-to-low}transi-

Fou

in Out 
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{a} Voltage-transfer characteristic (b} Schematic symbol

Figure 7-45 Noninverting Schmitt trigger.
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Figure 7-46 Noise suppression, using a Schmitt trigger. 

365 

lions of the output signal should be observed. Steep signal slopes are beneficial in general, for 
instance for reducing power consumption by suppressing direct-path currents. The "secret" 
behind the Schmitt trigger concept is the use of positive feedback. 

CMOS Implementation 

One possible CMOS implementation of the Schmitt trigger is shown in Figure 7-47. The idea 
behind this circuit is that the switching threshold of a CMOS inverter is determined by the 
(k,,lkp) ratio between the PMOS and NMOS transistors. Increasing the ratio raises the thresh­
old, while decreasing it lowers V M. Adapting the ratio depending upon the direction of the 
transition results in a shift in the switching threshold and a hysteresis effect. This adaptation 
is achieved with the aid of feedback. 

Suppose that V,,, is initially equal to 0, so that V,,,,, = 0 as well. The feedback loop biases the 
PMOS transistor M4 in the conductive mode, while M3 is off. The input signal effectively con­
nects to an inverter consisting of two PMOS transistors in parallel (M2 and M4) as a pull-up net­
work, and a single NMOS transistor (M1) in the pull-down chain. This modifies the effective 
transistor ratio of the inverter to kM 1! (k.w2 + kM4), which moves the switching threshold upwards. 

X 

Figure 7-47 CMOS Schmitt trigger. 
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Figure 7-46 Noise suppression, using a Schmitt trigger.

tions of the output signal should be observed. Steep signal slopes are beneficial in general, for
instance for reducing power consumption by suppressing direct-path currents. The “secret”
behind the Schmitt trigger concept is the use of positive feedback.

CMOS Implementation

One possible CMOS implementation of the Schmitt tigger is shown in Figure 7-47. The idea
behind this circuit is that the switching threshold of a CMOSinverter is determined by the
(%,,/k,} ratio between the PMOS and NMOStransistors. Increasing the ratio raises the thresh-
old, while decreasing it lowers V,, Adapting the ratio depending upon the direction of the
transition results in a shift in the switching threshold and a hysteresis effect. This adaptation
is achieved with the aid of feedback.

Suppose thatV,,, is initially equal to 0, so that V,,, = 0 as well. The feedback loopbiases the
PMOStransistor M4, in the conductive mode, while M, is off. The input signal effectively con-
nects te an inverter consisting of two PMOStransistors in parallel (41, and M,)as a pull-up net-
work, and a single NMOStransistor (47,) in the pull-down chain. This modifies the effective
transistor ratio of the inverter Co £y_)/ (kyo + kya}, Which moves the switching threshold upwards.

fit 
Figure 7-47 CMOS Schmitt trigger.
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Once the inverter switches, the feedback loop turns off M4, and the NMOS device M 3 is 
activated. This extra pull-down device speeds up the transition and produces a clean output sig­

nal with steep slopes. 
A similar behavior can be observed for the high-to-low transition. In this case. the puH­

down network originally consists of M1 and M3 in parallel, while the pull-up network is formed 

by M2. This reduces the value of the switching threshold to VM-· 

Example 7 .6 CM OS Schmitt Trigger 

Consider the Schmitt trigger of Figure 7-47, with M 1 and M2 sized at I µm/0.25 µm, and 
3 µm/0.25 µm, respectively. The inverter is designed such that the switching threshold is 
around V 

00
/2 (= 1.25 V). Figure 7-48a shows the simulation of the Schmitt trigger assum­

ing that devices M3 and M4 are 0.5 µm/0.25 µm and l.5 µm/0.25 µm, respectively. As 
apparent from the plot, the circuit exhibits hysteresis. The high-to-low switching point 

(V:w- = 0.9 V) is lower than V00 /2, while the low-to-high switching threshold (VM+ = 
1.6 V) is larger than V 0012. 

It is possible to shift the switching point by changing the sizes of M 3 and M4• For 
example, to modify the low-to-high transition, we need to vary the PMOS device. 

The high-to-low threshold is kept constant by keeping the device width of M3 at 0.5 µm. 
The device width of M4 is varied as k x 0.5 µm. Figure 7-48b demonstrates how the 

switching threshold increases with raising values of k. 
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(a) Voltage-transfer characteristics with hysteresis. 

Figure 7-48 Schmitt trigger simulations. 
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(b) 111e effect of varying the ratio of the 
PMOS device M4, The wldth is k X 0.5 µ.m. 
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Once the inverter switches, the feedback loop turns off A4,, and the NMOS device iM; is
activated. This extra pull-down device speeds up the transition and produces a clean outputsig-
nal with steep slopes.

A similar behavior can be observed for the high-to-lowtransition. In this case, the pull-
dowa network originally consists of M@, and M4;in parallel, while the pull-up network is formed
by M,. This reduces the value of the switching threshold to Vy._-

iELA

Example 7.6 CMOS Schmitt Trigger

Consider the Schmitt trigger of Figure 7-47, with , and M, sized at | pm/0.25 um, and
3 [m/0.25 um, respectively. The inverter is designed such that the switching threshold is
around Vpp/2 {= 1.25 V). Figure 7-48a showsthe simulation of the Schmitt trigger assum-
ing that devices M, and M, are 0.5 uem/0.25 um and !.5 um/0.25 um,respectively. AS
apparent from the plot, the circuit exhibits hysteresis. The high-to-low switching point
(V¥y_= 0.9 V) is lower than Vpp/2, while the low-to-high switching threshold (Vy, =
1.6 V)is larger than V,,/2.

It is possible to shift the switching point by changing the sizes of AZ, and M,. For
example, to modify the low-to-high transition, we need to vary the PMOS device.
The high-to-low threshold is kept constant by keeping the device width of M, at 0.5 yin,
The device width of M, is varied as & x 0.5 wm. Figure 7-48b demonstrates how the
switching threshold increases with raising values ofk.
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Problem 7.7 An Alternative CMOS Schmitt Trigger 

Another CMOS Schmitt trigger is shown in Figure 7-49. Discuss the operation of the gate, and derive 
expressions for V.u- and V.w +. 

/11 

Figure 7-49 Alternate CMOS Schmitt trigger. 

7 .6.2 Monostable Sequential Circuits 

A monostable element is a circuit that generates a pulse of a predetermined width every time the 
quiescent circuit is triggered by a pulse or transition event. It is called monostable because it has 
only one stable state (the quiescent one). A trigger event, which is either a signal transition or a 
pulse, causes the circuit to go temporarily into another quasi-stable state. This means that it 

eventually returns to its original state after a time period determined by the circuit parameters. 
This circuit, also called a one-shot, is useful in generating pulses of a known length. This func­
tionality is required in a wide range of applications, We have already seen the use of a one-shot 
in the construction of glitch registers. Another well-known example is the address transition 
detection (ATD) circuit, used for the timing generation in static memories. This circuit detects a 

change in a signal or group of signals, such as the address or data bus, and produces a pulse to 
initialize the subsequent circuitry, 

The most common approach to the implementation of one-shots is the use of a simple 
delay element to control the duration of the pulse. The concept is illustrated in Figure 7-50. In 

the quiescent state, both inputs to the XOR are identical, and the output is low. A transition on 
the input causes the XOR inputs to differ temporarily and the output to go high. After a delay td 

(of the delay element), this disruption is removed, and the output goes low again. A pulse of 
length 1,, is created. The delay circuit can be realized in many different ways, such as an RC­
network or a chain of basic gates. 
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Problem 7.7 An Alternative CMOS Schmitt Trigger

Another CMOS Schmitt wigger is shown in Figure 7-49. Discuss the operation of the gate, and derive
expressions for V,, and Vy;,-
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Figure 7-49 Alternate CMOS Schmitt trigger. 

7.6.2 Monostable Sequential Circuits

A monastable clement is a circuit that generates a pulse of a predetermined width every time the
quiescent circuit is triggered by a pulse or transition event. It is called monostable becauseit has

only one stable state (the quiescent one). A trigger event, whichis either a signal transition or a
pulse, causes the circuit to go temporarily into another quasi-stable state. This means that it
eventually returns to its original state after a tirme period determined by the circuit parameters.
This circuit, also called a one-shot, is useful in generating pulses of a known length. This func-
tionality is required in a wide range of applications, We have already seen the use of a one-shot
in the construction of glitch registers. Another well-known example is the address transition
detection (ATD) circuit, used for the timing generation in static memories. This circuit detects a
change in a signal or groupof signals, such as the address or data bus, and produces a pulse to
initialize the subsequentcircuitry.

The most common approach to the implementation of one-shots is the use of a simple
delay element to control the duration of the pulse. The conceptis illustrated in Figure 7-50. In
the quiescent state, both inputs to the XOR are identical, and the output is low. A transition on
the input causes the XOR inputs to differ temporarily and the output to go high. After a delayt,
(of the delay element), this disruption is removed, and the output goes low again. A pulse of
length ¢, is created. The delay circuit can be realized in many different ways, such as an RC-
network or a chain of basic gates.
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Figure 7-50 Transition-triggered one shot. 

7.6.3 Astable Circuits 

An astable circuit has no stable states. The output oscillates back and forth between two quasi­
stable states, with a period detennined by the circuit topology and parameters (delay, power sup­
ply, etc.). One of the main applications of oscillators is the on-chip generation of clock signals. 
(This application is discussed in detail in a later chapter on timing.) 

The ring oscillator is a simple example of an astable circuit. It consists of an odd number 
of inverters connected in a circular chain. Due to the odd number of inversions, no stable opera­
tion point exists, and the circuit oscillates with a period equal to 2 x tP x N, where N is the num­
ber of inverters in the chain and tJJ is the propagation delay of each inverter. 

Example 7 .7 Ring Oscillator 

The simulated response of a ring oscillator with five stages is shown in Figure 7-51 (all 
gates use minimum-size devices). The observed oscillation period approximately equals 
0.5 ns, which corresponds to a gate propagation delay of 50 ps. By tapping the chain at 
various points, different phases of the oscillating waveform are obtained. (Phases 1, 3, and 
5 are displayed in the plot.) A wide range of clock signals with different duty-cycles and 
phases can be derived from those elementary signals, using simple logic operations. 
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Figure 7-51 Simulated waveforms of five-stage ring oscillator. 
The outputs ol stages 1, 3, and 5 are shown. 
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Figure 7-50 Transition-triqgered one shot.

7.6.3 Astable Circuits

An astable circuit has no stable states. The output oscillates back and forth between bwo quasi-
stable states, with a period determined bythe circuit topology and parameters (delay, power sup-
ply, etc.). One of the main applications of oscillators is the on-chip generation of clock signals.
(This application is discussed in detail in a later chapter on timing.)

The ring oscillator is a simple example of an astable circuit. It consists of an odd number
of inverters connected in a circular chain. Dueto the edd numberofinversions, no stable opera-
tion point exists, and the circuit oscillates with a period equal to 2 x 7, x N, where N is the num~-
berofinverters in the chain andt, is the propagation delay of each inverter.
eeHESE

Example 7.7 Ring Oscillator

The simulated response of a ring oscillator with five stages is shown in Figure 7-51 (all
gates use minimum-size devices), The observed oscillation period approximately equals
0.5 ns, which corresponds to a gate propagation delay of 50 ps. By tapping the chain at
various points, different phases of the oscillating waveform are obtained. (Phases 1, 3, and
5 are displayed in the plot.) A wide range of clock signals with different duty-cycles and
phases can be derived from those elementarysignals, using simple logic operations.

f
i
}
IVolts

Foe- 
Time (ns)

Figure 7-51 Simulated waveformsoffive-stage ring oscillator.
The outputs of stages 1, 3, and 5 are shown.
iTSIET
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Figure 7-52 Voltage-controlled oscillator based on current-starved inverters. 

The ring oscillator composed of cascaded inverters produces a waveform with a fixed 
oscillating frequency determined by the delay of an inverter in the CMOS process. In many 
applications, it is necessary to control the frequency of the oscillator. An example of such a cir­
cuit is the voltage-controlled oscillator (VCO), whose oscillation frequency is a function (typi­
cally, nonlinear) of a control voltage. The standard ring oscillator can be modified into a VCO by 
replacing the standard inverter with a current-starved inverter like the one shown in Figure 7-52 
[Jeong87]. The mechanism for controlling the delay of each inverter is to limit the current avail­
able to discharge the load capacitance of the gate. 

In this modified inverter circuit, the maximal discharge current of the inverter is limited by 
adding an extra series device. Note that the low-to-high transition on the inverter can also be 
controlled by adding a PMOS device in series with M2. The added NMOS transistor M3, is con­
trolled by an analog control voltage Ven,/, which determines the available discharge current 
Lowering V cntl reduces the discharge current and, hence, increases tpHV The ability to alter the 
propagation delay per stage allows us to control the frequency of the ring structure. The control 
voltage is generally set by using feedback techniques. Under low-operating current levels, the 
current-starved inverter suffers from slow fall tlmes at its output. This can result in significant 
short-circuit current. We solve this problem by feeding its output into a CMOS inverter or, better 
yet, a Schmitt trigger. An extra inverter is needed at the end to ensure that the structure oscillates. 

Example 7.8 Current-Starved Inverter Simulation 

Figure 7-53 shows the simulated delay of the current-starved inverter as a function of the 
control voltage Vent!· The delay of the inverter can be varied over a large range. When 
the control voltage is smaller than the threshold, the device enters the subthreshold region. 
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cally, nonlinear) of a control voliage. The standard ring oscillator can be modified into a ¥CO by
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able to discharge the load capacitance of the gate.

In this modified inverter circuit, the maximal discharge currentof the inverter is limited by
adding an extra series device. Note that the low-io-high transition on the inverter can also be
controlled by adding a PMOS device in series with f,. The added NMOStransistor M,, is con-
trolled by an analog control voltage V_,,., which determines the available discharge current.

Lowering V.,, reduces the discharge current and, hence, increases t,,,;. The ability to alter the
propagation delay per stage allows us to control the frequency of the ring structure. The control
voltage is generally set by using feedback techniques. Under low-operating current levels, the
current-starved inverter suffers from slow fall times at its output. This can result in significant
short-circuit current. We solve this problem by feeding its output into a CMOSinverteror, better
yet, a Schmitt trigger. An extra inverter is needed at the end to ensure that the structure oscillates.
 

Example 7.8 Current-Starved Inverter Simulation

Figure 7-53 shows the simulated delay of the current-starved inverter as a function of the

control voltage V,,,. The delay of the inverter can be varied over a large range. When
the control voltage is smaller than the threshold, the device enters the subthreshold region.
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Figure 7-53 tpHL of current-starved inverter as a function of the control voltage. 

This results in large variations of the propagation delay, as the drive current is exponen­
tially dependent on the drive voltage. When operating in this region, the delay is very sen­
sitive to variations in the contra] voltage and hence to noise. 

Another approach to implement the delay cell is to use a differential element as shown in 
Figure 7-54a. Since the delay cell provides both inverting and noninverting outputs, an oscillator 
with an even number of stages can be implemented. Figure 7-54b shows a two-stage differential 
VCO, where the feedback loop provides 180° phase shift through two gate delays, one nonin­
verting and the other inverting, therefore forming an oscillation. The simulated waveforms of 
this two-stage VCO are shown in Figure 7-54c. The in-phase and quadrature phase outputs are 
available simultaneously. The differential-type VCO has better immunity to common mode noise 
(for example, supply noise) compared with the common ring oscillator. However, it consumes 
more power due to its increased complexity and its static current. 

7.7 Perspective: Choosing a Clocking Strategy 
A crucial decision that must be made in the earliest phases of chip design is to select the appro­
priate clocking methodology. The reliable synchronization of the various operations occurring in 
a complex circuit is one of the most intriguing challenges facing the digital designer of the next 
decade. Choosing the right clocking scheme affects the functionality, speed, and power of a 

circuit. 
A number of widely used clocking schemes were introduced in this chapter. The most 

robust and conceptually simple scheme is the two-phase master-slave design. The predominant 
approach is to use the multiplexer-based register, and to generate the two clock phases locally by 
simply inverting the clock. More exotic schemes such as the glitch register are also used in prac­
tice. However, these schemes require significant fine-tuning and must only be used in specific 
situations. An example of such is the need for a negative setup time to cope with clock skew. 

The general trend in high-performance CMOS VLSI design is therefore to use simple 
clocking schemes, even at the expense of performance. Most automated design methodologies 
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Figure 7-54 Differential delay element and VCO topology. 

371 

such as standard cell employ a single-phase, edge-tdggered approach, based on static flip-flops. 
Nevertheless, the tendency towards simpler clocking approaches also is apparent in high­
performance designs such as microprocessors. The use of latches between logic to improve cir­
cuit pe1formance is common as well. 

7.8 Summary 

This chapter has explored the subject of sequential digital circuits. The following topics were 
discussed: 

• The cross coupling of two inverters creates a bistable circuit, also known as a flip-flop. A 
third potential operation point turns out to be metastable; that is, any diversion from this 
bias point causes the flip-flop to converge to one of the stable states. 

• A latch is a level-sensitive memory element that samples data on one phase and holds data 
on the other phase. A register, on the other hand, samples the data on the rising or falling 
edge. A register has three important parameters: the setup time, the hold time, and the 
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such as standard cell employ a single-phase, edge-triggered approach, based on static flip-flops.
Nevertheless, the tendency towards simpler clocking approaches also is apparent in high-
performance designs such as microprocessors. The use of latches between logic to improvecir-
cuit performance is common as well.

7.8 Summary

This chapter has explored the subject of sequential digital circuits. The following topics were
discussed:

* The cross coupling of two inverters creates a bistable circuit, also known as aflip-flop. A
third potential operation point turns out to be metastable; that is, any diversion from this
bias point causes the flip-fiep to converge to one of the stable states.

* A Jatch is a devel-sensifive memory element that samples data on one phase and holds data
on the other phase. A register, on the other hand, samples the data on the rising orfalling
edge. A register has three important parameters: the selup time, the hold time, and the
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propagation delay. These parameters must be carefully optimized, because they may 

account for a significant portion of the clock period. 
• Registers can be siatic or dynamic. A static register holds state as long as the power supply 

is turned on. It is ideal for memory that is accessed infrequently (e.g., reconfiguration reg­

isters or control information). Static registers use either multiplexers or overpowering to 

enable the writing of data. 
• Dynamic memory is based on temporary charge storage on capacitors. The primary advan­

tage is reduced complexity, higher performance. and lower pmver consumption. However, 

charge on a dynamic node leaks away with time, and dynamic circuits thus have a mini­

mum clock frequency. Pure dynamic memory is hardly used anymore. Register circuits are 

made pseudostatic to provide immunity against capacitive coupling and other sources of 

circuit induced noise. 
• Registers can also be constructed by using the pulse or glitch concept. An intentional pulse 

(using a one-shot circuit) is used to sample the input around an edge. Sense-amplifier­

based schemes also are used to construct registers; they should be used as well when high­

performance or low-signal-swing signalling is required. 
• Choice of clocking style is an important consideration. Two-phase design can result in race 

problems. Circuit techniques such as C2MOS can be used to eliminate race conditions in 

two-phase clocking. Another option is to use true single-phase clocking. However, the rise 

time of clocks must be carefully optimized to eliminate races. 
• The combination of dynamic logic with dynamic latches can produce extremely fast com­

putational structures. An example of such an approach, the NORA logic style, is very 

effective in pipelined datapaths. 
• Monostable structures have only one stable state; thus, they are useful as pulse generators. 

• Astable multi vibrators, or oscil1ators~ possess no stable state. The ring oscillator is the 

best-known example of a circuit of this class. 
• Schmitt triggers display hysteresis in their de characteristic and fast transitions in their 

transient response. They are mainly used to suppress noise. 

7.9 To Probe Further 
The basic concepts of sequential gates can be found in many logic design textbooks (e.g., 

[Mano82] and [Hill74]). The design of sequential circuits is amply documented in most of the 

traditional digital circuit handbooks. [PartoviOl] and [Bemstein98] provide in-depth overviews 

of the issues and solutions in the design of high-performance sequential elements. 
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PART 

3 

A System 
Perspective 

"Art, it seems to me, should simplify. That, indeed, is very nearly the whole of the higher artistic 

process; finding what conventions of form and what of detail one can do without and yet pre­
serve the spirit of the whole." 

Willa Sibert Cather, 
On the Art of Fiction (l 920). 

"Simplicity and repose are the qualities that measure the true value of any work of art" 

Frank Lloyd Wright. 
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8.1 Introduction 
The dramatic increase in complexity of contemporary integrated circuits poses an enormous 
design challenge. Designing a multimillion-transistor circuit and ensuring that it operates cor­
rectly when the first silicon returns is a daunting task that is virtually lmpossible without the help 
of computer aids and well-established design methodologies. In fact, it has often been suggested 
that technology advancements might be outpacing the absorption bandwidth of the design com­

munity. This is articulated in Figure 8-1, which shows how IC complexity (in logic transistors) is 
growing faster than the productivity of a design engineer, creating a "design gap." One way to 
address this gap is to increase steadily the size of the design teams \\'Orking on a single project. 
We observe this trend in the high-performance processor world, where teams of more than 500 

people are no longer a surpiise. 
Obviously, this approach cannot be sustained in the long term-just imagine all the design 

engineers in the world working on a single design. Fortunately, about once in a decade we wit­
ness the introduction of a novel design methodology that creates a step function in design pro­
ductivity, helping to bridge the gap temporarily. Looking back over the past four decades, we 
can identify a number of these productivity leaps. Pure custom design was the norm in the early 
integrated circuits of the 1970s. Since then, programmable logic arrays (PLAs), standard cells, 
macrocells, module compilers, gate arrays, and reconfigurable hardware have steadily helped to 
ease the time and cost of mapping a function onto silicon. In this chapter, \Ve provide a descrip­
tion of some commonly used design implementation approaches. Due to the extensive nature of 
the field, we cannot be comprehensive-doing so would require a textbook of its own. Instead, 
we present a user perspective that provides a basic perception and insight into what is offered 
and can be expected from the different design methodologies. 

The prefe1Ted approach to mapping a function onto silicon depends largely upon the func­

tion itself. Consider, for instance, the simple digital processor of Figure 8-2. Such a processor 

10.000,000 

21 %/Yr. compound 

!000 

100 
Productivity growth rate 

!\-;~~~~~~~~~,~~~~~~,....,.., 10 

Figure 8-1 The design productivity gap. Technology (in logic transistors/chip) 
outpaces the design productivity (in transistors designed by a single design 
engineer per month). Source: SIA [SIA97]. 

Dell Ex. 1025
Page 267

 

378 Chapter 8 ° Implementation Strategies for Digital ICS

8.1 Introduction

The dramatic increase in complexity of contemporary integrated circuits poses an enormous
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that technology advancements might be outpacing the absorption bandwidth of the design com-
munity. This is articulated in Figure 8-1, which shows how IC complexity(in logic transistors}is
growing faster than the productivity of a design engineer, creating a “design gap.” One way te
address this gap is to increase steadily the size of the design teams working on a single project.
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people are ne longer a surprise.

Obviously, this approach cannot be sustained in the long term—just imagineail the design
engineers in the world working on a single design. Fortunately, about once in a decade we wit-
ness the introduction of a novel design methodology that creates a step function in design pro-
ductivity, helping to bridge the gap temporarily. Looking back over the past four decades, we
can identify a numberof these productivity leaps. Pure custom design was the normin the early
integrated circuits of the 1970s. Since then, programmable logic arrays (PLAs), standard cells,
macracells, module compilers, gate arrays, and reconfigurable hardware have steadily helped to
ease the time and cost of mapping a function onto silicon. In this chapter, we provide a descrip-
tion of some commonly used design implementation approaches. Due to the extensive nature of
the field, we cannot be comprehensive—doing so would require a textbook of its own. Instead,
we present @ user perspective that provides a basic perception and insight into whatis offered
and can be expected from the different design methodologies.

The preferred approach to mapping a function onto silicon depends largely upon the func-
tion itself. Consider, for instance, the simple digital processor of Figure 8-2. Such a processor
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Figure 81 The design productivity gap. Technology (in jogic transistors/chip)
outpaces the design productivity (in transistors designed by a single design
engineer per month). Source: SIA [SIA97].

Dell Ex. 1025

Page 267



8.1 Introduction 

i 
MEMORY -< 

/ 
f-

I ;:, 
f::: ' ;:, j-< I 

0 
f'O 
;:, 

J "' :"i 
DATAPATH 

1 
' 1-<-~ CONTROL 

Figure 8-2 Composition of a generic digital processor. The arrows 
represent the possible interconnections. 
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could be the brain of a personal computer (PC), or the heart of a compact-disc player or cellular 

phone. It is composed of a number of building blocks that occur in one form or another in almost 

every digital processor: 

• The datapath is the core of the processor; it is where all computations are performed. The 

other blocks in the processor are support units that either store the results produced by the 

datapath or help to determine what will happen in the next cycle. A typical datapath con­

sists of an interconnection of basic combinational functions, such as logic (AND. OR, 

EXOR) or arithmetic operators (addition, multiplication, comparison, shift). lntennediate 

results are stored in registers. Different strategies exist for the implementation of data­

paths-sh·uctured custom cells versus automated standard cells, or fixed hard-wired versus 

flexible field-programmable fabric. The choice of the implementation platform is mostly 

influenced by the trade-off between different design metrics such as area, speed, energy, 

design time, and reusability. 

• The control module determines what actions happen in the processor at any given point 

in time. A controller can be viewed as a finite state machine (FSM). It consists of registers 

and logic, and thus is a sequential circuit. The logic can be implemented in different 

\\lays-either as an interconnection of basic logic gates (standard cells), or in a more struc­

tured fashion using programmable logic arrays (PLAs) and instruction memories. 

• The memory module serves as the centralized data storage area. A broad range of differ­

ent memory c1asses exist. The main difference between those classes is in the way data can 

be accessed, such as ''read only" versus "read-writet sequential versus random access, or 

single-ported versus multiported access. Another way of differentiating between memories 

is related to their data-retention capabilities. Dynamic memory structures must be 

refreshed periodically to keep their data, while static memmies keep their data .as long as 

the power source is turned on. Finally, nonvolatile memories such as flash memories con­

serve the stored data even when the supply voltage is removed. A single processor might 

combine different memory classes. For example, random access memory can be used to 

store data, and read-only memory may store instructions. 
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• The interconnect network joins the different processor modules to one another, while the 
input/output circuitry connects to the outside world. For a Jong time. interconnections 
were an afterthought in the design process. Unfortunately, the wires composing the inter­
connect network are less than idea] and present a capacitive, resistive, and inductive load 
to the driving circuitry. As die sizes grow larger, the length of the interconnect wires also 
tends to grow. resulting in increasing values for these parasitics. Today, automated or 

slrnctured design methodologies are being introduced that ease the deployment of these 
interconnect structures. Examples include on-chip busses, mesh interconnect structures, 
and even complete nehi'orks on a chip. Some components of the interconnect network typ­

ically are abstracted away on schematic block diagrams, such as the one shown in 
Figure 8-2, yet are of critical importance to the well-being of the design. These include the 
power- and clock-distribution networks. Early planning of these '"service" networks can 
go a long way toward ensuring the correct operation of the integrated circuit. 

The structure of Figure 8-2 may be repeated many times on a single die. Figure 8-3 shows 
an example of a system on a chip, which combines all the functions needed for the realization of 
a complete high-definition digital TV set. It combines two processors, memory units, specialized 
accelerators for functions such as MPEG (de)coding and data filtering, as well as a range of 
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Figure 8-3 The "Nexperia" system on a chip [Philips99]. This single chip combines a 
general-purpose microprocessor core, a VLIW (very large instruction word) signal 
processor, a memory system, an MPEG coprocessor, multiple accelerator units, 
and input/output peripherals, as well as two system ousses. 
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connect network are less than ideal and present a capacitive, resistive, and inductive load
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power and clock~-distribution networks. Early planning of these “service” networks can
go along way toward ensuring the correct operation of the integrated circuit.
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an example of a sysren? on a chip, which combines all the functions neededforthe realization of
acomplete high-definition digital TV set. It combines two processors, memory units, specialized
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peripheral units. Other applications such as wfreless transceivers or hard-disk read/write units 
may even include some sizable analog modules. 

Choosing an effective implementation approach strongly depends upon the function of the 
modules under consideration. For example, memory units tend to be very regular and structured. 
A module compiler that stacks cells in an arraylike fashion is thus the preferred implementation 
approach. Controllers, on the other hand, tend to be unstructured, and other implementation 

approaches are desirable. The choice of the implementation strategy can have a tremendous 
effect on the quality of the final product. The challenge for the designer is to pick the style that 
meets the product specifications and constraints. What works weH for one design may well be a 

disaster for another one. 

