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Abstract. HeiTS, the Heidelberg Transport System, is a mul- 

timedia communication system for real-time delivery of dig- 

ital audio and video. HeiTS operates on top of guaranteed- 

performance networks that apply resource reservation tech- 

niques. To make HeiTS also work with networks for which 

no reservation scheme can be realized (for example, Ether- 

net or existing internetworks), we implement an extension to 

HeiTS which performs media scaling at the transport level: 

The media encoding is modified according to the bandwidth 

available in the underlying networks. Both transparent and 

nontransparent scaling methods are examined. HeiTS lends 

itself to implement transparent temporal and spatial scaling of 

media streams. At the HeiTS interface, functions are provided 

which report information on the available resource bandwidth 

to the application so that nontransparent scaling methods may 

be used, too. Both a continuous and discrete scaling solution 

for HeiTS are presented. The continuous solution uses feed- 

back messages to adjust the data flow. The discrete solution 

also exploits the multipoint network connection mechanism of 

HeiTS. Whereas the first method is more flexible, the second 

technique is better suited for multicast scenarios. The com- 

bination of resource reservation and media scaling seems to 

be particularly well suited to meet the varying demands of 

distributed multimedia applications. 

Key words: Media scaling- Multimedia networks - Transport 

systems 

1 Introduction 

The dispute of guaranteed vs nonguaranteed communication 

is an unresolved argument in the multimedia community (as 

shown, for example, by recurring discussions at the first three 

International Workshops on Network and Operating System 

Support for Digital Audio and Video from 1990 to 1992). It is 

a repetition of the classic end-to-end argument: One group says 

that all mechanisms to cope with network bottlenecks should 

be included in the application; the other group says that only 

the underlying system is able to prevent network overload. In 
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this paper, we propose a solution between the two extremes 

that offers both possibilities in an actual system. We favor 

this approach because different multimedia applications have 

different requirements on the network: there is virtually no 

way to recover from audio transmission errors so that the end 

user will not notice them. For everyday (consumer-quality) 

video, on the other hand, it is fairly easy to live with network 

flaws and even with slight delay variations. 

HeiTS, the Heidelberg Transport System [6, 7], facilitates 

the transmission of digital audio and video from a single origin 

to multiple targets. The transport and network layer protocols 

of HeiTS, HeiTP [3] and ST-II [15] allow the client to negotiate 

quality-of-service (QOS) parameters such as throughput and 

end-to-end delay for multimedia connections. In its original 

form, HeiTS depends on some type of bandwidth allocation 

mechanism in the underlying network to provide a transport 

connection with a guaranteed QOS. Some networks such as 

FDDI (with its synchronous mode) and ISDN implement this 

reservation. Other networks such as Token Ring can be aug- 

mented with bandwidth allocation schemes [t 1]. However, not 

all kinds of networks support the reservation of bandwidth: as 

an example, Ethernet provides no guaranteed service at all due 

to the potential collisions of packets 1 . Hence, to use audio and 

motion video in such an "unfriendly" environment calls for ad- 

ditional techniques. When reservation is not available, audio 

and motion video should be transported on a best-effort basis. 

From the start, HeiTS has supported some kind of best-effort 

QOS [19] which, however, is only a less strict version of guar- 

anteed QOS. In this best-effort approach, resource capacities 

are reserved, but at the same time statistically multiplexed, that 

is, the sum of the portions of bandwidth allocated to the indi- 

vidual sessions is allowed to exceed the total resource capacity. 

Best-effort service with no reservation requires a different ap- 

proach, which can work, for example, in a dynamic feedback 

fashion. Here, the system monitors how well it currently ac- 

1 For this reason, some "multimedia" solutions for the Ethernet 

use a 10BaseT hub and dedicate single Ethernet links to pairs 

of communication partners. This approach requires changes in 

the network infrastructure and still leaves unsolved the problem 

of conflicting uses of the dedicated links by multiple concurrent 

multimedia applications on the same machine. 
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complishes the audiovisual data transport from one end to the 

other, then correspondingly determines the amount of audio 

visual data it forwards. We refer to this technique as "media 

scaling." 

