
Optimal Authentication Protocols
Resistant to Password Guessing Attacks

Li Gong

SRI International
Computer Science Laboratory

Menlo Park, California 94025, U.S.A.
(gong@csl.sri. com)

Abstract

Users are typically authenticated b y their pass-
words. Because people are known to choose convenient
passwords, which tend t o be easy t o guess, authenti-
cation protocols have been developed that protect user
passwords f rom guessing attacks. These proposed pro-
tocols, however, use more messages and rounds than
those protocols that are not resistant t o guessing at-
tacks. This paper gives new protocols that are resis-
tant t o guessing attacks and also optimal in both mes-
sages and rounds, thus refuting the previous belief that
protection against guessing attacks makes an authen-
tication protocol inherently more expensive.

1 Introduction

Identifying users is an indispensable element of
computer security and, because auxiliary devices such
as smart-card are not likely to be ubiquitous in the
foreseeable future, users have to be authenticated
through their passwords. (We do not discuss authen-
tication methods based on physical or biological tech-
nologies.) People are known to use poorly chosen
passwords that are vulnerable to dictionary attacks
or guessing attacks [9], while all available evidence
suggests that forcing people to choose and remember
good passwords - those that tend to be long charac-
ter strings including both Roman letters and digits -
is unworkable because such well-chosen passwords are
also quite unmemorable [3, 71.

Authentication protocols have been proposed that
are resistant to password guessing attacks [8, 6, 1, 21,
although they are more expensive in terms of the num-
bers of messages and rounds than those authentication
protocols without the additional requirement to pro-

tect weak passwords [4, 51. For example, it is proven
that the optimal mutual authentication (with hand-
shake and using nonces for challenge and response)
uses five messages [4], while the Nonce Protocol uses
seven messages [6]. It was thought that such increased
cost is inherent, and in particular, is because the server
must decide if a client request is fresh before giving a
reply - otherwise, guessing attack can materialize [6].

In this paper, we show that this constraint is inci-
dental to the techniques used in those protocols, and
by a different design, we can develop authentication
protocols that are resistant to password guessing at-
tacks while a t the same time being optimal both in
the number of messages and in that of rounds.

In the rest of this paper, we first review the tech-
niques and protocols for protecting passwords from
guessing attacks. Readers familiar with existing liter-
ature on this subject can skip Section 2. Then we show
how to design protocols that are optimal in messages
and rounds. We also discuss extensions of the proto-
cols to other scenarios, such as direct authentication.
We finally conclude with a summary and a discussion
as to why synchronized clocks may not help in further
reducing the numbers of messages and rounds.

2 Defeating Guessing Attacks

We use the following notation throughout the pa-
per. The notation {m}k denotes the result of en-
crypting message m using key k , “,” denotes concate-
nation (m , n represents the concatenation of m and
n) , and denotes the bit-wise exclusive-or operation.
“ A --.f B : m” represents A sending a message m to B.

We now summarize the basic techniques for protect-
ing passwords from guessing attacks. (More technical
details can be found in an earlier paper [6].) Suppose

1063-6900/95 $4.00 0 1995 IEEE
24

Authorized licensed use limited to: Stevens Institute of Technology. Downloaded on December 13,2022 at 20:20:29 UTC from IEEE Xplore. Restrictions apply.

UNIFIED PATENTS EXHIBIT 1009
Page 1 of 6f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

A registers a password k 2 a t server S , and A knows
the public key of S , k l . (The case of A not knowing
S’s public key can be handled easily by a simple ex-
tension [6].) Then, suppose that A asks S a question
represented by the number n, and expects to get an
answer in the form of f (n) , where f () can be a well
known function. The protocol is shown in Table 1.

1.
2.

A * S: { c l , ~ 2 , ~ 3 , n , k2}kl
S * A: (~ 2 , ~3 @ f(n)}k;!

Table 1: An illustration of basic techniques

In step 1, A selects three sufficiently large random
numbers c l , c2, and c3, encrypts them (together with
the question n and the password k 2) under S’s public
key k l , and sends the ciphertext to S. In step 2 , S de-
crypts message l using his private key, checks the pass-
word, uses c3 to mask the answer f(n), encrypts withi
A’s password k2 , and replies with message 2. Upon
receiving message 2 , A decrypts it using his password1
and checks the result. If the first part of message f!
is indeed c2, then the reply must be fresh (i.e., after
receiving message 1) and has not been tampered eni
route (assuming encryption also provides integrity).
Now A can use c3 to unmask the second part of the
reply and obtain the answer to his question.