Example 8.1 Trading Off Energy Efficiency and Flexibility 

A design that embraces flexibility (or programmability) is very attractive from an applica­
tion perspective. It allows for "late binding," in which the application can still be changed 
after the chip has gone to fabrication. Flexibility makes it possible to reuse a single design 
for multiple applications, or to upgrade the firmware of a component in the field, reducing 

the risk for the manufacturer. In contrast, a hard-wired component is totally fixed at manu­
facturing time and cannot be modified afterwards. 

So, why not use flexible or programmable components for every possible design? As 
always, there is no free lunch. Flexibility comes at a price in both performance and energy 

efficiency. Providing programmability means adding overhead to implementation. For 
example, a programmable processor uses stored instructions and an instruction decoder to 
make a single datapath perform multiple functions. I\1ost designers are not aware of the 
large cost of flexibility. The impact is illustrated in Figure 8-4, which compares the energy 

100-1000 

None Somewhat 
flexible 

Fully Flexibility 
flexible ( or application scope) 

Figure 8-4 Trading off flexibility versus energy efficiency (in MOPS/mW or millions of op­
erations per mJ of energy) for different implementation styles. The numbers were collected 
for a 0.25 µm CMOS process [RabaeyOO]. 
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peripheral units. Other applications such as wireless transceivers or hard-disk read/write units
may even include some sizable analog modules.

Choosing an effective implementation appreach strongly depends upon the function ofthe
modules under consideration. For example, memory units tend to be very regular and structured.

A module compilerthat stacks cells in an arraylike fashion is thus the preferred implementation
approach. Controllers, on the other hand, tend to be unstructured, and other implementation

appreaches are desirable. The choice of the implementation strategy can have a tremendous
effect on the quality of the final product. The challenge for the designer is to pick the style that
meets the product specifications and constraints. What works well for one design may well be a
disaster for another one.

Example $8.1 Trading Off EnergyEfficiency and Flexibility

A design that embraces flexibility tor programmability) is very attractive from an applica-
tion perspective. It allows for “late binding,” in which the application can still be changed
after the chip has gone to fabrication. Flexibility makes it possible to reuse a single design
for multiple applications, or tc upgrade the firmware of a componentin the field, reducing

the risk for the manufacturer. In contrast, a hard-wired componentis totally fixed at manu-
facturing time and cannot be modified afterwards.

So, why not use flexible or programmable components for every possible design? As
always, there is ne free lunch. Flexibility comes at a price in both performance and energy
efficiency. Providing programmability means adding overhead to implementation. For

example, a programmable processor uses stored instructions and an instruction decader to
make a single datapath perform multiple functions. Most designers are not aware of the

large cost of flexibility. The impact is Hlustrated in Figure 8-4, which compares the energy
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 EnergyEfficiency(inMOPS/mW) =Embeddedmicroprocessor

None Somewhat Pally Flexibility
flexible flexible {or application scope}

Figure 8-4 Trading off flexibility versus energy efficiency (in MOPS/mW or millions of op-
érations per mJ of energy) for different implernentation styles. The numbers were collected
for a 0.25 umm CMOS process [Rabaey60!.
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efficiency-the number of operations that can be perfonned for a given amount of 
energy-of various implementation styles versus their flexibility-that is, the range of 
applications that can be mapped onto them. A staggering three orders of magnitude in 
variation can be observed. This clearly demonstrates that hard-wired or implementation 
styles with limited flexibility (such as configurable or parameterizable modules) are pref­
erable when energy efficiency is a must 

In this and the following three chapters, we discuss, respectively, implementation tech­
niques for random logic and controllers (this chapter), interconnect (Chapter 9), datapaths 
(Chapter l l), and memories (Chapter 12). Observe that the choice of the implementation 
approach can have a tremendous effect on the quality of the final product. Important aspects in 
the design of complex systems consisting of multiple blocks and thus deserving special attention 
are synchronization and timing (Chapter !Oi and the power disuibution network (Chapter 9). 
The distribution of clock signals and supply current has become one of the dominant problems 
in the design of state-of-the-an processors. A number of Design Methodology Inserts, inter­
spersed between the chapters, address the design challenge posed by these complex components, 
and introduce the advanced design automation tools that are available to the designer. Inserts F, 
G, and H discuss design synthesis, verification, and test. respectively. 

8.2 From Custom to Semicustom and Structured-Array 
Design Approaches 

The viability of a microelectronics design depends on a number of ( often) conflicting factors, 
such as performance in terms of speed or power consumption, cost, and production volume. For 
example, to be competitive in the market, a microprocessor has to excel in performance at a low 
cost to the customer. Achieving both goals simultaneously is only possible through Jarge sales 
volumes. The high development cost associated with high-perfonnance design is then amortized 
over many parts. Applications such as supercomputing and some defense applications present 
another scenario. \Vith ultimate performance as the primary design goal, high-performance cus­
tom design techniques often are desirable. The production volume is small, but the cost of elec­
tronic parts is only a fraction of the overall system costs and thus not much of an issue. Finally, 
reducing the system size through integration, not performance, is the major objective in most 
consumer applications. Under these circumstances, the design cost can be reduced substantially 
by using advanced design-automation techniques, which compromise performance, but mini­
mize design time. As noted in Chapter I, the cost of a semiconductor device is the sum of two 

components: 

• The nonrecurring expense (NRE), which is incurred only once for a design and includes 
the cost of designing the part. 

• The production cost per part, which is a function of the process compiexity, design area, 

and process yield. 
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Digital Circuit lmplcmentalion Approaches I 
' ' 
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I Cell based I I Array ba5ed I 
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Compik<l cells (GuteArrnys) (FPGA's) 

Figure 8-5 Overview of implementation approaches !or digital 
integrated circuits (after [DeMicheli94]). 

383 

These economic considerations have spuffed the development of a number of distinct implemen­

tation approaches ranging from high-performance, handcrafted design to fully programmable, 

medium-to-low performance designs. Figure 8-5 provides an overview of the different method­

ologies. In the sections that follow, we discuss first the custom design methodology, followed by 

the semicustom and aiTay-based approaches. 

8.3 Custom Circuit Design 

When performance or design density is of primary importance, handcrafting the circuit topology 
and physical design seems to be the only option. Indeed, this approach was the only option in the 
early days of digital microelectronics, as is adequately demonstrated in the design of the Intel 

4004 microprocessor (see Figure 8-Sa). The labor-intensive nature of custom design translates 
into a high cost and a long time to market. Therefore, it can only be justified economically under 
the following conditions: 

• The custom block can be reused many times (for example, as a library cell). 

• The cost can be amortized over a large volume. Microprocessors and semiconductor mem­
ories are examples of applications in this class. 

• Cost is not the ptime design criterion, as it is in supercomputers or hypersupercomputers. 

With continuous progress in the design-automation arena, the share of cnstom design reduces 

from year to year. Even in the most advanced high-perfonnance microprocessors, such as the 
Intel Pentium® 4 processor (see Figure 8-6), virtually aH portions are designed automatically 

using semicustom design approaches. Only the most performance-critical moduJes such as the 
phase locked-loops and the clock buffers are designed manually. In fact, library cell design is the 

only area where custom design still th,ives today. 

The amount of design automation in the custom-design process is minimal, yet some 
design tools have proven indispensable. In concert with a wide range of verification, simulation. 
extraction and modeling toois, layout editors. design-rule and electrical-mle checkers-as 
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Figure 8·6 Chip microphotograph of Intel Pentium® 4 processor. It contains 
42 million transistors, designed in a 0.18-µm CMOS technology. Its first 
generation runs at a clock speed of 1.5 GHz (Courtesy Intel Corp.). 

des.cribed earlier in Design Methodology Insert A-are at the core of every custom-design envi­
ronment. A excellent discussion of the opportunities and challenges of custom design can be 

found in [ Grundman97]. 

8.4 Cell-Based Design Methodology 

Since the custom-design approach proves to be prohibitively expensive, a wide variety of design 
approaches have been introduced over the years to shorten and automate the design process. 
This automation comes at the price of reduced integration density and/or performance. The fol­

lowing rule tends to hold: the shorter the design time, the larger is the penalty incurred. In 
this section, we discuss a number of design approaches that still require a full run through the 

manufacturing process for every new design. The array-based design approach discussed in the 
next section cuts the design time and cost even further by requiring only a limited set of extra 
processing steps or by eliminating processing completely. 

The idea behind cell-based design is to reduce the implementation effort by reusing a lim­

ited library of cells. The advantage of this approach is that the cells only need to be designed and 
verified once for a given technology, and they can be reused many times, thus amortizing the 
design cost. The disadvantage is that the constrained nature of the library reduces the possibility 
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Figure 8-6 Chip microphotograph of Intel Pentium® 4 processor. ft contains
42 million transistors, designed in a 6.18-um GMOS technology.Its first
generation runs at a clock speed of 1.5 GHz {Courtesy Intel Corp.).

described earlier in Design Methodology Insert A—are at the core of every custom-design envi-

ronment. A excellent discussion of the oppertunities and challenges of custom design can be
found in [Grundman97].

8.4 Cell-Based Design Methodology

Since the custom-design approach proves to be prohibitively expensive, a wide variety of design
approaches have been introduced over the years to shorten and automate the design process.

This automation comes at the price of reduced integration density and/or performance. The fol-
lowing rule tends to hold: the shorter the design time, the larger is the penalty incurred, In
this section, we discuss a number of design approaches that still require a full run through the
manufacturing process for every new design. The array-based design approach discussed in the
next section cuts the design time and cost even further by requiring only a limited set of extra

precessing steps or by eliminating processing completely.
The idea behind cell-based design is to reduce the implementation effort by reusing a lim-

ited library of cells. The advantage ofthis approach is that the cells only need to be designed and
verified once for a given technology, and they can be reused many times, thus amortizing the

design cost. The disadvantage is that the constrained nature of the library reduces the possibility
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8.4 Cell-Based Design Methodology 385 

of fine-tuning the design. CeH-based approaches can be partitioned into a number of classes 
depending on the granularity of the library elements. 

8.4.1 Standard Cell 

The standard-cell approach standardizes the design entry level at the logic gate. A library con­
taining a wide selection of logic gates over a range of fan-in and fan-out counts is provided. 
Besides the basic logic functions, such as inverter, AND/NAND, OR/NOR, XOR/XNOR, and 

flip-flops, a typical library also contains more complex functions, such as AND-OR-INVERT, 
MUX. full adder, comparator, counter, decoders, and encoders. A design is captured as a sche­
matic containing only cells available in the library, or is generated automatically from a higher 
level description language. The layout is then automatically generated. This high degree of auto­
mation is made possible by placing strong restrictions on the layout options. In the standard-cell 
philosophy, cells are placed in rows that are separated by routing channels, as illustrated in 

Figure 8-7. To be effective, this requires that all cells in the library have identical heights. The 
width of the cell can vary to accommodate for the variation in complexity between the cells. As 
illustrated in the drawing, the standard-cell technique can be intermixed with other layout 
approaches to allow for the introduction of modules such as memories and multipliers that do 
not adapt easily or efficiently to the logic-cell paradigm. 

An example of a design implemented in an early standard-cell design style is shown in 
Figure 8-8a. A substantial fraction of the area is devoted to signal routing. The minimization of 
the interconnect overhead is the most important goal of the standard-cell placement and routing 
tools. One approach to minimizing the wire length is to introduce feed-through cells (Figure 8-7) 

that make it possible to connect between cells in different rows without having to route around a 
complete row. A far more important reduction in wiring overhead is obtained by adding more 

Fecdthrough cell 
\ 

( 

Logic cell 

~--+- Routing 
channel 

Functional 
module 
(RAM. 
multiplier •... ) 

Figure 8-7 Standard-cell layout methodology. 
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of fine-tuning the design. Ceil-based approaches can be partitioned into a numberof classes
depending on the granularity of the library elements.

$4.1 Standard Cell

The standard-cell approach standardizes the design eniry level at the logic gate. A library con-

taining a wide selection of logic gates over a range of fan-in and fan-out counts is provided.
Besides the basic logic functions, such as inverter, AND/NAND, OR/NOR, XOR/XNOR, and

flip-flops, a typical library also contains more complex functions, such as AND-OR-INVERT,

MOX, full adder, comparator, counter, decoders, and enceders. A design is captured as a sche-
matic containing only cells available in the library, or is generated automatically from 2 higher
level description language. The layout is then automatically generated. This high degree of auto-
mation is made possible by placing strong restrictions on the layout options. In the standard-cell

philosophy, cells are placed in rows that are separated by routing channels, as illustrated in
Figure 8-7. To be effective, this requires that all cells in the library have identical heights. The
width of the cell can vary tc accommodate for the variation in complexity between the cells. As
illustrated in the drawing, the standard-celi technique can be imtermixed with other layout
approaches to allowfor the intreduction of modules such as memories and multipliers that do
not adapt easilyor efficiently te the logic-cell paradigm.

An example of a design implemented in an early standard-cell design siyle is shown in

Figure 8-8a. A substantial fraction of the area is devoted to signal routing. The minimization of
the interconnect overhead is the most important goal of the standard-cell placement and routing
tools. One approach to minimizing the wire length is to introduce feed-through cells (Figure 8-7}
that make it possible to connect between cells in different rows without having to route around a

complete row. A far more important reduction in wiring overhead is obtained by adding more
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Figure 8-7 Standard-cell layout methodology.
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(a) 

Figure 8-8 The evolution of standard-cell design. (a) Design in a three-layer metal 
technology. Wiring channels represent a substantial amount of the chip area. 
(b) Design in a seven-layer metal technology. Routing channels have virtually 
disappeared, and all interconnection is laid on top of the logic cells. 

(b) 

interconnect layers. The seven or more metal layers that are available in contemporary CMOS 

processes make it possible to all but eliminate the need for routing channels. Virtually all signals 

can be routed on top of the cells, creating a truly three-dimensional design. Figure 8-8b shows a 

fraction of a standard-cell design, implemented by using seven metal layers. The design achieves 

more than 90% density, which means that virtually all of the chip area is covered by logic cells, 

and that only a limited amount of the area is wasted for interconnect 
The design of a standard-cell library is a time-intensive undertaking that, fortunately, can 

be amortized over a large number of designs. Determining the composition of the library is a 

nontiivial task. A pertinent question is, A...re we better off with a small library in which most 

ceHs have a limited fan-in, or is it more beneficial to have a large librmy with many versions of 

every gate (e.g., containing two-, three-, and four-input NAND gates, and different sizes for 

each of these gates)? Since the fan-out and load capacitance due to wiring are not known in 

advance, it used to be common practice to ensure that each gate had large current-driving capa­

bilities, (i.e., employs large output transistors). While this simplifies the design procedure, it 

has a detrimental effect on area and power consumption. Today's Hbrmies employ many ver­

sions of each cell, sized for different driving strengths, as well as performance and power con­

sumption levels. It is left to the synthesis tool to select the correct cells, given speed and area 

requirements. 
To make the library-based approach work, a detailed documentation of the cell library is 

an absolute necessity. The information should not only contain the layout, a description of func­

tionality and terminal positioning, but it also must accurately characterize the delay and power 

consumption of the cell as a function of load capacitance and the input rise and fall times. Gen-
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Figure 8-8 The evolution of standard-cell design. (a} Design in a three-iayer metal
technology. Wiring channels represent a substantial amountof the chip area.
(b) Design in a seven-layer metal technology. Routing channels have viriually
disappeared, and all interconnection is laid on top of the logic celis.

interconnect layers. The seven or more metal layers that are available in contemporary CMOS
processes make it possible to all but eliminate the need for routing channels. Virtually all signals
can be routed on top ofthe cells, creating a truly three-dimensional design. Figure 8-8b shows a
fraction of a standard-cell design, implemented by using seven metal layers. The design achieves

more than 90% density, which means that virtually all of the chip area is covered by logic cells,
and that only a limited amountof the area is wasted for interconnect.

The design of a standard-cell library is a time-intensive undertaking that, fortunately, can
be amortized over a large number of designs. Determining the composition of the library is a
nontrivial task. A pertinent question is, Are we betier off with a small Hbrary in which most
cells have a limited fan-in, or is it more beneficial to have a large library with many versions of

every gate (e.g., containing two-, three-, and four-input NAND gates, and different sizes for
each of these gates}? Since the fan-out and Joad capacitance due to wiring are net known in
advance, it used to be common practice to ensure that each gate had large current-driving capa-
bilities, (i.c., employs large output transistors). While this simplifies the design procedure, it
has a detrimental effect on area and power consumption. Toeday’s Hbraries employ many ver-
sioas of each cell, sized for different driving strengths. as weil as performance and power Con-

sumption levels. It is left fo the synthesis tool to select the correct cells, given speed and area
requirements.

To make the library-based approach work, a detailed documentation of the cell library is
an absolute necessity. The information should not only contain the layout, a description of fanc-
tionality and terminal positioning, but it also must accurately characterize the delay and power
consumption of the cell as a function of load capacitance and the input rise and fall times. Gen-
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erating this information accounts for a large portion of the library generation effort. How to 
characterize logic and sequential cells is the topic of "Design Ivtethodology Insert E." 

Example 8.2 A Three-Input NAND-Gate Cell 

To illustrate some of the preceding observations, the design of a three-input NAND stan­
dard-cell gate, implemented in a 0.18 µm CMOS technology, is depicted in Figure 8-9. 
The library actually contains five versions of the cell, supporting capacitive loads from 
0.18 pF up to 0. 72 pF and ranging in area from 16.4 µm 2 to 32.8 µm2• The cell shown rep­
resents the low-performance, energy-efficient design corner, and uses high-threshold tran­
sistors to reduce leakage. The NMOS and PMOS transistors in the pull-down (-up) 
networks are both sized at a (W/L) ratio of approximately 8. 

Figure 8-9 Three-input NANO standard cell (Courtesy ST Microelectronics). 

Observe how the layout strategy follows the approach outlined in Figure D-2. Sup­
ply Jines are distributed horizontally and shared between cells in the same row. Input sig­
nals are wired vertically using polysilicon. The input/output terminals are located 
throughout the cell body (as exemplified by the pin terminal in the layout drawing), in line 
with the over-the-cell wiring approach of today's standard-cell methodology. 
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erating this information accounts for a large portion of the library generation effort. How to
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The standard-cell approach has become immensely popular, and is used for the implemen­

tation of virtually an logic elements in today's integrated circuits. The only exceptions are when 

extreme high performance or low energy consumption is needed, or when the structure of the 

targeted function is very regular (such as a memory or a multiplier). The success of the standard­

cell approach can be attributed to a number of developments. including the foHowing: 

• The increased quality of the automatic cell placement and routing tools in conjunction 

with the availabHity of multiple routing layers. In fact, it has been shown in a number of 

studies that the automated approach of today rivals if not surpasses manual design for 

complex, irregular logic circuits. This is a major departure from a couple of years ago, 

when automated layout carried a large overhead. 

• The advent of sophisticated logic-synthesis tools. The logic-synthesis approach allows 

for the design to be entered at a high level of abstraction using Boolean equations, state 

machines, or register-transfer languages such as VHDL or Verilog. The synthesis tools 

automatically translate this specification into a gate netlist, minimizing a specific cost 

function such as area, delay, or power. Early synthesis tools-such as those used in the 

first half of the l 980s-focused mostly on two-level logic minimization. While this 

enabled automatic design mapping for the first time, it limited the area efficiency and the 

pe1formance of the generated circuits. It is oniy with the arrival of multilevel logic symhe­
sis in the late l 980s that automated design generation has really taken off. Today, virtually 

no designer uses the standard-cell approach without resorting to automatic synthesis. A 

more detailed description of the design synthesis process can be found in "Design Meth­

odology lnse1t F' which follows this chapter. 

In the early days of MOS integrated circuit design, iog[c design and optimization was a manual and lahor­
intensive task. Karnaugh maps and Quine-McCluskey tables were the techniques of choice at that time. In 
the late 1970s, a first approach toward automating the tedious process of designing logic circuits emerged, 
triggered by two important developments; 

• Rather than using the ad hoc approach to iaying out logic circuits, a regular srmctured design 
approach was adopted called the Programmable logic Array or PLA. This methodology enabled the 
automatic layout generation of two-level logic circuits, and, more importantly, it did so in a predictR 

able fashion in terms of area and performance. 
• The emergence of automated logic synthesis tools for lwo-Jevel logic [Brayton84] made it possible 

to translale any possible Boolean expression into an optimized two-level (sum-of-products or prod­
uct-of-sums} logic structure. Tools for the synthesis of sequential circuits followed shortly thereafter. 

The idea of structured logic design gained a rapid foothold, and already in the mid-1980s it was 
adopted by major microprocessor design companies such as Intel and DEC. While PLAs are only sparingly 
used in today's semicustom logic design, the topic deserves some discussion (especially since PLAs might 
be poised for a come-back). 

The concept is best explained with the aid of an example. Consider the foltmving logic functions, for 
which we have transformed the equations into the sum-of-products format by using Jogic manipulations: 
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The standard-cell approach has become immensely popular, and is used for the implemen-
tation of virtually all logic elements in today’s integrated circuits. The only exceptions are when
extreme high performance or low energy consumption is needed, or when the structure of the
targeted function is very regular (such as a memory or a multiplier). The success of the standard-
cell approach can be attributed to a number of developments,including the following:

+ The increased quality of the automatic cell placement and routing tools in conjunction
with the availability of multiple routing layers. In fact, it has been shown in a numberof
studies that the automated approach of todayrivals if not surpasses manual design for
complex, irregular logic circuits. This is a major departure from a couple of years ago,
when automated layout carried a large overhead.
The advent of sophisticated logic-synihesis tools. The logic-synthesis approach allows
for the design to be entered at a high level of abstraction using Boolean equations,state
machines, or register-transfer languages such as VHDLor Verilog. The synthesis tools
automatically translate this specification inte a gate netlist, minimizing a specific cost
function such as area, delay, or power. Early synthesis tools---such as those used in the
first half of the 1980s—focused mostly on two-level logic minimization. While this
enabled automatic design mapping for the first time, it limited the area efficiency and the
performance of the generated circuits. It is only with the arrival of mudélevel logic synthe-
sis in the late 1980s that automated design generation has really taken off. Today, virtually
no designer uses the standard-cell approach without resorting to automatic synthesis. A
more detailed description of the design synthesis process can be found in “Design Meth-
odology Insert F’ which follows this chapter.

 
In the early days of MOS integrated circuit design, logic design and optimization was a manual and Jabor-
intensive task. Karnaugh maps and Quine-McCluskey tables were the techniques of choiceaf thaf time. in
the late 1970s, a first approach toward automating the tedious process of designing logic circuits emerged,
wiggered by two important developments:

* Rather than using the ad hec approach io Jaying out logic circuits, a regular structured design
approach was adopted called the Progranrnable Logic Array or PLA. This methodology enabled the
automatic layout generation of two-level logic circuiis, and, more importantly, it did so in a predict-
able fashion in terms of area and performance.

= The emergence of automated logic synthesis tools for bwo-level logic [Brayton$4] made it possible
to translate any possible Boolean expression into an optimized two-level {sum-ol-preducis or prod-
uct-ef-sums} logic structure. Tools for the synthesis of sequential circuits followed shortly thereafter.

The idea of structured logic design gained a rapid foothold, and already in the mid-1980s it was
adopted by major microprocessor desiga companies such as Intel and DEC. While PLAs are only sparingly
used in today’s semicustom logic design, the topie deserves some discussion (especially since PLAs might
be poised for a come-back).

The conceptis best explained with the aid of an example. Considerthe following logic functions, for
which we have transformed the equations into the sam-of-products format by using logic manipulations:
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Figure 8-10 Regular two-level implementation of Boolean functions. 

One import.ant advantage of this representation is that a regular realization is easily conceived, as 
illustrated in Figure 8- 10. A first layer of gates implements the AND operations-also called product terms 
or minterms-while a second layer realizes the OR functions, called the sum terms. Hence, a PLA is a rect­
angular macrocell, consisting of an array of transistors aligned to fom1 rows in correspondence with prod­
uct terms, and columns in con-espondencc with inputs and outputs. The input and output columns partition 
the array into two subarrays, called AND and OR planes, respectively. 

The schematic of Figure 8- l O is not direclly realizable since single-layer logic functions in CMOS 
are always inverting. With a few simple Boolean manipulations. Eq. (8.1) can be re\vriuen into a NOR­
NOR fonnat: 

(8.2) 

Problem 8.1 1\vo-Level Logic Representations 

lt is equally conceivable to represent Eq. (8.1) in a NAND-NAND format. In general, the NOR-NOR rep­
resentation is preferred due to the prohibitively slow speed of large fan-in NAND gates. The NAND­
NAND configuration is very dense, however, and thus can help lo reduce pm~,1er consumption. Derive the 
NAND-NAND representation for the example of Eq. (8.2). 

Translating a set oftwo-level logic functions into a physical design now boils down toa "programming" 
task-that is, deciding where to place transistors in both the AND and che OR planes. This task is easily auto­
mated-hence, the early success of PLAs. An automatically generated PLA implementation of the logic func­
tions described by Eq. (8.2) is shown in Figure 8-11. Unfortunately, the regular structure. while predictable, 
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Figure 8-10 Regular two-level implementation of Boolean functians.

One important advantage of this representation is that a regular realization is easily conceived, as
illustrated in Figure 8-10. A first layer of gates implements the AND operations—also calledproduct terms
or minternis—wihile a second layer realizes the OR functions, called the sumterms, Hence, a PLA is a rect-
angular macrocell, consisting of an array of transistors aligned to form rows in correspondence with prod-
uct terms, and columns in correspondence with inputs and outputs. The input and output columnspartition
the array into two subarrays, called AND and OR planes, respectively.

The schematic of Figure 8-10 is not directly realizable since single-layer logic functions in CMOS
are always inverting. With a few simple Boolean manipulations, Eq. (8.1) can be rewritten into a NOR-
NOR format:

fg = pte) t% 

Py = Gig t oy + te} + 45+ (4g + 2,)

Probiem 3.1 Two-Level Logic Representations

itis equally conceivable to represené Eq. (8.1) in a NAND-NAND format. In general, the NOR-NORrep-
resentation is preferred due to the prohibitively slow speed of large fan-in NAND gates. The NAND—
NAND configuration is very dense, however, and thus can help to reduce power consumption. Derive the
NAND-NANDrepresentation for the example of Eq. (8.2).

Translating a set oftwo-level logic functions into a physical design now boils down toa “programming”
task—thaiis, deciding where to place transistors in both the AND and the OR planes. This task is easily auto-
mated—hencee, the early success of PLAs. An automatically generated PLA implementation ofthe logic func-
tions described by Eq. (8.2) is shown in Figure 8-11. Unfortunately, the regular structure, while predictable,
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AND plane OR plane GND 

I lo J. 
Pull-up devices Pull-up devices 

Figure 8-11 PLA layout implementing Eq. (8.2). 

brings with ita lot of overhead in area and delay (asisquite visible in the layout), which was its ultimate demise 
in the semicustom design world. Those who are curious on how these AND and OR planes are actually imple­
mented must wait until we get to Chapter 12, where we discuss the transistor-level implementation of PLAs. 

Ill 

8.4.2 Compiled Cells 

The cost of implementing and characterizing a library of cells should not be underestimated. 
Today's libraries contain from several hundred to more than a thousand cells. These cells have to 
be redesigned wilh every migration to a new technology. tv1oreover, changes happen during the 
development of a single technology generation. For example, minimum me-tai widths or contact 
rules often are changed to improve yield. As a result, the complete library has to be laid out and 

characterized again. In addition. even an extensive library has the disadvantage of being discrete, 
which means that the number of design options is limited. \Vhen targeting pe1formance or 
power, customized cells with optimized transistor sizes are attractive. With the increased impact 
of interconnect load, providing cells with adjusted driver sizes is an absolute necessity from both 
a performance and a power perspective [Sylvester98]-hence, the quest for automated (or com­

piled) cell generation. 
A number of automated approaches have been devised that generate cell layouts on the fly, 

given the transistor netlists, but high-quality automatic cell layout has remained elusive. Earlier 
approaches relied on fixed topologies. Later approaches allowed for more flexibility in the tran­
sistor placement (e.g., [Hill85]). Layout densities close to what can be accomplished by a human 
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Figure 8-11 PLA layout implementing Eq. (8.2).

brings with ita Jot ofoverheadin area and delay(asis quite visible in the layout), which wasits ultimate demise
in the semicustom design world. Those wheare curious on hewthese AND and ORplanesare actually imple-
mented must wait until we get to Chapter 12, where we discuss the transistor-level implementation of PLAs.

a

8.4.2 Compiled Cells

The cost of implementing and characterizing a library of cells should not be underestimated.
Today’s libraries contain from several hundred to more than a thousand cells. These cells have te
be redesigned with every migration to a new technology. Moreover, changes happen during the
development of a single technology generation. For example, minimum metal widths or contact
rules often are changed to improve yield. As a result, the complete library has to be laid out and
characterized again. In addition, even an extensivelibrary has the disadvantage of being discrete,
which means that the number of design options is limited. When targeting performance or
power, customized cells with optimized transistorsizes are attractive. With the increased impact
of interconnect load, providing cells with adjusted driver sizes is an absolute necessity from both
a performance and a powerperspective {Sylvester98]—hence, the quest for automated {or com-
piled} cell generation.

