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1
 

INTRODUCTION
 

In this book, we present the basic principles that underlie the analysis and
design of digital communication systems. The subject of digital communica-
tions involves the transmission of information in digital form from a source
that generates the information to one or more destinations. Of particular
importance in the analysis and design of communication systems are the
characteristics of the physical channels through which the information is
transmitted. The characteristics of the channel generally affect the design of
the basic building blocks of the communication system. Below, we describe the
elements of a communication system and their functions.

1-1 ELEMENTS OF A DIGITAL COMMUNICATION
SYSTEM

Figure 1-1-1 illustrates the functional diagram and the basic elements of a
digital communication system. The source output may be either an analog
signal, such as audio or video signal, or a digital signal, such as the output of a
teletype machine, that is discrete in time and has a finite number of output
characters. In a digital communication system, the messages produced by the
source are converted into a sequence of binary digits. Ideally, we should like to
Tepresent the source output (message) by as few binary digits as possible. In
other words, we seek an efficient representation of the source output that
results in little or no redundancy. The process of efficiently converting the
output of either an analog or digital source into a sequence of binary digits is
called source encodingor daia compression.

The sequence of binary digits from the source encoder, which we call the

1
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Basic elements of a digital communication system.

information sequence, is passed to the channel encoder. The purpose of the
channel encoderis to introduce, in a controlled manner, some redundancy in
the binary information sequence that can be used at the receiver to overcome
the effects of noise and interference encountered in the transmission of the

signal through the channel. Thus, the added redundancy serves to increase the
reliability of the received data and improves the fidelity of the received signal.
In effect, redundancy in the information sequenceaids the receiver in decoding
the desired information sequence. For example, a (trivial) form of encoding of
the binary information sequence is simply to repeat each binary digit m times,
where m is some positive integer. More sophisticated (nontrivial) encoding
involves taking & information bits at a time and mapping each k-bit sequence
into a unique n-bit sequence, called a code word. The amount of redundancy
introduced by encoding the data in this manner is measured bythe ratio n/k.
The reciprocal of this ratio, namely k/x, is called the rate of the code or,
simply, the code rate.

The binary sequence at the output of the channel encoder is passed to the
digital modulator, which serves as the interface to the communications channel.
Since nearly all of the communication channels encountered in practice are
capable of transmitting electrical signals (waveforms), the primary purpose of
the digital modulator is to map the binary information sequence into signal
waveforms. To elaborate on this point, let us suppose that the coded
information sequence is to be transmitted one bit at a time at some uniform
rate R bits/s. The digital modulator may simply map the binary digit 0 into a
waveform Sso{f) and the binary digit 1 into a waveform s,(t). In this manner,
each bit from the channel encoderis transmitted separately. We call this binary
modulation. Alternatively, the modulator may transmit b coded information
bits at a time by using Af = 2° distinct waveforms s,(t), i=0,1,...,M~1, one
waveform for each of the 2? possible b-bit sequences. We call this M-ary
modulation (M>2). Note that a new b-bit sequence enters the modulator

11
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CHAPTER |: INTRODUCTION 3

every 6/R seconds. Hence, when the channel bit rate R is fixed, the amount of
time available to transmit one of the M waveforms corresponding to a b-bit
sequence is b times the time period in a system that uses binary modulation.

The communication channel is the physical medium thatis used to send the
signal from the transmitter to the receiver. In wireless transmission, the
channel may be the atmosphere (free space). On the other hand, telephone
channels usually employ a variety of physical media, including wire lines,
optical fiber cables, and wireless (microwave radio), Whatever the physical
medium used for transmission of the information, the essential feature is that

the transmitted signal is corrupted in a random mannerbya variety of possibile
mechanisms, such as additive thermal noise generated by electronic devices,
man-made noise, ¢.g., automobile ignition notse, and atmospheric noise, e.z.,
electrical lightning discharges during thunderstorms.

At the receiving end of a digital communications system, the digital
demodulator processes the channel-corrupted transmitted waveform and re-
duces the waveforms to a sequence of numbers that represent estimates of the
transmitted data symbols (binary or M-ary). This sequence of numbers is
passed to the channel decoder, which attempts to reconstruct the original
information sequence from knowledge of the code used by the channel
encoder and the redundancy contained in the received data.

A measure of how well the demodulator and decoder perform is the
frequency with which errors occur in the decoded sequence. Moreprecisely.
the average probability of a bit-error at the output of the decoder is a measure
of the performance of the demodulator-decoder combination. In general, the
probability of error is a function of the code characteristics, the types of
waveforms used to transmit the information over the channel, the transmitter
power,the characteristics of the channel, i.e., the amount of noise, the nature
of the interference, etc., and the method of demodulation and decoding. These
items and their effect on performance will be discussed in detail in subsequent
chapters.

As a final step, when an analog output is desired, the source decoder accepts
the output sequence from the channel decoder and, from knowledge of the
source encoding method used, attempts to reconstruct the original signal from
the source. Due to channel decoding errors and possible distortion introduced
by ihe source encoder and, perhaps, the source decoder, the signal at the
output of the source decoder is an approximation to the original source output.
The difference or some function of the difference between the original signal
and the reconstructedsignal is a measure of the distortion introduced by the
digital communication system.

1-2 COMMUNICATION CHANNELS AND THEIR
CHARACTERISTICS

As indicated in the preceding discussion, the communication channel provides
the connection between the transmitter and the receiver. The physical channel

12
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may be a pair of wires that carry the electrical signal, or an optical fiber that
carries the information on a modulated light beam, or an underwater ocean
channelin which the information is transmitted acoustically, or free space over
which the information-bearing signal is radiated by use of an antenna. Other
media that can be characterized as communication channels are data storage
media, such as magnetic tape, magnetic disks, and optical disks.

One commonprobiem in signal transmission through any channelis additive
noise. In general, additive noise is generated internally by components such as
resistors and solid-state devices used to implement the communication system.
This is sometimescailed thermal noise. Other sources of noise and interference

may arise externally to the system, such as interference from other users of the
channel. When such noise and interference occupy the same frequency band as
the desired signal, its effect can be minimized by proper design of the
transmitted signal and its demodulator at the receiver. Other types of signal
degradations that may be encountered in transmission over the channel are
signal attenuation, amplitude and phase distortion, and multipath distortion.

The effects of noise may be minimized by increasing the power in the
transmitted signal. However, equipment and other practical constraints limit
the power level in the transmitted signal. Another basic limitation is the
available channel bandwidth. A bandwidth constraint is usually due to the
physical limitations of the medium and the electronic components used to
implement the transmitter and the receiver. These two limitations result in
constraining the amount of data that can be transmitted reliably over any
communications channel as we shail observe in later chapters, Below, we
describe some of the important characteristics of several communication
channels.

Wireline Channels The telephone network makes extensive use of wire
lines for voice signal transmission, as well as data and video transmission.
Twisted-pair wire lines and coaxial cable are basically guided electromagnetic
channels that provide relatively modest bandwidths. Telephone wire generally
used to connect a customer to a central office has a bandwidth of several
hundred kilohertz (kHz). On the other hand, coaxial cable has a usable
bandwidth of several megahertz (MHz). Figure 1-2-1 illustrates the frequency
range of guided electromagnetic channels, which include waveguides and
optical fibers.

Signals transmitted through such channels are distored in both amplitude
and phase and further corrupted by additive noise. Twisted-pair wireline
channels are also prone to crosstalk interference from physically adjacent
channels, Because wireline channels carry a large percentage of our daily
communications around the country and the world, much research has been
performed on the characterization of their transmission properties and on
methods for mitigating the amplitude and phase distortion encountered in
signal transmission. In Chapter 9, we describe methods for designing optimum
transmitted signals and their demodulation; in Chapters 10 and 11, we

13
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consider the design of channel equalizers that compensate for amplitude and
phase distortion on these channels.

Fiber Optic Channels Optical fibers offer the communications system
designer a channel bandwidth that is several orders of magnitude larger than
coaxial cable channels. During the past decade, optical fiber cables have been
developed that have a relatively low signal attenuation, and highly reliable
photonic devices have been developed for signal generation and signal
detection. These technological advances have resulted in a rapid deployment of
optical fiber channels, both in domestic telecommunication systems as well as
for trans-Atlantic and trans-Pacific communications. With the large bandwidth
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available on fiber optic channels,it is possible for telephone companiesto offer
subscribers a wide array of telecommunication services, including voice, data,
facsimile, and video.

The transmitter or modulator in a fiber optic communication system is a
light source, either a light-emitting diode (LED) or a laser. Information is
transmitted by varying (modulating) the intensity of the light source with the
message signal, The light propagates through the fiber as a light wave and is
amplified periodically (in the case of digital transmission, it is detected and
regenerated by repeaters) along the transmission path to compensate for signal —
attenuation. At the receiver, the light intensity is detected by a photodiode,
whose output is an electrical signal that varies in direct proportion to the
powerofthe light impinging on the photodiode. Sources of noise in fiber optic
channels are photodiodes and electronic amplifiers.

It is envisioned that optical fiber channels will replace nearly all wireline
channelsin the telephone network by the turn of the century.

Wireless Electromagnetic Channels 1n wireless communication systems,
electromagnetic energy is coupled to the propagation medium by an antenna
which serves as the radiator, The physical size and the configuration of the
antenna depend primarily on the frequency of operation. To obtain efficient
radiation of electromagnetic energy, the antenna must be longer than 3; of the
wavelength. Consequently, a radio station transmitting in the AM frequency
band, say at f.= 1 MHz (corresponding to a wavelength of A =c/f. = 300m),
requires an antenna of at least 30m. Other important characteristics and
altributes of antennas for wireless transmission are described in Chapter5.

Figure 1-2-2 illustrates the various frequency bands of the electromagnetic
spectrum. The mode of propagation of electromagnetic waves in the atmo-
sphere and in free space may be subdivided into three categories, namely,
ground-wave propagation, sky-wave propagation, and line-of-sight (LOS)
propagation. In the VLF and audio frequency bands, where the wavelengths
exceed 10 km, the earth and the ionosphere act as a waveguide for electromag-
netic wave propagation. In these frequency ranges, communication signals
practically propagate around the globe. For this reason, these frequency bands
are primarily used to provide navigational aids from shore to ships around the
world.. The channel bandwidths available in these frequency bands are
relatively small (usually 1~10% of the center frequency), and hence the
information that is transmitted through these channels is ofrelatively slow
speed and generally confined to digital transmission. A dominant type ofnoise
at these frequencies is generated from thunderstormactivity around the globe,
especially in tropical regions. Interference results from the manyusers of these
frequency bands,

_Ground-waye propagation, as iHustrated in Fig. 1-2-3, is the dominant mode
of propagation for frequencies in the MF band (0.3-3MHz). This is the
frequency band used for AM broadcasting and maritime radio broadcasting. In
AMbroadcasting, the range with groundwave propagation of even the more

15
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FIGURE 1-2-4
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Illustration of sky-wave propagation.

powerful radio stations is limited to about 150km. Atmospheric noise,
man-made noise, and thermal noise from electronic components at the receiver
are dominant disturbances for signal transmission in the MF band.

Sky-wave propagation, as illustrated in Fig. 1-2-4 results from transmitted
signals being reflected (bent or refracted) fromthe ionosphere, which consists
of several layers of charged particles ranging in altitude from 50 to 400 km
above the surface of the earth. During the daytime hours, the heating of the
lower atmosphere by the sun causes the formation of the lower layers at
altitudes below 120km. These lower layers, especially the D-layer, serve to
absorb frequencies below 2 MHz, thus severely limiting sky-wave propagation
of AM radio broadcast. However, during the night-time hours, the electron
density in the lower layers of the ionosphere drops sharply and the frequency
absorption that occurs during the daytime is significantly reduced. As a
consequence, powerful AM radio broadcast stations can propagate over large
distances via sky wave over the F-layer of the ionosphere, which ranges from
140 to 400 km above the surface of the earth.

A frequently occurring problem with electromagnetic wave propagation via
sky wave in the HF frequency range is signal multipath. Signal multipath occurs
when the transmitted signal arrives at the receiver via multiple propagation
paths at different delays. It generally results in intersymbol interference in a
digital communication system. Moreover, the signal components arriving via
different propagation paths may add destructively, resulting in a phenomenon
called signal fading, which most people have experienced whenlistening to a
distant radio station at night when sky wave is the dominant propagation
mode. Additive noise at HF is a combination of atmospheric noise and thermal!
NOISE.

Sky-wave ionospheric propagation ceases to exist at frequencies above
approximately 30 MHz, which is the end of the HF band. However,it is
possibie to have ionospheric scatter propagation at frequencies in the range
30-60 MHz, resulting from signal scattering from the lower ionosphere.It is
also possible to communicate over distances of several hundred miles by use of
tropospheric scattering at frequencies in the range 40-300 MHz. Troposcatter
results from signal scattering due to particles in the atmosphereat altitudes of
10 miles or less. Generally, ionospheric scatter and tropospheric scatter
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involve jarge signal propagation losses and require a large amount of
transmitter power andrelatively large antennas.

Frequencies above 30 MHz propagate through the ionosphere with rela-
tively littlke loss and make satellite and extraterrestrial communications
possible. Hence, at frequencies in the VHF band and higher, the dominant
mode of electromagnetic propagation is line-of-sight (LOS) propagation. For
terrestrial communication systems, this means that the transmitter and receiver
antennas must be in direct LOS with relatively tittle or no obstruction. For this
reason,television stations transmilting in the WHF and UHF frequency bands
mount their antennas on high towers to achieve a broad coverage area.

In general, the coverage area for LOS propagation is limited by the
curvature of the earth. If the transmitting antenna is mounted at a height Am
above the surface of the earth, the distance to the radio horizon, assuming no
physical obstructions such as mountains, is approximately d = V15h km. For
example, a TV antenna mounted on a tower of 300m in height provides a
coverage of approximately 67 km. As another example, microwave radio relay
systems used extensively for telephone and video transmission at frequencies
above 1 GHz have aniennas mounted on tall towers or on the top of tall
buildings.

The dominantnoise limiting the performance of a communication system in
VHF and UHF frequency ranges is thermal noise generated in the receiver
front end and cosmic noise picked up by the antenna. At frequencies in the
SHF band above 10 GHz, atmospheric conditions play a major role in signal
propagation. For example, at 10GHz, the attenuation ranges from about
0,003 dB/km in light rain to about 0.3 dB/km in heavy rain. At 100 GHz, the
attenuation ranges from about 0.1 dB/km in light rain to about 6dB/km in
heavy rain. Hence, in this frequency range, heavy rain introduces extremely
high propagation losses that can result in service outages (total breakdown in
the communication system).

At frequencies above the EHF (extremely high frequency) band, we have
the infrared and visible light regions of the electromagnetic spectrum, which
can be used to provide LOS optical communication in free space. To date,
these frequency bands have been used in experimental communication
systems, such as satellite-to-satellite links.

Underwater Acoustic Channels Over the past few decades, ocean ex-
ploration activity has been steadily increasing. Coupled with this increase is the
need to transmit data, collected by sensors placed under water, to the surface
of the ocean. From there,it is possible to relay the data via a satellite to a data
collection center.

Electromagnetic waves do not propagate over long distances under water
except at extremely low frequencies. However, the transmission ofsignals at
such low frequencies is prohibitively expensive because of the large and
powerful transmitters required. The attenuation of electromagnetic waves in
water can be expressed in termsof the skin depth, whichis the distance a signal
is attenuated by I/e. For sea water, the skin depth 5 = 250/V/, where f is
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expressed in Hz and 4 is in m. For example, at 10 kHz, the skin depth is 2.5 m.
In contrast. acoustic signals propagate over distances of tens and even
hundreds of kilometers.

An underwater acoustic channel is characterized as a multipath channel due
to signal reflections from the surface and the bottom of the sea. Because of
wave motion, the signal multipath components undergo time-varying propaga-
tion delays that result in signal fading. In addition, there is frequency-
dependent attenuation, which is approximately proportional to the square of
the signal frequency. The sound velocity is nominally about 1500-m/s, but the
actual value will vary either above or below the nominal value depending on
the depth at which the signal propagates.

Ambient ocean acoustic noise is caused by shrimp, fish, and various
mammals. Near harbors. there is also man-made acoustic noise in addition to

the ambient noise. In spite of this hostile environment, it is possible to design
and implementefficient and highly reliable underwater acoustic communica-
tion systems for transmitting digital signals over large distances.

Storage Channels [nformation storage and retrieval systems constitute a
very significant part of data-handling activities on a daily basis. Magnetic tape,
including digital audio tape and video tape, magnetic disks used for storing
large amounts of computer data, optical disks used for computer data storage,
and compact disks are examples of data storage systems that can be
characterized as communication channels. The process of storing data on a
magnetic tape or a magnetic or optical disk is equivalent to transmitting a
signal over a telephone or a radio channel. The readback process and the
signal processing involved in storage systems to recover the stored information
are equivalent to the functions performed by a receiver in a telephone or radio
communication system to recover the transmitted information.

Additive noise generated by the electronic components and interference
from adjacent tracks is generally present in the readback signal of a storage
system, just as is the case in a telephone or a radio communication system.

The amountof data that can be stored is generally limited by the size of the
disk or tape and the density (number of bits stored per square inch) that can be.
achieved by fhe write/read electronic systems and heads. For example, a
packing density of 10” bits per square inch has been recently demonstrated in
an experimenta) magnetic disk storage system. (Current commercial magnetic
storage products achieve a much lower density.) The speed at which data can
be written on a disk or tape and the speed at which it can be read back are also
limited by the associated mechanical and electrical subsystems that constitute
an information storage system.

Channel coding and modulation are essential components ofa well-designed
digital magnetic or optical storage system. In the readback process, the signalis
demodulated and the added redundancy introduced by the channel encoderis
used to correct errors in the readback signal.
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1-3 MATHEMATICAL MODELS FOR
COMMUNICATION CHANNELS

FIGURE1-3-1

In the design of communication systems for transmitting information through
physical channels, we find it convenient to construct mathematical models that
reflect the most important characteristics of the transmission medium. Then,
the mathematical model for the channel is used in the design of the channel
encoder and modulator at the transmitter and the demodulator and channel

decoder at the receiver. Below, we provide a brief description of the
channel models that are frequently used to characterize many of the physical
channels that we encounterin practice.

The Additive Noise Channel The simplest mathematical model for a
communication channel is the additive noise channel,illustrated in Fig. 1-3-1.
In this model, the transmitted signal s(t) is corrupted by an additive random
noise process n(r). Physically, the additive noise process may arise from
electronic components and amplifiers at the receiver of the communication
system, or from interference encountered in transmission (as in the case of
radio signal transmission}.

If the noise is introduced primarily by electronic components and amplifiers
at the receiver, it may be characterized as thermal noise. This type of noise is
characterized statistically as a gaussian noise process. Hence, the resulting
mathematical model for the channel is usually called the additive gaussian
noise channel. Because this channel model applies to a broad class of physical
communication channels and because of its mathematical tractability, this is
the predominant channe} model used in our communication system analysis
and design. Channel attenuation is easily incorporated into the model. When
the signal undergoes attenuation in transmission through the channel. the
received signalis

r(f) = as(t) + n(n) (1-3-1)

where a is the attenuation factor.

The Linear Filter Channel Jn some physical channels, such as wireline
telephone channeis, filters are used to ensure that the transmitted signals do
not exceed specified bandwidth limitations and thus do notinterfere with one
another. Such channels are generally characterized mathematically as linear
filter channels with additive noise, as illustrated in Fig. t-3-2. Hence, if the

wy poe
. (+) rityssitt} + nin)

The additive noise channel.|ir]
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FIGURE 1-3-2 The linear filter channel with
additive noise.
 

channel inputis the signal s{f), the channel outputis the signal

r(t) =s() & c(t) + a(t)

= [ c(t)sGi — t) dt + a(t) (1-3-2)
where c(t) is the impulse response of the linear filter and * denotes
convolution.

The Linear Time-Variant Filter Channel Physical channels such as under-
water acoustic channels and ionospheric radio channels that result in time-
variant multipath propagation of the transmitted signal may be characterized
mathematically as time-variant linear filters. Such linear filters are charac-
terized by a time-variant channel impulse response c(t; ¢), where c(t:1) is the
response of the channel at time ¢ due to an impulse applied at time t — t. Thus,
Tt represents the “age” (elapsed-time) variable. The linear time-variant filter
channel withadditive noise is illustrated in Fig. 1-3-3. For an input signals(r),
the channel outputsignalis

r(t) = s(t) & c(t: t) + n(t)

= [ c(t t)s(t — t)dt+ nis) (1-3-3)
A good model for multipath signat propagation through physical channels,

such as the ionosphere (at frequencies below 30 MHz) and mobile cellular
radio channels, is a special case of (1-3-3) in which the time-variant impulse
response has the form

“

e(ti 1) = S) ag(8(4 - %) | (1-3-4)k=]

 
 

Linear
Time-variant
filter e(t: rh

wt)

 

 
FIGURE 1-3-3 Linear time-variant filter channel with additive noise. Vee een eeeeee
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wherethe {a,{t)} represents the possibly time-variant attenuation factor for the
L multipath propagation paths and {t,} are the corresponding time delays.If
(1-3-4) is substituted into (1-3-3), the received signal has the form

L

r{t)= > ax(s(t - t%) + n(t) (1-3-5)k=l

Hence, the received signal consists of £ multipath components, where each
componentis attenuated by {a,(+)} and delayed by {1}.

The three mathematical models described above adequately characterize the
great majority of the physical channels encountered in practice. These three
channel models are used in this text for the analysis and design of communica-
tion systems.

1-4 A HISTORICAL PERSPECTIVE IN THE
DEVELOPMENT OF DIGITAL COMMUNICATIONS

It is remarkable that the earliest form of electrical communication, namely
telegraphy, was a digital communication system. The electric telegraph was
developed by Samuel Morse and was demonstrated in 1837. Morse devised the
variable-length binary code in which letters of the English alphabet are
represented by a sequence of dots and dashes (code words). In this code, more
frequently occurring letters are represented by short code words, while letters
occurring less frequently are represented by longer code words. Thus, the
Morse code‘was the precursor of the variable-length source coding methods
described in Chapter3,

Nearly 40 years later, in 1875, Emile Baudot devised a code for telegraphy
in which every letter was encodedinto fixed-length binary code words of length
5. In the Baudot code, binary code elements are of equal length and designated
as mark and space.

Although Morse is responsible for the development of the first electrical
digital communication system (telegraphy), the beginnings of what we now
regard as modern digital communications stem from the work of Nyquist
(1924), who investigated the problem of determining the maximum signaling
rate that can be used over a telegraph channel of a given bandwidth without
intersymbol interference. He formulated a model of a telegraph system in
which a transmitted signal has the general form

s(t)= >. a,g(t — nT) (1-4-1)

whereg(t) represents a basic pulse shape and {a,} is the binary data sequence
of {+1} transmitted at a rate of 1/7 bits/s. Nyquist set out to determine the
optimum pulse shape that was bandlimited to W Hz and maximizedthebit rate
under the constraint that the pulse caused no intersymbolinterference at the

22



23

 

14) piGITAL COMMUNICATIONS

sampling time A/T, k =O, +1, +2,.... His studies led him to conclude that the
maximum pulse rate is 2W pulses/s. This rate is now called the Nyquist rate.
Moreover, this pulse rate can be achieved by using the pulses g(f)=
(sin 2nW1)/22Wi. This pulse shape allows recovery of the data without
intersymbol interference at the sampling instants. Nyquist’s result is equivalent
to a version of the sampling theo1em for bandlimited signals, which waslater
stated precisely by Shannon (1948). The sampling theorem states tha! a signal
of bandwidth W can be reconstructed irom samples taken at the Nyquist rate
of 2W samples/s using the interpolation formuia

sin [27W(¢ — 2 /2W)}ft

=2(iy) 2aW(—n/2W) (1-4-2)
In light of Nyquist's work, Hartley (1928) considered the issue of the

amount of data that can be transmitted reliably over a bandlimited channel
when multiple amplitude levels are used. Due to the presence of noise and
other interference, Hartley postulated that the receiver can reliably estimate .
the received signa] amplitude to some accuracy, say As. This investigation led
Hartley to conclude that there is a maximum data rate that can be
communicated reliably over a bandlimited channe) when the maximum signal
amplitude is iimited to A,,x (fixed power constraint) and the amplitude
resolution is A;.

Anothersignificant advance in the developmen‘ of communications was the
work of Wiener (1942), who considered the problem ofestimating a desired
signal waveform s(t) in the presence of additive noise n(t), based on
observation of the received signal r(t)=s(t)+n(t). This problem arises in
signal demodulation. Wiener determined the Jinear filter whose outputis the
best mean-square approximation to the desired signal s(t). The resulting filter
is called the optimum linear (Wiener) filter.

Hartley’s and Nyquist’s results on the maximum transmission rate of digital
information were precursors to the work of Shannon (1948a,b). who estabi-
ished the mathematical foundations for information transmission and derived
the fundamental limits for digital communication systems. In his pioneering
work, Shannon formulated the basic problem of reliable transmission of
information in statistical terms, using probabilistic models for information
sources and communication channels. Based on such a statistical formulation,
he adopted a logarithmic measure for the information content of a source. He
also demonstrated that the effect of a transmitter power constraint, a
bandwidth constraint, and additive noise can be associated with the channel
and incorporated into a single parameter, called the channel capacity. For
example, in the case of an additive white (spectrally flat) gaussian noise
interference, an ideal bandlimited channel of bandwidth W has a capacity C
given by

P\,.C=Wlog; (1 +Hx) bits/s (1-4-3)
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where P is the average transmitted power and N,is the power spectral density
of the additive noise. The significance of the channel capacity is as follows: If
the information rate R from the source is less than C (R<C) then it is
theoretically possible to achieve reliable (error-free) transmission through the
channel by appropriate coding. On the other hand, if R>C,_- reliable
transmission is not possible regardless of the amount of signal processing
performed at the transmitter and receiver. Thus, Shannon established basic
limits on communication of information, and gave birth to a new field that is
now called information theory.

Another important contribution to the field of digital communication is the
“work of Kotelnikov (1947), who provided a coherent analysis of the various
digital communication systems based on a geometrical approach. Kotelnikov's
approach was later expanded by Wozencraft and Jacobs (1965).

Following Shannon’s publications, came the classic work of Hamming
(1950) on error-detecting and error-correcting codes to combat the detrimental
effects of channel noise. Hamming’s work stimulated many researchers in the
years that followed, and a variety of new and powerful codes were discovered,
many of which are used today in the implementation of modern communica-
tion systems.

The increase in demand for data transmission during the last three to four
decades, coupled with the development of more sophisticated integrated
circuits, has led to the development of very efficient and more reliable digital
communication systems. In the course of these developments, Shannon's
original results and the generalization of his results on maximum transmission
limits over a channel and on bounds on the performance achieved have served
as benchmarks for any given communication system design. The theoretical
limits derived by Shannon and other researchers that contributed to the
developmentof information theory serve as an ultimate goal in the continuing
efforts to design and develop moreefficient digital communication systems.

There have been many new advancesin the area of digital communications
following the early work of Shannon, Kotelnikov, and Hamming. Someof the
most notable developments are the following:

* The development of new block codes by Muller (1954), Reed (1954),
Reed and Solomon (1960), Bose and Ray-Chaudhuri (1960a,b), and Goppa
(1970, 1971).

* The development of concatenated codes by Forney (1966).
* The development of computationally efficient decoding of BCH codes,

e.g., the Berlekamp—Masseyalgorithm (see Chien, 1964; Berlekamp, 1968).
* The development of convolutional codes and decoding algorithms by

Wozencraft and Reiffen (1961), Fano (1963), Zigangirov (1966), Jelinek
(1969), Forney (1970, 1972), and Viterbi (1967, 1971).

* The development of trellis-coded modulation by Ungerboeck (1982),
Forney et ai. (1984), Wei (1987), and others.

* The development of efficient source encodings algorithms for data
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compression, such as those devised by Ziv and Lempe! (1977, 1978) and Linde
et al. (1980).

1-5 OVERVIEW OF THE BOOK

Chapter 2 presents a brief review of the basic notions in the theory of
probability and random processes. Our primary objectives in this chapter are
to present results that are used throughout the book and to establish some
necessary notation.

In Chapter 3, we provide an introduction to source coding for discrete and
analog sources, Included in this chapter are (the Huffman coding algorithm and
the Lempel-Ziv algorithm for discrete sources, and scalar and vector quantiza-
tion techniques for analog sources.

Chapter 4 treats the characterization of communication signals and systems
from a mathematical viewpoint. Included in this chapter is a geometric
representation of signal waveforms used for digital communications.

Chapters 5-8 are focused on modulation/demodulation and channel

coding/decoding for the additive, white gaussian noise channel. The emphasis
is on optimum demodulation and decoding techniques and their performance.

The design of efficient modulators and demodulators for linear filter
channels with distortion is treated in Chapters 9-11. The focus is on signal
design and on channel equalization methods to compensate for the channel
distortion.

The final four chapters treat several more specialized topics. Chapter 12
treats multichannel and multicarrier communication systems. Chapter 13 is
focused on spread spectrum signals for digital communications and_their
performance characteristics. Chapter 14 provides a in-depth treatment of
communication through fading multipath channels. Included in this treatment
is a description of channel characterization, signal design and demodulation
techniques and their performance, and coding/decoding techniques and their
performance. The last chapter of the book is focused on multiuser communica-
tion systems and multiple access methods,

1-6 BIBLIOGRAPHICAL NOTES AND REFERENCES

There are several historical treatments regarding the developmentof radio and
telecommunications during the past century. These may be found in the books
by McMahon (1984), Millman (1984), and Ryder and Fink (1984). We have
already cited the classical works of Nyquist (1924), Hartley (1928), Kotelnikov
(1947), Shannon (1948), and Hamming (1950), as well as some of the more
important advances that have occurred in the field since 1950. The collected
papers by Shannon have been published by IEEE Press in a book edited by
Sloane and Wyner (1993). Other collected works published by the IEEE Press
that might be of interest to the reader are Key Papers in the Development of
Coding Theory, edited by Berlekamp (1974), and Key Papers in the
Deveiopment of Information Theory, edited by Slepian (1974).
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PROBABILITY AND
STOCHASTIC

PROCESSES

 

 

The theory of probability and stochastic processes is an essential mathematical
tool in the design of digital communication systems. This subject is important
in the statistical modeling of sources that generate the information, in the
digitization of the source output, in the characterization of the channel through
which the digital information is transmitted, in the design of the receiver that
processes the information-bearing signal from the channel, and in the
evaluation of the performance of the communication system. Our coverage of
this rich and interesting subject is brief and limited in scope. We present a
number of definitions and basic concepts in the theory of probability and
stochastic processes and we derive several results that are important in the
design of efficient digital communication systems and in the evaluation of their
performance.

Weanticipate that most readers have had someprior exposure to the theory
of probability and stochastic processes, so that our treatment serves primarily
as a review. Some readers, however, who have had no previous exposure may
find the presentation in this chapter extremely brief. These readers will benefit
from additional reading of engineering-level treatments of the subject found in
the texts by Davenport and Root (1958), Davenport (1970), Papoulis (1984),
Helstrom (1991), and Leon-Garcia (1994),

2-1 PROBABILITY

Let us consider an experiment, such as the rolling of a die, with a number of
possible outcomes, The sample space S of the experiment consists of the set of
all possible outcomes. In the case of the die,

S$ ={1, 2, 3, 4, 5, 6} (2-1-1)
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18 DIGITAL COMMUNICATIONS

where the integers 1,...,6 represent the numberof dots on the six faces of the
die. These six possible outcomes are the sample points of the experiment. An
event is a subset of S, and may consist of any number of sample points. For
example, the event A defined as

= {2, 4} (2-1-2)

consists of the outcomes 2 and 4. The complement of the event 4, denoted by
A, consists of all the sample points in S that are not in A and, hence,

A = {I, 3,5, 6} (2-1-3)

Two events are said to be mutally exclusive if they have no sample points in
common—thatis, if the occurrence of one event excludes the occurrence of the

other. 1 or example, if A is defined as in (2-1-2) and the event B is defined as

B={i, 3, 6} (2-1-4)

then A and B are mutually exclusive events. Similarly, A and A are mutually
exclusive events.

The union (sum) of two events is an event that consists of all the sample
points in the two events. For example, ‘if B is the event defined in (2-1-4) and C
is the event defined as

C= {1, 2, 3} (2-1-5)

then, the union of B and C, denoted by B UC,is the event

D=BUC

= {1, 2, 3, 6} (2-1-6)

Similarly, AU A =S, where S is the entire sample space or the certain event.
On the other hand, the intersection of two events is an event that consists of

the points that are commonto the two events. Thus, if E = B MC represents
the intersection of the events B and C, defined by (2-1-4) and (2-1-5),
respectively, then

E = {i.3}

When the events are mutually exclusive, the intersection is the null event,
denoted as @. For example, ANB =@, and ANA=€. The definitions of
union and intersection are extended to more than two events in a straightfor-
ward manner.

Associated with each event A containedin S is its probability P(A). In the
assignment of probabilities to events, we adopt an axiomatic viewpoint. That
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is, we postulate that the probability of the event A satisfies the condition
P(A) 20. We also postulate that the probability of the sample space (certain
event) is P(S)=1. The third postulate deals with the probability of mutually
exclusive events. Suppose that A,, i= 1,2,..., are a (possibly infinite) number
of events in the sample space S$ such that

A, NA; = i#j=1,2,...

Then the probability of the union of these mutually exclusive events satisfies
the condition

PU A) = PIA) (2-1-7)
For example, in a roll of a fair die, each possible outcome is assigned the

probability 4. The event A defined by (2-1-2) consists of two mutually exclusive
subevents or outcomes, and, hence, P(A) = $= 4. Also, the probability of the
event AUB, where A and B are the mutually exclusive events defined by
(2-1-2) and (2-1-4), respectively, is P(A) + P(B)=44+4=3

Joint Events and Joint Probabilities Instead of dealing with a single
experiment, let us perform two experiments and consider their outcomes, For
example, the two experiments may be two separate tosses of a single die or a
Single toss of two dice. In either case, the sample space S consists of the 36
two-tuples (i, /) where i,j=1,2,...,6. If the dice are fair, each point in the
sample spaceis assigned the probability 4. We may now considerjoint events.
such as {i is even, j = 3}, and determine the associated probabilities of such
events from knowledge of the probabilities of the sample points.

In general, if one experiment has the possible outcomes A;, i= 1,2,...,7,
and the second experimenthasthe possible outcomes B,, j= 1,2,...,m, then
the combined experiment has the possible joint outcomes (A,. B,), i=
1,2,...,”,j)=1,2,...,m. Associated with each joint outcome (A,, B,) is the
joint probability P(A,, B,) which satisfies the condition

O< P{A,;, B)) <1

Assuming that the outcomes B, j=1,2,...,m, are mutually exclusive, it
follows that

> P(A,, Bj) = P(A,) (2-1-8)
jet

Similarly, if the outcomes A,, i=1,2,..., 4, are mutually exclusive then

2 P(A,, B,) = P(B)) (2-1-9)
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Furthermore, if all the outcomes of the two experiments are mutually exclusive
then

Ma P(A,, B) = (2-1-10)
/

The generalization of the above treatment to more than two experiments is
straightforward.

Conditional Probabilities Consider a combined experiment in which a
joimt event occurs with probability P(A, 8). Suppose that the event B has
occurred and we wish to determine the probability of occurrence of the event
A. Thisis called the conditional probability of the event A given the occurrence
of the event B andis defined as

P(A, B)
P(A! B)= PUB) (2-1-1)

provided P(B)>0. In a similar manner, the probability of the event B
conditioned on the occurrence of the event A is defined as

P(A, B)
PIB\A)= ED (2-1-12)

provided P{A)>0. The relations in (2-f-11) and (2-1-12}) may also be
expressed as

P(A, B)= P(A | B)P(B) = P(B | A)P(A) (2-1-13)

The relations in (2-1-11), (2-1-12), and (2-1-13) also apply to a single
experimentin which A andB are any two events defined on the sample space S$
and P(A, 8) is interpreted as the probability of the 4.98. That ts, P(A, B)
denotes the simultaneous occurrence of A and B. For example, consider the
events B and C given by (2-]-4) and (2-1-5), respectively, for the single toss of
a die. The joint event consists of the sample points {1,3}. The conditional
probability of the event C given that B occurredis

P(C | B)= ii|OA = 4

In a single experiment, we observe that when two events A and B are
mutually exclusive, AM B = @ and, hence, P(A | B) =0. Also,if A is a subset
of B then AM B =A and, hence,

PPa |B) =F
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On the other hand,if B is a subset of A, we have AM B = B and, hence,

P(A B=Ent
An extremely useful relationship for conditional probabilities is Bayes’

theorem, which states that if A;, i=1,2,...,, are mutually exclusive events
such that

nm

U A,=8

and B is an arbitrary event with nonzero probability then

P(A;, B)
P(B)

__P(B| A)P(A,) v1.14)
3PB A)P(A)

P(A, | B)=

We use this formula in Chapter 5 to derive the structure of the optimum
receiver for a digital communication system in which the events A,, i=
1,2,...,m, represent the possible transmitted messages in a given time
interval, P(A;) represent their @ priori probabilities, B represents the received
signal, which consists of the transmitted message (one of the A,) corrupted by
noise, and P(A; | B) is the a posteriori probability of A, conditioned on having
observed the received signal B.

Statistical Independence The statistical independence of two or more
events is another important concept in probability theory. It usually arises
when we consider two or more experiments or repeated trials of a single
experiment. To explain this concept, we consider two events A and B and their
conditional probability P(A |B), which is the probability of occurrence of A
given that B has occurred. Suppose that the occurrence of A does not depend
on the occurrence of B. Thatis,

P(A | B) = P(A) (2-1-15)

Substitution of (2-1-15) into (2-1-13) yields the result

P(A, B) = P(A)P(B) (2-1-16)

That is, the joint probability of the events A and B factors into the product of
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the elementary or marginal probabilities P(A) and P(B). When the events A
and B satisfy the relation in (2-1-16), they are said to be statistically
independent.

For example. consider two successive experiments in tossing a die. Let A
represent the even-numbered sample points {2.4,6} in the first toss and B
represent the even-numbered possible outcomes {2, 4,6} in the second toss. In
a fair die, we assign the probabilities P(A) = 4 and P(B)= $. Now, the joint
probability of the joint event “even-numbered outcome on the first toss and
even-numbered outcome on the second toss” is just the probability of the nine
pairs of outcomes(i,j), § = 2, 4,62 / = 2, 4,6, which is }. Also,

P(A, B)= P(A\P(B)=

Thus, the events A and B arestatistically independent, Similarly, we may say
thatthe outcomes of the two experimentsare statistically independent.

The definition ofstatistical independence can be extended to three or more
events. Three statistically independent events A,, A:, and A, must satisfy the
following conditions:

P(A,, A>) = P(A) )P(A2)

P(A,, Ax) = P(A,)P(Ay)
(2-1-17)

P(A3, Ay) = P(A2)P(A,)

P(A), Ay, Ay) = P(A,)P(A2)P(A3)

In the general case, the events A;, i=1,?,..., 7, are Statistically independent
provided that the probabilities of the joint events taken 2,3,4,..., and n ata
time factor into the product of the probabilities of the individual events.

2-1-1 Random Variables, Probability Distributions, and
Probability Densities

Given an experiment having a sample space S and elements s < S, we define a
function X(s) whose domain is $ and whose rangeis a set of numbers on the
real line. The function X(s) is called a random variable. For example, if we flip
a coin the possible outcomes are head (H) and tail (T), so § contains two
points labeled H_ and T. Suppose we define a function X(s) such that

1 (s=HA)x) ={_, (s=T) (2-1-18)

Thus we have mapped the two possible outcomes of the coin-flipping
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experiment into the two points (+1) on the real line. Another experiment is
the toss of a die with possible outcomes S = {1, 2, 3, 4, 5, 6}. A random variable
defined on this sample space may be X(s) =s, in which case the outcomes of
the experiment are mappedinto the integers 1,...,6,°or, perhaps, X(s)=s°,
in which case the possible outcomes are mapped into the integers
{1,4. 9, 16, 25,36}. These are examples of discrete random variables.

Although we have used as examples experiments that haveafinite set of
possible outcomes, there are many physical systems (experiments) that
generate continuous outputs (outcomes). For example, the noise voltage
generated by an electronic amplifier has a continuous amplitude. Conse-
quently, the sample space S of voltage amplitudes v & § is continuous and so is
the mapping X(v) =v. In such a case, the random variablet X is said to be a
continuous random variable.

Given a random variable X, let us consider the event {¥ = x} where x is any
real numberin the interval (~x, 2). We write the probability of this event as
P(X <x) and denote it simply by F(x), ie.,

F(x)=P(X €x) (-e<x<x) (2-1-19)

The function F(x) is called the probability distribution function of the random
variable X. It is also called the cumulative distribution function (cdf). Since
F(x) is a probability, its range is limited to the interval 0< F(x) <1. Infact,
F({—x)=0 and F(«)=1. For example, the discrete random variable generated
by flipping a fair coin and defined by (2-1-18) has the cdf shown in Fig.
2-1-1{a). There are two discontinuities or jumps in F(x), one at x = —1 and
one at x= 1. Similarly, the random variable X(s)=s generated by tossing a
fair die has the cdf shownin Fig. 2-1-1(b). In this case F(x) has six jumps, one
at each of the points x =1,...,.6.

Examples of the cumulative distribution functions of two discrete random variables,
Fix)

Fix}  
*The random variable X(s) will be written simply as_X,
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Fix)

An example of the cumulative distribution function of a
continous random variable.

 
The cdf of a continuous random variable typically appears as shown in Fig.

2-1-2. This is a smooth, nondecreasing function of x. In some practical
preblems, we may also encounter a random variable of a mixed type. The cdf
of such a random variable is a smooth, nondecreasing function in certain parts
of the real line and contains jumps at a number of discrete values of x. An
example of such a cdfis illustrated in Fig. 2-1-3.

The derivative of the cdf F(x), denoted as p(x), is called the probability
density function (pdf) of the random variable X. Thus, we have

dF(x)
ae (-2<x<¢a) (2-1-20)P(x) =

or, equivalently

F)={ plu)du (-~<x<ax) (2-1-21)
Since F(x) is a nondecreasing function, it follows that p({x)20. When the
random variable is discrete or of a mixed type, the pdf contains impulses at the
points of discontinuity of F(x). In such cases, the discrete part of p(x) may be
expressed as

p(x) = > P(X = x;) 6% — x,) (2-1-22)
where x, /=1,2,...,n, are the possible discrete values of the random

An example of the cumulative distribution
function of a random variable of a mixed type.
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variable, P(X = x,), i=1,2,...,a, are the probabilities, and 6(x)} denotes an
impulse at x =0.

Often we are faced with the problem of determining the probability that a
random variable X falls in an interval (x,, x2), where x. >x,. To determine the
probability of this event, let us begin with the event {X =x,}. The event can
always be expressed as the union of two mutually exclusive events {¥ <x;} and
{x, <X <x}. Hence the probability of the event {X <x,} can be expressed as
the sum of the probabilities of the mutually exclusive events. Thus we have

P(X Sx.) = P(X <x,)+ P(x, <X <x3)

F(x2) = F(x) + P(x) <X S22)

or, equivalentiy, .
P(x, < X S x2) = Faz) — F(x)

=| * pix) dx (2-1-23)
In other words, the probability of the event {x, <X <x} is simply the area
under the pdf in the range x, < X S x5.

Muitiple Random Variables, Joint Probability Distributions, and Joint
Probability Densities In dealing with combined experiments or repeated
trials of a single experiment, we encounter multiple random variables and their
cdfs and pdfs. Multiple random variables are basically multidimensional
functions defined on a sample space of a combined experiment. Let us begin
with two random variables X, and X2, each of which may be continuous,
discrete, or mixed. The joint cumulative distribution function (joint cdf) for the
two random variables is defined as

F(x), x2) = P(X, =4x,, Xp = x2)

= | | P(4, Uz) dit; duz (2-1-24)
where p(x,, 2X2) is the joint probability density function (joint pdf). The latter .
may also be expressed in the form

2
a

P(x, x)= ax> F(x), x2) (2-1-25)
When the joint pdf p(x,,x2) is integrated over one of the variables, we

obtain the pdf of the other variable. Thatis,

[penxdde, =pe)
= (2-1-26)

[pts 2)dre= ple)
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The pdfs p(x,) and p(x.) obtained from integrating over one of the variables
are called marginal pdfs. Furthermore, if p(x,,x2) is integrated over both
variables, we obtain

i [. p(%1, 42) dx, dx. = F(~, )=1 (2-1-27)
We also note that F(—*x, —©) = F(~—%, x.) = F(x,, -%) =0.

The generalization of the above expressions to multidimensional random
variables is straightforward. Suppose that X;, ¢=1,2,...,", are random
variables with a joint cdf defined as

F(x), 2X2, wee Xa) = P(X, Sx, Xz X2,. ee Xn =x,)

-{ =Pple tase ty) died+ dey
(2-14-28)

where p(x,,X2,...,X,) is the joint pdf. By taking the partial derivatives of
F(x1,42,-..,X,) given by (2-1-28), we obtain

a”
P(X), X25... Xa)=F,22, Xn) (2-1-29)

OX, AX2 + * AX,

Any number of variables in p(x,, x2,..., x,) can be eliminated by integrating
over these variables. For example, integration over xand x; yields

[freeartss san) dia dey plese xarees%_) 21-30)
It also follows that F(x,, ©, ©, x4,...,*,) = F(x), 14, Xs, -.., X,) and

F(x, —«, ~~, Ma,..- ? Xn) = 0.

Conditional Probability Distribution Functions Let us consider two ran-
dom variables X, and X, with joint pdf p(x,, x2). Suppose that we wish to
determine the probability that the random variable X, <x, conditioned on

X37 Ax, < X2,S x,

where Ax, is some positive increment. That is, we wish to determine the
probability of the event (X, <x, |x,—Ax,<X,<x2). Using the relations
established earlier for the conditional probability of an event, the probability
of the event (X, <x, |x, — Ax, <X,<x,) can be expressed as the probability
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of the joint event (X, =x), x. — Ax2< X2<x2) divided by the probability of
the event (x, — Ax, < X,<=x,). Thus

SaSiar P(U;, U2) du; duz
P(X, Sx - Ax, <X,<¢x,)=oOooSe*(Sa [a> Aa Xe Sag) TEPls) dt

_ F(%s, %2) — FQ, 42 — Ax2) 3-1-3]F(x,) ~ F(a, ~ Ax) (213)
Assuming that the pdfs p(x,, x2) and p(x.) are continuous functions over the
interval (x, ~ Axz, x2), we may divide both numerator and denominator in
(2-1-31) by Ax, and take the limit as Ax.— 0. Thus we obtain

OF(x1, X2)/x,

OF(x2)/dx,

- alfa. fe. p(t, uz) du,du,]/dx,
O[f< p(u2) dua] /ax,

_ S¥2 p(y, X2) du,
P(x2)

P(X, =x, | X, = X2) = F(x, | x2) =

(2-1-32)

which is the conditional cdf of the random variable X, given the random
variable Xz. We observe that F(-«|x.)=0 and F(~|x2)=1. By
differentiating (2-1-32} with respect to x,, we obtain the corresponding pdf
p(x, | x2) in the form

P(x1, X2)
2-1-33plxz) 2-139)Psy | x2) =

Altematively, we may express the joint pdf p(x,,x:) in terms of the
conditional pdfs, p(x, | x2) or p(x, | x,), as

P(X1, X2) = p(X, | x2)p(22)

= p(x2 | x1)p(21) (2-1-34)

The extension of the relations given above to multidimensional random
variables is also easily accomplished. Beginning with the joint pdf of the
random variables X;, i= 1,2,...,m, we may write

P(%y5 X20) - 6+) Xn) = PO, Xa... Xe | Keats MnPeat 0 Xn) (2-1-35)

where & is any integer in the range 1<k<n. The joint conditional cdf
corresponding to the pdf p(x,, %2,..., X« | Xeri--- Xn) is

F(Xp, X2, 00-5 Xe | Xess Xn)

Fon SPM, MayMeZaye Xn) dy dita =dy2-1-36P(Xe+1- “a Xn) (
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This conditional cdf satisfies the properties previously established for these
functions. such as

F(®,X3,...,%% | Xe Mn) = FO Xa. 6 te | Kee Mn)
F(~%,%2,..., Xe] Kear ++ Xn) =0

Statistically Independent Random Variables. We have already defined
statistical independence of two or more events of a sample space S. The
concept of statistical independence can be extended to random variables
defined on a sample space generated by a combined experiment or by repeated
trials of a single experiment. If the experiments result in mutually exclusive
outcomes, the probability of an outcome in one experimentis independent of
an outcome in any other experiment. That is, the joint probability of the
outcomes factors into a product of the probabilities corresponding to each
outcome. Consequently, the random variables corresponding to the outcomes
in these experiments are independent in the sense that their joint pdf factors
into a product of marginal pdfs. Hence the multidimensional random variables
are statistically independentif and only if

F(x\,X2,-.. 5 Xn) = F(x) )F(x2) +++ F(tn) (2-1-37)
or, alternatively,

P(X;, 22, noe » Xn) = p(x, }p(%2) u* ‘p,) (2-1-38)

2-1-2 Functions of Random Variables

A problem that arises frequently in practical applications of probability is the
following. Given a random variable X, which is characterized by its pdf p(x),
determine the pdf of the random variable Y = g(X), where g(X) is some given
function of X. When the mapping g from X to Y is one-to-one, the
determination of p(y) is relatively straightforward. However, when the
mappingis not one-to-one, as is the case, for example, when Y = X?, we must
be very careful in our derivation of p(y).

Example 2-1-1

Consider the random variable Y defined as

Y=aX +b (2-1-39)

where a and b are constants. We assumethat a > 0. If a <0, the approachis
similar {see Problem 2-3). We note that this mapping, illustrated in Fig.
2-1-4(a) is linear and monotonic. Let Fy(x) and F,(y) denote the cdfs for X
and Y, respectively.t Then

Fy) = PLY <y) = P(ax +b <y)= P(x =<")
repx(x) dr = F,(—*) (2-1-40)

+ To avoid confusion in changing variables, subscripts are used in the respective pdfs and cdfs.
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Py (x)

Yz=aX+b,a>0 I

 
Py)

 
FIGURE2-1-4 A linear transformation of a random variable X and an example of the corresponding pdfs of X

and Y.

By differentiating (2-1-40) with respect to y, we obtain the relationship
between the respective pdfs. It is

 -1,,(%-"pry)=_px(—) (2-41-41)
Thus (2-£-40) and (2-1-41) specify the cdf and pdf of the random variable Y
in terms of the cdf and pdf of the random variable X for the linear
transformation in (2-1-39). To illustrate this mapping for a specific pdf
Px(x), consider the one shown in Fig. 2-1-4(b). The pdf py(y) that results
from the mapping in (2-1-39) is shown in Fig, 2-1-4(c).

Example 2-1-2

Consider the random variable Y defined as

Y=axX*+b, a>0O (2-1-42)

As in Example 2-1-1, the mapping between X andYis one-to-one. Hence

Fy) = P(Y <y) = P(aX? +b <y)

afr(4)"-nf2)"] eea
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A quadratic transformation of the random variable X. , a
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Yeax? +b

Differentiation of (2-1-43) with respect to y yields the desired relationship
between the two pdfs as

mM=saoTpeel)| (2-1-48)

Example 2-1-3

The random variable Y is defined as

Y=aX*+b, a>O (2-1-45)

In contrast to Examples 2-1-1 and 2-1-2, the mapping between X and Y,
illustrated in Fig. 2-1-5, is not one-to-one. To determine the cdf of Y, we
observe that

Fy(y)= P(Y <y) = P(aX? + b <y)

= P(ixi< 2”)

Fy(y) = Fe{=) -Fy(- 2) (2-1-46)
Differentiating (2-1-46) with respect to y, we obtain the pdf of Y in termsof
the pdf of X in the form

py(yy = PAI= b)/a] | px[-VOy = 6a] (2-1-47)
2aV[(y- ba] 2aVi(y — b)/a]

in Example 2-1-3, we observe that the equation g(x) = ax? + 6 = y has two

Hence

real solutions,

n-,22
a

yb
d

= 7
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and that p,(y) consists of two terms corresponding to these two solutions.
That is,

ply) = Pxlxi = VQ — b)/a) , px= —V(y ~ 6)/a]
Po (gb = Vy bya ig’ ba = -Vy — ball

where g’(x) denotesthefirst derivative of g(x).
In the general case, suppose that x,,x2,...,x., are the real roots of the

equation g(x)=y. Then the pdf of the random variable Y =g(X) may be
expressed as

(2-1-48)

pry)=>oe (2-1-49)
where the roots x,, i=1,2,...,n, are functionsofy.

Now let us consider functions of multidimensional random variables.

Suppose that X,, §=1,2,...,a, are random variables with joint pdf
Px(X1,%2,...,%,), and let ¥;, i=1,2,...,”, be another set of n random
variables related to the X, by the functions

¥,=g(X),X2,...,X,),  2=1,2,...,0 (2-1-50)

We assume that the g(X,,X2,...,X,), i=1,2,...,, are single-valued
functions with continuouspartial derivatives and invertible. By “invertible” we
mean that the X;, i=1,2,...,n, can be expressed as functions of Y,,
i=1,2,...,m, in the form

X,= 8, '(¥1, ¥2,.6-; Y,,) i=l, 2,...,8 (2-1-51)

where the inverse functions are also assumed to be single-valued with
continuouspartial derivatives. The problem is to determinethe joint pdf of Y,,
i=1,2,...,m, denoted by py(yi,y2,-..,¥.), given the joint pdf

: Px(%1, X2,-. " » Xp).
To determinethe desired relation, let Ry be the region in the n-dimensional

space of the random variables X;, i=1,2,...,n, and let Ry be the
(one-to-one) mapping of Ry defined by the functions Y, = ¢,(X,, X2,..., X,)}.
Clearly,

ff ue [von. Y2re-0> Yn) ayy dy, -~- dy,
Ry

= [fo festa... nn) GX, dx,---+ dx, (2-1-52)
Ry

By making a changein variables in the multiple integral on the right-handside
of (2-1-52) with the substitution

KH = Bi (Vi, yas, yJ=e', §=1,2,...,n
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we obtain

{] sre [rv + Vaaeeee Vn) dy, dv, a ay,
Ry

~ [I a [ pete, = #1 - Va £5 ewesty = 8a ‘) Wl dy, dvi: dy,
_ (2-1-53)

where / denotes the jacobian of the transformation. defined by the determinant

 

agi! aga" 98n

y=| : : : 2-1-54)

agy'—agz! a8
AY, Oy,

Consequently, the desired relation for the joint pdf of the Y,, i=1,2,....#, is

Py(vie Wares Yn) = Plt, =B8 , V2 = 8: Ne Ny =2n°) WI (2-1-35)

Example 2-1-4

An important functional relation between two sets of n-dimensional random
variables that frequently arises in practice is the linear transformation

¥,=>0a,X, §=1,2,....0 (2-1-56)
y=

where the {@,,} are constants. It is convenient to employ the matrix form for
the transformation, whichis

Y= AX (2-1-57)

where X and Y are »-dimensional vectors and A is an 7 Xn matrix. We

assume that A is nonsingular. Then A is invertible and, hence,

X=A'Y (2-1-58)
Equivalentiy, we have

X= >b,¥, b=2.00.0 (2-1-59)
get

where {b,} are the elements of the inverse matrix A’ '. The jacobian ofthis
transformation is J = 1/det A. Hence

Py(Vir Yass += ¥n)

a n a 1= x(11=8byyexs=Sby yes ote=3by)px(x: 2 Udi ¥2 2 aj x, 2 i Yj idet A|
(2-1-60)
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2-1-3 Statistical Averages of Random Variables

Averages play an important role in the characterization of the outcomes of
experiments and the random variables defined on the sample space of the
experiments. Of particularinterest are the first and second momentsof a single
random variable and the joint moments, such as the correlation and covari-
ance, between any pair of random variables in a multidimensional set of
random variables. Also of great importanceare the characteristic function for a
single random variable and the joint characteristic function for a multidimen-
sionalset of random variables. This section is devoted to the definition of these
importantstatistical averages.

First we consider a single random variable X characterized by its pdf p(x).
The mean or expected value of X is defined as

E(X) =m, = [. xp(x) dx (2-1-61)
where E( ) denotes expectation(statistical averaging). This is the first moment
of the random variable X. In general, the nth momentis defined as

E(x") = | x"p(x) dx (2-1-62)
Now, suppose that we define a random variable Y = g(X), where g(X) is

somearbitrary function of the random variable X. The expected value ofYis

E(Y)= Ete) = | e(x)p (a) ae (2-1-63)
In particular, if ¥ = (X — m,)" where m, is the mean value of X, then

E(Y) = E((X —m,)"]= (x —m,)"p(x) dx (2-1-64)

This expected value is called the nth central moment of the random variable X,
because it is a moment taken relative to the mean. When n =2, the central
momentis called the variance of the random variable and denoted as or.
Thatis,

@ =[ (x =m,p(x) dx (2-1-65)
This parameter provides a measureof the dispersion of the random variable X.
By expanding the term (x — m,)’ in the integral of (2-1-65) and noting that the
expected value of a constant is equal to the constant, we obtain the expression
that relates the variance to the first and second moments, namely,

oa; = E(X’)— [E(X))
= E(X’)-m (2-1-66)
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In the case of two random variables, X, and X;, with joint pdf p(x,, x2), we
define the joint moment as

“Bata = | [ stetpin) an drs (2-1-67)
and the joint central moment as

E[(X, ~ my) (X, —mz)"]

~ [ [ (x1 ~ mi)(2 — W2)"P(a1, x2) dx, dey (2-1-68)
where m, = E(X;). Of particular importance to us are the joint moment and
joint central moment corresponding to k=n=1. These joint moments are
called the cofrelation and the covariance of the random variables X; and X2,
respectively.

In considering multidimensional random variables, we can define joint
moments of any order. However, the moments that are most useful in practical
‘applications are the correlations and covariances between pairs of random
variables. To elaborate, suppose that X,, i= 1,2,...,#, are random variables
with joint pdf p(x,, x2,...,x,). Let p(x;, x;) be the joint pdf of the random
variables X; and X;. Then the correlation between X; and X,is given by the
joint moment

and the covariance of X; and X,is

My = E[(X, — m)(X, - m,)}

~ [.[ (2%; — 1m); — my )p (%,, x)) dx, dx;

= [ | X;x;p(%;, x;) dx; dx; — mim,
= E(X,X,) - mim, (2-1-70)

The Xn matrix with elements y, is called the covariance matrix of the
random variables X;, i= 1,2,...,. We shall encounter the covariance matrix
in our discussion of jointly gaussian random variables in Section 2-1-4.

Two random variables are said to be uncorrelated if E(X,X;) =
E(X,)E(X;) = mim,. In that case, the covariance y,,=0. We note that when X,
and X; are statistically independent, they are also uncorrelated. However,if X,
and X; are uncorrelated, they are not necessarily statistically independent.
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Two random variablesare said to be orthogonal if E(X,X;)=0. We note
that this condition holds when X; and X; are uncorrelated and either one or
both of the random variables have zero mean.

Characteristic Functions The characteristic function of a random variable
X is defined as the statistical average

Ele) = Wj) = [pax 21-71)
wherethe variable v is real and j = V—1. Wenotethat (ju) may be described
as the Fourier transformt of the pdf p(x). Hence the inverse Fourier trans-
form is

P(x) = =|_eline ™* dy (2-1-72)
One useful property of the characteristic function is its relation to the

moments of the random variable. We note that the first derivative of (2-1-71)
with respect to v yields

dp(jv) _. |jxre) we p(x) de

By evaluating the derivative at vy = 0, we obtain the first moment (mean)

‘al

E(X) =m, = jE)  (2-1-73)vel

The differentiation process can be repeated, so that the ath derivative of wCjv)
evaluated at v =(yields the nth moment

my nndOGE(x") = (jyTE) (2-1-74)v=t 
Thus the moments of a random variable can be determined from the
characteristic function. On the other hand, suppose that the characteristic
function can be expanded in a Taylorseries about the point v = 0. Thatis,

= a” * aT

We) = &eee (2-1-75)
Usingthe relation in (2-1-74) to eliminate the derivative in (2-1-75), we obtain

t Usually the Founer transform of a function g(u) is defined as G(v) = {*, a(uje~"" du, which
differs from (2-1-71) by the negativesign in the exponential. This is a trivial difference, however, so
we cal! the integra) in (2-1-71) a Fourier transform.
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an expression for the characteristic function in terms of its moments in the
form

; = 7 ny"W(jv) = E(X ee (2-1-76)w=) .

The characteristic function provides a simple method for determining the
pdf of a sum of statistically independent random variables. To illustrate this
point, Jet X,, i=1,2,...,n, be a set of statistically independent random
variables andlet

Y= S x, (2-1-77)i-t

The problem is to determine the pdf of Y. We shall determine the pdf of ¥ by
first finding its characteristic function and then computing the inverse Fourier
transform. Thus ’

wrjv) = Efe”)

- elon.)

= efflie)]
- | - | ( e”pai x2, voy My) AX, dxy- + dx,, (2-1-78)-= ax Eh

Since the random variables are statistically independent, p(x,,x>,...,24,) =
P(x))p(Q2) + ++ p(x,), and, hence, the nth-orderintegral in (2-1-78) reduces to a
product of n single integrals, each corresponding to the characteristic function
of one of the X¥,. Hence,

hy(ju)= [ hy(jv) (2-1-79)
If, in addition to their statistical independence, the X, are identically
distributed then all the ¥,(jv) are identical. Consequently,

dy(ie) = [hx Cje)}" (2-1-80)

Finally, the pdf of Y is determined from the inverse Fourier transform of
by(jv), given by (2-1-72). .