Media scaling in different forms has been suggested and 

used in previous systems. Fluent, for example, bases its multi- 

media networking technology on a proprietary scaling scheme 

[16]. Tokuda et al. have developed a dynamic QOS manage- 

ment service, which is intended to be used in conjunction with 

scaling techniques [14]. Clark et al. with their "predicted ser- 

vice" approach also assume in their networking architecture 

that some form of media scaling exists [2]. Our approach is 

special and different in that it shows how to combine resource 

reservation and media scaling methods. 

This paper discusses several implementation alternatives 

for media scaling in HeiTS. Section 2 surveys scaling meth- 

ods, concentrating on digital video. Section 3 introduces two 

different scaling methods for HeiTS. Section 4 specifies the 

changes to protocols and interfaces in HeiTS required to ac- 

commodate scaling. 

2 Scaling methods 

Before describing the details of the HeiTS approach, we give a 

brief survey of scaling techniques. We assume that the reader 

is familiar with typical encoding schemes for digital media. 

"Scaling" means to subsample a data stream and only present 

some fraction of its original content. In general, scaling can 

be done at either the source or the sink of a stream. Frame rate 

reduction, for example, is usually performed at the source, 

whereas hierarchical decoding is a typical scaling method ap- 

plied by the sink. Since in the context of this paper scaling 

is intended to reflect bandwidth constraints in the underlying 

resources, it is useful to scale a data stream before it enters 

a system bottleneck; otherwise it is likely to contribute to the 

overload of the bottleneck resource. Scaling at the source is 

usually the best solution here: there is no need for transmitting 

data in the first place if it will be thrown away somewhere in 

the system. Scaling methods used in a multimedia transport 

system can be classified as follows: 

- Transparent  scal ing methods can be applied independently 

from the upper protocol and application layers, that is, the 

transport system scales the media on its own. Transparent 

scaling is usually achieved by dropping some portions of 

the data stream. These portions - single frames or sub- 

streams - need to be identifiable by the transport system. 

- Non- transparent  scaling methods require an interaction of 

the transport system with the upper layers. In particular, 

this kind of scaling implies a modification of the media 

stream before it is presented to the transport layer. For the 

distribution of media captured in real time, nontransparent 

scaling typically requires modification of some parameters 

of the coding algorithm. Stored media can be scaled by re- 

coding a stream that was previously encoded in a different 

format. 

In a multimedia system, scaling can be applied to a couple 

of different media types. Examples are video, audio, pointer 

device control streams, sensory information (e.g., data gloves). 

For pointer device control streams or sensory information, 

scaling can in general be achieved by simply reducing the 

sampling rate. Bandwidth requirements of these streams are 

usually low compared to audio and video streams; therefore, 

performance gains achieved by applying scaling mechanisms 

are rather small. 

For audio, scaling is usually difficult because presenting 

only a fraction of the original data is easily noticed by the 

human listener. Dropping a channel of a stereo stream is an 

example. 

For video stream users are typically much less sensitive to 

quality reductions. Therefore and because of their high band- 

width requirements, video streams are predestined for scal- 

ing. The applicability of a specific scaling method depends 

strongly on the underlying compression technique, as will be 

explained in Sect. 2.2. There are several domains of a video 

signal to which scaling can be applied: 

- Temporal scaling reduces the resolution of the video 

stream in the time domain by decreasing the number of 

video frames transmitted within a time interval. Tempo- 

ral scaling is best suited for video streams in which in- 

dividual frames are self-contained and can be accessed 

independently, such as intrapictures or DC-coded pictures 

for MPEG-coded video streams [9]. Interframe compres- 

sion techniques are more difficult to handle because not all 

frames can be easily dropped. 

- Spatial scaling reduces the number of pixels of each im- 

age in a video stream. For spatial scaling, hierarchical ar- 

rangement is ideal because it has the advantage that the 

compressed video is immediately available in various res- 

olutions. Therefore, the video can be transferred over the 

network using different resolutions without applying a "de- 

code ---+ scale down ~ encode" operation on each picture 

before finally transmitting it over the network. 