A numberof automated approaches have been devised that generate cell layouts on the dy,
given the transistor netlists, but high-quality automatic cell layout has remained elusive. Earlier
approachesrelied on fixed topologies. Later approaches allowed for more flexibility in the tean-
sistor placement(e.g., [Hill85]). Layout densities close to what can be accomplished by a human
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designer are now within reach, and a number of cell-generation tools are commercially avail­
able-for example [CadabraOI, ProlificOI]: 

Example 8.3 Automatic Cell Generation 

The flow of a typical cell-generation process is illustrated with the example of a simple 
inverter (using the Abracad tool [CadabraOl]i. 

• The cell schematics are developed first. The Spice netlist is the starting point for the 
automatic layout generation. The generator examines the netlist and starts with tran­
sistor geometries. In case of a CMOS inverter, the cell contains just two transistors 
(see Figure 8-12a) . 

• The tool proceeds along the same lines that a designer would follow. The transistors 
are placed in a cell architecture with predefined topology mies (Figure 8-12b ). This 
architecture is common for all the ceHs in the library, including the cell height. 
power rails, pin placements, routing and contact styles. 

• The cell is routed symbolically (Figure 8-12c). 
• The routing is rearranged, and the cell is compacted to meet design rules and library 

preferences (Figure 8-12d). 
• The final step cleans the cell of any remaining design rule errors and produces the 

final layout (Figure 8-l2e). 

(a) (b) (c) (d) (c) 

Figure 8-12 Automatic cell layout (a) initial transistor geometries, (b) placed transistors 
with flylines indicating intended interconnections, (c) initially routed cell, and (d) compacted 
cell, (e) finished cell. 
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designer are now within reach, and a numberof cell-generation tools are commercially avail-

able—for example [CadabraQt, ProlificOt):

Example 8.3 Automatic Cell Generation

The flow of a typical cell-generation process is illustrated with the example of a simple
inverter (using the Abracad tool [Cadabra(ii]).

« The cell schematics are developed first.The Spice netlist is the starting point for the
automatic layout generation, The generator examines the netlist and starts with tran-
sistor geometries. In case of a CMOSinverter, the cell contains just two transistors

{see Figure 8-12a) .
* The tool proceeds along the same lines that a designer would follow. The transistors

are placed in a cell architecture with predefined topology rules (Figure 8-126). This

architecture is common for all the cells in the library, including the cell height,

powerrails, pin placements, routing and contact styles.

* Thecell is routed symbolically (Figure 8-12c).
* The routing is rearranged, and the cell is compacted to meet design rules and Hbrary

preferences (Figure 8-12d).

* The final step cleans the cell of any remaining design rule errors and produces the
final layout (Figure 8-12).

 [ooatenenenanenanaraantunanianintananeninanatin    
(a) (b) ©)

Figure 8-12 Automatic cell layout (a) inital transistor geometries, (b) placed transistors
with flylines indicating intended interconnections, (¢)initially rauted cell, and (d} campacted
cell, (e) finished cell.
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8.4.3 Macrocells, Megacells and Intellectual Property 

Standardizing at the logic-gate !eve) is attractive for random logic functions, but it turns out to be 

inefficient for more complex structures such Us multipliers, data paths, memories, and embedded 

microprocessors and DSPs. By capturing the specific nature of these blocks, implementations 

can be obtained that outperform the results of the standard ASIC design process by a wide mar­

gin. Cells that contain a complexity that surpasses what is found in a typical standard-cell library 

are called macmcel/s (or, sometimes, megacells). Two types of macrocells can be identified: 

The Hard Macro represents a module with a given functionality and a predetermined physical 

design. The relative location of the transistors and the wiring \.Vithin the modnie is fixed. In 

essence, a hard macro represents a custom design of the requested function. In some cases, the 

macro is parameterized, which means that versions with slightly different properties are avail­

able or can be generated. I\1ultipliers and memories are examples: A hard multiplier macro may 

not only generate a 32 x l 6 multiplier, but also an 8 x 8 one. 

The advantage of the hard macro is that it brings with it all the good properties of custom 

design: dense layout, and optimized and predictable performance and power dissipation. By 
encapsulating the function into a macrornodule, it can be reused over and over in different 

designs. This reuse helps to offset the initial design cost. The disadvantage of the hard macro is 

that it is hard to porl the design to other technologies or to other manufacturers. For every new 

technology. a major redesign of the block is necessary. For this reason, hard macros are used less 

and less, and are employed mainly when the automated generation approach is far inferior or 
even impossible. Embedded memories and microprocessors are good examples of hard macros. 

They typically are provided by the IC manufacturer (who also provides the standard cell library), 

or the semiconductor vendor who has a particularly desirable function to offer (such as a stan­

dard microprocessor or DSP). 
In the case of a macro that can be parameterized, a generator called the module compiler is 

used to create the actual physical layout. Regular structures such as PLAs, memodes, and multi­

pliers are easily constructed by abutting predesigned leaf cells in a two-dimensional array topol­

ogy. All interconnections are made by abutment, and no or little extra routing is needed if the 

cells are designed correctly, which minimizes the parasitic capacitance. The PLA of Figure 8-11 

is an example of such a configuration. The whole mray can be constructed with a minimal num­

ber of cells. The generator itself is a simple software program that determines the relative posi­

tioning of the various leaf cells in the array. 

Example 8.4 A Memory Macromodule 

Figure 8-13 shows an example of a "hard" memory macrocell. The 256 x 32 SRAM block 

is generated by a parameterizable module generator. Besides creating the layout, the gen­

erator also provides accurate timing and power information. Modern memory generators 

also include an amount of redundancy to deal with defects. 
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Figure 8-13 Parameterizable memory "hard" macrocell. This particular instance stores 
256 x 32 (or 8192) bits. The decoders are located on the bottom. All eight address bits, as 
well as the 32 data input and output ports are placed on the right side of the cell. The total 
area of the memory module, implemented in a 0.18-µm CMOS technology, equals a mere 
0.094 mm2 (courtesy ST Microelectronics). 

A Soft Macro represents a module with a given functionality, but without a specific physical 
implementation. The placement and the wiring of a soft macro may vary from instance to 
instance. This means that the timing data can only be determined after the final synthesis and 
pJacement and routing steps-in other words, the process is unpredictable. Yet, through intrinsic 
knowledge of the internal structure of the module, and by imposing precise timing and place­
ment constraints on the physical generation process, soft macros most often succeed in offering 
well-defined timing guarantees. While stepping away from the advantages of the custom design 
process and relying on the semicustom physical design process, soft macros have the major 
advantage that they can be ported over a wide range of technologies and processes. This amor­
tizes the design effort and cost over a wide set of designs. 

Soft-macrocell generators come in different styles depending on the type of function they 
target. Virtually an of them can be classified as structural ge11erat01:r;: Given the desired function 
and values for the requested parameters, the generator produces a net1ist, which is an enumera­
tion of the standard cells used and their interconnections. It also provides a set of timing con­
straints that the placement and routing tools should meet. The advantage of this approach is that 
the generator exploits its knowledge of the function under consideration to come up with clever 
structures that are more effident than what logic synthesis would produce. For example, the 
design of fast and area-efficient multipliers has been the topic of decades of research.' The mul­
tiplier generator just incorporates the best of what the multiplier literature has to offer into an 
automated generation tool. 

1Multiplier design is explained more thoroughly in Chapter l l, which discusses the design of ari1hmetic .structures. 
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instance, This means that the timing data can only be determined after the final synthesis and
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ment constraints on the physical generation process, soft macros most often succeed in offering
well-defined timing guarantees. While stepping away from the advantages of the custom design
process and relying on the semicustom physical design process, soft macros have the major
advantage that they can be ported over a wide range of technologies and processes. This amnor-
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target. Virtually afl of thern can be classified as structural generators. Given the desired function
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tion of the standard cells used and their interconnections. It also provides a set of timing con-
straints that the placement and routing tools should meet. The advantage ofthis approach is that
the generator exploits its knowledge of the function under consideration io come up with clever
structures that are more efficient than what logic synthesis would produce. For example, the
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automated generation tool.
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Example 8.5 Multiplier Macromodule 

Two instances of an 8 x 8 multiplier module with different aspect ratios are shown in 
Figure 8-14. The modules are generated using the W'loduleCompiler tool from Synopsys 
[ModuleCompilerO I]. As can observed from the layout, a common standard-cell method­

ology is used to generate the physical artwork. The contribution of the macrocelJ generator 
is to translate the compact input description into an optimized connection of standard cells 
that meets the timing constraints. This "soft" approach has the advantage that modules 
with different aspect ratios can easily be generated. Also, porting between different manu­
facturing technologies is relatively easy. 

st_ririg m~t_:::;. ~~:i,~o}_h:1 1_:_ -:-:-,-_ 
-~J.:rec,~i ve·,_ -{J:!l_-11 ttYP.e:- =-;:i_nat_)_-: 

· O_u_tput sign~d ·,r.1.~i__-;z ~- _A_/ BJ; 

Figure 8-14 Multiplier "soft" macro modules. Both layouts implement an 8 x 8 booth multiplier, 
but with different aspects ratios. The compact input description to the compiler is shown in the gray 
box on top. 

The availability of macromodules has substantially changed the semicustom design land­

scape in the 21" century. With the complexity of !Cs going up exponentially, the idea of building 
every new IC from scratch becomes an uneconomic and nonplausible proposition. More and more, 

circuits are being built from reusable building blocks of increasing complexity and functionality. 
Typically, these modules are acquired from third-party vendors, who make the functions available 
through royalty or licensing agreements. Macromodets distributed in this style are called intellec­
tual pmpeny (or IP) modules. This approach is somewhat comparable to the software world, where 
a large programming project typically makes intensive use of reusable software libraries. Good 
examples of commonly available intellectual property modules are embedded microprocessors 

and microcontrollers, DSP processors, bus interfaces such as PCI. and several spedal-purpose 
functional modules such as FFT and filter modules for DSP applications, error-correction coders 
for wireless communications, and MPEG decoding and encoding for video. Obviously, for an IP 
module to be useful~ it has to not only deliver the hardware, but it also has to come with the appro-
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Example 8.5 Multiplier Macromedule

Two instances of an 8 x 8 multiplier module with different aspect ratios are shown in
Figure 8-14, The modules are generated using the ModuleCompiler tool from Synopsys
{ModuleCompiler01). As can ebserved from the layout, a common standard-cell methed-
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is to translate the compact input description inte an optimized connection ofstandard cells
that meets the timing constraints. This “soft” approach has the advantage that modules
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facturing technologies is relatively casy.

 
Figure 8-14 Multiplier “soft” macro modules. Both layouts implement an 3x 8 booth multipiier,
but with different aspects ratios. The compact input description to the compiler is shownin the gray
box on top. 

The availability of macromoduies has substantially changed the semicustom design land-
scape in the 21" century. With the complexity of ICs going up exponentially, the idea of building
every new IC from scratch becomes an uneconomic and nonplausible proposition. More and more,
circuits are being built from reusable building blocks of increasing complexity and functionality.
Typically, these modules are acquired from third-party vendors, who make the functions available
through royalty or licensing agreements. Macromodels distributed in this style are called intetlee-
tralproperty (or IP) modules. This approach is somewhat comparable io the software world, where
a large programming project typically makes intensive use of reusable software libraries. Good
examples of commonlyavailable intellectual property modules are embedded microprocessors
and microcontrollers, DSP processors, bus interfaces such as PC], and several special-purpose
functional modules such as FFT and filter modules for DSP applications, error-correction coders

for wireless communications, and MPEG decoding and enceding for video. Obviously, for an IP

module to be useful, it has to not only deliver the hardware, but it also has to come with the appro-
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priate software tools (such as compilers and debuggers for embedded processors), prediction mod­
els, and test benches. The latter are quite important because they represent the only means for the 
end user to verify that the module delivers the promised functionality and performance. 

The design of a system on a chip is rapidiy becoming an exercise in reuse at different lev­
els of granularity. At the lowest level, we have the standard cell library; at a level higher, we have 
the functional modules such as multipliers, datapaths and memories; next, we have the embed­

ded processors; and finally, the application-specific megacells. With more and more of the sys­
tem functionality migrating onto a single die, it is not surprising to see that a typical ASIC 
consists of a blend of design styles and modules, embedding a number of hard or soft macrocells 
within a sea of standard cells. 

Example 8.6 A Processor for Wireless Communications 

Figure 8-15 shows an integrated circuit implementing the protocol stack for a wireless 

indoor communication system [SilvaOl]. The majority of the area is occupied by the 
embedded microprocessor (the Tensilica Xtensa processor [XtensaOl]) and its memory 
system. This processor allows for a flexibie implementation of the higher levels of the pro­
tocol stack (Application/Network), and enables changes in the functionality of the chip, 
even after fabrication. The memory modules are generated using module compi1ers pro­

vided by the process vendor. The processor core itself is automatically generated from a 
higher level description in Verilog, and uses standard cells for its physical implementation. 
The advantage of using the "soft-core" approach is that the processor instruction set can be 
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Figure 8-15 Wireless communications processor-an example of a hybrid ASIC design 
methodology. The processor combines an embedded microprocessor and its memory sys­
tem with dedicated hardware accelerators and 110 modules. Observe also the on-chip net­
work module [Silva01]. 
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priate software tools (such as compilers and debuggers for embedded processors), prediction mod-
els, and test benches. Thelatter are quite important because they represent the only means forthe
end user to verify that the module delivers the promised functionality and performance.

The design of a system on a chip is rapidly becoming an exercise in reuse at different lev-
els of granularity. At the lowest level, we have the standard cell library; at a level higher, we have
the functional modules such as multipliers, datapaths and memories; next, we have the embed-

ded processors; and finally, the application-specific megacells. With more and more of the sys-
tem functionality migrating onto a single die, it is not surprising to see that a typical ASIC
consists of a blend of design styles and modules, embedding a numberof hard or soft maerocells
within a sea of standard cells.

Example 8.6 A Processor for Wireless Communications

Figure 8-13 shows an integrated circuit implementing the protocol stack for a wireless
indoor communication system [SilvaQl]. The majority of the area is occupied by the

embedded microprocessor (the Tensilica Xtensa processer [XtensaOl}) and its memory
system. This processorallows fora flexible implementation of the higher levels of the pro-

tocol stack {Application/Network}, and enables changes im the functionality of the chip,
even after fabrication. The memory modules are generated using module compilers pro-
vided by the process vendor. The processer core itself is automatically generated from a

higher tevel description in Verilog, and uses standard cells for its physical implementation.
The advantage of using the “soft-core” approachts that the processor instruction set can be
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Figure 8-15 Wireless communications processor—an example of a hybrid ASIC design
methodology. The processor combines an embedded microprocesser and iis memory sys-
tem with dedicated hardware accelerators and 1/O modules. Observe also the on-chip net-
work module [Silva0i].
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tailored to the application, and that the processor itself can easily be ported to different 

technologies and fabrication processes. 
Implementing the computation-intensive parts of the protocol (MAC/PHY) on the 

microprocessor would require very high clock speeds and would unnecessarily increase the 
power dissipation of the chip. Fortunately, these functions are fixed and typically do not 
require a flexible implementation. Hence, they are implemented as an accelerator module in 

standard cells. The hard-wired implementation accomplishes the task of implementing a 
huge number of computations at a relatively low power leve] and clock frequency. The 
designer of a system on a chip is continuously faced with the challenge of deciding what is 
more desirable-after-the-fabrication flexibility versus higher performance at lower power 
levels. Fortunately, tools are emerging that help the designer to explore the overall design 
space and analyze the trade-offs in an informed fashion [SilvaOIJ. Observe also that the chip 

contains a set of I/0 interfaces, as well as an embedded network module, which helps to 
orchestrate the traffic between processor and the various accelerator and I/0 modules. 

The generation process of a macro module depends on the hard or soft nature of the block, 
as weH as the level of design entry. ln the following sections, we briefly discuss some com­

monly: used approaches. 

8.4.4 Semicustom Design Flow 

So far, we have defined the components that make up the cell-based design methodology. In this 
section, we discuss how it all comes together. Figure 8-16 details the traditional sequence of 
steps to design a semicustom circuit. The steps of what we caH the design flow are enumerated 

in the figure, with a brief description of each: 

l. Design Capture enters the design into the ASIC design system. A variety of methods can 
be used to do so, including schematics and block diagrams; hardware description lan­
guages (HDLs) such as VHDL, Verilog, and. more recently, C-derivatives such as Sys­
temC; behavioral description languages followed by high-level synthesis; and imported 

intellectual property modules. 
2. Logic Synthesis tools translate modules described using an HDL language into a netlist. 

Netlists of reused or generated macros can then be inserted to form the complete netlist of 

the design. 
3. Prelayout Simulation and Verification. The design is checked for conectness. Perfor­

mance analysis is pe1formed based on estimated parasitics and layout parameters. If the 
design is found to be nonfunctional, extra iterations over the design capture or the logic 

synthesis are necessary. 
4. Floor Planning. Based on estimated module sizes, the overall outlay of the chip is cre­

ated. The global-power and clock-distribution networks also are conceived at that time. 
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Figure 8-16 The Semicustom (or ASIC) design flow. 

5. Placement. The precise positioning of the cells is decided. 
6. Routing. The interconnections between the cells and blocks are wired. 

Structural 

Physical 

397 

7. Extraction. A model of the chip is generated from the actual physical layout, including 

the precise device sizes, devices parasitics, and the capacitance and resistance of the wires. 
8. Postlayout Simulation and Verification. The functionality and perfonnance of the chip is 

verified in the presence of the layout parasitics. If the design is found to be lacking, itera­
tions on the floorpJanning, placement, and routing might be necessary. Very often, this 

might not solve the problem, and another round of the structural design phase might be 
necessary. 

9. Tape Out. Once the design is found to be meeting ail design goals and functions, a binary 
file is generated containing all the information needed for mask generation. This file is 
then sent out to the ASIC vendor or foundry. This important moment in the life of a chip is 

called tape out. 

While the design flow just described has served us well for many years, it was found to be 

severely lacking once technology reached the 0.25-µm CMOS boundary. With design teclmol­
ogy proceeding into the deep submicron region, layout parasitics-especially from the intercon­
nect-are playing an increasingly important role. The prediction models used by the logic and 
structural synthesis tools have a hard time providing accurate estimates for these parasitics. The 

chances that the generated design meets the timing constraints at the first try are thus very small 
(Figure 8-17a). The designer (or design team) is then forced to go through a number of costly 
iterations of synthesis followed by layout generation until an acceptable artwork that meets the 
timing constraints is obtained (Figure 8-17b and c). Each of these iterations may take several 

days-just routing a complex chip can take a week on the most advanced computers! The 
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Figure 8-16 The Semicustom (or ASIC) design flow.

5. Placement. The precise positioning ofthe cells is decided,
. Routing. The interconnections between the cells and blocks are wired.

7. Extraction. A mode! of the chip is generated from the actual physical layout, including
the precise device sizes, devices parasitics, and the capacitance and resistance of the wires.

8. Postlayout Simulation and Verification. The functionality and performance ofthe chip is
verified in the presence of the layout parasitics. HW the design is found to be lacking,itera-
tions on the foorplanning, placement, and routing might be necessary. Very often, this

might not solve the problem, and another roundof the structural design phase might be
necessary.

9. Tape Out. Once the design is found to be meeting all design goals and functions, a binary
file is generated containing all the information needed for mask generation. This file is
then sent out to the ASIC vendor or foundry. This important moment in the life of a chipis
called tape out.

oH

While the design flow just described has served us well for many years, it was found to be

severely lacking once technology reached the 0.25-m CMOS boundary. With design technol-
egy proceeding into the deep submicron region, layout parasitics—especially from the intercon-

nect--are playing an increasingly important role. The prediction models used by the logic and
structural synthesis tools have a hard time providing accurate estimates for these parasitics. The
chances that the generated design meets the timing constraints at the first try are thus very small

(Figure 8-17a)}. The designer (or design team) is then forced to go through a number of costly

iterations of synthesis followed by layout generation until an acceptable artwork that meets the

timing constraimts is obtained (Figure 8-17b and c}. Each of these iterations may take several
days—just routing a complex chip can take a week on the most advanced computers! The
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(a) Initial design (b) Intermediate design (c) Final design 

Figure 8-17 The timing closure process. The white lines indicate nets with timing 
violations. In each iteration of the design process, timing errors are removed by 
optimizing the logic, by insertion of buffers, by constraining the placement, or by 
streamlining the routing until an error-free design is obtained [Avanti01]. 

number of needed iterations continues to grow with the scaling of technology. This problem, 
called timing closure, made it obvious that new solutions and a change in design methodology 
were required. 

The common answer is to create a tighter integration between the logical and physical 
design processes. If the logic synthesis tool, for example, also performs some part of the place­
ment-or directs the placement-more precise estimates of the layout parameters can be 
obtained. Figure 8-18 shows an example of a design environment that merges RTL synthesis 
with first-order placement and routing. The resulting netlist is then fed into an optimization tool 
that performs the detailed placement and routing, while guaranteeing the timing constraints are 
met. While this approach has shown to be quite successful in reducing the number of design iter-

Macromodules 
fixed netlists 

RTL {Timing) constraints 

t t 
Physical synthesis 

Nctlist with 
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Place-and-route 
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Figure 8-18 Integrated synthesis place-and-route reduces the number 
of iterations to reach timing closure in deep submicron. 
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called timing closure, made it obvious that new solutions and a change in design methodology
were required.

The common answeris to create a Uighter integration between the logical and physical
design processes. If the logic synthesis tool, for example, also performs some part ofthe place-
ment—or directs the placement—more precise estimates of the layout parameters can be
obtained. Figure 8-18 shows an example of a design environment that merges RTL synthesis
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8.5 Array-Based Implementation Approaches 399 

ations, it throws quite a challenge at the design-tool developers. \Vith the number of parasitic 
effects increasing with every round of technology scaling, the design optimization process that 
must take all this into account becomes exponentiaHy complex as well. As a result, other 
approaches might be required as well. In the coming chapters, we will highlight "design solu­
tions" that can help to alieviate some of these problems. An example is the use of regular and 
predictable structures, both at the logical and the physical level. 

8.5 Array-Based Implementation Approaches 

While design automation can help reduce the design time, it does not address the time spent in 
the manufactming process. AH of the design methodologies discussed thus far require a com­
plete run through the fabrication process.This can take from three weeks to several months, and 
it can substantially delay the introduction of a product Additionally, with ever-increasing mask 
costs, a dedicated process run is expensive, and product economics must determine if this is a 
viable route. 

Consequently, a number of alternative implementation approaches have been devised that 
do not require a complete run through the manufacturing process, or they avoid dedicated pro­
cessing completely. These approaches have the advantage of having a lower NRE (nonrecurring 
expense) and are, therefore, more attractive for small series. This comes at the expense of lower 
performance, lower integration density, or higher power dissipation. 

8.5.1 Prediffused {or Mask-Programmable) Arrays 

In this approach, batches of wafers containing arrays of primitive cells or transistors are manu­
factured by the vendors and stored. All the fabrication steps needed to make transistors are stan­
dardized and executed without regard to the final application. 

To transform these uncommitted wafers into an actual design, only the desired intercon­
nections have to be added. detennining the overall function of the chip with only a few metalli­

zation steps. These layers can be designed and applied to the premanufactured wafers much 
more rapidly, reducing the turnaround time to a week or less. 

This approach is often called the gate-array or the sea-of-gates approach, depending on 
the style of the prediffused wafer. To illustrate the concept, consider the gate-array primitive cell 

shown in Figure 8-19a. It comprises four NMOS and four PMOS u11nsistors, polysilicon gate 

connections, and a power and ground rail. There are l\vo possible contact points per diffusion 
area and two potential connection points for the polysilicon strips. We can turn this cell, which 
does not implement any logic function so far, into a real circuit by adding some ex.u·a wires on 

the metal layer and contact holes. This is illustrnted in Figure 8- 19b, where the cell is turned into 
a four-input NOR gate. 

The original gate-array approacfr2 places the cells in rows separated by wiling channels, as 
shown in Figure 8-20a. The overall look is similar to the traditional standard-cell technique. With 

the advent of extra metallization )ayers, the routing channels can be eliminated, and routing can 

2This approach is often called the cltwmeled gate array. 
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Figure 8-19 An example of the gate-array approach. 
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Figure 8-20 Gate-array architectures. 

be performed on top of the primitive cells-occasionally leaving a cell unused. This channelless 
architecture, also called sea of gates (Figure 8-20b), yields an increased density, and makes it pos­
sible to achieve integration levels of millions of gates on a single die. Another advantage of the 

sea-of-gates approach is that it customizes the contact layer between metal-I and diffusion and/ 
or polysilicon~ in contrast to the standard gate-array approach where the contacts are predefined 
(see Figure 8-19a). This extra flexibility leads to a further reduction in cell size. 

The primary challenge when designing a gate-array (or sea-of-gates) template is to deter­
mine the composition of the primitive cell and the size of the individual transistors. A sufficient 
number of wiring tracks must be provided to minimize the number of cells wasted to intercon­
nect. The cell should be chosen so that the prefabricated transistors can be utilized to a maximal 
extent over a wide range of designs. For example, the configuration of Figure 8-19 is well suited 
for the realization of four-input gates. but wastes devices when implementing two-input gates. 
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be performed on top of the primitive cells—occasionally leaving a cell unused. This channeliess
architecture, also called scaofgates (Figure 8-20b), vields an increased density, and makesit pos-
sible io achieve integration levels of millions of gates on a single die. Another advantage of the
sea-of-gates approach is that it custemizes the contact layer between metal-! and diffusion and/
orpolysilicon, in contrast to the standard gate-array approach where the contacts are predefined
(see Figure 8-19). This extra flexibility leads to a further reductionin cell size.

The primary challenge when designing a gate-array (or sea-of-gates) template is to deter-
mine the composition of the primitive cell and the size of the individual transistors. A sufficient
number of wiring tracks must be provided to minimize the numberof cells wasted to intercon-
neet. The cell should be chosen so that the prefabricated transistors can be utilized to a maximal
extent over a wide range of designs. For example, the configuration of Figure 8-19 is well suited
for the realization of four-input gates, but wastes devices when implementing two-input gates.
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Figure 8-21 Examples of sea-of-gates primitive cells (from [Veendrick92l). 

401 

Multiple cells are needed when implementing a flip-flop. A number of alternative cell structures 

are pictured in Figure 8-21 in a simplified format. In one approach, each cell contains a limited 

number of transistors (four to eight). The gates are isolated by means of oxide isolation (also 

called geometry isolation). The ""dog-bone" terminations on the poly gates allow for denser rout­

ing. A second approach provides long rows of transistors, all sharing the same diffusion area. In 

this architecture, it is necessary to electrically turn off some devices to provide isolation between 

neighboring gates by tying NMOS and PMOS transistors to GND and V DD• respectively. This 

technique is called gate isolation. This approach wastes a number of transistors to provide the 
isolation, but provides an overall higher h·ansistor density. 

Figure 8-22 shows the base cell for a gate-isolated gate mTay (from [Smith97]). The cell is 

one routing track wide, and contains one p-channei and one 11-channel transistor. Also shown is a 

base cell containing all possible contact positions. There is room for 21 contacts in the vertical 
direction, which means that the cell has a height of 21 tracks. 

It is worth observing that the cell in Figure 8-21 b provides two rows of smaller NMOS 
transistors that can be connected in parallel if needed. Smaller transistors come in handy when 

implementing pass-transistor logic or memory cells. Sizing the transistors in the cells is a clear 

challenge. Due to the interconnect-oriented nature of the array-based design methodology, the 

propagation delay is generally dominated by the interconnect capacitance. This seems to favor 

larger device sizes that cause a Jarger area loss when unused. On the other hand, it is possible to 

construct Jarger transistors by putting several smaller devices in parallel. 

Mapping a logic design onto an anay of cells is a largely automated process, involving 

logic synthesis followed by placement and routing. The quality of these tools has an enormous 

impact on the final density and perfonnance of a sea-of-gates implementation. Utilization fac­

tors in sea-of-gates structures are a strong function of the type of applicatfon being implemented. 

Utilization factors of nearly 100% can be obtained for regular structures such as memories. For 
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Figure 8-21 Examples of sea-of-gates primitive cells (from [Veendrick@2)).

Multiple cells are needed when implementing a flip-flop. A numberofalternative cell structures
are pictured in Figure 8-21 in a simplified format. In one approach, each ceil contains a limited
number of transistors (four to eight). The gates are isolated by means of oxide isolation (also

calied geometryisolation). The “dog-bone” terminations on the poly gates allow for denser rout-
ing. A second approach provides long rows of transistors, all sharing the same diffusion area. In
this architecture, it is necessary to electrically turn off some devices to provide isolation between
neighboring gates by tying NMOS and PMOStransistors to GND and Vpn, respectively. This
iechnique is called gate isolation. This approach wastes a number oftransistors to provide the
isolation, but provides an overall higher transistor density.

