
Multimedia Systems (1994) 2:172--180
M u l t i m e d i a Sys tems
�9 Springer-Verlag 1994

Media scaling in a multimedia communication system

Luca Delgrossi, Christian Halstrick, Dietmar Hehmann, Ralf Guido Herrtwich, Oliver Krone,

Jochen Sandvoss, Carsten Vogt

IBM European Networking Center, Distributed Multimedia Solutions, Vangerowstrasse 18, D-69115 Heidelberg, Germany

Abstract. HeiTS, the Heidelberg Transport System, is a mul-

timedia communication system for real-time delivery of dig-

ital audio and video. HeiTS operates on top of guaranteed-

performance networks that apply resource reservation tech-

niques. To make HeiTS also work with networks for which

no reservation scheme can be realized (for example, Ether-

net or existing internetworks), we implement an extension to

HeiTS which performs media scaling at the transport level:

The media encoding is modified according to the bandwidth

available in the underlying networks. Both transparent and

nontransparent scaling methods are examined. HeiTS lends

itself to implement transparent temporal and spatial scaling of

media streams. At the HeiTS interface, functions are provided

which report information on the available resource bandwidth

to the application so that nontransparent scaling methods may

be used, too. Both a continuous and discrete scaling solution

for HeiTS are presented. The continuous solution uses feed-

back messages to adjust the data flow. The discrete solution

also exploits the multipoint network connection mechanism of

HeiTS. Whereas the first method is more flexible, the second

technique is better suited for multicast scenarios. The com-

bination of resource reservation and media scaling seems to

be particularly well suited to meet the varying demands of

distributed multimedia applications.

Key words: Media scaling- Multimedia networks - Transport

systems

1 Introduction

The dispute of guaranteed vs nonguaranteed communication

is an unresolved argument in the multimedia community (as

shown, for example, by recurring discussions at the first three

International Workshops on Network and Operating System

Support for Digital Audio and Video from 1990 to 1992). It is

a repetition of the classic end-to-end argument: One group says

that all mechanisms to cope with network bottlenecks should

be included in the application; the other group says that only

the underlying system is able to prevent network overload. In

Correspondence to: C. Halstrick

this paper, we propose a solution between the two extremes

that offers both possibilities in an actual system. We favor

this approach because different multimedia applications have

different requirements on the network: there is virtually no

way to recover from audio transmission errors so that the end

user will not notice them. For everyday (consumer-quality)

video, on the other hand, it is fairly easy to live with network

flaws and even with slight delay variations.

HeiTS, the Heidelberg Transport System [6, 7], facilitates

the transmission of digital audio and video from a single origin

to multiple targets. The transport and network layer protocols

of HeiTS, HeiTP [3] and ST-II [15] allow the client to negotiate

quality-of-service (QOS) parameters such as throughput and

end-to-end delay for multimedia connections. In its original

form, HeiTS depends on some type of bandwidth allocation

mechanism in the underlying network to provide a transport

connection with a guaranteed QOS. Some networks such as

FDDI (with its synchronous mode) and ISDN implement this

reservation. Other networks such as Token Ring can be aug-

mented with bandwidth allocation schemes [t 1]. However, not

all kinds of networks support the reservation of bandwidth: as

an example, Ethernet provides no guaranteed service at all due

to the potential collisions of packets 1 . Hence, to use audio and

motion video in such an "unfriendly" environment calls for ad-

ditional techniques. When reservation is not available, audio

and motion video should be transported on a best-effort basis.

From the start, HeiTS has supported some kind of best-effort

QOS [19] which, however, is only a less strict version of guar-

anteed QOS. In this best-effort approach, resource capacities

are reserved, but at the same time statistically multiplexed, that

is, the sum of the portions of bandwidth allocated to the indi-

vidual sessions is allowed to exceed the total resource capacity.