To mount a guessing attack, the attacker wlho has
recorded all the exchanges over the network can guess
k2 and try to decrypt message 2. But all he can see in
the decrypted text is a random string, which gives no
indication as to whether his guess of k 2 is correct or
not. Furthermore, k l is a public key and thus its cor-.
responding private key is commonly assumed too long
to guess in a computationally feasible way. Therefore,
the attacker cannot decrypt message 1, and can only
hope to reconstruct it in order to verify if a guess iri
correct. This reconstruction is infeasible because he
does not know c l . In other words, to attack password1
k 2 by guessing, the attacker effectively has to guess;
both the password and c l (or S’s private key), but
the latter is too long to guess. Therefore, the attacker
cannot know whether a guess is correct or not, andl
guessing attack is rendered impotent. If the attacker
attempts to use a guessed password in an online trans-
action, then a failed guess can be detected and logged.

Based on these basic techniques, a protocol using
nonces has been developed [6], as shown in Table 2.
Here, K a and Kb are A’s and B’s passwords respec-
tively. K s is server’s public key. This protocol irr
adapted from the Compact Protocol that uses times-

tamps [6]. The modification is to let A (and also B)
obtain al freshness identifier n s (a nonce in this case)
from the server S (messages 1 and 2) . After that, the
protocol is the same as the Compact Protocol except
that the timestamlp in messages 3 and 4 are substi-
tuted by the nonce n s .

1. A - + S : A , B
2.
3.
4.

5.
6.

S -+ A : A , B , n s
A -+ B : { A , 81, n u l , nu2 , ca, { n s } K a } K s , n s , r u
B --+ S: { A , B , n u l , na2 , ca, { ~ s } K ~ } K ~ ,

S -+ B : { n u l , k €8 n a 2 } g a , { n b l , k @ n b 2) ~ b
B -+ A : { n u l , k @ na2}jya, {fl(ra), rb}k

{ B , A , n b l , nb2, cb, {ns}Kb}Ks

7. A --+ B : { f 2 (~ . b) } k

Table f!: The Nonce Protocol

This protocol works as follows. A first obtains a
nonce n s from the server, composes a fresh request
message, and sends it to S via B (and at the same
time passes along S’s nonce). B composes a simi-
lar request message. The server checks, by examining
{ n s } ~ ~ and { n s } ~ ~) , that both parts of message 4 are
fresh and they originate from A and B. S then se-
lects a session key k and replies with message 5. B
decrypts the second part of message 5 using his pass-
word, finds n b l , and thus is satisfied that the message
is from S, is fresh, and has not been tampered with
during transmission. A does a similar check, before
they complete a handshake. Here f l () and f 2 () are
predefined functions.

In this protocol, we protect the passwords not only
from an outside attacker, but also from insiders, who
can be either malicious or merely incompetent. For ex-
ample, .4 cannot guess B’s password, and vice versa,
even with the aid of the residue of a successful authen-
tication. A safeguard that works under these circum-
stances also ensures that neither party can cause the
compromise of the other’s password by compromising
their own.

The reason for requiring the initial nonce acquisi-
tion is that , if message 3 (or 4) is not fresh, then the
attacker can reuse it and obtain two different versions
of messa,ge 6: { n u l , k@na2}jya and { n u l , k ’ @ n ~ 2 } ~ a .
The two session keys, k and k‘, are different because S
chooses a new session key each time. However, because
both messages contain the same value for n u l , the at-
tacker ciin guess 1 - a and decrypt both messages to see
if the same value nail emerges. A match indicates that
the guess is correct with very high probability.

25

Authorized licensed use limited to: Stevens Institute of Technology. Downloaded on December 13,2022 at 20:20:29 UTC from IEEE Xplore. Restrictions apply.

UNIFIED PATENTS EXHIBIT 1009
Page 2 of 6f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

It is this constraint - that the server must respond
only to fresh requests - that makes the nonce-based
protocol use two messages more than the optimal case.
In the next section, we show how to remove this con-
straint and thus to derive optimal protocols.