Figure §-22 shows the base cell for a gate-isolated gate array (from [Smith97]}. The cell is
one routing track wide, and contains one p-channe! and one n-channel transistor. Also shown is a

base cell containing all possible contact positions. There is room for 21 contacts in the vertical

direction, which means that the cell has a height of 21 tracks.
It is worth observing that the cell in Figure 8-21b provides bwo rows of smaller NMOS

transistors that can be connected in parallel if needed. Smaller wansistors come in handy when

implementing pass-transistor logic or memoryceils. Sizing the transistors in the cells is a clear

challenge. Due to the interconnect-oriented nature of the array-based design methodolegy,the
propagation delay is generally dominated by the interconnect capacitance. This seems to favor
larger device sizes that cause a larger area loss when unused. On the other hand, it is possible ta

construct larger transistors by putting several smaller devices in parallel.

Mapping a logic design onio an array of cells is a largely automated process, involving
logic synthesis followed by placement and routing. The quality of these tools has an enormous

impact on the final density and performance of a sea-of-gates implementation. Utilization fac-
tors in sea-of-gates structures are a strong function of the type of application being implemented.

Utilization factors of nearly 100% can be obtained for regular structures such as memories. For
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Figure 8-23 Flip-flop implemented in a gate-isolated gate-array library. 
The base cell is shown on the left (from [Smith97]). 

other applications, utilization factors can be substantially lower(< 75%), due largely to wiring 
restrictions. Figure 8-23 shows an example of a flip-flop macrocell, implemented in a gate­
isolated, gate-array library. 
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other applications, utilization factors can be substantially lower (< 75%), due largely to wiring
restrictions. Figure $-23 shows an example of a flip-flop macrocell, implemented in a gate-
isolated, gate-array library.

Dell Ex. 1025

Page 291



8.5 Array-Based Implementation Approaches 403 

Similar to the scenarios unfolding in the standard-cell arena, designers of sea-of-gate 

arrays discovered that a design with a large number of gates also has large memory needs. 

Implementing these memory cells on top of the gate-array base-cells is possible, but not very 

efficient. A more efficient approach is to set aside some area for dedicated memory modules. 

The mixing of gate arrays with fixed macros is called the embedded gate-array approach. Other 

modules such .as microprocessor and microcontrollers are also ideal candidates for embedding. 

Example 8.7 Sea-of-Gates 

An example of a sea-of-gates implementation is shown in Figure 8-24. The array has a. 

maximum capacity of 300 K gates and is implemented in a 0.6-µm CMOS technology. 

The upper left part of the array implements a memory subsystem, which results in a regu­

lar modular layout. The rest of the array implements random logic. 

Figure 8-24 Gate-array die microphotograph (LEA300K) (Courtesy of LSI Logic.) 
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In the 1980s and 1990s, when the majority of the chips were less than 50,000 gates, design cycles oflen 
could be measured in weeks or a few montbs. The two- or three-week savings in turnaround time for a gate­
array design wa,; then a significant portion of the total design cycle, more than enough to offset the addi­
tional die size. With today's deep-submicron processes and muitimillion-gate complexities come longer 
design times, and the small reduction in turnaround time is no longer much of an issue. Furthermore, metal­
lization has become the inost time-consuming and yield-impacting part of the semiconductor manufactur­
ing process, reducing further the advantage that gate arrays had to offer. Consequently, gate affays have lost 
a lot of their luster. Another alternalive for rapid prototyping-the prewired arrays discussed in the next 
sectfon-has arisen, and it has taken a large portion out of the gate-array market. 

Still, beware of dismissing the idea of the mask-program1nable logic module as a thing of the past. A 
regular and fixed layout style has the advantage that load factors, wiring parasitics, and cross-coupling 
nolse are easily and accurately eslimated. This is in contrast to the standard-cell approach, where these val­
ues are ultimately only known after placement, routing, and extraction. One may consider populating sec­
tions of a large chip with a regular logic array consisting of uncommitted (pre<liffused) logic cells 
superimposed by a wiring grid. The actual programming of the module is performed by placing vias at pre­
defined positions. As shown in Figure 8-25, lhe use of a via-programmable cross-point switch makes it pos­
sible to overlay a wide variety of wiring pauerns on a regular repetitive wiring grid. It is the opinion of the 
authors that prediffuscd arrays have quite some life left into them. 

Via-1nogrammablc cross point 

rnctal-5 

via programmable 

melal-6 

Figure 8-25 Via-programmable gate array. Vias are used to dedicate a generic 
wiring grid to a specific wiring pattern, resulting in predictable arrays [Pileggi02]. 

8.5.2 Prewired Arrays 

While the prediffused arrays offer a fast road to implementation, it would be even more efficient 
if dedicated manufacturing steps could be avoided altogether. This leads to the concept of the 

preprocessed die that can be programmed in the field (i.e., outside the semiconductor foundry) to 
implement a set of given Boolean functions. Such a programmable, prewired anay of cells is 
called afie/d-pmgrammab/e gate array ( FPGA). The advantage of this approach is that the man­
ufacturing process is completely separated from the implementation phase and can be amortized 

over a large number of designs. The lrnplementation itself can be performed at the user site with 
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8.5.2 Prewired Arrays

While the prediffused arrays offer a fast road to implementation, it would be even more efficient
if dedicated manufacturing steps could be avoided altogether. This leads te the concept of the
preprocessed die that can be programmed in the field (i.e., outside the semiconductor foundry} to
implement a set of given Boolean functions. Such a programmable, prewired array of cells ts
called afield-progrannnable gate array (FPGA), The advantage of this approach is that the man-
ufacturing process is completely separated from the implementation phase and can be amorlized
over a large number of designs. The implementation itself can be performed at the user site with
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negligible turnaround time. The major drawback of this technique is a loss in performance and 

design density, compared with the more customized approaches. 

Two main issues have to be addressed when attempting to implement a set of Boolean 

functions on top of a regular array of cells without requiring any processing steps: 

1. How do we implement "programmable" logic-that is, logic that can committed to per­
form any possible Boolean function? 

2. How and where do we store the pmgram-also called the configuration-that dedicates 

the programmable array to a certain logic function? 

The answer to the second question depends on the memory technology used. Since memory 

technology is the topic of a later chapter, we limit ourselves here to a high-level overview. In 

general. three different techniques can be identified: 

• The write-once or fuse-based FPGA. The logic array is committed to a panicular func­

tion by blowing "fuses" or by short-circuiting "'antifuses." A fuse is a connection element 

that is short-circuited by default. A large current causes it to blow, and then it becomes an 

open circuit. The antifuse has the opposite behavior. An example of an antifuse implemen­

tation is shown in Figure 8-26 [El-Ayat89]. The advantage of the write-once approach is 

that the area overhead of the program memory (i.e., the fuses) is very small. But it has the 

important disadvantage of being one-time programmable. Circuit conections or exten­

sions are not possible, and new components are required for every design change. 

• The nonvolatile FPGA. The program is stored in nonvolatile memory, which is memory 
that retains its value even when the supply voltage is turned off. Examples include 

EEPROM (Electrically Erasable Programmable Read-Only lvfemory) or Flash memories. 

Once programmed, the logic remains functional and fixed until a new programming round. 

The disadvantage of this approach is that nonvolatile memories require special steps in the 

manufacturing process, such as the deposition of ultrathin oxides. Also, high voltages 

~~-" 

I 
n+ antifusc diffusion 

2,1 

Figure 8-26 Example of antifuse. A 10-nm-thin layer(< 10 nm) of ONO 
(oxide-nitride-oxide) dielectric is deposited between conducting polysilicon 
and diffusion layers. The circuit is open by default, unless a large programming 
current is forced through it. This causes the dielectric to melt, and a permanent 
connection with fixed resistance is formed (from [Smith97]). 
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(> 10 V) are needed for the programming and erasure of the memory cells. Generating 

these high voltages and distributing them through the logic array adds extra complexity to 

the design. 
• The Volatile or RAM-Based FPGA. This popular approach to programming the logic 

array employs volatile static RAM (random-access memory) cells for the storage of the 

program. Since these memories lose their stored contents when the FPGA is powered 

down. a reloading of the configuration from an external permanent memory is necessary 

every time the part is turned on. To program the component at start-up time, programming 

data is shifted serially into the part over a single line (or pin). For all practical purposes, 

one can consider the FPGA RAM cells to be configured as a giant shift register during that 

period. Once aH memories are loaded, normal execution is started. The configuration time 

is proportional to the number of programmable elements. This can become excessive for 

today's larger FPGAs, which often feature more than one million gates. Recent parts 

therefore rely more and more on a parallel programming interface, allowing multiple cells 

to be programmed at the same time. 
In contrast to their nonvolatile counterparts, volatile FPGAs do not have special 

manufacturing process requirements, and can be implemented in a regular C!v10S process. 

In addition, designers can reuse chips during prototyping. Logic can be modified and 

upgraded once deployed in the field-a customer can be sent a new configuration file to 

upgrade the chip, instead of sending a new chip. In addition, logic can be dynamically 

modified on the fly during execution. The latter approach is called reconfiguration, and it 

became quite popular in the late 1990s. In some sense, this brings a paradigm that was 

extremely successful in the world of programming (as embodied by the microprocessor) to 

the domain of logic design. 

As for the first question, the answer is somewhat more extensive. Implementing a complex cir­

cuit in a programmable fashion requires that both the logic functions as well as the interconnect 

between them are realized in a configurable fashion. In the coming sections, we first discuss dif­

ferent ways of implementing programmable logic, followed by an overview of programmable 

interconnection. Finally, we detail a number of specific ways of putting the two together. 

Programmable Logic 

Similar to the situation in semicustom design, two fundamentally different approaches towards 

programmable logic are currently in vogue: array based and cell based. 

Array-Based Programmable Logic Earlier we discussed how a programmable logic array 
(PLA) implements arbitrary Boolean logic functions in a regular fashion (see page 388). A simi­

lar approach can be applied to field-programmable devices as well. Consider, for example, the 

logic structure of Figure 8-27. A circle (o) at an intersection indicates a programmable connec­

tion-that is, an interconnect point that is either enabled or not. An inspection of the diagram 

reveals that it is equivalent to a PLA, where both the AND and OR planes can be programmed 

by selectively enabling connections. This approach allows for the implementation of arbitrary 
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logic functions in a two-level sum-of-products format. The AND plane creates the required min­
terms, while the OR plane takes the sum of a selected set of products to form the outputs. To 
include a given input variable (for instance, / 1) In a specific minterm, just close the switch at the 
intersection of the input signal and the minterm. Similarly, a minterm is included into an output 
by closing the appropriate connection in the OR plane. The functionality of PLA is restricted by 
the number of inputs, outputs, and minterms. 

We can envision variations on this theme. some of which are represented in Figure 8-28. 
The dot ( •) at the intersection of two lines represents a non fusible, hard-wired link. The first 
structure represents the PROM architecture, in which the AND plane is fixed and enumerates all 
possible minterms. The second structure, called a pmgrammable array logic device (PAL), is 
located at the other end of the spectrum, where the OR plane is fixed, and the AND plane is pro­
grammable. The PLA architecture is the most generic one for the implementation of arbitrary 
logic functions. The PROM and PAL structures, on the other hand, trade off flexibility for den­
sity and performance. Which structure to select depends strongly on the nature of the Boolean 
functions to be implemented. All these approaches are generally classified under the common 
term of p1vgrammable logic devices (or PLDs). 

The single-a1ny architecture of the PLA, PROM, and PAL structures in Figure 8-27 and 
Figure 8-28 becomes Jess attractive in the era of higher integration density. First of aH, imple­
menting very complex Jogic functions on a single, large array results in a loss of programming 
density and perfonnance. Secondly, the arrays shown implement only combinational logic. To 
realize complete, sequential subdesigns. the presence of registers and/or flip-flops is an absolute 
requirement. These deficiencies can be addressed as follows: 
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-}- Indicates programmable connection

Figure 8-27 Fuse-programmable logic array (PLA).

legic functions in a two-level sn-of-products format. The AND plane creates the required min-
terms, while the OR plane takes the sum of a selected set of products to form the outputs. To
inciude a given input variable (for instance, /,) in a specific minterm, just close the switch at the
intersection of the input signal and the minterm. Similarly, a minterm is included inte an output
byclosing the appropriate connection in the OR plane. The functionality ef PLAis restricted by
ihe numberof inputs, outputs, and minterms.

We can envision variations on this theme, some of which are represented in Figure 8-28.

The dot (*} at the intersection of two lines represents a nonfusible, hard-wired link. The first

structure represents the PROM architecture, in which the AND plane is fixed and enumerates all
possible minterms. The second structure, called a programmable array logic device (PAL), is
located at the other end of the spectrum, where the OR plane is fixed, and the AND planeis pro-
grammable. The PLA architecture is the most generic one for the implementation of arbitrary
logic functions. The PROMand PAL structures, on the other hand, trade off flexibility for den-
sity and performance. Which structure to select depends strongly on the nature of the Beclean
functions to be implemented. All these approaches are generally classified under the common
term ofpregrammable logic devices (or PLDs).

The singie-array architecture of the PLA, PROM, and PAL structures in Figure 8-27 and
Figure 8-28 becomes less attractive in the era of higher integration density. First of all, imple-
menting very complex logic functions on a single, large array results in a loss of programming

density and performance. Secondly, the arrays shown implement only combinational logic. To

realize complete, sequential subdesigns, the presence of registers and/or flip-flopsis an absolute
requirement. These deficiencies can be addressed as follows:
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Figure 8-28 Alternative fuse-based programmable logic devices (or PLDs). 

I. Partition the array into a number of smaller sections, often called macrocells. 
2. Introduce flip-flops and provide a potential feedback from output signals to the inputs. 

One example of how this can be accomplished is shown in Figure 8-29. The PAL consists of k 
macrocells, each of which can select from i inputs and features, at most, j product terms. Each 
macrocell contains a single register, which also is programmable-it can be configured as a D, T, 

J-K, or a clocked S-R flip-flop. The k output signals are fed back to the input bus, and thus form 

a subset of the i input signals. 
The PLA approach to configurable logic has two distinct advantages: 

• The structure is very regular, which makes the estimation of the parasitics quite easy, and 
enables accurate predictions of area. speed, and power dissipation. 

• It provides an efficient implementation for logic functions that map well into a two-level 
logic description. Functions with a large fan-in fall into that category. Examples of such 
are finite-state machines used in controllers and sequencers. 

On the other hand, the array structure has the disadvantage of higher overhead. Every intermedi­
ate node has a sizable capacitance, which negatively affects performance and power. This is 
especially true when parts of the array are underutilized-that is, if only some of the minterms 

are actively used. 
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Figure 8-28 Alternative fuse-based programmable logic devices (or PLDs).

L. Partition the array into a number of smaller sections, often called macrocells.
2. Introduce flip-flops and provide a potential feedback from output signals to the inputs.

One example of how this can be accomplished is shown in Figure 8-29, The PAL consists of k
macrocells, each of which can select from / inputs and features, at most, j product terms, Hach
macrocell contains a single register, which also is programmable—it can be configured as a D, T,
J-K, or a clocked §-2 flip-flop. The & output signals are fed back to the input bus, and thus form
a subsetof the 7 input signals.

The PLA appreach to configurable logic has two distinct advantages:

* The structure is very regular, which makes the estimation of the parasilics quite easy, and
enables accurate predictions of area, speed, and powerdissipation.

* It provides an efficient implementation for logic functions that map well into a two-level
logic description. Functions with a large fan-in fall inte that category. Examples of such
are finite-state machines used in controllers and sequencers.

On the other hand, the array structure has the disadvantage of higher overhead. Every intermedi-
ate node has a sizable capacitance, which negatively affects performance and power. This is
especially true when parts of the array are underutilized—that is, if only some of the minterms
are actively used.
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programmable AND array (2i x Jk) : k rnacrocells 

________ J 

macrocell 

Figure 8·29 Schematic diagram of a PAL with iinputs, 
i minterms/macrocell and k macrocells (or outputs) [Smith97]. 

Example 8.8 Example of Programmed Macrocell 

Figure 8-30 shows an example of how to program a PROM module. The structure is proM 
grammed to realize the logical functions used e.'U·[ierduring the discussion on PLAs (Eq. (8.1)): 
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 macroce]l

Figure 8-29 Schematic diagram of a PAL with 7inputs,
jminterms/macrocell and & macrocells {or outputs) [Smith97].

Example 8.8 Example of Programmed Macrecell

409

Figure 8-30 shows an example of how to program a PROM module. The structure is pro-
grammed to realize the logical functions used earlier during the discussion on PLAs (Bq, (8.1)):

fo = Xoty + Xo

fy AX Xo tXq FAX,

   
NANAR fy

Figure 8-30 Programming a PROM.
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Observe that only a fraction of the array is used as the number of input (3) and out­
put (2) variables are smaller than the dimensions of the 4 x 4 array. Unused input variables 
are tied either to O or L The large dots in the output planes represent programmed nodes. 
The reader is invited to repeat the exercise for the PLA and PAL modules presented in 

Figure 8-28 and Figure 8-29. 

Cell-Based Programmable Logic The sum-of-products approach results in regular structures, 
and is very effective for logic functions that have a large fan-in such as finite-state machines. On 
the other hand, it performs rather poorly for logic that features a large fan-out, or that benefits 
from a multilevel logic implementation. (Arithmetic operations such as addition and multiplica­
tion are an example of such). Other approaches can be conceived that are more in line with the 
multilevel approach favored in the standard-cell and sea-of-gate approaches. 

There are many ways to design a logic block that can be configured to perform a wide 
range of logic functions. One approach is to use multiplexers as function generators. Consider 
the two-input multiplexer of Figure 8-31, which implements the logic function F: 

F = A·S+B·S (8.3) 

By carefully choosing the connections between the variables X and Y and the input ports A. B, 

and S of the multiplexer, we can program it to perform ten useful logic operations on one or 
more of those inputs {see Figure 8-31). 

Configuration 

A B s F= 

0 0 0 0 

0 X l X 

0 y I y 

0 y X XY 

X 0 y XY 
y 0 X XY 

A 0 

I F 

B 1 i 
y I X X+Y 
j 0 X x 

s 
j 0 y y 

t j 1 1 

(a) (b) 

Figure 8-31 Using a two-input multiplexer (a) as a configurable logic block. 
By properly connecting the inputs A,B, and S to the input variables X or Y, 
or too or 1, 1 o different logic functions can be obtained (b). 

Dell Ex. 1025
Page 299



r 
' 

8.5 Array-Based Implementation Approaches 

A 

C 

D 

SB==::;::'.._ SI) 
S! --t_____.,, 

y 

Figure 8-32 Logic cell as used in the Actel fuse-based FPGA. 

411 

A number of multiplexers can be combined to form more complex logic gates. Consider, for 

example. !he logic cell of Figure 8-32, which is used in the Actel ACT family of FPGAs. It consists 

of three !wo-input multiplexers and a two-input NOR gate. The cell can be programmed to realize 

any two- and three-input logic functions, some four-input Boolean functions, and a latch. 

Example 8.9 Programmable Logic Cell 

It can be verified that the logic cell of Figure 8-32 acts as a two-input XOR under the pro­

gramming conditions that follow. Assume the multiplexers select the bottom input signal 
when the control signal is high. We have the following: 

A = I; B = O; C = O; D = I; SA = SB = In I; SO = SI = !112 

As an exercise, determine the programming required for the two-input XKOR function. A 

three-input AND gate can be realized as follows: 

A =0; B =!111; C= O; D = O; SA= !112; SB=O; SO =SI= !n3 

Finally, the largest function that can be realized is the four-input multiplexer. A, B, C, and 

D act as inputs, while SA. SB, and (SO+ SI) are control signals. 

The "multiplexer-as-functional-block" approach provides configurability through pro­

grammable interconnections. The lookup table (LUT) method employs a vastly different strat­

egy. To configure a ful]y programmable module with fan-in of i for a specific function, a two-bit 

large memory, called the lookup table. is programmed to capture the truth table of that function. 

The input variables serve as control inputs to a multiplexer, which picks the appropriate value 
from the memory. The ldea is illusu·ated in Figure 8-33 for a two-input cell. To implement an 
EXOR function, the lookup table is loaded with the output column of the EXOR truth table, this 

is "O I I O". For an input value of "O O", the multiplexer selects the first value in the table ("O"), 

etc. With this approach. any logic function of two inputs can be realized by a simple (re)pro­
gramming of the memory. 
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Figure 8-32 Logic cell as used in the Actel fuse-based FPGA.

A numberofmultiplexers can be combined to form more complex logic gates. Consider, for
example,the logic cell of Figure 8-32, which is used in the Actel ACT family of FPGAs.It consists
of three two-input multiplexers and a two-input NOR gate. The cell can be programmedto realize
any two- and three-input logic functions, some four-input Boolean functions, and a latch,
 

Example 8.9 Programmable Logic Cell

It can be verified that the logic cell of Figure 8-32 acts as a two-input KOR underthe pro-
gramming conditions that follow, Assume the multiplexers select the bottom input signal
when the control signal is high. We have the following:

A=1,;B=0,;C=0; D=1:545 88 =inl:S0=$1 =In2

As an exercise, determine the programming required for the two-input XNOR function. A
three-Input AND gate can be realized as follows:

A=; 8 =i#i;C=0; D=0: SA = In2: SB =O; S0=S1 = In3

Finally, the largest function that can be realized is the four-input multiplexer. 4, B, C, and
PD act as inputs, while SA, $8, and (SO + $1) are control signals.

The “multiplexer-as-functional-block’’ approach provides configurability through pro-
grammable interconnections. The feokup table O.UT) method employs a vastly different strat-
egy. To configure a fully programmable medule with fan-in of 7 for a specific function, a bvo-bit
large memory, called the lookup table, is programmed to capture the truth table of that function.

The input variables serve as contro] inputs to a multiplexer, which picks the appropriate value
from the memory. The idea is illustrated in Figure 8-33 for a two-input cell. To implement an
EXORfunction, the lookup table is loaded with the output column of the EXORtruth table, this
is “O11 0”. For an input value of “0 0”, the multiplexer selects the first value in the table (“0”),

etc. With this approach, any logic function of two inputs can be realized by a simple (reypro-
gramming of the memory.
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(b) 

Figure 8-33 Configurable logic cell based on lookup table. (a) cell schematic; 
(b) programming the cell to implement an EXOR !unction. 

As in the case of the multiplexer-based approach, more complex gates can be constructed. 
This is accomplished by either combining a number of LUTs, or by increasing the LUT sizes, or 
a combination of both. Additional functionality is provided by incorporating flip-flops. 

Example 8.10 LUT-Based Programmable Logic Cell 

Figure 8-34 shows the basic cell, called a Configurable Logic Block or CLB, used in the 
Xilinx 4000 FPGA series [Xilinx4000]. It combines two four-input LUTs feeding a three-
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Figure 8-34 Simplified block diagram of XC4000 Series CLB (RAM and Carry-logic 
functions not shown) [Xilinx4000]. 
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Figure 8-33 Configurable logic cel based on lookup table. {a) cell schematic;
(b) programming the cell to implement an EXOR function,

As in the case of the multiplexer-based approach, more complex gates can be constructed.
This is accomplished by either combining a number of LUTs, or by increasing the LUT sizes, or
a combination of both. Additional functionality is provided by incorporating flip-flops.
 

Example $8.10 LUT-Based Programmable Logic Cell

Figure 8-34 shows the basic cell, called a Configurable Logic Block or CLB,used in the
Xilinx 4000 PPGA series [Xilinx4000]. It combines two four-input LUTs feeding a three-
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Figure 8-34 Simplified block diagram of XC4000 Series CLB (RAM and Carry-logic
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input LUT. The cell features two flip-flops. whose inputs can be any one of the LUT out­
puts F, G, or H, or an extra external input Din• and whose outputs are available at the XQ 
and l'Q output pins. The X and l' outputs exp01t the outputs of the LUTs and make it possi­
ble to build more complex combinational functions. The cell has four extra inputs 
(CI ... C4) that either can be used as inputs or as set/reset and clock-enable signals for the 
flip-flops. 

Programmable Interconnect 

So far. we have discussed in some depth how to make logic programmable. A compelling ques­
tion is how to make interconnections between those gates changeable or programmable as welL 
To fuHy utilize the available logic cells, the interconnect network must be flexible and routing 
bottlenecks must be avoided. Speed is another prerequisite, since interconnect delay tends to 
dominate the performance in this style of design. At the same time, the reader should be aware 
that programmable interconnect comes at a substantial cost in performance in area, perfor­
mance, and power. In fact, most of the power dissipation in field-programmable architectures is 
attributable to the interconnect network [GeorgeO[). 

Once again, we can differentiate between mask-programmable, one-time programmable 
and reprogrammable approaches. It also is worth differentiating between local cell-to-cell inter­
connections and global signals, such as clocks, that have to be distributed over the complete chip 
with low delay. In the local-area class, programmable wiring can be classified into two major 
groupings: anay and switchbox routers. 

ArrayMBased Programmable Wiring In this approach, wiring is grouped into routing chan­
nels, each of which contains a complete grid of horizontal and vertical wires. An interconnect 
wire can then be programmed into the structure by short-circuiting some of the intersections 
between horizontal and vertical wires (see Figure 8-35). This can be accomplished by providing 
a pass transistor at each of the cross points. Closing the interconnection means raising the con­
trol signal-by programming a "I" into the connected memory cell M (see Figure 8-36). This 
approach is prohibitive and expensive because it requires a 1arge number of transistors and con­
trol signals. Aiso, the large number of transistors connected to each wire leads to a high fan-out, 
translating into delay and power consumption. A fuse is a more effective programmable connec­
tor. In this approach, each routing channel as a fully connected grid of horizontal and vertical 

interconnect wires, and a fuse is blown whenever a connection is not needed. Unfortunately, 
interconnect networks tend to be sparsely populated, which requires the intenuption of an exces­
sive number of switches and results in prohibitively long programming times. 

To circumvent this problem, an a11tifi1se can be used (as in Figure 8-26). Antifuses only 
need to be enabled when a connection is required in the routing channel. This represents a small 
fraction of the overall grid. Notice in Figure 8-35 how only two antifuses are needed to set up a 
connection. Be aware that this figure hides the programming circuitry. This operation is a one­
time event and cannot be undone. The array-based wiring approach has thus been most success­
ful in the write-once class of FPGAs. Circuit corrections or extensions are not possible, and new 
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Figure 8-35 Array-based programmable wiring. 
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Figure 8-36 Programmable interconnect point The memory cell controls the 
interconnection. A stored o and 1 mean an open or a closed circuit, respectively. 
The memory cell can be nonvolatile (EEPROM) or volatile (SRAM). 

components are required for every design change. Providing true field (re)programmability 
requires a more efficient routing strategy. 

Switch-Box-Based Programmable Wiring It's easy to imagine more efficient programmable­

routing approach once we realize that the fully connected wiring grid represents major overkill. 
By restricting the number of routing resources and interconnect points, we can stiH manage to 

wire the desired interconnections, while drastically reducing the overhead. The disadvantage of 

this approach is that occasionally an interconnection cannot be routed. Iv1ost often, this can be 

addressed by remapping the design-for instance, by choosing another group of logic cells for a 

given function. 
A large number of local interconnections can be accounted for by provlding a mesh-like inter­

connection between neighboring cells. For instance, the outputs of each logic cell (LC) can be distrib­

uted to its neighbors to the north, east, south, and west. To account for interconnections between 

disjoint cells or to provide global interconnections, routing channels are placed between the cells con­

taining a fixed number of uncommitted vertical and h01izonta! routing wires (Figure 8-37). At the 

junctions of the horizontal and vertical wires, RAJ'vl-programmable switching mal:!ices (S-boxes) are 
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Figure 8-37 Programmable mesh-based interconnect network (Courtesy Andre Dehon 
and John Wawrzyniek.). 

provided that direct the routing of the data. Cell inputs and outpulS are connected to the global inter­

connect network by RAM-programmable interconnect points (C-box). Figure 8-38 provides a more 

detailed view, showing the transistor implementation of the switch and interconnect boxes. Be aware 

that the single pass-transistor implementation of the switches comes with a threshold-voltage drop. 

\Vhile advantageous from a power perspective, this reduced signal swing has a negative impact on the 
performance. Specia1 design techniques such as zero-threshold devices, level restorers, or boosted 
control signals might be required. 