Best-effort service with no reservation requires a different ap-

proach, which can work, for example, in a dynamic feedback

fashion. Here, the system monitors how well it currently ac-

1 For this reason, some "multimedia" solutions for the Ethernet

use a 10BaseT hub and dedicate single Ethernet links to pairs

of communication partners. This approach requires changes in

the network infrastructure and still leaves unsolved the problem

of conflicting uses of the dedicated links by multiple concurrent

multimedia applications on the same machine.

Akamai Ex. 1036
Akamai Techs. v. Equil IP Holdings

IPR2023-00332
Page 00001

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

173

complishes the audiovisual data transport from one end to the

other, then correspondingly determines the amount of audio

visual data it forwards. We refer to this technique as "media

scaling."

Media scaling in different forms has been suggested and

used in previous systems. Fluent, for example, bases its multi-

media networking technology on a proprietary scaling scheme

[16]. Tokuda et al. have developed a dynamic QOS manage-

ment service, which is intended to be used in conjunction with

scaling techniques [14]. Clark et al. with their "predicted ser-

vice" approach also assume in their networking architecture

that some form of media scaling exists [2]. Our approach is

special and different in that it shows how to combine resource

reservation and media scaling methods.

This paper discusses several implementation alternatives

for media scaling in HeiTS. Section 2 surveys scaling meth-

ods, concentrating on digital video. Section 3 introduces two

different scaling methods for HeiTS. Section 4 specifies the

changes to protocols and interfaces in HeiTS required to ac-

commodate scaling.

2 Scaling methods

Before describing the details of the HeiTS approach, we give a

brief survey of scaling techniques. We assume that the reader

is familiar with typical encoding schemes for digital media.

"Scaling" means to subsample a data stream and only present

some fraction of its original content. In general, scaling can

be done at either the source or the sink of a stream. Frame rate

reduction, for example, is usually performed at the source,

whereas hierarchical decoding is a typical scaling method ap-

plied by the sink. Since in the context of this paper scaling

is intended to reflect bandwidth constraints in the underlying

resources, it is useful to scale a data stream before it enters

a system bottleneck; otherwise it is likely to contribute to the

overload of the bottleneck resource. Scaling at the source is

usually the best solution here: there is no need for transmitting

data in the first place if it will be thrown away somewhere in

the system. Scaling methods used in a multimedia transport

system can be classified as follows:

- Transparent scal ing methods can be applied independently

from the upper protocol and application layers, that is, the

transport system scales the media on its own. Transparent

scaling is usually achieved by dropping some portions of

the data stream. These portions - single frames or sub-

streams - need to be identifiable by the transport system.

- Non- transparent scaling methods require an interaction of

the transport system with the upper layers. In particular,

this kind of scaling implies a modification of the media

stream before it is presented to the transport layer. For the

distribution of media captured in real time, nontransparent

scaling typically requires modification of some parameters

of the coding algorithm. Stored media can be scaled by re-

coding a stream that was previously encoded in a different

format.

In a multimedia system, scaling can be applied to a couple

of different media types. Examples are video, audio, pointer

device control streams, sensory information (e.g., data gloves).

For pointer device control streams or sensory information,

scaling can in general be achieved by simply reducing the

sampling rate. Bandwidth requirements of these streams are

usually low compared to audio and video streams; therefore,

performance gains achieved by applying scaling mechanisms

are rather small.

For audio, scaling is usually difficult because presenting

only a fraction of the original data is easily noticed by the

human listener. Dropping a channel of a stereo stream is an

example.

For video stream users are typically much less sensitive to

quality reductions. Therefore and because of their high band-

width requirements, video streams are predestined for scal-

ing. The applicability of a specific scaling method depends

strongly on the underlying compression technique, as will be

explained in Sect. 2.2. There are several domains of a video

signal to which scaling can be applied:

- Temporal scaling reduces the resolution of the video

stream in the time domain by decreasing the number of

video frames transmitted within a time interval. Tempo-

ral scaling is best suited for video streams in which in-

dividual frames are self-contained and can be accessed

independently, such as intrapictures or DC-coded pictures

for MPEG-coded video streams [9]. Interframe compres-

sion techniques are more difficult to handle because not all

frames can be easily dropped.