3 An Optimal Protocol

The central idea is to let A choose an additional
random number nu3 that is to be used by S as the en-
cryption key in the reply message. The idea of user-
generated encryption key is not new, but the typi-
cal objection is that the authentication server is much
better at selecting high-quality keys. In our circum-
stances, however, the alternative key is a user-chosen
password, which is unlikely to be cryptographically
stronger than the random number nu3. (Of course
nu3 should not be weak keys specific to the cryptosys-
tems used.) Moreover, nu3 is a one-time key such that
cryptographically breaking its encryption does not en-
danger the password and subsequent authentication
sessions. The optimal protocol is shown in Table 3.

1.
2.

3 .
4.

A -+ B : { A , B , n u l , n u 2 , c u , n u 3 , { n u 3 } ~ ~ } ~ ~ , TU

B -+ S: { A , B , n u l , n u 2 , cu, n u 3 , { n u 3 } ~ , } ~ ~ ,

S --+ B : { n u l , k @ n ~ 2 } , , ~ , {nbl, k @ nb2},b3
B -+ A : { n u l , k @ n ~ 2 } , , ~ , { f l (r u) , r b } k

{ B , A, nbl, nb2, cb, nb3, { n b 3 } ~ b } ~ ,

5. A -+ B : { f 2 (~ b) } k

Table 3: An optimal, five-message nonce protocol

This protocol works as follows. A selects ran-
dom numbers (n u l , n u 2 , cu, n u 3 , T U) and composes
and sends message 1. B does the same by sending
message 2. The server S checks that the pair nu3
and { n u 3 } ~ , matches with A’s password ICu, which
proves that the original sender is A. S does the same
check for B. Then the server selects a session key k
for A and B to share and replies with message 3.

In message 3 , the inclusion of nul and n b l demon-
strates that the reply is fresh, while n u l and nb l hide
the value of the session key. The message is encrypted,
in two parts, under keys nu3 and nb3. After that , A
and B complete a handshake exchange, the same as is
done in the earlier Nonce Protocol.

The security of the protocol can be argued similarly
as that of the Nonce Protocol. Basically, because ICs is
the server’s public key, only the server can obtain nu3
and nb3. Since message 3 is also fresh and its integrity

is maintained, then it must have come from the server,
and thus the key k must be the session key chosen
by the server. Moreover, if the attacker attempts to
mount a guessing attack on a password (say K u) , then
he needs to reconstruct message 1 because a guessed
value of K u does not lead to any other information
related to subsequent messages (i.e., no verifiable texts
in later messages). However, to reconstruct message
1, he must also guess the value of ca (the confounder
[SI), which is assumed t o be chosen at random from a
large space and thus infeasible to guess by exhaustive
search.

Although the attacker can replay an old message 1
- because the server cannot decide its freshness - all
the attacker can get is a pair (or more) messages in
the form of { n u l , k $ nu2},,3 and { n u l , k’$ n ~ 2 } , , ~ .
These do not help him in compromising a future ses-
sion key k” or in guessing the password K u .

The optimality of the protocol is easier to see - it
uses five messages, reaching the proven lower bound
[4]. (More detailed definitions and terminologies re-
lated to optimality can be found in our previous pub-
lications [4, 51.) It is also simple to re-arrange the
messages so that it uses four rounds, again a proven
lower bound, as shown in Table 4.

1. A 3 B : { A , B , n u l , n u 2 , cu, n u 3 , { n u 3 } ~ , } ~ , , TU

2. B + S : {A , B , n u l , n u 2 , cu, nu3 , { n u 3 } ~ , } ~ , ,
{ B , A, nbl, nb2, cb, nb3, { n b 3 } ~ b } ~ , , rb

3. S + A : { n u l , IC n ~ 2 } , , ~ , rb
4. s -f B : { n b l , k @ nb2},b3

5 .
6 .

A + B : { f 2 (~ b) } k
B + A : { f l (~ ~) } k

Table 4: An optimal, four-round nonce protocol

Here, messages 3 and 4, and 5 and 6, can be sent
in the same round. Note that the server relays B’s
nonce r b to A in message 3. An earlier proof (Case
8, NB+AH+SO [5]) applies, which shows that it is
impossible to design a protocol with five messages and
four rounds.

Note that a lot of replayed messages may overload
the authentication server. This does not necessarily
pose a security threat, unless we consider cryptanal-
ysis (on the server’s responses) a significant problem.
Techniques are available to make such attacks more
difficult.

26

Authorized licensed use limited to: Stevens Institute of Technology. Downloaded on December 13,2022 at 20:20:29 UTC from IEEE Xplore. Restrictions apply.