The mesh architecture provides a flexible and scalable means for connecting a large num­
ber of components. It is quite efficient for local connections, as the number of S\Vitches traversed 
by a single interconnectlon is small and the fan-out is small. However, the mesh network does 
not lend itself well to global interconnections. The delay caused by the combination of the many 

Figure 8-38 Transistor-level schematic diagram of 
mesh-based programmable routing network (Courtesy 
Andre Dehon and John Wawrzyniek.). 
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Figure 8-37 Programmable mesh-based interconnect network {Courtesy Andre Dehon
and John Wawrzyniek.).

 
provided that direct the routing of the data. Cell inputs and outputs are connected to the global inter-
connect network by RAM-programmable interconnect points (C-box). Figure 8-38 provides a more
detailed view, showing the transistor implementation of the switch and interconnect boxes. Be aware

that the single pass-transistor implementation of the switches comes with a threshold-voltage drop.
While advantageous from a powerperspective, this reduced signal swing has a negative impact on the
performance. Special design techniques such as zero-threshold devices, level restorers, or boosted

control signals might be required.
The mesh architecture provides a flexible and scalable means for connecting a large num-

ber ofcomponents. It is quite efficient for local connections, as the numberof switches traversed
by a single interconnection is small and the fan-out is small. However, the mesh network does

not lend itself well to global interconnections. The delay caused by the combination of the many 
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Figure 8-38 Transistor-level schematic diagram of
mesh-based programmable routing network (Courtesy
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Figure 8-39 Programmable mesh-based interconnect architecture 
with overlaid 2 x 2 grid (Courtesy Andre Dehan and John Wawrzyniek.). 

switches and the large capacitive Joad becomes excessive. Most mesh-based FPGA architectures 

therefore offer alternative wiring resources that allow for effective global wiring. One approach 

for accomplishing this task is shown in Figure 8-39. In addition to the standard S-box-to-S-box 

wiring, the network also includes wires connecting S-boxes that are two steps away from each 

other. Eliminating one S-box from an interconnection decreases the resistance. Similarly, we can 

inciude long wires that connect every 4t1•, 81h, or I61
h S-box. \Vhat we are creating, in fact. is a 

number of overlaying meshes with different granulmity (single pitch, double pitch, etc.). Long 

wires are, by preference, mapped on the wiring meshes with the larger pitch. 

Putting It All Together 

A complete field-programmable gate array can now be assembled by joining logic-cell and inter­
connect approaches. tvtany alternative architectures can be (and have been) conceived. The most 

important decision to make at the start is the configuration style (wlite once, nonvolatile, voia­

tHe). This puts some constraints on the types of ceI1s and interconnects that can be used. Giving 

a complete overview is out of the scope of this textbook, so we limit ourselves to two popular 

architectures, which are illustrative for the field. The interested reader can find more information 

in [Trimberger94J, [Smith97], [Betz99], and [GeorgeOl]. 

The Altera MAX Series [Altera01 J The MAX family of devices (Figure 8-40) belongs to the 

class of nonvolatile FPGAs (often called EPLDs, or Electrically Programmable logic Devices). 
It uses a PAL module, (as introduced in Figure 8-29) as the basic logic module. The module 

(called the Logic Array Block or LAB in Altera language) vmies little over the members of the 

family: a \Vide programmable AND array followed by a nmrow fixed OR array and programma­

ble inversion. A LAB typically contains 16 macrocells, 

The major differentiation lies in the interconnect architecture between the LABs. The 

smaller devices (MAX5000, MAX7000) use an array-based routing architecture. The back-
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Figure 8-39 Programmable mesh-based interconnect architecture
with overlaid 2 x 2 grid (Courtesy Andre Dehon and John Wawrzyniek.).

switches and the large capacitive inoad becomes excessive. Most mesh-based FPGA architectures
therefore offer alternative wiring resources that allow foreffective global wiring. One approach
for accomplishing this task is shown in Figure 8-39. In addition to the standard S-box-to-S-box
wiring, the network also includes wires connecting S-boxes that are two steps away from each
other. Eliminating one S-box from an interconnection decreases the resistance. Similarly, we can
include long wires that connect every 4", 8", or 16"" S-box. What we are creating, in fact, is a
numberof overlaying meshes with different granularity (single pitch, double pitch, etc.). Long
wires are, by preference, mapped on the wiring meshes with the largerpitch.

Putting It All Together

A complete field-pregrammable gate array can now be assembled by joining logic-cell and inter-
connect approaches. Many alternative architectures can be (and have been) concerved. The most
important decision to make atthe start is the configuration style (write once, nonvolatile, vola-
tile}. This puts some constraints on the types of cells and interconnects that can be used. Giving
a complete overview is out of the scope of this textbook, so we limit ourselves to two popular
architectures, which are illustrative for the field. The interested reader can find more information

in [Trimberger94], (Smith9?], [Betz99], and [GeorgeO1J.

The Altera MAX Series [AlteraQ1] The MAX family of devices (Figure 8-40) belongs to the

class of nonvolatile FPGAs (often called EPLDs, or Electrically Programinabie Logic Devices).

It uses a PAL module, (as introduced in Figure 8-29) as the basic logic module. The module

(called the Logic Array Block or LAB in Altera language) varies little over the members of the
family: a wide programmable AND array followed by a narrow fixed OR array and programma-
ble inversion. A LAB typically contains 16 macrocells.

The major differentiation lies in the interconnect architecture between the LABs. The
smaller devices (MAX5G00, MAX7000)} use an array-based routing architecture. The back-
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Figure 8-40 The Allera MAX Architecture. (a) Organization of logic and interconnect; 
(b) LAB module; (c) a MAX family macrocell. The expanders increase the number of 
products available by taking another pass through the logic array (from [Smith97]). 

417 

bone of the routing channel is formed by the outputs of all the macrocells, complemented 
with the direct chip inputs. These can be connected to the inputs of the LABs through pro­
grammable interconnect points. The advantage of this architecture, called the Programnwble 
Interconnect Array or PIA, is that it ls simple, and the routing delay between the blocks is. 
totally predictable and fixed (see Figure 8-41 ). The disadvantage is that it does not scale very 
well. This is why the larger members of the series (MAX9000) have to resort to another 
scheme. With the number of macrocells reaching up to 560, the single-channel approach runs 
out of steam, and becomes slow. A mesh-based routing architecture has been opted for 
instead, Individual macrocells can connect to both rovv and column channels, which are quite 
wide (48 to 96 wires). 

The EPLD approach delivers up to 15,000 logic gates, and typically is used when high 
performance is a necessity. Other architectures become desirable when more complex functions 
have to be implemented. 
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bone of the routing channel 1s formed by the outputs of all the macrocells, complemented
with the direct chip inputs. These can be connected to the inputs of the LABs through pro-
grammable interconnect points. The advantage of this architecture, called the Prograniunable
fnterconnect Array or PIA, is that it is simple, and the routing delay between the blocks is

totally predictable and fixed (see Figure $-41). The disadvantage is that it does not scale very
well. This is why the larger members of the series (4AX9000) have to resort to another
scheme. With the number of macrocells reaching up to 560, the single-channel approach runs
out of steam, and becomes slow. A mesh-based routing architecture Bas been opted for

instead. Individual maerocells can connect to both row and column channels, which are quite
wide (48 to 96 wires).

The EPLD approach delivers up to 15,000 logic gates, and typically is used when high
performance is a necessity, Other architectures become desirable when more complex functions

have to be implemented.
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Figure 8-41 Interconnect architectures used in the Altera MAX series. (a) Array-based 
architecture used in MAX 3000-7000; (b) Mesh architecture of the MAX9000. 

The Xilinx XC40xx Series This popular RAM-programmable device family combines the 
lookup table approach for the implementation of the logic cells, with a mesh-based interconnect 
network. The largest part in the series (XC4085) supports almost I 00,000 gates using a 56 x 56 

CLB array. The architecture of the CLB was shown in Figure 8-34. An interesting feature is that 
the CLB can also be configured as an array of Read/Write memory cells, using the memory 
lookup tables in the F' and G' blocks. Depending on the selected mode, a single CLB can be 
configured as either a 16 x 2, 32 x 1, or 16 x 1 bit array. This feature comes in handy, because it 

is typical for large modules of logic to need comparable amounts of storage. 
The interconnect architecture is also quite rich, and combines a wide variety of wiring 

resources, as shown in Figure 8-42. The overlaid meshes consist of wire segments of lengths 
1, 2, and 4. Some components also support direct connections, which link adjacent CLBs with­
out using general wiring resources. Signals routed on the direct interconnect experience mini­

mum wiring delay, as the fan-out is small. These Directs are especially effective in the 
implementation of fast arithmetic modules, which feature many critical local connections. To 
address global wiring~ long lines are provided that form a grid of metal interconnect segments 
that run the entire length or width of the array. These are intended for high fan-out, time-critical 

signal nets, or nets that are distributed over long distances (such as buses). In addition, special 

wires are provided for the routing of the clocks. 
One topic we have ignored so far in our discussion of configurable array structures is the 

input/output architecture. For maximum usability, it is crucial that the 1/0 pins of the component 
are flexible, and that they provide a wide range of options in terrns of direction, logic levels, and 

drive strengths. One style of input/output block (!OB), used in the XC4000 series, is shown in 
Figure 8-43. It can be programmed to act as an input, output, or bidirectional port. It includes a 
flip-flop that can be programmed to be either edge triggered or level sensitive. The slew-rate 
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419 

control provides variable drive strengths and allows for a reduction in the rise-fall time for non­

critical signals. 

Example 8.11 FPGA Complexity and Performance 

To get an impression of what can be achieved with the volatile field-programmable com­
ponents, consider the Xilinx 4025. It contains approximately 1000 CLBs organized in a 

32 x 32 array. This translates into a maximum equivalent gate count of 25,000 gates. The 
chip contains 422 Kbits of RAM, used mostly for programming. A single CLB is specified 
to operate at 250 MHz. When taking into account the interconnect network and attempting 

more complex logic configurations such as adders, clock speeds between 20 and 50 MHz 
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control provides variable drive strengths and allows for a reduction in the rise—fall time for non-

critical signals.
 

Example 8.11 FPGA Complexity and Performance

To get an impression of what can be achieved with the volatile field-programmable com-
ponents, consider the Xilinx 4025. It contains approximately 1000 CLBs organized in a

32 X 32 array. This translates into a maximum equivalent gate count of 25,000 gates. The
chip contains 422 Kbits of RAM,used mostly for programming. A single CLB is specified

to operate at 250 MHz. When taking into accountthe interconnect network and attempting
more complex logic configurations such as adders, clock speeds between 20 and 50 MHz
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Figure 8-44 Chip microphotograph of XC4025 volatile FPGA (Courtesy of Xilinx, Inc.). 

are attainable. To put the integration complexity in perspective, a 32-bit adder requires 
approximately 62 CLBs. A chip microphotograph of the XC4025 part is shown in 

Figure 8-44. The horizontal and vertical routing channels are easily recognizable. 

Prewired logic arrays have rapidly claimed a significant part of the logic component market. 
TheJf arrival has effectively ended the era of logic design using discrete components represented 
by the TTL logic family. It is generally believed that the impact of these components is increas­

ing with a further scaling of the technology. To make this approach successful, however, 
advanced software support in terms of cell placement, signal routing. and synthesis are required. 
Also, one should not ignore the overhead that flexibility brings with it. Programmable logic is at 

least 10 times Jess efficient in terms of energy and performance with respect to ASIC solutions. 

Hence, its scope has been moslly restricted to prototyping and small-volume applications so far. 
Yet, flexibility and reuse are alluring. Field-programmable components are bound to see a sub­

stantial growth in the years to come. 

8.6 Perspective-The Implementation Platform of the Future 
The designer of today's advanced systems-on-a-chip is offered a broad range of implementation 

choices. ¥/hat approach is ultimately chosen is determined by a broad range of factors: 
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Figure 8-44 Chip microphctograph of XC4025 volatile FPGA (Courtesy of Xilinx, Inc.).

are attainable. To put the integration complexity in perspective, a 32-bit adder requires
approximately 62 CLBs, A chip microphotograph of the XC4025 part is shown in
Figure 8-44. The horizontal and vertical routing channels are easily recognizable. 

Prewired logic arrays have rapidly claimed a significant part of the logic component market.
Their arrival has effectively ended the era of logic design using discrete components represented
by the TTL logic family. It is generally believed that the impact of these components is increas-
ing with a further scaling of the technclogy. To make this approach successful, however,
advanced softwaresupport in terms of cell placement,signal routing, and synthesis are required.
Also, one should not ignore the overhead that flexibility brings with it. Programmablelogic is at
least 10 times less efficient in terms of energy and performance with respect to ASIC solutions.
Hence,its scope has been mostly restricted to prototyping and small-volume applications so far.
Yet, flexibility and reuse are alluring. Field-programmable components are boundto see a sub-
stantial growth in the years to come.

8.6 Perspective—The Implementation Platform of the Future

The designer of today’s advanced systems-on-a-chip is offered a broad range of unplementation
choices. What approach is ultimately chosen is determined by a broad range of factors:
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• performance, power and cost constraints 

• design complexity 

• testability 

• time to market, or more precisely. time to revenue 
• uncertainty of the market, or late changes in the design 

• application range to be covered by the design 

• prior experiences of the design team 

A number of these factors seem to imply a trend towards more flexible, programmable compo­

nents that can be reused and that can be modified even after manufacturing. At the same time, 

solutions that offer the best "bang for the buck" most often end up the winners. Too much flexi­

bility often results in ineffective and expensive solutions, which rapidly end up on the dust heap. 

Finding the balance between the two extremes is the ultimate challenge of the chip architects of 
today. 

On the basis of these observations, it seems logical to assume that the implementation 

platform of the future will be a combination of the strategies we have discussed in this chapter. 

providing implementation efficiency and flexibility when and where needed. The system on a 

chip is becoming a combination of embedded microprocessors with their memory subsystems, 

DSPs, fixed ASIC-style hardware accelerators, parameterizable modules, and flexible logic 

implemented in FPGA style. How these components are balanced is a function of the application 

requirements and the intended market. 

Example 8.12 Examples of Hybrid Implementation Platforms 

Figure 8-45 shows two contrasting implementation platforms for wireless applications. 

The first device, the Virtex-Il Pro from Xilinx [XilinxVirtexOI] is centered around a large 

FPGA array. A PowerPC microprocessor is embedded in the center of the array. The pro­

cessor provides an effective .implementation approach for application-level functionality 

and system-level conu·ol. To provide higher performance for signal processing applica­

tions, an an-ay of embedded 18 x 18 multipliers is added. These dedicated components 

offer a significant performance, power, and area advantage over a pure FPGA implementa­

tion of the same function. Finally, a number of very fast 3.125-Gbps transceivers are pro­

vided, aHowing for high-speed serial communication off chip. 

A somewhat contrasting approach is offered in the design of Figure 8-4Sb 

[ZhangOO]. The center of this device is an ARM-7 embedded microprocessor, acting as the 

overall chip manager. Functions that need high performance and energy efficiency are off­

loaded to a configurable mray of functional units such as multipliers, ALUs, memories, 

and address generators. These components can be combined dynamically into application­

specific processors. The chip also provides an embedded FPGA array for functions that 
need bit-level granularity. 
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{a)The Xilinx Virtcx-£1 Pro embeds .1 Power PC microprocessor into an FPGA fabric (Courlcsy Xilinx, inc.). 
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(b) The Maia chip combines embedded microprocessor.configurable accdcrnto~ and FPGA [ZhangOO]. 

Figure 8-45 Examples of hybrid implementation platlorms. 
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Figure 8-45 Examples of hybrid implementation platiorms.
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8.7 Summary 

In this chapter, we have briefly scanned the complex world of design implementation strategies 

for digital integrated circuits. New implementation styles have rapidly emerged over the Iast few 

decades, presenting the designer with a wide vmiety of options. These design techniques and the 

accompanying tools are having a major impact on the way design is performed today, and make 

possible the exciting and impressive processors and application-specific circuits to \Vhich we 

have become so accustomed. \Ve have touched on the following issues in this chapter: 

• Custom design, where each transistor is individualJy handcrafted, offers the implementa­

tion from an area and perfonnance perspective. This approach has become prohibitJvely 

expensive, and should be reserved for the design of the few critical modules in which 

extreme performance is required, or for often-reused library cells. 
• The semicustom approach, based on the standard-cell methodology. is the workhorse of 

today's digital design industry. The advantage is the high degree of automation. The chal­

lenge is to deal with the impact of deep-submicron technologies. 

• To deal with the increasing complexity of integrated circuits, designers increasingly rely 

on the availability of large macroce/ls such as memories, multipliers, and microprocessors. 

These modules are often provided by third-party vendors, and they have spumed a new 

industry focused on "intellectual property." 

• Starting a new design for every new emerglng application has become prohibitively 

expensive. The majority of the semiconductor market now focuses on flexlble solutions 

that allow a single component to be used for a variety of applications, either through soft­

ware programming or reconfiguration. Configurable hardware delays the time when the 

required function is actually committed to the hardware. Different approaches toward late 

binding also have been discussed. Delaying the binding time comes with an efficiency 

penalty: The more flexibility that is provided, the larger the impact on performance and 

power dissipation, 

Undoubtedly, new design styles will come on the scene in the near future. Becoming familiar 

with the available options is an essential part of the learning experience of the beginning digital 

designer. We hope this chapter, although compressed, entices the reader to further explore the 

numerous possibilities. One final observation is as follows: Even with the increasing automation 

of the digital circuit design process, new challenges are continuously emerging-challenges that 

require the profound insight and intuition offered only by a human designer. 

8.8 To Probe Further 
The literature on design methodologies and automation for digital integrated circuits has. 

exploded in the last few decades. Severa} reference works are worth mentioning: 

• ASIC and FPGA design methodologies: [Smith97] 

• FPGA architectures: [Trimberger94], [GeorgeOl] 
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• System on a Chip: [Chang99] 
• Design methodology and technology: [BryantOIJ 
• Design synthesis: [DeMicheli94] 

State-of-the-art developments in the design automation domain are generally reported in the 
IEEE Transactions on CAD, the IEEE Transactions on VLSI Systems, and the IEEE Design and 
Test Magazine, Premier conferences are, among others, the Design Automation Conference 
(DAC) and the International Conference on CAD (ICCAD). The web sites of the major Elec­
tronic Design Automation Companies (Cadence, Synopsys, Mentor, etc.) provide a treasure of 

information as well. 
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Exercises 
For problems and exerdses on design methodology, please check http;//bwrc.cecs.berkcley.cdu/IcBook. 
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DESIGN lv1ETHOD0LOGY INSERT 

E 

Characterizing Logic 
and Sequential Cells 

The cliallenge of library characterization 

Characterization methods for logic cells and registers 

Cell parameters 

The Importance and Challenge of Library Characterization 

The quality of the results produced by a logic synthesis tool is a strong function of the level of 
detail and accuracy with which the individual cells were characterized. To estimate the delay of 
a complex module, a logic synthesis program must rely on higher level delay models of the indi­
vidual cells-falling back to a full circuit- or switch-level timing model for each delay estima­
tion is simply not possible because it takes too much compute time. Hence, an important 
component in the development process of a standard-cell library is the generation of the delay 
models. In previous chapters, we learned that the delay of a complex gate is a function of the 
fan-out (consisting of connected gates and wires), and the rise and fall times of the input signals, 
Furthe1more, the delay of a cell can vary between manufacturing runs as a result of process 
variations. 

In this insert, we first discuss the models and characte1ization methods that are commonly 
used for logic cells. Sequential registers require extra timing parameters and thus deserve a sep­
arate discussion. 

427 

Dell Ex. 1025
Page 316



428 Insert E • Characterizing Logic and Sequential Cells 

Characterization of Logic Cells 

Unfortunately, no common delay model for standard cells has been adopted. Every vendor has 
his own favored methods of cell characterization. Even within a single tool, various delay mod­
els often can be used. trading off accuracy for performance. The basic concepts are, however, 
quite similar, and they are closely related to the ones we introduced in Chapters 5 and 6. We 
therefore opt to concentrate on a single set of models in this section-more precise]y, those used 

in the Synopsys Design Compiler [DesignCompilerOI], one of the most popular synthesis tools. 
Once a model has been adopted, it has to be adopted for all the cells in the block; in other words, 
it cannot be changed from cell to cell. 

The total delay consists of four components, as illustrated in Figure E-1: 

(E.l) 

D1 represents the intrinsic delay, which is the delay with no output loading. D1' is the transition 
component, or the part of the delay caused by the output load. Ds is the fraction of the delay due 
to the b1pllf slope. Finally, De is the delay of the wire following the gate. All delays are charac­
terized for both rising and falling transitions. 
The simplest model for the transition delay is the linear delay model of Chapter 5. We have 

(E.2) 

where LC,n1, is the sum of all input pin capacitances of gates connected to the output of this 
gate. and Cwire is the estimated wire capacitance. The slope delay Ds is approximated as a linear 
function of the transition delay DT of the previous gate, written as 

(E.3) 

where S sis the slope-sensitivity factm; and D7 f)l'C\' is the transition delay of the previous stage. 
The characterization of a library cell must therefore provide the following components, 

each of them for both rising and falling transitions, and with respect to each of the input pins: 

D5 : Slope delay. Delay at 
input A caused by the 
transition delay at B. 

B/ ! 

/ 
D1: Intrinsic delay Incurred 
from cell input to cell output. 

C 

De: Connect delay. Time 
from state transition at C 
to state transition at D. 

I 'x 

D 7 :Transition delay. 
Caused by output pin 
loading and output pin 
drive. 

Figure E-1 Delay components of a combinational gate [DesignCompiler01]. 

' 
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Characterization of Logic Cells

Unfortunately, no common delay model for standard cells has been adopted. Every vendor has
his own favored methodsof cell characterization. Even within a single tool, various delay med-

els often can be used, trading off accuracy for performance. The basic concepts are, however,
quite similar, and they are closely related to the ones we introduced in Chapters 5 and 6. We
therefore opt to concentrate on a single set of models in this section—imore precisely, those used

in the Synopsys Design Compiler [DesignCompiler01], one of the most popular synthesis tools.
Once a model has been adopted, it has to be adopted forall the cells im the block; in other words,

it cannot be changed from cell to cell.

The total delay consists of four components, as Hlustrated in Figure E-1:

CHEE:

D, represents the intrinsic delay, which is the delay with ne outpul loading. D> is the transition
component, or the part of the delay caused by the output load. D, is the fraction of the delay due
to the input siope. Finally, De is the delay of the wire following the gate. AH delays are charac-
terized for both rising and falling transitions.
The simplest model for the transition delay is the linear delay model of Chapter 5, We have

Dt= ReriverlDCgue + Cwired (E.2)

where £C,,,< is the sum of all input pin capacitances of gates connected to the output of this
gate, and C,,,,, is the estimated wire capacitance. The slope delay D, is appreximated as a linear
function of the transition delay D, of the previous gate, written as

Ds = Ss Darprew (£.3)

where S, is the slope-sensitivity factor and D,,,,,, 1s the transition delayof the previous stage.
The characterization of a library cell must therefore provide the following components,

each of them for both rising and falling transitions, and with respect to each of the input pins:

D,: Slope delay. Delay at Dc: Connect delay. Time
input A caused by the from state transition at €
transition delay at B. to state transition at D.

“| {  ™>»

 
/ D-:Transition delay.

D,:Inirinsic delay Incurred Caused by outputpin
from ceil input ie cell output. pacing and output pin

Figure E-1 Delay components of a cormbinationa! gate [DesignCompiler01}.
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• intrinsic delay 

• input pin capacitance 

• equivalent output driving resistance 

• slope sensitivity 

In addition to the cell models, the synthesis tools also must have access to a wire model. 

Since the length of the wires is unknown before the placement of the cells, estimates of Cw;,, and 

R..,;,-, are made on the basis of the size of the block and the fan-out of the gate. The length of a 

wire is most often proportional to the number of destinations it has to connect. 

Example E.1 Three-Input NAND Gate Cell 

The characterization of the three-input NANO standard cell gate, presented earlier in 

Example 8.2, is given in Table E- l. The table characte1izes the performance of the cell as a 

function of the load capacitance and the input-rise (fall) time for two different supply volt­

ages and operating temperatures. The cell is designed in a 0.18-µm CMOS technology. 

Table E-1 Delay characterization of a three-input NAND gate (in ns) 
as a function of the input node for two operation comers (supply­
voltage-temperature pairs of 1.2 V-125'C, and 1.6 V-40'C). 
The parameters are the load capacitance C and the input rise (fall) 
time T. ( Courtesy ST Microelectronics.) 

Path 1.2V-125°C 1.6V-40'C 

fnl-tpLH 0.073 +7.98C+0.317T 0.020 + 2.73C + 0.253T 

Jnl-tpHL 0.069 + 8.43C + 0.364T 0.018 + 2.!4C + 0.292T 

In2-tpUf 0.101 +7.97C+0.318T 0.026 + 2.38C + 0.255T 

fn2-tt>HL 0.097 + 8.42C + 0.325T 0.023 + 2.!4C + 0.269T 

In3-tpLH 0.120 + 8.00C + 0.318T 0.031 + 2.37C + 0.258T 

fn3-tpHL 0.1 IO+ 8.41C +0.280T 0.027 + 2.!5C + 0.223T 

\Vhile linear delay models offer good first-order estimates. more precise models are often 

used in synthesis, especially when the real wire lengths are back annotated onto the design. 

Under those circumstances, nonlinear models have to be adopted. The most common approach 

is to capture the nonlinear relations as lookup tables for each of these parameters. To increase 

computational efficiency and minimize storage and characterization requirements, only a limited 

set of loads and slopes are captured, and linear interpolation is used to determine the missing 

values. 
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Example E.2 Delay Models Using Lookup Tables 

A (partial) characterization of a two-input AND cell (AND2), designed in a 0.25-µm 
CMOS technology (Courtesy ST Microelectronics) follows. The delays are captured for 
output capacitances of 7 fF, 35 fF, 70 fF, and l 40 fF, and input slopes of 40 ps, 200 ps, 
800 ps, and l.6 ns, respectively. 

cell(AND) { 
area: 36; 
pin(Z) { 
direction : output ; 
function: "A*B"; 
max_capacitance : 0.14000; 

timing() { 
related_pin : "A" ; /* delay between input pin A and output pin Z */ 

cell_rise { 

) 

values( "O.l08l0, 0.17304, 0.24763, 0.39554", \ 
"0.14881, 0.2[326, 0.28778, 0.43607", \ 
"0.25149, 0.31643, 0.39060, 0.53805", \ 
"0.35255, 0.42044, 0.49596, 0.64469" ); l 

rise_transition { 

values( "0.08068, 0.23844, 0.43925, 0.84497", \ 
"0.08447, 0.24008, 0.43926, 0.848[4", \ 

"0.10291, 0.25230, 0.44753, 0.85182", \ 
"0.12614, 0.27258, 0.46551, 0.86338" );) 

cell_fall(table_l) { 
values( "O.l 1655, 0.18476, 0.26212, 0.41496", \ 

"0.15270, 0.22015, 0.29735, 0.45039", I 
"0.25893, 0.32845, 0.40535, 0.55701 ", I 
"0.36788, 0.44198, 0.52075, 0.67283" );) 

fall_transition(table_l) { 
values( "0.06850, 0.l8l48, 0.32692, 0.62442", I 

"0.07183, 0.18247, 0.32693, 0.62443", \ 
"0.09608, 0.19935, 0.33744, 0.62677", I 
"0.12424, 0.22408, 0.35705, 0.63818" );) 

intrinsic_rise : 0. I 3305 ; /* unloaded delays */ 
intrinsic_fall: 0.13536; 

timing() { 
related_pin: "B" ; /* delay between input pin A and output pin Z *I 
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intrinsic_rise : 0.12426 ; 
intrinsic_fall : 0.14802; 

} 
} 
pin(A) { 

direction : input ; 

capacitance : 0.00485 ; /* gate capacitance */ 
} 

pin(B) { 

} 
} 

direction : input ~ 

capacitance : 0.00519 ; 

Characterization of Registers 

431 

In Chapter 7, we identified the three important timing parameters of a register. The setup time 
(t,,,) is the time that the data inputs (D input) must be valid before the clock transition (in other 
words, the O to I transition for a positive edge-triggered register). The hold lime Ctiw/d) is the time 
the data input must remain valid after the clock edge. Finally, the propagation delay (t,_,;) equals 
the time it takes for the data to be copied to the Q output after a clock event. The latter parameter 
is illustrated in Figure E-2a. 

Latches have a bit more complex behavior, and thus require an extra timing parameter. 
While 'c-Q• corresponds to the delay of relaunching of data that arrived to a closed latch, tD­

Q equals the delay between D and Q terminals when the latch is in transparent mode 
(Figure E-2b). 

The characterization of the tc-Q (tv-Q) delay is fairly straightforward. It consists of a 
delay measurement between the 50% transitions of Clk (D) and Q, for different values of the 
input slopes and the output loads, not unlike the case of combinational logic cells. 