- Spatial scaling reduces the number of pixels of each im-

age in a video stream. For spatial scaling, hierarchical ar-

rangement is ideal because it has the advantage that the

compressed video is immediately available in various res-

olutions. Therefore, the video can be transferred over the

network using different resolutions without applying a "de-

code ---+ scale down ~ encode" operation on each picture

before finally transmitting it over the network.

- Frequency scaling reduces the number of DCT coefficients

applied to the compression of an image. In a typical picture,

the number of coefficients can be reduced significantly

before a reduction of image quality becomes visible.

- Ampl i tudinal scaling reduces the color depths for each im-

age pixel. This can be achieved by introducing a coarser

quantization of the DCT coefficients, hence requiring a

control of the scaling algorithm over the compression pro-

cedure.

- Color space scaling reduces the number of entries in the

color space. One way to realize color space scaling is to

switch from color to gray-scale presentation.

Obviously, combinations of these scaling methods are possi-

ble.

Whether nontransparent scaling is possible depends strong-

ly on the kind of data to be transmitted. For live video streams,

it is easy to set all the coding parameters when an image is

sampled at the source. For stored video, scaling may make a

recoding of the stream necessary, especially if no hierarchical

coding scheme is used.

IPR2023-00332 Page 00002
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

174

The efficiency of a scaling algorithm strongly depends on

the underlying compression technique. The format of the data

stream produced by the coding algorithm determines which of

the domains is appropriate for scaling. The following enumer-

ation gives a short overview of the applicability of scaling to

some state-of-the-art compression techniques.

- Mot ion JPEG. The distinguished feature of motion JPEG

encoding (that is, the encoding of video as a sequence of

JPEG flames [20]) is its robustness to transmission errors

because of the independence of individual frames: a single

error is not carried over from one frame to another. Obvi-

ously, temporal scaling is suited best for this compression

technique, as any frame can be left out without affecting its

neighbors. Applying a hierarchical DCT-based compres-

sion method on every picture [16] enables spatial scaling

methods. However, few existing JPEG implementations

realize this hierarchical mode.

- M P E G . Since MPEG [9] is a context-sensitive compres-

sion method, temporal scaling is subject to certain con-

straints. Every compressed video stream consists of a se-

quence of intra-coded, predicted-coded, and bidirectional-

ly-coded pictures. Temporal scaling of an MPEG coded

video stream can be realized by dropping predicted and

bidirectionatly coded pictures. Assuming an intra-picture

is inserted every 9th frame, this leads to a scaled frame rate

of approximately 3 frames per second [13].

The main improvement of MPEG-2 over the original

MPEG scheme is the support for scalable media streams [3,

5, 14]. It facilitates spatial and frequency scaling as well as

temporal scaling methods. MPEG-2 uses a hierarchical com-

pression technique which enables the compressed data stream

to be demultiplexed into three substreams with different qual-

ity. Scaling can be achieved by transmitting only some but not

all of the substreams. This method is particularly useful for

the discrete scaling approach described in Sect. 3.2.

- DVI. Just IikeMPEG, DVI [10] uses acombination ofintra-

and intercoded frames. Thus, temporal scaling is restricted

in the same way, as described for MPEG-coded streams.

- H.261 (px64). The H.261 standard includes an amplitudi-

nal scaling method on the sender side [17]. The coarseness

of the quantization of the DCT coefficients determines the

color depth of each image pixel. In addition to this, the

intra-frame coding scheme, which is similar to the intra-

coded pictures of MPEG, permits the easy use of temporal

scaling.

3 Scaling in HeiTS

HeiTS is a rate-controlled transport system. For every data

stream passing through a HeiTS connection, the system is in-

formed about its message rate by means of an associated QOS

parameter set. At the transport level interface, this rate is given

in terms of logical data units (for example, video frames) per

time period. HeiTS can use this information for monitoring

the arrival of the packets. The late arrival of a packet is an

indication of some bottleneck in the system, in which case the

target can inform the origin about the overload and cause it to

scale down the stream. Once the overload situation has passed,

the stream may be scaled up again.