UNIFIED PATENTS EXHIBIT 1009
Page 3 of 6f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

4 Beware of Subtle Attacks

As we have shown, it is not important if the server
cannot decide the freshness of the request messages,
which is the main reason why we have been aLble to
develop optimal protocols. It is vital, however, that
the server can identify the senders of those request
messages because otherwise S may be cheated into
telling B that A is at the other end of the connection
when in fact it is an attacker C. In our protocol,
identification is done through two pairs of texts, nu3
and { n u 3 } ~ ~ , and nb3 and {nb3}~b , because only the
holders of the passwords (K u and Kb) can generate:
such pairs.

Such explicit identification may be necessary, as we
now show how to break a variation of the protocoll
where identification is inexplicit. Suppose we remove
nu3 from the pair, as shown in Table 5 (the case for
B is identical). Because { n u 3 } ~ , is still present, intu-
itively only S knows Ku and can obtain nu3 to com-
pose a reply message.

1.
2.

3.
4.
5 .

A -+ B : { A , B , nul, nu2, cu, { ~ u ~ } K ~ } K ~ , IW

B --+ S : { A , B , nul , na2, cu, { ~ U ~ } K , } K ~ ,

S 4 B : {nul , k
B -+ A : {nul , k CB n ~ 2 } ~ ~ 3 , { f l (~ ~) , rb}k
A -+ B : { f 2 (~ b) } k

{ B , A , nbl, n b 2 , 4 { n b 3 } ~ b } ~ ~
1262}na3, {nbl, k CB nb2},nb3

Table 5: A variation that is insecure

In this case, the attacker can take the following
line of actions. He selects random numbers (nul ,
nu2, cu, and E) and compose a message of the form
{ A , B , n u l , n u 2 , c ~ , x } ~ ~ . He sends this in place of
message 1, claiming that it originates from A . The
server then treats x as { n u 3 } ~ , for some vatlue of
nu3, and in due course the attacker receives y =:
{nul , k @ n ~ 2 } , , ~ . Now the attacker guesses a. value
of Ku, uses it to decrypt x to obtain nu3, and uses
that to further decrypt y. If nul emerges from the de-.
cryption, the attacker knows that he has guessled KGI
correctly with very high probability.

Note that even if message 3 is modified to be
{ k n ~ 2 } , , ~ so that the evidence nul is rernoved,
the same attack can still succeed. Now, the attacker
himself also takes the role of B , through which he
(quite legitimately) obtains the session key IC. After
decrypting y, he only need to see if the plaintext is
identical to k @ nu2 (he knows both k and na2). A,
match indicates a successful guess of Ku.

5 Two-Party Direct Authentication

A and B sometimes may already share a poorly cho-
sen secret (say Kubf and wish to establish, in a secure
way, a well-chosen session key. In the following direct
authentication prot,ocol, k l is a public key chosen by
A, and IC is the session key chosen by B.

1.

3.

A -+ B : nu, { E ; l } K a b

A --+ B : {nb}k
2. B -+ A : { B , A , nb, cb, kj { n a } l i a b } k l

Table 6: An optimal direct authentication protocol

In this protocol, A selects public key k l , encrypts
it with the shared password Kub, and sends it and a
nonce n(z to B. B decrypts to get kl, selects three ran-
dom numbers (nb, cb, k) , and sends message 2. A then
uses the private key corresponding to k l to decrypt
this message and obtain the session key k . The pres-
ence of (nu}Kab proves to A that the message is sent
by B and is fresh. Finally, A completes the handshake
by sending message 3.

The security argument is similar to those for the
three-pa.rty protocol in Section 3. This protocol is
more efficient than those previously proposed that use
five messages [l , 611. Our protocol is in fact optimal
because three messages and three rounds are lower
bounds proven for nonce-based protocols that carry
out only handshakes [4].

It is easy to modify the protocol so that both clients
contribute to the selection of the session key. For ex-
ample, .4 can propose another key k‘, and then they
use h(k, k’) as the session key, where h () is a one-way
hash function, as follows.

6 Using “Secret Public Keys”

In th’e optimal protocol in Section 3, the clients A
and B must know the server’s public key before pro-
tocol invocation. If the clients cannot be assumed to
have this knowledge, we can add an extra round of ini-
tial exchange to obtain a “secret public key” protocol
PI.
1. A - + S : A , B
2. S -+ A : {KS}Ka

27

Authorized licensed use limited to: Stevens Institute of Technology. Downloaded on December 13,2022 at 20:20:29 UTC from IEEE Xplore. Restrictions apply.