'c-Q 

(a) 

'c-Q 

(b) 

Figure E-2 Propagation delay definitions for sequential components: 
(a) register; (b) latch. 
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intrinsic_rise : 0.12426 ;

intrinsic_fall : 0.14802 ;

}

}

pin(A){
direction : input ;

capacitance ; 0.00485 ; /* gate capacitance */
}

pin{B){

direction : input ;

capacitance : 0.00519 ;
}

}

Characterization of Registers

In Chapter 7, we identified the three important Gming parameters of a register. The serup time
(7,,,) is the time that the data inputs (D input) must be valid before the clock transition (in other

words, the 0 to | transition for a pesitive edge-triggeredregister}. The hold time (t,,,;) is the time

the data input must remain valid after the clock edge. Finally, the propagation delay (¢,_,) equals
the time it takes for the data to be copied to the Q output after a clock event. The latter parameter
is illustrated in Figure E-2a.

Latches have a bit more complex behavior, and thus require an extra timing parameter.

While ic_p, corresponds to the delay of relaunching of data that arrived to a closed latch, tp_
g equals the delay between D and @ terminals when the latch is in transparent mode
(Figure E-2b).

The characterization of the f¢_g (fp_g} delay is fairly straightforward. It consists of @
delay measurement between the 50% transitions of Cik (D) and Q, for different values of the

input slopes and the output loads, not unlike the case of combinational logic cells.

wo

°

wm|f®BD Q

[> Chk Clie

feQ fo-g

fa} (b)

Figure E-2 Propagation delay definitions for sequential componenis:
(a) register; (5) latch.
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Clk 
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Q 

(a) 

_____ 1._os_,c_d.-- -- ~r----'.:c:...-.:.O __ _ 

to-c 

- k-
t n 
(b) 

Figure E-3 Characterization of sequential elements: (a) determining the setup 
time of a register; (b) definition of setup and hold times. 

The characterization of setup and hold times is more elaborate, and depends on what is 
defined as "valid" in the definitions of both setup and hold times. Consider the case of the setup 
time. Narrowing the time interval between the arrival of the data at the D input and the Clk event 
does not lead to instantaneous failure (as assumed in the first-order analysis in Chapter 7), but 
rather to a gradual degradation in the delay of the register. This is documented in Figure E-3a, 
which illustrates the behavior of a register when the data arrives close to the setup time. If D 
changes long before the clock edge, the tc-Q delay has a constant value. Moving the data transi­
tion closer to the clock edge causes lc-Q to increase. Finally, if the data changes too close to the 
clock edge, the register fails to register the transition altogether. 

Clearly. a more precise definition of the "setup time" concept is necessary. An unambig­
uous specification can be obtained by plotting the lc-Q delay against the data-to-clock offset, 
as shown in Figure E-3b. The degradation of the delay for smaller values of the offset can be 
observed. The actual definition of the setup time is rather precarious. If it were defined as the 
minimum D-Clk offset that causes the flip-flop to fail, the logic following the register would 
suffer from excessive delay if the offset is close to, but larger than, that point of failure. 
Another option is to place it at the operation point of the register that minimizes the sum of the 
data-clock offset and the tc-Q delay. This point, which minimizes the overall flip-flop over­
head, is reached when the slope of the delay curve in Figure E-3b equals 45 degrees 
[Stojanovic99]. 
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Figure E-3 Characterization of sequential elements: (a) determining the setup
time of a register; (b) definition of setup and hold times.

The characterization of setup and held times is more elaborate, and depends on whatis
tlefined as “valid” in the definitions of both setup and held times. Consider the case of the setup
time. Narrowing the time interval between the arrival of the data at the D input and the Clk event
does not lead to instantaneous failure (as assumed in the first-order analysis in Chapter 7), but

rather to a gradual degradation in the delay of the register. This is documented in Figure E-3a,
which illustrates the behavior of a register when the data arrives close to the setup time. If D

changes long before the clock edge, the fc_g delay has a constant value. Moving the data transi-
tion closer to the clock edge causes /¢_, to increase. Finally, if the data changestoo close to the
clock edge, the register fails to register the transition altogether.

Clearly, a more precise definition of the “setup time” concept is necessary. An unambig-

uous specification can be obtained by plotting the #¢_y delay against the data-to-clock offset,
as shown in Figure E-3b. The degradation of the delay for smaller values of the offset can be
observed. The actual definition of the setup time is rather precarious. If it were defined as the
minimum D-Clk offset that causes the flip-flop to fail, the logic following the register would
suffer from excessive delay if the offset is close to, bul larger than, that point of failure.
Another option is to place it at the operation point of the register that minimizes the sum of the

data-clock offset and the fe. delay. This point, which minimizes the overall flip-flop over-
head, is reached when the slope of the delay curve in Figure E-3b equals 48 degrees

[Stojanovic99}.
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While custom design can take advantage of driving flip-flops close to their point of 
failure-and take all the risk that comes with it-semicustom design must take a more conserva­
tive approach. For the characterization of registers in a standard cell library, both setup and hold 
times are commonly defined as data-clock offsets that con-espond to some fixed percentage 
increase in fc-Q, typically set at 5%, as indicated in Figure E-3b. Note that these curves are dif­
ferent for 0-1 and 1-0 transitions, resulting in different setup (an hold) times for O and I values. 

As with clock-to-output delays, setup times also are dependent on clock and data slopes, and 
they are represented as a two-dimensional table in nonlinear delay models. Identical definitions 
hold for latches. 

Example E.3 Register Setup and Hold Times 

In this example, we examine setup and hold behavior of the transmission gate master-slave 
register introduced in Chapter 7. (See Figure 7.18.) The register is loaded with a !00-fF 
capacitor, and its setup and hold times are examined for clock and data slopes of I 00 ps. 
The simulation results are plotted in Figure E-4. When data settles a "long time" before 
the clock edge, the dock-to-output delay equals 193 ps. Moving the data transition closer 

to the clock edge causes the lc-Q delay to increase. This becomes noticeable at an offset 
between data and clock of about 150 ps. The register completely fails to latch the data 
when data precedes the clock by 77 ps. The sum of D-Q offset and the tc-Q is minimal at 

93 ps. A 5% increase in tc-Q is observed at 125 ps, and this time is entered in the library 
as the setup time for this particular slope of data and clock. This charactelization of setup 
time adds a margin to the design of about 30 ps. From these simulations, we also can 
determine that this register has a hold time of-15 ps. 
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Figure E-4 Charactertzation of the clock-to-output delay, setup and hold times 
of a transmission-gate latch pair. 
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Design Synthesis 

Circuit, Logic, aml Architectural Sylllfiesis 

One of the most enticing proposals one can make to a designer who has to generate a circuit with 
tough specifications in a short time is to offer him a tool that automatically translates his specifi­
cations into a working circuit that meets all the requirements. One of the main reasons that semi­
conductor circuits have reached the mind-boggling complexity they have today, is that such 
synthesis tools actually exist-at least to a certain extent. Synthesis can be defined as the trans­
formation between two different design views. Typically, it represents a translation from a 
behavioral specification of a design entity into a structural description. In simple terms, it trans­
lates a description of the function a module should pe1form (the behavior) into a composition­
that is, an interconnection of elements (the structure). Synthesis approaches can be defined at 

each level of abstraction: circuit, logic, and architecture. An overview of the various synthesis 
levels and their impact is given in Figure F-1. The synthesis procedures may differ depending on 
the targeted implementation style. For example, logic synthesis translates a logic description 
given by a set of Boolean equations into an interconnection of gates. The techniques involved in 
this process strongly depend on the choice of either a two-level (PLA) or a multilevel (standard­
ceH or gate-array) implementation style. We briefly desc1ibe the synthesis tasks at each of the 
different modeling levels. Refer to [DeMicheli94] for more information and a deeper insight into 
design synthesis. 

435 

Dell Ex. 1025
Page 324

 

DESIGN METHODOLOGY INSERT

F

Design Synthesis

Circuit, Logic, andArchitectural Synthesis 
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Architectural Level 

(i: L.16):: 
sum = sum*z- ! + 
coeff[i}*in*z- 1 

Architecture 
Synthesis 
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Logic Level 

Logic 
Synthesis 

Figure F-1 A taxonomy of synthesis tasks. 

Circuit Synthesis 
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Circuit Level 

101 
\ 1 cD, 

p 

The task of circuit synthesis is to translate a logic desc1iption of a circuit into a network of tran­

sistors that meets a set of timing constraints. This process can be divided into two stages: 

I. Derivation of transistor schematics from the logic equations. This requires the selection 
of a circuit style (complementary static, pass transistors, dynamic, DCVSL, etc.) and the 

construction of the logic network. The former task is usually up to the designer. while the 
latter depends upon the chosen style. Far instance, the logic graph technique introduced in 
Design Methodology Insert D can be used to derive the complementary pull-down and 
pull-up networks of a static CMOS gate. Similarly, automated techniques have been devel­

oped ta generate the pull-dawn trees for the DCVSL logic style so that the number of 
required transistors is minimized [Chu86]. 

2. Transistor sizing to meet performance constraints. This has been a recurring subject 

throughout this book. The choice of the transistor dimensions has a major impact on the 

area, performance, and power dissipation of a circuit. We have also learned that this is a 
subtle process. For instance, the performance of a gate is sensitive to a number of layout 
parasitics, such as the size of the diffusion area, fan-out, and wiring capacitances. Not­
withstanding these daunting challenges, some powerful transistor-sizing tools have been 

developed [e.g., Fishburn85, AMPS99, NorthropOI]. The key to the success of these tools 
is the accurate modeling of the performance of the circuit using RC equivalent circuits and 
a detailed knowledge of the subsequent layout-generation process. The latter allows for an 

accurate estimation of the values of the parasitic capacitances. 
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Figure F-1 A taxonomy of synthesis tasks.

Circuit Synthesis

The task of circuit synthesis is to translate a logic description of a circuit into a network of Wan-
sistors that meets a set of timing constraints. This process can be divided into two stages:

1. Derivation of tninsistor schematics from the logic equations. This requires the selection
of a circuit style (complementarystatic, pass transistors, dynamic, DCVSL,etc.) and the
construction of the logic network. The former task is usually up to the designer, while the

latter depends upon the chosen style. For instance, the logic graph technique introduced in
Design Methodology Insert D can be used to derive the complementary pull-down and
pull-up networks of a static CMOS gate. Similarly, automated techniques have been devel-

oped to generate the pull-down trees for the DCVSLlogic style so that the number of

required transistors is minimized [Cha86].
2. Transistorsizing to meet performance constraints. This has been a recurring subject

throughout this book. The choice of the transistor dimenstons has a major impact on the
area, performance, and powerdissipation of a circuit. We have also learned that this is a

subtle process, For instance, the performance ofa gate is sensitive to a numberof layout
parasitics, such as the size ofthe diffusion area, fan-out, and wiring capacitances. Not-
withstanding these daunting challenges, some powerful transistor-sizing tools have been
developed [e.g., Fishburn85, AMPS99, Northrop0i]. The key to the success of these tools
is the accurate modeling of the performanceofthe circuit using RC equivalentcircuits and

a detailed knowledge of the subsequent layout-generation process. The latter allows for an
accurate estimation of the values of the parasitic capacitances.
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While circuit synthesis has proven to be a powerful tool, it has not penetrated the design world 
as much as we might expect. One of the main reasons for this is that the quality of the cell library 
has a strong influence on the complete design, and deslgners are reluctant to pass this important 

task to automatic tools that might produce inferior results. Yet, the need for ever-larger 1ibraries 
and the impact of transistor-siz!ng on circuit performance and power dissipation is providing a 
strong push for a more pervasive inu·oduction of circuit-synthesis tools. 

Logic Synthesis 

Logic synthesis is the task of generating a structural view of a )ogic-level model. This model can 
be specified in many different ways, such as state-transition diagrams, state charts, schematic 
diagrams, Boolean equations, truth tables, or HDL (Hardware Description Language) 

descriptions. 
The synthesis techniques differ according to the nature of the circuit (combinational or 

sequential) or the intended implementation architecture (multilevel logic, PLA, or FPGA). The 
synthesis process consists of a sequence of optimization steps, the order and nature of which 
depend on the chosen cost function-area, speed, power, or a combination of these. Typically, 

logic optimization systems divide the task into two stages: 

1. A teclmology-indepenllent phase, where the logic is optimized using a number of Boolean 

or algebraic manipulation techniques. 
2. A technology-mapping phase, which takes into account the peculiarities and properties of 

the intended implementation architecture. The technology-independent description 
resulting from the first phase is translated into a gate netlist or a PLA description. 

The two-level minimization tools were the first logic-synthesis techniques to become widely 
available. The Espresso program developed at the University of California at Berkeley 
[Brayton84] is an example of a popular two-level minimization program. For some time, the 
wide availability of these tools made regular, mTay-based architectures like PLAs and PALs the 

prime choice for the implementation of random logic functions. 
At the san1e time, the groundwork was laid for sequential or state-machine synthesis. 

Tasks involved include the state minimization that aims at reducing the number of machine 
states, and the state encoding that assigns a binary encoding to the states of a finite state machine 

[DeMicheli94]. 
The emergence of multilevel logic synthesis environments such as the Berkeley f'\1IS tool 

[Brayton87] swung the pendulum towards the standard-cell and FPGA implementations that 
offer higher performance or integration density for a majority of random-logic functions. 

The combination of these techniques with sequential synthesis has opened the road to com­

plete register-transfer (RTL) synthesis environments that take as an input an HDL description (in 
VHDL or Verilog-see Design Methodology Insert C) of a sequential circuit and produce a gate 
netlist [Carlson91, Kurup97]. Saying the logic synthesis has fundamentally altered the digital cir­
cuit design landscape is by no means an understatement. It also is fair to say that the tool set that 

Dell Ex. 1025
Page 326



436 Insert F • Design Synthesis 

made this major paradigm change in design methodology ultimately happen is the Design Com­
piler environment from Synopsys. Even after being in place for almost two decades, Design Com­
piler continues to dominate the market and represents the synthesis tool of choice for the majority 
of the digital ASIC designers. Built around a core of Boolean optimization and technology map­
ping, Design Compiler incorporates advanced techniques such as timing, area and power optimi­
zation, cell-based sizing, and test insertion [Kurup97, DesignCompiler]. 

Example F.1 Logic Synthesis 

To demonstrate the difference between two-level and multilevel logic synthesis, both 
approaches were applied to the following full-adder equations, which will be treated in 
substantial detail in Chapter I J. 

S = (A $B) $ C; 

Ca = A · B + A · C1 + B · C1 

(F. l) 

The MIS-II logic synthesis environment was employed for both the two-level and 
multilevel synthesis. The minimized truth table representing the PLA implementation is 
shown in Table F-1. It can be verified that the resulting network corresponds to the preced­
ing full-adder equations. The PLA counts three inputs, seven product terms, and two out­
puts. Observe that no product terms can be shared between the sum and carry outputs. A 
NOR-NOR implementation requires 26 transistors in the PLA array (17 and 9 in the OR 
plane and AND planes, respectively). This count does not include the input and output 
buffers. 

Table F-1 Minimized PLA truth table for full adder. 
The dashes (-) mean that the corresponding input 
does not appear in the product term. 

A 

0 

0 

B 

0 

0 

0 

0 

s 
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Figure F-2 shows the multilevel implementation as generated by MIS-II. In the technol­
ogy-mapping phase, a generic standard-cell library was targeted. Implementation of the adder 
requires only six standard cells. This co1Tesponds to 34 (!) transistors in a static CMOS imple­
mentation.' Observe the usage of complex logic gates such as EXOR and OR-AND-INVERT. 
For this case study, minimization of the area was selected as the prime optimization target. Other 

implementations can be obtained by targeting performance instead. For instance, the critical tim­

ing path from C; to C
0 

can be reduced by signal reordering. This requires the designer to identify 
this path as the most critical, a fact that is not obvious from a simple inspection of the full-adder 
equations. 

B 
A 

B 
c, 

B 

c, 

: Cell boundary 

Figure F-2 Standard-cell implementation of full adder, as 
generated by multilevel logic synthesis. 

Architecture Synthesis 

Architecture synthesis is the latest development in the synthesis area. It is also referred to as 
behavioral or high-level synthesis. Its task is to generate a structural view of an architecture 

design, given a behavioral desciiption of the task to be executed, and a set of perf01mance, area, 
and/or power constraints. This corresponds to determining what architectural resources are 
needed to perform the task (execution units, memories, busses, and controllers), binding the 
behavioral operations to hardware resources, and determining the execution order of the opera­

tions on the produced architecture. In synthesis jargon, these functions are called allocation, 

assignment, and scheduling [Gajski92, DeMicheli94]. While these operations represent the core 
of architecture synthesis, other steps can have a dramatic impact on the quality of the solution. 
For example, optimizing transformations manipulate the initial behavioral description so that a 

superior solution can be obtained in terms of area or speed. Pipelining is a typical example of 
such a transformation. In a sense. this component of the synthesis process is similar to the use of 
optimizing transformations in software compilers. 

1 How to impJement a static complementary CMOS EXOR gate with only nine transistors is left llS an exercise for the 
reader. 
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requires only six standard cells. This corresponds to 34 (1) transistors in a static CMOS imple-
mentation.' Observe the usage of complex logic gates such as EXOR and OR-AND-INVERT.
Forthis case study, minimization of the area was selected as the prime optimization target. Other

implementations can be obtained by targeting performance instead. Forinstance, the critical tim-

ing path from C; to C, can be reduced by signal reordering. This requires the designer to identify
this path as the most critical, a fact that is not obvious from a simple inspection of the full-adder
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Architecture Synthesis

Architecture synthesis is the latest development in the synthesis area. Jt is also referred to as

behavioral or high-level synthesis. Its task is to generate a structural view of an architecture
design, given a behavioral description of the task to be executed, and a set of performance,area,

and/or power constraints. This corresponds to determining what architectural resources are
needed io perform the task (execution units, memories, busses, and controllers}, binding the
behavioral operations to hardware resources, and determining the execution order of the opera-
tions on the produced architecture. In synthesis jargon, these functions are called allocation,

assignment, and scheduling [Gajski92, DeMicheli94]. While these operations represent the core

of architecture synthesis, other steps can have a dramatic impact on the quality of the solution.
For example, optimizing transformations manipulate the initial behavioral description so that a
superior solution can be obtained in terms of area or speed. Pipelining is a typical example of

such a transformation. In a sense, this component of the synthesis process is similar to the use of

optimizing transformations in software compilers.

‘How to implementa static complementary CMOS EXORgate with onlynine transistorsis left as an exercise for the
reader.
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Example F.2 Architecture Synthesis 

To illustrate the concept and capabilities of architecture synthesis, consider the simple 
computational flowgraph of Figure F-3. It describes a program that inputs three numbers 
a, b, and c from off-chip and produces their sum x at the output. 

Two possible implementations, as generated by the HYPER synthesis system 
([Rabaey9 I l), are shown in Figure F-4. The first instance requires four clock cycles and 

Figure F-3 Simple program performing the sum of three numbers. 
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Figure F-4 Two alternative architectures implementing the sum program. 
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time-shares the input bus as well as the adder. The second architecture performs the pro­
gram in a single clock cycle. To achieve this perfonuance, it was necessary to pipeline the 
algorithm; that is, multiple iterations of the computation overlap. The increased speed 
translates as expected to a higher hardware cost-one extra adder, extra registers, and a 
more dedicated bus architecture, including three input ports. Both architectures were pro­
duced automatically, given the behavioral description and the clock-cycle constraint. This 

includes the pipelining transformation. 

\Vhile architecture compilers have been extensively researched in the academic commu­

nity (e.g., [DeMan86], [Rabaey9 ll), their overall impact has remained limited. Commercial 
introductions have been largely unsuccessful. A number of reasons for this s1ow penetration can 
be enumerated: 

• Behavioral synthesis assumes the availability of an established synthesis approach at the 
register-transfer level. This has on1y recently come to a widespread acceptance. In addi­
tion, the discussion about the approp1iate input language at the behavioral level has cre­
ated a lot of confusion. The emergence of widely accepted input languages such as 

SystemC can change the momentum. 
• For a long time, architecture synthesis has concentrated on a limited aspect of the overall 

design process. The impact of interconnect on the overall design cost, for example, was 
long ignored. Also, limitations on the architectural scope resulted in inferior solutions 
apparent to every experienced designer. 

• Most importantly, the revolutionary advent of the system-on-a-chip has outstripped the 
evolutionary progress of the synthesis world. The hybrid nature of embedded system 

architectures that combine embedded processors with ASIC accelerators ultimately limits 
the usability of architectural synthesis. Current logic and sequential synthesis tools proba­
bly suffice for the accelerators. The challenge has shifted to the synthesis of the software 
that runs on the embedded processors, chip-level operation systems, driver generators, 
interconnect network synthesis, and architectural exploration. 

Notwithstanding these observations, architectural synthesis has proven to be very successful in a 

number of application-specific areas. The design of high-performance accelerator units in areas 

such as wireless communications, storage, imaging, and consumer electronics has benefited 
greatly from compilers that translate high-level algorithmic functions into hard-wired dedicated 
solutions. 

Example F.3 Architectural Synthesis of Wireless-Communications Processor [SilvaOl] 

An advanced baseband processor for a wireless modem is generated automatically from a 
high-level description in the Simulink environment ([MathworksOI]}. Simulink and 

Mathlab are tools used extensively in the world of communications design. Capturing the 
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' ' 

' ,,,.._,,,u, 

Figure F-5 Architectural synthesis of wireless baseband processor from Simulink (a) to silicon 
(b). The core area of the chip, which is pad limited, measures only2 mm" in a0.18 µm CMOS tech­
nology, and counts 600,000 transistors. The high transistor density (0.3 transistor/µm2

) demon­
strates the effectiveness of today's physical design tools. 
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Figure F-5 Architectural synthesis of wireless baseband processor from Simulink {a} to silicon
(b). The core area of the chip, which is pac limited, measures only 2 mri in a 0.18 um CMOStech-
nology, and counts 600,000 transistors. The high transistor density (0.3 transistor/um®) demon-
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design specifications in that environment is a major help in bridging the chasm between 
systems and implementation engineer. The translation process from Simulink to imple­
mentation is managed by the "Chip-in-a-day" design environment [DavisOJ]. This tool 
manages the synthesis of the individual blocks from behavior to gate level, introduces the 
chip floorplan, performs the clock tree generation, and oversees the execution of the phys­
ical synthesis. The overaH generation and verification process takes little more than 24 
hours. A similar approach has also proven to be very successful in the mapping of high­
level signal-processing functions on rapid-prototyping platforms such as FPGAs. The Sys­
tem Generator tool from Xilinx, Inc, for instance, maps modules such as filters, modula­
tors, and correlators, described in the Mathworks Simulink environment, directly onto an 
FPGA module [SystemGenerator]. 

To Probe Further 

For an in-depth overview of design synthesis, please refer to [DeMicheli94]. 

References 
[M1PS99] AMPS, lntelligent Design Optimization, lutp:l/www.sy11opsys.com/productslaualysis/amps_ds.html, 

Synopsys, Inc. 

[Brayton84] R. Brayton et al., Logk MiflimizationAigorithmsfor VLSI Synthesis, Kluwer Academic Publishers, 1984. 

[Brayton87] R. Brayton, R. Ruden, A Sangiovanni-Vfocentelli, and A. Wang, "MIS: A Multilevel Logic Optimization 

System," IEEE Trans. 011 CAD, CAD--6. pp. 1062-81, November 1987. 

[Carlson91] S. Carlson, Introduction to HDL-Based Design UsiJJg VHDL, Synopsys, Inc. I991. 

[Chu86] K. Chu and D. Pulfrey, "Design Procedures for Differential Cascade Logic;'' IEEE Journal of Solid State Cir­

cuits, vol. SC-21. no. 6, Dec. 1986, pp. 1082-1087. 

[DavisOl] W.R. Davis, X Zhang, K. Camera, F. Chen, D. Markovic, N. Chan, B. Nikolic. R.W. Brodersen, "A Design 

Environment for High Throughput, Low Power, Dedicated Signal Processing Systems," Proceedings CJCC 2001, 
San Diego, 2001. 

[DesignCompiler] Design Compiler Technical Datasheet, http:lhvwmsynopsys.comlproducts/logic/ 

desigu_compiler.lttml, Synopsys, Inc. 
[DeMan86] H. De Man, J. Rabaey, P. Six, .and L Claesen, "Cathedral-II: A Silicon Compiler for Digital Signal Process~ 

ing," IEEE Design and Test, vol. 3, no. 6, pp. 13-25, December 1986. 

[DeMicheli94J G. De Micheli, Synthesis and Optimization of Digital Circuits, McGraw-Hill, 1994. 

[Fishbum85] J. Fishburn and A. Dunlop, ''TILOS: A Polynomial Programming Approach lo Transistor Sizing," Proceed­

ings ICCAD-85, pp. 326-328, Sama Clam, 1985. 
[Gajski92] D. Gttjski, N. Dutt, A. Wu, and S. Lin, High-Lei,el Symhesis-lntroductim1 to Chip and System Design, Klu-

wer Academic PubJishers, 1992. 

[Kurup97] P. Kurub and T. Abassi, Logic Synthesis using Synopsys, Kluwer Academic Publishers, 1997. 

[MmhworksOl} Matlab and SimuHnk, http://www.mmlnvorks.com, The Mathworks 

[NorthropOl] G. Northrop, P. Lu, "A Semicustom Design Flow ln High~Perfonmmce Microprocessor Design." Proceed­

ings 3ls" Design Automation Conference, Las Vegas, June 2001. 

[Rubaey9Ij J. Rabaey, C. Chu, P. Hoang and M. Potkonjak, "Fast Prototyping of Datapath-Intensive Architectures," 

IEEE Design and Test, vol. 8, pp-. 40-5 l, 1991. 

Dell Ex. 1025
Page 332



444 Insert F • Design Synthesis 

[SilvaOlj J.L <la Silva Jr., J. Shamberger, M.J. Ammer, C. Guo, S. Li, R. Shah, T. Tuan, M. Sheets,J.M. Rabaey, B. 

Nikolic. A. Sangiovanni~Vincente!li, P. Wright, "Design Methodology for PicoRadio Networks," Proceedings 
DATE Conference, Munich, March 2000. 

[SystemGenerntorJ The Xilinx System Generator for DSP, 

http://1vit>1v.xilh1x.comixl11x/xil_prodca1_p10duct.jsp?title=systcm_ger1e1<1ror, Xilinx, Inc. 

Dell Ex. 1025
Page 333



CHAPTER 

10 

Timing Issues in Digital Circuits 

Impact of clock skew and jitter oil performance and functionality 

Alternative timing methodologies 

Sy1lchronization issues in digital IC and board design 

Clock generatioll 

10.1 Introduction 
10.2 Timing Classification of Digital Systems 

10.2.1 Synchronous Interconnect 
10.2.2 Mesochronous Interconnect 
10.2.3 Plesiochronous Interconnect 
10.2.4 Asynchronous Interconnect 

10.3 Synchronous Design-An In-Depth Perspective 
10.3.1 Synchronous Timing Basics 
10.3.2 Sources of Skew and Jitter 
10.3.3 Clock-Distribution Techniques 
10.3.4 Latch-Based Clocking* 

10.4 Self-Timed Circuit Design* 
10.4.1 Self-Timed Logic-An Asynchronous Technique 
10.4.2 Completion-Signal Generation 
10.4.3 Self-Timed Signaling 
10.4.4 Practical Examples of Self-Timed Logic 

10.5 Synchronizers and Arbiters' 
10.5.1 Synchronizers-Concept and Implementation 
10.5.2 Arbiters 

491 

Dell Ex. 1025
Page 334



- ------... 
~ 

492 Chapter 1 O • Timing Issues in Digital Circuits 

10.6 Clock Synthesis and Synchronization Using a Phase-Locked Loop* 
10.6.1 Basic Concept 
10.6.2 Building Blocks of a PLL 

10. 7 Future Directions and Perspectives 
10.7.1 Distributed Clocking Using DLLs 
10.7.2 Optical Clock Distribution 
10.7.3 Synchronous versus Asynchronous Design 

10.8 Summary 
10.9 To Probe Further 

10.1 Introduction 
All sequential circuits have one property in common-a weH-defined ordering of the switching 
events must be imposed if the circuit is to operate correctly. If this were not the case. wrong data 
might be w1itten into the memory elements. resulting in a functional failure. The synchronous 
system approach, in which all memory elements in the system are simultanecusly updated using 
a globally distributed periodic synchronization signal (that is, a global clock signal), represents 

an effective and popular way to enforce this ordering. Functionality is ensured by imposing 
some strict constraints on the generation of the clock signals and their distribution to the mem­
ory elements distributed over the chip; noncompliance often leads to malfunction. 

This chapter starts with an overview of the different timing methodologies. The majority 
of the text is devoted to the popular synchronous approach. We analyze the impact of spatial 
variations of the clock signal, called clock skew, and temporal variations of the clock signal, 
called clock jitrer, and introduce techniques to cope with both. These variations fundamentally 
limit the performance that can be achieved using a conventional design methodology. 