Since the characteristic function of the sum of » statistically independent
random variables is equal to the product of the characteristic functions of the
individual random variables X,, i =1, 2,... , n, it follows that, in the transform
domain, the pdf of Y is the n-fold convolution of the pdfs of the X,. Usually
the n-fold convolution is more difficult to perform than the characteristic
function method described above in determining the pdf of Y.

When working with n-dimensional random variables, it is appropriate to
define and n-dimensional Fourier transform of the joint pdf. In particular,if
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X,, i=1,2,...,m, are random variables with pdf p(x, x2,...,%,), the
n-dimensional characteristic function is defined as

w(jur, fay. + + FVnd

= E|exp (i > vx)
=f ore [ exp (i > vex: }p(er, x2 ois) Xq_) de, dxz- ++ dx, (2-1-81)

Of special interest is the two-dimensional characteristic function

(jv), jv2) = [ [ elit(x1, x2) dx, dxy (2-1-82)
Weobserve that the partial derivatives of ¢(v,, jvz) with respect to v, and v2
can be used to generate the joint moments. For example,it is easy to show that

apjv, ,jv2)
E(X\X2)= ~~ av,1  (2-1-83)

vyHE=0

Higher-order moments are generated in a straightforward manner.

2-1-4 Some Useful Probability Distributions

FIGURE 2-1-6

In subsequent chapters, we shall enccunter several! different types of random
variables. In this section we list these frequently encountered random
variables, their pdfs, their cdfs, and their moments. We begin with the binomial
distribution, which is the distribution of a discrete random variable, and then

we present the distributions of several continuous random variables.

Binomial Distribution Let X be a discrete random variable that has two

possible values, say X =1 ot X =0, with probabilities p and 1-p,
respectively. The pdf of X is shown in Fig. 2-1-6. Now, suppose that

The probability distribution function of X. 0 1
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distributed random variables with the pdf shown in Fig. 2-1-6. What is the
probability distribution function of Y?

To answer this question, we observe that the range of Y is the set of
integers from 0 to n. The probability that Y = 0 is simply the probability that
all the X; = 0. Since the X; are statistically independent,

P(Y = 0)=(1 -p)"

The probability that ¥ = 1 is simply the probability that one X, = 1 and the rest
of the X, = 0. Since this event can occur in 7» different ways,

P(Y =1)=np(1~ py"!

To generalize, the probability that Y = & is the probability that & of the X;, are
equal to one and nm — k are equal to zero. Since there are

(i) “kk! = k)! (2-1-84)
different combinations that result in the event {Y = &}, it follows that

a

p(y =k)=(7|ppy (2:1-85)
where (9) is the binomial coefficient. Consequently, the pdf of Y may be
expressed as

p(y) = > POY =k) Bly —K)
. n k nH= >(era - py"* ay ~k) (21-86)

Thecdf of Y is

F(y) = P(¥ <y)
{yl

=>(ipa py (2.1.87)
where [y] denotes the largest integer m such that m <y. The cdf in (2-1-87)
characterizes a binomially distributed random variable.

The first two moments of ¥ are

E(Y)=np

E(Y?) =np(1 - p) + n?p? (2-1-88)
a” = np(1~ p)

and the characteristic function is

(jv) = (1 — p + pe”)" (2-1-89)
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Fin)
pix)

 
(6)

The pdf and cdf of a uniformly distributed random variable.

Uniform Distribution The pdf and cdf of a uniformly distributed random
variable X are shown in Fig. 2-1-7. The first two moments of X are

E(X)= {a +b)

E(X’) = Y{a? + 6? + ab) (2-1-90)

07 =b(a— by

and the characteristic function is

wh apm
eth —

u(y) =Fjulb~a) (2-1-91)

Gaussian (Normal) Distribution The pdf of a gaussian or normally
distributed random variable is

 1

p(x) = Tz~e vanPde? (2-1-92)

where m, is the mean and o° is the variance of the random variable. The cdfis

F(x) = [ p(u) du
 

 

1 * 2 z= 5 | etom ior duV Tos ix

l ? dx mn ue'ler .
=> — edt

2VaJ .

=}+fert(~=") : a.2 2 Ve (2 i 93)
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Fix)

 
FIGURE 2-1-8=The pdf and cdf of a gaussian-distributed random variable.

where erf (x) denotes the error function, defined as

erf (x) = ze {ve? dt (2-1-94)
The pdf and cdf are illustrated in Fig. 2-1-8.

The cdf F(x) may also be expressed in terms of the complementary error
function. That is,

x —m,.

Fe)
 

F(x)=1- Lerfe(
where

2 2erfe (x)=|e at
=1—-erf(x) (2-1-95)

We note that erf (—x) = —erf (x), erfe(—x) =2~—erfe (x), erf (0) = erfc (~) =
0, and erf(%) = erfe (0) = 1. For x >m,, the complementary error function is
proportional to the area underthetail of the gaussian pdf. For large values of
x, the complementary error function erfc(x) may be approximated by the
asymptotic series

en 1 1:3 1:3°5
erfe (x) =£ val! site eet)

where the approximation error is less than the last term used.
The function that is frequently used for the area under the tail of the

gaussian pdf is denoted by Q(x) and defined as

(2-1-96)

i * 2O(x) = Fl ed, x20 (2-1-97)
By comparing (2-1-95) with (2-1-97), we find

x

O(x) = erfc (35) (2-1-98)
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The characteristic function of a gaussian random variable with mean m, and
varianceis

 sO | —

it ju) = | |or e -{¥ mae’ dx
= enn noes (2.1.99)

The central moments of a gat'ssian random variable are

1-3---(k~1)o* (evenk)
(2-1-100)

0 (odd k)
E(x m)']= a, =|

and the ordinary moments may be expressed in terms of the central moments
as

k

Ex) => (Ome. (2-1-101)
The sum of n statistically independent gaussian random variables is also a

gaussian random variable. To demonstrate this point, fet

Y= x, (2-1-102)i=l

where the X;,, i=1,2,...,m, are statistically independent gaussian random
variables with means m, and variances of. Using the result in (2-1-79), we find
that the characteristic function of Y is

by(iv) = Ux. GP)

A :

= Il] eum uret!2
f=]

= eum, ~v2 (2-1-103)
where

3
il Ms 3

(2-1-104)
“te

Ik 4 sheoy o

Therefore, Y is gaussian-distributed with mean m, and variance 0%.

Chi-Square Distribution A chi-square-distributed random variable is re-
lated to a gaussian-distributed random variable in the sense that the former can
be viewed as a transformationof the latter. To be specific, let ¥Y = X?, where X
is a gaussian random variable. Then Y has a chi-square distribution. We
distinguish between two types of chi-square distributions. Thefirst is called a
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ceniral chi-square distribution and is obtained when X has zero mean. The
second is called a non-central chi-square distribution, and is obtained when X
has a nonzero mean.

First we consider the central chi-square distribution. Let X be gaussian-
distributed with zero mean and variance o”. Since ¥ = X?, the result given in
(2-1-47) applies directly with a4 = 1 and b =0. Thus we obtain the pdf of Y in
the form

 1 :

Pry) = Fino’ very 20 (2-1-105)
The cdf of Y is

Fy) = | py tu) duii

1 * ]
= _ weidar® . ~106Vine 4 Vue " (21

which cannot be expressed in closed form. The characteristic function,
however, can be determined in closed form.It is

. |

w(ju) = (i — pee)? (2-1-107)
Now, suppose that the random variable Y is defined as

Y=> x? (2-1-108)i=l

where the X;, i=1,2,...,a, are statistically independent and identically
distributed gaussian random variables with zero mean and variance o. As a
consequence of the statistical independence of the X,, the characteristic
function of Y is

]

by (yu) = (1 —jvoty” (2-1-109)
The inverse transform of this characteristic function yields the pdf

= 1 ni2~b—yi2er!
Py(y) o"2"’T(in)* e , y 20 (2-1-110)

where I'(p) is the gammafunction. defined as

rip)=| roled  p>O00

(2-1-1141)I(p)=(p-1)!, p an integer, p >0

TQ)=Vz, TG)=3Ve

This pdf, which is a generalization of(2-1-105), is called a chi-square (or
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The pdf of a chi-square-distributed random
variable for several degrees of freedom.

 
gamma) pdf with n degrees offreedom.It is illustrated in Fig. 2-1-9. The case
n = 2 yields the exponential distribution.

The first two moments of Y are

E(Y)=no?

E(¥?) = 2na‘ + n?o' (2-1-112)

a2 = 2na*
The cdf of ¥ is

‘¥ }
Fe = ny2ee? _t.

This integral can be easily manipulated into the form of the incomplete gamma
function, which is tabulated by Pearson (1965). When n is even, the integral in
(2-1-113) can be expressed in closed form. Specifically, let m = 4n, where m is
an integer. Then, by repeated integration by parts, we obtain

m—} 1 y KFy) =1-e 02% = (45) > 2-41-11vyj=1— er Sl saal) vy BO (2-1-114)
Let us now consider a noncentral chi-square distribution, which results from

squaring a gaussian random variable having a nonzero mean. If X is gaussian
with mean m, and variance o’, the random variable Y = X? has the pdf

=——_ ip emmy cosh (=) = 2-1-115pry) Vinooe a » G ( )
which is obtained by applying the result in (2-1-47) to the gaussian pdf given by
(2-1-92). The characteristic function corresponding to this pdfis

1

by(jv) = (dajneyee -j2ve") (2- 1-1) 6)
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To generalize these results, let Y be the sum of squares of gaussian random
variables as defined by (2-1-108). The X,, /=1,2,...,#, are assumed to be
statistically independent with means m,, i= 1, 2,...,, and identicai variances
equal to o*. Then the characteristic function of Y, obtained from (2-1-116) by
applying the relation in (2-1-79), is

1 ju 2 m?
Yr WY) =GaygayeOP ape (2-1-117)

This characteristic function can be inverse-Fourier-transformed to yield the pdf

pry = a5 (4)ewe (Vp 1:r(y) re (3) é baif v5), y20  (2-1-118)
where, by definition,

= 3 mm? (2-1-119)

and [,(x) is the ath-order modified Bessel function ofthe first kind, which may
be represented by the infinite series

= (‘x /2jerk
L = re() ia Ta +k+1)

The pdf given by (2-1-118) is called the noncentral chi-square pdf with n
degrees of freedom. The parameters? is called the noncentrality parameter of
the distribution.

The cdf of the noncentral chi square with n degrees of freedom is

yj u\ir—2y4 ~(l4+uyte? 5 .Fy)=[ 53 (3) e In—i{Vie 3) du (2-1-121)

x20 (2-1-120)

There is no closed-form expression. for this integral, However, when m = n is
an integer, the cdf can be expressed in terms of the generalized Marcum’s Q
function, which is defined as

= x m1 (tea?2n(a,b)= | x(2) ea 27(ax) dx
tae ml b k=Q,(a,b) +e? > (7) I,(ab) (2-1-122)k=1 \@

where
= k

O(a, b) =e02S (2) I,(ab), b>a>0 (21-123)k=0

If we change the variable of integration in (2-1-121) from u to x, where
x= ule
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andlet a* = s*/a’, thenit is easily shown that

5 ¥
=1-Q9,(-,— 2-1-124Fy(y) 1 2,,(* , c ) ( }

Finally, we state that the first two moments of a noncentral chi-square-
distributed random variable are

E(Y)= no? +s?

E(Y?) = 2no* + 405? + (no? + 8? (2-1-125)

a = 2no* + 407s?

Rayleigh Distribution The Rayleigh distribution is frequently used to
model the statistics of signals transmitted through radio channels such as
cellular radio. This distribution is closely related to the central chi-square
distribution. To illustrate this point, let Y= Xj+X3 where X, and X, are
zero-meanstatistically independent gaussian random variables, each having a
variance o*. From the discussion above, it follows that Y is chi-square-
distributed with two degrees of freedom. Hence,the pdf of Y is

1 2
=—s5e = -1-Priy)=se "yO (2-1-126}

Now,suppose we define a new random variable

R=VX7+X3= VY (2-1-127)

Makingasimple changeof variable in the pdf of (2-1-126), we obtain the pdf
of R in the form

Pr(r) =eee r=0 (2-1-128}

This is the pdf of a Rayleigh-distributed random variable. The corresponding
cdf is

"iu Ie?Fr(r = [Sew duR(T) bo
=1-¢°72"? pO (2-1-129)

The moments of RF are

E(R*) = (207)**T(1 + $k) (2-1-130)
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and the variance is

a7 = (2 —4a)0? (2-1-131)

The characteristic function of the Rayleigh-distributed, random variable is

Ue(jv) = [ enRegir dp (2-1-132)yo

This integral may be expressed as

Wr(jv) = [ 9°20cos ur dr +j [3 e”?sin ur drx 0 o 0 o

= F(A, 4: —$v?o7) + jVin verte """? (2-1-133)

where ,F,(1, $; —a@) is the confluent hypergeometric function, which is defined
as

> F(a + KP(B)x*
ix)= : #0, -1,-2,... 2-1-134

Beaulieu (1990) has shownthat , F,(1, }; -@) may be expressed as

1 aS a*
1A, 4; ~a) = -e ~Gee (2-1-135)

As a generalization of the above expression, consider the random variable

R=,/> x? (2-1-136)

where the X;, i= 1,2,...,n, are statistically independent, identically distrib-
uted zero mean gaussian random variables. The random variable R has a
generalized Rayleigh distribution. Clearly, Y= R? is chi-square-distributed
with # degrees of freedom. Its pdf is given by (2-1-110). A simple change in
variable in (2-1-110) yields the pdf of R in the form

an-1

Pr(r) =2Wg)?ene =O (2-1-137)
As a consequence of the functional relationship between the central

chi-square and the Rayleigh distributions, the corresponding cdfs aresimilar.
Thus, for any #, the cdf of R can be putin the form of the incomplete gamma
function. In the special case when 7 is even,i.e.) m = 2m, the cdf of R can be
expressed in the closed form

pyai-ereSL
k

Ak 5), rz=0 (2-1-138)
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Finally, we state that the kth moment ofR'is

PG(n +k))
TGn) k>0 (2-1-139)E(R*) = (207)?

which holds for any integer n.

Rice Distribution Just as the Rayleigh distribution is related to the central
chi-square distribution, the Rice distribution is related to the noncentral
chi-square distribution. Toillustrate this relation, let Y = X? + X3, where X;,
and X,arestatistically independent gaussian random variables with means m,,
i= 1, 2, and commonvariance a”. From the previous discussion, we know that
Y has a noncentral chi-square distribution with noncentrality parameter
s* = mj + m3. The pdf of Y, obtained from (2-1-118) for n = 2, is

Prty) = sie7Pb(VIS), y >0 (2-1-140)
Now, we define a new random variable R = VY. The pdf of R, obtained

from (2-1-140) by a simple change of variable, is

palr) =erng), r=0 (2-1-141)
This is the pdf of a Ricean-distributed random variable. As will be shown in
Chapter 5, this pdf characterizes the statistics of the envelope of a signal
corrupted by additive narrowband gaussian noise. It is also used to model the
signalstatistics of signals transmitted through some radio channels. The cdf of
R is easily obtained by specializing the results in (2-1-124) to the case m = 1.
This yields

F(r)=1-0,(*,7), r2=0 (2-1-142)
where Q,(a, >) is defined by (2-1-123).

As a generalization of the expressions given above, let R be defined as in
(2-1-136) where the X;, i=1,2,...,m are statistically independent gaussian
random variables with means m,, i= 1,2,..., 7, and identical variances equal
to a”. The random variable R* = Y has a noncentral chi-square distribution
with n degrees of freedom and noncentrality parameter s? given by (2-1-119).
Its pdf is given by (2-1-118). Hence the pdfof R is

rid rs-—! ~(r2+97)2e?Pelt) = Sanpae ba-{75), r>=0 (2-1-143)
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and the corresponding cdf is

Fy(r) = P(R Sr) = P(VY Sr)=PIY SP)=F(r7)—(2-1-144)

where F,(r?) is given by (2-1-121). In the special case where m =n is an
integer, we have

Fe(r) = 1 ~ Onl>), r=0 (2-1-145)
which follows from (2-1-124). Finally, we state that the kth momentof & is

 &\ — o,enka, ew Gin tk) -fntk as?B(R*) = (20 )MereSS ("TS Fa), k 20
(2-1-146)

where , F(a, 8: x) is the confluent hypergeometric function.

Nakagami -Distribution Both the Rayleigh distribution and the Rice
distribution are frequently used to describe the statistical fluctuationsof signals
received from a multipath fading channel. These channel models are con-
sidered in Chapter 14. Another distribution that is frequently used to
characterize the statistics of signals transmitted through multipath fading
channels is the Nakagami m-distribution. The pdf for this distribution is given
by Nakagami (1960) as

Pal(r)= ron (=) yim te -mrin (2-1-147)
where Q is defined as

= E(R’) (2-1-148)

and the parameter m is defined as the ratio of moments, called the fading
figure,

0? ‘

m FR?—oy’ m2} (2-1-149)

A normalized version of _(2-1-147) may be obtained by defining another
random variable X = R/VQ (see Problem 2-15). The nth momentof R is

£(R) =td)any)"C(m) ni

By setting m = 1, we observe that (2-1-147) reduces to a Rayleigh pdf. For
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The m-distributed pdf, shown with
Ql=1. mis the fading figure.
{ Miyagakiet al. 1978.)

 
values of m in the range } =m <1, we obtain pdfs that-have larger tails than a
Rayleigh-distributed random variable. For values of m > 1, the tail of the pdf
decays faster than that of the Rayleigh. Figure 2-1-10 illustrates the pdfs for
different values of m.

Multivariate Gaussian Distribution Of the many multivariate or multi-
dimensional distributions that can be defined, the multivariate gaussian
distribution is the most important and the one mostlikely to be encountered in
practice. We shall briefly introduce this distribution and state its basic
properties.

Let us assume that X;, i= 1,2,...,m, are gaussian random variables with
means m,, i=1,2,...,n, variances 07, i=1,2,...,”, and covariances Hip:
i,j=1,2,...,n Clearly, #,=07, i=1,2,...,2 Let M denote the nxn
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covariance matrix with elements {Bij}, let X denote the 7X 1 column vector of
random variables, and let m, denote the » x 1 column vector of mean values

m, §=1,2,...,". The joint pdf of the gaussian random variables X,,
i=1,2,...,4, is defined as

p(t). X2,---.24,) exp (—5(x- m,)'M"'(x— m,)|
1

~ (ny"*(det M)'2

(2-4-150)

where M' denotes the inverse of M and x’ denotes the transpose of x.
The characteristic function corresponding to this n-dimensionaljoint pdf is

wiv) = E(e’”*)

where v is an n-dimensional vector with elements v,, /=1,2,...,7.
Evaluation of this n-dimensional! Fourier transform yields the result

&(jv) = exp (jmiv — tv'’My) (2-1-151)

An important special case of (2-1-150) is the bivariate or two-dimensional
gaussian pdf. The mean m, and the covariance matrix M forthis case are

m, = mf M= [* or (2-1-152)
wherethe joint central moment #417 is defined as

Mar = E[(X, — m,)(X - m,))

It is convenient to define a normalized covariance

By fey a j=Pi, a0," ix] (2-1-153)

where p, satisfies the condition 0<|p,|<1. When dealing with the two-
dimensionalcase, it is customary to drop the subscripts on y2,; and p,>. Hence
the covariance matrix is expressed as

2

m=| 7 pow: (2-1-154)po) Oz a

Its inverse is

1 a3 —pa\aM-'= [ 2 1 "| 4.gioil-p)l-poie, 0 (2-1-155)
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and det M = oi03(1— pp”). Substitution for M~' into (2-1-150) yields the
desired bivariate gaussian pdf in the form

l

2no,o,V1 —p

x exp |28al = dpeake mien th) * eile — my)P dotei(I — 9’)

P(x), X2) =

(2-1-1536)

Wenote that when p = @,the joint pdf p(x,, x2) in (2-1-156) factors into the
product p(x,)p(x,), where p(x,;), i=1, 2, are the marginal pdfs. Since p is a
measure of the correlation between X, and X>, we have shown that when the
gaussian random variables X, and X, are uncorrelated, they are also
Statistically independent. This is an important property of gaussian random
variables, which does not hold in general for other distributions. It extends to
n-dimensional gaussian random variables in a straightforward manner. Thatis,
if po; = 0 for i *j then the random variables X,, i= 1,2,..., are uncorrelated
and, hence,statistically independent.

Now,let us consider a linear transformation of n gaussian random variables
X;,§=1,2,...,n, with mean vector m, and covariance matrix M. Let

Y= AX (2-1-157}

where A is a nonsingular matrix. As shown previously, the jacobian of this
transformation is J =1/det A. Since X=A™'Y, we may substitute for X in
{2-1-150) and, thus, we obtain the joint pdf of Y in the form

p(y)= exp[—4(A 'y~ m,)'M '(A~'y ~ m,)]
1

(2xy"?(detM)'?detA
i

~ GayAderQypeor? [HY — m)'Q1 — m.)) (2-1-158)

where the vector m, and the matrix Q are defined as

m, = Am,
Q= AMA (2-1-159)

Thus we have shownthata linear transformation of a set of jointly gaussian
random variables results in anotherset of jointly gaussian random variables.

Suppose that we wish to perform a linear transformation that results in n
statistically independent gaussian random variables. How should the matrix A
be selected? From our previous discussion, we know that the gaussian random
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variables are statistically independentif they are pairwise-uncorrelated,i.e., if
the covariance matrix Q is diagonal. Therefore, we must have

AMA’ =D (2-1-160)

where D is a diagonal matrix. The matrix M is a covariance matrix; hence,it is
positive definite. One solution is to select A to be an orthogonal matrix

_(A' = A°') consisting of columns that are the eigenvectors of the covariance
matrix M. Then D is a diagonal matrix with diagonal elements equal to the
eigenvalues of M.

Example 2-1-5

Consider the bivariate gaussian pdf with covariance matrix

1}M l, ql
Let us determine the transformation A that will result in uncorrelated
random variables. First, we solve for the eigenvalues of M. The characteris-
tic equation is

det (M - AI)=0

(f-ayv-s=0

A=3,4

Next we determine the two eigenvectors. If a denotes an eigenvector, we
have

(M~ADa=0

With A, = 3 and A, = }, we obtain the eigenvectors

ooh =f Na= 1 a =
‘Ug L-vi

sowo]
Therefore,

It is easily verified that A~’ = A’ and that

AMA’ =D

where the diagonal elements of D are 3 and 3.
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2-1-5 Upper Bounds on the Tail Probability

In evaluating the performance of a digital communication system,it is often
necessary to determine the area underthetail of the pdf. We refer to this area
as the tail probability. In this section, we present two upper boundsonthe tail
probability. The first, obtained from the Chebyshev inequality, is rather loose.
The second,called the Chernoff bound, is muchtighter.

Chebyshev Inequality Suppose that X is an arbitrary random variable with
finite mean m, and finite variance o2. For any positive number5,

oy
P(X ~m,|>5)= 5 (2-1-161)

This relation is called the Chebyshev inequality. The proof of this bound is
relatively simple. We have

s

oi= [@-m,)'px)de> |[art|
(x —m,)'p(x) des

=e | pl)dr=8*PX —m,)>6)ns

Thusthe validity of the inequality is established.
It is apparent that the Chebyshev inequality is simply an upper bound on

the area under the tails of the pdf p(y), where Y =X —m,, ie., the area of
p(y) in the intervals (—%, —8) and (5, ©). Hence, the Chebyshev inequality
may be expressed as

2

1-[F48) - A(-8)) <3 (2-1-162)
or, equivalently, as

1 — [Fy(m, + 8) — Fy(m, — 5)] <2 {2-1-163)
There is another way to view the Chebyshev bound. Working with the zero

mean random variable Y= X —m,, for convenience, suppose we define a
function g(Y) as

L (|¥|=68)g(Y)= if (vi<6) (2-1-164)
Since g(Y) is either 0 or 1 with probabilities P(Y|<6) and P(/Y|>8),
respectively, its mean value is

E[g(¥)] = P(Y| >) (2-1-165)
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A quadratic upper bound on g(¥’) used in
obtaining the tail probability (Chebyshev
bound).

 
Now suppose that we upper-bound g(¥) by the quadratic (Y/8)’,ie.,

¥ 2a(Y) <(x) (2-1-166)
The graph of g(Y) and the upper bound are shown in Fig. 2-1-11. It follows

_that

Y’) £E(¥2) of of

Since E[g(Y)] is the tail probability, as seen from (2-1-165), we have obtained
the Chebyshev bound.

For many practical applications, the Chebyshev bound is extremely loose.
The reason for this may be attributed to the looseness of the quadratic (Y/5)
in overbounding g(¥). There are certainly many other functions that can be
used to overbound g(¥). Below, we use an exponential bound to derive an
upper bound onthetail probability that is extremely tight,

Chernoff Bound The Chebyshev bound given above involves the area
under the two tails of the pdf. In some applications we are interested only in
the area under onetail, either in the interval (5, ©) or in the interval (—~, 5).
In such a case we can obtain an extremely tight upper bound by overbounding
the function g(Y) by an exponential having a parameter that can be optimized
to yield as tight an upper bound as possible. Specifically, we consider the tail
probability in the interval (6, 2°). The function g(¥) is overbounded as

a(¥)<e"'"" (2-1-167)

where g(Y) is now defined as

_f{l (¥268)g(Y) { (v¥<8) (2-1-168)
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FIGURE2-1-12 An exponential upper bound on g(¥) used in
obtaining the tail probability (Chernoff bound).

 
and v0 is the parameter to be optimized. The graph of g(¥Y) and the
exponential upper bound are shown in Fig. 2-1-12.

The expected value of g{Y) is

Elg(Y)] = P(Y > 8) < Ee") (2-1-169)

This bound is valid for any v=0. The tightest upper bound is obtained by
selecting the value of v that minimizes E(e“”~*), A necessary condition for a
minimum is

d
— Ele") =0 -1-1705, Ble") (2-1-170)

But the orderof differentiation and expectation can be interchanged, so that

d d= “¥-6)) —pl| jwy-adv Ete ) E(se )
= Ely _ de (-4)]

=e“[E(Ye*") — bE(e*")}=0

Therefore the value of v that gives the tightest upper boundis the solution to
the equation

E(Ye’") — 5E(e’”) =0 (2-1-171)

Let 9 be the solution of (2-1-171). Then, from (2-1-169), the upper bound on
the one-sided tail probability is

P(Y 2 8) se*E(e*”) (2-1-172)

This is the Chernoff bound for the upper tail probability for a discrete or a
continuous random variable having a zero mean.+ This bound may be used to
show that Q(x) <e~*’?, where Q(z)is the area in the tail of the gaussian pdf
(see Problem 2-18).

t Note that E(e’”) for real v is not the characteristic function of Y. It is called the moment
' generating function of ¥.
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FIGURE2-1-13 The pdf of a Laptace-distributed random variable.
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Py)

 
An upper bound on the lowertail probability can be obtained in a similar

manner, with the result that

P(Y <8)<e “E(e*”) (2-1-173)

where ? is the solution to (2-1-171) and 6 <9.

Example 2-1-6

Consider the (Laplace) pdf

p(y) = je"! (2-1-174)

whichis illustrated in Fig. 2-1-13. Let us evaluate the upper tail probability
from the Chernoff bound and compare it with the true tail probability,
which is

P(Y =8) -| le“dy =ie* (2-1-175)4

To solve (2-1-171) for #, we must determine the moments E(Ye'’) and
E(e’"). For the pdf in (2-1-174), we find that

2v

Ere) =aeae
‘+ ue ) (2-1-176)

Fe = Gaya
Substituting these moments into (2-1-171), we obtain the quadratic equation

v8 +2v-—5=0

which has the solutions

-1+ V1 + 8
§ = ——___ (2-1-177)6

Since % must be positive, one of the two solutions is discarded. Thus

~14+Vi48
P=—_> (2-1-178)

65



66

 

CHAPTER 7: PROBABILITY AND STOCHASTIC PROCESSES 57

Finally, we evaluate the upper bound in (2-1-172) by eliminating E(e*”)
using the second relation in (2-1-176) and by substituting for ? from
(2-1-178). The result is

&? vine
P(Y 2 6)=---————— e' ** 2-1-179(YO) SC1t VIF (

For 6 >> 1, (2-1-179) reduces to

PY 8) <5e-* (2-1-180)
We note that the Chernoff bound decreases exponentially as & increases.

Consequently, it approximates closely the exact tail probability given by
(2-1-175). In contrast, the Chebyshev upper bound for the upper tail
probability obtained by taking one-half of the probability in the twotails (due
to symmetry in the pdf) is

PY 38) <5
Hence, this bound is extremely loose.

Whenthe random variable has a nonzero mean, the Cheroff bound can be
extended as we now demonstrate. If Y = _X — m,, we have

P(Y 268) = P(X - m, = 8) = P(X =m, + 8)= P(X > 6,,)

where, by definition, 5,, =m, +5. Since 5>0, it follows that 5, >im,. Let
g(X) be defined as

_fl (X26,)g(X)= {5 (X <6.) (2-1-181)
and upper-bounded as

B(X) <e"(K~ Fw) (2-1-182)
From this point, the derivation parallels the steps contained in (2-1-169)-
(2-1-172). The final result is

P(X = 6,,) <e7=E(e**) (2-1-183)
where 6,, >m, and ? is the solution to the equation

E(Xe'*) - 5,,E(e*)=0 (2-1-184)
In a similar manner, we can obtain the Chernoff bound for the lower tail
probability. For §< 0, we have

P(X ~ m, < 8) = P(X <m, + 8) = P(X <5,,)< E(e"X~"™)  (2-1-185)
From our previous development, it is apparent that (2-1-185) results in the
bound

P(X <8) <e**E(e%) (2-1-186)
where 8,, <m, and 9 is the solution to (2-1-184).
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2-1-6 Sums of Random Variables and the Central

Limit Theorem

We have previously considered the problem of determining the pdf of a sum of
n Statistically independent random variables. In this section, we again consider
the sum of statistically independent random variables, but our approach is
different and is independent of the particular pdf of the random variables in
the sum. To be specific, suppose that X;, i=1,2,...,m, are statistically
independent andidentically distributed random variables, each having a finite
mean m, andafinite variance a2. Let Y be defined as the normalized sum.
called the sample mean:

Y= Xx, (2-1-187)aie M:

First we shail determine upper bounds on the tail probabilities of Y and then
we shall prove a very important theorem regarding the pdf of Y in the limit as
n-3 =X,

The random variable Y defined in (2-1-187) is frequently encountered in
estimating the mean of a random variable X from a numberof observations X,,
i=1,2,...,. In other words, the X;, i= 1,2,...,n, may be considered as
independent samples drawn from a distribution F, (x), and Y is the estimate of
the mean m,.

The mean ofYis

E(Y)=m,=*E(x)
=m,

The variance of Y is

oy = E(Y?)— m2? = E(¥?) - m?

i
2 Ms: Ms E(X;X,) — mz

AY jt j=l

1 A 1 nn at

= 72 2 BUX) +5 DD E(XE(X) ~ mii= f=) j=l
my

=! tm 1 2 pg=7 6 xt my) + a(n—lyme — my

= 2
na

WhenY is viewedas an estimate for the mean m,, we note thatits expected
value is equal to m, and its variance decreases inversely with the number of
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samples n. As n approaches infinity, the variance a approaches zero. An
estimate of a parameter (in this case the mean m,) that satisfies the conditions
that its expected value converges to the true value of the parameter and the
variance converges to zero as m-+ © is said to be a consistentestimate.

The tail probability of the random variable Y can be upper-bounded by use
of the bounds presented in Section 2-1-5. The Chebyshev inequality applied to
Y is

o

PUY ~ m|> i=2
 

 

 

(2-1-188)

1g oP( > X,~m, > 5) <2
In the limit as 2 — «, (2-1-188) becomes

lim P( Is X;- m, 25) =0 (2-1-189)no fl

Therefore, the probability that the estimate of the mean differs from the true
mean m, by more than 6 (6 > 0) approaches zero as n approachesinfinity. This
statement is a form of the law of large numbers. Since the upper bound
converges to zero relatively slowly, i.e., inversely with n, the expression in
(2-1-188) is called the weak law of large numbers.

The Chernoff bound applied to the random variable Y yields an exponential
dependence of nm, and thus provides a tighter upper bound on the one-sidedtail
probability. Following the procedure developed in Section 2-1-5, we can
determinethatthe tail probability for y is

P(Y~m,>8)=P(->: Xi, 8)f=

(> X,2n6,,) < Elexp [(S x, ~n3,.) |} (2-1-190)i=]

where 6,,=m,+6 and &6>0. But the X,, i=1,2,...,n, are statistically
independent andidentically distributed. Hence,

E|exp[( X,~ nn) |} =eexp (v > x)|
= en8m Il E(e”*)

=[e-“E(e’*))" (2-1-191)

where X denotes any one of the X,. The parameterv that yields the tightest
upper bound is obtained bydifferentiating (2-1-191) and setting the derivative
equal to zero. This yields the equation

E(Xe*) - 6,,E(e’*) =0 (2-1-192)
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Let the solution of (2-1-192) be denoted by #. Then, the bound on the upper
tail probability is

(> X,? én) <[emE(e*)V", 5, >m, (2-1-193)
In a similar manner, wefind that the lowertail probability is upper-boundedas

P(Y =6,,)s[e “E(e**)]", 8, <m, (2-1-194)

where ? is the solution to (2-1-192).

Example 2-1-7

Let X;,i=1,2,...,2, bea set ofstatistically independent random variables
defined as

ye ( 1 with probability p <4“- l=1 with probability 1 —p

Wewish to determine a tight upper bound on the probability that the sum
of the X; is greater than zero. Since p <4, we note that the sum will have a
negative value for the mean; hence we seek the upper tail probability. With
6,, = 0 in (2-1-193), we have

P(Sx, >0) <(E(e*y (2-1-195)t=]

where ¢ is the solution to the equation

E(Xe’*) =0 (2-1-196)
Now

E(Xe’*) = -(1- p)e *+pe”=0
Hence

1 _

9=In —) (2-1-197)
Furthermore,

E(e**) = pe* + (1- pye-*

Therefore the bound in (2-1-195) becomes

P(S x,>0)<[pe' + (1—pye*fi=]

< [oie ( -ry2]
= [4p(1 — p)]"” (2-1-198)

Weobserve that the upper bound decays exponentially with n, as expected.
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{n contrast, if the Chebyshev bound were evaluated, the tai! probability
would decrease inversely with n.

Central Limit Theorem We conclude this section with an extremely useful
theorem concerning the cdf of a sum of random variables in the limit as the
number of terms in the sum approachesinfinity. There are several versions of
this theorem. We shall prove the theorem for the case in which the random
variables X,, /=1,2,...,n, being summed arestatistically independent and
identically distributed, each having a finite mean m, and a finite variance a?
For convenience, we define the normalized random variabie

x;—m
U,=———, f= 1,2,...,8

oy

Thus U; has a zero mean and unit variance, Now,let

Y= z Su, (2-1-199)i=]

Since each term in the sum has a zero mean and unit variance, it follows that
the normalized (by 1/Vn) random variable Y has zero mean andunit variance.
Wewish to determine the cdf of Y in the limit as n  ~.

The characteristic function of ¥ is

jv > U;f=1

Vn

 
by(jv) = Ele") = E} exp

= [v(Z) | (21-200)
where U denotes any of the U;, which are identically distributed. Now, let us
expand the characteristic function of U in a Taylor series. The expansionyields

yy yg _ (vywlize) 1+jFEU) -22EU? tempiBU)- 1201)
Since E(U) = 0 and E(U*) = 1, (2-1-201) simplifies to

. 2 1vo(Z) =1-rs += Riv, n) (2-1-202)
where R(v,n)}/n denotes the remainder. We note that R(v,n) approaches
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zero as 2». Substitution of (2-1-202) inte (2-1-200) yields the characteristic
function of Y in the form

2 a

dy(jv) = [2 -> ~07)) (2-1-203)
Taking the natural logarithm of (2-1-203), we obtain

. v? R(v, n)In Wri) =n in [3 ah Aen) (2-1-204)
For small values of x, In (1 +x) can be expanded in the powerseries

In(ltxy=x—bxr +i...

This expansion applied to (2-1-204) yields
2 2 2

ln dytju) =a]2AGn_'(-2 +H.) +., | (2-1-205)
Finally, when we take the limit as n—+x, (2-1-205) reduces to
lim,,_.« In py(jv) = —4v*, or, equivalently,

lim ¢y(ju) =e >? (2-1-206)

But, this is just the characteristic function of a gaussian random variable with
zero mean and unit variance, Thus we have the important result that the sum
of statistically independent and identically distributed random variables with
finite mean and variance approaches a gaussian cdf as n—» =. This result is
known as the central limit theorem.

Although we assumed that the random variables in the sum are identically
distributed, the assumption can be relaxed provided that additional restrictions
are imposed on the properties of the random variables. There is one variation
of the theorem, for example, in which the assumption ofidentically distributed
random variables is abandoned in favor of a condition on the third absolute
moment of the random variables in the sum. For a discussion of this and other
variations of the central limit theorem, the reader is referred to the book by
Cramer (1946).

2-2 STOCHASTICPROCESSES
Many of the random phenomena that occurin nature are functions of time.
For example, the meteorological phenomena such as the random fluctuations
in air temperature and air pressure are functions of time. The thermal noise
voltages generated in the resistors of an electronic device such as a radio
receiver are also ‘a function of time. Similarly, the signal at the output of a
source that generates information is characterized as a random signal that
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varies with time. An audio signal that is transmitted over a telephone channel
is an example of such a signal. All these are examples of stochastic (random)
processes. In our study of digital communications, we encounter stochastic
processes in the characterization and modeling of signals generated by
information sources,in the characterization of communication channels used to

transmit the information, in the characterization of noise generated in a
receiver, and in the design of the optimum receiver for processing the received
random signal.

At any given time instant, the value of a stochastic process, whetherit is the
value of the noise voltage generated by a resistor or the amplitude of the signal
generated by an audio source, is a random variable. Thus, we may view a
stochastic process as a random variable indexed by the parameter ¢ Weshall
denote such a process by X(t). In general, the parameter ¢ is continuous,
whereas X may be either continuous or discrete, depending on the characteris-
tics of the source that generates the stochastic process.

The noise voltage generated by a single resistor or a single information
source represents a single realization of the stochastic process. Hence,it is
called a sample function of the stochastic process. Theset of all possible sample
functions,e.g., the set of all noise voltage waveforms generated byresistors,
constitute an ensemble of sample functions or, equivalently, the stochastic
process X(i). In general, the number of sample functions in the ensembleis
assumed to be extremely large; often it is infinite.

Having defined a stochastic process X(t) as an ensemble of sample
functions, we may considerthe values of the process at any set of time.instants
4 >h>t;>...>1, where nm is any positive integer. In general, the random
variables X, = X(i;), i= 1,2,...,n, ate characterized statistically by their joint
pdf p(x,,,x,,--.,,,). Furthermore, all the probabilistic relations defined in
Section 2-1 for multidimensional random variables carry over to the random
variables X,, i=1,2,..., 7.

Stationary Stochastic Processes As indicated above, the random variables
X,, §=1,2,...,a, obtained from the stochastic process X(t) for any set of
time instants ¢, >, >1;>...>1, and any n are characterized Statistically by
the joint pdf p(x,,,x,,,...,2,,). Let us consider another set of n random
variables X,,,= X(t; +f), i=1,2,...,n, where ¢ is an arbitrary time shift.
These random variables are characterized by the joint pdf
P(X, 46 Xq4e ++ +> %,+1)- The joint pdfs of the random variables X, and X,,.,,
i=1,2,...,m, may or may not be identical. When they are identical, i.c..
when

Pp, Xigs ae x,) = POR41 Xnrts say Xi, +1) (2-2-1)

for all ¢ and all n, the stochastic process is said to be stationary in the strict
sense. Thatis, the statistics of a stationary stochastic process are invariant to
any translation of the time axis. On the other hand, whenthe joint pdfs are
different, the stochastic process is nonstationary.
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2-2-1 Statistical Averages

Just as we have defined statistical averages for random variables, we may
similarly define statistical averages for a stochastic process. Such averages are
also called ensemble averages. Let X(t) denote a random process and let
X,, = X(t). The nth moment of the random variable X,is defined as

exD= {xpde, (2-2-2)
In general, the value of the nth momentwill depend on the time instant1, if the
pdf of X,, depends on ¢ When the process is stationary, however, p(x,.,) =
p(%,) for ‘all ¢. Hence, the pdf is independent of time, and, as a consequence,
the nth moment1s independent oftime.

Next we consider the two random variables X,= X(t), i=1,2. The
correlation between X,, and X,, is measured by the joint moment

E(X,X,,) = I | X,Xr, P(X, X,,) dt, Ax, (2-2-3)
Since this joint moment depends on the time instants f, and ¢;, it is denoted by
#(f;,f). The function $(¢,,) is called the autocorrelation function of the
stochastic process. When the process X(t)is stationary, the joint pdf of the pair
(X,,, X,,) is identical to the joint pdf of the pair (X,,.,, X.,+,) for any arbitrary ¢.
This implies that the autocorrelation function of X(t) does not depend on the
specific time instants ¢, and 1, but, instead,it depends on the time difference
t; ~ t), Thus,for a stationary stochastic process, the joint moment in (2-2-3)is

E(X,,%,,) = b(t, 2) = 6(4 — th) = (7) (2-2-4)

where T=, —f, or, equivalently, t, =¢, — t. If we let t)=1,+ t, we have

o(-T) = E(X,,X,,+2) = E(X,,X;_,) = (Tt)

Therefore, ¢(t) is an even function. We also note that @(0) = E(X?) denotes
the average powerin the process X(t).

There exist nonstationary processes with the property that the mean value
of the process is independent of time (a constant) and where the autocorrela-
tion function satisfies the condition that #(t), 2) = $(t, — t2). Such a processis
called wide-sense stationary. Consequently, wide-sense stationarity is a less
stringent condition than strict-sense stationarity. When reference is made to a
stationary stochastic process in any subsequent discussion in which correlation
functions are involved, the less stringent condition (wide-sense stationarity) is
implied.

Related to the autocorrelation function is the autocovariance function of a
stochastic process, which is defined as

BR(h, 6) = E{[X,, ~ m(t, IX, — m(t2)}}

= O(6, 2) — m(t,)m(4) (2-2-5}
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where mm(t,} and m(t.) are the means of X,, and X,,, respectively. When the
process is stationary, the autocovariance function simplifies to

H(t), f2) = w(t — 2) = w(t) = @(2) — m? (2-26)

where T= ¢, — &.
Higher-order joint moments of two or more random variables derived from

a stochastic process X(r) are defined in an obvious manner. With the possible
exception of the gaussian random process, for which higher-order moments can
be expressed in terms of first and second moments, high-order moments are
encountered very infrequently in practice.

Averages for a Gaussian Process Suppose that X(i) is a gaussian random
process. Hence, at time instants t=4,,i=1,2,...,#, the random variables X,,
i=1,2,...,m, are jointly gaussian with mean values m(1,), i=1,2,...,n, and
autocovariances

HE, §) = EX, — mq)(X,— mG), f= 1,2,...,0 (2-2-7)

If we denote the n X m covariance matrix with elements .(t;, t;) by M and the
vector of mean values by m,, then the joint pdf of the random variables X,,
i=1,2,...,m is given by (2-1-150).

If the gaussian process is stationary then m(t,) =m forall ¢; and y(t, &) =
#(t, — 5). We observe that the gaussian random process is completely specified
by the mean and autocovariance functions. Since the joint gaussian pdf
depends only on these two moments,it follows that if the gaussian process is
wide-sense stationary,it is also strict-sense stationary. Of course, the converse
is always true for any stochastic process.

Averages for Joint Stochastic Processes Let X(t) and Y(t) denote two
stochastic processes and let X,= X(t), i=1,2,...,n, and Y,= Y(t), j=
1,2,..., 7, représent the random variables at times ft, >t, >t,>...>4¢, and
{| >,>...>£,,, respectively. The two processes are characterized statisti-
cally by their joint pdf

Pry) Lig ++ Xt Vets Vigo -~ 9 Yer)

for any set of time instants ¢,,%,...,t,, (4, 0,-..,4, and for any positive
integer values of 2 and m.

The cross-correlation function of X(¢) and Y(t), denoted by ¢,,{t), 2), is
defined as the joint moment

Pry (th, t2) = E(X,,¥,,) = J [ X1, Yr, P(%r2 Vex) 4X1, AYe, (2-2-8)
and the cross-covarianceis

Haylti, f2) = by(tr, f2) — mCny(bo) (2-2-9)
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When the processes are jointly and individually stationary, we have
by(ty, f2) = Say (ty — 12) and wy, (hy, fo) = y(t — 2). In this case, we note that

ba(—T) = E(X,Yi) = EXy Yn) = OlD) (2-2-10)

The stochastic processes A(t} and Y(r} are said to be statistically indepen-
dent if and only if

PCRey heyy ee Kee Meg Migs es Veg) Ps Kee LAIPs Vege 5 Vey)

for all choices of #, and 4) and for all positive integers n and m. The processes
are said to be uncorrelated if

O(N. ta) = E(X,EY.)
Hence,

Melt, 2)=0

A complex-valued stochastic process Z(t) is defined as

Z(t) = X(t) + f¥() (2-2-11)

where X (t) and Y{r) are stochastic processes. The joint pdf of the random
variables Z, = Z(i,), i= 1,2,..., is given by the joint pdf of the components
(X,, Y,), i= 1,2,...,. Thus, the pdf that characterizes Z,, i= 1,2,...,n, is

PUK Xigy Bags Ye Ver Ye)

The complex-valued stochastic process Z(¢) is encountered in the represen-
tation of narrowband bandpass noise in terms of its equivalent lowpass
components. An important characteristic of such a process is its autocorrela-
tion function. The function is defined as

z(t, fx) = 3E(Z,,Z7)

= FE((X,, + VX, ~ 7X2)
= Hoy.(t), 2) + $,,(h,, 1) + j[d.(t, fx) ~ b(t) , t2)}} (2-2-12)

where $,.(t1,) atid ,,(f), ¢2) are the autocorrelation functions of X(¢) and
Y(t), respectively, and ¢,,(f),¢2) and @y(f;, 4) are the cross-correlation
functions. The factor of } in the definition of the autocorrelation function of a
complex-valued stochastic process is an arbitrary but mathematically con-
venient normalization factor, as we will demonstrate in our treatment of such
processes in Chapter 4.

Whenthe processes X(t) and. Y(t) are jointly and individually stationary,
the autocorrelation function ofZ(t) becomes

els 2) =bee (ti — 2) = 2.1)
where f,=t,— t. Also, the complex conjugate of (2-2-12)is

Z(t) = SE(Z%Z,,..) = $E(Zt..Z,) = b,:(-1) (2-2-13)
Hence, $.,(t) = $2.(— 1).
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Now, suppose that Z(1)= X(t)+ Y(t} and W(t) =U(«)+jV(t) are two
complex-valued stochastic processes. The cross-correlation function of Z(t)
and W(t) is defined as

b.w(ti , t2) = tE(Z,, wt

= SE[(X,, + /¥,)(U,, — i¥,)]
= HPeultis to) + Dyltis 2) + [Oyler to) — Melty, f)J} (2-2-14)

When X(?), Y(r), U(r), and V(t) are pairwise-stationary, the cross-correlation
functions in (2-2-14) become functions of the time difference t= 1, — Jt.
Furthermore,

b3,(t) = :E(ZPW,,_.) = 4E(Z2,.W,) = by. (-2) (2-2-15}

2-2-2 Power Density Spectrum

The frequency content of a signal is a very basic characteristic that distin-
guishesonesignal from another. In general, a signal can be classified as having
either a finite (nonzero) average power(infinite energy) or finite energy. The
frequency contentof a finite energy signal is obtained as the Fourier transform
of the corresponding time function. If the signal is periodic, its energy is
infinite and, consequently, its Fourier transform does not exist. The mechanism
for dealing with periodic signals is to represent them in a Fourier series. With
such a representation, the Fourier coefficients determine the distribution of
powerat the various discrete frequency components.

A stationary stochastic process is an infinite energy signal, and, hence, its
Fourier transform does not exist. The spectral characteristic of a stochastic
signal is obtained by computing the Fourier transform of the autocorrelation
function. That is, the distribution of power with frequency is given by the
function

a=]brePHae (2-2-16)
Theinverse Fourier transform relationship is

oe) =|operaf (22-17)
We observe that

ao=[nar
= E(\XP) 20 (2-2-18)

Since #(0) represents the average powerof the stochastic signal, which is the
area under ®(f), O(f) is the distribution of power as a function of frequency.
Therefore, ®(f) is called the power density spectrum of the stochastic process,
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If the stochastic process is real, O(t) is real and even, and, hence (f) is
real and even. On the other hand, if the process is complex, 6(1) = *(-—t)
and, hence

Fa

=| o(ne Par = a1) (2-2-19)
Therefore, @(f) is real.

The definition of a power density spectrum can be extended to twojointly
stationary stochastic processes X(1) and Y(i), which have a cross-correlation
function ¢,,(t). The Fourier transform of ¢,.(T), i-e.,

©.(f)= [ dry(redr (2-2-20)
is called the cross-power density spectrum. If we conjugate both sides of
{2-2-20), we have

er= J ancemtden | annehear

=] brePde = O.(f) (2-2-21)
This relation holds in general. However, if X(t) and Y(t) are real stochastic
processes,

enN=[ doledr=o(-f) (22:22)
By combining the result in (2-2-21) with the result in (2-2-22), we find that the
cross-power density spectrum of two real processes satisfies the condition

q,, (fj = #.,.( ~f) {2-2-23)}

2-2-3 Response of a Linear Time-Invariant System to a
Random Input Signal

Consider a finear time-invariant system (filter) that is characterized by its
impulse response A(!) or, equivalently, by its frequency response H(f). where
h(t) and H(f) are a Fourier transform pair. Let x(t) be the input signal to the
system and let y(¢} denote the output signa). The output of the system may be
expressed in terms of the convolution integra{ as

y(t)= f" A(t)e(t —1)dt (2-2-24)
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Now, suppose that x(f) is a sample function of a stationary stochastic process
X(t). Then, the output y(7) is a sample function of a stochastic process Y(t).
Wewish to determine the mean and autocorrelation functions of the output.

Since convolution is a linear operation performed on the input signal x(¢),
the expected value of the integral is equal to the integral of the expected value.
Thus, the mean value of Y(t)is

m, = E[Y(t)] = [ A(t)E[X(t - 1)] at

=m, [ h(t) dt =m,H(0) (2-2-25)
where H(0)is the frequency response of the linear system at f = 0. Hence, the
mean value of the output processis a constant.

The autocorrelation function of the outputis

dy(th, ta) = bE(Y,, Ys)

= ;Lf h(B)h*(a)E[X(t, — B)X*(h — a)} da dp

=|[ripyne(a)oas~ n+ a - B)dadp
The last step indicates that the double integral is a function of the time
difference ft, — f,. In other words,if the input processis stationary, the outputis
also stationary. Hence

by()=[[ne(a\hB)bu(t+a-p)dads (22-26)
By evaluating the Fourier transform of both sides of (2-2-26), we obtain the
powerdensity spectrum of the output process in the form

9,,(f)= [. by(tedt

=|ffamet+ a ~ Ble"deda dp
= (fF) |ACA)P (2-2-27}

Thus, we have the important result that the power density spectrum of the
output signal is the product of the power density spectrum of the input
multiplied by the magnitude squared of the frequency response of the system.
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Whenthe autocorrelation function $,,(t) is desired, it is usually easier to
determine the powerdensity spectrum ®,,(f) and then to compute the inverse
transform. Thus, we have

dy(t)=[&(Neaf

=e,.(n Myrear (2-228)
We observe that the average power in the outputsignal is

b=[eADINUP af (2.2.29)
Since ¢,,(0} = E(\¥,), it follows that

[_ e.cn mineaf =o
Suppose we let |H(f)/?=1 for any arbitrarily small interval f,<f <f,, and
H(f)= 0 outside this interval. Then,

[®,,(f) df 20fi

Butthis is possible if and only if ®,,(f) = 0 for all f.

Example 2-2-1

Suppose that the lowpass filter illustrated in Fig. 2-2-1 is excited by a
stochastic process x{t) having a power density spectrum

®,.(f) =4No for all f

A stochastic process having a flat power density spectrum is called white

att) R 0

FIGURE 2-2-1 An exampleof a lowpass filter.
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FIGURE 2-2-2 The power density spectrum of the lowpass filter output when
the input is white noise.

FIGURE2-2-3 The autocorrelation function of the output of the lowpass filter
for a white-noise input.
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voise, Let us determine the power density spectrum of the output process.
The transfer function of the lowpassfilter is

R 1
H(f) = ——_—_ = —__———_-—-(f) R+j2nflL 1+ j2xfL/R

and, hence,

5 |
Hf)\r =-—>————— -2-3\HCf 1+ QaLIRYF (2-2-30)

The powerdensity spectrum of the output process is

N |
Df) =>2 1+ (2aL/RYS (2-2-31)

This power density spectrum is illustrated in Fig. 2-2-2. Its inverse Fourier
transform yields the autocorrelation function

= ° Ny to~ 2aft¢,,(T) [ 2 1s aLIRype
_RNo CAN

we (2-2-32)

The autocorrelation function ¢,,(7) is shown in Fig. 2-2-3. We observe that
the second momentof the process ¥(r)is ¢,,(0) = RN,/4L.
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As a final exercise, we determine the cross-correlation function between

y(t) and x(1), where x(¢) denotes the input and y(‘) denotes the output of the
linear system. We have

byltist)=HEOAD = 5 [AEX ~ aX) da

=[ hlardadlts = t= ada = by.(6- 1)
Hence, the stochastic processes X(t) and Y(t) are jointly stationary. With
t, f= T, we have

$,(7) = | h(a)d,,(t — a)da (2-2-33)
Note that the integral in (2-2-33) is a convolution integral. Hence in the
frequency domain the relation (2-2-33) becomes

Weobservethatif the input process is white noise, the cross correlation of the
input with the output of the system yields the impulse response A(t) to within a
scale factor.

2-2-4 Sampling Theorem for Band-Limited
Stochastic Processes

Recall that a deterministic signal s(1) that has a Fourier transform S(f) is
called band-limited if S(f) =0 for |f| > W,. where W is the highest frequency
containedin s(t). Such a signal is uniquely represented by samples ofs{c) taken
at a rate of f, = 2W samples/s. The minimum rate fy =2W samptes/s is called
the Nyquist rate, Sampling below the Nyquist rate results in frequency aliasing.

The band-limited signal sampled at the Nyquist rate can be reconstructed
from its samples by use of the interpolation formula

_¢ a sin [2ew(r- 3")
s(t} Pi) (2-2-35)

where {s(n/2W )} are the samples of s(t) taken at ¢=n/2W, n=0, 1, +2,....
Equivalently, s() can be reconstructed by passing the sampled signal through
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in) Sample of s(r)

 
FIGURE2-2-4 Signal reconstruction based on ideal

interpolation. in - DT (n= iT aT wee OT

an ideal low-pass filter with impulse response A(r) = (sin 22We)/2aWe. Figure
2-2-4 illustrates the signal reconstruction process based on idea! interpolation.

A stationary stochastic process X(r) is said to be band-limited if its power
density spectrum ®(f) = 0 for |f|>W. Since 0(/) is the Fourier transform of
the autocorrelation function (+), it follows that @{r) can be represented as

un > al sin |2aw(z-|
“ 2Wv nSO al B)2nWit ow

(2-2-36)

where {p(n /2W)} are samples of $(r) taken at t=7/2W, n =0, +1, £2,....
Now,if X(¢) is a band-limited stationary stochastic process then X(t} can be

represented as

; 7.xo-3x(% slawa]
201-)

where {X(n/2W)} are samples of X(c) taken att =n/2W, n =0, 41, +2,....
This is the sampling representation for a stationary stochastic process. The
samples are random variables that are described statistically by appropriate
joint probability density functions. The signal representation in (2-2-37) is
easily established by showing that (Problem 2-17}

. ayyE wo3.x(2,)eels] =0—(2-2.38)
2a(1-35)

Hence, equality between the sampling representation and the stochastic
process X({f) holds in the sense that the mean square erroris zero.

(2-2-37)
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2-2-5 Discrete-Time Stochastic Signals and Systems
The characterization of continuous-time stochastic signals given above can be
easily carried over to discrete-time stochastic signals. Such signals are usually
obtained by uniformly sampling a continuous-time stochastic process.

A discrete-time stochastic process X(n) consists of an ensemble of sample
sequences {x(n)}. The statistical properties of X(s) are similar to the
characterization of X(t) with the restriction that 1 is now an integer (time)
variable. Hence, the nith moment of X{n) is defined as

ELxt)=[ Xte%aX, (2.2.39)
and the aufocorrelation sequence is

b(n, K)= 5E(X,X}) = | | X,XEP(X,, X)dX, dX, (2-2-40)
Similarly, the autocovariance sequence is

p(n, k)= b(n, kk) — E(X,)E(XD) (2-2-41)

For a stationary process, we have o(n, k)= o(n — k), a(n. kK) = we (n — k), and

u(n ~k)= b(n -—k)- |. (2-2-42)

where m, = E(X,,) is the mean value.
As in the case of continuous-time stochastic processes, a discrete-time

Stationary process has infinite energy but a finite average power, which is
given as

E(X,7) = $(0) (2-2-43)

The power densitv spectrum for the discrete-time process is obtained by
computing the Fourier transform of ¢(n). Since (n) is a discrete-time
sequence, the Fourier transform is defined as

af) = S (nye? (2-2-44)A= oe

and the inverse transform relationship is
12

diny= |] afye™™ af (2:2-45)— 12

We makethe observation that the power density spectrum ®(f)is periodic
with a period f, = 1. In other words, O(f + k) = ®(f) for k = +1, 42,.... This
is a characteristic of the Fourier transform of any discrete-time sequence such
as (7).

Finally, let us consider the response of a discrete-time, linear time-invariant
system to a stationary stochastic input signal. The system is characterized in
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the time domain by its unit sample response A() and in the frequency domain
by the frequency response A(f), where

HA) = rime (2.2.46)

The response of the system to the stationary stochastic input signal X(v) is
given by the convolution sum

y(n) = s Atk )xi{n —k) (2-2-4?)
hso-x

The mean vatue of the output of the system is

m, = Ely(n)p= DS AK )EL(n -k)]
ee (2-2-48)

mam. > h(k)=m,H(0)hee

where (OQ) is the zero frequency (de) gain of the system.
The autocorrelation sequence for the output processis

b,.{k) = SEL y*ta)y(1 + k)]

> DAMMAM(a ~ x(n +k -j))
I

= DY AMA)blk -—j +i) (2-2-49)boon ple

This is the general form for the autocorrelation sequence of the system output
in terms of the autocorrelation of the system input and the unit sample
response of the system. By taking the Fourier transform of ¢,,(k) and
substituting the relation in (2-2-49), we obtain the corresponding frequency
domain relationship

%,.(f) = ®..(f) lIH(f)P (2-2-50)

which is identical to (2-2-27) except that in (2-2-50) the power density spectra
#,,(f) and ®,,(f) and the frequency response H(f) are periodic functions of
frequency with period f, = 1.

2-2-6 Cyclostationary Processes

In dealing with signals that carry digital information we encounter stochastic
processes that havestatistical averages that are periodic. To be specific, let us
consider a stochastic process of the form

x

X= DS ag(t- nT) (2-2-51)a= — se
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where {a,} is a (discrete-time) sequence of random variables with mean
m, = E(a,) for all n and autocorrelation sequence ¢,,(k) = 4E(ata,.,). The
signal g(t) is deterministic. The stochastic process X (*) represents the signalfor
several different types of linear modulation techniques which are introduced in
Chapter 4. The sequence {a,,} represents the digital information sequence (of
symbols) that is transmitted over the communication channel and 1/7
represents the rate of transmission of the information symbols.

Let us determine the mean and autocorrelation function of X(«). First, the:
mean valueis

EX(|= S E(an)gle~n7)

=m, > (t~aT) (2-5-52) |n=-=%

Weobserve that the meanis time-varying. In fact, it is periodic with period T.
The autocorrelation function of X(r) is

Pet + t,t) = 2E[X(t + t)X*(0)]

=} 0 SD Elata,)e"(t—nTg(t+ t-m4)

'Ma agin —n)gttt —nT)g(t+ t—mT) (2-2-53)A= hom

Again, we observe that

b(t t+ THAT, (+kT)= 6,641, 0) (2-2-54)

for k= +1,+2,.... Hence, the autocorrelation function of X(t) is also
pericdic with period T.

Such a stochastic process is called cyclostationary or periodically stationary.
Since the autocorrelation function depends on both the variables ¢ and 1,its
frequency domain representation requires the use of a two-dimensional
Fourier transform. .

Since it is highly desirable to characterize such signals by their power
density spectrum, an alternative approach is to compute the time-average
autocorrelation function over a single period, defined as

_ 1 TR

das(t) = mn Pxx(t + 1, t) dt (2-2-55)

Thus, we eliminate the time dependence by dealing with the average
autocorrelation function. Now, the fourier transform of ¢,,(t) yields the

85



86

 

CHAPTER PROBABILITY AND STOCHASTIC PROCESSES 77

average power density spectrum of the cyclostationary stochastic process. This
approach allows us to simply characterize cyclostationary processes in the
frequency domain in terms of the power spectrum. That is, the power density
spectrum is

O.(f)= |dueae (2-2-56)

2-3. BIBLIOGRAPHICAL NOTES AND REFERENCES

PROBLEMS

In this chapter we have provided a review of basic concepts and definitions in
the theory of probability and stochastic processes. As stated in the opening
paragraph, this theory is an important mathematical tool in the statistical
modeling of information sources, communication channels, and in the design of
digital communication systems. Of particular importance in the evaluation of
communication system performance is the Chernoff bound. This bound is
frequently used in bounding the probability of error of digital communication
systems that employ coding in the transmission of information. Our coverage
also highlighted a number of probability distributions and their properties,
which are frequently encountered in the design of digital communication
systems.