A scalable stream can be seen as composed of various sub-

streams. For a spatially scaled stream this representation can,

for example, consist of one substream with all odd/odd pix-

els, one substream with even/even pixels, etc. As an alternative,

one could use one substream for intra-coded frames and one or

even several other streams for the remaining frames, which im-

plies that there are streams of different degrees of importance.

A splitting of MPEG video streams based on DCT coefficients

has been described [12].

In the scaling implementation of HeiTS, individual sub-

streams are mapped onto different connections, each with its

own set of QOS parameters. The transmission quality can then

be adjusted either with fine granularity within a connection

(substream) or with coarse granularity by adding and remov-

ing connections (substreams). We refer to these approaches as

continuous and discrete scaling. These approaches, together

with a discussion of the monitoring functions needed, are dis-

cussed in the following subsections.

3. I Moni toring

The prerequisite for any scaling mechanism is a function that

allows the system to detect network congestion. For HeiTS,

this can be achieved by monitoring two QoS parameters: end-

to-end delay and T S D U loss rate.

3.1.1 End-to-end delay

In HeiTS, each logical data unit is represented by a transport

service data unit (TSDU). Each TSDU has an expected ar-

rival time, and a TSDU arriving later than expected indicates

congestion.

There are several possibilities to define the expected arrival

time of a TSDU. One could, for example, define its value

simply as the actual arrival time of the previous TSDU plus

the period of the message stream (that is, the reciprocal value

of its rate). Alternatively, the arrival time of the first TSDU of

the stream (or any other earlier packet) rather than the arrival

time of the previous packet could be used as an "anchor" for the

calculation. This helps to avoid false indications of congestions

in cases where the previous TSDU happened to arrive early and

the current TSDU has a "normal" delay.

HeiTS calculates the expected arrival time as the "logical

arrival time" of the previous packet plus the stream period_ The

logical arrival time is the arrival time observed when bursts

are smoothed out, that is, when early packets are artificially

delayed (for example, in a leaky bucket fashion) such that the

specified stream rate is not exceeded (see [19] for details).

3.1.2 TSDU loss rate

A problem arising when only monitoring end-to-end delay is

the definition of a threshold value from when on congestion is

assumed. A better indicator to detect congestion is the TSDU

IPR2023-00332 Page 00003
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

175

loss rate. In HeiTS, both parameters are monitored in paral-

lel. To adjust the value of the threshold value for the delay

HeiTS continuously compares the mean-end-to-end delay to

the corresponding value of the mean loss rate.

The lateness/loss of a single TSDU should not immedi-

ately trigger the scaling down of a stream, because the con-

gestion may only be short. However, if a sequence of packets is

late (or some packets are missing because they were dropped

due to buffer overflow), it can be assumed that the network

is congested. In this case, the receiver initiates a scale-down

operation.

In HeiTS, the mean values of loss-rate and end-to-end de-

lay are calculated over a predefined measurement interval. The

determination of the interval length depends on the network

characteristics and, therefore, has to be based on heuristics.

3.2 Continuous scaling

A major issue with the scaling procedure is the responsive-

ness, that is, how rapidly the traffic adapts to the available

bandwidth. We propose a scale-down scheme which consists

of three stages.

- The first reaction to a congestion is to throw away excess or

late packets. This usually happens within the network dur-

ing a buffer overflow or at the receiver station that detects

the lateness of a packet. An appropriate mechanism for

lateness detection is included in HeiTP. Scaling by drop-

ping packets is immediate and local, that is, it does not

affect the sender, which continues to send at its full rate.

Hence, scaling up can also be done very quickly by sim-

ply stopping to discard packets. As stated before, it makes

sense not immediately to trigger the sender to scale down

the stream, since the congestion may only be brief.