At the other end of the spectrum is an approach called asynchronous design, which avoids 
the problem of clock uncertainty altogether by eliminating the need for globally distributed 
clocks. After discussing the basics of asynchronous design approach. we analyze the associated 
overhead and identify some practical applications. The important issue of synchronization 
between different clock domains and inte,facing between asynchronous and synchronous sys­
tems also deserve in-depth treatment. Finally, the fundamentals of on-chip clock generation 

using feedback are introduced, along with trends in timing. 

10.2 Timing Classification of Digital Systems 

In digital systems, signals can be classified depending on how they are related to a local clock 
[Messerschmitt90J[Dally98]. Signals that transition only at predetermined periods in time can 

be classified as synchronous, mesochronous. or plesiochronous with respect to a system clock. A 
signal that can transition at arbitrary times, on the other hand, is considered asynchronous. 

10.2.1 Synchronous Interconnect 

A synchronous signal is one that has the exact same frequency as the local clock and maintains a 
known fixed phase offset to that clock. In such a timing framework, the signal is "synchronized" 

with the clock, and the data can be sampled directly without any uncertainty. In digital logic 
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CLK 

Figure 10-1 Synchronous interconnect methodology. 

design, synchronous systems are the most straightforward type of interconnect. The flow of data 

in such a circuit proceeds in lockstep with the system clock, as illustrated in Figure I 0-1. 

Here. the input data signal In is sampled with register R1 to produce signal Ci11 , which is 

synchronous with the system clock, and then it is passed along to the combinational logic block. 

After a suitable setting period, the output C,m, becomes valid. Its value is sampled by R2 which 

synchronizes the output with the clock. In a sense, the certainly period of signal C01u-the 
period during which data are valid-is synchronized with the system clock. This allows register 
R2 to sample the data with complete confidence. The length of the uncertainty period, or the 

period during which data are not valid, places an upper bouud on how fast a synchronous 
system can be clocked. 

10,2.2 Mesochronous Interconnect 

A mesochronous signal-mesa is Greek for "middle"-is a signal that not only has the same fre­
quency as the local clock, but also has an unknown phase offset with respect to that clock, For 

example, if data are being passed between two different clock domains, the data signal transmit­

ted from the first module can have an unknown phase relationship to the clock of the receiving 

module. In such a system, it is not possible to directly sample the output at the recejving module 

because of the uncertainty in the phase offset. A (mesochronous) synchronizer can be used to 
synchronize the data signal with the receiving clock, as shown in Figure 10.2. The synchronizer 

serves to adjust the phase of the received signal to ensure proper sampling. 

In Figure 10-2, signal D1 is synchronous. with respect to Clk.4, However. D 1 and D2 are 

mesochronous with C!k8 because of the unknown phase difference between C/kA and C/k8 and 

the unknown interconnect delay in the path between Block A and Block B. The role of the syn­

chronizer is to adjust the variable delay line such that the data signal D3 (a delayed version of 

D2) is aligned properly with the system clock of Block B. In this example, the variable delay ele­

ment is adjusted by measuring the phase difference between the received signal and the local 

clock. Register R2 samples the lncoming data during the certainty period, after which the signa1 

D4 becomes synchronous with Clk8 . 

10,2,3 Plesiochronous Interconnect 

A plesiochmnous signal is one that has a frequency that is nominally the same as that of the local 

clock, yet is slightly different. (In Greek, plesio means "near.") This causes tl1e phase difference 

to drift in time. This scenario can easily arise when two interacting modules have independent 

clocks generated from separate crystal oscillators. Since the transmitted signal can arrive at the 

receiving module at a different rate than the local clock, one needs to utilize a buffering scheme 

to ensure that all data are received. Typically, plesiochronous interconnect occurs only in distributed 
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Figure 10-1 Synchronous interconnect methodology.

design, synchronous systems are the most straightforward type of interconnect. The flow of data
in such a circuit preceeds in lockstep with the system clock, as illustrated in Figure 10-1.

Here, the input data signal 72 is sampled with register R, to produce signal C,,, which is
synchronous with the system clock, and then it is passed along to the combinational logic block.
After a suitable setting period, the output C,,,, becomes valid. Its value is sampled by R, which
synchronizes the output with the clock. In a sense, the certainty period of signal C,,,—the
period during which data are valid—is synchronized with the system clock. This allows register
R, to sample the data with complete confidence. The length of the uncertainty period, or the
period during which data are not valid, places an upper bound on how fast a synchronous
system can be clocked.

10.2.2 Mesochronous Interconnect

A mesochronous signal-—ieso 1s Greek for “middie”—is a signat that not only has the samefre-
quency as the local clock, but also has an unknown phase offset with respect to that clock. For
example, if data are being passed between two different clock domains, the data signal transmit-
ted from the first module can have an unknown phase relationship to the clock of the receiving
module. In such a system,it is not possibie to directly sample the output at the receiving module
because of the uncertainty in the phase offset. A (mesochronous) synchronizer can be used to
synchronize the data signal with the receiving clock, as shown in Figure 16.2. The synchronizer
serves to adjust the phase of the received signal to ensure proper sampling.

In Figure 10-2, signal D, is synchronous with respect to Cik,. However, D, and BD, are
mesochronous with Cik, because of the unknown phase difference between Cik, and Cik, and
the unknown interconnect delay in the path between Block A and Block B. The role of the syn-
chronizer is to adjust the variable delay line such that the data stgnal D, (a delayed version of
Ds} is aligned properly with the system clock of Block B. In this example, the variable delay ele-
ment is adjusted by measuring the phase difference between the received signal and the local
clock. Register A, samples the incoming data during the certainty period, after which the signal
B, becomes synchronous with Cik,.

16.2.3 Plesiochronous Interconnect

A plesiochronous signal is one that has a frequency that is nominally the same as that ofthe local
clock, yet is slightly different. (In Greek, plesio means “near.”) This causes the phase difference
to drift in time. This scenario can easily arise when two interacting modules have independent
clocks generated from separate crystal oscillators. Since the transmitted signal can arrive at the
receiving module at a different rate than the local clock, one needsto utilize a buffering scheme
to ensure that all data are received. Typicaily, plesiochronous interconnect occurs only in distributed
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Figure 10-3 Plesiochronous communications by using a FIFO. 

systems that contain long-distance communications, since chip- or even board-level circuits typ­
ically utilize a common oscillator to derive local clocks. A possible framework for plesiochronous 

interconnect is shown in Figure 10-3. 
In this digital communications framework, the originating module issues data at some 

unknown rate C 1• which is plesiochronous with respect to C2• The timing recovery unit is 
responsihle for deriving clock C, from the data sequence and buffering the data in a FIFO. As a 

result, C3 will be synchronous with the data at the input of the FIFO and will be mesochronous 
with C1• Since the clock frequencies from the originating and receiving modules are mis­
matched, data might have to be dropped if the transmit frequency is faster, or data can be dupli­
cated if the transmit frequency is slower than the receive frequency. However, by making the 
FIFO large enough, as well as periodically resetting the system whenever an overflow condition 

occurs, robust communication can be achieved. 

10.2.4 Asynchronous Interconnect 

Asynchronous signals can transition arbitrarily at any time, and they are not slaved to any local 
clock. As a result, it is not straightforward to map these arbitrary transitions into a synchronized 
data stream. It is possible to synchronize asynchronous signals by detecting events and by intro­

ducing latencies into the data stream synchronized to a local clock. A more natural way to han­
dle asynchronous signals, however, is simply to eliminate the use of local clocks and utilize a 
self-timed asynchronous design approach. In such an approach, communication between mod­
ules is controlled through a handshaking protocol that ensures the proper ordering of operations. 

When a logic block completes an operation (Figure 10-4), it will generate a completion 

signal DV to indicate that output data are valid. The handshaking signals then initiate a data 
transfer to the next block, which latches in the new data and begins a new computation by assert­
ing the initialization signal J. Asynchronous designs are advantageous because computations are 
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systems that contain long-distance communications, since chip- or even board-level circuits typ-
ically utilize a commonoscillator to derive local clocks. A possible framework for plesiachronous
interconnect is shown in Figure 19-3.

In this digital communications framework, the originating module issues data at some
unknown rate C,, which is plesiochronous with respect to C,. The timing recovery unit is
responsible for deriving clock C; from the data sequence and buffering the data in a FIFO. As a
result, C, will be synchronous with the data at the input of the FIFO and will be mesochronous
with C,. Since the clock frequencies from the originating and receiving modules are mis-
matched, data might have to be dropped if the transmit frequency is faster, or data can be dupli-
cated if the transmit frequency is slower than the receive frequency. However, by making the
FIFO large enough, as well as periodically resetting the system whenever an overflow condition
oceurs, robust communication can be achieved.

10.2.4 Asynchronous Interconnect

Asynchronous signals can transition arbitrarily at any time, and they are not slaved to any local
clock. As a result, it is not straightforward to map these arbitrary transitions into a synchronized
data stream.It is possible to synchronize asynchronous signals by detecting events and by intro-
ducing latencies into the data stream synchronized to a local clock. A more natural wayto han-
dle asynchronous signals, however, is simply to eliminate the use of local clocks and utilize a
self-timed asynchronous design approach. In such an approach, communication between mod-
wes is controlled through a handshaking protocol that ensures the proper ordering of operations.

When a logic block completes an operation (Figure 10-4), it will generate a completion
signal DV to indicate that output data are valid. The handshaking signals then initiate a data
transfer to the next block, which latches in the new data and begins a new computation by assert-

ing the initialization signal 7, Asynchronous designs are advantageous because computationsare
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performed at the native speed of the logic, and block computations occur whenever data become 

available. There is no need to manage dock skew, and the design methodology leads to a very 

modular approach in which interaction between blocks simply occurs through a handshaking 

procedure. However, these protocols result in increased complexity and overhead in communi­
cation, which impacts performance. 

10.3 Synchronous Design-An In-Depth Perspective 

10.3.1 Synchronous Timing Basics 

Virtually all systems designed today use a periodic synchronization signal or clock. The genera­

tion and distribution of a clock has a significant impact on the performance and power dissipa­

tion of the system. For the time being, let us assume a positive edge-triggered system, in which 

the rising edge of the clock denotes the beginning and completion of a clock cycle. In an ideal 

world, the phase of the clock (i.e., the position of the clock edge relative to the reference) at var­

ious points in the system is exactly equal, assuming that the clock paths from the central distri­

bution point to each register are perfectly balanced. Figure 10-5 shows the basic structure of a 

synchronous pipelined datapath. In the ideal scenario, the clocks at registers 1 and 2 have the 

same period and transition at the exact same time. 

Assume that the following timing parameters of the sequential circuit are available: 

• The contamination or minimum delay (tc- q,cd) and the maximum propagation delay of the 

register (tt·-)· 
• The setup (t,,.) and hold times (t,,01d) for the registers. 

• The contamination delay Cttogic.cd) and the maximum delay U1og;c) of the combinational logic. 

• The positions of the rising edges of the clocks CLK, and CLK2 (tclkl and lc1k2• respectively), 
relative to a global reference. 
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Figure 10-5 Pipelined datapath circuit and timing parameters. 
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Figure 10-4 Asynchronous design methodology for simple
pipeline interconnect.

performed at the native speed of the logic, and block computations occur whenever data become
available. There is no need to manage clock skew, and the design methedology leads to a very
modular approach in which interaction between blocks simply occurs through a handshaking
procedure. However, these protecels result in increased complexity and overhead In communi-
cation, which impacts performance.

10.3. Synchronous Design—An In-Depth Perspective

16.3.1 Synchronous Timing Basics

Virtually all systems designed todayuse a periodic synchronizationsignal ar clack. The genera-
tion and distribution of a clock has a significant impact on the performance and powerdissipa-
tion of the system. For the time being, let us assume a positive edge-friggered system, in which
the rising edge of the clock denotes the beginning and completion of a clock cycle. In an ideal
world, the phase of the clock (i.c., the position of the clock edge relative to the reference) at var-
ious points in the system is exactly equal, assuming that the clock paths from the central distri-
bution point to each register are perfectly balanced. Figure 10-5 shows the basic structure of a

synchronous pipelined datapath. In the ideal scenario, the clocks at registers 1 and 2 have the
same period and transition at the exact same time.

Assume that the following timing parameters of the sequential circuit are available:

* The contamination or minimum delay (¢,_,,.,) and the maximum propagation delay of the
register (7._ 4).

» The setup (,,,) and hold times (,,,.} for the registers.

+ The contamination delay (7,,.;.-q) and the maximum delay(4,,,,,) of the combinational logic.
* The positions of the rising edges of the clocks CLK, and CLK, (ty, arid £45, respectively),

relative to a global reference.
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Figure 10-5 Pipelined datapath circuit and timing parameters.
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Under the ideal condition that tc1kl = tc1,2, the minimum clock period required for this sequential 
circuit is determined solely by the worst case propagation delays. The period mast be long 
enough for the data to propagate through the registers and logic and to be set up at the destina­

tion register before the next rising edge of the clock. As we saw in Chapter 7, this constraint is 

given by the following expression: 

(10.1) 

At the same time, the hold time of the destination register must be shorter than the minimum 

propagation delay through the logic network: 

(10.2) 

Unfortunately, the preceding analysis is somewhat simplistic, since the clock is never ideal. The 
different clock events turn out to be neither perfectly periodic nor perfectly simultaneous. As a 
result of process and environmental variations, the clock signal can have both spatial and tempo­

ral variations. which lead to performance degradation and/or circuit malfunction. 

Clock Skew 
The spatial variation in arrival rime of a clock transition on an integrated circuit is commonly 
refeJTed to as clock skew. The clock skew between two points i andj on an IC is given by o (i,j) = 
t; - tj, where t1 and tjare the positions of the rising edge of the clock with respect to the reference. 
Consider the transfer of data between registers RI and R2 in Figure 10-5. The clock skew can be 
positive or negative depending upon the routing direction and position of the clock source. The 
timing diagram for the case with positive skew is shown in Figure I 0-6. As the figure illustrates, 

the rising clock edge is delayed by a positive oat the second register. 
Clock skew is caused by static mismatches in the clock paths and differences in the clock 

load. By definition, skew is constant from cycle to cycle. That is, if in one cycle CLK2 lagged 
CLK1 by o, then on the next cycle, it will lag it by the same amount. It is important to note that 

clock skew does not result in clock period variation, but only in phase shift. 
The clock-skew phenomenon has strong implications for both the performance and the func­

tionality of sequential systems. First, consider the impact of clock skew on performance. We can 
see from Figure 10-6 that a new inputJn sampled by RI atedge(j) will propagate through the com-

(j)I • ,8 

I Tcu 

' 
®i 

Figure 10-6 Timing diagram to study the impact of clock skew on performance 
and functionality. In this sample timing diagram, o > 0. 
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Underthe ideal condition that 4.) = ¢.y4, the minimum clock period required for this sequential
circuit is determined solely by the worst case propagation delays. The period must be long
enough for the data to propagate through the registers and logic and to be set up at the destina-
tion register before the next rising edge of the clock. As we saw in Chapter 7, this constraint is
given by the following expression:

Tot. t liopie thse (10.13q

At the same time, the hold time of the destination register must be shorter than the minimum

propagation delay through the logic network:

Shot he-ged + flag feed (10.2)

Unfortunately, the preceding analysis is somewhat simplistic, since the clock is never ideai. The
different clock events turn out to be neither perfectly periodic nor perfectly simultaneous. As a
result of process and environmental variations, the clock signal can have both spatial and tempo-
rai variations, which lead to performance degradation and/orcircuit malfunction.

Clock Skew

The spatial variation in arrival time of a clock transition on an integrated circuit is commonly
referred to as clock skew. The clock skew between two points ij and j on an IC is given by (4,7) =

i; — t Where t, and f,are the positionsoftherising edge ofthe clock with respect to the reference.
Consider the transfer of data between registers Rl and R2 in Figure 10-5, The clock skew can be
positive or negative depending upon the routing direction and position of the clock source. The
timing diagram for the case with positive skewis shown in Figure 10-6. As the figure illustrates,
the rising clock edge is delayed by a positive Gat the second register.

Clock skew is caused by static mismatches in the clock paths and differences in the clock
load. By definition, skew is constant from cycle to cycle. Thatis, if in one cycle CLK, lagged
CLK, by &, then on the next cycle, it will lag it by the same amount. It is importantto note that
clock skew does not result in clock period variation, but only in phase shift.

The clock-skew phenomenonhas strong implications for both the performance and the func-
tionality of sequential systems. First, consider the impact of clock skew on performance, We can
see from Figure 10-6 that a new input fn sampled by 81 atedge @ will propagate through the com-

 

 

 
  Lia! :
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Figure 16-6 Timing diagram to study the impact of clock skew on performance
and functionality. In this sample timing diagram, 4 > 0.
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binational logic and be sampled by R2 on edge©. lf the clock skew is positive, the time available 
fora signal to propagate from RI to R2 is increased by the skew /5. The output of the combinational 
logic must be valid one setup time before the rising edge of CLK2 (point@). The constraint on the 
minimum clock period can then be derived as follows: 

or (10.3) 

This equation suggests that clock skew actually has the potential to improve the perfor­
mance of the circuit. That is, the minimum clock period required to operate the circuit reliably 
reduces with increasing clock skewl This is indeed correct, but unfortunately, increasing skew 

makes the circuit more susceptible to race conditions, which may harm the correct operation of 
sequential systems. 

This can be illustrated by the following example: Assume again that input In is sampled on 
the rising edge of CLK1 at edge© into RI. The new value at the output of Rl propagates through 
the combinational logic and should be valid before edge® at CLK2• However, if the minimum 
delay of the combinational logic block is small, the inputs to R2 may change before the clock 

edge @, resulting in incorrect evaluation. To avoid races, we must ensure that the minimum 
propagation delay through the register and logic is long enough that the inputs to R2 are valid for 
a hold time after edge®. The constraint can be formally stated as 

or (10.4) 

0 < t (c- q, cd} + t (logic, cd} - tlwld 

Figure 10-7 shows the timing diagram for the case in which O < 0. For this case, the rising 
edge of CLK2 happens before the rising edge of CLK1• On the rising edge of CLK1, a new input 
is sampled by R 1. The new data propagate through the combinational logic, and they are sam­
pled by R2 on the rising edge of CLK2, which corresponds to edge @. As Figure I 0-7 and Eq. 
( 10.3) clearly show, a negative skew adversely impacts the performance of a sequential system. 

However, assuming thofrl+ 8 < t\c-q,cd) +t(logic,cd)• a negative skew implies that the system never 
fails, since edge@ happens before edge©! 

I ""~ i~---T-c_L_K_+_a_.,1 ! 
I i::' ==:::::;r;:;-;:--11-:-· 

_c_L_K..:,_...J.I _Q)..,! j T CLK ® "j _____ c ____ _ 

i 

Figure 10-7 Timing diagram for the case when 6 < 0. The lising edge 
of CLK2 arrives earlier than the edge of CLK1. 
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binational logic and be sampied by R2 cn edge @. If the clack skewis positive, the time available
for a signal to propagate from A! to R2 is increased by the skew &. The output of the combinational
logic must be valid one setup time before the rising edge of CLK, (point ©). The constraint on the
minimum clock period can then be derived as follows:

P2822,ot bogie HH or T2zi, ifSie e-g + hogie 5 (10.3)su

This equation suggests that clock skew actually has the potential to improve the perfor-
mance of the circuit. That is, the minimem clock period required to operate the circuit reliably
reduces with increasing clock skew! This is indeed correct, but unfortunately, increasing skew
makes the circuit more susceptible to race conditions, which may harm the correct operation of
sequential systems.

This can be illustrated by the following example: Assume again that input /z is sampled on
the rising edge of CLK, at edge @ into #1. The new value at the output of21 propagates through
the combinational logic and should be valid before edge @ at CLA,. However, if the minimum
delay of the combinational logic block is smaii, the inpuis to R2 may change before the clock.
edge ©, resulting in moorrect evaluation. To avoid races, we must ensure that the minimum
propagation delay through the register and logic is long enough that the inputs to #2 are valid for
a hold time after edge @. The constraint can be formally stated as

é + lhold < fle~a, ed) + loowie, ed}

or 10.4)

é< fee gcd} + Feingte, ca} Phald

Figure 10-7 shows the timing diagram for the case in which 6 < 0. Forthis case, the rising
edge of CLK, happens before the rising edge of CLK. On the rising edge of CLX,, a new input
is sampled by £1. The new data propagate through the combinational logic, and they are sam-
pled by R2 on the rising edge of CLK,, which corresponds to edge @. As Figure 10-7 and Eo.
(10.3) clearly show, a negative skew adversely impacts the performance of a sequential system.

However, assuming tygi¢+ 8 <t).—4, cay + Yogic. ede 4 Negative skew implies that the system never
fails, since edge @ happens before edge ©!

Tope + 8
it i |

T,

CLK, or Cha a
= z
 

i |

Figure 10-7 Timing ciagram for the case when 6 < 0. The rising edge
ot CLK,artives earlier than the edge of CLK,.
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Figure 10-S Positive and negative clock skew scenarios. 

Example scenarios for positive and negative clock skew are shown in Figure 10-8. 

• 3 > 0-cThis coJTesponds to a clock routed in the same direction as the flow of the data 
through the pipeline (Figure I0-8a). In this case, the skew has to be strictly controlled and 
satisfy Eq .. If the constraint is not met, the circuit malfunctions independently of the 
clock period. Reducing the clock frequency of an edge-triggered circuit does not help get­
ting around skew problems! It is therefore necessary to satisfy the hold-time constraints at 

design time. On the other hand. positive skew increases the through put of the circuit as 
expressed by Eq. (l0.3). The clock period can be shortened by I'>. The extent of this 
improvement is limited. as large values of O soon provoke violations of Eq .. 

• o < 0-When the clock is routed in the opposite direction of the data (Figure !0-8b), the 

skew is negative and provides significant immunity to races; if the hold time is zero or 
negative, races are eliminated because Eq. is unconditionally met! The skew reduces the 
time available for actual computation so that the clock period has to be increased by Joi. In 
summary, routing the clock in the opposite direction of the data avoids disasters. but ham­

pers the circuit performance. 

Unfortunately, since a general logic circuit can have data flowing in both directions (for 

example, circuits with feedback), this solution to eliminate races does not always work. 
Figure l 0-9 shows that the skew can assume both positive and negative values, depending on the 
direction of the data transfer. Under these circumstances, the designer has to account for the 
\vorst case skew condition. In general. routing the clock so that only negative skew occurs is not 

feasible. Therefore, the design of a low-skew clock network is essential. 
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Figure 10-8 Positive and negative clock skew scenarios.

Example scenariosfor positive and negative clock skew are shown in Figure 10-8.

* §>O-—This corresponds to a clock routed in the same direction as the flow of the data
through the pipeline (Figure 10-8a). In this case, the skew has te be strictly controlled and
satisfy Eq. . If the constraint is not met, the circuit maifunctions independently of the
clock period. Reducing the clock frequency of an edge-triggered circuit does not help get-
ting around skewproblems!It is therefore necessary to satisfy the hold-time constraints at
design time. On the other hand, positive skew increases the through put of the circuit as
expressed by Eq. (10.3). The clock period can be shortened by 5. The extent ofthis
improvementis limited, as large values of 6 soon provoke violations of Eq..

« § <@—Whenthe clock is routed in the opposite direction of the data (Figure 10-8b), the
skew is negative and provides significant immunity to races; if the hold time is zero or
negative, races are eliminated because Eq. is unconditionally met! The skew reduces the
time available for actual computation so that the clock period has to be increased by|8. In
summary, routing the clock in the opposite direction of the data avoids disasters, but ham-
pers the circuit performance.

Unfortunately, since a general logic circuit can have data flowing in both directions (for
example, circuits with feedback), this solution to eliminate races does not always work.
Figure 10-9 showsthat the skew can assume both positive and negative values, depending on the
direction of the data transfer. Under these circumstances, the designer has to aceount for the

worst case skew condition. In general, routing the clock so that only negative skew occurs is not
feasible. Therefore, the design of a low-skew clock network is essential.
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Figure 10-9 Datapath structure with feedback. 

Example 10.1 Propagation and Contamination Delay Estimation 

Consider the logic network shown in Figure 10- l 0. Detennine the contamination and 
propagation delays of the network, given a worst case gate delay of ti;are- \Ve also assume 
that the maximum and minimum delays of the gates are identical. 

The contamination delay is easily found; it equals 21gm,, and is the delay through 
OR I and OR2 . On the other hand, computation of the worst case propagation delay is not 

as simple. At first glance, it would appear that the worst case corresponds to path ©, and 
its delay is 5tgare- However, when analyzing the data dependencies, it becomes obvious 
that path (j) can never be exercised. Path (j) is called a false path. If A = I, the critical path 

goes through OR, and OR2• If A =0 and B = 0, the critical path is through / 1, OR, and OR2 

(corresponding to a delay of 3tg,,,,J. For the case in which A= 0 and B = 1, the longest path 
goes through 11, OR,, AND3 and OR2 . In other words, for this simple (but contrived) net­
work, the output does not even depend on inputs C and D (that is, there is redundancy). 
Therefore, the actual propagation delay is 4tgare- Given the propagation and contamination 
delay, the minimum and maximum allowable skew can be easily computed. 

A 

>-

C 

D 

Figure 10-10 Logic network for computation of performance. 
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Figure 10-8 Datapath structure with feedback.

Example 10.1 Propagation and Contamination Delay Estimation

 
Consider the logic network shown in Figure 10-10. Determine the contamination and

propagation delaysof the network,given a worst case gate delay of ¢,,,,,. We also assume
that the maximum and minimum delays of the pates are identical.

i The contamination delay is easily found; it equals 2:,,.,, and is the delay through
OR, and OR,. On the other hand, computation of the worst case propagation delay is not

i as simple. At first glance, it would appear that the worst case corresponds to path ®, and

| its delay is 5f,9,.. However, when analyzing the data dependencies, it becomes obvious
that path @ can never be exercised. Path © is called a false path. IfA = 1, the critical path
goes through OR, and OR,. ifA= 0 and B = 0,the critical path is through /,, OR, and OR,

(correspondingto a delay of 3¢,,,,). For the case in which A = 0 and B = I, the longest path
goes through /|, O8,, AND, and OR. In other words, for this simple (but contrived) net-
work, the output does not even depend on inputs C and D (thatis, there is redundancy).

Therefore, the actual propagation delayis 4¢,,,,.. Given the propagation and contamination
delay, the minimum and maximum. allowableskew can be easily computed.

 
Figure 19-10 Logic network for computation of performance.SOTOiTECCESETTereaeiWARcbrbhiiairbAGEAS
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WARNING: The computation of the worst case propagation delay for combinational logic, due 
to the existence of false paths, cannot be obtained simply by adding the propagation delays of 

individual logic gates. The critical path is strongly dependent on circuit topology and data 

dependencies. 

Clock Jitter 

Clock jitter refers to the temporal variation of the clock period at a given point on the chip-that 
is, the clock period can reduce or expand on a cycle-by-cycle basis. It is strictly a temporal 

uncertainty measure, and it is often specified at a given point. Jitter can be measured and char­
acterized in a number of ways and is a zero-mean random variable. The absolute jitter (t111,eJ 
refers to the worst case variation (absolute value) of a clock edge at a given location with respect 

to an ideally periodic reference clock edge. The cycle-to-cycle jitter (T;;iml typically refers to the 
time-varying deviations of a single clock period relative to an ideal reference clock. For a given 

spatial location i, it is given as Tipuer(n) = ticlk,n+l - lc11;.,1 - T CLK~ where tidk,u+J and t1clk.n represent 
the anival time of then + l 1h and the nth clock edges at node i, respectively, and T CLK is the nom­

inal clock period. Under the worst case conditions, the magnitude of the cycle-to-cycle jitter 

equals twice the absolute jitter (2tijim:,). 

Jitter directly impacts the performance of a sequential system. Figure 10-11 shows the 
nominal clock period, as well as the variation in period. Ideally, the clock period starts at edge@ 

and ends at edge®, with a nominal clock period ofTcLK· However, the worst case scenario hap­
pens when the leading edge of the current clock period is delayed by jitter (edge®), while jitter 
causes the leading edge of the next clock period to occur early (edge®). As a result, the total 

time available to complete the operation is reduced by 2rjiii,r in the worst case and is given by 

TcLK-2tjiffer~tc-q+tlogic +tsuor T~tc-q+f1ogic+tsu+2tjiuer (10.5) 

Equation (10.5) illustrates that jitter directly reduces the performance of a sequential circuit. 

Keeping it within strict bounds is essential if one is concerned about performance. 

CLK <DI HQ) 
' 

In REGS 

CLK 

lc-q, lc-q,etl 

tsu. l1iold 
lfiuer 
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1togic 

tlogic. r:d 

Figure 10-11 Circuit for studying the impact of jitter on performance. 
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WARNING: The computation of the worst case propagation delay for combinational logic, due
to the existence offalse pafis, cannot be obtained simply by adding the propagation delays of
individual logic gates. The critical path isstrongly dependent on circuit tepclogy and data
dependencies.   