The texts by Davenport and Root (1958), Davenport (1970), Papoulis
(1984) Pebbles (1987), Helstrom (1991) and Leon-Garcia (1994) provide
engineering-oriented treatments of probability and stochastic processes. A
more mathematical treatment of probability theory may be foundin the text by
Loéve (1955). Finally, we cite the book by Miller (1964), which treats
multidimensional gaussian distributions.

2-1 One experiment has four mutually exclusive outcomes A,, i =
second experiment has three mutually exclusive outcomes B,, j=
probabilities P(A,, B,) are

1,2,3,4. and a

i, 2, 3. The joint

P(A,, B,)=0.10, P(A), B,) = 0.08, P(A,, By) = 0.13

P(A., B,) = 0.05, P(A;, B,)=0.03, P(A, B,) = 0.09

P(A,, B,) =0.05, P(A, B,)=0.12,  P(Ay, By) = 0.14
P(A,, B,) =0.11, P(Ay, B;)=0.04,—P(Ay, By) = 0.06

Determine the probabilities P(A,), / = 1, 2, 3, 4, and P(B,), J = 1, 2,3.

2-2 The random variables X,, 7=1,2,...,n, have the joint pdf p(x,,x2,...,4,,}
Prove that

Play. Ma. Mqecee, ,,)

= pix,, | Xn, oo EPO bx, tree Hee “p(xs|ao,x))p(x |x )ptx)
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2-3 The pdf of a random variable X is p(x). A random variable Y is defined as

Y=aX+b

where a <0. Determine the pdf of Y in terms of the pdf of X.
2-4 Suppose that X is a gaussian random variable with zero mean and unit variance.

Let

YraX*+b, a>0

Determine and plot the pdf ofY.
2-5 a Let X, and X,be statistically independent zero-mean gaussian random variables

with identical variance. Show that 4 (rotational) transformation of the form

¥, + j¥, =(X, + jX)e”@

results in another pair (Y,, ¥.} of gaussian random variables that have the same
joint pdf as the pair (X,, X,).

Y\_ [4%| 4 - a]x

b Note that

where A is a 2X2 matrix. As a generalization of the two-dimensional
transformation of the gaussian random variables considered in (a), what
property must the linear transformation A satisfy if the pdfs for K and Y. where
Y =AX, X =(X\X,---X,) and Y=(¥,¥,--- ¥,), are identical?

2-6 The random variable Y is defined as

y=>X,fl

where the X,, i =1,2,...,., are statistically independent random variables with

x= {4 with probability p‘lO with probability 1 - p

a Determine the characteristic function of Y.

b From the characteristic function, determine the moments £(Y) and E(¥°).
2-7 The four random variables X,, X;, X,, X, are zero-mean jointly gaussian

random variables with covariance yz, = E(X,X,} and characteristic function
b(ju, ’ v2, js. jv). Show that

E(X,X2X3X4) = hyp t Misites + Miah

2-8 From the characteristic functions for the central chi-square and noncentral
chi-square random variables given by (2-1-109) and (2-1-117), respectively,
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determine the corresponding first and second moments given by (2-1-112) and
(2-1-1258)

2-9 The pdf of a Cauchy distributed random variable X is

 é

Piya 3. TXyce

a Determine the mean and variance of X.
b Determine the gharacteristic function of YX.

2-10 The random variatile Y is defined as

y=" D%,

where X,, /=1,2,...,n, are stalistically independent and identically distributed
random variables each of which has the Cauchy pdf given in Problem 2-9
a Determine the characteristic function of Y.

b Determine the pdfof Y.
¢ Consider the pdfof Y in the limit as n> x. Does the central limit hold? Explain

your answer.

Assume that random processes x(1) and y(z)} are individually and jointly stationary.
a Determine the autocorrelation function of z(t) =.x(1) + y(t).
b Determine the autocorrelation function of z(t) when x(f) and vi) are

uncorrelated. ,

¢ Determine the autocorrelation function of z(t} when x(s) and vf) are
uncorrelated and have zero means.

2-12 The autocorrelation function of a stochastic process X(1) is

2-1

$,,(t) = 3N,8(r)

Such a process is called white noise. Suppose x(7) is the input to an ideal bandpass
filter having the frequency response characteristic shownin Fig, P2-12. Determine
the total noise power at the output of thefilter.

2-13 The covariance matrix of three random variables XY 1 X, and X,is

Hi OO py

O py. 0

Hy Opty

LAGE

—#—p} ' be—1to

=f a I f
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Rg |
xD c T Yirp

The linear transformation Y = AX is made where

0

0

{

A=!10

] icoms
Determine the covariance matrix of ¥.

2-14 Let X(t) be a stationary real normal process with zero mean. Let a new process
Y(0) be defined by

Y(t) = X%(1)

Determine the autocorrelation function of ¥(r) in terms of the autocorrelation
function of X(1). Hint: Use the result on gaussian variables derived in Problem
2-7.

2-15 For the Nakagamipdf, given by (2-1-147), define the normalized random variable
X = R/VQ. Determine the pdfof X.

2-16 The input X(t) in the circuit shown in Fig. P2-16 is a stochastic process with
E[(X()] =O and ¢,,(2) = o74(1), i.e., X(t) is a white noise process.
a Determine the spectral density ®,.(f).
b Determine ¢,,(t) and EfY(s}.

2-17 Demonstrate the validity of (2-2-38).
2-18 Use the Chernoff bound to show that Q{x)<e “” where Q(x) is defined by

(2-41-97).

2-19 Determine the mean, the autocorrelation sequence, and the power density
spectrum of the outputof a system with unit sample response

1 (1 =0)

~2 (n=})
h(n) t (n=2)

0 (otherwise)

when the input x(n) is a white-noise process with variance o°.
2-20 The autocorrelation sequence of a discrete-time stochastic process is o{k) = (4).

Determineits power density spectrum.
2-21 A discrete-time stochastic process X(n) = X(nT)is obtained by periodic sampling

of a continuous-time zero-mean stationary process ¥(/) where T is the sampling
interval, i.e., f, =1/T is the sampling rate.
a Determine the relationship between the autocorrelation function of X() and

the autocorrelation sequence of X(n).
b Express the power density spectrum of ¥{) in terms of the power density

spectrum of the process X{r).
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c Determine the conditions under which the power density spectrum of X(n) is
equal to the power density spectrum of X'(i).

2-22 Consider a band-limited zero-mean stationary stochastic X(1) with power density
spectrum

_f! (fis)
P= ty n> w)

X(!) is sampled at a rate f = 1/7 to yield a discrete-time process X(a) = X(nT).
a Determine the expression for the autocorrelation sequence of X(n).
b Determine the minimum value of T that results in a white (spectrally flat)

sequence.

c Repeat (b) if the power density spectrum of X(t) is

1-\fl/W (fis W)lg naw)
2-23 Show that the functions

. ksin [2aw/(i - xy)
2nw(t -=)

are orthogonal over the interval [- =, <], i.e.,

L(0 = kK=0, +1, £2,...

* _[12W (k=))J OKO at to (k#j)
Therefore, the sampling theorem reconstruction formula may be viewed as a series
expansion of the band-limited signal s(¢), where the weights are samples of s(r)
and the {f,(s)} are the set of orthogonal functions used in the series expansion.

2-24 The noise equivalent bandwidth of a system is defined as

1 FynB= 2 [ UNF af
where G=max|H(/)). Using this definition, determine the noise equivalent
bandwidth of the ideal bandpass filter shown in Fig. P2-12 and the lowpass system
shown in Fig. P2-16.

90



91

 

3

SOURCE CODING

 

 

Communication systems are designed to transmit the information generated by
a source to some destination. Informatién sources may take a variety of
different forms. For example, in radio broadcasting, the source is generally an
audio source (voice or music). In TV broadcasting, the information source is a
video source whose outputis a moving image. The outputs of these sources are
analog signals and, hence, the sourcesare called analog sources. In contrast,
computers and storage devices, such as magnetic or optical disks, produce
discrete outputs (usually binary or ASCII characters) and, hence, they are
called discrete sources.

Whether a source is analog or discrete, a digital communication system is
designed to transmit information in digital form. Consequently, the output of
the source must be converted to a formatthat can be transmitted digitally. This
conversion of the source output to a digital form is generally performed by the
source encoder, whose output may be assumed to be a sequence of binary
digits.

In this chapter, we treat source encoding based on mathematical models of
information sources and a quantitative measure of the information emitted by
a source. We consider the encoding of discrete sources first and then we discuss
the encoding of analog sources. We begin by developing mathematical models
for information sources.

3-1 MATHEMATICAL MODELS FOR INFORMATION
SOURCES

Any information source produces an output that is random,i.e., the source
Output is characterized in statistical terms. Otherwise, if the source output
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were known exactly, there would be no need to transmit it. In this section, we
consider both discrete and analog information sources, and we postulate
mathematical models for each type of source.

The simplest type of discrete source is one that emits a sequence of letters
selected from a finite alphabet. For example, a binary source emits a binary
sequence of the form 100101110..., where the alphabet consists of the two
letters {0, 1}, More generally, a discrete information source with an alphabet of
L possible letters, say {x,,x2,...,X-}, emits a sequence of letters selected
from the alphabet.

To construct a mathematical model for a discrete source, we assume that

each letter in the alphabet {x,,x.,....x,} has a given probability p, of
occurrence. Thatis,

Py = P(X = x,), l<kaLl
where

L

> p= 1kel

We consider two mathematical models of discrete sources. In the first, we
assume that the output sequence from the soutce isstatistically independent.
Thatis, the current output letter is statistically independent from all past and
future outputs. A source whose output satisfies the condition of statistical
independence among outputletters in the sequenceis said to be memoryless.
Such a source is calied a discrete memoryless source (DMS).

If the discrete source output is statistically dependent, as, for example,
English text, we may construct a mathematical model based on statistical ”
stationarity. By definition, a discrete source is said to be Stationary if the
joint probabilities of two sequences of length n, say a@,.a3,...,a, and
Bisins Q24m.+++14y+m, are identical for all 2 = 1 and for all shifts m. In other

words, the joint probabilities for any arbitrary length sequence of source
outputs are invariant undera shift in the time origin.

An analog source has an output waveform x(¢) that is a sample function of a
_ Stochastic process X(1). We assume that X(r) is a stationary stochastic process

with autocorrelation function ¢,,(t) and power spectral density @,.(/). When
X(t) is a bandlimited stochastic process, i.e., ®,.(f)=0 for [f|=W, the
sampling theorem may be used to represent X(t) as

no 3 aig)
2wW

ae-==\2W

where {X(n/2W)} denote the samples of the process X(t) taken at the
sampling (Nyquist) rate of f, = 2W samples/s. Thus, by applying the sampling
theorem, we may convert the output of an analog source into an equivalent

 
(3-1-1)
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discrete-time source. Then, the source output is characterized statistically by
the joint pdf p(x), X2,...,%-») for all m #1, where X, =X(n/2W), len<m,
are the random variables corresponding to the samples of X(7).

-Wenote that the output samples {X(n/2W)} from the stationary sources are
generally continuous, and, hence, they cannot be represented in digital form
without someloss in precision. For example, we may quantize each sample to a
set of discrete values, but the quantization process results in loss of precision,
and, consequently,the original signal cannot be reconstructed exactly from the
quantized sample values. Later in this chapter, we shall consider the distortion
resulting from quantization of the samples from an analog source.

32 A LOGARITHMIC MEASURE OF INFORMATION

To develop an appropriate measureof information,let us consider two discrete
random variables with possible outcomes x;,, i=1,2,...,4, and y,, i=
1,2,...,mm, respectively. Suppose we observe some outcome Y¥ =y, and we
wish to determine, quantitatively, the amount of information that the
occurrence of the event Y = y, provides about the event X =x,,i=1,2,...,7.
Weobserve that when X andY are statistically independent, the occurrence of
Y = y, provides no information about the occurrence of the event X = x, On
the other hand, when X andYare fully dependent such that the occurrence of
Y = y, determines the occurrence of X =x,, the information contentis simply
that provided by the event X =x, A suitable measure that satisfies these
conditions is the logarithm ofthe ratio of the conditional probability

P(X =x; |Y =y,) = P(x,|»)
divided by the probability

P(X = x,;) @ P(x;)

Thatis, the information content provided by the occurrence of the event Y = y;
about the event X = x; is defined as

T(xys) = togel (3-2-1)
I(x; y,) is called the mutual information between x, and Ie

The units of I(x;y) are determined by the base of the Jogarithm, which is
usually selected as either 2 or e. When the base of the logarithm is 2, the units
of [(x;; y;) are bits, and when the base is e, the units of I(xi, y;) are called nats
{natural units). (The standard abbreviation for Jog. is In.) Since

In a = In2log, a = 0.693 15 log, a

the information measured in nats is equal to In2 times the information
measured in bits,

When the random variables X and Y are Statistically independent,

!
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P(x; Ly) = P(x) and, hence, /{x;.y,)=0. On the other hand, when the
occurrence of the event Y = y,; uniquely determines the occurrence of the event
X =x,, the conditional probability in the numerator of (3-2-1) is unity and,
hence, ,

1(x;: y;) = loga= —log P(x,) (3-2-2)
But (3-2-2) is just the information of the event X =x,. For this reason, it is
called the self-information of the event X = x; and it is denoted as

f(x) = = ~log P(x) (3-2-3)loge ——
°8 P(x,)

We note that a high-probability event conveys less information than a
low-probability event. In fact, if there is only a single event x with probability
P(x) = 1 then J{x) = 0. To demonstrate further that the logarithmic measure of
information content is the appropriate one for digital communications, let us
consider the following example.

Example 3-2-1

Suppose we have a discrete information source that emits a binary digit,
either 0 or 1, with equal probability every 1, seconds. The information
content of each output from source is

I(x;) = —log; P(x), 4, =0,1

= —log, } = | bit

Now suppose that successive outputs from the source are statistically
independent, i.e., the source is memoryless. Let us consider a block of &k
binary digits from the source that occurs in a time interval kt,. There are
M=2 possible k-bit blocks, each of which is equally probable with
probability 1/M =2~*. The self-information of a k-bit block is

I(x/) = —log, 2-* = k bits

emitted in a time interval kt,, Thus the logarithmic measure of information
content possesses the desired additivity property when a number of source
outputs is considered as a block.

Nowlet us return to the definition of mutual information given in (3-2-1)
and multiply the numerator and denominator of the ratio of probabilities by
P(y,). Since

Pox Ly) _ Pl|yPO)_ Ply) _ POy|x)
P(x) Px)PCy)}—Pix)P(y) PCy)
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we conclude that

fas yj) = Myx) — (3-2-4)

Therefore the information provided by the occurrence of the event Y =y,
about the event =x; is identical to the information provided by the
occurrence of the event X =x; about the event Y = y,.

Example 3-2-2

Suppose that X and Y are binary-valued {0,1} random variables that
represent the input and output of a binary-input, binary-output channel.
The input symbols are equally likely and the output symbols depend on the
input according to the conditional probabilities

P(Y =0|X =0)=1-p,

P(Y=1[X=0)=po

P(Y=1|X =1)=1-p,

P(Y =0[X =1)=p,

Let us determine the mutual information about the occurrence of the events

X =0 and X¥ = 1, given that Y = 0.
From the probabilities given above, we obtain

P(Y =0)= P(Y =0| X =0)P(X =0) + P(Y =0} X = 1)P(X =1)

= 4(1— pot p:)

P(Y¥ =1)= P(Y =1|X =0)P(X =0) + P(Y =1 |X =1)P(X =1)

= 41 — pi + po)

Then, the mutual information about the occurrence of the event X =0,
given that Y =0 is observed,is

4) = 1(0;0) =log,P=O1X=)1,201=Pod
Hain) 2(0; 0)=log, P(Y =0) + OBTt,

Similarly, given that Y =0 is observed, the mutual information about the
occurrence of the event ¥ = 1 is

(xz ys) # 11,0) = log, —23—
1—potp;
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Let us consider some special cases: First, if po = p, =0, the channelis called
noiseless and

1(0; 0) = log, 2 = 1 bit

Hence, the output specifies the input with certainty. On the other hand, if
Po= Pp. =}, the channelis useless because

(0; 0) = log, 1 = 0

However, if po = p, = 4, then

(0, 0) = log, 3 = 0.587

(0; 1) = log, $= —1 bit

- In addition to the definition of mutual information andself-information,it is
useful to define the conditionalself-information as

 1
I(x;|y,) = lo = —log P(x;|y;) 3-2-5)| 2) g P(x; | y;) og | i (

Then, by combining (3-2-1), (3-2-3), and (3-2-5), we obtain the relationship

I(x; y) = Hee:) — Te; | y)) (3-2-6)

Weinterpret /(x; | y;) as the self-information about the event X =x, after
having observed the event Y=y, Since both (x,)20 and I(x; | y;) #0,it
follows that £(x;;y,) <0 when I(x, |y,) > 4x), and I(x;:y,) >0 when I(x, | y,)<
i(x,;). Hence, the mutual information between a pair of events can be either
positive, or negative, or zero.

3-2-1 Average Mutual Information and Entropy
Having defined the mutual information associated with the pair of events
(x;, y;), which are possible outcomes of the two random variables X and Y, we
can obtain the average value of the mutual information by simply weighting
1(x;; y;) by the probability of occurrence of the joint event and summing over
ail possible joint events. Thus, we obtain

WX; Y)= > > Px, yn)
-¥S ¥ py. P(x, yj) 5.i= 2 Pe ¥)8Ge,Ply) G27)

as the average mutual information between X and Y. We observe that
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i(X;¥Y)=0 when X and Y are statistically independent. An important
characteristic of the average mutual information is that [(X;¥)20 (see
Problem 3-4).

Similarly, we define the average self-information, denoted by H(X), as

H(X) = 2 P(xUG)
= — 2D P(x) log P(x) (3-2-8)i=

When X represents the alphabet of possible output letters from a source, H(X)
represents the average self-information per source letter, and it is called the
entropy? of the source. In the special case in which the letters from the source
are equally probable, P(x;) = 1/n for all i, and, hence,

~1, 1

H(X)= 2 > log -
=logn (3-2-9)

In general, H(X} <logn (see Problem 3-5) for any given set of source letter
probabilities. In other words, the entropy of a discrete source is a maximum
when the output letters are equally probabie.

Example 3-2-3

Consider a source that emits a sequence ofstatistically independentletters,
where each output letter is either 0 with probability gq or 1 with probability
1-4. The entropy of this source is

H(X) = H(q) = —@ log — (1 — 9) log (1- q) (3-2-10)

The binary entropy function H(q)is illustrated in Fig. 3-2-1, We observe
that the maximum value of the entropy function occurs at q =} where
A(3) = 1.

The average conditional self-information is called the conditional entropy
and is defined

fal mm j

H(X| Y)=> 2 P(x, y) 8BETy) (3-2-11)
Weinterpret H(X| Y) as the information or uncertainty in X after Y is

+The term enropy is taken from statistical mechanics (thermodynamics), where a function
similar 10 (3-2-8) is called (thermodynamic) entropy.
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inbits/ener a=a~~

0
0 010203 0405 0607 0809 10° %

Binary entropy function. Probability ¢

observed. By combining (3-2-7), (3-2-8), and (3-2-11) we obtain the
relationship

KX, Y)=H(X)- H(X | Y) (3-2-12)

Since I(X;Y) =0, it follows that H(X)> H(X | Y), with equality if and
only if X andYare statistically independent. If we interpret H(X | Y) as the
average amount of (conditional self-information) uncertainty in X after we
observe Y, and H(X) as the average amount ofuncertainty (self-information)
prior to the observation, then /(X:Y) is the average amount of (mutual
information) uncertainty provided about the set X by the observationof the set
Y. Since H(X)= H(X|Y), it is clear that conditioning on the observation Y
does not increase the entropy.

Example 3-2-4

Let us evaluate the H(X|Y) and (X;Y) for the binary-input, binary-
output channel treated previously in Example 3-2-2 for the case where
Po = pi =p. Let the probabilities of the input symbols be P(X = 0) = q and
P(X =t)=1-—q. Then the entropy is

A(X) =H(g) = —q \ogq — (1 — g) log (1 - g)

where H(q) is the binary entropy function and the conditional entropy
H(X | Y) is defined by (3-2-11). A plot of H(X | Y) as a function of q with
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AtXY)~conditionalentropy 
   

FIGURE 3-2-2—Conditional entropy for binary-input, binary- 0 “O2 04 06 08 1.0
output symmetric channel. ¢~ probability of symbol X= 0

p aS a parameter is shown in Fig. 3-2-2. The average mutual information
1(X; Y) is plotted in Fig. 3-2-3.

As in the preceding: example, when the conditional entropy H(X | Y) is
viewed in terms of a channel whose input is X and whose output is Y,
H(X | Y) is called the equivocation and is interpreted as the amountof average
uncertainty remaining in X after observation of Y.

iCX,Y)~averagemutualinformation
FIGURE 3-2-3 Average mutual information for binary-input,

binary-output symmetric channel,
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The results given above can be generalized to more than two random
variables. In particular, suppose we have a block of k random variables
X,X2°:-X,, with joint probability P(x. +++x,)= P(X, = 4. X2=
X2,...,M_ =X,). Then, the entropy for the block is defined as

ity m "4

SY Dd--+ Dd Py,%,° ++ 5) log PQ, °° x),) (3-2-13)
wed jes heal

H(X\X1° +7 Xi) =

Since the joint probability P(x, +--+ x,) can be factored as

P(x, Xo ++ x4) = P(e) )P(xe2 | 41)Pry | x12) 0° Pg | tite te)

(3-214)

it follows that

A(X, X2X3°° -X,)= H(X)) + H(X2|X,) + H(X3| XX)

+... 4+ H(X, |X) - + Xe)
k

=D W(X, | XX20° X-1) (3-2-15)

By applying the result H(X)=H(X|Y), where X=X,, and Y=
XX) see Xn de in (3-2-15) we obtain

H(X, X29 X= S HX) (3-2-16)

with equality if and only if the random variables Y,,X2....,X, are
statistically independent.

3-2-2 Information Measures for Continuous
Random Variables

The definition of mutual information given above for discrete random variables
may be extended in a straightforward mannerto continuous random variables.
In particular, if X¥ and Y are random variables with joint pdf p(x, y} and
marginal pdfs p(x} and p(y), the average mutual information between X and
Y is defined as

epye-f Py | x)p(x)(x; =f[pec |xiog p(x)ply) dx dy (3-2-17)
Although the definition of the average mutual information carries over to
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continuous random variables, the concept of self-information does not. The
problem is that a continuous random variable requires an infinite number of
binary digits to represent it exactly. Hence, its self-information is infinite and,
therefore, its entropy is also infinite. Nevertheless, we shall define a quantity
that we call the differential entropy of the continuous random variable X as

Hix)=—Jpl)logp(x)dx (218)
We emphasize that this quantity does not have the physical meaning of
self-information, although it may appear to be a natural extension of the
definition of entropy for a discrete random variable (see Problem 3-6).

By defining the average conditional entropy of X given Y as

Hexlyy=-[[p@.y)tospe |y)ardy (3-2-19)
the average mutual information may be expressed as

WX; ¥) = A(X) - A(X | Y)

or, alternatively, as

I(X;Y) = H(Y) - A(Y |X)

In some. cases of practical interest, the random variable X is discrete and Y
's continuous. To be specific, suppose that X has -possible outcomes x,,
i=1,2,...,, and Y is described by its marginal pdf p(y). When X and Y are
statistically dependent, we may express p(y) as

P(y)= & py |x)PC:)
The mutual information provided about the event X = x, by the occurrence of
the event Y = y is

Ie:y)=log2L2DP@D(sy)=log p(y)P(x)
ne PL
eB) (3-2-20)

Then, the average mutual information between X andYis

1Y)= &[po [2aP@d 1ogLED ay (32-21)
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Example 3-2-5

Suppose that X is a discrete random variable with two equally probable

outcomes x, =A and x, = —A. Let the conditional pdfs p(y | x,), i =1, 2, be
gaussian with mean x; and variance o’. Thatis,

1

p(y |A)= Taner" (3-2-22)
1

Ply | ~A) = Gare01ANe (3-2-22)
The average mutual information obtained from (3-2-21) becomes

KX, Y)= sf. [ow | A) gL)cy ~A)1gay
(3-2-23)

Ply) =31p(y | A) + p(y | -A)] (3-2-24)

In Chapter 7, it will be shown that the average mutual information /(X; Y)
given by (3-2-23).represents the channel capacity of a binary-input additive
white gaussian noise channel.

3-3 CODING FOR DISCRETE SOURCES

In Section 3-2 we introduced a measure for the information content associated

with a discrete random vanable X. When X is the outputof a discrete source,
the entropy H(X) of the source represents the average amountof information
emitted by the source. In this section, we consider the process of encoding the
output of a source, i.e., the process of representing the source output by a
sequence of binary digits. A measure of the efficiency of a source-encoding
method can be obtained by comparing the average numberof binary digits per
output letter from the source to the entropy H(X).

The encoding of a discrete source havingafinite alphabet size may appear,
at first glance, to be a relatively simple problem. However, this is true only
when the source is memoryless, i.c., when successive symbols from the source
are statistically independent and each symbol is encoded separately. The

discrete memoryless source (DMS) is by far the simplest mode! that can be
devised for a physical source. Few physical sources, however, closely fit this
idealized mathematical model. For example, successive output letters from a
machine printing English text are expected to be statistically dependent. On
the other hand,if the machine output is a computer program coded in Fortran,
the sequence of output letters is expected to exhibit a much smaller
dependence. In any case, we shall demonstrate thatit is always moreefficient
to encode blocks of symbol instead of encoding each symbol separately. By
making the block size sufficiently large, the average number of binary digits
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per output letter from the source can be made arbitrarily close to the entropy
of the source.

3-3-1 Coding for Discrete Memoryless Sources

Suppose that a DMS produces an output letter or symbol every 1, seconds.
Each symbol is selected from a finite alphabet of symbols x, (=1,2,..., L,
occurring with probabilities P(x;), i= 1,2,..., £. The entropy of the DMSin
bits per source symbol is

A(X) = -> P(x,) log, P(x,) = log, L (3-3-1)
where equality holds when the symbols are equally probable. The average
number of bits per source symbol is H(X) and the source rate in bits/s is
defined as H(X)/t,.

Fixed-Length Code Words First we consider a block encoding scheme
that assigns a unique set of R binary digits to each symbol. Since there are L
possible symbols, the number of binary digits per symbol required for unique
encoding when L is a powerof 2 is

R= log, L (3-3-2)

and, when ZL is not a powerof 2,it is

R =|log, LJ+1 (3-3-3)

where Lx| denotes the largest integer less than x. The code rate R in bits per
symbolis now A and, since H(X) < log, L, it follows that R = H(X).

Theefficiency of the encoding for the DMSis defined as the ratio H(X)/R.
We observe that when L is a power of 2 and the source letters are equally
probable, R = H(X). Hence, a fixed-length code of R bits per symbolattains
100% efficiency. However,if L is not a power of 2 but the source symbols are
still equally probable, R differs from H(X) by at most 1 bit per symbol. When
log, L. >> 1, the efficiency of this encoding scheme is high. On the other hand,
when L is small, the efficiency of the fixed-length code can be increased by
encoding a sequence of J symbols at a time. To accomplish the desired
encoding, we require L’ unique code words. By using sequences of N binary
digits, we can accommodate 2” possible code words. N must be selected such
that

N= J log, L

Hence, the minimum integer value of N required is

N=L/ log, LJ+1 (3-3-4)

Now the average numberofbits per source symbolis N/J = R, and, thus, the
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inefficiency has been reduced by approximately a factor of 1/J relative to the
symbol-by-symbol encoding described above. By making J sufficiently Jarge,
the efficiency of the encoding procedure, measured by the ratioJH(X)/N, can
be made asclose to unity as desired.

The encoding methods described above introduce no distortion since the
encoding of source symbols or blocks of symbols into code words is unique.
This type of encoding is called noiseless.

Now, suppose we attempt to reduce the code rate R by relaxing the
condition that the encoding process beunique. For example, suppose that only
a fraction of the L’ blocks of symbols is encoded uniquely. To be specific,let
us select the 2“ —] most probable /-symbol blocks and encode each of them
uniquely, while the remaining L’ ~ (2“ — 1) J-symbol blocks are represented
by the single remaining code word. This procedureresults in a decoding failure
or (distortion) probability of error every time a low probability block is
mapped into this single code word. Let P. denote this probability of error.
Based on this block encoding procedure, Shannon (1948a) proved the
following source coding theorem.

Source Coding Theorem I

Let X be the ensemble of letters from a DMS with finite entropy H(X).
Blocks of J symbols from the source are encoded into code words of length
N from a binary alphabet. For any ¢>0, the probability P. of a block
decoding failure can be made arbitrarily small if

R= -> H(X)+¢ (3-3-5)
and J is sufficiently large. Conversely,if

R<H(X)-e (3-3-6)

then P. becomesarbitrarily close to 1 as J is made sufficiently large.

From this theorem, we observe that the average numberof bits per symbol
required to encode the output of a DMS with arbitrarily small probability of
decoding failure is lower bounded by the source entropy H(X). On the other
hand, if R<H(X), the decoding failure rate approaches 100% as J is
arbitrarily increased,

Variable-Length Code Words When the source symbols are not equally
probable, a more efficient encoding method is to use variable-length code
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VARIABLE-LENGTH CODES

Letter P(a,) Code I Code 1 Code IE 

a, 4 1 0 0
a, 4 00 16 a
a; k 01 110 011
a, k 10 111 111 

words. An example of such encoding is the Morse code, which dates back to
the nineteenth century. In the Morse code, the letters that occur more

‘frequently are assigned short code words and those that occur infrequently are
assigned long code words. Following this general philosophy, we may use the
probabilities of occurrence of the different source letters in the selection of the
code words. The problem is to devise a method for selecting and assign-
ing the code words to source letters. This type of encodingis called entropy
coding.

For example, suppose that a DMS with output letters a,, a2, a3, a4 and
corresponding probabilities P(a,)=3, P(az)=4, and P(a3)= P(a4) =} is
encoded as shown in Table 3-3-1. Code I is a variable-length code that has a
basic flaw. To see the flaw, suppose we are presented with the sequence
001001 .... Clearly, the first symbol corresponding to 00 is a). However, the
next four bits are ambiguous (not uniquely decodable), They may be decoded
either as a,@, Or as a,a2a,. Perhaps, the ambiguity can be resolved by waiting
for additional bits, but such a decoding delay is highly undesirable. We shall
only consider codes that are decodable instantaneously, that is, without any
decoding delay.

Code JJ in Table 3-3-1 is uniguely decodable and instantaneously decodable.
It is convenientto represent the code words in this code graphically as terminal
nodesof a tree, as shown in Fig. 3-3-1. We observe that the digit 0 indicates the
end of a code wordfor the first three code words. This characteristic plus the
fact that no cede word is longer than three binary digits makes this code
instantaneously decodable. Note that no code word in this code is a prefix of
any other code word. In general, the prefix condition requires that for a given
code word C, of length k having elements (6,, 62,..., 6,), there is no other
code word of length /< with elements (b,, 62,...,6,) for 1</<k—1. In

Code tree for code II in Table 3-3-1. ! ! I
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Code tree for code HH in Table 3-3-!. t I '

other words, there is no code word of length /< é thatis identical to the first /
binary digits of another code word of length k >é This property makes the
code words instantaneously decodable.

Code III given in Table 3-3-1 has the tree structure shown in Fig. 3-3-2. We
note that in this case the code is uniquely decodable but nor instantaneously
decodable. Clearly, this code does nor satisfy the prefix condition.

Our main objective is to devise a systematic predure for constructing
uniquely decodable variable-length codes that are efficient in the sense that the
average numberofbits per source letter, defined as the quantity

i

R= > n,P(a) (3-3-7)k=1

is minimized. The conditions for the existence of a code that satisfies the. prefix
condition are given by the Kraft inequality.

Kraft Inequality A necessary and sufficient condition for the existence ofa
binary code with code words having lengths 2, <n, <... <n, that satisfy the
prefix condition is

i

21 (3-3-8)k=)

First, we prove that (3-3-8) is a sufficient condition for the existence of a
code that satisfies the prefix condition, To construct such a code, we begin with
a full binary tree of order n =n, that has 2” terminal nodes and two nodes of
order k stemming from each node of order k — 1, for each k, | <k <n. Let us
select any node of order n, as the first code word C,. This choice eliminates
2"~"" terminal nodes (or the fraction 2~”' of the 2” terminal nodes). From the
remaining available nodes of order nz, we select one node for the second code
word C;. This choice eliminates 2"~”: terminal nodes (or the fraction 2~"” of
the 2” terminal nodes). This process continues until the last code word is
assigned at terminal node n=n,. Since, at the node of order J<L, the
fraction of the number of terminal nodes eliminated is

L +

Swam< NIA<1k=lk=l
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Construction of a binary tree code embedded in a full tree.

there is always a node of order k >j available to be assigned to the next code
word. Thus, we have constructed a code tree that is embedded in the full tree

of 2" nodesas illustrated in Fig. 3-3-3, for a tree having 16 terminal nodes and
a source output consisting of five letters with n,=1, n.=2, n,=3, and
nmy=ng=4.

To prove that (3-3-8) is a necessary condition, we observe that in the code
tree of order n =a,, the number of terminal nodes eliminated from the total
numberof 2” termina! nodesis

L

maz"ket

Hence,

Mr 2% <1
k=1

and the proof of (3-3-8) is complete.
The Kraft inequality may be used to prove the following (noiseless) source

coding theorem, which applies to codes that satisfy the prefix condition.

Source Coding Theorem II

Let X be the ensemble of letters from a DMSwith finite entropy H(X), and
outputletters x,, 1< k= L, with corresponding probabilities of occurrence
Ps, 1k =L. It is possible to construct a code that satisfies the prefix
condition and has an average length 2 thatsatisfies the inequalities

H(X)<R<A(X)+1 (3-3-9)
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To establish the lower bound in (3-3-9), we note that for code words that
have length n,, 1=k < L, the difference H(X) ~ R may be expressed as

_ L 1 i

H(X)— R= % pxlo aPattk=1 =

2"= > Pr loBs (3-3-10)
Use of the inequality In x =x — 1 in (3-3-10) yields

 

H(X)- R= (lore) Spa~ 1)
< (log, (>an i) <0

where the last inequality follows from the Kraft inequality. Equality holds if
and only if p, =2°™ for 1=k<L.

The upper boundin (3-3-9) may be established under the constraint that n,,
1<k <L,are integers, by selecting the {a,} such that 2~" <p, <2~"*'. Butif
the termsp, =2~™ are summed over 1 =k < L, we obtain the Kraft inequality,
for which we have demonstrated that there exists a code that satisfies the prefix
condition. On the other hand, if we take the logarithm of p,<2°™*', we
obtain

log p, < -a, +1

or, equivalently,

ny, <1 — log p, (3-3-11)

If we multiply both sides of (3-3-11) by p, and sum over 1 <k < L, we obtain
the desired upper bound given in (3-3-9). This completes the proof of (3-3-9).

We have now established that variable length codes that satisfy the prefix
condition are efficient source codes for any DMS with source symbols that are
not equally probable. Let us now describe an algorithm for constructing such
codes,

Huffman Coding Algorithm Huffman (1952) devised a variable-length
encoding algorithm, based on the source letter probabilities P(x;), i=
1,2,..., L. This algorithm is optimum in the sense that the average number of
binary digits required to represent the source symbols is a minimum, subject to
the constraint that the code words satisfy the prefix condition, as defined
above, which allows the received sequence to be uniquely and instantaneously
decodable. Weillustrate this encoding algorithm by means of two examples.
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Letter Probability Self-information Code

x das 1.5146 oO
4 0.20 1.7370 0
aly 0.20 23219 10
\y 0.10 43219 110
Ay 0.04 4.6439 10
Ne 0.005 7.6439 Ho

. . : 0. 6439 ani
FIGURE 3-3-4 An example ofvariable-length-source a 005 2

encoding for a DMS. A(X)= 211 R=121

Example 3-3-1

Consider a DMS with seven possible symbols x,,x2,...,%7 having the
probabilities of occurrence illustrated in Fig. 3-3-4. We have ordered the
source symbols in decreasing order of the probabilities, i.e.. P(x,) > P(x.) >
... > P(x). We begin the encoding process with the two least probable
symbols x, and x,. These two symbols are tied together as shown in Fig.
3-3-4, with the upper branchassigned a 0 and the lower branch assigned a 1.
The probabilities of these two branches are added together at the node
where the two branches meetto yield the probability 0.01. Now we have the
source symbols x,,..., ¥5 plus a new symbol,say xg, obtained by combining
X, and x. The next step is to join the two least probable symbols from the
Set X), X2, %3, X4, Xs, Xs. These are x; and x;, which have a combined
probability of 0.05. The branch from x; is assigned a 0 and the branch from
x6 is assigned a 1. This procedure continues until’we exhaust the set of
possible source letters. The result is a code tree with branches that contain
the desired code words. The code words are obtained by beginning at the
rightmost node in the tree and proceeding to.the left. The resulting code
words are listed in Fig. 3-3-4. The average number of binary digits per
symbol for this code is R = 2.21 bits/symbol. The entropy of the source is
2.11 bits/symbol. ;

We make the observation that the code is not necessarily unique. For
example, at the next tothe last step in the encoding procedure, we havea tie
between x, and x}, since these symbols are equally probable. At this point, we

chose to pair x, with x2. Analternative is to pair x, with xj. If we choose this
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ty iT}
Xy 110
Xy 1110
Xs 1h0
Xs Vabiod

An alternative code for the DMSin ia,
Example 3-3-1. R=221

pairing, the resulting codeis illustrated in Fig. 3-3-5. The average numberof
bits per source symbolfor this code is also 2.21. Hence, the resulting codes are
equally efficient. Secondly, the assignment of a 0 to the upper branch and a 1
to the lower (less probable) branch is arbitrary. We may simply reverse the
assignment of a 0 and 1 andstill obtain an efficient code satisfying the prefix
condition.

Example 3-3-2

As a second example,let us determine the Huffman code for the output of a
DMSillustrated in Fig. 3-3-6. The entropy of this source is H(X) =
2.63 bits/symbol. The Huffman code as illustrated in Fig. 3-3-6 has an
average length of R = 2.70 bits/symbol. Hence,its efficiency is 0.97.

Huffman code for Example 3-3-2.
0.36

0.14 Lever Code

ons 4 » 00
xy G10

0.12 ny oll
Ny 100

o.10 ts 101
0.09 ty LId

Xy i110
0.04 % Wi
 

0.02 HiX}=263) R=2.70
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The variable-length encoding (Huffman) algorithm described in the above
examples generates a prefix code having an R that satisfies (3-3-9). However,
instead of encoding on a symbol-by-symbolbasis, a more efficient procedure is
to encode blocks of / symbols at a time. In such a case, the bounds in (3-3-9) of
source coding theorem II become

JH(X) < R, <JH(X) +1, (3-3-12)

since the entropy of a J-symbol block from a DMSis JH(X), and R, is the
average numberof bits per J-symbol blocks. If we divide (3-3-12) by J, we
obtain

H(X) << H(X) + ; (3-3-13)
where R,/J = R is the average numberof bits per source symbol. Hence & can
be made as close to H(X) as desired by selecting J sufficiently large.

Example 3-3-3

The output of a DMSconsists of éetters x,, x2, and x3 with probabilities 0.45,
0.35, and 0.20, respectively. The entropy of this source is H(X)=
1.518 bits/symbol. The Huffman code for this source, given in Table 3-3-2,
requires R, = 1.55 bits/symbol and results in an efficiency of 97.9%. If pairs
of symbols are encoded by means of the Huffmanalgorithm, the resulting
code is as given in Table 3-3-3. The entropy of the source output for pairs of
letters is 2H(X)= 3.036 bits/symbol pair. On the other hand, the Huffman
code requires R,= 3.0675 bits/symbol pair. Thus, the efficiency of the
encodingincreases to 2H(X)/R2 = 0.990 or, equivalently, to 99.0%.

In summary, we have demonstrated that efficient encoding for a DMS may
be done on a symbol-by-symbol basis using a variable-length code based on

HUFFMAN CODE FOR EXAMPLE 3-3-3
meee

Letter Probability Self-information CodeSLa

xy 0.45 1.156 1
X> 0.35 1.520 00
X, 0.20 2.330 01

H(X) = 1.518 bits/letter
R, = 1.55 bits/letter

Efficiency = 97.9%
RPPrr
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TABLE 333) HUFFMAN CODE FOR ENCODING PAIRS OF LETTERS

Letter pair Probability Self-information Code

xX) 0.2025 2312 10
Xx, X2 0.1575 ° 2.676 601
X>X, 0.1575 2.676 010
XX 0.1225 3.039 O11
ray 0.09 3.486 HH}
aX) 0.09 3.486 0000
Aaky 0.07 3.850 0001
X4X> 0.07 3.850 1100
X3Xy 0.04 4.660 1101

2H(4) = 3.036 bits/letter pair
R, =3.0675 bits/letter pair

LR, = 1.534 bits/letter
Efficiency = 99.0% 

the Huffman algorithm. Furthermore, the efficiency of the encoding procedure
is increased by encoding blocks of J symbols at a time. Thus, the output of a
DMSwith entropy H(X) may be encoded by a variable-length code with an
average numberofbits per source letter that approaches H(X) as closely as
desired.

3-3-Z Discrete Stationary Sources

In the previoussection, we described theefficient encoding of the output of a
DMS.In this section, we consider discrete sources for which the sequence of
outputletters is statistically dependent. We limit our treatment to sources that
are statistically stationary.

Let us evaluate the entropy of any sequence of letters from a stationary
source. From the definition in (3-2-13) and the result given in (3-2-15), the
entropy of a block of random variables XX, --- X, is

k

H(XX2° + X= DAK; | XXy+ Xi) (3-3-14)ivy

where H(X; | X,X2-- + X,-,) is the conditional entropy ofthe ith symbol from
the source given the previous i —1 symbols. The entropy per letter for the
k-symbolblock is defined as

1

AYAX) = 7 H(XXa- + Xx) (3-3-15)
Wedefine the information content of a stationary source as the entropy per
letter in (3-3-15) in the limit as k > ~. Thatis,

H,(X) = lim HA{X)= tim i H(X,X,-- + X;) (3-3-16)
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The existence of this limit is established below.

As an alternative, we may define the entropy per letter from the source in
terms of the conditional entropy H(X, |X\Xa--°X,_1) in the limit as k
approaches infinity. Fortunately, this limit also exists and is identical to the
limit in (3-3-6). That is.

A(X) = lim A(X, XX2+ ++ Xx-1) (3-3-17)

This result is also established below. Our developmentfollows the approach in
Gallager (1968).

First, we show that

H(X, | XiX20 ++ Xe) SAM|XX ° + - Xe-2) (3-3-18)

for k >2. From our previous result that conditioning on a random variable
cannotincrease entropy, we have

A(X, | XiX20 Xe) SAA, | XX Xe) (3-3-19)

From the stationarity of the source, we have

A(X, | XX to Xe) = AX, | MM +++ Xq-2)  (3-3-20)

Hence, (3-3-18) follows immediately. This result demonstrates that
H(X, |X,X2-> ++ X,_-1) is a nonincreasing sequencein k.

Second, we havethe result

H,(X) = H(X, | XiX2-° X14) (3-3-21)

which follows immediately from (3-3-14) and (3-3-15) and the fact that the last
term in the sum of (3-3-14) is a lower bound on each of the other k — 1 terms.

Third, from the definition of H,(X), we may write

HX) = FH(XXa Xe) #HK|Xe Xo]
i

= lk — WH, (CX) + A(X, | X10 Xe-1)]
k-1 1

STMe) + FAX)

which reduces to

H,{X) = Hy, (X) (3-3-22)

Hence, H,(X) is a nonincreasing sequence in k.
Since H,(X) and the conditional entropy H(X,:|X1--+X,-1) are both
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nonnegative and nonincreasing with k, both limits must exist. Their limiting
forms can be established by using (3-3-14) and (3-3-15) to express H,,;(X) as

1

Fa(X)=Xe "Xx 1)
1

+glHLa +Xqos) + A(Xea | Xa Xe)
+... + A(X,.; |X, * *Xesj-]

Since the conditional entropy is nonincreasing, the first term in the square
brackets serves as an upper bound on the other terms. Hence,

Hof)<pHOXa Xi,y+SHOX, Xy> >> Xx-1)
(3-3-23)

For a fixed k, the limit of (3-3-23) as j-» © yields

HAX) = H{X, |X)X2- °° Xy-1) (3-3-24)

But (3-3-24) is valid for all k; hence,it is valid for kK-» ©, Therefore,

HAX) < lim H(X,. | X)X20+° X41) (3-3-25)
On the other hand, from (3-3-21), we obtain in the limit as k > &,

HA(X) = ‘in A(X, | X1X2°+ + X41) (3-3-26)
which establishes (3-3-17).

Now suppose we have a discrete stationary sourcethat emits J letters with
H,(X) as the entropyperletter. We can encode the sequence of J letters with a
variable-length Huffman code thatsatisfies the prefix condition by following
the procedure described in the previous section. The resulting code has an
average numberofbits for the J-letter block that satisfies the condition

By dividing each term of (3-3-27) by J, we obtain the bouts on the average
number R = R,/J of bits per source letter as

Hy(X)<R< HX) +5 (3-3-28)
By increasing the block size J, we can approach H,(X)arbitrarily closely, and
in the limit as J» %, R satisfies

HAX)=R<HAX) +e (3-3-29)
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where € approaches zero as 1/J. Thus, efficient encoding of stationary sources
is accomplished by encoding large blocks of symbols into code words. We
should emphasize, however, that the design of the Huffman code requires
knowledgeof the joint pdf for the J-symbol blocks.

se Lempel-Ziv Algorithm

From our preceding discussion, we have observed that the Huffman coding
algorithm yields optimal source codes in the sense that the code words satisfy
the prefix condition and the average block length is a minimum. To design a
Huffman code for a DMS, we need to know the probabilities of occurrence of
all the source letters. In the case of a discrete source with memory, we must
know the joint probabilities of blocks of length n =2. However, in practice,
the statistics of a source output are often unknown.In principle, it is possible
to estimate the probabilities of the discrete source output by simply observing
a long information sequence emitted by the source and obtaining the
probabilities empirically. Except for the estimation of the marginal prob-
abilities {p,}, corresponding to the frequency of occurrence of the individual
source output letters, the computational complexity involved in estimating
joint probabilities is extremely high. Consequently, the application of the
Huffman coding method to:source coding for many real sources with memory
is generally impractical.

In contrast to the Huffman coding algorithm, the Lempel-Ziv source coding
algorithm is designed to be independent of the sourcestatistics. Hence, the
Lempel-Ziv algorithm belongs to the class of universal source coding
algorithms, It is a variable-to-fixed-length algorithm, where the encoding is
performed as described below.

In the Lempel-Ziv algorithm, the sequence at the output of the discrete
source is parsed into variable-length blocks, which are called phrases. A new
phrase is introduced every time a block ofletters from the source differs from
some previous phrase in the last letter. The phrases are listed in a dictionary,
which storesthe location of the existing phrases. In encoding a new phrase, we
simply specify the location of the existing phrase in the dictionary and append
the newletter.

As an example, consider the binary sequence

10101 101001001 11010100001 1001110101100011011

Parsing the sequence as described above produces the following phrases:

1, 0, 10, 11, 01, 00, 100, 141, 010, 1000, 011, 001, 110, 101, 10001, 1011

Weobservethat each phrase in the sequence is a concatenation of a previous
phrase with a new outputletter from the source. To encode the phrases, we
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TABLE 3-3-4 DICTIONARY FOR LEMPEL-ZIV

 

 

ALGORITHM

Dictionary Dictionary © Code
location contents word

| 0001 1 00001
2 0010 0 06000
3 OO11 10 00010
4 O100 1 00011
5 Ol ay 00101
6 0110 00 00100
7 Gilt 100 Gio
8 1000 WW 01001
9 1001 010 O1dlcG

10 1010 1000 01110
11 1011 oO] 01011
12 100 001 01101
13 1101 110 01000
14 Ire (01 00111
15 111 10001 1010)
16 1OLt 11101
 

construct a dictionary as shown in Table 3-3-4. The dictionary locations are
numbered consecutively, beginning with 1 and counting up, in this case to 16,
which is the number of phrases in the sequence. The different phrases
corresponding to each location are also listed, as shown. The codewords are
determined bylisting the dictionary location (in binary form) of the previous
phrase that matches the new phrasein all but the last location. Then, the new
output letter is appended to the dictionary location of the previous phrase.
Initially, the location 0000 is used to encode a phrase that has not appeared
previously,

The source decoder for the code constructs an identical table at the
receiving end of the communication system and decodes the received sequence
accordingly.

It should be observed that the table encoded 44 source bits into 16 code
words of five bits each, resulting in 80 coded bits. Hence, the algorithm
provided no data compression at all. However, the inefficiency is due to the
fact that the sequence we have considered is very short. As the sequenceis
increased in length, the encoding procedure becomes moreefficient and results
in a compressed sequenceat the outputof the source.

Howdo weselect the overall length of the table? In general, no matter how
large the table is, it will eventually overflow. To solve the overflow problem,
the source encoder and source decoder must agree to remove phrases from the
respective dictionaries that are not useful and substitute new phrases in their
place.

116



117

 

108—biGiTAL COMMUNICATIONS

The Lempel-Ziv algorithm is widely used in the compression of computer
files. The “compress” and “uncompress”utilities under the UNIX® operating
system and numerous algorithms under the MS-DOS operating system are
implementations of various versions of this algorithm.

3-4 CODING FOR ANALOG SOURCES—OPTIMUM

QUANTIZATION

As indicated in Section 3-1, an analog source emits a message waveform x(r)
that is a sample function of a stochastic process X(t). When X(r) is a
bandlimited, stationary stochastic process, the sampling theorem allows us to
represent X(t) by a sequence of uniform samples taken at the Nyquist rate.

By applying the sampling theorem, the output of an analog source is
converted to an equivalent discrete-time sequence of samples. The samples are
then quantized in amplitude and encoded. One type of simple encodingis to
represent each discrete amplitude level by a sequence of binary digits. Hence,
if we have L levels, we need R =log, L bits per sample if L is a powerof2, or
R =Llog, L]+1 if L is not a power of 2. On the other hand,if the levels are
not equally probable, and the probabilities of the output levels are known, we
may use Huffman coding(also called entropy coding) to improvetheefficiency
of the encoding process.

Quantization of the amplitudes of the sampled signal results in data
compression but it also introduces some distortion of the waveform ora loss of
signal fidelity. The minimization of this distortion is considered in this section.
Many of the results given in this section apply directly to a discrete-time,
continuous amplitude, memoryless gaussian source. Such a source serves as a
good model for the residual error in a number of source coding methods
described in Section 3-5,

3-4-1 Rate-Distortion Function

Let us begin the discussion of signal quantization by considering the distortion
introduced when the samples from the information source are quantized to a
fixed numberofbits. By the term “distortion,” we mean some measure of the
difference between the actual source samples {x,} and the corresponding
quantized values %,, which we denote by d{x,, %,}. For example, a commonly
used distortion measure is the squared-error distortion, defined as

A(4, Eg) = (te ~ BP (3-4-1)

which is used to characterize the quantization error in PCM in Section 3-5-1.
Other distortion measures may take the general form

A(x, Fy) = bx -— Fy? (3-4-2)

where p takes values from the set of positive integers. The case p =2 has the
advantage of being mathematically tractable.
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a

If d(x,, ¥)} is the distortion measure perletter, the distortion between a
sequence of n samples X,, and the corresponding n quantized values X,is the
average over the n source output samples, i.e.,

UX» K)= 7D dle 4) 3-43)
The source output is a random process, and, hence, the n samples in X,, are
random variables. Therefore, d(X,,, X,) is a random variable. Its expected
value is defined as the distortion D,i.e.,

D = Eld(X,, X)1 == > Eld(,%)1= Fld, 3)] (3-4-4)
where the last step follows from the assumption that the source output process
is stationary.

Now suppose we have a memoryless source with a continuous-amplitude
output X that has a pdf p(x), a quantized amplitude output alphabet X, and a
per letter distortion measure d(x, %), where xe X and < © X. Then, the
minimum rate in bits per source output thatis required to represent the output
X of the memoryless source with a distortion less than or equal to D is called
the rate-distortion function R(D) andis defined as

R(D) = min —#(X, X) (3-4-5)
P(e |y)E[a(%.X)]<D

where /(X; X) is the average mutual information between X and X. In general,
the rate R(D) decreases as D increases or. conversely, R(D) increases as D
decreases.

Oneinteresting model of a continuous-amplitude, memoryless information
source is the gaussian source model. In this case, Shannon proved the following
fundamental theorem on the rate-distortion function.

Theorem: Rate-Distortion Function for a Memoryless Gaussian Source
(Shannon, 1959a)

The minimum information rate necessary to represent the output of a
discrete-time, continuous-amplitude memoryless gaussian source based on a
mean-square-error distortion measure per symbol (single letter distortion
measure) is

R,(D)= {ices (02/D) (0<D<c?)(D> 0?) C46)

where a7 is the variance of the gaussian source output.
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2.0

R,(D)bits/symbol 5
Rate distortion function for a continuous-amplitude memoryless % 02 04 06 O8 I. 2
gaussian source. Dio;

Weshould note that (3-4-6) implies that no information need be transmitted
when the distortion D = 02. Specifically, D =a? can be obtained by using
zeros in the reconstruction of the signal. For D > 07, we can use statistically
independent, zero-mean gaussian noise samples with a variance of D — a? for
the reconstruction. R,(D)is plotted in Fig. 3-4-1.

The rate distortion function R(D) of a source is associated with the
following basic source coding theorem in information theory.

Theorem: Source Coding with a Distortion Measure (Shannon, 19592)

There exists an encoding scheme that maps the source output into code
words such that for any given distortion D, the minimum rate R(D)bits per
symbol (sample) is sufficient to reconstruct the source output with an
averagedistortion thatis arbitrarily close to D.

It is clear, therefore, that the rate distortion function R(D) for any source
represents a lower bound on the source rate that is possible for a given level of
distortion.

Let us return to the result in (3-4-6) for the rate distortion function of a
memoryless gaussian source. If we reverse the functional dependence between
D and R, we may express D in terms of R as

DR) = 2°oF (3-4-7)

This funcion is called the distortion-rate function for the discrete-time,
memoryless gaussian source.

When we express the distortion in (3-4-7) in dB, we obtain

10 logia D,(R) = —6R + 10 logig 72 (3-4-8)

Note that the mean square distortion decreases at a rate of 6 dB/bit.
Explicit results on the rate distortion functions for memoryless non-gaussian

sources are not available. However, there are useful upper and lower bounds
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on the rate distortion function for any discrete-time, continuous-amplitude,
memoryless source. An upper boundis given by the following theorem.

Theorem: Upper Bound on R(D)

The rate-distortion function of a memoryless, continuous-amplitude source
with zero mean andfinite variance o, with respect to the mean-square-error
distortion measure is upper bounded as

2

R(D) < hog, > (0<D<e) (3-4-9)
A proof of this theorem is given by Berger (1971). It implies that the

gaussian source requires the maximum rate among all other sources for a
specified level of mean square distortion. Thus, the rate distortion R(D) of any
continuous-amplitude, memoryless source with zero mean and finite variance
o% satisfies the condition R(D) = R,(D). Similarty, the distortion-rate function
of the same source satisfies the condition

D(R) = DR) = 2° 7%oe; (3-4-10)

A lower bound on the rate-distortion function also exists. This is called the

Shannon lower bound for a mean-square-error distortion measure, andis given
as

R*(D) = H(X) — } log, 2meD (3-4-11)

where H(X)is the differential entropy of the continuous-amplitude, memory-
less source. The distortion-rate function corresponding to (3-4-11) is

DH(R)= 5-21 (3-4-12)
Therefore, the rate-distortion function for any continuous-amplitude, memory-
less source is bounded from above and below as

R*(D)=R(D)=R,(D) (3-4-13)

and the corresponding distortion-rate function is bounded as

D*(R) = D(R) S DAR) (3-4-14)

The differential entropy of the memoryless gaussian sourceis

H,(X) = } logs 2aea? (3-4-15)

so that the lower bound R*(D) in (3-4-11) reduces to R,(D). Now, if we
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express D*(R) in terms of decibels and normalize it by setting a= 1 [or
dividing D*(R) by o?}, we obtain from (3-4-12)

10 logy) D*(R) = —6R — 6[H,(X) - H(X)] (3-4-16)

or, equivalently,

10 logic om = 6(H,(X) — H(X)] dB
= 6[R,(D) — R*(D)] dB (3-4-17)

The relations in (3-4-16) and (3-4-17) allow us to compare the lower bound in
the distortion with the upper bound which is the distortion for the gaussian
source. We note that D*(&) also decreases at —6dB/bit. We should also

mention that the differential entropy H(X} is upper-bounded by H,(X), as
shown by Shannon (1948b).

Table 3-4-1 lists four pdfs that are models commonly used for source signal
distributions. The table shows the differential entropies, the differences in rates
in bits/sample, and the difference in distortion between the upper and lower
bounds. Note that the gamma pdf shows the greatest deviation from the
gaussian, The Laplacian pdf is the most similar to the gaussian, and the
uniform pdf ranks second of the pdfs shownin the table. These results provide
some benchmarks on the difference between the upper and lower bounds on
distortion and rate.

Before concluding this section, fet us consider a band-limited gaussian
source with spectral density

2/2W |awp-{2! (ifl<W)0 (lf|>W)

Whenthe output ofthis source is sampled at the Nyquist rate, the samples are
uncorrelated and. since the source is gaussian, they are also Statistically

(3-4-18)

DIFFERENTIAL ENTROPIES AND RATE DISTORTION COMPARISONS OF FOUR
COMMON PDFs FOR SIGNAL MODELS
eee

R,(D)- RD) _D,(R)- D*(R)

 

 

pat p(x) HQ) (bits/sample) (dB)

Gaussian aw eet 4 log, (2aea2) 0 0
1

Uniform Rag Rls vig, £ log, (1207) 0.255 1.53
Low

Laplacian==e V2 ixhers 4 log, (2e7a) 0.104 0.62
3 ~ V3Lelie 1 Cag taza?

Gamma aaa’ * Slog, (4ae"4?" 97/3) 0.709 425
See
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independent. Hence, the equivalent discrete-time gaussian source is memory-
less. The rate-distortion function for each sample is given by (3-4-6).
Therefore, the rate-distortion function for the band-limited white gaussian
sourcein bits/s is

2

R,(D) = W log, > (0<D<o?) (3-4-19)
The corresponding distortion-rate function is

D,{R) =27"'%q? (3-4-20)

which, when expressed in decibels and normalized by a2, becomes

10 log D,(R)/o2 = -3R/W (3-4-21)

The more general case in which the gaussian process is neither white nor
band-limited has been treated by Gallager (1968) and Goblick and Holsinger
(1967).

3-4-2 Scalar Quantization

In source encoding, the quantizer can be optimized if we know the probability
density function of the signal amplitude at the input to the quantizer. For
example, suppose that the sequence {x,} at the input to the quantizer has a pdf
p(x) and let L = 2* be the desired numberof levels. We wish to design the
optimum scalar quantizer that minimizes some function of the quantization
error q = * ~x, where £ is the quantized value of x. To elaborate, suppose that
f(%—x) denotes the desired function of the error. Then, the distortion
resulting from quantization of the signal amplitudeis

D= f f(® —x)p(x) dx (3-4-22)
In general, an optimum quantizer is one that minimizes D by optimally
selecting the output levels and the corresponding input range of each output
level. This optimization problem has been considered by Lloyd (1982) and Max
(1960), and the resulting optimum quantizeris usually called the Lloyd—Max
quantizer.

For a uniform quantizer, the output levels are specified as %, = $(2k ~ 1)A,
corresponding to an input signal amplitude in the range (k -LASx<kA,
where A is the step size. When the uniform quantizer is symmetric with an
even numberoflevels, the average distortion in (3-4-22) may be expressed as

Li2z-t kA

p=2 5 | fGQk - DA —x)p(x) dxA=] ka

+2f- FURQk - 1)A — x)p(x) dx (3-4-23)(29-1
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414 picirat, commNIC ATIONS

OPTIMUM STEP SIZES FOR UNIFORM QUANTIZATION OF A
GAUSSIAN RANDOM VARIABLE

 
Number of Optimum step Minimum MSE 10 log Dain

output levels size Aco Dyan (dB)

2 1.596 0.3634 ~44
4 0.9957 0.1188 —9.25
x 0.5860 0.03744 — 14.27

16 0.3352 0.01154 —19.38

a? 0.188) 0.00349 —2AST

In this case, the minimization of D is carried out with respect to the step-size
parameter A. By differentiating D with respect to A, we obtain

> (2k — Df “ba fGRQK -— 1A - x)p(x) de
+({L- vf FQ -— 1)A—2x)p(x) dx =0 (3-4-24)(Lf2- Da

where f’(x) denotes the derivative of f(r).
By selecting the error criterion function f(x), the solution of (3-4-24) for the

optimum step size can be obtained numerically on a digital computer for any
given pdf p(x). For the mean-square-errorcriterion, for which f(x) = x7, Max
(1960) evaluated the optimum step size A, and the minimum mean square
error when the pdf p(x) is zero-mean gaussian with unit variance. Some of
these results are given in Table 3-4-2, We observe that the minimum mean

square distortion D,,;, decreases by a little more than 5 dB for each doubling of
the number of levels L. Hence, each additional bit that is émployed in a
uniform quantizer with optimum step size A,,, for a gaussian-distributed signal
amplitude reduces the distortion by more than 5 dB.