UNIFIED PATENTS EXHIBIT 1009
Page 4 of 6f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Alternatively, if the clients can generate public keys
in real time, then we can use the technique in Section 5
to obtain a more efficient “secret public key” protocol,
as shown in Table 7.

Table 7: An optimal “secret public key” protocol

In this protocol, k l and k 2 are public keys chosen
by A and B , and nu and nb are their nonces. Numbers
csl and cs2 are confounders chosen by S. They must
be independently chosen because otherwise A and B
may be able to guess each other’s password if a secret
public key is later revealed.

Rearranging the messages can yield a four-round
protocol, as done in Section 3 . These protocols are
thus optimal because they meet the lower bounds of
the numbers of messages and rounds [4].

7 Do Timestamps Improve Protocol
Efficiency?

In this section, we discuss why the use of times-
tamps may not help to make the protocols more ef-
ficient. In general, the availability of synchronized
clocks and the use of timestamps often can reduce the
numbers of messages and rounds for authentication
protocols. For example, an optimal mutual authenti-
cation protocol assuming synchronized clocks uses four
messages or three rounds, cheaper than nonce-based
protocols [4]. Thus, a question remains as to whether
the efficiency of the protocols in Sections 3 , 5, and 6
can be further improved if timestamps are used.

Clearly the use of timestamps will enable the server
(or a client, in a situation of direct authentication) to
check if an initial request message is fresh and thus to
respond only to fresh requests. However, as we have
shown, the security of the protocol does not depend
on the server knowing whether the request messages
are fresh, even with fhe additional requirement that
protocols be resistan? to password guessing attacks.
To use timestamps in later stages of the protocol does
not increase protocol efficiency either, because by then
all parties will have the chance to exchange nonces

(piggybacked on earlier messages).
Moreover, current techniques for protecting pass-

words [l, 61 all require that a client, before receiving
the session key, must either generate and send a pub-
lic key (to the other client) or send a message to the
server encrypted with the server’s public key. This
is equivalent, in terms of efficiency, to requiring that
each client send a nonce before receiving the session
key, which is in fact a security requirement for nonce-
based protocols. Therefore, we conjecture that pro-
tocols resistant to password guessing attacks cannot
be more efficient than nonce-based protocols, even if
synchronized clocks can be assumed.

We can further argue for this conjecture from an-
other angle. Suppose timestamps do help, and because
the difference in lower bounds between timestamp-
based and nonce-based protocols is only one message
OF one round [4, 51, then we can deduce that three
messages are sufficient for both A and B to receive the
session key from the server. In this case, because A has
to initiate the protocol, a little analysis will show that
B must receive the key in his first contact with the
server. We know of no technique that achieves this
goal - note that guessing attacks must not become
possible after the session key is later used for hand-
shaking or for encrypting traffic - unless we assume
that S knows about a trap-door function on B’s side
(e.g., B’s public key). An impossibility proof along
this line of reasoning will be very useful.

Nevertheless, in the case with a trusted third party,
if either (or both) client, instead of the server, chooses
the session key, then it is not difficult to check that
using timestamps can reduce the numbers of messages
and rounds to the theoretical lower bounds [4].

8 Related Work

Gong et al. [6, 81 and Bellovin and Merritt [l, 21
developed the first authentication protocols that are
resistant t o password guessing attacks. Gong [4, 51
and Yahalom [ll], among others, have investigated
the design of optimal authentication protocols.

Tsudik and Van Herreweghen suggested protocol
modifications in order to reduce the amount of en-
cryption [lo]. Their techniques, including their use of
user-generated encryption keys, potentially can also
reduce the number of messages. However, in their
protocols, a client cannot know if the session key he
receives from the server is correct (i.e., has not been
tampered with) until he later uses it. This deficiency
is nevertheless compensated by their use of extremely
short messages. This trade-off appears to be intrinsic.

28

Authorized licensed use limited to: Stevens Institute of Technology. Downloaded on December 13,2022 at 20:20:29 UTC from IEEE Xplore. Restrictions apply.

UNIFIED PATENTS EXHIBIT 1009
Page 5 of 6f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
	� Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

	� Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
	� With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

	� Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
	� Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

	� Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