- Frequency scaling reduces the number of DCT coefficients 

applied to the compression of an image. In a typical picture, 

the number of coefficients can be reduced significantly 

before a reduction of image quality becomes visible. 

- Ampl i tudinal  scaling reduces the color depths for each im- 

age pixel. This can be achieved by introducing a coarser 

quantization of the DCT coefficients, hence requiring a 

control of the scaling algorithm over the compression pro- 

cedure. 

- Color space scaling reduces the number of entries in the 

color space. One way to realize color space scaling is to 

switch from color to gray-scale presentation. 

Obviously, combinations of these scaling methods are possi- 

ble. 

Whether nontransparent scaling is possible depends strong- 

ly on the kind of data to be transmitted. For live video streams, 

it is easy to set all the coding parameters when an image is 

sampled at the source. For stored video, scaling may make a 

recoding of the stream necessary, especially if no hierarchical 

coding scheme is used. 
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The efficiency of a scaling algorithm strongly depends on 

the underlying compression technique. The format of the data 

stream produced by the coding algorithm determines which of 

the domains is appropriate for scaling. The following enumer- 

ation gives a short overview of the applicability of scaling to 

some state-of-the-art compression techniques. 

- Mot ion JPEG.  The distinguished feature of motion JPEG 

encoding (that is, the encoding of video as a sequence of 

JPEG flames [20]) is its robustness to transmission errors 

because of the independence of individual frames: a single 

error is not carried over from one frame to another. Obvi- 

ously, temporal scaling is suited best for this compression 

technique, as any frame can be left out without affecting its 

neighbors. Applying a hierarchical DCT-based compres- 

sion method on every picture [16] enables spatial scaling 

methods. However, few existing JPEG implementations 

realize this hierarchical mode. 

- M P E G .  Since MPEG [9] is a context-sensitive compres- 

sion method, temporal scaling is subject to certain con- 

straints. Every compressed video stream consists of a se- 

quence of intra-coded, predicted-coded, and bidirectional- 

ly-coded pictures. Temporal scaling of an MPEG coded 

video stream can be realized by dropping predicted and 

bidirectionatly coded pictures. Assuming an intra-picture 

is inserted every 9th frame, this leads to a scaled frame rate 

of approximately 3 frames per second [13]. 

The main improvement of MPEG-2 over the original 

MPEG scheme is the support for scalable media streams [3, 

5, 14]. It facilitates spatial and frequency scaling as well as 

temporal scaling methods. MPEG-2 uses a hierarchical com- 

pression technique which enables the compressed data stream 

to be demultiplexed into three substreams with different qual- 

ity. Scaling can be achieved by transmitting only some but not 

all of the substreams. This method is particularly useful for 

the discrete scaling approach described in Sect. 3.2. 

- DVI. Just IikeMPEG, DVI [10] uses acombination ofintra- 

and intercoded frames. Thus, temporal scaling is restricted 

in the same way, as described for MPEG-coded streams. 

- H.261 (px64). The H.261 standard includes an amplitudi- 

nal scaling method on the sender side [ 17]. The coarseness 

of the quantization of the DCT coefficients determines the 

color depth of each image pixel. In addition to this, the 

intra-frame coding scheme, which is similar to the intra- 

coded pictures of MPEG, permits the easy use of temporal 

scaling. 

3 Scaling in HeiTS 

HeiTS is a rate-controlled transport system. For every data 

stream passing through a HeiTS connection, the system is in- 

formed about its message rate by means of an associated QOS 

parameter set. At the transport level interface, this rate is given 

in terms of logical data units (for example, video frames) per 

time period. HeiTS can use this information for monitoring 

the arrival of the packets. The late arrival of a packet is an 

indication of some bottleneck in the system, in which case the 

target can inform the origin about the overload and cause it to 

scale down the stream. Once the overload situation has passed, 

the stream may be scaled up again. 