By relaxing the constraint that the quantizer be uniform, the distortion can
be reduced further. In this case, we let the output level be ¥ =, when the
input signal amplitude is in the range x,..; <x <x,. For an L-level quantizer,
the end points are x9= —% and x, = ~, The resulting distortion is

D= sffq —x)p(2) dx (3-4-25)
keto

which is now minimized by optimally selecting the {z,} and {x,}.
The necessary conditions for a minimum distortion are obtained by

differentiating D with respect to the {x,} and {%,}. The result of this
minimizationis the pair of equations

Fa Xe) = fei — me), kK =12,...,L-1 (3-4-26)

[ FS -~x)p(x) dx =0,  k=1,2,...,L (3-427)
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TABLE 3-4-3

TABLE 3-4-4

CHAPTER 3: SOURCE copING 115

OPTIMUM FOUR-LEVEL
QUANTIZER FOR A GAUSSIAN
RANDOM VARIABLE

 Level & xy x,

| ~0.9816 ~1.510
2 0.0 ~(.4528
3 0.9816 0.4528
4 oe 1.510

Dain = 0.1175
10 log Din = —9.3dB 

As a special case, we again consider minimizing the mean square value of
the distortion. In this case, f(x) = x? and, hence, (3-4-26) becomes

x, = Mk, + X,44), k=1,2,...,L-1 (3-4-28)

which is the midpoint between £, and %,,,. The corresponding equations
determining {%,} are

| (3, -~x)p(x)dx=0, k=1,2,...,L (3-4-29)
Thus, ¥, is the centroid of the area of p(x) between x,_, and x,. These
equations may be solved numerically for any given p(x).

Tables 3-4-3 and 3-4-4 give the results of this optimization obtained by Max

OPTIMUM EIGHT-LEVEL
QUANTIZER FOR A GAUSSIAN

RANDOM VARIABLE (MAX, 1960) 

 Level) k Psa ¥,

1 — 1.748 ~2.152
2 1,050 ~1344
3 ~0.5006 0.7560
4 0 —0.2451
5 0.5006 0.2451
6 1.050 0.7560
7 1.748 1344
& oe 2,152

Dinim = 0.03454

10 log Duin = — 14.62 dB
————
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COMPARISON OF OPTIMUM UNIFORM AND
NONUNIFORM QUANTIZERS FOR A GAUSSIAN
RANDOM VARIABLE (MAX, 1960, PAEZ AND
GLISSON, 1972)

1010$19 Dany
R >.

(bits/sample) Uniform (4B)=Nowuniform (dB)

1 ~4.4 —4.4
2 —9.25 ~9.30
3 ~14.27 — 14.62
4 — 19.38 — 20.22
5 ~24.57 —26.02
6 —29,83 -31.89
i 35.13 —37.8)
 

(1960) for the optimum four-level and eight-level quantizers of a gaussian
distributed signal amplitude having zero mean and unit variance. In Table
3-4-5, we compare the minimum meansquare distortion of a uniform quantizer
to that of a nonuniform quantizer for the gaussian-distributed signal amplitude.
From the results of this table, we observe that the difference in the
performance of the two types of quantizers is relatively small for small values
of R (less than 0.5 dB for R <3), butit increases as R increases. For example,
at R=5, the nonuniform quantizer is approximately 1.5 dB better than the
uniform quantizer.

It is instructive to plot the minimum distortion as a function of the bit rate
R = log, L bits per source sample(letter) for both the uniform and nonuniform
quantizers. These curves are illustrated in Fig. 3-4-2. The functional depen-
dence of the distortion D on the bit rate R may be expressed as D(R), the
distortion-rate function. We observe that the distortion-rate function for the
optimum nonuniform quantizer falls below that of the optimum uniform
quantizer.

Since any quantizer reduces a continuous amplitude source into a discrete
amplitude source, we may treat the discrete amplitude as letters, say
X ={%,.1<k <L}, with associated probabilities {p,}. If the signal ampli-
tudes are statistically independent, the discrete source is memoryless and
hence,its entropyis

+

i

H(X) =~&pelosps (3-4-30)
For example, the optimum four-level nonuniform quantizer for the

gaussian-distributed signal amplitude results in the probabilities p, = p,=
0.1635 for the two outer levels and p, = p, = 0.3365 for the two inner levels.
The entropy for the discrete source is H(X) = 1.911 bits/letter. Hence, with
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FIGURE 3-4-2

TABLE 34-6
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=i

 
 
 
 
 

Optimum
uniform quantizer

Optimum nonuniform
quantizer

10hag2) u Wa

. Entropy coding‘
Distortion-rate yO

function for Ns
gaussian source x

 
ER) = 27k \

‘.NON
YN

a] 5

R = log .t bits/sample

Distortion versus rate curves for discrete-time memoryless paussian source.

entropy coding (Huffman coding) of blocks of output letters, we can achieve
the minimum distortion of —9.30dB with 1.911 bits/letter instead of
2 bits/letter. Max (1960) has given the entropy for the discrete source letters
resulting from quantization. Table 3-4-6 lists the values of the entropy for the
nonuniform quantizer. These values are also plotted in Fig. 3-4-2 and labeled
entropy coding.

From this discussion, we conclude that the quantizer can be optimized when
the pdf of the continuous source output is known. The optimum quantizer of
L=2* levels results in a minimum distortion of D(R), where R= log, L

ENTROPY OF THE OLTPUT OF AN OPTIMUM
NONUNIFORM QUANTIZER FOR A GAUSSIAN
RANDOM VARIABLE (MAX, 1960)
 

R Entropy Distortion
(hits/sample) (bits/tetier) 10 logye Darinnn

t 1.0 -4.4
2 1911 —9.30
3 2.825 — 14,62
4 3.765 —20.22
5 4.730 — 26.02
a
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bits/sample. Thus, this distortion can be achieved by simply representing each
quantized sample by R bits. However, moreefficient encoding is possible. The
discrete source output that resuits from quantization is characterized by a set
of probabilities {p,} that can be used to design efficient variable-length codes
for the source output (entropy coding). The efficiency of any encoding method
can be compared with the distortion-rate function or, equivalently, the
rate-distortion function for the discrete-time, continuous-amplitude source that
is characterized by the given pdf.

If we compare the performance of the optimum nonuniform quantizer with
the. distortion-rate function, we find, for example, that at a distortion of
—26 dB, entropy codingis 0.41 bits/sample more than the minimum rate given
by (3-4-8), and simple block coding of each letter requires 0.68 bits/sample
more than the minimum rate. We also observe that the distortion rate

functions for the optimal uniform and nonuniform quantizers for the gaussian
source approach the slope of —6 dB/bit asymptotically for large R.

3-4-3. Vector Quantization

In the previous section, we considered the quantization of the outputsignal
from a continuous-amplitude source when the quantization is performed on a
sample-by-sample basis, i.e., by scalar quantization. In this section, we consider
the joint quantization of a block of signal samples or a block of signal
parameters. This type of quantization is called block or vector quantization. It
is widely used in speech coding for digital celiular systems.

A fundamental result of rate-distortion theory is that better performance
can be achieved by quantizing vectors instead of scalars, even if the
continuous-amplitude source is memoryless. If, in addition, the signal samples
or signal parameters arestatistically dependent, we can exploit the dependency
by jointly quantizing blocks of samples or parameters and, thus, achieve an
even greater efficiency (lower bit rate) compared with that which is achieved
by scalar quantization. ,

The vector quantization problem may be formulated as follows. We have an
n-dimensional vector X=(x, x, --+:+ x,] with real-valued, continuous-
amplitude components {x,,1<k<m} that are described by a joint pdf
P(x1, X2,...,X,). The vector X is quantized into another n-dimensional vector
X with components {%,,1<k <n}. We express the quantization as Q(-),
so that

XK = Q(X) (3-4-31)

where X is the outputof the vector quantizer when‘the input vectoris X.
Basically, vector quantization of blocks of data may be viewed as a pattern

recognition problem involving the classification of blocks of data into a discrete
number of categories or cells in a way that optimizes somefidelity criterion,
such as mean squaredistortion. For example, let us consider the quantization
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An example of quantization in two-dimensional space.

of two-dimensional vectors X=[x, ¥.]. The two-dimensional space is
partitioned into cells as illustrated in Fig. 3-4-3, where we have arbitrarily
selected hexagonal-shaped cells {C,}. All input vectors that fall in cell C, are
quantizedinto the vector X,, which is shown in Fig. 3-4-3 as the center of the
hexagon.In this example, there are 1 = 37 vectors, one for each of the 37 cells
into which the two-dimensional space has been partitioned. We denote theset
of possible output vectors as {X,. | <k < L}.

In general, quantization of the a-dimensional vector X inta an _in-
dimensional vector X introduces a quantization error or a distortion d(X, X).
The average distortion over the set of input vectors X is

b

D= > P(X eC )E(d(X.X,)|K eG]Ast
f.

= P(ixeG, sf d(X. X,)p(X) dX (3-4-32)Ad RC,

where P(X € C,} is the probability that the vector X falls in the cell C, and
p(X) is the joint pdf of the m random variabies. As in the case of scalar
quantization, we can minimize D by selecting the cells {C,,1<k <L} for a
given pdf p(X).

A commonly used distortion measure is the mean square error (/: norm)
defined as

. j _ _ ] n ,

do(X. XK) == (X— K(X — X)=— Sy BY (3-4-33)kel

or, more generally. the weighted mean square error

day(X, X) = (X — X)'W(X — X) (3-4-34)

where W is a positive-definite weighting matrix. Usually. W is selected to be
the inverse of the covariance matrix of the input data vector X.
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Other distortion measures that are sometimes used are special cases of the /,
norm defined as

~ 1< ;

d,(X, X) => Ixy ~ £41? (3-4-35)
The special case p = | is often used as an alternative to p = 2.

Vector quantization is not limited to quantizing a block of signal samples of
a source waveform. It can also be applied to quantizing a set of parameters
extracted from the data. For example, in linear predictive coding (LPC),
described in Section 3-5-3, the parameters extracted from the signal are the
prediction coefficients, which are the coefficients in the all-pole filter model for
the source that generates the observed data. These parameters can be
considered as a block and quantized as a block by application of some
appropriate distortion measure.In the case of speech encoding, an appropriate
distortion measure, proposed by Itakura and Saito (1968, 1975), is the
weighted square error where the weighting matrix W is selected to be the
normalized autocorrelation matrix ® of the observed data.

In speech processing, an alternative set of parameters that may be quantized
as a block and transmitted to the receiver is the set of reflection coefficients
{a;, 1<i<m}. Yet anotherset of parameters that is sometimes used for vector
quantization in linear predictive coding of speech comprises the log-area ratios
{r,}, which are defined in terms ofthe reflection coefficients as

1 + ay

1—ay

 

n, = log , lsksm (3-4-36)

Now,let us return to the mathematical formulation of vector quantization
and let us consider the partitioning of the n-dimensional space into L cells
{C,, 1k =L} so that the average distortion is minimized over all L-level
quantizers. There are two conditions for optimality. The first is that the
optimal quantizer employs a nearest-neighbor selection rule, which may be
expressed mathematically as

Q(X) = X,
ui aud ualy if

D(X, X,) <= D(X, XK), kj, 1<jf<L (3-4-37)
The second condition necessary for optimality is that each output vector X, be
chosen to minimize the average distortion in cell C,. In other words, X, is the
vector in C, that minimizes

D, = E[d(X.X)|K eC] = I d(X, X)p(X) dX (3-4-38)ec,

The vector X, that minimizes D, is called the centroid of the cell. Thus, these
conditions for optimality can be applied to partition the n-dimensional space
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into cells {C,,1 == L} when the joint pdf p(X) is known.It is clear that
these two conditions represent the generalization of the optimum scalar
quantization problem to the n-dimensional vector quantization problem. In
general, we expect the code vectors to be closer together in regions where the
joint pdf is large and farther apart in regions where p(X)is small.

As an upper bound onthe distortion of a vector quantizer, we may use the
distortion of the optimal scalar quantizer, which can be applied to each
componentof the vector as described in the previous section. On the other
hand, the best performance that can be achieved by optimum vector
quantization is given by the rate-distortion function or, equivalently, the
distortion-rate function.

The distortion-rate function, which was introduced in the previous section,
may be defined in the context of vector quantization as follows. Suppose we
form a vector X of dimension n from n consecutive samples {x,,}. The vector X
is then quantized to form X= Q(X), where X is a vector from the set of
{K&,,1<k=<L}. As described above, the average distortion D resulting from
representing X by X is E[d(X,X)], where d(X,X) is the distortion per
dimension, ¢e.g.,

d(x,%)=* 3 (x — 34°
Neel

The vectors {X,, | <k <L} can be transmitted at an average bit rate of

2-H)
n

 

bits/sample (3-4-39)

where H(X)is the entropy of the quantized source output defined as
L

H(X) = —> p(X,) log, P(X,) (3-4-40)isl

For a given average rate R, the minimum achievable distortion D,,(R) is

D,(R) = min E[d(X, X)] (3-441)(X)

where R > H(X)/n and the minimum in (3-4-41) is taken over all possible
mappings Q(X). In the limit as the number of dimensions 7 is allowed to
approachinfinity, we obtain

D(R) = lim D,(R) (3-4-42)

where D(R)is the distortion-rate function that was introduced in the previous
section. It is apparent from this development that the distortion-rate function
can be approached arbitrarily closely by increasing the size n of the vectors.

The development above is predicated on the assumption that the joint pdf
p(X) ofthe data vector is known. However, in practice, the joint pdf p(X) of
the data may not be known. In such a case, it is possible to select the
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quantized output vectors adaptively from a set of training vectors X(m).
Specifically, suppose that we are given a set of M training vectors where M is
much greater than L (M >> L). Aniterative clustering algorithm, called the K
means algorithm, where in our case K = L, can be applied to the training
vectors. This algorithm iteratively subdivides the M training vectors into L
clusters such that the two necessary conditions for optimality are satisfied. The
K meansalgorithm may be described as follows [Makhoulef al. (1985)).

K Means Algorithm

Step 1 Initialize by setting the iteration number i= 0. Choose a set of
outputvectors X,(0), 1<k <L.

Step 2 Classify the training vectors {X(m), 1<m <M} into the clusters
{C,} by applying the nearest-neighborrule

XeC,(i) iff D(X, X,(i))< D(X. Xi) for ali k ¥j
Step 3 Recompute (set / to +1) the output vectors of every cluster by

computing the centroid

K()=+ DY Xun), 1<k<L
M, Mey

of the training vectors that fall in each cluster. Also, compute the
resulting distortion D(i} at the ith iteration.

Step 4 Terminate the test if the change D(i-1)- D(i) in the average
distorfion is relatively small. Otherwise, go to Step 2.

The K means algorithm converges to a local minimum (see Anderberg,
1973; Linde et al., 1980). By beginning the algorithm with different sets of
initial output vectors {X,(0)} and each time performing the optimization
described in the K meansalgorithm,it is possible to find a global optimum.
However, the computational burden of this search procedure may limit the
search to a few initializations.

Once wehaveselected the outputvectors {X,, 1 <k < L}, each signal vector
Xm) #8 quantized to the output vector that is nearest to it according to the
distortion measure that is adopted. If the computation involves evaluating
the distance between X(mm) and eachof the L possible output vectors {X;,}, the
procedure constitutes a full search. If we assume that each computation
Tequires # multiplications and additions, the computational requirementfora
full searchis

€=nb (3-4-43)

multiplication and additions per input vector.
If we select L to be a powerof 2 then fog, L is the number ofbits required

to represent each vector. Now, if R denotes the bit rate per sample [per
component or dimension of X(m)j, we have nR =log, L, and, hence, the
computational costis

€ = n2"* (3-4-44)
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Note that the number of computations grows exponentially with the dimen
sionality parameter # and the bit rate R per dimension. Because of this
exponential increase of the computational cost, vector quantization has been
applied to low-bit-source encoding, such as coding the reflection coefficients or
log area ratios in LPC.

The computational cost associated with fuil search can be reduced by
slightly suboptimum algorithms (see Chang er ai., 1984: Gersho, 1982).

In order to demonstrate the benefits of vector quantization compared with
scalar quantization, we present the following example taken from Makhoulet
al. (1985),

Example 3-4-1

Let x, and x, be two random variables with a uniform joint pdf
I

— (XeEC
P(X), X2) = p(X) =7ab

0 (otherwise)

(3-4-45)

where C is the rectangular region illustrated in Fig. 3-4-4. Note that the
rectangle is rotated by 45° relative to the horizontal axis. Also shown in Fig.
3-4-4 are the marginal densities p(x,} and p(x,).

FIGURE 3-44 A uniform pdf in two dimensions. (Makhoul et ai.. 1985.)
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If we quantize x, and x2 separately by using uniform intervals of length A,
the numberof levels needed is

a+b

Ly = L, = VIA (3-4-46)

Hence, the number of bits needed for coding the vector X = [x, x2] is

R, = R, + R,= log, L, + log, Lz

(a+b) (3-4-47) 

Thus, scalar quantization of each component is equivalent to vector
quantization with the total numberoflevels

 

L,=L,L,= (3-4-48)

Weobserve that this approach is equivalent to covering the large square
that encloses the rectangle by square cells, where each cell represents one of
the L, quantized regions. Since p(X) =0 except for X € C, this encoding is
wasteful and results in an increase of the bit rate.

If we were to cover only the region for which p(X) #0 with squares
having area A’, the total numberoflevels that will result is the area of the
rectangle divided by A’,ie.,

Lis (3-4-49)

Therefore, the difference in bit rate between the scalar and vector
quantization methodsis

(a +b)’
R, ~ Ri= log. > (3-4-50)

For instance, if a = 46, the difference in bit rate is

R, — Ry = 1.64 bits/vector

Thus, vector quantization is 0.82 bits/sample better for the same distortion.

It is interesting to note that a linear transformation (rotation by 45°) will
decorrelate x, and x, and render the two random variables statistically
independent. Then scalar quantizqation and vector quantization achieve the
same éfficiency. Although a linear transformation can decorrelate a vector of
random variables, it does not result in statistically independent random
variables, in general. Consequently, vector quantization will always equa! or
exceed the performance of scalar quantization (see Problem 3-40).

Vector quantization has been applied to several types of speech encoding
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methods including both waveform and model-based methods which are treated
in Section 3-5. In model-based methods such as LPC, vector quantization has
madepossible the coding of speech at rates below 1000 bits/s (see Buzo et al.,
1980, Roucos ef al., 1982; Paul 1983). When applied to waveform encoding
methods, it is possible to obtain good quality speech at 16000 bits/s, or,
equivalently, at & = 2 bits/sample. With additional computational complexity,
it may be possible in the future to implement waveform encoders producing
good quality speech at a rate of R = | bit/sample.

3-5 CODING TECHNIQUES FOR ANALOG SOURCES

A number of coding techniques for analog sources have been developed over
the past 40 years. Most of these have been applied to the encoding of speech
and images. In this section, we briefly describe several of these methods and
use speech encoding as an examplein assessing their performance.

It is convenient to subdivide analog source encoding methods into thtee
types. One type is called temporal waveform coding. In this type of encoding,
the source encoderis designed to representdigitally the temporal characteris-
tics of the source waveform. A second type of source encoding is spectral
waveform coding. The signal waveform is usually subdivided into different
frequency bands. and either the time waveform in each bandorits spectral
characteristics are encoded for transmission. The third type of source encoding
is based on a mathematical model of the source and is called model-based
coding,

3-5-1 Temporal Waveform Coding

There are several analog source coding techniques that are designed to
represent the time-domain characteristics of the signal. The most commonly
used methodsare describedin this section.

Pulse Code Modulationt (PCM) Let x(¢) denote a sample function
emitted by a source and let x, denote the samples taken at a sampling rate
j, = 2W. where W is the highest frequency in the spectrum of x(t). Ia PCM,
each sample ofthe signal is quantized to one of 2" amplitude levels, where R is
the numberofbinary digits used to represent each sampte. Thusthe rate from
the source is Rf, bits/s.

The quantization process may be modeled mathematically as
X,, =X, + an (3-5-1)

where x, represents the quantized value of x, and G, represents the
quantization error, which we treat as an additive noise. Assuming that a

1+PCM. DPCM, and ADPCM are source coding techniques. They are not digital modutationmethods,
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Input 
O00

 
Input-output characteristic for a uniform quantizer.

uniform quantizer is used, having the input-output characteristic illustrated in
Fig. 3-5-1, the quantization noise is weil characterized statistically by the
uniform pdf

1

where the step size of the quantizer is A=2 *. The mean squarevalue of the
quantization erroris

E(q?)=p¥=hx2 7" (3-5-3)

Measured in decibels, the mean square value of the noise is

10 log bA° = 10 log (4 x 2°-7*) = -6R — 10.8 dB (3-5-4)

We observe that the quantization noise decreases by 6dB/bit used in the
quantizer. For example, a 7 bit quantizer results in a quantization noise power
of —52.8 dB.

Manysource signals such as speech waveforms have the characteristic that
small signal amplitudes occur more frequently than large ones. However, a
uniform quantizer provides the same spacing between successive levels
throughout the entire dynamic range of the signal. A better approach is to
employ a nonuniform quantizer. A nonuniform quantizer characteristic is
usually obtained by passing the signal through a nonlinear device that
compresses the signal amplitude, followed by a uniform quantizer. For
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Input-output magnitude characteristic fora 0
logarithmic compressor.

 
example, a logarithmic compressor’ has an input-output magnitude
characteristics of the form

_ log (l + pe |x|)
log(t + #)

where |x| = 1 is the magnitude of the input, |yj is the magnitude of the output,
and yz is a parameter that is selected to give the desired compression
characteristic. Figure 3-5-2 illustrates this compression relationship for several
values of 4. The value « = 0 corresponds to no compression.

In the encoding of speech waveforms, for example, the value of s: = 255 has
been adopted as a standard in the USA and Canada. This value results in
about a 24dB reduction in the quantization noise power relative to uniform
quantization, as shown by Jayant (1974). Consequently, a 7 bit quantizer used
in conjunction with a wu = 255 logarithmic compressor produces a quantization
noise power of approximately —77 dB compared with the —53 dB for uniform
quantization.

In the reconstruction of the signal from the quantized values. the inverse
logarithmic relation is used to expand the signal amplitude. The combined
compressor—expandorpair is termed a cormpandor.

|v| (3-5-5)

 

Differential Pulse Code Modulation (DPCM) In PCM, each sample of
the waveform is encoded yodependently of all the others. However, most
source signals sampled at ‘the Nyquist rate or faster exhibit significant
correlation between successive samples. In other words, the average change in
amplitude between successive samples is relatively small. Consequently, an
encoding scheme that exploits the redundancy in the samples will result in a
lower bit rate for the source output.

A relatively simple solution is to encode the differences between successive
samples rather than the samples themselves. Since differences between samples
are expected to be smailer than the actual sampled amplitudes, fewer bits are
required to represent the differences. A refinement of this general approachis
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to predict the current sample based on the previous p samples. To be specific,
let x, denote the current sample from the source and let £,, denote the
predicted value of x,,, defined as

2,= > an,., (3-5-6)
i=l

Thus Z,, is a weighted linear combination of the past p samples and the {a,} are
the predictor coefficients. The {a,} are selected to minimize some function of
the error between x,, and £,,.

A mathematically and practically convenient error function is the mean
square error (MSE). With the MSE as the performance index for the predictor,
we select the {a,} to minimize

6, = Ele;) = E(x, - s ats.)|i=t

=F(02)- 2D aEGrn) + D SaaEey om) B57)
i=l i=1 j=)

Assuming that the source output is (wide-sense) stationary, we may express
(3-5-7) as

= 00) -23a6+¥ ¥aadti-j (3-5-8)
where (1) ts the autocorrelation function of the sampled signal sequence x,.
Minimization of @, with respect to the predictor coefficients {a,} results in the
set of linear equations

Sabi f= 4), j=l 2...yp (3-5-9)i=l

Thus, the values of the predictor coefficients are established. When the
autocorrelation function $() is not knowna priori, it may be estimated from
the samples {x,} using the relationt

Non

b(n) =~ SD xtien 2 =01,2--..p (3-5-10)i=l

and the estimate $(n) is used in (3-5-9) to solve for the coefficients {a,}. Note
that the normalization factor of 1/N in (3-5-10) drops out when $(1) is
substituted in (3-5-9).

The linear equations in (3-5-9) for the predictor coefficients are called the
normal equations ot the Yule—Waiker equations. There is an algorithm
developed by Levinson (1947) and Durbin (1959) for solving these equations
efficiently. It is described in Appendix A. We shall deal with the solution in
greater detail in the subsequent discussion on linear predictive coding.

+The estimation of the autocorrelation function from a finite number of observations {1,} is a
separate issue, which is beyond the scope ofthis discussion. The estimate in (3-5-£0)is one thatis
frequently used in practice.
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(a) Block diagram of a DPCM encoder. (6) DPCM decoderat the receiver.

Having described the method for determining the predictor coefficients, let
us now consider the block diagram of a practical DPCM system, shownin Fig.
3-5-3(a}. In this configuration, the predictor is implemented with the feedback
loop around the quantizer. The input to the predictor is denoted by Z,,, which
represents the signal sample x, modified by the quantization process, and the
output of the predictor is

£,=DoaXn-i (3-5-11)

The difference

Cn =Xn Ep (3-5-12)

is the input to the quantizer and @, denotes the output. Each value of the
quantized prediction error é@, is encoded into a sequence of binary digits and
transmitted over the channel to the destination. The quantized error é, is also
addedto the predicted value ¥,, to yield £,,.

Atthe destination, the same predictor that was used at the transmitting end
is synthesized andits output %, is added to é, to yield £,. The signal Z,, is the
desired excitation for the predictor andalso the desired output sequence from
which the reconstructed signal £(r) is obtained by filtering, as shown in Fig.
3-5-3(b).

The use of feedback around the quantizer, as described above, ensures that
the errorin ,, is simply the quantizationerror q,, = é, — ¢, and that there is no

138



139

FIGURE 3-5-4

 

130sopigiTAL COMMUNICATIONS

accumulation of previous quantization errors in the implementation of the
decoder. That is,

Gn = én —~e,

= én ~ (Xn -¥,)

=%,-x, (3-5-13)

Hence £,, =x, +q,. This means that the quantized sample £,, differs from the
input x, by the quantization error q, independent of the predictor used.
Therefore, the quantization errors do not accumulate.

In the DPCM system illustrated in Fig. 3-5-3, the estimate or predicted
value £,, of the signal sample x, is obtained by taking a linar combination of
past values ¥,_,, K =1,2,..., p, as indicated by (3-5-11). An improvementin
the quality of the estimate is obtained by includinglinearly filtered past values
of the quantized error. Specifically, the x, estimate may be expressed as

E,= $ akq-i + > bE,-i (3-5-14)
i=] i=t

where {b;} are the coefficients of thefilter for the quantized error sequence @,,.
The block diagrams of the encoder af the transmitter and the decoder at the

- receiver are shown in Fig. 3-5-4, The two sets of coefficients {a,} and {b,} are
selected to minimize some function of the error ¢, = x, —£,, such as the mean
square error.

DPCM modified by the addition of linearly filtered error sequence.
x) éx, + ¢
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Adaptive PCM and DPCM Many real sources are quasistalionary in
nature. One aspect of the quasistationary characteristic is that the variance and
the autocorrelation function of the source output vary slowly with time. PCM
and DPCM encoders, however, are designed on the basis that the source
output is stationary. The efficiency and performance of these encoders can be
improved by having them adapt to the slowly time-variant statistics of the
source,

In both PCM and DPCM,the quantization error q,, resulting from a-uniform .
quantizer operating on a quasistationary input signal will have a time-variant
variance (quantization noise power). One improvement that reduces the
dynamic range of the quantization noise is the use of an adaptive quantizer.
Although the quantizer can be made adaptive in different ways, a relatively
simple method is to use a uniform quantizer that varies its step size in
accordance with the variance of the past signal samples. For example, a
short-term running estimate of the variance of x, can be computed from the
input sequence {x,} and the step size can be adjusted on the basis of such an
estimate. In its simplest form, the algorithm for the step-size adjustment
employs only the previous signal sample. Such an algorithm has been
successfully used by Jayant (1974) in the encoding of speech signals. Figure
3-5-5 illustrates such a (3 bit) quantizer in which the step size is adjusted
recursively according to the relation

Anet = A,M(n) (3-5-15)

Example of a quantizer with an adaptive step size. (ayant, 1974.)
Quitpul

Previous1h)
output

M(4) — Muhiplier
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MULTIPLICATION FACTORS FOR ADAPTIVE STEP SIZE

ADJUSTMENT (JAYANT, 1974)

PCM DPCM

2 3 4 2 3 4

M(t) 0.60 0.85 0.80 0.80 6.90 0.90
M(2) 2.20 1.00 0.80 1.60 0.90 0.90
M(3) 1.00 0.80 1.25 0.90
M(4) 1.50 0.80 1.70 0.90
M(S) 1.20 1.20
M(6) 1.60 1.60
M7} 2.00 2.00
M(8) 2.40 2.40
 

where M(n) is a factor, whose value depends on the quantizer level for the
sample x,, and A, is the step size of the quantizer for processing x,. Values of
the multiplication factors optimized for speech encoding have been given by
Jayant (1974). These values are displayed in Table 3-5-1 for 2, 3, and 4 bit
adaptive quantization,

In DPCM,the predictor can also be made adaptive when the source output
in quasistationary. The coefficients of the predictor can be changed periodically
to reflect the changingsignalstatistics of the source. The linear equations given
by (3-5-9) still apply, with the short-term estimate of the autocorrelation
function of x, substituted in place of the ensemble correlation function. The
predictor coefficients thus determined may be transmitted along with the
quantized error @(n) to the receiver, which implements the same predictor.
Unfortunately, the transmission of the predictor coefficients results in a higher
bit rate over the channel, offsetting, in part, the lower data rate achieved by
having a quantizer with fewer bits (fewer levels) to handle the reduced
dynamic range in the error e,, resulting from adaptive prediction.

As an alternative, the predictor at the receiver may compute its own
prediction coefficients from é@, and %,, where

FE, = 8, + s OXa; (3-5-16)im]

If we neglect the quantization noise, 2,, is equivalent to x,. Hence, %,, may be
used to estimate the autocorrelation function @(n) at the receiver, and the
resulting estimates can be used in (3-5-9) in place of ¢{n) to solve for the
predictor coefficients. For sufficiently fine quantization, the difference between
x, and £, is very small. Hence, the estimate of (7) obtained from £, is usually
adequate for determining the predictor coefficients. Implemented in this
manner, the adaptive predictor results in a lower source datarate.

Instead of using the block processing approach for determining the
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(a) Block diagram of a delta modulation system. (6) An equivalent realization of a delta
modulation system.

predictor coefficients {a} as described above, we may adapt the predictor
coefficients on a sample-by-sample basis by using a gradient-type algorithm,
similar in form to the adaptive gradient equalization algorithm that is described
in Chapter 1t. Similar gradient-type algorithms have also been devised for
adapting the filter coefficients {a;} and {b,} of the DPCM system shown in Fig.
3-5-4. For details on such algorithms, the reader may refer to the book by
Jayant and Noll (1984).

Delta Modulation (DM) Delta modulation may be viewed as a simplified
form of DPCM in which a two-level (1 bit) quantizer is used in conjunction
with a fixed first-order predictor. The block diagram of a DMencoder—decoder
is shown in Fig. 3-5-6(a). We note that

Bn = Eq, = Eg FEyy (3-5-17)
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Since

Gn = En —€n

= 8, ~ (Xn — Fn)
It follows that

&, = Xy-1 + Gn-1

Thus the estimated (predicted) value of x, is really the previous sample x,_,
modified by the quantization noise g,-,. We also note that the difference
equation (3-5-17) represents an integrator with an input @,. Hence, an
equivalentrealization of the one-step predictor is an accumulator with an input
equal to the quantized errorsignal @,. In general, the quantized error signal is
scaled by some value, say A,, which is called the step size. This equivalent
realization is illustrated in Fig. 3-5-6(b). In effect, the encoder shown in Fig.
3-5-6 approximates a waveform x(t) by a linear staircase function. In order for
the approximation to be relatively good, the waveform x(t) must change slowly
relative to the sampling rate. This requirement implies that the sampling rate
must be several (a factor of at least 5) times the Nyquistrate.

At any given sampling rate, the performance of the DM encoderis limited
by two types of distortion, as illustrated in Fig. 3-5-7. One is called
slope-overload distortion. It is due to the use of a step size A, that is too small
to follow portions of the waveform that have a steep slope. The second type of
distortion, called granular noise, results from using a step size that is too large
in parts of the waveform having a small slope. The need to minimize both of
these two types of distortion results in conflicting requirements in the selection
of the step size A,. One solution is to select A, to minimize the sum of the
mean square values of these two distortions.

Even when A,is optimized to minimize the total mean square value of the
slope-overload distortion and the granular noise, the performance of the DM
encoder maystill be less than satisfactory. An alternative solution is to employ
a variable step size that adapts itself to the short-term characteristics of the
source signal. Thatis, the step size is increased when the waveform has a steep

xn)

FIGURE 3-5-7 An example of slope overload distortion
and granular noise in a delta modulation
encoder.
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slope and decreased when the waveform has a relatively smali slope. This
adaptive characteristic is illustrated in Fig. 3-5-8.

A variety of methods can be used to adaptively set the step size in every
iteration. The quantized error sequence é,, provides a good indication of the
slope characteristics of the waveform being encoded. When the quantized error
é,, is changing signs betweensuccessiveiterations, this is an indication that the
Slope of the waveform in that locality is relatively small. On the other hand,
when the waveform has a steep slope, successive values of the error é, are
expected to have identical signs. From these observations, it is possible to
devise algorithms that decrease or increase the step size depending on
successive values ofé,. A relatively simple rule devised by Jayant (1970) is to
adaptively vary the step size according to the relation

A,=A,..K", n=1,2,...

where K =1is a constantthat is selected to minimize the total distortion. A
block diagram of a DM encoder-decoder that incorporates this adaptive
algorithm is iilustrated in Fig, 3-5-9,

Several other variations of adaptive DM encoding have been investigated
and described in the technical literature. A particularly effective and popular
technique first proposed by Greefkes (1970) is called continuously variable
slope delta modulation (CVSD). In CVSD the adaptive step-size parameter
may be expressed as

A, = aA,,.., + k,

if é,, €,-,, and @,_» have the same sign; otherwise,

A,, = aA, -1 + k

The parameters a, k;, and k, are selected such that 0< a <1 and Kk, >» k> 0.
_For more discussion on this and other variations of adaptive DM, the

interested reader is referred to the papers by Jayant (1974) and Flanaganeral.
(1979), which contain extensive references.
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FIGURE 35-9=An example of a deita modulation system with adaptive step size.

PCM, DPCM,adaptive PCM, and adaptive DPCM and DMareall source
encoding techniques that attempt to faithfully represent the output waveform
from the source. The foliowing class of waveform encoding methods is based
on a spectral decomposition of the source signai.

3-5-2 Spectral Waveform Coding
In this section, we bnefly describe waveform coding methods thatfilter the
source output signal into a number of frequency bands or subbands and
separately encode the signal in each subband. The waveform encoding may be
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performed either on the time-domain waveforms in each subband or on the
frequency-domain representation of the corresponding time-domain waveform
in each subband.

Subband Coding Jn subband coding (SBC) of speech and imagesignals,
the signalis divided into a small number of subbands and the time waveform in
each subband is encoded separately. In speech coding, for example, the
lower-frequency bands contain most of the spectral energy in voiced speech. In
addition, quantization noise is moic noticeable to the ear in the lower-
frequency bands, Consequently, more bits are used for the lower-band signals
and fewer are used for the higher-frequency bands.

Filter design is particularly important in achieving good performance in
SBC.In practice, quadrature—mirrorfilters (QMFs) are generally used because
they yield an alias-free response due to their perfect reconstruction property
(see Vaidyanathan, 1993). By using QMFs in subband coding, the lower-
frequency band is repeatedly subdivided by factors of two, thus creating
octave-bandfilters. The output of each OMFfiller is decimated by a factor of
two, in order to reduce the sampling rate. For example, suppose that the
bandwidth of a speech signal extends to 3200Hz. The first pair of QMFs
divides the spectrum into the low (0-1600 Hz) and high (1600-3200 Hz) bands.
Then, the low band is split into low (0-800 Hz) and high (800-1600 Hz) bands
by the use of another pair of QMFs. A third subdivision by another pair of
QMFscansplit the 0-800 Hz band into low (0-400 Hz) and high (400-800 Hz)
bands. Thus, with three pairs of QMFs, we have obtained signals in the
frequency bands 0-400, 400-800, 800-1600 and 1600-3200Hz. The time-
domain signal in each subband may now be encodedwith different precision.
In practice, adaptive PCM has been used for waveform encoding of the Signal
in each subband.

Adaptive Transform Coding In adaptive transform coding (ATC), the
source signal is sampled and subdivided into frames of N, samples, and the data
in each frame is transformed into the spectral domain for coding and
transmission. At the source decoder, each frame of spectral samples is
transformed back into the time domain andthesignal is synthesized from the
time-domain samples and passed through a D/A converter. To achieve coding
efficiency, we assign more bits to the more importantspectral coefficients and
fewerbits to the less important spectral coefficients. In addition, by designing
an adaptive allocation in the assignment of the total number of bits to the
spectral coefficients, we can adapt to possibly changing statistics of the source
signal.

An objective in selecting the transformation from the time domain to the
frequency domainis to achieve uncorrelated spectral samples. In this sense, the
Karhunen-Loéve transform (KLT) is optimal in thatit yields spectral values
that are uncorrelated, but the KLT is generally difficult to compute (see

146



147

 

138  piGttAL COMMUNICATIONS

Wintz, 1972). The DFT and the discrete cosine transform (DCT) are viable
aiternatives, although they are suboptimum. Of these two, the DCT yields .
good performance compared with the KLT, and is generally used in practice
(see Campanella and Robinson, 1971; Zelinsky and Noll, 1977).

In speech coding using ATC,it is possible to attain communication-quality
speech at a rate of about 9600 bits/s.

3-5-3 Model-Based Source Coding
In contrast to the waveform encoding methods described above, model-based
source coding represents a completely different approach.In this, the source is
modeledas a linear system (filter) that, when excited by an appropriate input
signal, results in the observed source output. Instead of transmitting the
samples of the source waveform to the receiver, the parameters of the linear
system are transmitted along with an appropriate excitation signal. If tMe
number of parameters is sufficiently small, the model-based methods provide a
large compression of the data.

The most widely used model-based coding method is called finear predictive
coding (LPC). In this, the sampled sequence, denoted by x,, 2 =0,1,...,N—-
1, is assumed to have been generated by an all-pole (discrete-time) filter
having the transfer function

G
H(z)= (3-5-18)

I~3a,z*k=]

Appropriate excitation functions are an impulse, a sequence of impulses, or a
sequence of white noise with unit variance. In any case, suppose that the input
sequence is denoted by v,, n=0,1,2,.... Then the output sequence of the
all-pole model satisfies the difference equation

x, = > 4,X,-4 + Gu,, n=0,1,2,... (3-5-19)k=!

In general, the observed source output x,, 2 =0,1,2,...,N—1, does not
satisfy the difference equation (3-5-19), but only its mode! does. If the inputis
a white-noise sequence or an impulse, we may form an estimate (or prediction)
of x, by the weighted linear combination

£,= > AXy-~ n>d (3-5-20)k=1

The difference between x, and £,, namely,

0, =X, ~2Lr

>Ta (3-5-21)k=]
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represents the error between the observed value x, and the estimated
(predicted) value z,,. The filter coefficients {a,} can be selected to minimize the
mean square value of this error.

Suppose for the momentthat the imput {u,,} is a white-noise sequence. Then,
the filter output x, 1s a random sequence and so is the difference e, = x, — £,,
The ensembie average of the squared erroris

6, = Ele)
P 2

wells Sas«))(x 2 dig .)
a pe Q= (0) -2 S a, h(k) + S Ss .4,,0(k — mm) (3-5-22)

Ae] Arlo

where {+7} is the autocorrelation function of the sequence x,. =
Q.1..., N— 1, But 4, is identical to the MSE given by (3-5-8) for a predictor
used in DPCM. Consequently, minimization of €, in (3-5-22) yields the set of
normal equations given prev:ously by (3-5-9). To completely specify the filter
fi(z), we must also determinethefilter gain G. From (3-5-19), we have

P :

E|(Gu,)"} = G°E(v3) = G2 = E|(s, — > ax, 4) =#, (3-5-23)Ait .

where @, is the residual MSE obtained from (3-S-22) by substituting the
optimum prediction coefficients, which result from the solution of (3-5-9), With
this substitution, the expression for €, and, hence, G’ simplifies to

p

&,=G? = (0) - ¥ adtk) (3-5-24)kes

In practice, we do not usually know a priori the true autocorrelation
function of the source output. Hence, in place of @(7), we substitute an
estimate d(n) as given by (3-5-10}, which is obtained from the set of samples
xX, a =O.1,...,N— 1, emitted by the source.

As indicated previously, the Levinson-Durbin algorithm derived in Appen-
dix A may be used to solve for the predictor coefficients {a,} recursively.
beginning with a first-order predictor and iterating the order of the predictor
up toorder p. The recursive equations for the {a,} may be expressed as

dU) ~ Sa, ubi-K)
QS23p

a

lig STye ke lsksi-}

é = (1 ~ a,.)8, i (3-5-25)
— dil} a 4

Ou B00)’ fy = @(0)
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where a,, kK =1,2,...,é are the coefficients of the ith-order predictor. The
desired coefficients for the predictor of order p are

% ay, k=1,2,...,p (3-5-26)

and the residual MSEis

$-G? = 6(0)- > an(Kk)
=$@[la-a) (3-5-27)f=1 .

We observe that the recursive relations in (3-5-25) give us not only the
coefficients of the predictor for order p, but also the predictor coefficientsof all
orders less than p.

The residual MSE Bi =1,2,...,p, forms a monotone decreasing se-
quence,ic. $< $4 <...< ¢,<&%,, and the prediction coefficients a,, satisfy
the condition

ja,{<1, @=1,2,...,p (3-5-28)

This condition is necessary andsufficient for all the poles of H(z) to be inside
the unit circle. Thus (3-5-28) ensures that the modelis stable.

LPC has been successfully used in the modeling of a speech source. In this
case, the coefficients a;, i=1,2,...,p, are called reflection coefficients as a
consequence of their correspondence to the reflection coefficients in the
acoustic tube modelof the vocal tract (see Rabinerand Schafer, 1978; Deiler ec
al, 1993).

Once the predictor coefficients and the gain G have been estimated from the
source output {x,}, each parameter is coded into a sequence of binary digits
and transmitted to the receiver. Source decoding or waveform synthesis may
be accomplished at the receiver as illustrated in Fig. 3-5-10. The signal
generatoris used to produce the excitation function {v,}, which is scaled by G

Block diagram of a waveform synthesizer (source decoder) for an LPC system.
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Block diagram modelof the generation of a speech signal.

to produce the desired input to the all-pole filter model H(z) synthesized from
the received prediction coefficients. The analog signal may be reconstructed by
passing the output sequence from H(z) through an analogfilter that basically
performs the function of interpolating the signal between sample points. In this
realization of the waveform synthesizer, the excitation function and the gain
parameter must be transmitted along with the prediction coefficients to the
receiver. , ;

When the source output is stationary, the filter parameters need to be
determined only once. However, the statistics of most sources encountered in
practice are at best quasistationary, Under these circumstances, it is necessary
toperiodically obtain new estimates of the filter coefficients, the gain G, and
the type of excitation function, and to transmit these estimates to the receiver.

Example 3-5-1

The block diagram shown in Fig. 3-5-11 illustrates a model for a speech
source. There are two mutually exclusive excitation functions to model
voiced and unvoiced speech sounds. On a short-time basis, voiced speech is
periodic with a fundamental frequency fo or a pitch period 1/f that depends
on the speaker. Thus voiced speech is generated by exciting an all-pole filter
model of the vocal tract by a periodic impulse train with a period equal to
the desired pitch period. Unvoiced speech sounds are generated by exciting
the all-pole filter model by the output of a random-noise generator. The
speech encoder at the transmitter must determine the proper excitation
function, the pitch period for voiced speech, the gain parameter G, and the
prediction coefficients. These parameters are encoded into binary digits and
transmitted to the receiver. Typically, the voiced and unvoiced information
requires 1 bit, the pitch period is adequately represented by 6 bits, and the
gain parameter may be represented by Sbits after its dynamic range is
compressed logarithmically. The prediction. coefficients require 8-
10 bits/coefficient for adequate representation (see Rabiner and Schafer,
1978). The reason for such high accuracy is that relatively small changes in
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Output 
All-pole lattice filter for synthesizing the speech signal.

the prediction coefficients result in a large change in the pole positions of
the filter model H(z). The accuracy requirements may be lessened by
transmitting the reflection coefficients a,which have a smaller dynamic
range. These are adequately represented by 6 bits. Thus, for a predictor of
order p = 10 [five poles in H(z)], the total numberof bits is 72. Due to the
quasistationary nature of the speech signal, the linear system model must be
changed periodically, typically once every 15-30ms. Consequently, the bit
rate from the source encoderis in the range 4800-2400 bit/s.

Whenthe reflection coefficients are transmitted to the decoder, it is not
necessary to recompute the prediction coefficients in order to realize the
speech synthesizer. Instead, the synthesis is performed by realizing a lattice
filter, shown in Fig. 3-5-12. which utilizes the reflection coefficients directly and
which is equivalent to the linear predictionfilter.

Thelinear all-pole filter model, for which the filter coefficients are estimated
via linear prediction, is by far the simplest linear model for a source. A more
general source modelis a linear filter that contains both poles and zeros. In a
pole-zero model, the source outputx, satisfies the difference equation

Xn = s OX,“ F > OeUn—s
k= k=0

where vu, is the input excitation sequence. The problem nowis to estimate the
filter parameters {a,} and {b,} from the data x, i=0,1,...,N—1, emitted by
the source. However, the MSE criterion applied to the minimization of the
error €, =x,,—%,, where £, is an estimate of x,, results in a set of nonlinear
equations for the parameters {a,} and {b,}. Consequently, the evaluation of the
{a,} and {b,} becomes tedious anddifficult mathematically. To avoid having to
solve the nonlinear equations, a number of suboptimum methods have been
devised for pole-zero modeling. A discussion of these techniques would lead
us too far afield, however. ,

LPC as described above forms the basis for more complex model-based
source encoding methods. When applied to speech coding, the model-based
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methods are generally called vocoders (for voice coders). In addition to the
conventional LPC vocoder described above, other types of vocoders that have
been implemented include the residual excited LPC (RELP) vocoder, the
multipulse LPC vocoder, the code-excited LPC (CELP) vocoder, and the
vector-sum-excited LPC (WSELP) vocoder. The CELP and VSELP vocoders
employ vector-quantized excitation codebooks to achieve communication
quality speech at low bit rates.

Before concluding this section, we consider the application of waveform
encoding and LPCto the encoding of speech signals and comparethebit rates
of these coding techniques.

Encoding Methods Applied to Speech Signals The transmission of speech
signals over telephone lines, radio channels, and satellite channels constitutes
by far the largest part of our daily communications. It is understandable,
therefore, that over the past three decades more research has been performed
on speech encoding than on any other type of information-bearing signal. In
fact, all the encoding techniques described in this section have been applied to
the encoding of speech signals. It is appropriate, therefore, to compare the
efficiency of these methods in terms of the bit rate required to transmit the
speech signal.

The speech signal is assumed to be band-limited to the frequency range
200-3200 Hz and sampled at a nominal rate of 8000 samples/s for all encoders
except DM,where the samplingrateis f, identical to the bit rate. For an LPC
encoder, the parameters given in Example 3-5-1 are assumed.

Table 3-5-2 summarizes the main characteristics of the encoding methods
described in this section and the required bit rate. In terms of the quality of the
speech signal synthesized at the receiver from the (error-free) binary sequence,
all the waveform encoding methods (PCM, DPCM, ADPCM, DM, ADM)
provide telephone(toll) quality speech. In other words, a listener would have
difficulty discerning the difference between the digitized speech and the analog
speech waveform. ADPCM and ADMareparticularly efficient waveform
encoding techniques. With CVSD,it is possible to operate down to 9600 bits/s

ENCODING TECHNIQUES APPLIED TO SPEECH SIGNALS
SSS

Encoding method Quantizer Coder Transmission rate (bits/s)eee

PCM Linear 12 bits 96 000
Log PCM Logarithamic 7-8 bits 36 000-64 000
DPCM Logarithmic 4-6bits 32 000-48 000
ADPCM Adaptive 3-4 bits 24 000-32 000
DM Binary 1 bit 32 000-64 000
ADM Adaptive binary 1 bit 16.000-32 000
eee

LPC 2400-4800
AAeee
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with some noticeable waveform distortion. In fact, at rates below 16000 bits/s,

the distortion produced by waveform encoders increases significantly. Conse-
quently, these techniques are not used below 9600 bits/s.

For rates below 9600 bits/s, encoding techniques, such as LPC, that are
based on linear models of the source are usually employed. The synthesized
speech obtained from this class of encoding techniquesis intelligible. However,
the speech signal has a synthetic quality and there is noticeable distortion.

3-6 BIBLIOGRAPHICAL NOTES AND REFERENCES

PROBLEMS

Source coding has been an area of intense research activity since the
publication of Shannon's classic papers in 1948 and the paper by Huffman
(1952). Over the years, major advances have been made in the development of
highly efficient source data compression algorithms. Of particular significance
is the research on universal source coding and universal quantization published
by Ziv (1985), Ziv and Lempel (1977, 1978), Davisson (1973), Gray (1975), and
Davisson et al. (1981).

Treatments of rate distortion theory are found in the books by Gallager
(1968), Berger (1971), Viterbi and Omura (1979), Blahut (1987) and Gray
(1990).

Much work has been done overthe past several decades on speech encoding
methods. Our treatment provides an overview of this important topic. A more
comprehensive treatmentis given in the books by Rabiner and Schafer (1978),
Jayant and Noll (1984), and Deiler et al. (1993). In addition to these texts,
there have been special issues of the FEEE Transactions on Communications
(April 1979 and April 1982) and, more recently, the /EEE Journal on Selected
Areas in Communications (February 1988) devoted to speech encoding. We
should also mention the publication by IEEE Press of a book containing
reprints of published papers on waveform quantization and coding, edited by
Jayant (1976).

Over the past decade, we have also seen a number of important develop-
ments in vector quantization. Our treatment of this topic was based on the
tutorial paper by Makhoulet a/. (1985). A comprehensive treatment of vector
quantization and signal compression is provided in the book by Gersho and
Gray (1992),

3-1 Consider the joint experiment described in Problem 2-1 with the given joint
probabilities P(A, B,). Suppose we observe the outcomes A,, i=1,2,3,.4 of
experiment A.

a Determine the mutual information /(8,A,) for j=1, 2,3 and i =1,2,3.4, in
bits.

b Determine the average mutual information /(8: A).
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Suppose the outcomes 8,. j = 1,2, 3. in Problem 3-1 represent the three possible
output letters from the DMS. Determine the entropy of the source.
Prove that Inu <i- 1 and also demonstrate the validity of this inequality by
plotting In « and « — 1 on the same graph.
X and¥Yare two discrete random variables with probabilities

P(X =x, ¥=y)= Pi, y)

Show that 7(X:Y)#0, with equality if and only if X and Y are statistically
independent.
[Hins: Use the inequality Inu <1 — 1, for 0< <1, to show that —/(X; ¥)=0.]
The output of a DMSconsists of the possible letters x,,x1,...,2,. which occur
with probabilities p,,p3,.... P.. respectively. Prove that the entropy A(X) of the
source is at most log n.
Determine the differential entropy H(X) of the uniformly distributed random
variable X with pdf

(= {r" (Q<x <a)pe 0=(otherwise)

for the following three cases:
aa=1,;

ba=4,

ca=}.

Observe from these results that H(X) is not an absolute measure, but only a
relative measure of randomness.

A DMShasan alphabet of eight letters, x,, i= 1,2,...,8, with probabilities 0.25,
0.20, 0.55, 0.12, 0.10, 0.08, 0.05, and 0.05.

a Use the Huffman encoding procedure to determine a binary code for the source
output. _

b Determine the average numberR of binary digits per sourceletter.
¢ Determine the entropy of the source and compare it with &.
A DMShasan alphabetoffive letters, x, i=1,2,...,5, each occurring with
probability ;. Evaluate the efficiency of a fixed-length binary code in which
a cachletter is encoded separately into a binary sequence:
b twoletters at a time are encodedinto a binary sequence:
¢ three letters at a time are encodedinto a binary sequence.

f(x, ¥,) = 1(x,) — 1x;  ¥)
Prove that

a I(x, y) = 1(y,) — ICy, | x):
b f(x, y,) = 1.) + I(y,) — Kxy;), where I(x,y;) = —log P(x, y,).
Let X be a geometrically distributed random variable,thatis,

p(X =k)=p(l-py"', k=1,2,3....

a Find the entropy of X.
b Knowing that Y > X, whereKis a positive integer, what is the entropy of X?
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3-11 Let X and ¥ denote twojointly distributed discrete valued random variables.
a Showthat

H(X)=-3 P(x, y) log Pix)ry

H(Y) = —& Pix. y)log Ply)ay

b Use the above result to show thal

A(XYS HX) + HCY)

When does equality hold?
¢ Show that

H(X | Y)= H(X)

with equality if and only if X and ¥ are mdependent.
3-12 Twobinary random variables X and Y are distributed according to the joint

distributions p(X = ¥ =0)=p(X =0, Y= 1) =p(X = Y =1} = }. Compute H(X),
HCY), A(X), ACY) XX). and ALY, Y).

3-13 A Markov process is a process with one-slep memory, i.¢.. a process such that

P(X,, 1x, te Mey ae Me aes +} = pls, Xn )

for ali n. Show that, for a stationary Markov process, the entropy rate is given by
H(X, |X, \)

3-14 Let Y =g(X). where g denotes a deterministic function. Show that, in general,
HCY) SH(X). When does equality hold? .

3-15 Show that (X.Y) = A(X) + H(Y)— ACXY).
3-16 Show that. for statistically independent events.

HX, X; ve x= SK)

3-17 For a noisejess channel. show that H(X | ¥)=0.
3-18 Show that

HXXy) X= A(X.) X,) ~ A(X) XX)
and that

HX, |X) > HX, | XX)

3-19 Let X¥ be a random variable with pdf py(x) and let Y=aX +b be a linear
transformation of XY. where a and b are two constants. Determine the differential
entropy H(¥) in terms of HUY).

3-20 The outputs x,, +». and x; of a DMS with corresponding probabilities p, = 0.45,
Pp, = 0.35, and p,; = 0.20 are transformed by the linear transformation ¥ =a@X + b,
where @ and are constants. Determine the entropy H¢¥) and comment on what
effect the transformation has had on the entropy of X.

3-21 The optimum four-level nonuniform quantizer for a yeussian-distributed signal
amplitude results in the four levels a), a>, a,. and ay, with corresponding
probabilities of occurrence p, = p. = 0.3365 and p, = p, = 0.1635.
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P(x,i4))
1 ~ P(x,la)) 1- P(x lah

CH>
FIGURE P3-22 P(x 1x5)

a Design a Huffman code that encodes a single level al a time and determine the
average bit rate.

b Design a Huffman code that encodes two output levels at a time and determine
the average bit rate.

e What is the minimum rate obtained by encoding J output levels at a time as
J«?

3-22 A first-order Markov source is characterized by the state probabilities P(x,).
f=1,2,...,£, and the transition probabilities P(x, |x,), k=1,2,...,L, and
k #i, The entropy of the Markov source is

H(X) = 3, PordH(X|4)
where H(X | x,) is the entropy conditioned on the source being in state x,.

Determine the entropy of the binary, first-order Markov source shown in Fig.
P3-22, which has the transition probabilities P(x, |x,)=0.2 and P(x,| x,) = 0.3.
[Note that the conditional entropies H(X |x,) and H(X |.x;) are given by the
binary entropy functions H{P(x, | x,)] and H[P(x, | x2)], respectively.] How does
the entropy of the Markov source compare with the entropy of a binary DMS with
the same outputletter probabilities P{x,) and P(x,)?

3-23 A memoryless source has the alphabet of = {—5, —3, —1,. 0,1, 3,5}, with corre-
sponding probabilities {0.05, 0.1, 0.1, 0.15, 0.05, 0.25, 0.3},
a Find the entropy of the source.
b Assuming that the source is quantized according to the quantization rule

q(—5)=4(-3)=4

g(-1)=4(0) = 4(1) =0

q(3) = 4(5)=4

find the entropy of the quantized source.
3-24 Design a ternary Huffman code, using 0, 1, and 2 as letters, for a source with

output alphabet probabilities given by {0.05, 0.1, 0.15, 0.17, 0.18, 0.22, 0.13}, What
is the resulting average codeword length? Compare the average codeword length
with the entropy of the source. (In what base would you compute the logarithms in
the expression for the entropy for a meaningful comparison?)

3-25 Find the Lempel-—Ziv source code for the binary source sequence

00010010000001 1 0000100000001000000101000010000001 10100000001 100

Recoverthe original sequence back from the Lempel—Ziv source code.
[Hint: You require two passes of the binary sequence to decide on the size of the
dictionary.]

3-26 Find the differential entropy of the continuous random variable X in the following
cases:
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a X is an exponential random variable with parameter A > 0, i.e.,

fate* @>0)}fxtx) ={j (otherwise)
b X is a Laplacian random variable with parameter A > 0, i.e.,

1ze geA

c X is a triangular random variable with parameter A> 0, i.e.,

(xta)fa? (-A Sx <0)
fea) =7(-a +a? (O<%<,)

0 (otherwise)

3-27 It can be shown that the rate-distortion function for a Laplacian source,
f(x) = (2a) 'e*” with an absolute value of error-distortion measure d(x, £) =
{x ~ £] is given by :

. log (A/D) (OS D<A)RO) to (D>)
(see Berger, 1971).
a How manybits per sample are required to represent the outputs of this source

with an average distortion not exceeding 4A?
b Plot R(D) for three different values of A and discuss the effect of changes in A

on these plots.

3-28 [t can be shown that if X is a zero-mean continuous random variable with variance
o’, its rate distortion function, subject to squared error distortion measure,
satisfies the lower and upper bounds given by the inequalities

h(X) — } log 2meD = R(D) < } log $0*

where h(¥) denotes the differential entropy of the random variable X (see Cover
and Thomas, 1991).
a Show that, for a Gaussian random variable, the lower and upper bounds

coincide.

b Plot the lower and upper bounds for a Laplacian source with o = 1.
¢ Plot the lower and upper bounds for a triangular source with o = 1.

3-25 A stationary random process has an autocorrelation function given by Ry =
Ae" cos 2af,t and it is known that the random process never exceeds 6 in
Magnitude. Assuming 4 =6, how many quantization levels are required to
guarantee a signal-to-quantization noise ratio of at least 60 dB?

3-38 An additive white gaussian noise channel has the output ¥ = X + G, where X is
the channel input and G is the noise with probability density function

. 1

Pin)aE

If X is a white gaussian input with E(X)=0 and E(X*) = a7, determine
a the conditional differential entropy H(X | G):
b the average mutual information /(X; Y).

3-31 A DMS has an alphabet of eight letters. x, /=1,2....,8, with probabilities

warts

157



158

 

CHAPTER } souRCcE CopiInG 149

given in Problem 3-7. Use the Huffman encoding procedure to determine a ternary
code (using symbols 0, 1, and 2) for encoding the source output.

[Hint: Add a symbol x, with probability p,=0, and group three symbols at a
time.3-32 Determine whether there exists a binary code with code word lengths
(M,, M2, Ms, M4) = (1, 2, 2, 3) that satisfy the prefix condition.

3-33 Consider a binary block code with 2” code words of the same length n. Show that
the Kraft inequality is satisfied for such a code.

+34 Show that the entropy of an n-dimensional gaussian vector X = [x, x, ... 1,]
with zero mean and covariance matrix M is

H(X) = } log, (2ne)* |M|

3-35 Consider a DMS with output bits. (0,1) that are equiprobable. Define the
distortion measure as D = P., where P. is the probability of error in transmitting
the binary symbols to the user over a BSC. Then the rate distortion function is
(Berger, 1971)

R(D) =1+D log, D+(1-D)log.(1~D), OSD=P.3

Plot R(D) forO=D=}.
3-36 Evaluate the rate distortion function for an M-ary symmetric channei where

D=PM and

1-D

M-1

 
R(D) = log, M + D log, D + (1 ~ D)log,

for M =2, 4, 8, and 16. Py is the probability of error.
3-37 Consider the use of the weighted mean-square-error (MSE) distortion measure

defined as

4,,(X%, X) = (K — X)"W(X — X)

where W is a symmetric, positive-definite wieghting matrix. By factorizing W as
W=P’Pp, show that d..(X,X) is equivalent to an unweighted MSE distortion
measure d,(X’, X') involving transformed vectors X’ and X’.

3-38 Consider a stationary stochastic signal sequence {X(m)} with zero mean and
autocorrelation sequence

(n =0)

(a = 41)

i

o(ny=7}

0 (otherwise)

a Determinethe prediction coefficient of the first-order minimum MSE predictor
for {X(n)} given by

(mn) =a,x(n - 1)

and the corresponding minimum meansquareerror &,.
b Repeat (a) for the second-order predictor

E(n) = ayx(n — 1) + @,x(n — 2)
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Ry

ty

 
pix?

5Ta

ay

Tbetf, .2 2
FIGURE P3-39 a4 5A 5”

3-39 Consider the encoding of the random variables x, and x, that are characterized by
the joint pdf p(x,,x.) given by

15/Tab (4,,x2€C)P(t %2) = lo (otherwise}
as shownin Fig. P3-39. Evaluate the bit rates required for uniform quantization of
x, and x, separately (scalar quantization) and combined (vector) quantization of
(x,, x,). Determine the difference in bit rate when a = 4b.