Clock Jitter

Clockjitter refers t the temporal variation of the clock period at a given point on the chip—that
is, the clock period can reduce or expand on a cycle-by-cycle basis. It is strictly a temporal
uncertainty measure, and it is often specified at a given point. Jitter can be measured and char-
acterized in a number of ways and is a zere-mean random variable. The absolute jitter(t;4,.,)
refers to the worst case variation (absolute value} of a clock edge at a given location with respect

to an ideally periodic reference clock edge. The cycle-ro-cyele jitter (Tyne typically refers to the
time-varying deviations of a single clock periodrelative to an ideal reference clock. Por a given
spatial location i, it is given as Tiel) = linet — Pctnn ~ Tours Whete fay. and tog,fepresent
the arrival time of the n + 1" and the 2" clock edges at node ?, respectively, and T,,, is the nom-
inal clock period. Under the worst case conditions, the magnitude of the cycle-to-cycle jitter

equals twice the absolute jitter (2t" jee):
Jitter directly impacts the performance of a sequential system. Figure 10-11 shows the

nominal clock period, as well as the variation in period. Ideally, the clack period starts at edge @
and ends at edge ©, with a nominal clock period of T,%. However, the worst case scenario hap-
pens when the leading edge of the current clock period is delayed by jitter (edge @)}, while jitter
causes the leading edge of the next clock period te occur early (edge @). As a result, the total

time available to complete the operation is reduced by 27,;,,, in the worst case and is given by

Fork - 2tfuer 2 te wg + llogic +1,,, OF Te Fong + hoagie + Foyt 28 jester (10.5)
Equation (10.5) illustrates that jitter directly reduces the performance of a sequential circuit.
Keeping it within strict bounds is essential if one is concerned about performance.
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Figure 10-17 Circuit for studying the impactofjitter on performance.
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The Combined Impact of Skew and Jitter 

In this section, the combined impact of skew and jitter is studied for conventional edge-triggered 

clocking. Consider the sequential circuit shown in Figure 10-14. 
Assume that as a result of the clock distribution. there is a static skew o between the clock 

signals at the two registers (assume that 3 > 0). Furthermore, the two clocks experience a jitter of 
tJiuer· To determine the constraint on the minimum clock period, we must look at the minimum 

available time to perform the required computation. The worst case occurs when the leading 
edge of the cmTent clock period on CLK1 happens late (edge®) and the leading edge of the next 
cycle of CLK2 happens early (edge®). This results in the following constraint: 

T CLK + 8--2tjiller~t<-.-q + t!ogic + fsu 

or (!0.6) 

This equation illustrates that positive skew can provide a performance advantage. On the other 
hand, jitter always has a negative impact on the minimum clock period. L 

To formulate the minimum delay constraint, consider the case in which the leading edge of 

the CLK1 cycle arrives early (edge(!)). and the leading edges the current cycle of CLK2 mTives 
late ( edge ®). The separation between edges (j) and ® should be smaller than the minimum 
delay through the network. This results in 

or 

8 + [hold+ 2t jiu er< f(c- q, cd) + t(logic, cd) 

<D<ll ®@ 
bj ,~-~~~~--~ 0 ( 0 
k T cu, + 8 r-l 

i c-+I F~l r,-,,."-JcLK 11 l 1 CLK1 

:01@ i®@ 

_cL_K2_-=--'""-=H !
1
1wa I ) I • 

(DI@ (z)I@ 

Figure 10-12 Sequence circuit with a negative clock skew (o). 
The skew is assumed to be larger than the jitter. 

(10.7) 

1This analysi.~ is definitely for rhe worsr case. It assumes that tlle jiu er values at the source and the destination nodes arc inde­
pendent statistical variables. In reality, the clock edges involved in the hold-time analysis are derived from !he same clock 
edge and are statistically dependent. Taking this dependence into account reduces the timing constraint,; substantially. 
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The Combined Impact of Skew and Jitter

In this section, the combined impact of skew andjitteris studied for conventional edge-triggered
clocking. Consider the sequential circuit shown in Figure 10-14.

Assume that as a result of the clock distribution, there is a static skew 6 between the clock

signals at the two registers (assumethat 6 > 0). Furthermore, the two clocks experience a jitter of

fyimer- TO determine the constraiat on the minimumclock period, we must look at the minimum
available time to perform the required computation. The worst case cecurs when the leading
edge of the current clock period on CLK, happens jate (edge @) and the leading edge of the next
cycle of CLK, happensearly (edge @). This results in the following constraint:

 
Torr +62er 2 Fey + Mogie + eee

or 6.8

T>i.cog + hogic t tena 8+2t,jitter

This equation iflustrates that positive skew can provide a performance advantage. On the other
hand,jitter always has a negative impact on the minimum clock period.!

To formulate the minimum delay constraint, consider the case in which the leading edge of
the CLK, cycle arrives early (edge ®), and the leading edges the current cycle of CLK, arrives
late (edge ©). The separation between edges © and @ should be smaller than the minimum
delay through the network. Thisresults in

9) + lneid + 2f jer < feoe yy, cd} + filogic, ca}

or (10.7)

b< Teo ng, ed} + Feoaie, cd} lhetd ~ 2Fjitter

 
   Ijiter 

O'1@ Dies
Figure 10-12 Sequencecircuit with a negative clack skew (8).
The skew is assumedto be larger than the jitter.

"This analysis is definitely for the worst case, [cassumesthat theiver values at the source and the destination nodes are inde-
pendentstatistical variables. In reality, the clock edges involved in the held-time analysis are derived from the same clock
edge and are statistically dependent. Taking this dependence into account reduces the timing constraints substantially.
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Q) Temperature 
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Figure 10-13 Skew and jitter sources in synchronous clock distribution. 

This relation indicates that the acceptable skew is reduced by the jitter of the two signals. 
Now consider the case in which the skew is negative (8 < 0)~ as shown in Figure 10-12. 

Assume that lol > tjiua· It can be verified that the worst case timing is exactly the same as in the 
previous anaJysis. with O ta1cing a negative value. That is, negative skew reduces performance. 

10.3.2 Sources of Skew and Jitter 

A perfect clock is defined as a periodic signal that simultaneously uiggers various memory ele­
ments on the chip. However, due to a variety of process and environmental variations, clocks are 

not ideal. To illustrate the sources of skew and jitter, consider a simplistic view of a typical clock 

generation and distribution network, as shown in Figure 10-13. A high-frequency clock is either 

provided from off chip or generated on chip. From a central point, the clock is distributed using 
multiple matched paths to low-level sequential elements. In this picture, two paths are shown. 

The clock paths include the wiring and the associated distributed buffers required to drive inter­

connect and loads. A key point to realize in clock distribution is that the absolute delay through 
a clock distribution path is not important; what matters is the relative arrival time at the regis­

ter points at the end of each path. It is perfectly acceptable for the clock signal to take multiple 

cycles to get from a central distribution point to a low-level register as long as all clocks arrive at 

the same time at all the registers on the chip. 

There are many reasons why the two parallel paths don't result in exactly the same delay. 

The sources of clock uncertainty can be classified in several ways. First, errors can be divided 

into two categories: systematic and random. Systematic errors are nominally identical from chip 

to chip and are predictable (for instance, variation in total load capacitance of each clock path). 

In principle, such errors can be modeled and corrected at design time, given sufficiently good 

models and simulators. Short of that, systematic enors can be deduced from measurements over 

a set of chips, and the design can be adjusted to compensate. Random errors are due to manufac­

turing variations that are difficult to model and eliminate (for instance, dopant fluctuations that 

result in threshold variations). 

ft.1ismatches may also be characterized as static or time varying. In practice, a continuum 

exists between changes that are slower than the time constant of interest and those that are faster. 

For example, temperature gradients on a chip vary on a millisecond time scale. A clock network 
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Figure 10-13 Skew and jitter sources in synchronous clock distribution.

This relation indicates that the acceptable skew is reduced by thejitter of the two signals.
Nowconsider the case in which the skew is negative (6 < 0), as shown in Figure 10-12,

Assumethat [8| > tayer- It can be verified that the worst case timing is exactly the same as in the
previous analysis, with 6 taking a negative value. That is, negative skew reduces performance.

10.3.2 Sources of Skew and Jitter

A perfect cfeck is defined as a periodic signa! that sirnultaneously triggers various memory ele-

ments on the chip. However, due to a variety of process and environmental variations, clocks are
not ideal. To illustrate the sources of skew and jitter, consider a simplistic view of a typical clock
generation and distribution network, as shown in Figure 10-13. A high-frequency clock is either

provided from off chip or generated on chip. From a central point, the clock is distributed using
multiple matched paths to low-level sequential elements. In this picture, two paths are shown,

The clock paths include the wiring and the associated distributed buifers required to drive inter-
connect and loads. A key point to realize in clock distribution is that the absolute delay through
a clock distribution path is not important; what matters is the relative arrival time at the regis-
ter points at the end of each path. It is perfectly acceptable for the clock signal to take multiple

cycles to get from a central distribution point to a low-level register as Jong as all clocks arrive at
the sametimeat all the registers on the chip.

There are many reasons why the two parallel paths don’t result im exactly the same delay.

The sources of clock uncertainty can be classified in several ways. First, errors can be divided
into two categories: systematic and random. Systematic errors are nominally identical from chip

to chip and are predictable (for instance, variation in total load capacitance of each clock path).

In principle, such errors can be modeled and corrected at design time, given sufficiently good
models and simulators. Short of that, systematic errors can be deduced from measurements over
a set of chips, and the design can be adjusted to compensate. andorerrors are due to manufac-

turing variations that are difficult to model and eliminate (for instance, dopant fluctuations that
result in threshold variations}.

Mismatches may also be characterized as static or time varying. In practice, a continuum
exists between changes that are slower than the time constant of interest and those that are faster.

Por example, temperature gradients on a chip vary on a millisecond time scale. A clock network
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Figure 10-14 Sequential circuit to study the impact of skew and jitter 
on edge-triggered systems. In this example, a positive st,ew(6) is assumed. 

503 

tuned by a one-time calibration is vulnerable to the time-varying mismatch caused by the vary­
ing the1mal gradients. On the other hand, thermal changes appear essentially static to a feedback 
network with a bandwidth of several megahertz. Another example is fielded by power-supply 
noise. The clock net is usually by far the largest signal net on the chip, and simultaneous transi­

tions on the clock drivers induce noise in the power supply. This high-speed effect does not cre­
ate a time-varying mismatch, because it is the same at every clock cycle and affects each rising 
clock edge the same way. Of course, this power-supply glitch may still cause static mismatch if 
it is not the same throughout the chip. The various sources of skew and jitter introduced in 

Figure 10-13 are desciibed and characterized in detail in the sections that follow. 

Clock-Signal Generation (1) 

The generation of the clock signal itself causes jitter. A typical on-chip clock generator, as 

described at the end of this chapter, takes a low-frequency reference clock signal and produces a 
high-frequency global reference for the processor. The core of such a generator is a voltage­
controlled oscillator (VCO). This is an analog circuit, sensitive to intrinsic device noise and 
power-supply variations. A major problem is the coupling from the sunounding noisy digital cir­

cuitry through the substrate. This is especially a problem in modern fabrication processes that 

use a lightly doped epitaxy on the heavily doped substrate (to combat latch up). This causes sub­
strate noise to travel over large distances on the chip [ManeatisOO]. These noise sources cause 
temporal variations in the clock signal that propagate unfiltered through the clock drivers to the 

flip-flops, and result in cycle-to-cycle clock-pe1iod vmiations. 

Manufacturing Device Variations (2) 

Distributed buffers are lntegral components of the clock distribution networks. They are required 

to drive both the register loads and the global and local interconnects. The matching of devices in 
the buffers along multiple clock paths is critical to minimizing timing uncertainty. Unfortunately, 
as a result of process variations. device parameters in the buffers vary along different paths> result­
ing in static skew. There are many sources of variations that contribute, such as. oxide variations 
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Figure 10-14 Sequential circuit to study the impact of skew andjitter
on edge-triggeredsystems. in this example, a positive skew (6) is assumed.

tuned by a one-time calibration is vulnerable to the time-varying mismatch caused by the vary-
ing thermal gradients. On the other hand, thermal changes appear essentially static to a feedback
network with a bandwidth of several megahertz. Another example is fielded by power-supply
noise, The clock net is usually by far the largest signal net on the chip, and simultaneous transi-
tions on the clock drivers induce noise in the power supply. This high-speed effect does not cre-
ate a time-varying mismatch, because it is the same at every clock cycle and affects each rising
clock edge the same way. Of course, this power-supplyglitch maystill cause static mismatchif
it is net the same throughout the chip. The various sources of skew and jitter introduced in
Figure 10-13 are described and characterized in detail in the sections that follow.

Clock-Signal Generation (1)

The generation of the clock signal itself causes jitter. A typical on-chip clock generator, as
described at the end ofthis chapter, takes a low-frequency reference clock signal and produces a
high-frequency global reference for the processor. The core of such a generator is a volrage-
controlled oscillator (VCO). This is an analog circuit, sensitive to mtrinsic device noise and

power-supply variations. A major problem is the coupling from the surrounding noisy digital ciz-
cuitry through the substrate. This is especially a problem in modern fabrication processes that
use a lightly doped epitaxy on the heavily doped substrate {to combat latch up). This causes sub-
sirate noise to travel over large distances on the chip [Maneatis00]. These noise sources cause
temporal variations im the clock signal that propagate unfiltered through the clock drivers to the
flip-flops, and result in cycle-te-cycle clock-period variations.

 
Manufacturing Device Variations (2)

Distributed buffers are integral components of the clock distribution networks. They are required
to drive both the register loads and the giobal and local interconnects. The matching of devices in
the buffers along multiple clock pathsis critical to minimizing timing uncertainty. Unfortunately,
as aresult ofprocess variations, device parameters in the buffers vary along different paths, result-
ing in static skew. There are many sources of variations that contribute, such as oxide variations
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(which affect the gain and threshold), dopant variations, and lateral dimension (width and length) 
variations. The doping variations can affect the depth of junction and dopant profiles and cause 
electrical parameters (such as device threshold and parasitic capacitances) to vary. 

The orientation of polysilicon also can have some impact on the device parameters. Keep­
ing the orientation the same across the chip for the clock drivers is therefore critical. Variation in 
the polysilicon critical dimension is particularly important, because it translates directly into 
MOS transistor channel length, impacting the drive cmTent and switching characteristics. Spatial 
variation usually consists of a wafer-level (or within-wafer) variation and a die-level (or wlthin­
die) variation. At least part of this variation is systematic and therefore can be modeled and com­
pensated for. The random variations, however, ultimately limit the matching and lower bound of 
the skew that can be achieved. 

Interconnect Variations (3) 

Vertical and lateral dimension variations cause the interconnect capacitance and resistance to 
vary across a chip. Since this variation is static, it causes skew between different paths. One 
important source of interconnect variation is the Inter-layer Dielectric (JLD) thickness variation. 
In the formation of aluminum interconnect, layers of silicon dioxide are interposed between lay­
ers of patterned metallization. Oxide is deposited over a layer of patterned metal features, gener­
ally resulting in some remaining step height or surface topography. Chemical-mechanical 

polishing (CMP) is used to "planarlze" the smface and remove the topography resulting from 
deposition and etch (as described in Chapter 3 and shown in Figure I0-l5a). While at the fea­
ture scale (i.e., over an individual metal line), CMP can achieve excellent planarity, there are 
limitations on it over a global range. This is due primarily to variations in the polish rate, which 
is a function of the circuit layout density and pattern effects. Figure I0-15b shows this effect­
the polish rate is higher for the lower-spatial-density region, resulting in a smaller dielectric 
thickness and higher capacitance. 

The assessment and control of variation is of critical importance in semiconductor process 
development and manufacturing. Significant advances have been made to develop analytical 
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Figure 10-15 Inter-level Dielectric (ILD) thickness variation due to density 
(Courtesy of Duane Boning.). 
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(which affeet the gain and threshold}, dopant variations, and lateral dimension (width and length)
variations. The doping variations can affect the depth of junction and dopant profiles and cause
electrical parameters (such as device threshold and parasitic capacitances) to vary.

The orientation of poiysilicon also can have some impact on the device parameters. Keep-
ing the orientation the same across the chip for the clock drivers is therefore critical. Variation in
the polysilicon critical dimension is particularly important, because it translates directly into
MOS transistor channel length, impacting the drive current and switching characteristics. Spaiial
variation usually consists of a wafer-level Cor within-wafer) variation and a die-level (or within-
die} variation. At least part of this variation is systematic and therefore can be modeled and com-
pensated for. The randomvariations, however, ultimately limit the matching and lower bound of
the skew that can be achieved.

Interconnect Variations (3}

Vertical and lateral dimension variations cause the interconnect capacitance and resistance to

vary across a chip. Since this variation is static, it causes skew between different paths. One
important source of interconnect variation is the /ater-dayer Dielectric (ILD) thickness variation,
In the formation of aluminum interconnect, layers of silicon dioxide are interposed between lay-
ers of patterned metallization. Oxide is deposited over a layer of patterned metal features, gener-
ally resulting in some remaining step height or surface topography. Chemical-mechanicat
polishing (CMP) is used to “planarize” the surface and remove the topography resulting from
deposition and etch (as described in Chapter 3 and shown in Figure 10-15a). While at the fea-
ture scale (i.e., over an individual metal fne}, CMP can achieve excellent planarity, there are
Hmitations on it over a global range. This is due primarily to variations in the polish rate, which
is a function of the circuit layout density and pattern effects. Figure 10-15b showsthis effect—
the polish rate is higher for the lower-spatial-density region, resulting in a smaller dielectric
thickness and higher capacitance.

The assessment and controlof variation is of critical importance in semiconductor process

development and manufacturing. Significant advances have been made to develop analytical

py = low fp) = high1=ti

RPAe
Oxide Metal
fe 

{a} Ideally (b) In reality

Figure 10-15 inter-level Dieleciric (ILD) thickness variation due to density
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models for estimating the ILD thickness variations. based on spatial density. Since this compo­
nent is often predictable from the layout, it is possible to actually correct for the systematic com­
ponent at design time (e.g.~ by adding appropriate delays or making the density uniform by 
adding "dummy fills"). Figure l 0-16 shows the spatial pattern density and ILD thickness for a 
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Figure 10-16 Pattern density and ILD thickness variation for a high-performance 
microprocessor. (Courtesy of Duane Boning) 
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models for estimating the ILD thickness variations, based on spatial density. Since this compo-
nent is often predictable from the layout, it is possible to actually correct for the systematic com-
ponent at design time (e.2.. by adding appropriate delays or making the density uniform by

adding “dummy fills”). Figure 10-16 shows the spatial pattern density and TLD thickness for a
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Figure 10-16 Pattern density and ILD thickness variation for a high-performance
microprocessor. {Courtesy of Buane Boning)
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high-perfonnance microprocessor. The graphs shovl a clear correlation between the density and 

the thickness of the dielectric. Hence, clock distribution networks must exploit such information 

in order to reduce clock skew. 
Other interconnect variations include deviations in the width of the wires and line spacing, 

which result from photolithography and etch dependencies. At the lower levels of the metalliza­

tion hierarchy, lithographic effects are more important, while etch effects that depend on width 

and layout are dominant at the higher levels. The width is a critical parameter because it directly 

impacts the resistance of the line, and the wire spacing affects the wire-to-wire capacitance. A 
detailed review of device and interconnect variations is presented in [BoningOO]. Recent proces­

sors use copper interconnects, in which line thickness variations are also seen to be highly pat­

tern dependent due to CMP dishing and erosion effects [ParkOO]. 

Environmental Variations (4 and 5) 

Environmental variations probably are the most significant contributors to skew and jitter. The 

two major sources of environmental variations are temperature and power supply. Temperature 

gradients across the chip result from variations in power dissipation across the die. These gradi­

ents can be quite large, as shown in Figure 10-17, which displays a snapshot of the surface tem­

perature of the DEC 21064 microprocessor. Temperature variation has become an important 

issue with clock gating, where some parts of the chip may be idle, while other parts of the chip 

are fully active. Clock gating has become popular in recent years as a means to minimize power 

dissipation in idle modules (as described in a later section). Shutting off parts of the chip leads to 

large temperature variations. Since the device parameters (such as threshold and mobility) 

depend strongly on temperature, the buffer delay for a clock distribution network can vary dras­

tically from path to path. More importantly, this component is time varying, since the tempera­

ture changes as the logic activity of the circuit varies. Hence, it is not sufficient to simulate the 

clock networks at worst case corners of temperature; instead, the worst case variation in temper­

ature must be simulated. An interesting question is whether temperature variation contributes to 

skew or to jitter. Clearly, the difference in temperature is time varying. but the changes are rela-

Figure 10-17 Temperature variation (snapshot) over DEC 21064 microprocessor. 
The highest temperature occurs at the central clock driver [HerrickOO]. 
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high-performance microprocessor. The graphs showa clear correlation between the density and
the thickness of the dielectric. Hence, clock distribution networks must exploit such information
in order to reduce clock skew. -

Other interconnect variations include deviations in the width of the wires and line spacing,

which result from photolithography and etch dependencies. At the lower levels of the metalliza-
tion hierarchy, lithographic effects are more important, while etch effects that depend on width
and layout are dominantat the higher levels. The width is a critical parameter because it directly
impacts the resistance of the line, and the wire spacing affects the wire-to-wire capacitance. A
detailed review of device and interconnect variations is presented in [Boning00}, Recent proces-

scrs use copper interconnects, in which Hne thickness variations are also seen to be highly pat-
tern dependent due to CMP dishing and erosion effects [Park00).

Environmental Variations (4 and 5)

Environmental variations probably are the most significant contributers to skew and Jitter. The
two major sources of environmental variations are temperature and power supply. Temperature
gradients across the chip result from variations in power dissipation across the die. These gradi-
ents can be quite large, as shown in Figure 10-17, which displays a snapshot of the surface tem-
perature of the DEC 21064 microprocessor. Temperature variation has become an important
issue with cleck gating, where some parts of the chip may be idle, while other parts of the chip
are fully active. Clock gating has become popular in recent years as a means to Minimize power
dissipation in idle modules (as described in a later section). Shutting off parts of the chip leads to
large temperature variations. Since the device parameters (such as threshold and mobility)
depend strongly on temperature, the buffer delay for a clock distribution network can vary dras-
tically from path to path. More importantly, this component is time varying, since the tempera-
iure changes as the logic activity of the circuit varies. Hence, it is not sufficient to simulate the
clock networks at worst case corners of temperature; instead, the worst case variation in temper-
ature musi be simulated. An interesting question is whether temperature variation contributes to
skew orto jitter. Clearly, the difference in temperature is time varying, but the changesare rela-

 
Figure 10-17 Temperature variation (snapshot) over DEC 21064 microprocessor.
The highest teraperature occurs at the central clock driver [HerrickOQ].

Dell Ex. 1025

Page 349

 



10.3 Synchronous Design-An In-Depth Perspective 507 

tively slow (typical time constants for temperature changes are on the order of milliseconds). 
Therefore, it is usually considered as a skew component and the worst case conditions are used. 
Fortunately, by using feedback, it is possible to calibrate the temperature and to compensate for 

this effect. 
Power-supply vadations, on the other hand, are the major source of jitter in clock distribu­

tion networks. The delay through buffers is a very strong function of power supply, as it directly 

affects the drive of the u·ansistors. As with temperature, the power-supply voltage is a strong 

function of the switching activity. Therefore, the buffer delay varies strongly from path to path. 
Power-supply variations can be classified into slow- (or static) and high-frequency variations. 

Static power-supply variations may result from fixed cmTents drawn from various modules, 
while high-frequency variations result from instantaneous IR drops along the power grid due to 

fluctuations in switching activity. Inductive effects on the power supply also are a major concern 
since they cause voltage fluctuations. Again, clock gating has exacerbated this problem, because 
the logic transitions between the idle and active states can cause major changes in current drawn 
from the supply. Since the power supply can change rapidly, the period of the clock signal is 
modulated on a cycle-by-cycle basis, resulting in jitter. The jitter on two different clock points 

may be correlated or uncoITelated. depending on how the power network is configured and the 
profile of switching patterns. Unfo11unately, high-frequency power-supply changes are difficult 

to compensate for, even with feedback techniques. Consequently, power-supply noise funda­
mentally limits the performance of clock networks. To minimize power-supply variations. 
high-performance designs add decoupling capacitance around major clock drivers. 

Capacitive Coupling ( 6 and 7) 

Changes in capacitive load also contribute to timing unce1tainty. There are two major sources of 
capacitive-load variations: coupling between the clock lines and adjacent signal wires, and vari­
ation in gate capacitance. The clock network includes both the interconnect and the gate capaci­
tance of latches and registers. Any coupling between the clock wire and adjacent signal results in 

timing uncertainty. Since the adjacent slgnal can transition in arbitrary directions and at arbitrary 
times, the exact coupling to the clock network is not fixed from cycle to cycle, causing jitter. 
Another major source of clock uncertainty is the variation in the gate capacitance contributed by 
the connecting sequential elements. The load capacitance is highly nonlinear and depends on the 
applied voltage. For many latches and registers, the clock load is a function of the current state 

of the latch/register (i.e., the values stored on the internal nodes of the circuit), as well as the 
next state. This causes the delay ti1rough the clock buffers to vary from cycle to cycle, which 

causes jitter. 

Example 10.2 Data-Dependent Clock Jitter 

Consider the circuit shown in Figure 10-18, where a minimum-sized local clock buffer 
drives a register. (Actually, each clock buffer drives four registers, though only one is 
shown here.) The simulation shows CKb, the output of the first inverter for four possible 
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Figure 10-18 Impact of data-dependent clock load on clockjitterfortransmission­
gate register. 

0.4 

transitions (0 ~ 0, 0 ~ 1, 1 ~ 0 and I ~ 1). The jitter on the clock based on data-depen­
dent capacitance is illustrated. In general, the only way to deal with this problem is to use 
registers that do not exhibit a large variation in load as a function of data-for example. 
the differential sense-amplifier register shown in Chapter 7. 

10.3.3 Clock-Distribution Techniques 

It is clear from the previous discussion that clock skew and jitter are major issues in digital cir­
cuits, and can fundamentally limit the perfonnance of a digital system. It is therefore necessary 
to design a clock network that minimizes both. While designing that clock network, a close eye 
should be kept on the associated power dissipation. In most high-speed digital processors, a 
majority of the power is dissipated in the clock network. To reduce power dissipation, clock net­
works must support clock conditioning-that is, the ability to shut down parts of the clock net­
work. Unfortunately, clock gating results in additional clock uncertainty (as described earlier). 

In this section, an overview of basic constructs in high-performance clock distribution 
techniques is presented, along with a case study of clock distribution in the Alpha microproces­
sors. There are many degrees of freedom in the design of a clock network, including the type of 
material used for wires, the basic topology and hierarchy, the sizing of wires and buffers, the rise 
and fall times, and the partitioning of load capacitances. 

Fabrics for Clocking 

Clock networks typically include a network that is used to distribute a global reference to vari­
ous parts of the chip, and a final stage that is responsible for local distribution of the clock 
while considering the local load variations. Most clock distribution schemes exploit the fact that 
the absolute delay from a central clock source to the clocking elements is irrelevant-only the 
relative phase between two clocking points is important. Therefore, one common approach to 
distributing a clock is to use balanced paths (called trees). 
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Figure 10-18 impact of data-dependent clock load on clock jitter for ransmission-
gate register.

transitions (0 — 0,0-3 1, 1 -+ OQ and | — 1). The jitter on the clock based on data-depen-

dent capacitance is illustrated. In general, the only way to deal with this problem is to use
registers that do not exhibit a large variation in load as a function of data-~—~for example,
the differential sense-amplifier register shown in Chapter 7.

10.3.3 Clock-Disiribution Techniques

it is clear from the previous discussion that clack skew and jitter are major issues in digital cir-
cuits, and can fundamentally limit the performance of a digital system.It is therefore necessary
to design a clock network that minimizes both. While designing that clock network, a close eye
should be kept on the associated power dissipation. In most high-speed digital processors, a
majority of the poweris dissipated in the clock network. To reduce powerdissipation, clock net-
works must support clock conditioning—thatis, the ability te shut down parts of the clock net-
work. Unfortunately, clock gating results in additional clock uncertainty (as described earlier).

In this section, an overview of basic constructs in high-performance clock distribution
techniques is presented, along with a case study of clock distribution in the Alpha microproces~-
sors. There are many degrees of freedom in the design of a clock network, including the type of
material used for wires, the basic topology and hierarchy, the sizing of wires and buffers, the rise
and fall times, and the partitioning of load capacitances.

Fabrics for Clocking

Clock networks typically include a network that is used to distribute a global reference to vari-
ous parts of the chip, and a final stage that is responsible for local distribution of the clock
while considering the local load variations. Most clock distribution schemes exploit the fact that
the absolute delay fram a central clock source to the clocking elements is irrelevant—only the
relative phase between two clocking points is important. Therefore, one common approach to

distributing a clack is to use balanced paths (called trees).
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