A scalable stream can be seen as composed of various sub- 

streams. For a spatially scaled stream this representation can, 

for example, consist of one substream with all odd/odd pix- 

els, one substream with even/even pixels, etc. As an alternative, 

one could use one substream for intra-coded frames and one or 

even several other streams for the remaining frames, which im- 

plies that there are streams of different degrees of importance. 

A splitting of MPEG video streams based on DCT coefficients 

has been described [12]. 

In the scaling implementation of HeiTS, individual sub- 

streams are mapped onto different connections, each with its 

own set of QOS parameters. The transmission quality can then 

be adjusted either with fine granularity within a connection 

(substream) or with coarse granularity by adding and remov- 

ing connections (substreams). We refer to these approaches as 

continuous and discrete scaling. These approaches, together 

with a discussion of the monitoring functions needed, are dis- 

cussed in the following subsections. 

3. I Moni toring 

The prerequisite for any scaling mechanism is a function that 

allows the system to detect network congestion. For HeiTS, 

this can be achieved by monitoring two QoS parameters: end- 

to-end delay and T S D U  loss rate. 

3.1.1 End-to-end delay 

In HeiTS, each logical data unit is represented by a transport 

service data unit (TSDU). Each TSDU has an expected ar- 

rival time, and a TSDU arriving later than expected indicates 

congestion. 

There are several possibilities to define the expected arrival 

time of a TSDU. One could, for example, define its value 

simply as the actual arrival time of the previous TSDU plus 

the period of the message stream (that is, the reciprocal value 

of its rate). Alternatively, the arrival time of the first TSDU of 

the stream (or any other earlier packet) rather than the arrival 

time of the previous packet could be used as an "anchor" for the 

calculation. This helps to avoid false indications of congestions 

in cases where the previous TSDU happened to arrive early and 

the current TSDU has a "normal" delay. 

HeiTS calculates the expected arrival time as the "logical 

arrival time" of the previous packet plus the stream period_ The 

logical arrival time is the arrival time observed when bursts 

are smoothed out, that is, when early packets are artificially 

delayed (for example, in a leaky bucket fashion) such that the 

specified stream rate is not exceeded (see [19] for details). 

3.1.2 TSDU loss rate 

A problem arising when only monitoring end-to-end delay is 

the definition of a threshold value from when on congestion is 

assumed. A better indicator to detect congestion is the TSDU 
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loss rate. In HeiTS, both parameters are monitored in paral- 

lel. To adjust the value of  the threshold value for the delay 

HeiTS continuously compares the mean-end-to-end delay to 

the corresponding value of  the mean loss rate. 

The lateness/loss of a single TSDU should not immedi- 

ately trigger the scaling down of  a stream, because the con- 

gestion may only be short. However, if a sequence of  packets is 

late (or some packets are missing because they were dropped 

due to buffer overflow), it can be assumed that the network 

is congested. In this case, the receiver initiates a scale-down 

operation. 

In HeiTS, the mean values of  loss-rate and end-to-end de- 

lay are calculated over a predefined measurement interval. The 

determination of  the interval length depends on the network 

characteristics and, therefore, has to be based on heuristics. 

3.2 Continuous scaling 

A major issue with the scaling procedure is the responsive- 

ness, that is, how rapidly the traffic adapts to the available 

bandwidth. We propose a scale-down scheme which consists 

of three stages. 

- The first reaction to a congestion is to throw away excess or 

late packets. This usually happens within the network dur- 

ing a buffer overflow or at the receiver station that detects 

the lateness of  a packet. An appropriate mechanism for 

lateness detection is included in HeiTP. Scaling by drop- 

ping packets is immediate and local, that is, it does not 

affect the sender, which continues to send at its full rate. 

Hence, scaling up can also be done very quickly by sim- 

ply stopping to discard packets. As stated before, it makes 

sense not immediately to trigger the sender to scale down 

the stream, since the congestion may only be brief. 

- When the number of late or lost packets exceeds a certain 

threshold, which can be defined heuristically, it is assumed 

that the congestion will last longer. In this case, the sender 

is triggered to throttle its traffic. As a first step, the sender 

reduces its sending ra te-poss ibly  down to zero. (Reducing 

the rate to zero makes no sense if all data are sent over only 

one connection. If  continuous scaling is applied to one of  

several substreams, this substream may temporarily carry 

no data at all and the receiver will still receive information.) 