3-40 Consider the encoding of two random variables X and Y that are uniformly
distributed on the region between two squares as shown in Fig. P3-40.
a Find f, (x) and f(y).
b Assume that each of the random variables ¥ and Y are quantized using four

jevel uniform quantizers. What is the resulting distortion? Whatis the resulting
number of bits per (X, ¥} pair?

 
FIGURE P3-40
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FIGURE P3-41

c Now assumethat instead of scalar quantizers for X and Y. we employ a vector
quantizer to achieve the samelevel of distortion as in (b). What is the resulting
number of bits per source output pair (X, ¥)?

3-41 Two random variables X and Y are uniformly distributed on the square shown in
Fig. P3-41.
a Find f(x) and f(y).
b Assume that each of the random variables X and Y are quantized using four

level uniform quantizers, What is the resuiting distortion? Whatis the resulting
numberof bits per (X, ¥) pair?

ec Now assumethat, instead of scalar quantizers for X and Y, we employ a vector
quantizer with the same number of bits per source output pair (X, Y) as in (b).
Whatis the resulting distortion for this vector quantizer?
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4

 

CHARACTERIZATION OF
COMMUNICATION SIGNALS
AND SYSTEMS
 

Signals can be categorized in a number of different ways, such as random
versus deterministic, discrete time versus continuous time, discrete amplitude
versus continuous amplitude, lowpass versus bandpass, finite energy versus
infinite energy, finite average power versusinfinite average power, etc. In this
chapter, we treat the characterization of signals and systems that are usually
encountered in the transmission of digital information over a communication
channel. In particular. we introduce the representation of various forms of
cigttally modulated signals and describe their spectral characteristics.

We begin with the characterization of bandpass signals and systems,
including the mathematical representation of bandpass stationary stochastic
processes. Then, we present a vector space representation of signals. We
conclude with the representation of digitally modulated signals and their
spectral characteristics.

4-1 REPRESENTATION OF BANDPASS SIGNALS
AND SYSTEMS

Many digital information-bearing signals are transmitted by some type of
carrier modulation. The channel over which the signalis transmitted is limited
in bandwidth to an interval of frequencies centered about the carrier. as in
double-sideband modulation, or adjacent to the carrier, as in single-sideband -
modulation. Signals and channels (systems) that satisfy the condition that their
bandwidth is much smaller than the carrier frequency are termed narrowband
handpass signals and channels (systems). The modulation performed at the
152
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sy

i
FIGURE 4-1-1. Spectrum of a bandpasssignal. of, 0 fi

transmitting end of the communication system to generate the bandpass signal
and the demodulation performed at the receiving end to recover the digital
information involve frequency translations. With no loss of generality and for
mathematical convenience, it is desirable to reduce all bandpass signals and
channels to equivalent lowpass signals and channels. As a consequence, the
results of the performance of the various modulation and demodulation
techniques presented in the subsequent chapters are independent of carrier
frequencies and channel frequency bands. The representation of bandpass
signals and systems in terms of equivalent lowpass waveforms and the
characterization of bandpass stationary stochastic processes are the main topics
of this section.

4-1-1" Representation of Bandpass Signals
Suppose that a real-valued signal s(¢) has a frequency content concentrated in
a narrow band of frequenciesin the vicinity of a frequency f., as shown in Fig.
4-1-1. Our objective is to develop a mathematical representation of such
signals. First, we construct a signal that contains only the positive frequencies
in s(¢). Such a signal may be expressed as

Si(f) = 2u(f)S(P) (4-1-1)

where S(f) is the Fourier transform of s(t) and u(f) is the unit step function.
The equivalent time-domain expression for (4-1-1) is

siQ=]Sieaf
= Fo '(2u(f)] ® F~'(S(f)) (4-1-2)

The signal s,(f) is called the analytic signal or the pre-envelope of s(t). We
note that F~'[S()] = s(t) and

F-T2u(f)] = 6() + £ (4-1-3)
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Hence,

5.(t)= Ee + 4 # s(t)
= (0) +J— #50) (4-1-4)

Wedefine f(t) as

SQ) = + ws{t)

Hi-<t—T (4-1-5)

The signal §(¢} may be viewed as the output of the filter with impulse response

ni==, —a<c¢<a@ (4-1-6)
when excited by the input signal s(t). Such a filter is called a Hilbert
transformer. The frequency response ofthis filter is simply

H(f)= [. A(the 72" dt
= i * 1samp dt

HJ21

~j (f >90)

=79 (f=0) (4-1-7)

i (f<0)

We observe that H(f)}|=1 and that the phase response @(f) = —4for f>0
and @(f) = 4a for f <0. Therefore, this filter is basically a 90° phase shifter for
all frequencies in the input signal. ;

The analytic signal s(t) is a bandpass signal. We may obtain an equivaient
lowpass representation by performing a frequency translation of S,(f). Thus,
we define S,(f) as”

SAP) = SAF +f) (4-1-8)

The equivalent time-domain relation is

s(t) = 5.(De
= [s(t) + j§(Qe (4-1-9)

or, equivalently,

s(t) + j§(t) = 5,(e?™ (4-1-10)

In general, the signal s(t} is complex-valued (see Problem 4-5), and may be
expressed as

st) =x(1) + jy (4-1-11)
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If we substitute for s,(¢) in (4-1-11) and equate real and imaginary parts on
each side, we obtain the relations

s(t) = x(¢) cos 2af.t — y(t} sin 2af.t (4-1-12)

S(t) = x(t) sin Zafer + y(t) cos 2x, (4-1-13)

The expression (4-1-12) is the desired form for the representation of a
bandpass signal. The low-frequency signal components x(t) and y(t) may be
viewed as amplitude modulations impressed on the carrier components
cos 2a”ft and sin2zf.t, respectively. Since these carrier components are in
phase quadrature, x(t) and y(t} are called the quadrature components of the
bandpass signal s(t).

Another representation of the signal in (4-1-12) is

s(t) = Re {[x(1) + jy@]e?™}

= Re[s,(t)e?*“] (4-1-14)

where Re denotesthe real part of the complex-valued quantity in the brackets
following. The lowpasssignal s,(t) is usually called the complex envelope of the
real signal s(t), and is basically the equivalent lowpass signal.

Finally, a third possible representation of a bandpass signal is obtained by
expressing 5,{f) as

st) = a(the!™? (4-1-15)
where

ans Vx"(t) + yr) (4-1-16)
yn 1 XO)

@(t) = tan x(0) (4-1-17)
Then

s(t) = Re [s,(t)e?""]

= Re fa(r)e/Pri*cn)

= a(t) cos [2261 + A(t)] (4-1-18)

Thesignal a(r)is cailed the envelope of s(t), and 6(r) is called the Phaseofs(t}.
Therefore, (4-1-12), (4-1-14), and (4-1-18) are equivalent representations of
bandpasssignals.

The Fourier transform of s(r) is

S(f) = [” s(Ne-2™ de

= [ {Re [s,(t)e2™ Jhe 2" at (4-1-19)
Use of the identity

Re (g) =4(€ + &*) (4-1-20)
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in (4-1-19) yields the result

SU=5[be+ stePeePM de
= HSC ~ £) + SH-f -£I (4-1-21)

where S{f) is the Fourier transform of s,(t). This is the basic relationship
between the spectrum of the real bandpass signal S(f)} and the spectrum of the
equivalent lowpass signal S,(f).

The energy in the signal s(t) is defined as

E= { s*(t) dt

=f {Re [s,(t)e"" JP dt (4-1-22)
Whenthe identity in (4-1-20) is used in (4-1-22), we obtain the following result:

L 2e=5{isonet
+ ; [. ls/(t)? cos [4afis + 20(t)] di (4-1-23)}

Consider the second integral in (4-1-23). Since the signal s(t) is narrowband,
the real envelope a(t)={s,(‘)| or, equivalently, a?(¢) varies slowly relative to
the rapid variations exhibited by the cosine function. A graphicalillustration of
the integrand in the second integral of (4-1-23) is shown in Fig. 4-1-2. The
value of the integral is just the net area under the cosine function modulated
by a(t). Since the modulating waveform a(t) varies slowly relative to the
cosine function, the net area contributed by the second integral is very small
relative to the value of the first integral in (4-1-23) and, hence, it can be

att)

tuk
a

FIGURE 41-2 The signal a°(t) cos [4af.1 + 20(¢)].
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neglected. Thus, for ail practical pruposes, the energy in the bandpass signal
s(f), expressed in terms of the equivalent-lowpass signals,(t), is

é= ; | s(t)dt (4-1-24)
where|s,{f)| is just the envelope a(#) of s(t).

4-1-2 Representation of Linear Bandpass Systems
A linearfilter or system may be described either by its impulse response h(r)
or by its frequency response H(f), which is the Fourier transform of A(r).
Since A(t) is real,

A*(-f)= Af) (4-1-25)

Let us define H,(f — f.) as

—pyJH(fF >9)Hit -1)=1, p<) (41-26)
Then

«pena f2 (f >0)H¥(-f -f) Lap) <0) (4-1-27)
Using (4-1-25)}, we have

H(f)=HA(f —f) + HM-f -f) (4-1-28)

which resembles (4-1-21) except for the factor 4. The inverse transform of
Hf) in (4-41-28) yields A(¢) in the form

A(t) = Age?+Ae?

= 2Re [A(e?™} (4-1-29)

where f,(t) is the inverse Fourier transform of H,(f). In general, the impulse
response h(t) of the equivalent lowpass system is complex-valued.

4-1-3 Response of a Bandpass System to a Bandpass Signal
In Sections 4-1-1 and 4-1-2, we have shown that narrowband bandpass signals
and systems can be represented by equivalent lowpass signals and systems. In
this section, we demonstrate that the output of a bandpass system to a
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bandpass input signal is simply obtained from the equivalent lowpass input
signal and the equivalent Jowpass impulse response of the system.

Suppose that s(t) is a narrowband bandpasssignal and 5,(t) is the equivalent
lowpass signal. This signal excites a narrowband bandpass system characterized
by its bandpass impulse response A(t) or by its equivalent lowpass impulse
response A,(t). The output of the bandpass system is also a bandpass signal,
and, therefore, it can * + expressed in the form

r(t) = Re [n(e?™] (4-1-30)

where r(t) is related to the input signal s(t) and the impulse response A(t) by
the convolution integral

r(r) -| S(T)A(t — t) dt (4-1-31)
Equivalently, the output of the system, expressed in the frequency domain,is

R(f) = S(PA(f) (4-1-32)

Substituting from (4-1-21) for S(f) and from (4-1-28) for H(f), we obtain the
result

RF) = SF —£) + SMF —fT ~f+ HM -F -f)) (41-33)

Whens(¢) is a narrowbandsignal and h(t) is the impulse response of a
narrowband system, S(f ~ f.)+0 and Hf — f.) =0 for f <0. It follows from
this narrowband condition that

Sf ~ {JH-f -f)=9,  SM-f- (MCS - £) = 0

Therefore, (4-1-33) simpiifies to

R(f) = USAF — LHF —f) + SH(-f — fOHIM-f - £))

=aRAf -f)+ RM-f -f)] (4-1-34)

where

RAF) = S(PHAS) (4-1-35)

is the output spectrum of the equivalent lowpass system excited by the
equivalent lowpass signal. It is clear that the time domain relation for the
output 7(r) is given by the convolution of s(t) with A,(t). Thatis,

rdt)={sdayhe— sy dr (4-1-36)
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The combination of (4-1-36) with (4-1-30) gives the relationship between
the bandpass output signal r{r) and the equivalent lowpass time functions s,(r)
and hit). This simple relationship allows us to ignore anylinear frequency
translations encountered in the modulation of a signal for purposes of
matching its spectral content to the frequency allocation of a particular
channel. Thus, for mathematical convenience, we shall deal only with the
transmission of equivalant lowpass signals through equivalent lowpass
channels.

4-1-4 Representation of Bandpass Stationary
Stochastic Processes

The representation of bandpass signals presented in Section 4-1-! applied to
deterministic signals. In this section, we extend the representation to sample
functions of a bandpass stationary stochastic process. In particular, we derive
the importantrelations between the correlation functions and power spectra of
the bandpass signal and the correlation functions and power spectra of the
equivalent lowpass signal.

Suppose that n(r) is a sample function of a wide-sense stationary stochastic
process with zero mean and powerspectral density ®,,,(f). The power spectral
density is assumed to be zero. outside of an interval of frequencies centered
around +f., where f. is termed the carrier frequency. The stochastic process
n(t) is said to be a narrowband bandpass process if the width of the spectral
density is much smaller than f.. Underthis condition, a sample function of the
process n(t} can be represented by any of the three equivalent forms given in
Section 4-1-1, namely,

n(t) =a(t) cos [Zaft + O(r)] (4-1-37)

= x(t) cos 27f.t — y(t) sin 2zf-t (4-1-38)

= Re [z(1)e?*"] (4-1-39)

where a(t) is the envelope and @(7)} is the phase of the real-valued signal, x(r)
and y(t) are the quadrature components of v(t), and z(t) is called the complex
envelope of n(t).

Let us consider the form given by (4-1-38) in more detail. First, we observe
that if n(r) is zero mean, then x(t) and y(r) must also have zero mean Values.
In addition, the stationarity of n(t) implies that the autocorrelation and
cross-correjation functions of x(t) and y(¢) satisfy the following properties:

$xx(T) = $,,(T) (4-1-40)

od, t= — yr(7) (4-1-41)
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That these two properties follow from the stationarity of n(t) is now
demonstrated. The autocorrelation function ¢,,,(t) of n(z) is

E[n(t)n(e+ t)] = Ef[x(r) cos Zaft — y(t} sin 2x1]

X [x(t + 1) cos 2af(t + 1)

—y(t+ t) sin 2af-(¢ + tJ}

= @,,(T) cos Zaft cos 2af{t + 7)

+ o,, (7) sin 2af-r sin 27f.(t + T)

~ by, (t) sin 2xft cos Zaft + t)

~ b,, (1) cos 2nf.t sin 2af.(¢ + t) (4-1-42)

Use of the trigonometricidentities

cos A cos B = 3[cos(A ~ B) + cos {A + B)|

sin A sin B = ${cos(A ~ B) — cos (A + B)] (4-1-43)

sin A cos B = 3[sin(A — B) + sin (A + B)]

in (4-1-42) yields the result

E[n(tjn(t + t)] = 3[4,.() + %,,(2)] cos 2a,

+ 3[b..(t) — $,,(1)] cos 2f.(2¢ + 1)

— [4,.(t) — d,()]sin 22.7

~ 3[,.{7) + d,(1)] sin 2af.(2t + 7) (41-44)

Since n(t)is stationary, the right-hand side of (4-1-44) must be independent of
!. But this condition can only be satisfied if (4-1-40) and (4-1-41) hold. As a
consequence, (4-1-44) reduces to

nn(T) = dee(T) Cos 2Af.T ~ H,,(T)sin Zaft (4-1-45)

Wenote that the relation between the autocorrelation function @,,{T) of the
bandpass process and the autocorrelation and cross-correlation functions
$..(t) and ¢,,(t) of the quadrature components is identical in form to
(4-1-38), which expresses the bandpass process in terms of the quadrature
components.

The autocorrelation function of the equivalent lowpass process

2(0) = x(t} + jy(e) (4-1-46)
is defined as

bee(t) = 2E[z*(1)z(t + 2) (4-1-47)
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Substituting (4-1-46) into (4-1-47) and performing the expectation operation,
we obtain

2:0) = Bdar(t) + byt) — fbry (8) + fbya(T)) (4-1-48)

Now if the symmetry properties given in (4-1-40) and (4-1-41) are used in
(4-1-48), we obtain

B..(T) = PulT) + fby.(T) (4-1-49)

which relates the autocorrelation function of the complex envelope to the
autocorrelation and cross-correlation functions of the quadrature components.
Finally, we incorporate the result given by (4-1-49) into (4-1-45), and we have

Pun(t) = Re [$.,(t)e?*"] (4-1-50)

Thus, the autocorrelation function ¢,,,(T) of the bandpass stochastic processis
uniquely determined from the autocorrelation function ¢,,(t) of the equiv-

~ alent lowpass process z(t) and the carrier frequency f.
The power density spectrum ®,,,(f) of the stochastic process n(r) is the

Fourier transform of ¢,,,(t). Hence,

®,,(f) = [ {Re [b,,.(t)e? The —jlafe dt
= 5{®..(f -f) + ”..(-f —f)] (4-1-51)

where ®..(f) is the power density spectrum of the equivalent lowpass process
z(t). Since the autocorrelation function of z(t) satisfies the property $..(T) =
$?(—1), it follows that ®,.(f) is a real-valued function of frequency.

Properties of the Quadrature Components It was just demonstrated
above that the cross-correlation function of the quadrature components x(1)
and y(¢) of the bandpass stationary stochastic process n(t) satisfies the
symmetry condition in (4-1-41). Furthermore, any cross-correlation function
satisfies the condition

$,.(T) = ,,(-T) (4-1-52)

From these two conditions, we conclude that

$,,(7) = —b5(—7) (4-1-53)

Thatis. #,,(t) is an odd function of t. Consequently, $,,(0) =0, and, hence,
x(f) and y(t) are uncorrelated (for t= 0, only). Of course, this does not mean
that the processes x(r) and y(r + T) are uncorrelated for all t, since that would
imply that $,,{t) = 0 for all z. If, indeed, #,,(t) = 0 for all zr, then ¢,,(t) is
real and the powerspectral density ®,.(/)} satisfies the condition .

%..(f) = ®..(-f) (4-1-54)

and vice versa. Thatis, ®,,(f) is symmetric about f = 0.
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In the special case in which thestationary stochastic process n(f) is gaussian,
the quadrature components x({f) and y(i + 1) are jointly gaussian. Moreover,
for t =0, they are statistically independent, and, hence, their joint probability
density function is

j Fag? 2
=gt eer 4-1-55pix, y= se ( )

where the variance o”is defined as a7 = ¢,,(0) = d,,(0) = ¢,,,(0).

Representation of White Noise White noise is a stochastic process that is
defined to have a flat (constant) power spectral density over the entire
frequency range. This type of noise cannot be expressed in terms of quadrature
components, as a result of its wideband character.

In problems concerned with the demodulation of narrowband signals in
noise, it is mathematically convenient to model the additive noise process as
white and to represent the noise in terms of quadrature components, This can
be accomplished by postulating that the signals and noise at the receiving
terminal have passed through an ideal bandpassfilter, having a passband that
includes the spectrum of the signals but is much wider. Such a filter will
introduce negligible, if any, distortion on the signal but it does eliminate the
noise frequency components outside of the passband.

The noise resulting from passing the white noise process through a
spectrally flat (ideal) bandpassfilter is termed bandpass white noise and has the
power spectral density depicted in Fig. 4-1-3. Bandpass white noise can be
represented by any of the forms given in(4-1-37), (4-1-38), and (4-1-39). The
equivalent lowpass noise z(f) has a power spectral density

Ny (f1= 3B)@..(f)= { ° 4-1-56SOA (fia 4B) “ee
and its autocorrelation function is

sin 7Bt

&,.(T) = Ny a (4-1-57)

The limiting form of ¢..(t) as B approachesiafinity is

o..(t) = My8(T) (4-1-58)

BS)

 
FIGURE 4-1-3 Bandpass noise with a flat spectrum.
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The power spectral density for white noise and bandpass white noise is
symmetric about f = 0, so ,,(t) = 0 for all t. Therefore,

$,.(T) = &,,(T) = b,,(T) (4-1-59)
That is, the quadrature components x(¢) and y(¢) are uncorrelated for all time
shifts t and the autocorrelation functions of 2(r), x(¢), and y(r) are all equal.

4-2 SIGNAL SPACE REPRESENTATIONS

In this section, we demonstrate that signals have characteristics that are similar
to vectors and develop a vector representation for signal waveforms. We begin
with some basic definitions and concepts involving vectors.

4-2-1 Vector Space Concepts

A vector v in an a-dimensional space is characterized by its n components
{u, vz... u,). Ut may also be represented as a linear combination of unit
vectors or basis vectors e,, 1 Si SA, 1.€.,

it

v= > ve, (4-2-1)t=]

where, bydefinition. a unit vector has length unity and », is the projection of
the vector v onto the unit vectore,.

The inner product of two n-dimensional vectors v, =[v), v,> ... v,,] and
Vv, = [v2) V2. ... U2,] is defined as

at

VporYa= > U) U2; (4-2-2)i=l

Two vectors v, and y, are orthogonalif v, - ¥.=0. More generally, a set of m
vectors ¥,, |= k =m, are orthogonal if

iy, =0 (4-2-3)

for all l= i, j =m and i +#/j.
The norm of a vector v is denoted by ||y|| and is defined as 

liv= (vv)? = V v (4-2-4)fel

whichis simply its length. A set of 7 vectors is said to be orthonormal if the
vectors are orthogonal and each vector has a unit norm. A set of m vectorsis
said to be linearly independent if no one vector can be represented as a linear
combination of the remaining vectors.

Two n-dimensional vectors v, and v, satisfy the triangle inequality

lv, + Vall = Ivy [+ [volt (4-2-5)

with equality if v, and v, are in the same direction, i.e., v; =av¥, where a is a
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positive real scalar. From the triangle inequality there follows the Cauchy-
Schwartz inequality

Iv, * val = five ll [vali (4-2-6)

with equality if v, = av. The norm square of the sum of two vectors may be
expressed as

tiv; + voll? = esl? + [lvol? + 2¥, + ve (4-2-7)

If v, and v2 are orthogonal then v, : ¥, = 0 and, hence,

ys + voll? = veil? + ive)? (4-2-8)

This is the Pythagorean relation for two orthogonal n-dimensional vectors.
From matrix algebra, we recall that a linear transformation in an n-

dimensional vector space is a matrix transformation of the form

v'=Ay (4-229)

where the matrix A transforms the vector v into some vector y’. In the special
case where v’ = Av, i.e.,

Av=Av (4-2-10)

where A is some (positive or negative) scalar, the vector v is called an
eigenvector of the transformation andAis the corresponding eigenvalue.

Finally, let us review the Gram-Schmidt procedure for constructing a set of
orthonormal vectors from a set of n-dimensional vectors v, L=f<m. We
begin by arbitrarily selecting a vector from the set, say v,. By normalizingits
length, we obtain the first vector, say

yy
= 4-2-11mill (42-11)

Next, we mayselect v, and, first, subtract the projection of v, onto u,. Thus, we
obtain

@) = ¥, — (¥2 > u))u, (4-2-12)

Then, we normalize the vector w; to unit length. This yields

u)

ilut

The procedure continues by selecting v; and subtracting the projections of
v; into u, and a). Thus, we have

us =¥;- (¥5 . u,a _ {¥3 . u,)u, (4-2-14)

Then, the orthonormal vector u, is

 
m= (4-2-13)

'

b=3
 

(4-2-15)
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By continuing this procedure, we shall construct a set of #,, orthonormal
vectors, where n, <n, in general. If m<n then n,<m, and if m =n then
AH, =n.

4-2-2 Signal Space Concepts

As in the case of vectors, we may develop a parallel treatment for a set of
signals defined on some interval [a, b]. The inner product of two generally
complex-valued signals x,(r) and x,(¢) is denoted by <x,(t), x2()} and defined
as

ib

c.nld=[strode (4-2-16)
The signals are orthogonalif their inner product is zero.

The norm of a signal is defined as

ion (fwcoear) (42-17)
A set of m signals are orthonormal if they are orthogonal and their norms are
all unity. A set of m signals is linearly independent, if no signal can be
represented as a linear combination of the remainingsignals.

The triangle inequality for twosignals is simply

Nee) + xoS xi @h + [eae (4-2-18)
and the Cauchy—-Schwartz inequality is

W2 2

s |   
b

{ x C)xh(2) at   I"loa I* ralP a
with equality when x,(r) = ax,(t), where a is any complex number.

(4-2-19)

4-2-3 Orthogonal Expansions of Signals
In this section, we develop a vector representation for signal waveforms, and,
thus, we demonstrate an equivalence between a signal waveform andits vector
representation.

Suppose thats(t) is a deterministic, real-valued signal with finite energy

=[ {s(t)P ae (4-2-20)
Furthermore, suppose that there éxists a set of functions {h()), a=
1,2,..., N} that are orthonormal in the sense that

0 (m#n)
1 (m=n) (4-2-21)[neMint) dt = {
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We may approximate the signal s(t} by a weighted linear combination of
these functions, 1.e.,

K

§(t)= > sufill) (4-2-22)k=1

where {s,, 1<k < XK} are the coefficients in the approximation of s(r). The
approximation error incurred is

e(t) = s(t) — $(¢) (4-2-23)

Let us select the coefficients {s,} so as to minimize the energy %, of the
approximation error. Thus,

é, = [ [s(t) —s@)Pat

= [_ [se Ssfae] dt (4-2-24)k=

The optimum coefficients in the series expansion of s(r) may be found by
differentiating (4-2-24) with respect to each of the coefficients {s,} and setting
the first derivatives to zero. Alternatively, we may use a well-known result

-from estimation theory based on the mean-square-error criterion, which,
simply stated, is that the minimum of %, with respect to the {s,} is obtained
when the error is orthogonal to each of the functions in the series expansion.
Thus,

[ [s@- > sefe(®) [alt) at = 0, n=1,2,...,K (4-2-25)
Since the functions{f,(t)} are orthonormal, (4-2-25) reduces to

Sy = [. s(i)f() dt, n=1,2,...,K (4-2-26)
Thus, the coefficients are obtained by projecting the signal s(t) onto each of the
functions {f,(¢)}. Consequently, §(t) is the projection of s(t) onto the
K-dimensional signal space spanned by the functions {f,(t)}. The minimum
mean square approximation erroris

Emin = [ e(t)s(t) dt

= [ [sor dt - [= Sxfie)s(t) de
k

= %,- 2 sz (4-2-27)
which is nonnegative, by definition.
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When the minimum mean square approximation error @,j, = 0,
K x

é= > = | [s(t)}° dt (4-2-28)Al .%

Under the condition that €,,j, = 0, we may express s(t) as
K

s(= > sf) (4-2-29)ke)

whereit is understood that equality of s(r) to its series expansion holds in the
sense that the approximation error has zero energy.

Wheneveryfinite energy signal can be represented by a series expansion of
the form in (4-2-29) for which @,,,, = 0, the set of orthonormalfunctions {f,(¢)}
is said to be complete.

Example 4-2-1; Trigonometric Fourier Series

A finite energy signal s(‘) that is zero everywhere except in the range
Qst=7 and has a finite number of discontinuities in this interval, can be
represented in a Fourier series as

= 2mkt . ake= —— + —_—— 2.s(t) = (a cos “+ by sin = ) (4-2-30)
wherethe coefficients {a,, b,} that minimize the mean square error are given
by

a, = = *s(t) cos 2mki dt
‘VT I, Tr

r (4-2-31)

by = =| s(t) sin ae!“VT So T

The set of trigonometric functions {V2/T cos 22kt/T, W2/Tsin 2akt/T} is
complete, and, hence, the series expansion results in zero mean square
error. These properties are easily established from the development given
above.

Gram-Schmidt Procedure Now suppose that we have a set of finite
energysignal waveforms{s,(1), i= 1,2,..., M} and we wish to construct a set
of orthonormal waveforms. The Gram-Schmidt orthogonalization procedure
allows us to construct such a set. We begin with the first waveform 5,(t), which
is assumed to have energy #,. The first waveform is simply constructed as

= 2)
(4-2-32)

Thus, f,(t) is simply s,(¢) normalized to unit energy.
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The second waveform is constructed from s(t) by first computing the
projection of f,(t) onto s(t), which is

can f sdogioae (4.2.33)
Then,c,,f,(¢) is subtracted from s,(r) to yield

F2lt) = 52(1) — crofi(t) (4-2-34)

This waveform is orthogonal to f,(f) but it does not have unit energy. If
€, denotes the energy of f3(r), the normalized waveform thatis orthogonal to
A() is

20 2-
Ay) _ Ve (4 2 35)

In general, the orthogonalization of the kth function leads to

fl) 2.
A) VE (4-2-36)

where

Fl= (0 ~ Seahl (4-2-37)

and

Cir =| SAOf(O dt, i=1,2,....k-1 (4-2-38)
Thus, the orthogonalization process is continued until all the M signal
waveforms {s,(t}} have been exhausted and N <M orthonormal waveforms
have been constructed. The dimensionality N of the signal space will be equal
to M if all the signal waveformsare linearly independent, i.e., none of the
signals waveformsis a linear combination of the other signal waveforms.

Example 4-2-2

Let us apply the Gram-Schmidt procedure to the set of four waveforms
illustrated in Fig. 4-2-1(a@). The waveform s,(¢) has energy €,=2, so that
fit) = Vis,(t). Next. we observe that Cy =O; hence, sf) and f(t) are
orthogonal. Therefore, f,(t) =s2(t)/V&, = V}5,(r). To obtain f(t), we
compute c,, and c)3, which are c,,= V2 and c>,= 0. Thus,

~l Qs1s3)

0 (otherwise)ft) = s3(0) — V2 fi) = |
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sf) ah

 
(a)

fu he

 
fay in=0

 
(h)

Gram-Schmidt orthogonalization of the signals {s,(1), 4 = 1.2, 3,4} and the corresponding
orthogonalsignal.

Since f(t) has unit energy, it follows that f(r) =/3(1). In determining f(s),
we find that c,, = ~V2, Coy= 0, and cy, = I. Hence,

Fit) = (0 + V2 f(D — ACN = 0

Consequently, s,(f) is a linear combination of fi(r) and f(r) and, hence,
fatt) = 0. The three orthonormal functions are illustrated in Fig. 4-2-1(b).
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Once we have constructed the set of orthonormal waveforms{f,(/)}, we can
express the M signals{s,,(7)} as linear combinations of the {f,(4)}. Thus. we may
write

\

(= DS sf. k=... M (4-2-39)AL

and
* wT

&, = | ix(P de = > si, = sil? (4-2-40)a aol

Based on the expression tn (4-2-39}. each signal may be represented by the
vector

So = [Ser Seo --- Sev] {4-2-41)

or, equivalently, as a point in the N-dimensional signal space with coordinates
{x f= 1.2.0.., N}. The energy in the kth signal is simply the square of the
length of the vector or. equivalently. the square of the Euclidean distance from
the origin to the point in the N-dimensional space. Thus. any signal can be
Tepresented geometrically as a point in the signal space spanned by the
orthonormal functions {f,(r)}.

Example 4-2-3

Let us obtain the vector representation of the four signals shown in Fig.
4-2-1(a) by using the orthonormal set of functions in Fig, 4-2-1(b). Since the
dimensionality of the signal space is N = 3, each signal is described by three
components. Fhe signal s,(r) is characterized by the vector s, = (V2 ,4.0).
Similarly,the signals s(), s(t), and s4(f) are characterized by the vectors
s) = (0, V2.0), s;=(V2.0,1). and s,=(— V2.0.1), respectively. These
vectors are shown in Fig. 4-2-2. Their lengths are |s,!= V2, ls|= 2.

The four signal vectors represented us points in
three dimensional function space.
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Sal = V3, and |s,| = V3, and the correspondingsignal energies are &, = {s,/’,
k =1,2,3,4.

We have demonstrated that a set of M finite energy waveforms{s,,(t)} can
be represented by a weighted linear combination of orthonormal functions
{f,(t)} of dimensionality N <4. The functions {f,(/)} are obtained by applying
the Gram-Schmidt orthogonalization procedure on {s,(t)}. It should be
emphasized, however, that the functions {f,(t)} obtained from the Gram-
Schmidt procedure are not unique. If we alter the order in which the
orthogonalization of the signals {s,(¢)} is performed, the orthonormal wave-
forms will be different and the corresponding vector representation of the
signals {s,,(t)} will depend on the choice of the orthonormal functions {f,(r)}.
Nevertheless, the vectors {s,} will retain their geometrical configuration and
their lengths will be invariant to the choice of orthonormal functions {f,(r)}.

Example 4-2-4

Analternative set of orthonormal functions for the four signals in Fig. 4-2-1
is illustrated in Fig. 4-2-3(a@). By using these functions to expand.{s,(‘)}, we

FIGURE 4-2-3. An altemative set of orthonormal functions for the four signals in Fig. 4-2-1(@) and the
corresponding signal points.
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obtain the corresponding vectors s, = (1. 1, 0). s. = (1, —1..0). 8 = (2,1, 1),
and sy=(-1.-1,-1), which are shown in Fig. 4-2-3(5). Note that the
vector lengths are identical to those obtained from the orthonormal
functions {f,(7)}.

The orthogonal expansions described above were developed for real-valued
signal waveforms. The extension to complex-valued signal waveformsis left as
an exercise for the reader (see Problems 4-6 and 4-7).

Finally. let us consider the case in which the signal waveforms are bandpass
and represented as

Sp(t} = Re [s,.()e""],  m=1,2,...,M (4-2-42)

where {s,,,{7)} denote the equivalent lowpass signals. Recall that the signal
energies maybe expressed either in termsofs,,(r) or s,,,(t), as

bin = | s(t) dt
x

l

=5 | Isat) de (4-2-43)2

The similarity between any pair of signal waveforms.says,,(t) and s,(t), is
measured by the normalized cross-correlation

VEE ; Sm(t)s,(t) dt = Re wee{ ; Shn(OSK (1) ar (4-2-44)
Wedefine the complex-valued cross-correlation coefficient p,,, aS

t *

Pun = Whi, { Sinus (rt) dt (4-2-45)
Then,

1 x

Re (pi) = vel S,(2)S,{t) dt (4-2-46)ree 8K *

or, equivalently,

Sn, * 5x _ Sin 7 3R Ce = —_© Pend til VERAE (4-2-47)

The cross-correlation coefficients between pairs of signal waveforms or
signal vectors comprise one set of parameters that characterize the similarity

181



182

 

CHAPTER 4: CKARACTERIZATION OF COMMUNICATION SIGNALS AND SYSTEMS 173

of a set of signals. Another related parameter is the Euclidean distance d{‘)
between a pair of signals, defined as

din = Sn — Sx
* L2

={f ts.-secoRar}
= {é, + & — 2% En & Re (Pum)}' (4-2-48)

When @,, = €, = € for all et and k, this expression simplifies to

din = {28{L — Re (Pum )]} (4-2-49)

Thus, the Euclidean distance is an alternative measure of the similarity (or
dissimilarity) of the set of signal waveforms or the corresponding signal
vectors.

In the following section, we describe digitally modulated signals and make
use of the signal space representation for such signals. We shall observe that
digitally modulated signals, which are classified as linear, are conveniently
expanded in terms of two orthonormalbasis functions of the form

A= i)Roos Zaft
5 (4-2-50)flr) =—- isin 2aft

Hence, if 5),(t) is expressed as 5,,,(7) = x,(f) + jy(0), it follows that Sm(t) in
(4-2-42) may be expressed as

Smt) = CAC) + ykOG(0) (4-2-51)

where x,(7) and y,(r) represent the signal modulations.

4-3 REPRESENTATION OF DIGITALLY
MODULATED SIGNALS

In the transmission ofdigital information over a communications channei, the
modulatoris the interface device that mapsthe digital information into analog
waveforms that match the characteristics of the channel. The Mapping is
generally performed by taking blocks of k = log, M binary digits ai a time from
the information sequence {a,} and selecting one of M = 2* deterministic, finite
energy waveforms {s,,(¢), m =1,2,...,M} for transmission over the channel.

When the mapping from the digital sequence {a,} to waveforms is
performed under the constraint that a waveform transmitted in any time
interval depends on one or more previously transmitted waveforms, the
modulator is said to have memory. On the other hand, when the mapping
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from the sequence {a,} to the waveforms {s,,(!)} is performed without any
constraint on previously transmitted waveforms, the modulator is called
memoryless.

In addition to classifying the modulator as either memoryless or having
memory, we may classify it as either linear or nonlinear. Linearity of a
modulation method requires that the principle of superposition applies in the
mapping of the digital sequence into successive waveforms. In nonlinear
modulation, the superposition principle does not apply to signals transmitted in
successive time intervals. We shall begin by describing memoryless modulation
methods.

4-3-1 Memoryless Modulation Methods

As indicated above, the modulator in a digital communication system maps a
sequence of binary digits into a set of corresponding signal waveforms. These
waveforms maydiffer in either amplitude or in phase or in frequency, or some
combination of two or more signal parameters. We consider each of these
signal types separately, beginning with digital pulse amplitude modulation
(PAM). In all cases, we assume that the sequence of binary digits at the input
to the modulator occurs at a rate of R bits/s.

Pulse Amplitude Modulated (PAM) Signals In digital PAM, the signal
waveforms maybe represented as

Sm(t) = Re [Ang(te?""]

=A,,g(t) cos 27f.t, m=1,2,...,M, 0<t<T (4-3-1)

where {A,,, 1 <m < M} denote the set of M possible amplitudes corresponding
to M = 2* possible k-bit blocks or symbols. The signal amplitudes A,, take the
discrete values (levels)

An =(2m-1-M)d, m=1,2,...,M (4-3-2)
where 2d is the distance between adjacent signal amplitudes. The waveform
g(t) is a real-valued signai pulse whose shape influences the spectrum of the
transmitted signal. as we shall observe later. The symbol rate for the PAM
signal is R/k, This is the rate at which changes occurin the amplitude of the
carrier to reflect the transmission of new information. The time interval
T, = 1/R is called the bit interval and the time interval T = k/R = kT, is calied
the symbolinterval.

The M PAMsignals have energies
r

,, -| s2.(t) dt
T

= 442, {spat‘0

= 142, (4-3-3)
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Signal space diagram for digital PAM signals. toa = 8

where €, denotes the energy in the pulse g(t). Clearly, these signals are
one-dimensional (N = 1), and, hence, are represented by the general form

S(t) = SaF(t) (4-3-4)

where f(r) is defined as the unit-energy signal waveform given as

f= V2 g(t) cos 2xf.t (4-3-5)me

and

Sm =AnVSE,, m=1,2,...,M (4-3-6)

The corresponding signal space diagrams for M=2, M=4 and M=8 are
shownin Fig. 4-3-1. Digital PAM is also called amplitude-shift keying (ASK).

- The mapping or assignment of k information bits to the M = 2* possible
signal amplitudes may be done in a numberof ways. The preferred assignment
is one in which the adjacent signals amplitudes differ by one binary digit as
illustrated in Fig. 4-3-1. This mapping is called Gray encoding. It is important
in the demodulation of the signal because the most likely errors caused by
noise involve the erroneous selection of an adjacent amplitude to the
transmitted signal amplitude. In such a case, only a single bit error occurs in
the k-bit sequence.

We note that the Euclidean distance between any pair of signal points is

die) = Vis, ~ s,)?

= V3&.IA,, — A.)
= dV2€,|m — ni (4-3-7)

Hence, the distance between a pair of adjacent signal points, i.e., the minimum
Euclidean distance,is

dinm = AV 26, (4-3-8)
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The carrier-modulated PAM signal represented by (4-3-1) is a double-
sideband (DSB) signal and requires twice the channel bandwidth of the
equivalent lowpass signal for transmission. Alternatively, we may use single-
sideband (SSB) PAM,which hasthe representation (lower or upper sideband).

Sm(t) = Re {A,,[e() + je()e?""}, om =1,2,...,M (4-3-9)

where @(t) is the Hilbert transform of g{1). Thus, the bandwidth of the SSB
signalis half that of the DSB signal.

The digital PAM signal is also appropriate for transmission over a channel
that does not require carrier modulation.In this case, the signal waveform may
be simply represented as

Sm(t) = Ang(t), m=1,2,...,M (4-3-10)

This is now called a baseband signal. For example a four-amplitude level
baseband PAM ‘signalis illustrated in Fig. 4-3-2(a). The carrier-modulated
version of the signal is shown in Fig. 4-3-2(b).

In the special case of M =2signals, the binary PAM waveforms have the
special property that

s,(t) = —s,(t)

Baseband and bandpass PAM signals.
Signal

amplitude

Data: Ht 10 00 ot TM 00

(a) Baseband PAM signal

 
(b} Bandpass PAM signal
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Hence, these two signals have the same energy and a cross-correlation
coefficient of —1. Such signals are called antipodal.

Phase-Modulated Signals In digital phase modulation, the M_ signal
waveforms are represented as

S,,(t) - Re [g(t)e2" : LMgiant), m=1,2,..., M, O<ts= T

= g(t) cos [amie + rm - |
2a . 20 .

= g(t) cus uM (m — 1) cos 2nf.t - g(t) sina (m — 1) sin Zaft

(4-3-11)

where g(t} is the signal pulse shape and @,, = 2a(m — 1)/M, m=1,2,...,M,
are the M possible phases of the carrier that convey the transmitted
information. Digital phase modulation is usually called phase-shift keying
(PSK).

Wenote that these signal waveforms have equalenergy,i.e.,
T

é= [ s2,(t) dt0

T

= [ g(t) dt = 4, (4-3-12)
Furthermore, the signal waveforms may be represented as a linear combination
of two-orthgnormal signal waveforms, f,(1) and f(#), i.e.,

S(t) = Smi fit) + Sm2A(t) (4-3-13)

where

A(o= Jz g(t) cos 2afz (4-3-14}
filt) = - yz g(t) sin aft (4-3-15)

c

and the two-dimensionalvectors s,, = [5in; Sinz] are given by

é 2 S 2x= —_& — _ —€ ot, 2 — =Sin [Sco 2 im 1) Vssingg 1) m=1,2,...,M
(4-3-16)
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FIGURE 43-3 Signal space diagrams for PSK signals. Ma4

Signal space diagrams for M = 2, 4, and 8 are shownin Fig. 4-3-3. We note that
M =2 corresponds to one-dimensional signals, which are identical to binary
PAM signals.

As is the case of PAM, the mapping or assignmentof & information bits to
the M = 2* possible phases may be done in a number of ways. The preferred
assignment is Gray encoding, so that the most likely errors caused by noise will
result in a single bit error in the k-bit symbol.

The Euclidean distance between signal points is

ae = Sy ~ S|
we

= {6 1 — e083 om — 2) |} (4-3-17)
The minimum Euclidean distance corresponds to the case in which |m— nj = 1.
ie., adjacent signal phases. In this case,

2dh = Vali — cos a} (4-3-18)

Quadrature Amplitude Modulation The bandwidth efficiency of PAM/
SSB can also be obtained by simultaneously impressing two separate k-bit
symbols from the information sequence {a,} on two quadrature carriers
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cos 2af.t and sin 2aft. The resulting modulation technique is called quadrature
PAM or QAM.and the corresponding signal waveforms may be expressed as

5,,(0) =Re (Aun +jA,,.)g(ner™' |, m= l, 2, ores M, usrsT

= A,,,.g (0) cos 2aft — A,,,.2(2) sin 2aft (4-3-19)

where A,,, and A,,, are the information-bearing signal amplitudes of the
quadrature carriers and g(r) is the signal pulse.

Alternatively, the QAM signal waveforms may be expressed as

SC) = Re [ V,,,e°°"g(r)er™ ‘

= iB (1) cos (Zaft + 6,,,) (4-3-20)

where V,, = VAj,,.+ A;,, and @,,=tan '(A,,,/A,,,.). From this expression, it is
apparent that the QAM signal waveforms may be viewed as combined
amplitude and phase modulation,

In fact. we may select any combination of M,-level PAM and M.-phase PSK
to construct an M=M,M, combined PAM-PSK signal constellation. If
M, = 2" and M;=2", the combined PAM-—PSKsignal constellation results in
the simultaneous transmission of m~ # = log M,My, binary digits occurring at a
symbol rate R/{m +n). Examples of signal space diagrams for combined
PAM-PSKare shown in Fig. 4-3-4, for M = 8 and M = 16.

As in the case of PSK signals, the QAM signal waveforms may bg
represented asa linear combination of two orthonormalsignal waveforms, f(t)
and f(r), i.e.,

Sin (ft) = Sm A(t) + Sm2flt) (4-3-21 )
where

fit) = [2 guycos aft1 7 _ .

Ve (4-3-22)4-3-

f= [2 saysin anf2 V é, c

Examples of combined PAM- PSK M=8
signal space diagrams. M=16

188



189

FIGURE 4-3-5

 

180 DIGITAL COMMUNICATIONS

M = 64
aeae

 
, i

M=33

 
 
 

   
. oe ----b-e---0 8ra *

a“ H=16 “+,
t7--8- “wot

Mz!
+---e-f-e---4 

 
we---b-f-0---@

’

e+-ee-b-w--
’

---e---¢ .e ¢ ‘ 4---e---0-----/-0---0---@---@---we--8--efne
Several signal space diagrams for rectangular
QAM.

=p -@ ---@--+ eee

 

and

Sim = Sm Sm[Sm Sim2] (43.23)
= [A,ne ¥ ye, Ans v3 EJ

é, is the energy of the signal pulse g(t).
The Euclidean distance between any pair of signal vectors is

don = [So — Sy)

= VE[Ame = Ane) * (Anns = Ans] (4-3-24)

In the special case where the signal amplitudes takes the set of discrete values
((2m ~1— M)d, m=1,2,...,M}, the signal space diagram is rectangular, as
shown in Fig. 4-3-5. In this case, the Euclidean distance between adjacent
points, i.e., the minimum distance, is

der =dv 24,

which is the same result as for PAM.

(4-3-25)

Multidimensional Signals 1 is apparent from the discussion above that the
digital modulation of the carrier amplitude and phase allows us to construct
signal waveforms that correspond to two-dimensional vectors and signa! space
diagrams. If we wish to construct signal waveforms corresponding to higher-
dimensional vectors, we may use either the time domain or the frequency
domain or both in order to increase the number of dimensions.

Suppose we have N-dimensional signal vectors. For any N, we may
subdivide a time interval of length 7,= NT into N subintervals of length
T= T,/N. In each subinterval of length 7, we may use binary PAM (a
one-dimensional signal) to transmit an element of the N-dimensional signal
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for 24f
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Subdivision of time and frequency axes into distinct slots. o T 2T (aT

vector. Thus. the N time slots are used to transmit the N-dimensional signal
vector. If N is even, a time slot of length T may be used to simultaneously
transmit two components of the N-dimensional vector by modulating the
amplitude of quadrature carriers independently by the corresponding
components. In this manner, the V-dimensional signal vector is transmitted in
INT seconds (4N timeslots).

Alternatively, a frequency band of width N Af may be subdivided into N
frequency slots each of width Af’ An N-dimensional signal vector can be
transmitted over the channel by simultaneously modulating the amplitude of
carriers, one in each of the NM frequency slots. Care must be taken to provide
sufficient frequency separation Af between successive carriers so that there is
no cross talk interference among the signals on the N carriers. If quadrature
carriers are used in each frequencyslot, the N-dimensional vector (even N)
may be transmitted in $N frequency slots, thus reducing the channel bandwidth
utilization by a factor of 2.

More generally, we may use both the time and frequency domainsjointly to
transmit an N-dimensional signal vector. For example, Fig. 4-3-6 illustrates a
subdivision of the time and frequency axes into 12 slots. Thus, an N = 12-
dimensional signal vector may be transmitted by PAM or an WN= 24-
dimensional signal vector may be transmitted by use of two quadrature carriers
(QAM)in each slot.

Orthogonal Multidimensional Signals As a special case of the construction
of multidimensional signals, let us consider the construction of M equal-energy
orthogonalsignal waveformsthat differ in frequency, and are represented as

5(t) = Re [s,,(Oe?™], om=1,2....,M, O<¢<T
2é

=4 LF cos [2af.1+ 2am Aft] (43-26)
where the equivalent lowpass signal waveforms are defined as

2é |mit) ferme m=1,2.....M, O0s¢5T (4-3-27)
This type of frequency modulationis called frequency-shift keving (FSK).
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These waveforms are characterized as having equal energy and cross-
correlation coefficients

_ 28/T
Pam 2¥

- sin T(m —k) AfinTum—k) af
aT(m — k) Af

tr

[ elttim kj afer dt0

(4-3-28)

The real part of p,,,, 15

sin [a7(m — k) Af]
r=R naePr=Re (Pam)=“Gn — ke)AF

_ sin [2aT(m — k) Af]
2aT(m — kK) af

First, we observe that Re(p,,.)=0 when Af=1/2T and m*#k. Since
| —k|=1 corresponds to adjacent frequency slots, Af = 1/2T represents the
minimum frequency separation between adjacent signals for orthogonality of
the M signals. Plots of Re (p,,,) versus Af and |p,,,| versus Af are shownin Fig.
4-3-7. Note that |p,,,|=0 for multiples of 1/7 whereas Re (p,,,)=0 for
multiples of 1/2T.

cos [xT(m — k) Af]

(4-3-29)

 
ta)

Dim!

a Af

FIGURE 43-7=Cross-correlation coefficient as a function
of frequency separation for FSK signals. (b)

xI- teLd se
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fit At)

 
FIGURE 4-3-8=Orthogonal signals for M= N=3 and=fv)

M=N=2. M=soN=3

 
For the case in which Af = 1/2T, the M FSK signals are equivalent to the

N-dimensional vectors

s=(V€ 0 0... 0 0
=(0 V€ 0... 00& (0 ] (4.3-30)

sv=(0 0 ©... 0, V8

where N= M. The distance betweenpairs of signals is

df} = V2 for all m, k (4-3-31)
which is also the minimum distance. Figure 4-3-8 illustrates the signal space
diagram for M = N =2 andM= N =3.

Biorthogonal Signals A set of M biorthogonal signals can be constructed
from 4M orthogonalsignals by simply including the negatives of the orthogonal
signals. Thus, we require N = $M dimensions for the construction of a set of M
biorthogonalsignals. Figure 4-3-9 illustrates the biorthogonal signals for M = 4
and 6. ,

We note that the correlation between any pair_of waveforms is either
p, = —1 or 0. The corresponding distances are d = 2V€ or V2, with thelatter
being the minimum distance.

FD

FIGURE 4-3-9 Signal space diagrams for M = 4 and
M =6 biorthogorial signals.
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Simplex Signals Suppose we have a set of M orthogonal waveforms{s,,(¢)}
or, equivalently, their vectar representation {s,,}. Their meanis

1 At

a= > sn (4-3-32)mel]

Now,let us construct another set of M signals by subtracting the mean from
each of the M orthogonalsignals. Thus,

Sn = Sn —5, m=1,2,...,M (4-3-33}

The effect of the subtraction is to translate the origin of the m orthogonal
signals to the point §.

The resulting signal waveforms are called simplex signals and have the
following properties. First, the energy per waveform is

Sl = 18. — 5
2 1

=€-—€+—€
MM

!

= a _ —| . 4-3-347 (4-3-34)
Second, the cross-correlation of any pair of signals is

8" . Ss.
Re (Pn) =(Pow) ects

-1/M 1! -— (4-3-35)
 

1-1/M M-1

for all m, n. Hence. the set of simplex waveforms is equally correlated and
requires less energy, by the factor |—1/M, than the set of orthogonal
waveforms. Since only the origin was translated, the distance between any pair
of signal points ‘; maintained at d= V2€. which is the same as the distance
between any pair of orthogonalsignals.

Figure 4-3-10 illustrates the simplex signals for M = 2,3, and 4. Note that
the signai dimensionality is N= M — 1.

Signal Waveforms from Binary Codes A set of M signaling waveforms
can be generated from a set of M binary code words of the form

Cc, = [Cn Em2 + -- Cun]. m= I, 2, the M (4-3-36)
where c¢,, =0 or } for ail #2 and j, Each componentof a code wordis mapped
into an elementary binary PSK waveform as follows:

Cny =1 Pint) = = cos aft (0 =<f= T.)
(4-3-37)

(Zé.
Cay =0 > Sm, {0) = cos 2af.t (0 =rs T,.)

where 7. = T/N and €. = €/N. Thus, the M code words {C,,,} are mapped into
a set of M waveforms {s,,(1)}.
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FAD

 
fi)

FIGURE 4-3-16 Signal space diagrams for M-ary simplex
signals.

 
The waveforms can be represented in vector form as

Sin = [St Sm2 +++ San], m= 1, 2, tery M (4-3-38)

where 5,= +V@/N for all m and j. N is called the block length of the code.
and it is also the dimension of the M waveforms.

Wenote that there are 2” possible waveformsthat can be constructed from
the 2” possible binary code words. We mayselect a subset of M <2” signal
waveforms for transmission of the information. We also observe that the 2%

possible signal points correspond to the vertices of an N-dimensional hyper-
cube with its center at the origin. Figure 4-3-11 illustrates the signa! points in
N =2 and 3 dimensions.

f) fy)

fa 
N=2

FIGURE 4-3-11 Signal space diagrams forsignals gn
generated from binary codes.
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Each of the M waveforms has energy @. The cross-correlation between any
pair of waveforms depends on how weselect the Mf waveforms from the 2”
possible waveforms. This topic is treated in Chapter 7. Clearly, any adjacent
signal points have a cross-correlation coefficient

_ €-2/N)_N-2 4-3-39p- ¥ N ( )

and a corresponding distance of

d= V2&(1 —p,)

= V4E/N (4-3-40)

This concludes our discussion of memoryless modulationsignals.

4-3-2 Linear Modulation with Memory

FIGURE 43-12

The modulation signals introduced in the previous section were classified as
memoryless, because there was no dependence betweensignals transmitted in
non-overlapping symbolintervals. In this section, we present some modulation
signals in which there is dependence between the signals transmitted in
Successive symbolintervals. This signal dependence is usually introduced for
the purpose of shaping the spectrum of the transmitted signal so that it
matchesthe spectral characteristics of the channel. Signal dependence between
signals transmitted in different signal intervats is generally accomplished by
encoding the data sequence at the input to the modulator by means of a
modulation code, as described in Chapter 9.

In this section, we shall present examples of modulation signals with
memory and characterize their memory in terms of Markov chains. We shall
confine our treatment to baseband signals. The generalization to bandpass
signals js relatively straightforward.

Figure 4-3-12 illustrates three different baseband signals and the corres-
ponding data sequence, The first signal, called NRZ, is the simplest. The
binary information digit 1 is represented by a rectangular pulse of polarity A
and the binary digit zero is represented by a rectangular pulse of polarity — A.

NRZI

Delay
modulation

(Miller code) 
Basebandsignals. Data
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Hence, the NRZ modulation is memoryless and is equivalent to a hinary PAM
or a binary PSKsignal in a carrier-modulated system.

The NRZI signal is different from the NRZ signal in that transitions from
one amplitude level to another occur only when a 1 is transmitted. The
amplitude level remains unchanged when a zero is transmitted. This type of
signal encoding is called differential encoding. The encoding operation is
described mathematically by the relation

db, =a, Bb, (4-32-41 }

where {a,} is the binary information sequence into the encoder, {b,} is the
output sequence of the encoder, and © denotes addition modulo 2, When
4, =I, the transmitted waveform is a rectangular pulse of amplitude A. and
when 6, = 0, the transmitted waveform is a rectangular pulse of amplitude — A.
Hence, the output of the encoder is mapped into one of two waveforms in
exactly the same manneras for the NRZ signal.

The differential encoding operation introduces memory in the signal. The
combination of the encoder and the modulator operations may be represented
by a state diagram (a Markov chain) as shownin Fig. 4-3-13. The state diagram
may be described by two transition matrices corresponding to the two possible
inputbits {0, 1}. We note that when a, = 0, the encoder stays in the samestate.
Hence,the state transition matrix for a zero is simply

1 0

T, = (3 | (4-3-42)
where ¢,, = 1 if a, results in a transition from state / to state ji=1,.2, andj =1,
2: otherwise, 4, = 0. Similarly, the state transition matrix for @, = 1 is

0 |

t,=[) a (4-3-43)
Thus, these twostate transition matrices characterize the NRZ1I signal.

Another way to display the memory introduced by the precoding operation
is by means of a trellis diagram. Thetrellis diagram for the NRZI signalis

State diagram for the NRZI signai.

Oh sity Tfstn Olstr)
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O-s(1) O/-s(1) Ost Westin

  
5,=1

The treltis diagram for the NRZI signal. ~' Ors) Olin Wisiry str

illustrated in Fig. 4-3-14. The trellis provides exactly the same information
concerning the signal dependence asthe state diagram, but also depicts a time
evolution of the state transitions.

The signal generated by delay modulation also has memory. As shown in
Chapter 9, delay modulation is equivalent to encoding the data sequence by a
run-length-limited code called a Miller code and using NRZI to transmit the
encoded data. This type of digital modulation has been used extensively for
digital magnetic recording and in carrier modulation systems employing binary
PSK. The signal may be described by a state diagram that has four states as
shown in Fig. 4-3-15(a). There are two elementary.waveformss,(r) and s2(r)
and their negatives —s,(t) and —s.(t), which are used for transmitting the
binary information. These waveforms are illustrated in Fig. 4-3-15(b). The
mapping from bits to corresponding waveforms is illustrated in the state
diagram. The state transition matrices that characterize the memory ofthis
encoding and modulation methad are easily obtained from the state diagram in
Fig. 4-3-15. When a, = 0, we have

T,=

0

0

5 (4-3-44)
1

coos occs occoc
State diagram (a) and basic waveforms (b) for delay modulated (Miller-encoded) signal.

Vnytth Vésytr

sly ain

Tr
0 rT 0 '

Os Vs,Ut}

(+) Hissin OSS TT  -A
ta)

sgtl=-sOS 1ST
(by

197



198

 

CHAPTER 4 CHARACTERIZATION OF COMMUNICATION SIGNALS AND SYSTEMS=L89

and when a, = 1, the transition matrix is

0 1

0 0

01

9 0 1 9

Thus, these two 4 x 4 state transition matrices characterize the state diagram
for the Miller-encoded signal.

Modulation techniques with memory such as NRZI and Miller coding are
generally characterized by a K-state Markov chain with stationary state
probabilities {p,i=1,2,...,K} and transition probabilities {pj, i, j =
1,2,...,K} Associated with each transition is a signal waveform s,(‘),
j=1,2,...,K. Thus, the transition probability p; denotes the probability that
signal waveform s,(t) is transmitted in a given signaling interval after the
transmission of the signal waveform s;(t) in the previous signaling interval. The
transition probabilities may be arranged in matrix form as

or,© ocoOT)= (4-3-45)

Pu Piz +s. Pin

p= Pa Pr vee Pox (4-3-46)
Ki Pr --- Prx

where P is called the transition probability matrix.
The transition probability matrix is easily obtained from the transition

matrices {T,} and the corresponding probabilities of occurrence of the input
bits (or, equivalently, the stationary state transition probabilities {p,}). The
pene. al relationship may be expressed as

F4

P=> 4.7, (4-3-47)i=1

where q, = P(a, =0) and q, = P(a, = 1).
For the NRZIsignal with equal state probabilities p, = p, = 4 and transition

matrices given by (4-3-42) and (4-3-43), the transition probability matrix is

P= [; ‘| (4-3-48)
Similarly, the transition probability matrix for the Miller-coded signal with
equally likely symbols (¢, = q2 =} or, equivalently, p, = p2 = p3 = p4=}) is

030}

P= (4-3-49)
0033
2400

$040

The transition probability matrix is useful in the determination of the spectral
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characteristics of digital modulation techniques with memory, as we shall
observe in Section 4-4,

4-3-3 Nonlinear Modulation Methods with Memory

In this section, we consider a class of digital modulation methods in which the
phase of the signal is constrained to be continuous. This constraint results in a
phase or frequency modulator that has memory. The modulation method is
also nonlinear.

Continuous-Phase FSK (CPFSK) A conventional FSK signal is generated
by shifting the carrier by an amount f, = 3 Af/,, J,= +1, +3,..., +(M~1), 10
reflect the digital informationthat is being transmitted. This type of FSK signal
was described in Section 4-3-1, and it is memoryless. The switching from one
frequency to another may be accomplished by having M =2* separate
oscillators tuned to the desired frequencies and selecting one of the M
frequencies according to the particular k-bit symbot!that is to be transmitted in
a signalinterval of duration T = k/R seconds. However, such abrupt switching
from one oscillator output to another in successive signaling intervals results in
relatively large spectral side lobes outside of the main spectral band of the
signal and, consequently, this method requires a large frequency band for
transmission of the signal.

To avoid the use ofsignals having large spectral side lobes, the information-
bearingsignal frequency modulates a single carrier whose frequency is changed
continuously. The resulting frequency-modulated signal is phase-continuous
and, hence, it is called continuous-phase FSK (CPFSK). This type of FSK
signal has memory because the phase of the carrier is constrained to be
continuous.

In order to represent a CPFSKsignal, we begin with a PAM signal

d(t)= > L.g(t—nT) (4-3-50)

where {/,} denotes the sequence of amplitudes obtained by mapping k-bit
blocks of binary digits from the information sequence {a,} into the amplitude
levels +1, +3,..., +(M — 1) and g(t) is a rectangular pulse of amplitude 1/2T
and duration T seconds. The signal d(t) is used to frequency-modulate the
carrier. Consequently, the equivalent lowpass waveform v(t) is expressed as

v(t) = Sexe {ian [.d(t)dt+ $o|| (4-3-51)
where j, is the peak frequency deviation and ¢, is the initial phase of the
carrier.

The carrier-modulated signal corresponding to (4-3-51) may be expressed as

s()= =cos [2x+ (6,1 + dol (4-3-52)
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where #(t; 1) represents the time-varying phase of the carrier, which is defined
as

oC) = 427I,| d(t)dt
=4nTf, { [= Lg(t—nT)| dt (4-3-53)

Note that, although d(r) contains discontinuities, the integral of d{t) is
continuous. Hence, we have a continuous-phase signal. The phase of the
carrier in the interval nT <¢ =(n + 1)T is determined by integrating (4-3-53).
Thus,

a-]

A(T) =22f,T Sh + 2afdt—nTi,kao

= 6, +2ahi,qtt-—nT) (4-3-54)

where A, 6,, and q(t) are defined as

h =2f,T (4-3-55)
n-]

6,=nh > (4-3-56)k=+x

0 (<0)

gu) =44/2T (O5tsT) (4-3-57}
4 (@>T)

We observe that 9, represents the accumulation (memory)of ail symbols up to
time (n — 1)T. The parameter # is called the modulation index.