- When the number of late or lost packets exceeds a certain

threshold, which can be defined heuristically, it is assumed

that the congestion will last longer. In this case, the sender

is triggered to throttle its traffic. As a first step, the sender

reduces its sending ra te-poss ibly down to zero. (Reducing

the rate to zero makes no sense if all data are sent over only

one connection. If continuous scaling is applied to one of

several substreams, this substream may temporarily carry

no data at all and the receiver will still receive information.)

The connection, however, remains intact, along with its

resource reservations 2. This means that the resources can

be temporarily used by other traffic, but the sender can

scale the stream up immediately once the congestion is

over.

- If the rate on a stream has been reduced to zero and the con-

gestion is of a longer duration, that is, if several attempts

2 Note that not only guaranteed connections but also best-effort

connections in HeiTS may have resources reserved for them.

However, the reservation for best-effort connections does not account

for the worst possible case. Thus, in some situations the amount of

reserved resources may not suffice, which will lead to congestions. On

the other hand, best-effort conntions may temporarily use resources

reserved for other connections as long as these connections do not

need them.

of the sender to scale up the stream fail, the corresponding

connection is terminated and all resources reserved for it

are released. Since congestion typically occurs only at one

bottleneck on the end-to-end connection (for example, on

some subnetwork), the resources previously reserved on

other subnetworks or nodes are made available for other

connections. Scaling the stream up, however, requires the

reestablishment of the connection, which takes some time.

This last step leads us directly to the discrete scaling approach

which will be discussed in the next subsection.

The monitoring of a stream provides the receiving sta-

tion with hints at congestion situations. This monitoring can-

not, however, yield any information about the termination of a

congestion. Assuming that the underlying network also does

not give any explicit indication of congestions, the decision

whether to scale up a stream must be based on heuristics. The

only practical heuristic known is to scale up the stream when

a certain time span after the previous scale down has elapsed.

A scale-up decision based on time spans can come either

too early or too late. A scaling which is too late is not consid-

ered harmful if it happens within the range of a few seconds. If

the transmission quality is temporarily reduced, a human user

does not care much whether this lasts for 3 or 5 s. The effects

of a scaling which is too early can be more severe. Scaling a

stream up while the congestion situation is still present causes

the receiver to trigger a new scale-down and, in the extreme

case, an oscillation of the system. This implies an increased

overhead for both end-systems and network and, additionally,

can extend the phase of reduced quality longer than necessary.

To avoid oscillation, the scaling procedure of HeiTS scales

up stepwise, as is done by other dynamic congestion control

algorithms [1, 8]. After scaling down the stream, the sender

transmits for a certain time span o r a certain amount of data

(for example, n packets for a fixed value of n) at the reduced

rate. If after this period no scale-down message is obtained

from the receiver, which means that, HeiTS could transfer the

packets without any severe congestion, the sender increases its

rate by some amount 3. This procedure is continued until the

maximum throughput for this stream is reached or until the

receiver requests to scale down the stream again.

A simple example of the protocol machine for continuous

scaling is shown in Figs. 1 and 2. The source entity consists of

three stages: In the OK state, the source transmits the media

stream in best quality. If a scale-down message is received

from the sink, there is a transition to the DOWN state. The

machine remains in the DOWN state until no further scale-

down message is received for a certain time span t~p. In this

case, the protocol machine goes to the UP state and tries to

scale up the stream. If the maximum quality is reached the

protocol machine returns to the OK state.

3 Note the difference between our scheme and the slow-

start algorithm in TCP [8]. TCP's slow-start algorithm uses

acknowledgements returned by the receiver to increase the traffic rate,

whereas our scheme increases the rate in the absence of scale-down
messages.