The connection, however, remains intact, along with its 

resource reservations 2. This means that the resources can 

be temporarily used by other traffic, but the sender can 

scale the stream up immediately once the congestion is 

over. 

- If  the rate on a stream has been reduced to zero and the con- 

gestion is of  a longer duration, that is, if several attempts 

2 Note that not only guaranteed connections but also best-effort 

connections in HeiTS may have resources reserved for them. 

However, the reservation for best-effort connections does not account 

for the worst possible case. Thus, in some situations the amount of 

reserved resources may not suffice, which will lead to congestions. On 

the other hand, best-effort conntions may temporarily use resources 

reserved for other connections as long as these connections do not 

need them. 

of the sender to scale up the stream fail, the corresponding 

connection is terminated and all resources reserved for it 

are released. Since congestion typically occurs only at one 

bottleneck on the end-to-end connection (for example, on 

some subnetwork), the resources previously reserved on 

other subnetworks or nodes are made available for other 

connections. Scaling the stream up, however, requires the 

reestablishment of  the connection, which takes some time. 

This last step leads us directly to the discrete scaling approach 

which will be discussed in the next subsection. 

The monitoring of a stream provides the receiving sta- 

tion with hints at congestion situations. This monitoring can- 

not, however, yield any information about the termination of  a 

congestion. Assuming that the underlying network also does 

not give any explicit indication of  congestions, the decision 

whether to scale up a stream must be based on heuristics. The 

only practical heuristic known is to scale up the stream when 

a certain time span after the previous scale down has elapsed. 

A scale-up decision based on time spans can come either 

too early or too late. A scaling which is too late is not consid- 

ered harmful if it happens within the range of  a few seconds. If  

the transmission quality is temporarily reduced, a human user 

does not care much whether this lasts for 3 or 5 s. The effects 

of a scaling which is too early can be more severe. Scaling a 

stream up while the congestion situation is still present causes 

the receiver to trigger a new scale-down and, in the extreme 

case, an oscillation of  the system. This implies an increased 

overhead for both end-systems and network and, additionally, 

can extend the phase of  reduced quality longer than necessary. 

To avoid oscillation, the scaling procedure of  HeiTS scales 

up stepwise, as is done by other dynamic congestion control 

algorithms [1, 8]. After scaling down the stream, the sender 

transmits for a certain time span o r  a certain amount of  data 

(for example, n packets for a fixed value of n) at the reduced 

rate. If  after this period no scale-down message is obtained 

from the receiver, which means that, HeiTS could transfer the 

packets without any severe congestion, the sender increases its 

rate by some amount 3. This procedure is continued until the 

maximum throughput for this stream is reached or until the 

receiver requests to scale down the stream again. 

A simple example of  the protocol machine for continuous 

scaling is shown in Figs. 1 and 2. The source entity consists of 

three stages: In the OK state, the source transmits the media 

stream in best quality. If  a scale-down message is received 

from the sink, there is a transition to the DOWN state. The 

machine remains in the DOWN state until no further scale- 

down message is received for a certain time span t~p. In this 

case, the protocol machine goes to the UP state and tries to 

scale up the stream. If  the maximum quality is reached the 

protocol machine returns to the OK state. 

3 Note the difference between our scheme and the slow- 

start algorithm in TCP [8]. TCP's slow-start algorithm uses 

acknowledgements returned by the receiver to increase the traffic rate, 

whereas our scheme increases the rate in the absence of scale-down 
messages. 
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~ -  ' ~ IF feedback(loss_rate) 
IF quality=max_qual=~ " OK ) - -  THEN scaledown(- - quality) 

~ ~ ~  seLtimer(t up) 

/ IF feedback(loss_rate) . . .  \ 
[ THEN sealedown(- - quality) I 

 pi; 
IF (t up expired THEN scale_up(++quality) IF feedback(loss_rate) 

&& quality < max_qual) THEN scaledown(- - quality) 
THEN scale_up(++quality) set_timer(t up) 