Continuous-Phase Modulation (CPM) When expressed in the form. of
(4-3-54), CPFSK becomesa special case of a general class of continuous-phase
modulated (CPM)signals in which the carrier phase is

OGD =2a >) hyg(t-kT), nT <¢<(n4+1)T (4-3-58)k= +=

where {/,} is the sequence of M-ary information symbols selected from the
alphabet +1, +3,...,+(M ~ 1), {h,} is a sequence of modulation indices, and
q(t) is some normalized waveform shape.

When A, = h for all &, the modulation index is fixed for all symbols. When
the modulation index varies from one symbol to another, the CPM signal is
called multi-h. In such a case, the {h,} are made to vary in a cyclic manner
through a set of indices.

The waveform q(t) may be represented in general as the integral of some
pulse g(r), i-e.,

q(t) = [g(t) dt (4-3-59)
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Pulse shapes for full response CPM (a, b) and partial response CPM (c, d).

if g(1) = O for t> 7, the CPM signalis called full response CPM. If g(t) ¥0 for
1>T, the modulated signal is called partial response CPM. Figure 4-3-16
iJlustrates several pulse shapes for g(t), and the corresponding gir). It is .
apparent that an infinite variety of CPM signals can be generated by choosing
different pulse shapes g{t) and by varying the modulation index A and the
alphabet size M.

It is instructive to sketch the set of phase trajectories (¢; 1) generated by all
possible values of the information sequence {J,}. For example, in the case of
CPFSK with binary symbols /, = +1, the set of phase trajectories beginning at
time ¢=0 is shown in Fig. 4-3-17. For comparison, the phase trajectories for
quaternary CPFSK are illustrated in Fig. 4-3-18. These phase diagrams are
called phase trees. We observe that the phase trees for CPFSK are piecewise
linear as a consequence of the fact that the pulse g(r) is rectangular. Smoother
phase trajectories and phase trees are obtained by using pulses that do not
contain discontinuities, such as the class of raised cosine pulses. For example, a
phase trajectory generated by the sequence (1,—-1,-1,-1,1,1,—1.1) for a
partial response, raised cosine pulse of length 37 is illustrated in Fig. 4-3-19.
For comparison, the corresponding phase trajectory generated by CPFSK is
also shown.

The phase trees shownin these figures grow with time. However, the phase
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FIGURE 4-316 (Continued).  
FIGURE 4-3-17 Phase trajectory for binary CPFSK.
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FIGURE 43-18=Phase trajectory for quatemary CPFSK.

of the carnier is unique only in the range from ¢@ = 0 to @ =2zor, equivalently,
from @ = ~x to & = x. When the phasetrajectories are plotted modulo 27, say
in the range (—2, 2), the phase tree collapses into a structure cailed a phase
trellis. To properly view the phase trellis diagram. we may plot the two
quadrature components x.(0.I)=cos@(r:D) and x01) =sin dit: Das
functions of time. Thus, we generate a three-dimensional plot in which the
quadrature components x, and x, appear on the surface of a cylinder of unit
radius. For example, Fig. 4-3-20 illustrates the phase trellis or phase cylinder
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Phase trajectories for binary CPFSK (dashed) and binary, partial response CPM based on raised
cosine pulse of length 37 (solid). [From Sundberg (1986), © 1986 1EEE.]

obtained with binary modulation, a modulation index 4 = 4, and a raised
cosine pulse of length 37. :

Simpler representations for the phase trajectories can be obtained by
displaying only the terminal values of the signal phase at the time instants
t=nT. In this case, we restrict the modulation index of the CPM signal to be
rational, In particular, let us assume that A=m/p, where m and p are
relatively prime integers, Then, a full response CPM signal at the time instants
t=nT will have the terminalphase states

o,={o, 2", am ea bam (4-3-60)
Pp p

when mm is even and

@,={0,7 p= ten (4-3-61)
Pp P

when mm is odd. Hence, there are p terminal phase states when m is even and
2p siates when m is odd. On the other hand, when the pulse shape extends

 
Phase cylinder for binary CPM with A = } and a raised cosine
pulse of length 37. [From Sundberg (1986), © 1986 IEEE
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FIGURE 43-21

FIGURE 43-22 State diagram for binary CPFSK with A = $
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State trellis for binary CPFSK with # = £.

over L symbolintervals (partial response CPM), the numberof phase states
mayincrease up to a maximum of §, where

5.= {eM (even m) lopM*-! (odd m)

where M is the alphabet size. For example, the binary CPFSK signal (full
response, rectangular pulse) with A = 4, has S,=4 (terminal) phase states. The
state trellis for this signal is illustrated in Fig. 4-3-21. We emphasize that the
phase transitions from one state to another are not true phase trajectories.
They represent phase transitions for the (terminal) states at the time instants
t=nT.

Analternative representation to the state trellis is the state diagram, which
also illustrates the state transitions at the time instants t=nT. This is an even

more compact representation of the CPM signal characteristics. Only the
possible (terminal) phase states and their transitions are displayed in the state
diagram. Time does aot appear explicitly as a variable. For example, the state
diagram for the CPFSKsignal with A = 3 is shown in Fig. 4-3-22.

(43-62)

Minimum-Shift Keying (MSK) MSK is a special form of binary CPFSK
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(and, therefore, CPM) in which the modulation index A = 4. The phase of the
carrier in the interval n7 <¢=(n + LT is

al

or: D=42 > 1, +xh,qi-nT)A= oe

= @,+ int,(—""), nT <t<(n+1)T (4-3-63)
and the modulated carrier signalis

 

s()= Acos [2p +0, + bat22)]
1

= Acos |an(f + aln)t ~Idnxzl, + 6, aT stS(n+1)T (4-3-64)
The expression (4-3-64) indicates that the binary CPFSK signal can be

expressed as a sinusoid having one of two possible frequencies in the interval
aT <!<(n + 1)T. If we define these frequencies as

1

A=k~ Tp
(4-3-65)1

= +—h=f+75

then the binary CPFSKsignal given by (4-3-64) may be written in the form

s(t) = Acos[2aft+ 6, +4na(-1)"], i =1,2 (4-3-66)

The frequency separation Af =f,~f,=1/2T. Recall that Af =1/2T is the
minimum frequency separation that is necessary to ensure the orthogonality of
the signals s,(¢) and 5,(r) over a signaling interval of length T. This explains
why binary CPFSK with h =} is called minimum-shift keying (MSK). The
phase in the nth signaling interval is the phase state of the signalthat results in
phase continuity between adjacentintervals.

_MSK mayalso be represented as a form of four-phase PSK. Specifically, we
may express the equivalent lowpass digitally modulated signa! in the form (see
Problem 4-14}

(= 2 [ang(t- NT) ~ jens ig{t — 2nT - T)] (4-3-67)

where g(r) is a sinusoidal pulse defined as

. mt

g(t) = sin oy (O0<1<27)
0 (otherwise)

(4-3-68)
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Thus, this type of signal is viewed as a four-phase PSK signal in which the
pulse shape is one-half cycle of a sinusoid. The even-numbered binary-valued
(+1) symbols {J,,} of the information sequence {/,} are transmitted via the
cosine ofthe carrier, while the odd-numbered symbols {/,,,,,} are transmitted
via the sine of the carrier. The transmission rate on the two orthogonalcarrier
components is 1/27 bits per second so that the combined transmission rate is
1/7 bits/s. Note that the bit transitions on the sine and cosine carrier

components are staggered or offset in time by 7 seconds. For this reason, the
signal

s{t)=Albgt - 2nT)| cos 27f,t

+ [.S hy iglt — 2nT — 7)| sin 2nte} (4-3-69)
is called offset quadrature PSK (OQPSK) or staggered quadrature PSK
(SOPSK).

Figure 4-3-23 illustrates the representation of the MSK signals as two
staggered quadrature-modulated binary PSK signals. The corresponding sum
of the two quadrature signals is a constant amplitude, frequency-modulated
signal.

It is also interesting to compare the waveforms for MSK with offset QPSK
in which the pulse g(1) is rectangular for 0<1:<27, and with conventional

 
() Quadrature signal component

Representation of MSK signal as a form of two
slaggeted binary PSK signals. each with a OF af 3 AF ST 6F 77
sinuscidal envelope. to) MSKsignal [sum of (a1 and ()]
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-90° phase shift +90° phase shifi

 (a) MSK

{b) Offset
QPSK '

, +90° phase shift ‘

‘ No data transitions ;

1

(c) QPSK 
-90° phase shift

Signal waveforms for (a@) MSK, (6) offset QPSK (rectangular pulse), and (c) conventional QPSK
{rectangular pulse). [From Gronemeyer and McBride (1976); © 1976 LEEE.]

quadrature (four-phase) PSK (QPSK) in which the pulse g(r) is rectangular for
0<1<2T.Clearly, all three of the modulation methods result in identical data
rates. The MSK signal has continuous phase. The offset QPSK signal with a
rectangular pulse is basically two binary PSK signals for which the phase
transitions are staggered in time by T seconds. Thus, the signal contains phase
jumps of +90° that may occur as often as every T seconds. On the other hand,
the conventional four-phase PSK signal with constant amplitude will contain
phase jumps of +180° or +90° every 27 seconds. Anillustration of these three
signal types is given in Fig. 4-3-24.

Signal Space Diagrams for CPM In general, continuous-phase signals
cannot be represented by discrete points in signal space as in the case of PAM,
PSK, and QAM,because the phase of the carrier is time-variant. Instead, a
continuous-phase signal is described by the various paths or trajectories from
one phase state to another. For a constant-amplitude CPM signal, the various
trajectories form a circle.
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h= k=i i

he h=wi ‘atUd
Signal space diagram for CPFSK.

For example, Fig. 4-3-25 illustrates the signal space (phase trajectory)
diagram for CPFSK signals with A =}, #=4, A=4}, and k= 4%. The beginning
and ending points of these phase trajectories are marked in the figure by dots.
Notethat the length of the phase trajectory increases with an increase in hk. An
increase in A also results in an increase of the signal bandwidth, as
demonstrated in the following section.

Multiamplitude CPM Multiamplitude CPM is a generalization of ordinary
CPM in which the signal amplitude ts allowed to vary over a set of amplitude
values while the phase of the signa! is constrained to be continuous. For
example, let us consider a two-amplitude CPFSK signal, which may be
represented as

S(t) = 2A cos (2af-t + 62(1, Dj + A cos (2af-r + 6,(0; 59] (4-3-70)

where

n-1 _

6:1) =nh > ent, aT <t<(n+1)T  (4-3-71)koow

an thd, (¢ — nté(t3)=ah > 12A nT <t<(n+1)T  (4-3-72)h=-m

The information is conveyed by the symbol sequences {J,} and {J,,}, which are
related to two independent binary information sequences {a,} and {b,,} that
take values {0,1}. We observe that the signal in (4-3-70) is a superposition of
two CPFSKsignals of different amplitude. However, the sequences {2,} and
{J,} are not statistically independent, but are constrained in order to achieve
phase continuity in the superposition of the two components.

To elaborate, let us consider the case where 4 = 4, so that we have the
superposition of two MSK signals. At the symbol transition points, the two
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a, é, i, J,  Amplitude-phese relations 

0 Oo -1 —1 Amplitude is constant; phase decreases
0 1 -1 1 Amplitude changes; phase decreases
1 0 l 1 Amplitude is constant; phase increases
I f i -1 Amplitude changes; phase increases

amplitude components are either in phase or 180° out of phase. The phase
change in the signal is determined by the phase of the larger amplitude
component, while the amplitude change is determined by the smaller
component. Thus, the smaller componentis constrained such that at ‘the start
and end of each symbolinterval,it is either in phase or 180° out of phase with
the larger component, independent of its phase. Under this constraint, the
symbol sequences{/,} and {J,} may be expressed as

I, = 2a, -1
(4-3-73)

Jy= I(h = 2b) = (1-22)
These relationships are summarized in Table 4-3-1.

As a generalization, a multiamplitude CPFSK signal with components
may be expressed as

S(t} = 2*"! cos [2af-t + by(t; 1D] + > 2”°* cos [2Af.1+ b(t: S,))  (4-3-74)me]

 

where

t-nTt a)

ov(t; 1) = zal, 7 tah D> &, nT <t<(n+1)T—(4-3-75)ke oe

and

t—nT 

dm(ts In) = 1,4[h + 4Inn + 1)] T
amv}

+ DS whlht+ 3a t VD, nT <t<(n+)T  (4-3-76)k= 8

The sequences {i,} and {J,,,} are Statistically independent, binary-valued
Sequencesthat take values from the set {1, —1}.

From (4-3-75) and (4-3-76), we observe that each component in the sum
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Signal space diagrams for two-component CPFSK.

will be either in phase or 180° out of phase with the largest component at the
end of the nth symbolinterval, ie., at f= ( + 1)7. Thus, the signal states are
specified by an amplitude level from the set of amplitudes {1,3,5,...,2” — 1}
and a phase level from the set {0, 20, 270, ..., 2” — mh}. The phase constraint
is required to maintain the phase continuity of the CPM signal.

Figure 4-3-26 illustrates the signal space diagrams for two-amplitude (N = 2)
CPFSK with h =4,}, }, and §. The signal space diagrams for three-component
(N =3) CPFSKare shown in Fig. 4-3-27. In this case, there are four amplitude
levels, The numberof states depends on the modulation index A as well as N.
Note that the beginning and ending points of the phase trajectories are marked
by dots.

Additional multiamplitude CPM signal formats may be obtained by using
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FIGURE 43-27=Signal space diagrams for three-component CPFSK.

pulse shapes other than rectangular, as well as signal pulses thal span more
than one symbol {partial response).

4-4 SPECTRAL CHARACTERISTICS OF DIGITALLY
MODULATED SIGNALS

In most digital communications systems, the available channel bandwidth is
limited, Consequently. the system designer must consider the constraints
imposed by the channel bandwidth limitation in the selection of the modula-
tion technique used to transmit the information. For this reason, it is important
for us to determine the spectral content of the digitally modulated signals
described in Section 4-3,

Since the information sequence is random, a digitally modulated signal is a
stochastic process. We are interested in determining the power density
Spectrum of such a process. From the power density spectrum, we can
determine the channel bandwidth required to transmit the information-bearing
signal. Below. we first derive the spectral characteristics of the class of linearly
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modulated signals. Then, we «consider the nonlinear CPFSK, CPM, and
baseband modulated signals with memory.

4-4-1 Power Spectra of Linearly Modulated Signals

Beginning with the form

s(t) = Re {u(je?™"]

which relates the bandpass signal s(r} to the equivalent lowpass signal u(t), we
may express the autocorrelation function of s(r) as

$,.(T) = Re [,,(r)e?""] (4-4-1)

where 4,,(t) is the autocorrelation function of the equivalent lowpass signal
v(t). The Fourier transform of (4-4-1) yields the desired expression for the
power density spectrum ®,,(/) in the form

®,,(f) = {OF ~ ke) + ®,,.(—f ~ f)] (4-4-2)

where ®,,(f) is the power density spectrum of u(r). It suffices to determine the
autocorrelation function and the power density spectrum of the equivalent
lowpass signal v(f).

First we consider the linear digital modulation methods for which v(t) is
represented in the general form

ut)h= S Lett-nT) (4-4-3)

where the transmission rate is 1/7 = R/k symbols/s and {/,} represents the
sequence of symbols that results from mapping &-bit blocks into corresponding
signal points selected from the appropriate signal space diagram. Observe that
in PAM, the sequence{/,} is real and corresponds to the amplitude values of
the transmitted signal, but in PSK, QAM, and combined PAM-PSK, the
sequence {/,} is complex-valued, since the signal points have a two-dimensional
representation.

The autocorrelation function of u{t) is

Ow(t + Tt) = FEly*(t)u(e + 7)]

=} s S E[IsL,|g*(t—aT)g(t+t—mT) (4-4-4)AS PS oe

We assume that the sequence of information symbols {f,} is wide-sense
stationary with mean jy, and autocorrelation function

dj(m) = SEU, tml (4-4-5)
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Hence (4-4-4) can be expressed as

ob,(t + Tt) = y 5 ou(m — n)g*(t—nT)g(t+ t- mT)
=

= ¥ 60m) S gtt-ntjgett—nT—mT) (4-46)=o

The second summation in (4-4-6), namely,

> gt(t —nT)g(t+t-—nT -— mT)
n=

is periodic in the ¢ variable with period T. Consequently, ¢,,,(¢ + 7: t) is also
periodic in the ¢ variable with period 7. Thatis,

bu(t+ T+ t:t+T)=dy(tt tf) (4-4-7)

In addition, the mean value of u(t), which is
x

E[v(t)} = a; > g(t ~nT) (4-4-8)

is periodic with period 7. Therefore v(t) is a stochastic process having a
periodic mean and autocorrelation function. Such a process is called a
cyclostationary process ot a periodically stationary process in the wide sense, as
described in Section 2-2-6.

In order to compute the power density spectrum of a cyclostationary
process, the dependence of ¢,,(f+ t; 1) on the r variable must be eliminated,
This can be accomplished simply by averaging ¢,,(¢+ 1:2) over a single
period. Thus,

TR
- 1

P(t) = Thera dwt + 1; 1) dt
x a 1 TR> gm) > 7} et(t-—aT)g(it+1—nT —mT) adeeed n=-x -—Tm= —

Th-aT

> ;(m) S ;| gr(t)g(t+t—mT) dt (4-4-9)= n= -~TAQ-aT

Weinterpret the integral in (4-4-9) as the time-autocorrelation function of git)
and define it as

ba(t)=[ gr(og(e + x)dt (4-4-10)
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Consequently (4-4-9) can be expressed as

- 1 <

Bult) == D bul )eg(t — mT) (4-4-11)

The Fourier transform of the relation in (4-4-11) yields the (average) power
density spectrum of u(f) in the form

Duff) = ZIGPP BAP) (4.4.12)
where G(f) is the Fourier transform of g(t), and ®,(f) denotes the power
density spectrum of the information sequence, defined as

®Af)= Li dulmyervmr (44.13)
The result (4-4-12) iustrates the dependence of the power density spectrum of
v(t) on the spectral characteristics of the pulse g(t) and the information
sequence{J,}, That is, the spectral characteristics of v(t) can be controlled by
design of the pulse shape g(r) and by design of the correlation characteristics of
the information sequence.

Whereas the dependence of ®,,(f) on G(f) is easily understood upon
observation of (4-4-12), the effect of the correlation properties of the
information sequence is more subtle. First of all, we note that for an arbitrary
autocorrelation ¢;,(m) the corresponding power density spectrum ®,,(f) is
periodic in frequency with period 1/7. In fact, the expression (4-4-13) relating
the spectrum (f/f) to the autocorrelation ¢,(m) is in the form of an
exponential Fourier series with the {d,,(m)} as the Fourier coefficients. As a
consequence, the autocorrelation sequence ¢,,{m) is given by

iar

dy(my=T | Otro"df (44.14)- 12

Second, let us consider the case in which the information symbols in the
sequence are real and mutually uncorrelated. In this case, the autocorrelation
function @,(m) can be expressed as

oi +p; (m=0)ulm oe ee (44-15)
where of denotes the variance of an information symbol. When (4-4-15) is
used to substitute for ,() in (4-4-13), we obtain

®(fJ= oi tu? Ye Peer (4-4-16)

The summation in (4-4-16) is periodic with period 1/T. It may be viewed as
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the exponential Fourier series of a periodic train of impulses with each impulse
having an area 1/T. Therefore (4-4-16) can also be expressed in the form

2Su-9
Substitution of (4-4-17) into (4-4-12) yields the desired result for the power
density spectrum of v(t) when the sequence of information symbols ‘is
uncorrelated. Thatis,

The expression (4-4-18) for the power density spectrum is purposely
separated into two terms to emphasize the two different types of spectral
components. Thefirst term ts the continuous spectrum, and its shape depends
only on the spectral characteristic of the signal pulse g(t). The second term
consists of discrete frequency components spaced 1/T apart in frequency. Each
spectral line has a power that is proportional to (G({)|’ evaluated at f = m/T.
Note that the discrete frequency components vanish when the information
symbols have zero mean,i.¢e., 4; = 0. This condition is usually desirable for the
digital modulation techniques under consideration, and it is satisfied when
the information symbols are equally likely and symmetrically positioned in the
complex plane. Thus, the system designer can control the spectra] characteris-
tics of the digitally modulated signal by proper selection of the characteristics
of the information sequence to be transmitted.

Of) = oF (4-4-17)

(fF) ==IGP +ayene -o  (4-4-18)

Example 4-4-1

Toillustrate the spectral shaping resulting from g(t), consider the rectangu-
lar pulse shownin Fig. 4-4-1(a). The Fourier transform ofg(t)is

sinzfT _,G(f)= ATTwr
aft

Rectangularpulse and its energy density spectrum |G(f)P.

Gyr

(ATP

' f
r -MT -uT -UT 0 ut 2T MT

(by
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Hence

sin afT \* AaT ) (4-4-19)
This spectrum is illustrated in Fig, 4-4-1(b). Note that it contains zeros at
multiples of 1/T in frequency and that it decays inversely as the square of
the frequency variable. As a consequence of the spectral zeros in G(f),all
but one of the discrete spectral components in (4-4-18) vanish. Thus, upon
substitution for |G(f)|? from (4-4-19), (4-4-18)} reduces to

IGP = (ATP(

sin affat ) + a*uiocr) (4-4-20)o,(f)=oar

Example 4-4-2

As a second illustration of the spectral shaping resulting from g(t), we
considerthe raised cosine pulse

a) =4 [1 +008 (1-5) |, Osr:=T (4-2-21)
This pulse is graphically illustrated in Fig. 4-4-2(a). Its Fourier transform is
easily derived and it may be expressed in the form

AT sinafT
2 afT(i - f?T?)

The square of the magnitude of G(f)} is shown in Fig. 4-4-2(b). It is
interesting to note that the spectrum has zeros at f=n/T, n= +2, +3,
£4,.... Consequently, all the discrete spectral components in (4-4-18), ex-
cept the ones at f=0 and f= +1/7, vanish. When compared with the

G(f) = eiMT (4-4-22)

FIGURE 4-4-2—Raised cosine pulse and its energy density spectrum [G(f}’.
gin) tagyr
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i

0 f r aT 3 -4T iT 02a ar aT
(a) (bi

217



218

 

CHAPTER 4: CHARACTERIZATION OF COMMUNICATION SIGNALS AND SYSTEMS 2049

spectrum of the rectangular pulse, the spectrum of the raised cosine
pulse has a broader main lobe but the tails decay inversely as f°.

Example 4-4-3

To illustrate that spectral shaping can also be accomplished by operations
performed on the input information sequence, we consider a binary
sequence {b,,} from which. we form the symbols

I, = by + By (4-4-23)

The{6,,} are assumed to be uncorrelated random variables, each having zero
mean and unit variance. Then the autocorrelation function of the sequence
{i} is

(mm) = E(LLm)

2 (m=0)

=41 (m=4l) (4-4-24)
0 (otherwise)

Hence, the power density spectrum of the input sequence is

®,(f) = 2(1 + cos 22fT)

= 400s? fT (4-4-25)
and the corresponding power density spectrum for the (lowpass) modulated
signal is

Olf)=ZIGUPcos? afT (4-4.26)

4-4-2 Power Spectra of CPFSK and CPM Signals
In this section, we derive the power density spectrum for the class of constant
amplitude CPM signals that were described in Section 4-3-3. We begin by
computingthe autocorrelation function and its Fourier transform, as was done
in the case of linearly modulated signals.

The constant amplitude CPMsignalis expressed as

s(t: 1) = A cos [2zf-t + 6(t: DJ (4-4-27)
where

b(t: I) = 2nh S Lq(t— kT) (4-4-28)
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Each symbol in the sequence {/,} can take one of the M values {+1, 3,...,
+(M — 1)}. These symbols are statistically independent and identically distrib-
uted with prior probabilities

P,=P(k=n), m=+1,43,...,+(M—-1) (4-4-29)

where 2, P,, = 1. The pulse g(#}= q'(t) is zero outside of the interval [0, LT],
q(t) =0, «<0, and q(t) =4 for 1> LT.

The autocorrelation function of the equivalent lowpass signal

v(t) = een

bolt + 1:1) $Elexp(j2mh Shige + t-KT)-gt-kT)I)| (4-430)
First we express the sum in the exponent as a product of exponents. The
result is

Pull+ T= 4e( ll exp {j2ahi, [q(t + t- KT) — qt kT)}}) (4-4-31)k= -e

Next, we perform the expectation over the data symbols {/,}. Since these
symbols are statistically independent, we obtain

x Af~

du(t + t= 3 > Prexp{j2ahn[qir + t- kT) — g(t —kT)]}
k= MS iF]

(4-4-32)

Finally, the average autocorrelation function is

- 1?(7) = zl b(t + T:0) dt (4-4-33)
Although (4-4-32) implies that there are an infinite numberoffactors in the

product, the pulse g(t) = 9'(t)=0 for 1<0 and+>LT, and g(t)=0 for <0.
Consequently only a finite number of terms in the product have nonzero
exponents. Thus, (4-4-32) can be simplified considerably. In addition, if we let
t=&+mT, where 0< €<T and m=0,1,..., the average autocorrelation in
(4-4-33) reduces to

O{E + mT)

1 fom Med
=>} I >—P,exp{j2ahn[q(t + € - (k —m)T) - q(t — kT}

27 Wo keeles n-- (AP 1}Ww owl

(4-4-34)
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Let us focus on &,,(€ + mT) for + mT = LT.In this case, (4-4-34) may be
expressed as

bu(E+ mT) =[PGA)Y" AE), mel, O<E<T—(4-4-35)

where (jh) is the characteristic function of the random sequence {/,,}, de-
fined as

wh) = Eve")

M-1 ;
= > Pe (4-4-36)

n=—(M-1)
a odd

and A(é) is the remaining part of the average autocorrelation function, which
may be expressed as

1 Tr a M-1
A(é) == I] > P, exp (j2ahn[} - qt — kT)]}

2T  k=tek w=—(Mf-t)nodd

l r M-1 : :

x J] dX P,exp [j2mhnq(e+€—kT)| dt, meL (4-4-37)
) .k=l-i|a=-(M-1

oddtt

Thus, ¢,,,(t) may be separated into a product of A(€) and W(jh) as indicated in
(4-4-35) for t= & + m7 > LTand 0 <€< T. This propertyis used below.

The Fourier transform of ¢,,(T) yields the average power density spectrum
as

N=] dale?"de
~2Re|f dulrePad -4-3elf dlTe r| (4-4-38)

But

[ dutneears [ dattre Pedr0 iv

+© balePat (4-3-39)“LF

With the aid of (4-4-35), the integral in the range LT<t<= may be
expressed as

x x (a+r

| bite7dt= > { $,,(te?" dt (4-4-40)aT mym=L
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Now, let t= & + mT. Then (4-4-40) becomes

fr b,,.(t)e2"dt = s [BnlE + mTJePET) déLr 0mah

« °F

= >| A(ENWA)"hePEMD dé

= Ss wineA["a(gyearent te aann=O lo

A property of the characteristic function is |4(jh}! <1. For values of + for
which |(jh)| <1, the summation in (4-4-41) converges and yields

oo . - ]

2ie Oeea (44-42)
In this case, (4-4-41) reduces to

- . 1 re ,wo te28dt=e| wl + LTyePet 47) g[3 (ne Toye|, Fu(E+LT) é
(4-4-43)

By combining (4-4-38), (4-4-39), and (4-4-43), we obtain the power density
spectrum of the CPM signal in the form

LT _ af 1 (h+1)T _ ,®,, =2Re| wine! "dt+—__,| wT Pet de|(f) A o ( Je 1 — bljhjePT Lr ¢ ( ye
(4-4-44}

This is the desired result when |y(jh)\< 1. In general, the power density
spectrum is evaluated numerically from (4-4-44), The average autocorrelation
function ¢,,(t) for the range 0= t=(ZL + 1)T may be computed numerically
from (4-4-34).

For values of # for which |y(jh)| = 1, e.g... 4 = K, where K is an integer, we
can set

wUjhy=eP?™ Oxv<) (4-4-45)

Then, the sum in (4-4-41) becomes

oo wT EP ee cet 1 =x v n v“fIRT UE ww oly -x-S); ( -*) ;2, . ° 7, a(f T T } 2 cot nr f T (4-4-46)
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Thus, the power density spectrum now contains impulses located at frequencies

 
O<sv<l, 2=0,1,2,... (4-4-47)

The result (4-4-46) can be combined with (4-4-41} and (4-4-39) to obtain the
entire power density spectrum, which includes both a continuous spectrum
component and a discrete spectrum component.

Let us return to the case for which |(jh)|<1. When the symbols are
equally probable,t.e.,

1

P= uM for alla

the characteristic function simplifies to the form

1s. . ih = eimhnw(jk) M4.
n odd

1 sinMahMah
M sin“sinth” (4-4-48)

Note thatin this case (jh) is real. The average autocorrelation function given
by (4-4-34) also simplifies in this case to

"Wl tf sin 2ahM[q(t + t-—kT)- Q(t -kT)]by{T) = = l) kaaLM sin 2ah[g(t + t — kT) - q(t — kT)] dt (4-4-49)

The corresponding expression for the power density spectrum reducesto

LT _

G.(f)=2||bug) cos 2aftdt
1 — W(jh) cos 2afT (L4yr1+yh)—2(jh)cos2nfTJar Fu(t)cos2xfrdr] (4-4-50)

Power Density Spectrum of CPFSK A closed-form expression for the
power density specirum can be obtained from (4-4-50) when the pulse shape-
&(t) is rectangular and zero outside the interval [0,7]. In this case, q(t) is
linear for 0<+< T. The resulting power spectrum may be expressed as

wuih= Tp,M+SSBiNA(AWA] 451
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where

A)TonoT omAT
Bam(f)=a (4-4-52)
nm = Ah(m+n-1—M)

v= U(jh) =a
The power density spectrum of CPFSK for M =2, 4, and 8 is plotted in

Figs 4-4-3, 4-4-4, and 4-4-5 as a function of the normalized frequency fT, with
the modulation index # =2f,T as a parameter. Note that only one-half of the
bandwidth occupancy is shown in these graphs. The origin corresponds to the
carrier f,. The graphs illustrate that the spectrum of CPFSK is relatively
smooth and well confined for 4 < 1. As A approachesunity, the spectra become
very peaked and, for k=1 when |#|=1, we find that impulses occur at M
frequencies. When h > 1 the spectrum becomes much broader. In communica-
tion systems where CPFSK is used, the modulation index is designed to
conserve bandwidth, so that A <1.

The special case of binary CPFSK with h=3 {or f,=1/4T) and #=0
corresponds to MSK.In this case, the spectrum of the signalis

 

\eA'T( cos 2afT y= ———— 4-4-5®,,.(f) r 1 _ 16f°T? ( 3)
where the signal amplitude A=1 in (4-4-52). In contrast the spectrum of
four-phase offset (quadrature) PSK (OQPSK) with a rectangular pulse g(/) of
duration T is

(sin afT\?vine a7(Eat) “(fy =A fT (4-4-54)
If we compare these spectral characteristics, we should normalize the

_ frequency variable by the bit rate or the bit interval 7;,. Since MSK is binary
FSK,it follows that 7 = 7, in (4-4-53). On the other hand. in OQPSK, T = 27,
so that (4-4-54) becomes

sin 2affey
2afT,

The spectra of the MSK and OQPSKsignals are illustrated in Fig. 4-4-6.
Note that the main lobe of MSK is 50% wider than that for OOPSK. However.
the side lobes in MSKfall off considerably faster. For example, if we compare the
bandwidth W that contains 99% of the total power. we find that W = 1.2/7,for
MSK and W = 8/T, for OOPSK. Consequently, MSK has a narrower spectral

b..(f= 24°T,( (4-4-55)
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Spectral density for two-level CPFSK Spectral density for two-level CPFSK
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0 i 2 3 :
Normalized frequencyfT Normalized frequency fT

(a) (6)

Spectral density fur two-level CPFSK Spectral density for two-level CPFSK
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FIGURE 4-4-3 Power density spectrum of binary CPFSK.

occupancy when viewed in terms of fractional out-of-band power above
fT, = 1. Graphsfor the fractional out-of-band power for OQPSK and MSKare
shown in Fig. 4-4-7. Note that MSK is significantly more bandwidth-efficient

than QPSK.Thisefficiency accounts for the popularity of MSK in many digitalcommunications systems.
Even greater bandwidth efficiency than MSK can be achieved by reducing
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Spectral density for four-level CPFSK Spectral density for four-level CPFSK

Spectraldensity 
Normalized frequency {7 Normalized frequency (F

tw) i

Speetral density for four-Jevel CPFSK

 
Normalized frequency {7

te)

FIGURE 4-44=Power density spectrum of quaternary CPFSK.

the modulation index. However, the FSK signals will no longer be orthogonal
and there will be an increase in the error probability.

Spectral Characteristics of CPM In general, the bandwidth occupancy of
CPM depends on the choice of the modulation index h, the pulse shape g(r),
and the numberof signals M. As we have observed for CPFSK,small values of
A result in CPM signals with relatively small bandwidth occupancy, while large
values of A result in signals with large bandwidth occupancy. This is also the
case for the more general CPM signals.
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Spectral density for eight-level CPFSK Spectral density for cight-level CPFSK
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FIGURE 4445—Power density spectrum of octal CPFSK.

FIGURE 4-46—Powerdensity spectra of MSK and offset QPSK. [From Gronemeyer and McBride (1976); ©
IEEE
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-10.0 Offset QPSK
-20.0

30

MSK

Fractional out-of-band power (normalized
two-sided bandwidth = 2 BT). [From
Gronemeyer and McBride (1976); © 1976 8007-30 4.0 60 8.0 10012014.0 160 18.0 20.0
fEEE,| 2WT = two-sided normalized bandwidth |(Hz/bit)/s |

Fracticaaloutofbandsignalpower(dB)
The use of smooth pulses such as raised cosine pulses of the form

1 2m
me{1— — 0<rsa= sal! cos) (0<1<LT)

0 (otherwise)

(4-4-56)

where L =1for full response and L > 1 for partial response, result in smaller
bandwidth occupancy and, hence, greater bandwidth efficiency than the use of
rectangular pulses. For example, Fig. 4-4-8 illustrates the power density”
spectrum for binary CPM with different partial response raised cosine (LRC)
pulses when A = 3. For comparison, the spectrum of binary CPFSKis also
shown. Note that as £ increases the pulse g(t} becomes smoother and the
corresponding spectral occupancy of the signal is reduced.

Powerspectrum(W/Hz)
Power density spectrum for binary CPM with#= 3
and different pulse shapes. [Front Autin et al. (!982); o os I i) 7)

© 1981 1EEE| Normalized frequency (7
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FIGURE 4-4-16
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Power density spectrum for M =4CPM with 3RC and

different modulation indices. [From Alin et al. (2981); 0 ts O48 O75 LO
© 1981 IEEE.) Normalized frequency {7

The effect of varying the modulation index in a CPM signalis illustrated in
Fig. 4-4-9 for the case of M = 4 and a raised cosine pulse of the form given in
(4-4-56) with L = 3. Note that these spectral characteristics are similar to the
onesillustrated previously for CPFSK, except that these spectra are narrower
due to the use of a smoother pulse shape.

Finally, in Fig. 4-4-10, we illustrate the fractional out-of-band power for
two-amplitude CPFSK with several different values of A.

Fractional out-of-band power for two-component CPFSK.(Mulfigan, 1988.)
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4-4-3 Power Spectra of Modulated Signals with Memory

In the last two sections, we have determined the spectral characteristics for the
class of linearly modulated signals without memory andfor the class of
angle-modulated signals such as CPFSK and CPM, which are nonlinear and
possess memory. In this section, we consider the spectral characteristics of
linearly modulated signals that have memory that can be modeled by a Markov
chain. We have already encountered such signals in Section 4-3-2, where we
described several types of basebandsignals.

The power density spectrum of a digitally modulated signa! that is
generated by a Markov chain may be derived by following the basic procedure
given in the previous section. Thus, we can determine the autocorrelation
function and then evaluate its Fourier transform to obtain the power density
spectrum. For signals that are generated by a Markov chain with transition
probability matrix P, the power density spectrum of the modulated signal may
be expressed in the general form (see Titsworth and Welch, 1961)

%p.s(2)|(¢-2)++ESpr Of) = 22

2FRe|S SoSMNSNPAD| (4.4.57)
where S,(f) is the Fourier transform of the signal waveform 5,(r),

Kx

Si(t) = 540) — pase)k=1

P,(f) is the Fourier transform of the discrete-time sequence p,(n), defined as

PAP) = & plne P47 (4-4-58)

and K is the numberof states of the modulator. The term p,(7t) denotes the
probability that the signal s(t) is transmitted n signaling intervals after
the transmission of s,(1). Hence, {p,()} are the transition probabilities in the
transition probability matrix P’. Note that p,(1) = p,.

Whenthere is no memory in the modulation method, the signal waveform
transmitted on each signaling interval is independent of the waveforms
transmitted in previoussignaling intervals. The power density spectrum of the
resultant signal may still be expressed in the form of (4-4-57), if the transition
probability matrix is replaced by

Pi P2 -+- PK

p=|P' Peo Px (4-4-59)
1 P2 ++ PK
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and we impose the condition that P" = P for all n = 1. Under these conditions,
the expression for the power density spectrum becomes a function of the
Stationary state probabilities {p,;} only, and, hence, it reduces to the simpler

> s(§)] ¢-9) ow=5 >
2en

K

+ FD Pl pd ISP

~ FD pip, Re (SASH) (4-4-60)
ey

We observe that our previous result for the power density spectrum of
memoryless linear modulation given by (4-4-18) may be viewed as a special
case of (4-4-60) in which all waveforms are identical except for a set of scale
factors that convey the digital information (Problem 4-30).

Wealso make the observation that the first term in the expression for the
powerdensity spectrum given by either (4-4-57) or (4-4-60) consists of discrete
frequency components. This line spectrum vanishes when

x n
> 5(2)=0 (4-461)r=]

The condition (4-4-6!) is usually imposed in the design of practical digital
communications systems and is easily satisfied by an appropriate choice of
signaling waveforms (Problem 4-31).

Now, let us determine the power density spectrum of the baseband-
modulated signals described in Section 4-3-2. First, the NRZ signal is
characterized by the two waveformss,(1) = g(r) and s2(t) = —g(t), where g(r) is
a rectangular pulse of amplitude A. For K = 2, (4-4-60) reduces to

mp -PoY § o(2)]n= =   4

8(¢- 5) PEP icine (4-462)
where

; 2

sin xf*\ (4-4-63)afT

Observe that when p = }, the line spectrum vanishes and 4(f) reduces to

IGMP = (ATP

]

Pf) = ZIG (4-4-64)

230



231

 

222 DIGITAL COMMUNICATIONS

The NRZIsignal is characterized by the transition probability matrix

P = [? | (4-4-65)2 2

Notice that in this case P" = P forall n = 1. Hence, the special form for the
power density spectrum given by (4-4-62) applies to this modulation format as
well. Consequently, the power density spectrum for the NRZI signal is
identical to the spectrum of the NRZ signal.

Delay modulation has a transition probability matrix

0404
004 4

= 4-4-P=la 400 (4-4-66)
+040

and stationary state probabilities p, = 4 for i =1, 2,3, 4. Powers of P may be
obtained by use of the relation

P'p = ~Ip | (4-467)

wherep is the signal correlation matrix with elements

1 rpam asleisteat (4-4-68)
and where the four signals {s,(t), i= 1, 2,3, 4} are shown in Fig. 4-3-15. It is
easily seen that

L 90 oO -1

-| © Tr oe 4-4-69Pe} 0-1 1° 0 (4469)
-1 0 0 1

Consequently, powers of P can be generated from the relation

P'4p=—iPp, k>1 (4-4-70)

Use of (4-4-66}, (4-4-69), and (4-4-70) in (4-4-57) yields the power density
spectrum of delay modulation. It may be expressed in the form

P(f)=DAT=BeosBy) —2 cos % — 22 cos 24 — 12 cos 3ys + Scos 4y
+ 12 cas Sy + 2 cos 6 — 8 cos 746 +2 cos 8} (4-4-71)

where w = xafT.
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FIGURE 44-11—Power spectral density (one-sided) t2
of Miller code (delay modulation) 08
and NRZ/NRZI baseband signals. 04
[From Hecht andGuida (1969), °° 03 04 06 08 10 12 14 16 78 20
© 1969 IEEE.| Normalized frequency fT

The spectra of these baseband signals areillustrated in Fig. 4-4-11. Observe
that the spectra of the NRZ and NRZIsignals peak at f = 0. Delay modulation
has a narrower spectrum and a relatively small zero-frequency content. Its
bandwidth occupancy is significantly smaller than that of the NRZ signal.
These two characteristics make delay modulation an attractive choice for
channels that do not pass dc, such as magnetic recording media.

4-5 BIBLIOGRAPHICAL NOTES AND REFERENCES

The characteristics of signals and systems given in this chapter are very useful
in the design of optimum modulation/demodulation and coding/decoding
techniques for a variety of channel models. In particular, the digital modula-
tion methods introduced in this chapter are widely used in digital communica-
tion systems. The next chapter is concerned with optimum demodulation
techniques for these signals and their performance in an additive, white
gaussian noise channel. A general reference for signal characterization is the
book by Franks (1969).

Ofparticular importance in the design of digital communications systems
are the spectral characteristics of the digitally modulated signais, which are
presented in this chapter in some depth. Of these modulation techniques, CPM
is one of the most important due to its efficient use of bandwidth. For this
reason, it has been widely investigated by many researchers, and a large
number of papers have been published in the technical literature. The most
comprehensive treatment of CPM,including its performance and its spectral
characteristics, can be found in the book by Andersonetal. (1986). In addition
to this text, the tutorial paper by Sundberg (1986) presents the basic concepts
and an overview of the performance characteristics of various CPM techniques.
This paper also contains over 100 references to published papers on this topic,

There are a large number of references dealing with the Spectral charac-
teristics of CPFSK and CPM.Asa point of reference, we should mention that
MSKwas invented by Doelz and Heald in 1961. The early work on the power
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spectral density of CPFSK and CPM was done by Benneti and Rice (1963).
Anderson and Salz (1965), and Bennett and Davey (1965). The book by Lucky
et al. (1968) also contains a treatment of the spectral characteristics of CPFSK.
Most of the recent work is referenced in the paper by Sundberg (1986). We
should also cite the special issue on bandwidth-efficient modulation and coding
published by the ZEEE Transactions on Communications (March 1981), which
contains several papers on the spectral characteristics and performance of
CPM,

The generalization of MSK to multiple amplitudes was investigated by
Weber e7 ai. (1978). The combination of multiple amplitudes with general CPM
was proposed by Mulligan (1988) who investigated its spectral characteristics
and its error probability performance in gaussian noise with and without
coding.

4-1 Prove the following properties of Hilbert transforms:
a If x(t) =x(—-¢) then &(r) = —£(-1):
b If x(¢) = —x(-7) then #(2) = €(-1):
e Tfx() =cos wf then £(1) = sin wot:
d Tfx(¢) =sin wat then £(r) = —cos wyft
e £(t) = —x(r):
f fi. x*(dt =f", 20) de:
g Jo xO(t) dt =0.

4-2 If x(t) is a stationary random process with autocorrelation function $,,(t) =
Elx(x(t + t)] and spectral density ,,(f) then show that $..(t)=¢,,(2),
At) = —,.(t), and O;,(f) = ®.(f).

4-3 Suppose that n(/) is 4 zero-mean stationary narrowband process represented by
either (4-1-37), (4-1-38}, or (4-1-39}. The autocorrelation function of the equiv-
alent lowpass process z(¢) =x(1) +jy(r) is defined as

b..(t) = 3E]z*(e)2(e + 7)
a Show that

Elz(e)z(r + t)}=0

b Suppose ¢..(1) = N,6(r), and let
7

VY -| z(t) dt
Determine E(V*) and E(VV*) = E(IVP).

4-4 Determine the autocorrelation function of the stochastic process

x(t) =A sin (afr + @)

where f. is a constant and 6 is a uniformly distttfsted phase. i.e.
|

p(ce@y=—. Of @=2nr2K

45 Prove that s(t) is generally a complex-valued signal and give the condition under
whichit is real. Assume that s(t) is a real-valued bandpasssignal.
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4-6 Suppose that s(r) is either a real- or compiex-valued signal that is represented as a
linear combination of orthonormal functions (f,{¢)}, 1.e.,

x

a) = >¥ sft)k=l

where

* 0 #

[ seorsmar={" oe
Determine the expressions for the coefficients {s,} in the expansion §(r) that
minimize the energy

=[ |s(t) — (a)? at
and the corresponding residual error @,.

4-7 Suppose that a set of M signal waveforms{s,,.{f)} are complex-valued. Derive the
equations for the Gram-Schmidt procedure that will result in a set of N=M
orthonormal signal waveforms.

4-8 Determine the correlation coefficients p,,, among the four signal waveforms {s,(t)}
shown in Fig. 4-2-1, and the corresponding Euclidean distances.

4-9 Consider a set of M orthogonal signal waveformss,,(7), 1 =m <M, 0=:<T,all
of which have the same energy @ Define a new set of M waveforms as

1 Mt

Salt) = Small) — 9g D 54(, l<m<M, 0<:<T=I

Show that the M signal waveforms{s,,(t)} have equal energy, given by

€ =(M —-1)€/M

and are equally correlated, with correlation coefficient

1 r ’ rPmn = [ SmlO)5n(t) dt = ~
4-10 Consider the three waveformsf,(¢) shown in Fig. P4-10.

a Show that these waveforms are orthonormal.

b Express the waveform x(r) as a weighted linear combination of f,(1), n = 1, 2,3,
if

-1 (O<f<1)

AQQ=f 1 (st<3)

-1 (<1<4)

and determine the weighting coefficients.
4-11 Consider the four waveforms shown in Fig. P4-11.

a Determine the dimensionality of the waveforms and a set of basis functions.
b Use the basis functions to represent the four waveforms by vectors s,, 8, §),

and §,.

¢ Determine the minimum distance between any pair of vectors.
4-12 Determine a set of orthonormalfunctions for the four signals shown in Fig. P4-12.
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4-13 A lowpass gaussian stochastic process x(t) has a power spectral density

[Ny (Wfl<B)an={5 (fl>B)
Determine the power spectral density and the autocorrelation function of
y(t) = x7(0).

4-14 Consider an equivalent lowpass digitally modulated signal of the form

u(t)= > [a,g(¢ — 2nT) —jb,g(t - 2nT -T))

where {a,} and {b,} are two sequences of statistically independent binary digits and
g(t) is a sinusoidal pulse defined as

_fsin(mRTy (0<1<2T)gt) = {¢ (otherwise)
This type of signal is viewed as a four-phase PSKsignal in which the pulse shape is
one-half cycle of a sinusoid. Each of the information sequences {a,} and {b,} is
transmitted at a rate of 1/27 bits/s and, hence, the combined transmission rate is
1/T bits/s. The two sequences are staggered in time by T secondsin transmission.
Consequently, the signal u(r) is called staggered four-phase PSK.
a Show that the envelope (u(?)| is a constant, independent of the information a, on

the in-phase component and information 5, on the quadrature component. In
other words, the amplitude of the carrier used in transmitting the signalis
constant.

b Determine the power density spectrum of u(¢).
¢ Compare the power density spectrum obtained from (b) with the power density

spectrum of the MSK signal. What conclusion can you draw from this
comparison?

415 Consider a four-phase PSK signal represented by the equivalent lowpass signal

u(t) =X Lg(t— nT)

where /, takes on one of the four possible values Vi(+1 +j) with equal
probability. The sequence of information symbols {/,} is statistically independent.
a Determine and sketch the power density spectrum of u(t) when

A (0<1T)

0 (otherwise)Bti)= {
b Repeat (a) when

_fAsin(at/T) (0<<T)g(t) {9 (otherwise)
c Compare the spectra obtainedin (a) and (b) in termsof the 3dB bandwidth and

the bandwidth to the first spectral zero.
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4-16 The random process u(r) is defined as

 
u(t}= X cos Zaft — Y sin Zaft

where X and Y are random variables. Show that u(!) is wide-sense stationary if
and only if E(X) = EY) =0, E(X’) = E(¥*), and E(X¥) =0.

417 Carry out the Gram-Schmidt orthogonalization of the signals in Fig. 4-2-1(a) in
the order s,(r), s.(!), 5,({1), and, thus, obtain a set of orthonormalfunctions {f,,(1)}.
Then, determine the vector representation of the signals {s,(c)} by using the
orthonormal functions {f,,(¢}}. Also, determine the signal energies.

4-18 Determine the signal space representation of the four signals s,(r), k = 1, 2,3, 4,
shownin Fig. P4-18, by using as basis functions the orthonormal functions f,(r) and
f(s). Plot the signal space diagram and show thatthis signal set is equivalent to
that for a four-phase PSK signal.

4-19 The power density spectrum of the cyclostationary process

vir) = > Lge nT)

was derived in Section 4-4-1 by averaging the autocorrelation function bt+ 36)
over the period 7 of the process and then evaluating the Fourier transform of the
average autocorrelation function. An alternative approach is to change the
cyclostationary process into a stationary process v,(t) by adding a random variable
A, uniformly distributed over 0< A< T, so that

vir) = > Lg(t —nT ~— AY

and defining the spectral density of v(t)’ as the Fourier transform of the
autocorrelation function of the stationary process v(t). Derive the result in
(4-4-11), by evaluating the autocorrelation function of v(t} and its Fourier
transform,
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Oulput

4.20 A PAM partial response signal (PRS) is generated as shown in Fig. P4-20 by

421

4-22

exciting an ideal lowpass filter of bandwidth W by the sequence

8, =f, t+ bye

ata rate 1/7 =2W symbols/s. The sequence {/,,} consists of binary digits selected
independently from the alphabet {1, —1} with equal probability. Hence, the filteced
signal has the form

vo= SYBig—nT), 7 35
a Sketch the signal space diagram for v(!) and determine the probability of

occurrence of each symbol.
b Determine the autocorrelation and power density spectrum of the three-level

sequence {B,}.
¢ The signal points of the sequence {8,} form a Markov chain. Sketch this Markov

chain and indicate the transition probabilities among the states.
The lowpass equivalent representation of a PAM signalis

u(t}=S Lg(?- nT)

Suppose g(/} is a rectangular pulse and

i, = tt, — One 2

where {a,,} is a sequence of uncorrelated binary-valued (1, ~i) random variables
that occur with equal probability.
a Determine the autocorrelation function of the sequence {/,}.
b Determine the power density spectrum of u(#).
¢ Repeat (b) if the possible values of the a, are (0, 1).
Show that x(t) = s(t) cos 2zf. + $(t) sin 2af1 is a single-sideband signal, where s(/)
is band-limited to 8 =f Hz and §(r) is its Hilbert transform.
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4-23 Use the results in Section 4-4-3 to determine the power density spectrum of the
binary FSKsignals in which the waveforms are

s(gj=sinwt, i=1,2, O<rsT

where w,=a/T and w,=ma/T, n#m, and m and n are arbitrary positive
integers. Assume that p, =p, =}. Sketch the spectrum and compare this result
with the spectrum of the MSK signal. .

4-24 Use the results in Section 4-4-3 to determine the power density spectrum of
muiltitone FSK (MFSK)}signals for which the signal waveforms are

2ant

s,(2) = sin, n=1,2....M, O<S15T
Assumethat the probabilities p, = 1/M for all 7. Sketch the power spectral density.

4-25 A quadrature partial response signal (QPRS} is generated by two separate partial
response signals of the type described in Problem 4-20 placed in phase quadrature.
Hence, the QPRSis represented as

s(t) = Re [v(s)e?""]
where

v(t) = u(t) + u(t)

=> Byu(t —nT) + } > C,u(t-1T)

and B, =1,+/,., and C,=J,+J, ,. The sequences {8,} and {C,,} are uncorre-
lated and /, = +1, J, = +1 with equal probability.
a Sketch the signal space diagram for the QPRS signal and determine the

probability of occurrence of each symbol.
b Determine the autocorrelations and power spectra density of v.(f), v(t), and

u(r). , ;
¢€ Sketch the Markov chain model andindicate the transition probabilities for the

QOPRS.

4-26 Determine the autocorrelation functions for the MSK and offset QPSK modulated
signals based on the assumption that the information sequences for each of the
two signals are uncorrelated and zero-mean.

4-27 Sketch the phase tree. the state trellis, and the state diagram for partial response
CPM with & = 5 and

1/4T (O<1<2T)
0 {otherwise)a(t) -{

4-28 Determine the numberof terminal phase states in the state trellis diagram for
a a full response binary CPFSK with either 4 = 3 or 3:
b a partial response L = 3 binary CPFSK with either # =? or 3.

4-29 Show that 16 QAM can be represented as a superposition of two four-phase
constant envelope signals where each component is amplified separately before
summing,i.e.

5(1) = GIA, cos 2af.t + B, sin 2xf.1} + [C, cos 2xfe + D,, sin 276.1]

where {A,}. {B,}. {C,}, and (D,} are statistically independent binary sequences
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with elements from the set {+1, ~1} and G is the amplifier gain. Thus, show that,
the resulting signal is equivalent to

s(t) = 4, cos 2af1 + Q, sin 2aft

and determine /, and Q,, in terms of A,,, 8,, C,, and D,,,
Use the result in (4-4-60) to derive the expression for the power density spectrum
of memoryless linear modulation given by (4-4-18) under the condition that

5g(t)} = dest), A=1,2,...,K

where /, is one of the K possible transmitted symbols that occur with equal
probability.
Show that a sufficient condition for the absence of the line spectrum component in
(4-4-60)is k

> psdt) = 0eel

Is this condition necessary? Justify your answer.
The information sequence {a,,})... is a sequence of iid random variables, each
taking values +{ and —J with equal probability. This sequence is to be transmitied
at baseband by a biphase coding scheme. described by

s(}= & agtt-at)

where g(t) is shown in Fig, P4-32.
a Find the power spectral density of s(r).
b Assumethat it is desirable to have a zero in the power spectrum al f = 1/7. To

this end. we use a precoding scheme by introducing 5, =a, + ka, ,. where k is
some constant, and then transmit the {b,] sequence using the same g(z). Is it
possible to choose k to produce a frequency null at f = 1/7? If yes, what are the
appropriate value and the resulting power spectrum?

¢ Now assume we want to have zerosatall multiples of f, = 1/4T. Is it possible to
have these zeros with an appropriate choice of k in the previous part? If not
then what kind of precoding do you suggest to result in the desired nulls?

Starting with the definition of the transition probability matrix for defay
modulation given in (4-4-66), demonstrate that the relation

P’p= —ip
holds, and, hence,
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4-34 The two signal waveforms for binary FSK signal transmission with discontinuous
phase are

sof= [cos [2a(r -~ + a) O<t<T
5(t)= [ScoeG +\+ 6, O<1sT

where Af = 1/T «f,, and @, and 6, are uniformly distributed random variables on
the interval (0,27). The signals s,(f) and 5,(t) are equally probable.
a Determine the power spectral density of the FSK signal.
b Show that the power spectral density decays as 1/f* for f >> f..
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5

OPTIMUM RECEIVERS FOR
THE ADDITIVE WHITE

GAUSSIAN NOISE
CHANNEL

 

 

In Chapter 4, we described various types of modulation methods that may be
used to transmit digital information through a communication channel. As we

have observed, the modulator at the transmitter performs the function of
mapping the digital sequence into signal waveforms.

This chapter deals with the design and performance characteristics of
optimum receivers for the various modulation methods, when the channel
corrupts the transmitted signal by the addition of gaussian noise. In Section
5-1, we first treat memoryless modulation signals, followed by modulation
signals with memory. We evaluate the probability of error of the various

. modulation methods in Section 5-2. We treat the optimum receiver for CPM
signals and its performance in Section 5-3. In Section 5-4, we derive the
optimum receiver when the carrier phase of the signals is unknown at the
receiver and is treated as a random variable. Finally, in Section 5-5, we
consider the use of regenerative repeaters in signal transmission and carry out
a link budget analysis for radio channels.

5-1 OPTIMUM RECEIVER FOR SIGNALS
CORRUPTED BY ADDITIVE WHITE
GAUSSIAN NOISE

Let us begin by developing a mathematical mode! for the signal at the input to
the receiver. We assumethat the transmitter sends digital information by use
of M signal waveforms{s,,(¢), m =1,2,..., M}. Each waveform is transmitted
within the symbol(signaling) interval of duration 7. To be specific, we consider
the transmission of information over the interval 0<¢ <T.
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Trasmitted

signal
Slt

Received

Fit) = 5,00) + try

FIGURE 5-1-1 Model for received signal passed through an Noise
AWGNchannel. airy

The channel is assumed to corrupt the signal by the addition of white
gaussian noise, as illustrated in Fig. 5-1-1. Thus. the received signa! in the
interval 0 <¢< T may be expressed as

rt)=s,,(tht+n(t), O<¢sT (5-1-1)

where n(7) denotes a sample function of the additive white gaussian noise
(AWGN) process with power spectral density ®,,,(f) = 4N, W/Hz. Based on
the observation of r(t} over the,signal interval, we wish to design a receiver
that is optimum in the sense that it minimizes the probability of making an
error.

It is convenient to subdivide the receiver into two parts—the signal
demodulator and the detector—as shown in Fig. 5-1-2. The function of the
signal demodulator is to convert the received waveform r(r) into an N-
dimensional vector r=[r, %... rw], where N is the dimension of the
transmitted signal waveforms. The function of the detector is to decide which
of the M possible signal waveforms was transmitted based of the vectorr.-

Tworealizations of the signal demodulator are described in the next two
sections. One is based on the use of signal correlators. The second is based on
the use of matched filters. The optimum detector that follows the signal
demodulatoris designed to minimize the probability of error.

5-1-1 Correlation Demodulator

In this section, we describe a correlation demodulator that decomposes the
received signal and the noise into N-dimensional vectors. [In other words, the
signal and the noise are expanded into a series of linearly weighted
orthonormal basis functions {f,(r)}. It is assumed that the N basis functions
{f,(t)}} span the signal space, so that every one of the possible transmitted

FIGURE §-1-2 Receiver configuration.

Received Signal Output
signal r(t) demodulator decision
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signals of the set {s,,{¢), 1 <= M} can be represented as a weighted linear
combination of {f,(#}. In the case of the noise, the functions {f,(¢)} do not span
the noise space. However, we show below that the noise termsthat fall outside
the signal space are irrelevant to the detection of the signal.

Suppose the received signal r(r) is passed through a parallel bank of N
crosscorrelators which basically compute the projection of r({r) onto the N basis
functions {f,(f)}, as illustrated in Fig. 5-1-3. Thus, we have

T T

{ rift) dt = f [Sm(t) + (A(t) dt (5-1-2)
Ty = Sing T Mey K=1,2,...,N

where
;

Sons =| soltfit)dt, k=1,2,...,N
. (5-1-3)

ny =| n(fi(t)dt, k=1,2,...,N0

The signal is now represented by the vector s,, with components s,,.,
k=1,2,...,N. Their values depend on which of the M signals was trans-
mitted. The components{7,} are random variables that arise from the presence
of the additive noise.

In fact, we can express the received signal r(t) in the interval O<7-S T as

r(t)= = Sma felt) + 2 nyflt) +n’)=1

= rAd) + n'{t) . (5-1-4)k=l

The term n'(i), defined as
N

n'(t)=n(t)— 3) refit?) (5-1-5)&=1

is a zero-mean gaussian noise process that represents the difference between
the original noise process #(t) and the part corresponding to the projection of
n(t} onto the basis. functions {f,(0)}. We. shall show below that n'(r) is
irrelevant to the decision as to which signal was transmitted. Consequently, the
decision may be based entirely on the correlator output signal and noise
components % = Sig + my, K=1,2,...,N.

Since the signals {s,,(¢)}} are deterministic, the signal components are
deterministic. The noise components {n,} are gaussian. Their mean values are

,

El) = [ E[nto]ft) de = 0 (5-1-6)
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 Te detector

Correlation-type demodulator.

for all nm. Their covariances are

ECan) = [0 [EbleyflO2)at ae
T rT

= INo| I 6 — hf(t) dtdt
“No[fal

= 1NoSmx (5-1-7)
where 6,,,=1 when m=k and zero otherwise. Therefore, the N noise
components {n,} are zero-mean uncorrelated gaussian random variables with a
common variance 02 = 4N,.

From the above development, it follows that the correlator outputs {r,}
conditioned on the mth signal being transmitted are gaussian random variables
with mean

Er) = E(Sma + 1) = Sink (5-1-8)
and equal variance

oF = 07=4Ny (5-1-9)
Since the noise components {n,} are uncorrelated gaussian random variables,
they are also statistically independent. As a consequence, the cortelator
outputs {7,} conditioned on the mth signal being transmitted are statistically
independent gaussian variables. Hence, the conditional probability density
functions of the random variables [r, 7, -- - Tw] =r are simply

P(r | Sx) = Hee |Sme) m=1,2,...,M (5-1-10)
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where

 _ 2

Ply | sma) = 7aex| ~armsl k=1,2,....N (S411)
By substituting (5-1-11) into (5-1-10), we obtain the joint conditional pdfs

_ 1 ~ =sm)] _p(rls,,) = (aN)2o%P = yf Om 1,2,...,M_ (S-1-12)
Asa final point we wish to show that the correlator outputs (r,, 1%, ... , Tx)

are sufficient statistics for reaching a decision on which of the M signals was
transmitted,i.e., that no additional relevant information can be extracted from

the remaining noise process n’{t). Indeed, n’(t) is uncorrelated with the N
correlator outputs {r,}, i.e.,

Ela’) | = En)|sma + Elm)
= Ela'(y|

= E{[ne - > nie)|}=
r N

= [ E(n(t)n(t)]fi(t) dt — » E(nin,ft)
= 2Nuli(t) — INoh(e) = 0 (5-1-23)

Since n'(t) and {7} are gaussian and uncorrelated, they are also statistically
independent. Consequently, 7'(1) does not contain any information that is
relevant to the decision as to which signal waveform was transmitted. All the
relevant information is contained in the correlator outputs {r,}. Hence, n‘(t}
may be ignored.