IPR2023-00332 Page 00004
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

176

~ - ' ~ IF feedback(loss_rate)
IF quality=max_qual=~ " OK) - - THEN scaledown(- - quality)

~ ~ ~ seLtimer(t up)

/ IF feedback(loss_rate) . . . \
[THEN sealedown(- - quality) I

 pi;
IF (t up expired THEN scale_up(++quality) IF feedback(loss_rate)

&& quality < max_qual) THEN scaledown(- - quality)
THEN scale_up(++quality) set_timer(t up)

Fig. 1, State diagram source

ss_rate
<= threshold

IF loss rate �9 threshold
THEN ~eedback(Ioss._.rate)

) Iio~s-;atte-~ =

IF Iossrate <= ~ ~ - " ~ ' ~ J
threshold ~ " ~ FEEDBACK)4"-~-

I IF loss_rate > loss_rate_old
U THEN ~k(l~ds~-r~e~ rate

Fig.2. State diagram sink

The protocol machine on the sink side consists of only two

states: The OK state is left if the TSDU loss rate/delay exceeds

the threshold value. During the transition to the FEEDBACK

state, a scale-down message is sent to the source entity. The

FEEDBACK state ensures that the sink entity waits at least for

the time until the media stream is adjusted according to the

last scale-down message, before a new scale-down message

can be sent.

3.3 Discrete scaling

The advantages of the continuous scaling technique are that

scaling can be done at fine granularity and that in principle only

one connection is required per stream. There are, however,

some problems with this approach because it does not take

into account two special features of HeiTS.

- HeiTS supports multicast. This implies that continuous

scaling may lead to the following problem. If a receiver

triggers the sender to scale down the rate, all receivers from

that point on get data at the lower rate, that is, a multimedia

stream of worse quality. This approach is "all-worst" (or

socialistic, to use a historical term), since the worst path in

the multicast tree determines the quality for every receiver.

- HeiTS supports different connection types. HeiTS has

guaranteed connections for which all required resources

are reserved in advance, and hence the requested through-

put can be guaranteed. Additionally, HeiTS supports best-

effort connections, in which no resources or only part of

the resources required are reserved in advance; thus con-

gestion is possible.

The discrete scaling technique discussed in the following is

based on splitting a multimedia stream into a set of substreams,

as described in the beginning of Sect. 3. This technique can be

used in a multicast environment and supports different rates

for different receivers. It works in an "individual best" (capi-

talistic) fashion.

For each of the different substreams a separate network

layer connection is established. ST-II, the network protocol of

HeiTS, in principle treats each of these substreams indepen-

dently. However, the "stream group identifier" of ST-II can be

used to indicate that several network connections belong to a

single transport connection. The system can then try to achieve

roughly the same delay for each of these network connections

that facilitates reassembly of the substreams as packets reach

the target with approximately the same transit time.

For establishing a set of substreams, an application speci-

fies the percentage of data, which has to be transmitted to the

receiver under any circumstance. If fewer data are transferred,

a receiver cannot decode any useful information. These data

are transferred over a guaranteed connection, if possible. If

no guaranteed connections can be supported (for example, be-

cause there is an Ethernet in between), a best-effort connection

is also used for this portion of the stream.

The rest of the stream is transferred over one or more best-

effort connections. How many connections of this kind are

required depends on the granularity of the data stream: Each

part that provides a useful increase in quality is transferred

over a separate best-effort connection.

Example: A video data stream is sent with 24 frames per second

(fps). The sender decides that 6 fps have to be transferred under

any circumstances to the receivers. These data are sent over the

basic connection. The remaining 18 fps might be sent over two

best-effort connections: 6 fps over the first and 12 fps over the

second. In this example, the two best-effort connections have

different throughput requirements. The video frames are then

sent in the following order over the different connections:

1 2 3 4 5 6 7 8 9 . . .

bas be2 be1 be2 bas be2 be1 be2 bas . . .

bas: sent over basic connection (guaranteed or best-effort)

be1 : first best-effort connection

be2: second best-effort connection

If a receiver detects some congestion on any of these connec-

tions, it closes the least important connection (that is, be2 in the

example). If we have a multicast connection, this disconnect

does not necessarily imply a termination of the whole connec-

tion, but only of its last hop to the receiver. This means that

the other receivers can still receive the stream in full quality.

IPR2023-00332 Page 00005
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
	� Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

	� Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
	� With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

	� Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
	� Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

	� Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