Fig. 1, State diagram source 

ss_rate 
<= threshold 

IF loss rate �9 threshold 
THEN ~eedback(Ioss._.rate) 

) Iio~s-;atte-~ = 

IF Iossrate <= ~ ~ -  " ~ ' ~  J 
threshold ~ " ~  FEEDBACK )4"-~- 

I IF loss_rate > loss_rate_old 
U THEN ~k(l~ds~-r~e~ rate 

Fig.2. State diagram sink 

The protocol machine on the sink side consists of only two 

states: The OK state is left if the TSDU loss rate/delay exceeds 

the threshold value. During the transition to the FEEDBACK 

state, a scale-down message is sent to the source entity. The 

FEEDBACK state ensures that the sink entity waits at least for 

the time until the media stream is adjusted according to the 

last scale-down message, before a new scale-down message 

can be sent. 

3.3 Discrete scaling 

The advantages of the continuous scaling technique are that 

scaling can be done at fine granularity and that in principle only 

one connection is required per stream. There are, however, 

some problems with this approach because it does not take 

into account two special features of HeiTS. 

- HeiTS supports multicast. This implies that continuous 

scaling may lead to the following problem. If  a receiver 

triggers the sender to scale down the rate, all receivers from 

that point on get data at the lower rate, that is, a multimedia 

stream of worse quality. This approach is "all-worst" (or 

socialistic, to use a historical term), since the worst path in 

the multicast tree determines the quality for every receiver. 

- HeiTS supports different connection types. HeiTS has 

guaranteed connections for which all required resources 

are reserved in advance, and hence the requested through- 

put can be guaranteed. Additionally, HeiTS supports best- 

effort connections, in which no resources or only part of  

the resources required are reserved in advance; thus con- 

gestion is possible. 

The discrete scaling technique discussed in the following is 

based on splitting a multimedia stream into a set of  substreams, 

as described in the beginning of  Sect. 3. This technique can be 

used in a multicast environment and supports different rates 

for different receivers. It works in an "individual best" (capi- 

talistic) fashion. 

For each of the different substreams a separate network 

layer connection is established. ST-II, the network protocol of 

HeiTS, in principle treats each of  these substreams indepen- 

dently. However, the "stream group identifier" of  ST-II can be 

used to indicate that several network connections belong to a 

single transport connection. The system can then try to achieve 

roughly the same delay for each of these network connections 

that facilitates reassembly of the substreams as packets reach 

the target with approximately the same transit time. 

For establishing a set of substreams, an application speci- 

fies the percentage of data, which has to be transmitted to the 

receiver under any circumstance. If  fewer data are transferred, 

a receiver cannot decode any useful information. These data 

are transferred over a guaranteed connection, if possible. If  

no guaranteed connections can be supported (for example, be- 

cause there is an Ethernet in between), a best-effort connection 

is also used for this portion of  the stream. 

The rest of the stream is transferred over one or more best- 

effort connections. How many connections of this kind are 

required depends on the granularity of the data stream: Each 

part that provides a useful increase in quality is transferred 

over a separate best-effort connection. 

Example: A video data stream is sent with 24 frames per second 

(fps). The sender decides that 6 fps have to be transferred under 

any circumstances to the receivers. These data are sent over the 

basic connection. The remaining 18 fps might be sent over two 

best-effort connections: 6 fps over the first and 12 fps over the 

second. In this example, the two best-effort connections have 

different throughput requirements. The video frames are then 

sent in the following order over the different connections: 

1 2 3 4 5 6 7 8 9 . . .  

bas be2 be1 be2 bas be2 be1 be2 bas . . .  

bas: sent over basic connection (guaranteed or best-effort) 

be1 : first best-effort connection 

be2: second best-effort connection 

If a receiver detects some congestion on any of  these connec- 

tions, it closes the least important connection (that is, be2 in the 

example). If  we have a multicast connection, this disconnect 

does not necessarily imply a termination of  the whole connec- 

tion, but only of its last hop to the receiver. This means that 

the other receivers can still receive the stream in full quality. 
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