Example 5-1-1

Consider an M-ary baseband PAMsignalset in which the basic pulse shape
g(?) is rectangular as shown in Fig. 5-1-4. The additive noise is a zero-mean
white gaussian noise process. Let us determine the basis function f(t) and
the outputof the correlation-type demodulator. The energy in the rectangu-
lar pulse is

r r

b, | sar [ a’ dt = a°T0 0

FIGURE 5-1-4 Signal pulse for Example 5-1-1. 0 r
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Since the PAM signal set has dimension -N=1, there is only one basis
function f(t). This is given as

f=eat
= [ivr (0<:<T)to (otherwise)

The output of the correlation-type demodulatoris
Tv T

r={ nif) dt =F je) de
It is interesting to note that the correlator becomes a simple integrator when

f(t) is rectangular. If we substitute for r(t), we obtain

r=a{[" [Sa (f) + nto} dt
“5[fs dt + [mo ae|

r=S,_, +n

- where the noise term E(n} =0and

a= (>['[aconee) dtaz|
1 T eT= 7h [ Ejn(t)n(t)] dtdt
No T orf=k | 5(t — t) dtdt=4N,

The probability density function for the sampled outputis

 

P| in) = zarexp| ~ in|

5-1-2 Matched-Filter Demodulator

Instead of using a bank of N correlators to generate the variables {r,}, we may
use a bankof N linearfilters. To be specific, let us suppose that the impulse
tesponses of the N filters are

A(Q=f(T-0), OsteT (5-1-14)
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su) atrb=s(T- th
A A

f) To: 0 Tor

: . (a) Signal str) (b) Impulse response
Signal s(7) and filter matched to s(1). of filter matched to s(0)

where {f,(¢)} are the N basis functions and h,(t)=0 outside of the interval
Q<+f<=T. The outputs of these filters are

yi) =[ rok OatU

-| ria? —tt+t)dt, k=1,2,...,N (5-1-15)a

Now, if we sample the outputs ofthefilters at = 7, we obtain
,

¥(T) =| MDR(dt=%, k=1,2,...,N (5-1-16)t}

Hence, the sampled outputs of the filters at time = T are exactly the set of
values {7,} obtained from the N linearcorrelators,

A filter whose impulse response h(¢) = s(T — 1), where s(t) is assumed to be
confinedto the time interval 0 <1 T,is called the matchedfilter to the signal
s(t}. An example of a signal and its matched filter are shown in Fig. 5-1-5. The
response of A(t) =s(T —1f) to the signal s(r) is

vio= [s(ps(r —e+ t) dt (5-1-17)
which is basically the time-autocorrelation function of the signal s(t). Figure
5-1-6 illustrates y(r) for the triangular signal pulse shown in Fig. 5-1-5. Note
that the autocorrelation function y(t) is an even function of ¢, which attains a
peak at += T.

In the case of the demodulator described above, the N matchedfilters are

sels [sco14 ude

 
The matched filter output is the autocorrelation function of s(t).
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FIGURE 5-1-7=Matched filter demodulator. atr=T

matchedto the basis functions {f,(r)}. Figure 5-1-7 illustrates the matchedfilter
demodulator that generates the observed variables {r,}.

Properties of the Matched Filter A matched filter has some interesting
properties. Let us prove the most important property, which may be stated as
follows: If a signal s(t) is corrupted by AWGN,thefilter with impulse response
matched to s(t) maximizes the output signal-to-noise ratio (SNR).

To prove this property, let us assume that the received signal r(t) consists of
the signal s(t) and AWGN n(i) which has zero-mean and power spectral
density ®,,,(f) = 4No W/Hz. Suppose the signal r(r} is passed througha filter
with impulse response A(t), 0<1< T, and its output is sampled at time ¢ = T.
Thefilter response to the signal and noise componentsis

y(t) = [ r(tjA(t —t) dt
= [sene-n) de |n(ayn(e~ 1) dr (5-1-18)

At the sampling instant ¢ = 7, the signal and noise components are

y¥(T)= [sconce —t)dt + [nonce — t)dt
= ys(T) + yAT) (5-1-19)

where y,(7) represents the signal componentand y,(7) the noise component.
The problem is to select the filter impulse response that maximizes the output

' signal-to-noise ratio (SNRo) defined as

y(T)
SNR, =—3—— LLRo E[y2(T)] (5-1-20)
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The denominatorin (5-1-20) is simply the variance of the noise term at the
outpulofthe filter. Let us evaluate E[y2(7)]. We have

E[y(T)] -{ ] E[n(t)n(s)JA(T — t)A(T - 1) dtd
T rT

= 4N,| [ &(t— t)A(T — ACT - t)atdt
+

= iN{ WT — 1dr (5-1-21)O

Note that the variance depends on the power spectral density of the noise and
the energy in the impulse response A(t). .

By substituting for y,(T) and Ely2(T)] into (5-1-20), we obtain the
expression for the output SNR as

snp,= Lisn(T— s) az} _UTAC@)s(T- a) dt!! gyay
No foh7(T — 1) dt Ng So A(T — 8) det

Since the denominator of the SNR depends on the energy in A(t), the
maximum output SNR over A(t} is obtained by maximizing the numerator
subject to the constraint that the demoninatoris held constant. The maximiza-
tion of the numeratoris mosteasily performed by use of the Cauchy—Schwarz
inequality, which states, in general, that if &:(t} and g(t) are finite-energy
signals then

[]suear] < [ gilt dt [exo at (5-1-23)
with equality when g\(t)=Cg.{(r) for any arbitrary constant C. If we set
&i(t)=h(t) and g.(1)=5(T — 1), it is clear that the SNR is maximized when
Alt) = Cs(T - t), ie., A(t) is matched to the signal s(t). The scale factor C?
drops out of the expression for the SNR, since it appears in both the
numerator and the denominator.

The output (maximum) SNR obtained with the matched filter is

2/7

SNRo= 5 s?(t) dtLae

= 2¥/N (5-1-24)

Note that the output SNR from the matchedfilter depends on the energy of
the waveform s(r) but not on the detailed characteristics of s(t}. This is another
interesting property of the matchedfilter.

Frequency-Domain Interpretation of the Matched Filter The matched
filter has an interesting frequency-domain interpretation. Since A(t) = s(T — 1).
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the Fourier transform of this relationship is

H(f)= [sc — te? dt
T

= If s(t)e?** deeroO

= S*(f)e 7277 (5-1-25)

We observe that the matched filter has a frequency response that is the
complex conjugate of the transmitted signal spectrum multiplied by the phase
factor e~?*/7, which represents the sampling delay of 7. In other words,
\A(f)| = [SCPso that the magnitude response of the matchedfilter is identical
to the transmitted signal spectrum. On the other hand, the phase of H(f) is the
negative of the phase of S(f).

Now,if the signal s(t) with spectrum S(f) is passed through the matched
filter, the filter output has a spectrum Y(f) = |S(f)|? e /2"". Hence, the output
waveform is

y=]Yeaf

=| spreeaf (5-1-26)
By sampling the output of the matched filter at t = T, we obtain

Tv

wry= | sine at =| sayar=# (5.1.27)
where the last step follows from Parseval’s relation.

The noise at the output of the matched filter has a power spectral density

(fF) = FACAIP No (5-1-28)
Hence,the total noise powerat the output of the matchedfilter is

Pr=[_ @f)df

= iN, [ HCDPar =4No[ IS(fYP af = 38N, (5.1.29)
The output SNRis simply the ratio of the signal power P,, given by

P= yKT) (5-1-30)
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tc)

FIGURE 5-1-8—Basis functions and matched filter responses for Example 5-1-2.

to the noise power P,. Hence,

Pp € 2@
- 4.WT 5-1-31SNRo P, 48N, No ( )

which agrees with the resuit given by (5-1-24}.

Example 5-1-2

Consider the M = 4 biorthogonalsignals shown in Fig. 5-1-8 for transmitting
information over an AWGNchannel. The notse is assumed to have zero

mean and powerspectral density }No. Let us determine the basis functions
for this signal set, the impulse responses of the matched-filter demodulators,
and the output waveforms of the matched-filter demodulators when the
transmitted signal is s,(2).

The M = 4 biorthogonal signals have dimension N = 2. Hence, two basis
functions are needed to represent the signals. From Fig. 5-1-8, we choose
A(d)and f(t) as

_sV2/T (0<¢<3T)

Ato = {o (otherwise) 5-1-32
y= {V7 (37 <1<T) _AO = 0 (otherwise)
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These waveformsare illustrated in Fig. 5-1-8{a@}. The impulse responses of
the two matched filters are

_{V2/T (QT <1<T)hy) = f(T —1)= ‘o (otherwise)
V2/T (Qs1<3T)
0 (otherwise)

(5-1-33)

hi=fT ==}
and are illustrated in Fig. 5-1-8(b).

If s,(¢) is transmitted, the (noise-free) responses of the two matched
filters are as shown in Fig. 5-1-8(c). Since y,(¢) and y(t) are sampled at
t= T, we observe that y,,(7) = VSA°T and y,,{T) = 0. Note that 14°T = Z,
the signal energy. Hence, the received vector formed from the two matched
filter outputs at the sampling instant f = T is

r=[r, mj=[VEtn, x] (5-1-34)

where #, = y,,(T) and n,= y2,(T) are the noise components at the outputs
of the matchedfilters, given by

Ven(T) -{ ninja, k=1,2 {5-1-35)
Clearly, E(n,)= El y,,,(7)] =0. Their varianceis

Yorr

o1 = Elyin(T)] =| [ E{nton(t)|fi.Cifi(z) at dt
Fort

= in,| [ 5 afdtOdtd

 

=4N4 { fit) dt = Ny (5-1-36)I

Observe that the SNRyfor the first matchedfilter is

(Vey 2¢
SNR, = =— 5-1-37MoM oe

which agrees with our previous result. Also note that the four possible
Outputs of the two matched filters, corresponding to the four possible
transmitted signals in Fig. 5-1-8 are (rm, r.)=(VE+ nym), (n,, VE +n),
(-V€+n,,n;) and (n,, -~VE+ n>).

5-1-3 The Optimum Detector

We have demonstrated that, for a Signal transmitted over an AWGNchannel,
either a correlation demodulator or a matched filter demodulator produces the
vector r=(r, 7, --- ry], which contains all the relevant information in the
received signal waveform. In this section, we describe the optimum decision
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rule based on the observation vector r. For this development, we assume that
there is no memoryin signals transmitted in successive signalintervals.

Wewish to design a signal detector that makes a decision on the transmitted
signal in each signal interval based on the observation of the vector r in each
interval] such that the probability of a correct decision is maximized. With this
goal in mind, we consider a decision rule based on the computation of the
posterior probabilities defined as

P(signal s,, was transmitted /r), m=1,2,...,M

which we abbreviate as P(s,, | 1). The decision criterion is based on selecting
the signal corresponding to the maximum of the set of posterior probabilities
{P(s,, {©)}. Later, we show that this criterion maximizes the probability of a
correct decision and, hence, minimizes the probability of error. This decision
criterion is called the maximum a posteriori probability (MAP)criterion.

Using Bayes’ rule, the posterior probabilities may be expressed as

P(s,, |r) _ P| S)P(Sn) (5-1-38)
pir)

where p(r/s,,) is the conditional pdf of the observed vector given s,,, and
P(s,,) is the a priori probability of the mth signal being transmitted. The
denominatorof (5-1-38} may be expressed as

p(n) = XPE | 8)PSm) (5-1-39)
From (5-1-38) and (5-1-39), we observe that the computation of the posterior
probabilities P(s,, |r) requires knowledge of the a priori probabilities P(s,,)
and the conditional pdfs p(r|s,,) for m=1,2,...,M

Some simplification occurs in the MAP criterion when the M signals are
equally probable a priori, i.e., P(s,,)=1/M for all M. Furthermore, we note
that the denominatorin (5-1-38) is independent of which signal is transmitted.
Consequently, the decision rule based on finding the signal that maximizes
P(s,, | t) is equivalentto finding the signal that maximizes P(ris,,).

The conditional pdf p(r|s,,) or any monotonic function of it is usually
called the likelihood function. Thedecision criterion based on the maximum of
p(r|s,,) over the M signals is called the maximum-likelihood (ML)criterion.
We observe that a detector based on the MAPcriterion and one that is based
on the ML criterion make the same decisions as long as the a priori
probabilities P(s,,) are ail equal, i.e., the signals {s,,} are equiprobable.

In the case of an AWGNchannel, the likelihood function p(r|s,,) 18 given
by (5-1-12). To simplify the computations, we may work with the natural
logarithm of p(r|s,,), which is a monotonic function. Thus,

 

 

M
1

In p(r | s,,) = —4N In (2Ny) — N, D> (4 ~ SnaP (5-1-40)OA=]
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The maximum of In p(t |5,,) overs,, is equivalent to finding the signals,, that
minimizes the Euclidean distance

N

D(t,8,,) = 2 (re — Sm)? (5-1-41)
Wecall D(r,s,,), 72 =1,2,...,M, the distance metrics. Hence, for the AWGN
channel, the decision rule based on the ML criterion reduces to finding the
signal s,, that is closest in distance to the received signal vector r. We shall
refer to this decision rule as minimum distance detection.

Another interpretation of the optimum decision rule based on the ML
criterion is obtained by expanding the distance metrics in (5-1-41) as

N N N

D(r, Sm) = D> rr, — 2 >» TySinn + > Seana=) a=! a=l

=(|?-2r-s,, +|sn\, m=1,2,...,M (5-1-42)

The term |r|’ is commontoall decision metrics, and, hence, it may be ignored
in the computations of the metrics. The result is a set of modified distance
metrics

D'(t,8,,) = —2r-s,, + [5,17 (5-1-43)

Note that selecting the signal s,, that minimizes D’(r,s,,) is equivalent to
selecting the signal that maximizes the metric C(r,s,,) = —D‘(r,5,,), ie.,

Ctr, Sm) = 2r * Sap [Sn {> : (5-1-44)

The term r-s,, represents the projection of the received signal vector onto
each of the M possible transmitted signal vectors. The value of each of these
projections is a measure of the correlation between the received vector and the
mth signal. For this reason, we call C(r,s,,), = 1,2,...,M, the correlation
metrics for deciding which of the M signals was transmitted. Finally. the terms
ls,./ = &,, m=1,2,....M, may be viewed as bias terms that serve as
compensation for signal sets that have unequal energies, such as PAM.Ifall
signals have the same energy, |s,,,|’ may also be ignored in the computation of
the correlation metrics C(r,s,,) and the distance metrics D(r,s,,} or D'(r,$,,).

It is easy to show (see Problem 5-5) that the correlation metrics C(r. s,,} can
also be expressed as

,

C(t. $,) =2 i rts,A(t) dt—€,.  m=0,1,...,M (8-1-4)a

Therefore, these metrics can be generated by a demodulator that cross-
correlates the received signal r(t) with each of the M possible transmitted
signals and adjusts each correlator output for the bias in the case of unequal
signal energies. Equivalently, the received signal may be passed through a
bank of M filters matched to the possible transmitted signals {s,,(:)} and
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Select

the Output
\ , decisionargent

'

Sample
wreT

An alternative realization of the optimum AWGN receiver.

sampled at t= 7, the end of the symbol interval. Consequently, the optimum
receiver (demodulator and detector) can be implemented in the alternative
configurationillustrated in Fig. 5-1-9,

In summary, we have demonstrated that the optimum ML detector
computes a set of M distances D(r,s,,) or D’(r,s,,) and selects the signal
corresponding to the smallest (distance) metric, Equivalently, the optimum ML
detector computesa set of M correlation metrics C(r,s,,} and selects the signal
correspondingto the largest correlation metric.

The above development for the optimum detector treated the important case
in which all signals are equally probable. In this case, the MAP criterion is
equivalent to the MLcriterion. However, when the signals are not equally
probable, the optimum MAPdetector bases its decision on the probabilities
P(s,, |e), m=1,2,..., M, given by (5-1-38) or, equivalently, on the metrics,

PM(r, S,) = pir | $,)P(Si)

The following exampleillustrates this computation for binary PAM signals.

Example 5-1-3

Consider the case of binary PAM signals in which the two possible signal
points are s;=~—s;=V%,, where &, is the energy per bit. The prior
probabilities are P(s,)=p and P(s,)=1-p. Let us determine the metrics
for the optimum MAPdetector when the transmitted signal is corrupted
with AWGN.

The received signal vector (one-dimensional) for binary PAM is

r=4V,+ y,(T) (5-1-46)
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where y,(T) is a zero-mean Gaussian random variable with variance
o2~=4N,. Consequently, the conditional pdfs p(r|s,,) for the two signals

 

 

 

are

- V&ypir |s,)=a exp | (5-1-47)
1 + VE»p(r | 52) = exp |- (5-1-48)

Then the metrics PM(r,s,} and PM(r,s.) are

PM(r.s,) = pp(r | 5;)

_ PP _(r-~ V6)= Varo, exp [ Ie | (5-1-49)
1- + VEPM(t, 8») =a exp-S| (5-1-50)n

If PM(t,s,) > PM(t,s>), we select s, as the transmitted signal; otherwise, we
select 5». This decision rule may be expressed as

PM(r,8,) %

 

  

PM(t,8:) = O11)
But

PM(r, + VG) — (r- VOYM(r $i) _ Pp exp (“ ») & &,) | (5-1-52)PM(r,s8;) 1~p 20%,

so that (5-1-51) may be expressed as
+VBY-U7-VGPn 1-+VG)~VVG)3) =P (5-1-53)

20; S3

or equivalently,
x 1 _ -V&,r 2 402In—P = IN, ine (5-1-54)

This is the final form for the optimum detector. It computes the
correlation metric C(r,s,))=rV&, and compares it with threshold
No in[(1 —p)/p]. Figure 5-1-10 illustrates the two signal points 5, and sp.
The threshold, denoted by ¢,, divides the real line into two regions, say R,
and A, where R, consists of the set of points that are greater than 1, and

2B * Tera
—_-——_>-—_—_}—_+.

FIGURE§-1-10 Signal space representation illustrating
the operation of the optimum detector .: . R R,
for binary (PAM) modulation. “eins: Region R;
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R, consists of the set of points that are less than t,. If rvVé,> T, the
decision is made that s, was transmitted, and if rV&< t,, the decision is
made that s; was transmitted. The threshold 7, depends on Np and p. If
p=}, % =0. If p>4, the signal point s, is more probable and, hence,
t, <0. In this case, the region R, is larger than Ry, so that s, is more likely
to be selected than s. If p <.3, the opposite is the case. Thus, the average
probability of error is minimized.

It is interesting to note that in the case of unequal prior probabilities, it is
necessary to know not only the values of the prior probabilities but also the
value of the power spectral density Ng in order to compute the threshold.
When p = }, the thresholdis zero, and knowledge of Nj is not required by the
detector.

Weconclude this section with the proof that the decision rule based on the
maximum-likelihood criterion minimizes the probability of error when the M
signals are equally probable a priori. Let us denote by R,, the region in the
N-dimensional space for which we decide that signal s,,(t) was transmitted
when the vector r=[r, r. --- ry] is received. The probability of a decision
error given that s,,(f) was transmitted is

P(e | s.)={ p(t|s,,) dr (5-1-55)Ri

where X°,, is the complement of A,,. The average probability of erroris

Md

P(e)= > ree | sn)m= 1

Il

>» 7 J. p(t|s,,) dr
is x F - j. P(r | s,.)dr| (5-1-56)

Note that P(e) is minimized by selecting the signals,, if p(r|s,,) is larger than
p(r | 8x) for all m1 ¥k.

When the M signals are not equally probable, the above proof can be
generalized to show that the MAPcriterion minimizes the average probability
of error.

5-1-4 The Maximum-Likelihood Sequence Detector
Whenthesignal has no memory, the symbol-by-symbol detector described in
the preceding section is optimum in the sense of minimizing the probability of
a symbol error. On the other hand, when the transmitted signal has memory,
i.e., the signals transmitted in successive symbol intervals are interdependent,
the optimum detector is a detector that bases its decisions on observation of a
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.

sequence of received signals over successive signal intervals. Below, we
describe two different types of detection algorithms. In this section, we
describe a maximum-likelihood sequence detection algorithm that searches for
the minimum euclidean distance path through the trellis that characterizes the
memory in the transmitted signal. In the following section, we describe a
maximum a posteriori probability algorithm that makes decisions on a
symbol-by-symbol basis, but each symbol decision is based on an observation
of a sequence of received signal vectors.

To develop the maximum likelihood sequence detection: algorithm, let us
consider, as an example, the NRZI signal described in Section 4-3-2. Its
memory is characterized by the trellis shown in Fig, 4-3-14. The signal
transmitted in each signal interval is binary PAM. Hence, there are two
possible transmitted signals corresponding to the signal points s; = —s, = V&,,
where &, is the energy per bit. The output of the matched-filter or correlation
demodulator for binary PAM in the kth signal interval may be expressed as

motVetn, (5-1-57)

where n, is a zero-mean gaussian random variable with variance o7 = N)/2.
Consequently, the conditional pdfs for the two possible transmitted signals are

|- (te — v6)
 I

p(r, IS)= exp
 

 

 

20% 5-1-58)
(r, | 52) = —ex [4+ 68") erPMTs|82 V2n a P 20°

Now, suppose we observe the sequence of matched-filter outputs
,,%2,..., "x. Since the channel noise is assumed to be white and gaussian, and
f(at- iT). F(t —jT) for i#j are orthogonal, it follows that E(nynj)=0, k ¥).
Hence, the noise sequence n,,72,..., nx is also white. Consequently, for any
given transmitted sequence s”’, the joint pdf of r,, m,..., rx may be expressed
as a product of K marginal pdfs, i.e.,

P(e tas ey Hq [8=0P(r | si”
| ‘ ayex“hagVin 0, P |- 20%

(n= senoe”) -1-59(Geez)ol2S] or
where either s,=V@, or s,= VE Then, given the received sequence
Yi l2,-++,1x at the output of the matchedfilter or correlation demodulator, the
detector determines the sequence s“”= {s/”, s"),...,s@} that maximizes
the conditional pdf p(r,7,...,7« |8%). Such a ‘detector is called the
maxintum-likelihood (ML) sequence detector.

By taking the logarithm of (5-1-59) and neglecting the terms that are
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tO FON FO,

Trellis for NRZI signal. 1=T 1227 rT re4P

independent of (r,7%,-.-.%«), we find that an equivalent ML sequence
detector selects the sequence s‘”” that minimizes the euclidean distance metric

K

Dis) =F (un — sey (5-1-60)k=1

In searching through the trellis for the sequence that minimizes the
euclidean distance D(r,s‘””), it may appear that we must compute the distance
D(r.s""') for every possible sequence. For the NRZI example, which employs
binary modulation, the total number of sequences is 2“, where K is the
number of outputs obtained from the demodulator. However, this is not the
case. We may reduce the number of sequencesin thetrellis search by using the
Viterbi algorithm to eliminate sequences as new data is received from the
demodulator.

The Viterbi algorithm is a sequential trellis search algorithm for performing
ML sequence detection. It is described in Chapter 8 as a decoding algorithm
for convolutional codes. We describe it below in the context of the NRZI

signal. We assume that the search process begins inittally at state S,. The
corresponding trellis is shown in Fig. 3-1-11.

At time r = T, we receive r, = 5") + » from the demodulator, and at 4 = 27,
we receive r, =5/"! +. Since the signal memory is one bit, which we denote
by L=1, we observe that the trellis reaches its regular (steady state) form
after two transitions. Thus, upon receipt of r, at ¢=2T (and thereafter), we
observe that there are two signal paths entering each of the nodes and two
signa! paths leaving each node. The two paths entering node S, at r=2T
correspond to the information bits (0,0) and (f,1) or, equivalently, to the
signal points (- V&,, -V#,) and (Vé,, —V&,), respectively. The two paths
entering node’ S, at f= 27T correspond to the information bits (0.1) and (1.0)
or, equivalently, to the signal points (-VG,. VE) and (VE. V&).
respectively.

For the two paths entering node S$), we compute the two Euclidean distance
metrics

Do(0.0) = (rn + VEY + (+ VEY
Do, 1) = (, — VE) + (rn + VEY (5-1-61)
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by using the outputs 7, and r, from the demodulator. The Viterbi algorithm
compares these two metrics and discards the path having the larger (greater-
distance) metric.t The other path with the lower metric is saved andis called
the survivor at t= 2T. The elimination of one of the 1wo paths may be done
without compromising the optimality of the trellis search, because any
extension of the path with the larger distance beyond t = 2T will always have a
larger metric than the survivor that is extended along the same path beyond
t= 2T.

Similarly, for the two paths entering node S, at t= 27, we compute the two
Euclidean distance metrics

D,(0, 1) = (7, + V8) + (n- VG
DC, 0) =, — V&)? + (n- VG (G82)

by using the outputs 7, and r, from the demodulator. The two metrics are
compared and the signal path with the larger metric is eliminated. Thus, at
!=2T, we are left with two survivor paths, one at node S, and the other at
node $,, and their corresponding metrics. The signal paths at nodes S, and S,
are then extended along the twosurvivor paths.

Upon receipt of r, at '=37, we compute the metrics of the two paths
entering state So. Suppose the survivors at t= 27 are the paths (0,0) at Sy and
(0, 1) at S,. Then, the two metrics for the paths entering S, at !=3T are

Do(G, 0, 0) = Do(0, 0) + (r5 + VB)
Do(0, 1, 1) = DO, 1) + (5 + V&P

These two metrics are compared and the path with the larger (greater-
distance) metric is eliminated. Similarly, the metrics for the two paths entering
5, at f= 37 are

(5-1-63)

D,(0, 0, 1) = Do(0, 0) + (73 - V&P
DG, 1, 0) = D,(, 1) + (3 - VGP

These two metrics are compared and the path with the larger (greater-
distance) metric is eliminated.

This process is continued as each new signal sample. is received from the
demodulator. Thus, the Viterbi algorithm computes two metrics for the two
signal paths entering a node at each stage of the trellis search and eliminates
one of the two paths at each node. The two survivor paths are then extended
forward to the next state. Therefore, the number of paths searched in the
trellis is reduced by a factor of two at eachstage.

It ts relatively easy to generalize the trellis search performed by the Viterbi
algorithm for M-ary modulation. For example, delay modulation employs

(5-41-64)

t Note that, for NRZI, the reception of r, from the demodulator neither increases nor decreases
the relative difference between the two metrics, Dp(0,0) and Do(1,1). At this point, one may
ponder on the implication of this observation. In any case, we continue with the description of the
ML sequence detector based on the Viterbi algorithm.
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FIGURE5-1-12— Onestage oftrellis diagram for delay
modulation.

 
M = 4 signals andis characterized by the four-state trellis shown in Fig. 5-1-12.
We observe that each state has two signal paths entering and twosignal paths
leaving each node. The memory of the signal is 2 =1. Hence, the Viterbi
algorithm will have four survivors at each stage and their corresponding
metrics. Two metrics corresponding to the two entering paths are computedat
each node, and one of the two signal paths entering the node is eliminated at
each state of the trellis. Thus, the Viterbi algorithm minimizes the numberof
trellis paths searched in performing ML sequence detection.

From the description of the Viterbi algorithm given above,it is unclear as to
how decisions are made onthe individual detected information symbols given
the surviving sequences. If we have advanced to some stage, say K, where
K >> L in thetrellis, and we compare the surviving sequences, weshall find that
with probability approaching oneall surviving sequences will be identical in bit
{or symbol) positions K ~5L and less. In a practical implementation of the
Viterbi algorithm, decisions on each information bit (or symbol) are forced
after a delay of SZ bits (or symbols), and hence, the surviving sequences are
truncated to the 5L most recent bits (or symbols). Thus, a variable delay in bit
or symbol detection is avoided. The loss in performance resulting from the
suboptimum detection procedure is negligible if the delay is at least 5L.

Example 5-1-4

Consider the decision rule for detecting the data sequence in an NRZI
signal with a Viterbi algorithm having a delay of 5Z bits. Thetrettis for the
NRZIsignal is shown in Fig. 5-1-11. In this case, L = 1, herice the delay in
bit detectionis set to five bits. Hence, at ¢= 67, we shall have two surviving
sequences, one for each of the two states and the corresponding metrics
Holb,, bz, bs, bs, bs, b6) and ye(b1, bs, bj, bi, bs, BD. At this stage, with
probability nearly equal to one, the bit b, will be the same as bj; thatis,
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both surviving sequences will have a common first branch. If 5, #6}, we
may select the bit (6, or b;) corresponding to the smaller of the two metrics.
Then the first bit is dropped from the two surviving sequences. At (= 77,
the two metrics j25(b2, b;, O4, 65, 66, 67) and juy(b3, 3, 4, Bs, b¢, 7) will be
used to determine the decision on bit 52. This process continues at each
stage of the search through thetrellis for the minimum distance sequence.
Thus the detection delay is fixed at five bits, t

5-1-5 A Symbol-by-Symbol Detector for Signals
with Memory

In contrast to the maximum-likelihood sequence detector for detecting the
transmitted information, we now describe a detector that makes symbol-by-
symbol decisions based on the computation of the maximum a posteriori
probability (MAP) for each detected symbol. Hence, this detector is optimum
in the sense that it minimizes the probability of a symbol error. The detection
algorithm that is presented below is due to Abend and Fritchman (1970), who
developed it as a detection algorithm for channels with intersymbol inter-
ference,i.e., channels with memory.

Weillustrate the algorithm in the context of detecting a PAM signal with M
possible levels. Suppose that it is desired to detect the information symbol
transmitted in the Ath signal interval, and let 1, %,..., 745 be the observed
received sequence, where D is the delay parameter which is chosen to exceed
the signal memory,i.c., D >L, where L is the inherent memoryin thesignal.
On the basis of the received sequence, we compute the posterior probabilities

P(s# = A,, | T+ Ds Tet D-type n) : (5-1-65)

for the M possible symbol values and choose the symbol with the largest
probability. Since

Pep, vee Fy sM= A,,)P(s™ = Am)P(sS= A, | eeDr +>")=
PCat or ked-ts 66-9 M1)

(5-1-66

and since the denominator is commonfor all M probabilities, the maximum a
posteriori probability (MAP) criterion is equivalent to choosing the value of
s“that maximizes the numerator of (5-1-66). Thus, the criterion for deciding
on the transmitted symbol s“?is

5 = arg {maxpre. yn |s@=A,,)P(s®= A.)} (5-1-67)

+ One may have observed by now that the ML sequence detector and the symbeoi-by-symbol
detector that ignores the memory in the NRZI signal reach the same decisions. Hence, there is no
need for a decision delay. Nevertheless, the procedure described above applies in general.
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Whenthe symbols are equally probable, the probability P(s“ = A,,} may be
dropped from the computation.

Thealgorithm for computing the probabilities in (5-1-67) recursively begins
with the first symbol s“?. We have

F)= arg {maxptr. pre fh [S=A,PCS=An)|

= arg {max SS -- “D Pleo eee[STP sO)P(StP) 3}sft

= arg {max SSpis... , 5,| (5-1-68)
gH sy sft}

where §“") denotes the decision on s‘” and, for mathematical convenience. we
have defined

1D) a 5, 8) = p(riin, veh [sO . SYPFP? — sD)
(5-1-69)

pis

The joint probability P(s°*),..., s,s") may be omitted if the symbols are
equally probable andstatistically independent. As a consequence of the
Statistical independence of the additive noise sequence, we have

Plfispse iN | s*), ..., $P)

= PEF[89,8ply | 5... SHE

plry|{s@,s™)p(r, | s')  (5-1-70)

where we assumethats“? = 0 for k <0.

For detection of the symbol s“, we have

5) = arg {maxpre. ...,4|82 = A,,)P(s®= A,, )
= . 2+D ep 2= arg {max 2 2 Plrr+0bees ry [s@TPh spose, s! |ehey sith

(5-1-71)

The joint conditional probability in the multiple summation can be expressed
as

Pra-p. ty [SPP 2, 8)

= P(tre.p [877 SEPNaror [sO PY) (5-1-72)
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Furthermore,the joint probability

P(riep2 [SUT sPYP(SE TP), 8)

can be obtained from the probabilities computed previously in the detection of
s‘. Thatis,

P(risps- me A js"), weg s)

= Sp(nap.--- ry fssPPPS, stst

= pis...8, 8) (5-1-73)5)

Thus, by combining (5-1-73) and (5-1-72) and then substituting into (5-1-71),
we obtain

5) = arg {max SSpals), 20. 3, 3?) (5-1-74)sl) otzean st

where, bydefinition,
pals2*?), Leey 59) 5‘)

= pP(rrip | s'@*, a s24D-L)p(2*DY) Sp, (stl), Leey gf?) 5)
“

(S-1-75)

In general, the recursive algorithm for detecting the symbol s“° is as follows:
upon reception of r,.5,...,%, 7%. we compute

F = arg {max P(r +o, Lok [sp(s)|

= arg {max SS pgs, SD, s)| (5-1-76)ttt em

where, by definition,

pls**?, stk 71) gH)

= Dreap | ght *Dy a sktD -L))pysth Dy > Pu- (si “EEO gk D)
weeny

(5-1-7)

Thus, the recursive nature of the algorithm *is established by the relations
(5-1-76) and (5-1-77).
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The major problem with the algorithm is its computational complexity. In-
particular, the averaging performed over the symbols 5*",..., s@*), 5in
(5-1-76) involves a large amount of computation per received signal, especially
if the number M of amplitude levels {A,,} is large. On the other hand, if M is
smal] and the memory JL is relatively short, this algorithm is easily
implemented.

5-2 PERFORMANCE OF THE OPTIMUM RECEIVER
FOR MEMORYLESS MODULATION

In this section, we evaluate the probability of error for the memoryless
modulation signals described in Section 4-3-1. First, we consider binary PAM
signals and then M-ary signals of various types.

5-2-1 Probability of Error for Binary Modulation

FIGURE 5-2-1

Let us consider binary PAM signals where the two signal waveforms are
s,(t) = git) and s2(t) = —g(r), and g(r) is an arbitrary pulse that is nonzero in
the interval O<r< 7, and zero elsewhere.

Since s,(¢) = —s2{r), these signals are said to be antipodal. The energy in the
pulse git) is &. As indicated in Section 4-3-1, PAM signals are one-
dimensional, and, hence, their geometric: representation is simply the one-
dimensiona! vector s, = V&,, 5) = ~V&. Figure 5-2-1 illustrates the two signal
points.

Let us assumethat the two signajs are equallylikely and that signal s,(r) was
transmitted. Then, the received signal from the (matchedfilter or correlation)
demodulatoris

r=s,tn=V6,+n (5-2-1)

where n represents the additive gaussian noise component, which has zero
mean and variance o7=4N,. In this case, the decision rule based on the
correlation metric given by (S-1-44) compares r with the threshold zero. If
r >, the decision is made in favor of s,(t), and if r <0, the decision is made
that s2(¢) was transmitted. Clearly, the two conditional pdfs of r are

 

j . UN,
pr |s1) - Van” SON (5-2-2)LU

p(r|s)= eSAN (5-2-3)i

ey H,
i?

Signal points for binary antipodal signals. ) 0 ‘,
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FIGURE §-2-2 Conditional pdfs of two signals.

These two conditional pdfs are shownin Fig. 5-2-2.
Given that. s,(f) was transmitted, the probability of error is simply the

probability that r <9,i-e.,

Pee | sd=fpeso dr
i f ex V5"),= ————— r

V ANG J P No
1 —V2%,/No ,

=— e7 dx
20 Jo

1 [ 272= e* "dx
V2JvieoN,

: o(/) (5-2-4)
where Q(x) is the Q-function defined in (2-1-97). Similarly, if we assume that
s(t) was transmitted, r= —V#,+n and the probability that r>0 is also
P(e | 52) = Q(V28,/Ny). Since the signals s,(t) and s(t) are equally likely to be
transmitted, the average probability of error is

P, = 4P(e |s,) + $Ple | $2)
2é,o(28) 25

We should observe two important characteristics of this performance
measure. First, we note that the probability of error depends only on the ratio
@,/N, and not on any other detailed characteristics of the signals and the noise.
Secondly, we note that 2%,/Np is also the output SNR, from the matched-filter
{and correlation} demodulator. The ratio ,/Np is usually called the signal-to-
noise ratio per bit.

Wealso observe that the probability of error may be expressed in terms of
the distance between the two signals s, and s,. From Fig. 5-2-1, we observe
that the two signals are separated by the distance d,, = 2V%,. By substituting
, = 4d?, into (5-2-5), we obtain

 

2

P= Of om) (5-2-6)
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Signal points for binary orthogonalsignals

This expression illustrates the dependence of the error probability on the
distance between the two signal points.

Next, let us evajuate the error probability for binary orthogonal signals.
Recall that the signal vectors s, and s, are two-dimensional, as shown in Fig.
5-2-3, and may be expressed, according to (4-3-30), as

i [Vvé, 0} -
(3-2-7)

= [0 Vl

where &, denotes the energy for each of the waveforms. Note that the distance
between these signal points is d); = V2%,.

To evaluate the probability of error, let us assume that s, was transmitted.
Then,the received vector at the output of the demodulatoris

r=[Vé,+n, ny] (5-2-8)

We can now substitute for r into the correlation metrics given by (5-1-44) to
obtain C(r,s,) and C(r.s;). Then, the probability of error is the probability
that C(r, $2) > C(r,s,). Thus,

P(e | s,) = PIC(r, 2) > Clr. 8,)] = Play —n, > VS] (5-2-9)

Since nm, and n, are zero-mean statistically independent gaussian random
variabies each with variance }N,, the random variable « = 1, — 1, is zero-mean
gaussian with variance N,. Hence,

P(n, -n, > V@,) = Tianaedxi ohn

1 [. yp= e dy
V20 IVAN,

~0(/2) 6-2.101
Due to symmetry, the same error probability is obtained when we assumethat
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s, is transmitted. Consequently, the average error probability for binary
orthogonal signalsis

P, = oy) = QVye) (5-2-11)
where, by definition, y, is the SNR perbit.

If we compare the probability of error for binary antipodal signals with that
for binary orthogonal signals, we find that orthogonalsignals require a factor
of two increase in energy to achieve the same error probability as antipodal
signals. Since 10 log,, 2 = 3 dB, we say that orthogonal signals are 3dB poorer
than antipodal signals. The difference of 3dB is simply due to the distance
between the two signal points, which is d7,= 28, for orthogonal signals.
whereas d7, = 44, for antipodalsignals.

The error probability versus 10 logy, €/N, for these two types of signals is
shown in Fig. 5-2-4. As observed from this figure, at any given error
probability, the @,/Ny required for orthogonal signals is 3dB more than that
for antipodal signals.

§-2-2 Probability of Error for M-ary Orthogonal Signals

For equal energy orthogonal signals, the optimum detector selects the signal
resulting in the largest cross correlation between the received vector r and each
of the M possible transmitted signal vectors {s,,,}, ie.,

M

C(t. 8) =1°S,, = > FiSmk»s meat, 2,...,M (5-2-{2)k=)

Antipodal Ve = OUR,; Ne
Pr= OUP TNTYTProbabilityoferror,P, 

FIGURE 5-2-4 Probability of error for binary signals. SNR per bit. y, (dBy
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To evaluate the probability of error, let us suppose that the signal s, is
transmitted. Then the received signal vectoris

r=[V&tn, nm ny ... ry] (5-2-13)

where m1), 2,..., 49 are zero-mean, mutually statistically independent gaus-
sian random variables with equal variance «7 = 4Np. In this case, the outputs
from the bank of M correlators are

C(r, 81) = VE(VE, + ny}

Cr 82) = Véina (5-2-14)
C(t84) = VEry

Note that the scale factor @ may be elminated from the correlator outputs by
dividing each output by VE,@,. Then,- with this normalization, the pdf of thefirst
correlator output (r,; =V&,~ 7,) is

Veyp(t) = zoe exp[ -S2—>V6) (5-215)0

and the pdfs of the other M — 1 correlator outputs are

 

Prim) = ame, m= 2,3,... M (5-2-16)TENG

It is mathematically convenient to first derive the probability that the
detector makes a correct decision. This is the probability that 7, is larger than
each of the.other M —1 correlator outputs m2, ”3,... 4. This probability may
be expressed as

P= | P(n.<n,03<n,...,mm <n | n)p(njdan (5-2-17)
where P(t. <7, 03<7,..., Aa <1 fry) denotes the joint probability . that
Az, 3,.--, My are all less than r,, conditioned on any given r,. Then this joint
probability is averaged over all r,. Since the {r,,} are statistically independent,
the joint probability factors into a product of M—1 marginal probabilities of
the form

Fy

P(n,, <1, Iny=f P,,(Xm)dx_, m=2,3,...,M
1 UR

“Te | e*? dx (5-2-18)Ee.

These probabilities are identical for m =+2,3,...,M, and, hence, the joint
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probability under consideration is simply the result in (5-2-18) raised to the
(M — |)th power. Thus, the probability of a correct decision is

Fy VEEN

P= [ (SI. e 8? de) plr)dr, (5-2-19)
and the probability of a (k-bit) symbolerroris

Py =1-P. (5-2-20)
where

raFel[t-(efeae)" ‘Jou -ale- f28)]
(5-2-21)

The same expression for the probability of error is obtained when any one
of the other M —1signals is transmitted. Since all the M signals are equally
likely, the expression for Py, given in (5-2-21) is the average probability of a
symbol error, This expression can be evaluated numerically.

In comparing the performance of various digital modulation methods,it is
desirable to have the probability of error expressed in terms of the SNR per
bit, &,/N,, instead of the SNR per symbol, &/N,. With M = 2‘, each symbol
conveys k bits of information, and hence %,=k#,. Thus, (5-2-21) may be
expressed in terms of %,/N, by substituting for €,.

Sometimes, it is also desirable to convert the probability of a symbol error
into an equivalent probability of a binary digit error. For equiprobable
orthogonal signals, all symbol errors are equiprobable and occur with
probability

Pur _ Pu
M-1 2-1

  

(5-2-22)

Furthermore, there are (£) ways in which n bits out of k may be in error.
Hence, the average numberofbit errors per k-bit symbolis

KK\ Pay an2 () yeya Pm (5-2-23)
 

and.the average bit error probability is just the result in (5-2-23) divided by &,
the numberof bits per symbol. Thus,

2 P
P, “s k>] (5-2-24)a1 ™

R=
 

The graphs of the probability of a binary digit error as a function of the
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Probabilityofabiterror   
Probability of bit error for coherent detection of 4 0 4 8 12 If
orthogonalsignals. ‘ SNRperbit. y, dB)

SNR perbit, €@,/N,, are shown in Fig. 5-2-5 for M = 2, 4, 8, 16, 32 and 64. This
figure illustrates that, by increasing the number M of wayeforms, one can
reduce the SNR per bit required to achieve a given probability of a bit error.
For example, to achieve a P, = 10*, the required SNR perbitis a little more
than 12dB for M~=2, but -if M is increased to 64 signal waveforms
(k = 6 bits/symbol), the required SNR per bit is approximately 6dB. Thus, a
savings of over 6dB (a factor-of-four reduction) is realized in transmitter
power(or energy) required to achieve a P, = 107° by increasing M from M = 2
to M = 64.

What is the minimum tequired @,/N, to achieve an arbitrarily small
probability of error as M— <? This question is answered below.

A Union Bound on the Probability of Error Let us investigate the effect
of increasing M on the probability of error for orthogonal signals. To simplify
the mathematical development, we first derive an upper bound on the
probability of a symbolerror that is much simpler than the exact form given in
(5-2-21).

Recall that the probability of error for binary orthogonalsignals is given by
(5-2-11). Now, if we view the detector for M orthogonal signals as one that
makes M—1 binary decisions between the correlator output C(r,s,) that
contains the signal and the other M—1 correlator outputs Cir.s,,), m=
2,3,..., M, the probability of error is upper-bounded by the union bound of
the M —1 events. Thatis, if E, represents the event that C(r,s,) > C(r,s,) for
i#1 then we have Py= P(\i_, E,) = 3%, P(E;). Hence,

Pu <(M — 1)P,=(M - 1)Q(V&ING)< MQ(VEINe) (5-225)
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This bound can be simplified further by upper-bounding O(VEIN,). We have
QO(V EIN) <e 8O% 5.2.26)

Thus,

Puy < Me 2M, Ky AtalINe

Pye ACHNea 2m 22
(5-2-27)

As k—~, or equivalently. as M— =, the probability of error approaches zero
exponentially, provided that ¢,/N, is greater than 2 In 2, i.e.,

>2In2=1.39 (1.42 dB} (5-2-28)a

The simple upper bound on the probability of error given by (5-2-27)
implies that, as long as SNR > 1.42 dB, we can achieve an arbitrarily low Py.
However, this union boundis not a very tight upper bound at a sufficiently low
SNR due to the fact that the upper bound for the Q function in (5-2-26) is
loose. In fact, by more elaborate bounding techniques,it is shown in Chapter 7
that the upper bound in (5-2-27) is sufficiently tight for @/Ny>4In2. For
€./No <4 In 2, a tighter upper bound on Py is

Pry < De KOPIN Min29! (5-2-29)
Consequently, P,,— 0 as k > x, provided that

g
—">In2=0,693 (-1.6dB) (2-30)a

Hence, —1.6dB is the minimum required SNR perbit to achieve an arbitrarily
small probability of error in the limit as kK x (M=—> =). This minimum SNR
per bit (—1.6dB)is called the Shannon fimit for an additive white Gaussian
noise channel.

5-2-3 Probability of Error for !-ary Biorthogonal Signals
As indicated in Section 4-3, a set of M=2* biorthogonal signals are
constructed from 3M orthogonalsignals by including the negatives of the
orthogonal signals. Thus, we achieve a reduction in the complexity of the
demodulator for the biorthogonalsignals relative to that for orthogonalsignals,
since the former is implemented with 4M cross-correlators or matched filters,
whereas the latter requires M matchedfilters or cross-correlators.

To evaluate the probability of error for the optimum detector, let us assume
that the signal s,(r) corresponding to the vector s,=([V& 00... O] was
transmitted. Then, the received signal vectoris

r=[V8& +n, mz... nal (5-2-31)
where the {n,,} are zero-mean, mutually statistically independent and identi- |
cally distributed gaussian random variables with variance o? = 4M. The.
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magnitude of the cross-correlators
Meo

Cir. s,,)=0°5S,, = > TeSop, we =1,2,...,4M (5-2-32)k=

while the sign of this largest term is used to decide whethers,,(r) or —s,,(f) was
transmitted. According to this decision rule, the probability of a correct
decision is equal to the probability that r,=Vé+,>0 and r, exceeds
lanl =/4,,/ for» =2,3,..., JA. Burt
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is similar to that for orthogonalsignals (see Fig. 5-2-5). However, in this case,
the probability of error for M =4is greater than that for M4 = 2. This is due to
the fact that we have plotted the symbol error probability P,, in Fig. 5-2-6. If
we plotted the equivalent bit error probability, we should find that the graphs
for M=2 and M = 4 coincide. As in the case of orthogonal signals, as M— =
(or k++), the minimum required 4,/M, to achieve arbitrarily small prob-
ability of error is ~1.6dB, the Shannonlimit.

5-2-4 Probability of Error for Simplex Signals

Next we consider the probability of error for M simplex signals, Recall from
Section 4-3 that simplex signals are a set of M equally correlated signals with
mutual cross-correlation coefficient p,,,, = —1/(M — 1). These signals have the
same minimum separation of V2é, between adjacent signal points in M-
dimensiona! space as orthogonalsignals. They achieve this mutual separation
with a transmitted energy of &,(M — 1)/M, whichis less than that required for
orthogonalsignals by a factor of (M — 1)/M. Consequently, the probability of
error for simplex signals is identical to the probability of error for orthogonal
signals, but this performance is achieved with a saving of

 

10 log (1 — p) = LO log dB (5-2-35)
M-\

in SNR. For M = 2, the saving is 3 db. However, as M is increased, the saving
in SNR approaches 0 dB.

5-2-5 Probability of Error for M-ary Binary-Coded Signals
We have shown in Section 4-3 that binary-coded signal waveforms are
represented by the signal vectors

Sn, = [Sunt S512 te Sms n= 1, 2, seg M

wheres,,; = + V€/N for all m and j. N is the block length of the code, and is
also the dimension of the M signal waveforms.

If dis, is the minimum euclidean distance of the M signal waveforms then
the probability of a symbolerror is upper-bounded as

d&) 2Py <(M—1)P, = (M ~ 1)Q((|)tb
ofdy?<2 exp| “aN, (5-2-36)
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The value of the minimum euclidean distance will depend on the selection of
the code words,i.e., the design of the code.

5-2-6 Probability of Error for M-ary PAM

Recall that M-ary PAM signals are represented geometrically as M one-
dimensionalsignal poinis with value

Sy =V3E,A,, m=1,2,...,M (5-2-37)

where @, is the energy of the basic signal pulse g(¢). The amplitude values may
be expressed as

A,, = (2m —1—- M)d, m=1,2,...,M (5-3-38)

where the euclidean distance between adjacentsignal points is dV2¢,.

&.-2 3 6, -F8S Om -1-Myeet! MS, a IM Zs WW

d*&y i 2 2 4.
= yg RM(ME — DI] = (MP 1)6, (5-2-39)

Equivalently, we may characterize these signals in terms of their average
power, which is

2

= 4(M?—1) ae (5-2-40)P,, =
T[8

The average probability of error for M-ary PAM can be determined from
the decision rule that maximizes the correlation metrics given by (5-1-44).
Equivalently, the detector compares the demodulator output r with a set of
M —1thresholds, which are placed at the midpoints of successive amplitude
levels, as shown in Fig. 5-2-7. Thus, a decision is made in favor of the
amplitude level that is closest to r.

The placing of the thresholds as shownin Fig. 5-2-7 helps in evaluating the
probability of error. We note that if the mth amplitude level is transmitted, the
demodulator outputis

r=S, +n = [SA tan (5-2-41)}

FIGURE 5-2-7 Placement of thresholds at midpoints of *, Neel Mar koe yy
successive amplitude levels. eeoe
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where the noise variable n has zero mean and variance o7, = $Np. On the basis
that all amplitude leveis are equally likely a priori, the average probability of a
symbol error is simply the probability that the noise variable n exceeds in
magnitude one-half of the distance between levels. However, when either one
of the two outside levels +(Mf — 1) is transmitted, an error can occur in one
direction only. Thus, we have

M-1
Py = —P(r -s,,| >dV4€,)

 

M

= M-1l1 2 eons ax
M VAN, aves

-M—1a e7'? dx
M VnJvataun,

2(M —1) ( a’s )= —t 5-2-42M Q No ¢ )

The error probability in (5-2-42) can also be expressed in terms of the average
transmitted power. From (5-2-40), we note that

6

OeRP PT (S-2-43)

By substituting for d?%, in (S-2-42), we obtain the average probability of a
symbol error for PAM in terms of the average power as

_ 2M =1) 6P,.TPu= O(a pw) (5-2-44)

~ aT o( Weima)
or, equivalently,

Py (5-2-45)

where @,, = P,yT is the average energy.
In plotting the probability of a symbol error for M-ary signals such as M-ary

PAM,it is customary to use the SNR per bil as the basic parameter. Since
T =kT, and k = log, M, (5-2-45) may be expressed as

_2(M - 1) (6 log, M)%, a,Py =O(ape) (5-2-46)
where @,,, = P,, 7, is the average bit energy and %,,,/No is the average SNR
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FIGURE5-2-8—Probability of a symbol error for PAM. SNR perbit,y, (dB)

per bit. Figure 5-2-8 illustrates the probability of a symbol error as a function
of 10logi, 8 4./No, with M as a parameter. Note. that the case M =2
correspondsto the error probability for binary antipodai signals. Also observe
that the SNR perbit increases by over 4dB for every factor-of-two increase in
M. For jarge M, the additional SNR per bit required to increase M by a factor
of two approaches 6 dB.

5-2-7 Probability of Error For M-ary PSK

Recall from Section 4-3 that digital phase-modulated signal waveforms may be
expressed as

S(t} = g(t) cos Ez + am -| lsm=M, O<ts<T  (5-2-47)
and have the vector representation

2

Sm = |VB, cos A -1) VE sin (m - n| (5-2-48)
where €, = 4%, is the energy in each of the waveforms and g(t) is the pulse
shape of the transmitted signal. Since the signal waveforms have equal energy.
the optimum detector for the AWGN channel given by (5-1-44) computes the
correlation metrics

C(F, 81) =F Se m=1,2,...,M (5-2-49)

In other words, the received signal vector r= [r, r] is projected onto each of

278



279

 

270=DIGITAL COMMUNICATIONS

the M possible signal vectors and a decision is madein favor of the signal with
the largest projection.

The correlation detector described above is equivalent to a phase detector
that computes the phase of the received signal from r and selects the signal
vector s,, whose phase is closest to r. Since the phase of r is

@, =tan 2 (5-2-50)
ry

we will determine the pdf of ©,, from which we shall compute the probability
of error.

Let us consider the case in which the transmitted signal phase is ©, = 0,
correspondingto the signal s,(¢). Hence, the transmitted signal vectoris

sy =[V, 0] (5-2-51)

and the received signal vector has components

n=VEtn,
(5-2-52)

F2 = M2

Because n, and n, are jointly gaussian random variables, it follows that r,
and r, are jointly gaussian random variables with E(r,)= V€., E(r,)= 0, and
Or, = 07, = 3No = 07. Consequently,

 

in. ny)=—oex [ever 5.2.53P, lyf? ~ 2n0? pP 2a? { “2 )

The pdf of the phase. 9, is obtained by a changein variables from (7,, 7,) to:

Vevitn
Q, = tan ! (4/7) (52°54)

This yields the joint pdf

 V?+ & -2VE Vos,pvol¥, ®,) = |ier? |exp|—
2a P 2a

Integration of py.o(V, ©,) over the range of V yields pa(Q,). Thatis,

po®)= | puel¥,®) dV0

= | oem vero| Ve (Y — Vay, 00s 8, 7/2 dV (5-2-55)22 In
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Pa i9,)

Let

1.05

t.u7

0.49

tS

0

0.18

 
Probability density function p,{9,) -3.4 -2.5) -1.88 -1.26 0.63 6.00 0.63 1.26 188 251 344
tor y, = 1,2, 4 and 10. 8,

where for convenience, we have defined the symbol SNR as y, = @,/N). Figure
5-2-9 illustrates fo(9,) for several values of the SNR parameter y, when the
transmitted phase is zero. Note that f,(©,) becomes narrower and more
peaked about ©, = (0) as the SNR ¥,increases.

When s,¢t) is transmitted, a decision error is made if the noise causes the
phase to fall outside the range ~2/M =©, <2/M.,Hence, the probability of a
symbolerroris

iM

Py = 1 ~ { Pol9,) do, (5-2-56)- iM

In general, the integral of pa(@) does not reduce to a simple form and must be
evaluated numerically, except for M = 2 and M = 4,

For binary phase modulation, the two signals s,(r) and s2(¢) are antipodal,
and, hence, the error probability is

2)P= O(\/5 (5-2-57)

When M = 4. wehavein effect two binary phase-modulation signals in phase
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quadrature. Since there is no crosstalk or interference between the signals on
the two quadrature carriers. the bit error probability is identical to that in
(5-2-57), On the other hand.-the symbol error probability for M=4 is
determined by nating that

P. ~~ ry =[t~o( P)) (5-2-58)
where F. is the probability of a correct decision for the 2-bit symbol. The result
(5-2-58) follows from the statistical independence of the noise on the
quadrature carriers. Therefore, the symbol error probability for M = 4 is

Y= 1-P.

2, 2%,= 20( Vf - 10 x) | (5-2-59)cr tt

For M->4, the symbol error probability Py is obtained by numerically
integrating (5-2-55). Figure 5-2-10illustrates this error probability as a function
of the SNR per bit for M = 2, 4, 8, 16, and 32. The graphsclearly illustrate the
penalty in SNR per bit as M increases beyond M=4. For example. at
Py =10 *, the difference between M = 4 and M = 8 is approximately 4 dB, and
the difference between M=8 and M = 16 is approximately 5dB. For large
values of M, doubling the numberof phases requires an additional 6 dB/bit to
achieve the same performance.

An approximation to the error probability for large values of M and for

Probabilityofasymbolerro.fy 
a 0 4 8 12 le MP 4

FIGURE §-2-10) Probability of a symbol error for PSK signals. SNR per bit. ytd Bs
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large SNR may be obtained by first approximating po(©). For €,/Ny>> 1 and
|©,| = 42. po(O,) is well approximated as

Pe(9,) = =cos @,e 2%"e (5-2-60)
By substituting for po(©,) in (5-2-56) and performing the change in variable
from ©, to u = V2y, sin ©,, we find that

atiMe 27,Py =1- { — cos @,e72%"8 ge,- iM (4

2
e.

nr
= —= e du

Va V2, sin [a/M)

- 20(Vy, sin =) = 20(V2ky. sin x) (5-2-61)
where k =log, M and y,=ky,. Note that this approximation to the error
probability is good for all values of M. For example, when M =2 arid M =4,
we have P,=P,=2Q(V2y,), which compares favorably (a factor-of-two
difference) with the exact probability given by (5-2-57).

The equivalent bit error probability for M-ary PSK is rather tedious to
derive due to its dependence on the mapping of k-bit symbols into the
corresponding signal phases. When a Gray codeis used in the mapping, two
k-bit symbols correspondingto adjacentsignal phases differ in only a single bit.
Since the most probable errors due to noise result in the erroneous selection of
an adjacent phase to the true phase, most k-bit symbol errors contain only a
single-bit error. Hence, the equivalent bit error probability for M-ary PSK is
well approximated as

I

P,b= k
Our treatment of the demodulation of PSK signals assumed that the

demodulator had a perfect estimate of the carrier phase available. In practice,
however, the carrier phase is extracted from the received signal by performing
some nonlinear operation that introduces a phase ambiguity. For example, in
binary PSK,the signal is often squared in order to remove the modulation, and
the double-frequency componentthat is generated is filtered and divided by 2
in frequency in orderto extract an estimate of the carrier frequency and phase
$. These operations result in a phase ambiguity of 180° in the carrier phase.
Similarly, in four-phase PSK, the received signal is raised to the fourth power
in order to removethe digital modulation, and the resulting fourth harmonic of
the cartier frequency is filtered and divided by 4 in order to extract the carrier
component. These operations yield a carrier frequency component containing
the estimate of the carrier phase ¢, but there are phase ambiguities of +90°
and 180° in the phase estimate. Consequently, we do not have an absolute
estimate of the carrier phase for demodutation.

Puy (5-2-62)
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The phase ambiguity problem resulting from the estimation of the carrier
phase ¢ can be overcome by encoding the information in phase differences
between successive signal transmissions as opposed to absolute phase encod-
ing, For example, in binary PSK, the information bit 1 may be transmitted by
shifting the phase of the carrier by 180° relative to the previous carrier phase,
while the information bit 0 is transmitted by a zero phase shift relative to the
phase in the previous signaling interval. In four-phase PSK, the relative phase
shifts between successive intervals are 0, 90°, 180°, and —90°, corresponding to
the information bits 00, 01, 11, and 10, respectively. The generalization to
M > 4 phasesis straightforward. The PSK signals resulting from the encoding
process are said to be differentially encoded. The encoding is performed by a
relatively simple logic circuit preceding the modulator.

Demodulation of the differentially encoded PSK signal is performed as
described above, by ignoring the phase ambiguities. Thus, the receivedsignalis
demodulated and detected to one of the M possible transmitted phases in each
signaling interval. Following the detector is a relatively simple phase com-
parator that compares the phases of the demodulated signal over two
consecutive intervals in order to extract the information.

Coherent demodulation of differently encoded PSK results in a higher
probability of error than the error probability derived for absolute phase
encoding. With differentially encoded PSK, an error in the demoduiated phase
of the signal in any given interval will usually result in decoding errors over
two consecutive signaling intervals. This is especially the case for error
probabilities below 0.1. Therefore, the probability of error in differentially
encoded M-ary PSK is approximately twice the probability of error for M-ary
PSK with absolute phase encoding. However,this factor-of-two increase in the
error probability translates into a relatively smali loss in SNR.

5-2-8 Differential PSK (DPSK) and its Performance

A differentially encoded phase-modulated signal also allows another type of
demodulation that does not require the estimation of the carrier phase.t
Instead, the received signal in any given signaling intervalis compared to the
phase of the received signal from the preceding signaling interval. To
elaborate, suppose that we demodulate the differentially encoded signal by
multiplying r(t) by cos 2af.t and sin 27f.1 and integrating the two products over
the interval 7. At the kth signaling interval, the demodulator outputis

te = |VE,cos (@, —) +e, VE sin (O — 6) + ma]
or, equivalently,

re = VEeK 4) + ny, (5-2-63)

+ Because no phase estimation is required, DPSK is often considered to be a noncoherent
communication technique. We take the view that DPSK represents a form of digital phase
modulation in the extreme case where the phase estimate is derived only from the previous symbolinterval.

283



284

FIGURE 5-2-11

 

CHAPTER $ OPTIMUM RECEIVERS FOR THE ADDITIVE WHITE GAUSSIAN NOISE CHANNEL=275

where 6, is the phase angle of the transmitted signal at the kth signaling
interval, @ is the carrier phase, and n, = n,, + jny, 15 the noise vector. Similarly,
the received signal vector al the output of the demodulator in the preceding
signaling interval is

re = VGOt ny, (5-2-64)

The decision variable for the phase detector is the phase difference between
these two complex numbers. Equivalently, we can project r, onto r,_, and use
the phase of the resulting complex number; that is,

ntti y = BeheOe} + VEeM Hyak = Vée ~NOe 1 On, + rine. \ (5-2-65)

which, in the absence of noise, yields the phase difference 6, - 6, _,. Thus, the
mean value of 4ry_, is independent of the carrier phase. Differentially
encoded PSKsignaling that is demodulated and detected as described above is
called differential PSK (DPSK).

The demodulation and detection of DSPK using matchedfilters is illustrated
in Figure 5-2-11. If the pulse g(¢) is rectangular, the matched filters may be
replaced by integrate-and-dumpfilters.

Let us now consider the evaluation of the error probability performance of a
DPSK demodulator and detector. The derivation of the exact value of the

probability of error for M-ary DPSK is extremely difficult, except for M = 2.
The major difficulty is encountered in the determination of the pdf for the
phase of the random variable ~rf_,, given by (S-2-65). However, an
approximation to the performance of DPSK is easily obtained, as we now
demonstrate.

Without toss of generality, suppose the phase difference 0, — 8, ,=0.
Furthermore, the exponential factors e~-'~® and e*-*in (5-2-65) can be
absorbed into the gaussian noise components n,., and m,, without changing
their statistical properties. Therefore, r,rf_, in (5-2-65) can be expressed as

rth. = E+ VE, (my + nt) + mnt (5-2-6)

The complication in determining the pdf of the phase is the term n,n*¥_,.
However, at SNRsof practial interest, the term n,nZ_, is small relative to the
dominant noise term V%,(n, + nf.,). If we neglect the term nn#_, and we

Block diagram of DPSK demodulator.

 
  
Received

  Delay
by T | comparator decision  
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also normalize r,rf_, by dividing through by V@,, the new set of decision
metrics becomes

= V€+ Re(n, + nt_x (ny k-1) (5-267)
y=Im (nm, + n¥_,)

The variables x and y are uncorrelated gaussian random variables with
identical variances o2 = Ny. The phase is

9, =tan7'% (5-2-68)x

At this stage, we have a problem that is identical to the one we solved
previously for phase-coherent demodulation. The only difference is that the
noise variance is now twice as large as in the case of PSK. Thus we conclude
that the performance of DPSK is 3 dB poorer than that for PSK. Thisresult is
relatively good for M = 4, but it is pessimistic for M =2 in the sense that the
loss in binary DPSKrelative to binary PSKis less than 3 db at large SNR. This
is demonstrated below.

In binary DPSK,the two possible transmitted phase differences are 0 and
arad. As a consequence,only the real part of ~rf_, is needed for recovering
the information. Using (5-2-67), we express the real part as

Re (ryrt.) = 3(rnrh_, +7riry 4)

Because the phase difference between the two successive signaling intervals is
zero, an error is made if Re (7,r¢_,) <0. The probability that r,rf_, + réry_) <
O is a special case of a derivation, given in Appendix B concerned with the
probability that a genera} quadratic form in complex-valued gaussian random
variables is less than zero. The general form for this probability is given by
(B-21) of Appendix B, and it depends entirely on the first and second moments
of the complex-valued gaussian random variables 7, and r,_;. Upon evaluating
the moments and the parameters that are functions of the moments, we obtain
the probability of error for binary DPSKin the form

P, =e7M (5-2-69)

where @,/Np is the SNR perbit. .
The graph is shown in Fig, 5-2-12. Also shown in that illustration is the

probability of error for binary, coherent PSK. We observe that at error
probabilities of P,< 10°’ the difference in SNR between binary PSK and
binary DPSKis less than 3 dB. In fact, at P, < 1075, the difference in SNR is
less than 1 dB.

The probability of a binary digit error for four-phase DPSK with Gray
coding can be expressed in terms of well-known functions, butits derivation is
quite involved. We simply state the result at this point and refer the interested
reader to Appendix C forthe details of derivation. It is expressed in the form

P, = Qi(a, b) — 3h,(ab) exp [—3(a" + b7)] (5-2-70)
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2 Binary PSK
Ss P,= O24, )
2

4
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Probability of error for binary PSK and DPSK. SNR per bit, ¥, (dB)

where Q\(a, b) is the Markum Q function defined by (2-1-122) and (2-1-123),
{)(x) is the modified Bessel function of order zero, defined by (2-1-120),. and
the parameters a and 8 are defined as

a= V2y,01 - V3)

b= V2y,(1-+ V3)

Figure 5-2-13 illustrates the probability of a binary digit error for two- and

(5-2-71)

Probabilityofabiterror,P, 
Probability of bit error for binary and four-phase PSK
and DPSK., SNR per bir. y, (dB)
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four-phase DPSK and coherent PSK signaling obtained from evaluating the
exact formulas derived in this section. Since binary DPSK is only slightly
inferior to binary PSK at large SNR, and DPSK does not require an elaborate
method for estimating the carrier phase, it is often used in digital communica-
tions systems. On the other hand, four-phase DPSK is approximately 2.3 dB
poorer in performance than four-phase PSK at large SNR. Consequently the
choice between these two four-phase systems is not as clear cut. One must
weigh the 2.3 dB loss against the reduction in implementation complexity.

5-2-9 Probability of Error for QAM

Recail from Section 4-3 that QAM signal waveforms may be expressed as

S(t) = A,,,2(t) cos 2af.t — A,g(t) sin2aft, O<rST  (5-2-72)

where A,,- and A,,, are the information-bearing signal amplitudes of the
quadrature carriers and g(t) is the signal pulse. The vector representation of
these waveformsis

8, = [An VEG Ans VEE] (5-2-73)
To determine the probability of error for QAM, we must specify the signal
point constellation. We begin with QAM signal sets that have M =4points.
Figure 5-2-14 illustrates two four-point signal sets, The first is a four-phase
modulated signal and the second is a QAMsignal with two amplitude levels.
labeled A, and A>, and four phases. Because the probability of error is
dominated by the minimum distance between pairs of signal points, fet us
impose the condition that 4d), =2A for both signal constellations and let us
evaluate the average transmitter power, based on the premise that all signal
points are equally probable. For the four-phase signal. we have

P,, = \(4)2A? = 2A? (5-2-74)

For the two-amplitude, four-phase QAM, we.place the points on circles of
tadii A and V3A. Thus, d), = 2A, and

P,, = 3[2(3A4?) + 247] = 24? (5-2-75)

which is the same average power as the M = 4-phase signal constellation.
Hence, for all practical purposes, the error rate performance of the two signal

 
FIGURE 5-2-14=Two four-point signal constellations.
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Four eight-point QAM signal constellations,

sets is the same. In other words, there is no advantage of the two-amplitude
QAMsignal set over M = 4-phase modulation.

Next, let us consider M=8 QAM.In this case, there are many possible
signal constellations, We shall consider the four signal constellations shown in
Fig. 5-2-15, all of which consist of two amplitudes and have a minimum
distance between signal points of 2A. The coordinates (A,c; Ams) for each
signal point, normalized by A, are given in the figure. Assumingthatthe signal
points are equally probable, the average transmitted signal poweris

1 )
Pa =a Ain + Ains1Scrate

_A° s 2 +a? 5-2-76)MD, (Aine+Bic) (
where {@,,., @m;) are the coordinates of the signal points, normalized by A.

The two signal sets (a) and (c) in Fig. 5-2-15 contain signal points thatfall
on a rectangular grid and have P,, = 6A”. The signal set (b) requires an average
transmitted power P,, = 6.83A”, and (d) requires P,, = 4.73A7. Therefore, the
fourth signal set requires approximately 1 dB iess power than the first two and
1.6 dB less power than the third to achieve the same probability of error. This
signal constellation is known to be the best eight-point QAM constellation
because it requires the least power for a given minimum distance between
signal points.

For M > 16, there are many morepossibilities for selecting the QAM signal
points in the two-dimensional space. For example, we may chooseacircular -
multiamplitude constellation for M = 16, as shown in Fig. 4-3-4. In this case,
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the signal points at a given amplitude. level are phase-rotated by 42 relative to
the signal points at adjacent amplitude levels. This 16-QAM constellation is a
generalization uf the optimum 8-QAM constellation. However, the circular
16-QAM constallation is not the best 16-point QAM signal constellation for
the AWGN channel.

Rectangular QAMsignal constellations have the distinct advantage of being
easily generated as two PAM signals impressed'on phase-quadrature carriers.
In addition, they are easily demodulated. Although they are not the best M-ary
QAMsignal constellations for M > 16, the average transmitted power required
to achieve a given minimum distance is only slightly greater than the average
power required for the best M-ary QAM signal constellation. For these
reasons, rectangular M-ary QAMsignals are most frequently used in practice.

For rectangular signal constellations in which M = 2*, where k is even, the
QAM signal constellation is equivalent 10 two PAM signals on quadrature
carriers, each having VM =2*" signal points. Since the signals in the
phase-quadrature components can be perfectly separated at the demodulator,
the probability of error for QAMis easily determined from the probability of
error for PAM. Specifically, the probability of a correct decision for the M-ary
QAMsystem is

P.=(1— Poa)? (5-2-7)

where Pyq is the probability of error of a VM — ary PAM with one-half the
average power !n each quadrature signal of the equivalent QAM system. By
appropriately modifying the probability of error for M-ary PAM, we obtain

Paya a(1 ~ eJOU Frm*) (5-2-78)
where @,,/M, is the average SNR per symbol. Therefore, the probability of a
symbolerror for the M-ary QAM is

Py =1- (1 > Pow? (5-2-79)

Note that this result is exact for M = 2* when k is even. On the other hand,
when k is odd, there is no equivalent VM —ary PAM system. This is no
problem, however, because it is rather easy to determine the error rate for a
rectangular signal set. If we employ the optimum detector that bases its
decisions on the optimum distance metrics given by (5-1-43), it is relatively
Straightforward to show that the symbol error probability is tightly upper-
bounded as

—_—_

Pw=t—[1-20(gin)
| 3K Sp ay=40 (M - aN) (280)
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Probabilityofasymbolerror,Py,
64-20 7 4 & BR IG12 Mie 18h

Probability of a symbol error for OAM. SNR perbit. y, (dB)

  
for any k 21, where &,,./Nq is the average SNR perbit. The probability of a
symbol error is plotted in Fig. 5-2-16 as a function of the average SNR perbit.

For non-rectangular QAM signal constellations, we may upper-bound the
‘error probability by use of a union bound. An obvious upper boundis

Py < (M — 1)0(V{d&),77/2No)PTs,

where d&, in the minimum euclidean distance between signal points. This
bound may be loose when M is large. In such a case, we may approximate Py
by replacing M—1 by M,, where M,, is the largest number of neighboring
points that are at distance d‘), from any constellation point.

It is interesting to compare the performance of QAM with that of PSK for
any given signal size M, since both typesof signals are two-dimensional. Recall
that for M-ary PSK, the probability of a symbol error is approximated as

Puy = 20( Fy,sin =| (5-2-81)
where y, is the SNR per symbol. For M-ary QAM, we mavuse the expression
(5-2-78). Since the error probability is dominated by the argument of the Q
function, we may simply compare the arguments of Q for the two signal
formats. Thus, the ratio of these two argumentsis

_ 3/(M = 1)
2sin? (x/M)

For example, when M =4, we have ®, =1. Hence, 4-PSK and 4-QAM yield
comparable performance for the same SNR per symbol. On the other hand,

(5-2-82)
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TABLE 5-2-1 SNR ADVANTAGE OF M-ARY
QAM OVER M-ARY PSK

M 10 logis ay

a 1.65
16 4.20
32 TAZ
64 9.95

when M>4 we find that #y,>1, so that M-ary QAM yields better
performance than M-ary PSK. Table 5-2-1 illustrates the SNR advantage of
QAM over PSK for several values of M. For example, we observe that
32-QAM has a 7dB SNR advantage over 32-PSK.

5-2-10 Comparison of Digital Modulation Methods

The digital modulation methods described in this chapter can be compared in a
numberof ways. For example, one can compare them on the basis of the SNR
required to achieve a specified probability of error. However, such a
comparison would not be very meaningful, unless it were made on the basis of
some constraint, such as a fixed data rate of transmission or, equivalently, on
the basis of a fixed bandwidth. With this goal in mind, let us consider the
bandwidth requirements for several modulation methods.

For multiphase signals, the channel bandwidth required is simply the
bandwidth of the equivalent lowpass signal pulse g(t), which depends onits
detailed characteristics. For our purposes, we assume that g(t} is a pulse of
duration 7 and that its bandwidth W is approximately equal to the reciprocal
of T. Thus, W = 1/T and, since T = k/R = (log, M)/R,it follows that

__R
log, M

 
(5-2-83)

Therefore, as M is increased, the channel bandwidth required, when the bit
rate R is fixed, decreases. The bandwidth efficiency is measured by the bit rate
to bandwidth ratio, which is

R

vo log, M (5-2-84)

The bandwidth-efficient method for transmitting PAM is single-sideband.
Then, the channel bandwidth required to transmit the signal is approximately
equal to 1/27 and, since T = k/R = (log, M)/R,it follows that

R

wa 2Jog: M (5-2-85)
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This is a factor of two better than PSK.

In the case of QAM, we have two orthogonal carriers, with wach carrier
having a PAM signal. Thus, we double the rate relative to PAM. However, the
QAMsignal must be transmitted via double sideband, Consequently, QAM
and PAM have the same bandwidth efficiency when the bandwidth is
referenced to the bandpass signal.

Orthogonalsignals have totally different bandwidth requirements. If the
M =2* orthogonal signals are constructed by means of orthogonalcarriers with
minimum frequency separation of 1/27 for orthogonality, the bandwidth
required for transmission of k = log, M information bits is

w-4__M___M_, (9-2-86)

In this case. the bandwidth increases as M increases. Similar relationships
obtain for simplex and biorthogonalsignals. In the case of biothogonal signals,
the required bandwidth is one haif of that for orthogonal signals.

A compact and meaningful comparison of these modulation methodsis one
based on the normalized data rate R/W (bits per second per hertz of
bandwidth) versus the SNR per bit (&,/N)) required to achieve a given error
probability. Figure 5-2-17 illustrates the graph of R/W versus SNR perbit for
PAM, QAM,PSK,and orthogonai signals, for the case in which the error
probability js Py = 10 *. We observe that in the case of PAM, QAM, and PSK,
increasing M results in a higher bit rate-to-bandwidth ratio R/W. However, the
cost of achieving the higher data rate is an increase in the SNR perbit.
Consequently, these modulation methods are appropriate for communication
channels that are bandwidth limited, where we desire a bit rate-to-bandwidth
ratio R/W > 1 and wherethereis sufficiently high SNR to support increases in
M. Teiephone channels and digital microwave radio channels are examples of
such bandiimited channels. ;

In contrast, M-ary orthogonalsignals yield a bit rate-ta-bandwidth ratio of
R/W <1. As M increases, R/W decreases due to an increase in the required
channel bandwidth. However, the SNR per bit required -to achieve a given
error probability (in this case, Py = 107°) decreases as M increases, Conse-
quently, M-ary orthogonalsignals are appropriate for power-limited channels
that have sufficiently large bandwidth to accommodate a large’ number of
signals. In this case, as M-+=, the error probability can be made as small
as desired, provided that €,/Nj > 0.693 (—1.6dB). This is the minimum SNR
per bit required to achieve reliable transmission in the limit as the
channel bandwidth W— = and the corresponding bit rate-to-bandwidth ratio
R/W 36

Also shown in Fig. 5-2-17 is the graph for the normalized Capacity of the
bandlimited AWGN channel, which is due to Shannon (1948). The ratio C/W,
where C (= ) is the capacity in bits/s, represents the highest achievable bit
rate-to-bandwidth ratio on this channel. Hence, it serves as the upper bound
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FIGURE5-2-17 Comparison of several modulation methods at 107* symbol error probability.

on the bandwidth efficiency of any type of modulation. This boundis derived
in Chapter 7 and discussed in greater detail there.

5-3 OPTIMUM RECEIVER FOR CPM SIGNALS

Werecall from Section 4-3 that CPM is a modulation method with memory.
The memory results from the continuity of the transmitted carrier phase from
one signal interval to the next. The transmitted CPM signal may be expressed
as

s(t) = Jcos [2af.t + $(t:D] (5-3-1)
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where (tf; I) is the carrier phase. The filtered received signal for an additive
gaussian noise channelis °

r{t) = s(t) + a(t} (5-3-2)
where

n(t) =n_(t) cos 2nfit — n,(t) sin 2761 (5-3-3}3

5-3-1 Optimum Demodulation and Detection of CPM

The optimum receiver for this signal consists of a correlator followed by a
maximum-likelihood sequence detector that searches the paths through the
state trellis for the minimum euclidean distance path. The Viterbi algorithm is
an efficient method for performing this search. Let us establish the general
state trellis structure for CPM and then describe the metric computations.

Recall that the carrier phase for a CPM signal with a fixed modulation index
h may be expressed as

b(t; )=2ah DY hqit-kT)kee

And n

=th Y iet+2th Dd Lalt-kT)
kews ken-L4l

=6,+ 6,1, nT <t<(n+1)T (5-3-4)

where we have assumed that q(¢) = 0 for ¢<0, g(t) =$ fort = LT, and

q(t) =| g(t) dt (5-3-5)
The signal pulse g(t)=0 for t<0 and t>LT. For L=1, we have a full
response CPM,and for L > 1, where L is a positive integer, we have a partial
response CPM signal.

Now, when A is rational, i.c., A = m/p where m and p arerelatively prime
positive integers, the CPM schemecan be represented bya trellis. In. this case,
there are p phase states

mm 20m -1e,-{0,=,eben) (5-3-6)
PP Pp

when rr is even, and 2p phase states

@, = {o, mm. ,Geatiman (5-3-7)
Pp P

when m is odd. If L=1, these are the only states in the trellis. On the other
hand, if L>1, we have an additional number of states due to the partial
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response character of the signal pulse g(t). These additional states can be
identified by expressing @(t, I) given by (5-3-4) as

al

Ot; D=22h SY hg(t-kT)+2nahi,q(t-nT) (5-3-8)k=n-L+1

The first term on the right-hand side of (5-3-8) depends on the information
symbols (1-1, f4—-2:---+4,-241), Which is called the correlative state vector,
and represents the phase term corresponding to signal pulses that have not
teached their final value. The second term in (5-3-8) represents the phase
contribution due to the most recent symbol J/,. Hence, the state of the CPM
signal (or the modulator) at time r=nT may be expressed as the combined
phase state and correlative state, denoted as

Si = {0,, Laaa I,-2 ses L-wsat (5-3-9)

for a partial response signal pulse of length LT, where L > 1. In this case, the
numberofstates is

N, = (em (even m) (5-3-10)2pM‘~! {oddm)
when # = m/p.

Now, suppose the state of the modulator at ¢= nTis S,. The effect of the
new symbol in the time interval nT <t<(n + 1)T is to change the state from
5S, to 5,4; Hence, at ¢ = (n + 1)T, the state becomes

Sasi = (@n+1) qs Tae se T,-2+2)
where

Oni = en + Th, — i+)

Example 5-3-1

Consider a binary CPM scheme with a modulation index h = 3/4 and a
partial response pulse with L = 2. Let us determinethestates 5, of the CPM
scheme and sketch the phase tree andstate trellis.

First, we note that there are 2p = 8 phasestates, namely,

©, = {0, +4, +42, +30, x}

For each of these phase states, there are two states that result from the
memory of the CPM scheme. Hence, the total numberof states is N, = 16,
namely,

(9, 1), (0, -1), (z, 1), (x, -1), (iz, 1), (4x, —1), (2, 1), (3a, -1),

(iz, 1), (32, ~1), (—4x, 1), (-44, ~1), (—}2, 1), (—42, -1),

(-in, 1), (—ix, -1)
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(0,.4,-1) (8,4. 4,)
iO, 1) (0, 1}

 
(0, -1)

in)
be
is

(3-1)
an
ee)

oo
es)
be)
Qe)
Gs

with h = 3. (i=)

If the system is in phase state 6, = —4a and J,_, = -1 then .

By 41 = 8, + Thl,,-,

=-lx-in=-n1

The state trellis is illustrated in Fig. 5-3-1. A path through thestatetrellis
corresponding to the sequence (1, -1,~-1,—1,1,1) is illustrated in Fig.
5-3-2,

In order to sketch the phase tree, we must knowthe signal pulse shape
g(¢). Figure 5-3-3 illustrates the phase tree when g(‘) is a rectangular pulse
of duration 27, withinitial state (0,1).

Having established the state trellis representation of CPM, let us now
consider the metric computations performedin the Viterbi algorithm.

Metric Computations Hy referring back to the mathematical development
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FIGURE5-3-4=Computation of metric increments
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for the derivation of the maximum likelihood demodulator given in Section
5-1-4, it is easy to show that the logarithm of the probability of the observed
signal r(t} conditioned on a particular sequence of transmitted symbols & is
proportional to the cross-correlation metric

(a+r

CM,(1) = | r(t) cos [wt + A(t; 1] de—«

(at

= CM, _,(I) + | r(t) cos [w.t + 6:1) + @,}dt  (5-3-11)av -

The term CM,,_,(I) represents the metrics for the surviving sequences up to
time n7, and the term

(ntlyT

v, (I 8) = r(t) cos {wt + O(t; 1) + 6,] dt (5-3-12)at

represents the additonal increments to the metrics contributed by the signal in
the time interval nT <t<(m +1)T. Note that there are M* possible sequences
1=(f,,1,-1,.--,4,-2+1) of symbols and p (or 2p) possible phase states {6,}.
Therefore, there are pM‘ (or 2pM‘)differentvaluesofv,(I, 8,), computed in
each signal interval, and each value is used to increment the metrics
corresponding to the pM*‘~' surviving sequences from the previous signaling
interval. A general block diagram thatillustrates the computationsof v,(I: 6,)
for the Viterbi decoder is shown in Fig. 5-3-4.

Note that the number of surviving sequences at each state of the Viterbi
decoding process is pM*~' (or 2pM*~'). For each surviving sequence, we have
M newincrementsofv,,(I; ©,) that are added to the existing metrics to yield
pM*(or 2pM") sequences with pM“ (or 2pM‘)metrics. However, this number
is then reduced back to pM‘~' (or 2pM‘~') survivors with corresponding
metrics by selecting the most probable sequence of the M sequences merging
at each node ofthetrellis and discarding the other M — 1 sequences.

 
 

 

 en dt

To Viterbi

rity decoder generator

Bur. 1) +6, 
 
 

eee
{ hdr' 

s  vu,(E 4,,).
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5-3-2 Performance of CPM Signals
in evaluating the performance of CPM signals achieved with MLSE, we must
determine the minimum euclidean distance of paths through the trellis that
Separate at the node at ¢=0 and re-emerge at a later time at the same node.
The distance between two paths through the trellis is related to the
corresponding signals as we now demonstrate.

Suppose that we have two signals s,(1) and s,(¢) corresponding to two phase
trajectories M(t: 1,) and (1, 1,). The sequences I; and I; must be different in
their first symbol. Then, the euclidean distance between the twosignals over an
interval of length NJ, where 1/T is the symbol rate, is defined as

NT

dj, = [ (site) ~ s,(¢)P ad
NT NT

= [ S21) dt + vs7(t) dt -2 l Si{t)5,(t) dt0

I¢ NT

=2NE-2 =f cos [wt + O(t: 1,)) cos |w,1 + P(t: 1,)] dr
26 /*F=2NE- = [ cos [P(t 1) — H(t; 1,)) at

5 NT

=F [= cos totes) — atesdypae (53-13)
Hence the euclidean distance is related to the phase difference between the

paths inthe state trellis according to (5-3-“13).
{t is desirable to express the distance dj, in terms of the bit energy. Since

€ = &, log, M,(5-3-13) may be expressed as

dj,= 26,82 (5-3-14)
where 6] is defined as

163-8emf{1 ~ cos [(0:1,) — b(t: 1))} de (5-3-15)

ar we observe that $(¢:1,)~ d(¢;1)) = (t;,-1,), so that, with€ =I, —1,, (5-3-15) may be written as

1 M NT5-Be | {1 ~cos f(r; €)] dr (5-3-16)
where any element of & can take the values 0, +2, +4, +...+2(M — 1),
except that & #0.
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The error rate performance for CPM is dominated by the term correspond-
ing to the minimum euclidean distance, and tt may be expressed as

ip 52 | (5-3-17)P, = Ks,,,0| VAN, OriniF
f

where

Boia = lim min 8;,a

lop, M fX?= lim min {8| [1 — cos b(1:1, —1)] ar| (5-3-18)wvNor Hy

We note that for conventional binary PSK with no memory. N =1 and
Sian = 5] = 2. Hence, (5-3-17) agrees with our previous result.

Since 8;,,, characterizes the performance of CPM with MLSE. we can
investigate the effect on 8,,,, resulting from varying the alphabet size M, the
modulation index #, and the length of the transmitted pulse in partial response
CPM.

First, we consider full response (L=1} CPM. If we take W=2 as a
beginning. we note that the sequences

L= +1, ~dahs, fy
5-3-19)L=-lt+lid (

which differ for kK =0, 1 and agree for k = 2, result in two phase trajectories
that merge after the second symbol. This corresponds to the difference
sequence

£ = {2.-2,0.0,...} (5-3-20)

The euclidean distance for this sequence is easily calculated from (5-3-16), and
provides an upper bound on 4;,\,. This upper bound for M =2is

dh) = 2( sa M=2 (5-3-21)
For example, where /i = 3, which corresponds to MSK, we have d3(4) = 2, so
that 5:,,(4) = 2.

For M>2 and tull response CPM, it is also easily seen that phase
trajectories merge at ¢= 27. Hence, an upper bound on 6;,,, can be obtained
by considering the phase difference sequence —={a, —a@,0,0,...} where
a@=+2,44,...,42(M— 1). This sequence yields the upper bound

: i sin 2knh
= = i 5 =o §-3-39ah) eho , {2 log: my 2kah )| (3-22)
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FIGURE5-3-5 The upper bound dj, as a function of the modulation
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index é for full response CPM with rectangular pulses.
[From Aulin and Sundberg (1984), © 1984, John Wiley ) 0) 020104050607 08 DS TU
Lid. Reprinied with permission of the publisher.] h

 
The graphsof d3(h) versus h for M = 2, 4, 8, 16 are shownin Fig. 5-3-5. It is

apparent from these graphsthat large gains in performance can be achieved by
increasing the alphabet size M. It must be remembered, however, that
Sinin(h) <d%(h). That is, the upper bound may not be achievable for all
values of h.

The minimum euclidean distance 82,,(4) has been determined, by evaluat-
ing (5-3-16), for a variety of CPM signals by Aulin and Sundberg (1981). For
example, Fig. 5-3-6 illustrates the dependence of the euclidean distance for
binary CPFSK as a function of the modulation index A, with the number N of

hl

Squared minimum euclidean distance as a function of the
modulation index for binary CPFSK. The upper
boundis @. (From Auiin and Sundberg (1981).
© 1981 1EEE.}.
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bit observation (decision) intervals (N = 1, 2,3, 4) as a parameter, Also shown
is the upper bound d3,(h) given by (5-3-21). In particular, we note that when
h=4, 52,,(4)=2, which is the same squared distance as PSK (binary or
quaternary) with N = 1. On the other hand, the required observation interval
for MSK is N=2 intervals, for which we have 62,,(4)=2. Hence, the
performance of MSK with MLSEis comparable to (binary or quaternary) PSK
as we have previously observed.

Wealso note from Fig. 5-3-6 that the optimum modulation index for binary
CPFSK is A=0.715 when the observation interval is N= 3. This yields
Sinin(0.715) = 2.43, or a gain of 0.85 dB relative to MSK.

Figure 5-3-7 illustrates the euclidean distance as a function of A for
M =4CPFSK,with the length of the observation interval N as a parameter.
Also shown (as a dashed line where it is not reached) is the upper bound di
evaluated from (5-3-22). Note that 52, achieves the upper bound for several
values of h for some N. In particular, note that the maximum value of d3,
which occurs at  ~ 0.9, is approximately reached for N =8 observed symbol
intervals, The true maximum is achieved at A = 0.914 with N = 9. For this case,
Siun(0.914) = 4.2, which represents a 3.2 dB gain over MSK. Also note that the
euclidean distance contains minima at # = 4, 4, 4, 1, etc. These values of A are
called weak modulation indices and should be avoided, Similar results are

available for larger values of M, and may be found in the paper by Aulin and
Sundberg (1981) and the text by Anderson er al. (1986).

tn)

Squared minimum euclidean distance as a function of
the modulation index for quaternary CPFSK.
The upper hound is dj. [Fron Aulin and Sundberg
(1981). © 1981 ERE.
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FIGURE §38 Upper bound d3, on the minimum distance for
partial response (raised cosine pulse) binary CPM.
[From Sundberg (1986). © 1986 IEEE.}

 
Large performance gains can also be achieved with MLSE of CPM byusing

partial response signals. For example, the distance bound d3(h) for partial
response,raised cosine pulses given by

1 2at

a(t) = al ~ cos=.) (O<r=LT)
0 (otherwise}

(5-3-23)

is shown in Fig. 5-3-8 for M=2. Here, note that, as L increases, d2, also
achieves higher values. Clearly, the performance of CPM improves as the
correlative memory L increases, but A must also be increased in order to
achieve the larger values of d%. Since a larger modulation index implies a
larger bandwidth (for fixed L), while a larger memorylength L (for fixed A)
implies a smaller bandwidth,it is better to compare the euclidean distance as a
function of the normalized bandwidth 2WT,, where W is the 99% power
bandwidth and 7, is the bit interval. Figure 5-3-9 illustrates this type of
comparison with MSK used as a point of reference (0dB). Note from this
figure that there are several decibels to be gained by using partial response
signals and higher signaling alphabets. The major price to be paid for this
performance gain is the added exponentially increasing complexity in the
implementation of the Viterbi decoder.

The performance results shown in Fig. 5-3-9 illustrate that 3-4 dB gain
relative to MSK can be easily obtained with relatively no increase in bandwidth
by the use of raised cosine partial response CPM and M = 4, Although these
results are for raised cosine signal pulses, similar gains can be achieved with
other partial response pulse shapes. We ‘emphasize that this gain in SNR is
achieved by introducing memory into the signal modulation and exploiting the
memory in the demodulation of the signal. No redundancy through coding has
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Power bandwidth tradeoff for partial response CPM
signals with raised cosine pulses. W is the 99 :
percent in-band power bandwidth. [Fron Sundberg -3
(1986). © 1986 IEEE.)

 

 
been introduced. In effect, the code has been built into the modulation and the
trellis-type (Viterbi) decoding exploits the phase constraints in the CPM signal.

Additional gains in performance can be achieved by introducing additional
redundancy through coding and increasing the alphabet size as a means of
maintaining a fixed bandwidth. In particular, trellis-coded CPM using relatively
simple convolution codes has been thoroughly investigated and many results
are available in the technicalliterature. The Viterbi decoder for the convolu-
tionally encoded CPM signal now exploits the memory inherent in the code
and in the CPM signal. Performance gains of the order of 4-6 dB,relative to
uncoded MSK with the same bandwidth, have been demonstrated by combin-
ing convolutional coding with CPM. Extensive numerical results for coded
CPM are given by Lindell (1985).

Multi-h CPM=Byvarying the modulation index from onesignaling interval
to another, it is possible to increase the minimum euclidean distance 62,
between pairs of phase trajectories and, thus, improve the performance gain
over constant-h CPM. Usually, multi-h CPM employs a fixed number H of
modulation indices that are varied cyclically in successive signaling intervals.
Thus, the phase of the signal varies piecewiselinearly.

Significant gains in SNR are achievable by using only a small number of
different values of A. For example, with full response (L = 1) CPM and H = 2,
it is possible to obtain a gain of 3 dB relative to binary or quaternary PSK. By
increasing H to H =4, a gain of 4.5dB. relative to PSK can be obtained. The
performance gain can also be increased with an increase in the signal alphabet.
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Table 5-3-1 lists the performance gains achieved with M=2,4, and 8 for
several values of H. The upper bounds on the minimum euclidean distance ate
also shown in Fig. 5-3-10 for several values of M and H. Note that the major
gain in performance is obtained when # is increased from H = 1 to H = 2. For
H> 2, the additional gain is relatively small for small values of {4,}. On the
other hand, significant performance gains are achieved by increasing the
alphabet size M.

The results shown above hold for full response CPM. One can also extend
the use of multi-h CPM to partial response in an attempt to further improve
performance. [t is anticipated that such schemes will yield some additional
performance gains, but numericat results on partial response, multi-h CPM are
limited. The interested reader is referred to the paper by Aulin and Sundberg
{1982b).

Multiamplitude CPM Multiamplitude CPM (MACPM) is basically a
combined amplitude and phase digital modulation scheme that allows us to
increase the signaling alphabet relative to CPM in another dimension and,
thus, to achieve higher data rates on a band-limited channel. Simultaneously,
the combination of multiple amplitude in conjunction with CPM results in a
bandwidth-efficient modulation technique.

Wehave already observed the spectral characteristics of MACPM in Section
4-3. The performance characteristics of MACPM have been investigated by
Mulligan (1988) for both uncoded andtrellis-coded CPM. Ofparticular interest
is the result that trellis-coded CPM with two amplitude levels achieves a gain
of 3-4 dBrelative to MSK without a significant increase in the signal bandwidth.

5-3-3 Symbol-by-Symbol Detection of CPM Signals
Besides the ML sequence detector, there are other types of detectors that can
be used to recover the information sequence in a CPMsignal. In this section,
we consider symbol-by-symbol detectors. One type of symbol-by-symbol
detector is the one described in Section 5-1-5, which exploits the memory of
CPM by performing matched filtering or cross-correlation over several
signaling intervals. Because of its computational complexity, however, this
recursive algorithm has not been directly applied to the detection of CPM.
Instead, two similar, albeit suboptimal, symbol-by-symboi detection methods
have been described in the papers by deBuda (1972), Osborne and Luntz
(1974), and Schonhoff (1976). One of these is functionally equivalent to the
algorithm given in Section 5-1-5, and the second is a suboptimum approxima-
tion of the first. We shall describe these two methods in the context of
demodulation of CPFSK signals, for which these detection algorithms have
been applied directly.

To describe these methods, we assume thatthe signal is observed over the
present signaling interval and D signaling intervals into the future in deciding
on the information symbol transmitted in the present signaling interval. A
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FIGURE5-3-10
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MAXIMUM VALUES OF THE UPPER BOUND di, FOR MULTI-A LINEAR

 

dB gain
compared
with MSK Az 

PHASE CPM?

M H-  Maxd,

2 1 2.43
2 2 4.0
2 3 4.88
2 4 5.69
4 I 4.23
4 2 6.54
4 3 7.65
8 1 6.14
8 2 7.50
8 3 8.40

0.85
3.0
3.87
4.54
3.25
5.15
5.83
4.87
5.74
6.23

“From Aulin and Sundberg (19826).

Upper bounds on minimum squared
euclidean distance for various M and

H values, [From Aulin and Sundberg
(1982b). © 1982 IEEE.
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0.715
0.5
0.620
0.73
0.914
0.772
0.795
0.964
0.883
0.879

0.5
0.686
0.55

0.772
0.795

0.883
0.879

  

hy A, i

0.715
0.5

0.714 0.673
0.73 0,55 0,64

0,914
0.772

0.795 0.795
0.964
0.883

0.879 0.879

Bound peak
M=8,H=3

Bound peak
M=4,H=3% 5

Bound peak
M=8,H=2

M=8,H=2
.

=4, Bound peak
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*
Bound peak
M=2,H=4
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sin fy=-iMdye MfLMT

uf

Block diagram of demodulator for detection of CPFSK.

block diagram of the demodulator, implemented as a bank of cross-correlators,
is shown in Fig, 5-3-11. Recall that the transmitted CPFSK signal during the
nth signaling intervalis

s(t) = Re [v(ne?*]
where

an menn ffMEA=84+
h =2f,T is the modulation index, f, is the peak frequency deviation, and ¢p is
the initial phase angle of the carrier.

in detecting the symbol /,, the cross-correlations shown in Fig. 5-3-11 are
performed with the referencesignals s(t, i. b,..., hp) for all M°*' possible
values of the symbols i, ,...,/,.5 transmitted over the D +1 signaling
intervals. But these correlations in effect generate the variables r,, r,...,1r, <p,
which in turn are the arguments of the exponentials that occur in the pdf

p(n, 2, Pes naol|h, b,. oe rhisp)

Finally, the summations over the M” possible values of the symbols
,h,..., hip represent the averaging of

PU. one Neolh, i, sey Lisp)Ph, b, haey disp)
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over the M” possible values of these symbols. The M outputs of the
demodulator constitute the decision variables from which the largest is selected
to form the demodulated symbo!. Consequently the metrics generated by the
demodulator shown in Fig. 5-3-11 are equivalent to the decision variables given
by (5-1-68) on which the decision on /, is based.

Signals received in subsequent signaling intervals are demodulated in the
same manner. That is, the demodulator cross-correlates the signal received
over D +1 signaling intervals with the M°?*' possible transmitted signals and
forms the decision variables as illustrated in Fig. $-3-11. Thus the decision
made on the mth signaling interval is based on the cross-correlations
performed over the signaling intervals m,m+1,...,m + D. The initial phase
in the correlation interval of duration (D + t)T is assumed to be known. On
the other hand, the algorithm described by (5-1-76} and (5-1-77) involves an
additional averaging operation over the previously detected symbols. In this
respect, the demodulator shown in Fig, 5-3-11 differs from the recursive
algorithm described above. However, the difference is insignificant.

One suboptimum demodulation method that performs almost as well as the
optimum method embodied in Fig. 5-3-1 bases its decision on the largest
output from the bank of M°*! cross-correlators. Thus the exponential
functions and the summations are eliminated. But this method is equivalent
to selecting the symbol Z,, for which the probability density function
Pliny tmoie ee timed | baedmatr.-->bnep) is a maximum,

The performance of the detector shown in Fig, 5-3-11 has been upper-
bounded and evaluated numerically. Figure 5-3-12 illustrates the performance
of binary CPFSK with n=D+1 as a parameter. The modulation index
h = 0.715 used in generating these results minimizes the probability of error as

MH Orthogonal FSK —PAN neha e0s < NSE io:

3

3
&

0 2 4 6 8 0 12 14
FIGURE 5-3-12 Performance of binary CPFSK with coherent detection. SNR perbit, }, (dB)
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FIGURE §-313=Performance of quaternary CPFSK with coherent detection. SNRperbit, }, (dB)

shown by Schonhoff (1976). We note that an improvement of about 2.5 dB is
obtained relative to orthogonal FSK (n =1) by a demodulator that cross-
correlates over two symbols. An additional gain of approximately 1.5 dB is
obtained by extending the correlation time to three symbols. Further extension
of the correlation timeresults in a relatively small additional gain.

Similar results are obtained with larger alphabet sizes. For example, Figs
5-3-13 and 5-3-14 illustrate the performance improvements for quaternary and

Probabilityofasymbolerror,P, 
‘Oo 2 4 6 € 1 (2 14

FIGURE5-3-14 Performance of octal CPFSK with coherent detection. SNRperbit, y, (dB)
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octal CPFSK, respectively. The modulation indices given in these graphs are
the ones that minimize the probability of a symbol error.

Instead of performing coherent detection, which requires knowledge of the
cartier phase dp, we may assume that po is uniformly distributed over the
interval 0 to 2”, and average over it in arriving at the decision variables. Thus
coherent integration (cross-correlation) is performed over the n=D +1
signaling intervals, but the outputs of the correlators are envelope-detected.
This is called noncoherent detection of CPFSK. In this detection scheme,

performance bs optimized by selecting n to be odd and making the decision on
the middle symbol in the sequence of n symbols. The numerical results on the
probability of error for noncoherent detection of CPFSK are similar to the
results illustrated above for coherent detection. That is, a gain of 2-3dB in
performance is achieved by increasing the correlation interval from a= 1 to
n=Jand ton =4,

5-4 OPTIMUM RECEIVER FOR SIGNALS WITH
RANDOM PHASE IN AWGN CHANNEL

In this section, we consider the design of the optimum receiver for carrier
modulated signals when the carrier phase is unknownat the receiver and no
attempt is made to estimate its value. Uncertainty in the carrier phase of the
received signal may be due to one or more of the following reasons: First, the
oscillators that are used at the transmitter and the receiver to generate
the carrier signals are generally not phase synchronous. Second, the time delay
in the propagation of the signal from the transmitter to the receiver is not
generally known precisely. To elaborate on this point, a transmitted signal of
the form

s(t) = Re [g(ne?™"']

that propagates through a channelwith delay ft,will be received as

S(t ~ t) = Re [g(t ~ te?0")

= Re [g(t — tye Pe?"

The carrier phase shift due to the propagation delay ft,is

b = ~2Nflo

Note that large changes in the carrier phase @ can occur due 1o relatively small
changes in the propagation delay. For example, if the carrier frequency
f. = 1 MHz, an uncertainty or a change in the propagation delay of 0.5 ys will
cause a phase uncertainity of 2 rad. In some channels (e.g., radio channels) the
time delay in the propagation of the signal from the transmitter to the receiver
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may change rapidly and in an apparently random manner,so that the carrier
phaseof the received signal varies in an apparently random fashion.

In the absence of knowledge of the carrier phase, we may treat this signal
parameter as a random variable and determine the form of the optimum
receiver for recovering the transmitted information from the received signal.
First, we treat the case of binary signals and, then, we consider M-ary signals.

5-4-1 Optimum Receiver for Binary Signals

We consider a binary communication system that uses the two carrier
modulated signals s,(¢) and s2(f) to transmit the information, where

Snlt)= Re [Sine], m=1,2, O<¢<T (5-4-1)

and 5;,(¢), mt =1,2 are the equivalent lowpass signals. The two signals are
assumed to have equal energy

T ] Tre= { s2,(t) dt == [ Sim ()|7 dt (5-4-2)0 2 Jo

and are characterized by the complex-valued correlation coefficient

1 Trpo=e=Z sisalde (5-43)0

The received signal is assumed to be a phase-shifted version of the
transmitted signa) and corrupted by the additive noise

n(t) = Re {[n.(t) + jn,(je?™}

= Re [z (t)e!?2™} (5-4-4)

Hence, the received signal may be expressed as

r{t) = Re {[Sin(ie’* + z(1)]e?™"} (5-4-5)
where

Ht) = Sig (DE? + 2(2), OSt<T (5-4-6)

is the equivalent lowpass received signal. This received signal is now passed
through a demodulator whose sampled output at t=Tis passed to the
detector.

The Optimum Demodulator In Section 5-1-1, we demonstrated thatif the
received signal was correlated with a set of orthonormal functions {f.(t)} that
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spanned the signal space, the outputs from the bank of correlators provide a
set of sufficientstatistics for the detector to make a decision that minimizes the

probability of error. We also demonstrated that a bank of matched filters could
be substituted for the bank of correlators.

A similar orthonormal decomposition can also be employed for a received
signal with an unknown carrier phase. However, it is mathematically con-
venient to deal with the equivalent lowpass signal and to specify the signal
correlators or matched filters in terms of the equivalent lowpass signal
waveforms.

To be specific, the impulse response h,(r) of a filter that is matched to the
complex-valued equivalent lowpass signal st), O<:t<T, is given as (see
Problem 5-6)

Aj{t) =s(T - 1) (5-4-7)

and the output of such a filter at: = Tis simply
T

[ s(t)? dt =28 (5-4-8)0

where @ is the signal energy. A similar result is obtained if the signal s,(r) is
correlated with sf(r) and the correlator is sampled at t= 7. Therefore, the
optimum demodulator for the equivalent lowpass received signal s,(¢) given in
(5-4-6) may be realized by two matchedfilters in parallel, one matchedto s,,(1)
and the other to s,(t), and shown in Fig. 5-4-1. The output of the matched
filters or correlators at the sampling instant are the two complex numbers

Pan F Fnac + hinss m= l, 2 (5-4-9)

Suppose that the transmitted signal is s(t). Then, it is easily shown (see
Problem 5-35) that

r= 2€cosd +n, + j(2@sin bd +7,,) (5-4-10)
r= 2€ |p} cos(h + a) + Ma. + j[2E |p} sin (db + a) + 2,]
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where p is the complex-valued correlation coefficient of the two signals s,,(1)
and s(t), which may be expressed as p = |p! exp{ao). The random noise
variables ,., My,, M2-, and 2, are jointly gaussian, with zero mean and equal
variance.

The Optimum Detector The optimum detector observes the random
variables [rie fis fee fx] =1, Where =n. + jr, and m=, + jms, and bases its
decision on the posterior probabilities P(s,, |r), 7 = 1,2. These probabilities
may be expressed as

PAV|Sm)P(Sm)
pr)

and, hence, the optimum decision rule may be expressed as

P(Sm |r) = =1,2 (5-4-11)

P(s, |r) 2 P(s> | £)
or, equivalently,

p(r | s,) 2: Pls.) .
p(r|s2) = P(s,) (5-4-12)

The ratio of pdfs on the left-hand side of (5-4-12) is the likelihood ratio, which
we denote as

(r| s:)Ar) =2. .(r) p(t|s:) (5-4-13)
The right-handside of (5-4-12) is the ratio of the two prior probabilities, which
takes the value of unity when the twosignals are equally probable.

The probability density functions p(r|s,) and p(r|s:) can be obtained by
averaging the pdfs p(r|s,,, @) over the pdf of the random carrier phase,i.,

p(e|sm)= [POL sm 6)0(6)dd (5-414)
Weshall perform theintegration indicated in (5-4-14) for the special case in

which the two signals are orthogonal,i.e., p = 0. In this case, the outputs of the
demodulator are .

ry = Ke + Ins

=2€cosh +a). + j(2ésind +14)
; (5-4-15)

Py = Pye + Jia,

= Aa. + ino,
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where (#1)... T),.@2-,,) aré mutually uncorrelated and, hence, statistically
independent, zero-mean gaussian random variables (see Problem 5-25). Hence,
the joint pdf of r=[r,.. 4, 7. m} may be expressed as a product of the
marginal pdfs. Consequently,

  48 2 _ 60: >

P(r: ri |S.) = [ 2€ cos #) +(is 2ésin d)no? 207 5-4-16)
__ | ( ry +o) O-4-1 Pre. Pr) ~ no exp Io?

where a~ = 2€N,.
The uniform pdf for the carrier phase ¢@ represents the most ignorance that

can be exhibited by the detector. This is called the least favorable pdf for ¢.
With p(@) = 1/22. 0< <2z, substituted into the integral in (5-4-14), we
obtain

| aal PUPKis | $1. ¢) dod

_1 (- Net ligt 4é + | [7 cos ¢@ +17, sin |On exp Io? )x= exp ov dé (5-4-17)
But

2K ‘

i exp |ecos ot r.sin d) (5-4-18)28 Sy oe Jaf2H)
where {,(x) is the modified Bessel function of zeroth order, defined in
(2-1-120).

By performing a similar integration as in (5-4-17) under the assumption that
the signal s,(r) was transmitted, we obtain the result

(5-4-19)
Pet et 4) (2€VA+7,Se)2e o

1

PF. Fy | 82)= an XP ( ~
When, we substitute these results into the likelihood ratio given by (5-4-13),

we obtain the result

Aw) = I(2€Vr}.+ ri,/o°) 2 P(s2)
1(2é v 2 + r3,/07) * P(s,)

Thus, the optimum detector computes the two envelopes Vro+r, and
Vio+r, and the corresponding values of the Bessel function
Al2EVri. + rida?) and i(2Vr3, + r3,/e7) to form the tikelihood ratio. We
observe that this computation requires knowledge of the noise variance a”.

(5-4-20)
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The likelihood ratio ig then compared with the threshold P(s2)/P(s,) to
determine which signal was transmitted.

A significant simplification in the implementation of the optimum detector
occurs when the two signals are equally probable. In such a case the threshold
becomes unity, and, due to the monotonicity of the Bessel function shown in
Fig. 5-4-2, the optimum detection rule simplifies ta

Vit, 2 VA (5-4-21)

Thus, the optimum detector bases its decision on the two envelopes Vric +73,and Vr3, + r3,, and, hence, it is called an envelope detector.
We observe that the computation of the envelopes of the received signal

samples at the output of the demodulator renders the carrier phase irrelevant

in the decision as to which signal was transmitted. Equivalently, the decision
may be based on the computation of the squared envelopes rj.+rj, and. + 3,, in which case the detector is called a sguare-law detector.
“Binary FSKsignals are an example of binary orthogonalsignals. Recall that

in binary FSK we employ two different frequencies, say fj and £ =f, + Af, to
transmit a binary information sequence. The choice of minimum frequency
separation Af = f, — f, is considered below. Thus, the signal waveforms may be
expressed as

s(t) = V2,/T, cos 27f,t, 0O<'s T,

5,(t) = V2%,/T, cos2aft, O<t<T, (0-422)
and their equivalent lowpass counterparts are

s(t) = V2&/Tp, 0<s;r<T,

S(t) = V2E,/Tye". Ot <T, (54-23)
The received signal may be expressed as

r)y= /*COS (2Rft + hin) + n(t) (5-4-24)
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FIGURE5-4-3) =Demodulation and square-law detection of binary FSK signals.

where @,, is the phase of the carrier frequency f,,,. The demodulation of the
real signal r({!) may be accomplished, as shown in Fig. 5-4-3, by using four
correlators with the basis functions

fim(t) = Zoos [(2af, + 2mm Aft}=a = 0, |
. (5-4-25)

2fam(t) = Vz sin [(2af, + 2am Aft], m=0,1b

The four outputs of the correlators are sampled at the end of each signal
interval and passed to the detector. If the mth signal is transmitted, the four
samples at the detector may be expressed as

= [sin [2a(k —m) Af T]= VE [eeFee b 2n(k —m)AfT cos @,,,

2a(k —m) AFT SIN by|+ Mae, Ke 1.2
(5-4-26)

2n(k —m) AfT - 1-V¥%, [eeeaTTes &, 2a(k —m) Af cos ¢,,
sin [2a(k —m) AFT].-ote e _

2a(k —m)AfT sin On + Ny, k,m 1,2
where n,, and m,, denote the gaussian noise components in the sampled
outputs.
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We observe that when k = #7, the sampled values to the detector are

Ime =VGy COS $y, + Mine

Pins = VE SiN Bin + Ping

Furthermore, we observe that when km, the signal components in the
samples 7,. and r,, will vanish, independently of the values of the phase shifts
¢,, provided that the frequency separation between successive frequencies is
Af =1/T. In such a case, the other two correlator outputs consist of noise
only, ie.,

(5-4-27)

Fee = WMkes Ves = Mg, =k EM (5-4-28)

With a frequency separation of Af =1/T, the relations (5-4-27) and (5-4-28)
are consistent with the previous result (5-4-15) for the demodulator outputs.
Therefore, we conclude that for envelope or square-law detection of FSK
signals, the minimum frequency separation required for orthogonality of the
signals is Af = 1/T. This separation is twice as large as that required when the
detection is phase-coherent.

5-4-2 Optimum Receiver for M-ary Orthogonal Signals
The generalization of the optimum demodulator and detector to the case of
M-ary orthogonalsignals is straightforward. If the equal energy and equally
probable signa! waveformsare represented as

Sm(t)= Re [Sim(e?™"], m=1,2,...,M, O<¢=T (5-4-29)
where s,,{t) are the equivalent lowpass signals, the optimum correlation-type
or matched-filter-type demodulator produces the M complex-valued random
variables

T

Im = Time + jlins -| r(t)sth(t)dt, m=1,2,...,M (5-430)0

where r,(t) is the equivalent lowpass received signal. Then, the optimum
detector, based on a random,uniformly distributed carrier phase, computes the
M envelopes

tml =VWrct Pa, m=i,2,...,M (5-4-31)
or, equivalently, the squared envelopes|r,,|?, and selects the signal with the
largest envelope (or squared envelope).

In the special case of M-ary orthogonal FSK signals, the optimum receiver
has the structure illustrated in Fig. 5-4-4. There are 2M correlators: two for
each possible transmitted frequency. The minimum frequency separation

' between adjacent frequencies to maintain orthogonality is Af = 1/T.

5-4-3 Probability of Error for Envelope Detection of M-ary
Orthogonal Signals

Let us consider the transmission of M-ary orthogonal equal energy signals over
an AWGN channel, which are envelope-detected at the receiver. We also
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sin2ef+ af )4

FIGURE 5-4-4 Demodulation of M-ary FSK signals for noncoherent detection.

assume that the M signals are equally probable a priori and that the signals,(r)
is transmitted in the signal interval 0<7< T.

The M decision metrics at the detector are the M envelopes

l= Wrme t+ ms, m=1,2,...,M (5-4-32)
where

ne = V€, cos dy, + Mie
. {5-4-33)

ry = Vé,sin $+ m1,
and

Fine = Ame» Fins = Ams m= 2, 3, orote M (5-4-34)

The additive noise components {n,,,} and {n,,,} are mutually statistically
independent zero-mean gaussian variables with equal variance o7 = $N). Thus
the pdfs of the random variables at the input to the detector are

1 rie + ry + €, v BAric + ris)Pres ri) = one? exp (-Fe(| (5-4-35}
rae + r21 ( .tame: Fats} 7 a , = 2, pueee 5-4-3Pe(Fine> Fms) amo? XP 302 ) m 3 M ( 6)
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Let us make a change in variables in the joint pdfs given by (5-4-35) and
(5-4-36). We define the normalized variables

R= Vr +r,
a“ o

. (5-4-37)
@,, = tan! =f,mic

Clearly, r,.. = R,, cos 9,, and r,,, = o@R,, sin @,,. The Jacobian of this transfor-
mation is

  _| acos®,, a sin 9,, _ 2\Jj = 2R,, sin @,, =o°R,, (5-4-38)
Consequently,

> 28,p(Rs,y=exp|- 5 (Ri eo-")"Ye =oe*R) (5-4-39)
sta o0)= expi m=2,3,...,M (5-4-40)

Finally, by averaging p(R,,, 0,,) over ©,,, the factor of 27 is eliminated from
(S5-4-39) and (5-4-40). Thus, we find that R, has a Rice probability distribution
and R,,, m =2,3,...,M, are each Rayleigh-distributed.

The probability of a correct decision is simply the probability that R, > R,,
and R,>R;,..., and R, > R,,. Hence,

P.= P(R2< Ry, Ra< R,,.. . > Ra < Ry)

=| PUR < Ry, RVR... Ru SR[Ri=x)palede (5-441)0

Because the random variables R,,, m =2,3,...,M, are statistically iid, the
joint probability in (5-4-41) conditioned on R, factors into a product of M — 1
identical terms. Thus,

= | PCR < Ri | R= 2))'paGe) dx (5-4-42)
where

P(R, <R, | R, =x) = [ Pr,(2) dr,0

=1-¢°* (5-4-43)

The (M — 1)th power of (5-4-43) may be expressed as

aera SD ay(MNene (544-44)
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Substitution of this result into (5-4-42) and integration over x yields the
probability of a correct decision as

Po = > (- iy(™ hester TON
where €@,/N, is the SNR per symbol. Then, the probability of a symbo! error,
whichis Py, = 1 — P., becomes

“a! M-1 1 nké,
P= _yyrtt — Se 4.M - 2 (“) ( n n+.P (n+ LN, (5-4-46)

where 4,INis the SNR perbit.
For binary orthogonal signals (M = 2), (5-4-46) reduces to the simple form

Py = he “2% (5-4-47)

(5-4-45)

For M >2, we may compute the probability of a bit error by making use of
the relationship

ake t

2]

 

P,= Py, (5-4-48)

which was established in Section 5-2. Figure 5-4-5 shows the bit-error
probability as a function of the SNR per bit y, for 44 =2, 4, 8, 16, and 32. Just
as in the case of coherent detection of M-ary orthogonal signals (see Section
5-2-2), we observe that for any given bit-error probability, the SNR per bit
decreases as M increases. It will be shown in Chapter 7 that. in the limit as
M—~«x (or k =log, M— ~~), the probability of a bit error P, can be made

vest|
Probabilityofabiterror.2,

* Channeleanbelts
1 limit (-to& By 

Probability of a bit error tor noncoberent detection of mn
orthogonal signals. SNR peroripte

'Z
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arbitrarily small provided that the SNR per bit is greafer than the Shannon
limit of —1.6dB. The cost for increasing M isthe bandwidth required to
transmit the signals. For M-ary FSK, the frequency separation between
adjacent frequencies is Af =1/T for signal orthogonality. The bandwidth
required for the M signals is W = M Af = M/T. Also, the bit rate is R = k/T,
where &k = log, M. Therefore, the bit-rate-to-bandwidth ratio is

R _'og.M (5-4-49)
Ww M

§-4-4 Probability of Error for Envelope Detection
of Correlated Binary Signals

In this section, we consider the performance of the envelope detector for
binary, equal-energy correlated signals. When the two signals are correlated,
the input to the detector are the complex-valued random variables given by
(5-4-10). We assume that the detector bases its decision on the envelopes|r,|
and |r,|, which are correlated (statistically dependent). The marginal pdfs of
R, = |r| and R= |r| are Ricean distributed, and may be expressed as

 

R,, ( R2,+ Bn) (Extn)p(Rn) =428N,Pan,)\2eNn,) Rn >
0 (R,, <9)

(S-4-50)

m= 1,2, where 8, =2€ and 8;=2€|p|, based on the assumption that signal
s,(f) was transmitted.

Since R, and R, are statistically dependent as a consequence of the
nonorthogonality of the signals, the probability of error may be obtained by
evaluating the double integral

P, = P(R)> R,) = | [ por edde de, (5-4-51)
where p(x,, x2) is the joint pdf of the envelopes R, and R,. This approach was
first used by Helstrom (1955), who determined the joint pdf of R, and R, and
evaluated the double integral in (5-4-51).

Analternative approach is based on the observation that the probability of
error may also be expressed as

P, = P(R2 > R,) = P(R3> Ri) = P(R3 - R?>0) (5-4-52)

But R3— R? is a special case of a general quadratic form in complex-valued
gaussian random variables, treated later in Appendix B. For the special case
underconsideration, the derivation yields the error probability in the form

P, = Qila, b) - $e""4,(ab) (5-4-53)
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Probabilityofabiterror.P,, 
FIGURE 8-4-6=Probability of error for noncoherent

detection. SNR perbit. , IB)

where

a= (fhu-vine)
(S-4-54)

b= [Susvine
Q\(a, b) is the Q function defined in (2-1-123) and /,(x) is the modified Besselfunction of order zero.

The error probability P, is illustrated in Fig. 5-4-6 for several values of |p|.
P, is minimized whenp= 0; that is, when thé signals are orthogonal. For this
case, a= 0, b = V€,/Ny, and (5-4-53) reduces to

P,, = oo. <) = 3¢@ SON (5-4-55)a

From the definition of Q,(a, 5) in (2-1-123), it follows that

Sp — ~ Af2a,(0, nyea

 

Substitution of these relations into (5-4-55) yields the desired result given
previously in (5-4-47), On the other hand, when |p| = 1, the error probability in
(5-4-53) becomes P, = 5, as expected.

5-§ REGENERATIVE REPEATERS AND LINK
BUDGET ANALYSIS

In the transmission of digital signals through an AWGN channel, we have
observed that the performance of the communication system, measured in
terms of the probability of error, depends solely on the received SNR, €,/Np.
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Oorif) =as(r) + a(n
FIGURE 5-5-1 Mathematical model of channel] with attenuation Attenuation Noise

and additive noise. o nit

Trasmitted
signal
sir}    

where @,is the transmitted energy per bit and 4N, is the power spectral density
of the additive noise. Hence, the additive noise ultimately limits the
performance.of the communication system.

In addition to the additive noise, another factor that affects the performance
of a communication system is channel attenuation. All physical channels,
including wire lines and radio channels, are lossy. Hence, the signal is
attenuated as it travels through the channel. The simple mathematical model
for the attenuation shown in Fig. 5-5-1 may be used for the channel.
Consequently, if the transmitted signal is s(r),. the received signal, with
Q< a1 is

r(t) = as(t}+n(t) (5-5-1)

Then, if the energy in the transmitted signal is %,, the energy in the received
signal is a7&,. Consequently, the received signal has an SNR @*%,/No. Hence,
the effect of signal attenuation is to reduce the energy in the received signal
and thus to render the communication system more vulnerable to additive
noise.

In analog communication systems, amplifiers called repeaters are used to
periodically boost the signal strength in transmission through the channel.
However, each amplifier also boosts the noise in the system. In contrast, digital
communication systems allow us to detect and regenerate a clean (noise-free)
signal in a transmission channel. Such devices, called regenerative repeaters, are
frequently used in wireline and fiber optic communication channels.

5-5-1 Regenerative Repeaters

The front end of each regenerative repeater consists of a demodulator/detector
that demodulates and detects the transmitted digital information sequence sent
by the preceding repeater. Once detected, the sequence is passed to the
transmitter side of the repeater, which maps the sequence into signal
waveforms that are transmitted to the next repeater. This type of repeateris
called a regenerative repeater.

Since a noise-free signal is regenerated at each repeater, the additive noise
does not accumulate. However, when errors occur in the detector of a
repeater, the errors are propagated forward to the following repeaters inthe
channel. To evaluate the effect of errors on the performance of the overall
system, supposethat the modulation is binary PAM,so that the probability of

323



324

 

CHAPTER 3 CPTIMUM RECEIVERS FOR THE ADDTUINE WHITE GAUSSIAN NODS OC HEASAE | 315

a bit error for one hop (signal transmission from one repeater to the aext
repeater in the chain) is

ms
Since errors occur with low probability, we may ignore the probability that any
one bit will be detected incorrectly more than once in transmission through a
channel with K repeaters. Consequently, the number of errors will increase
linearly with the number of regenerative repeaters in the channel. and
therefore, the overall probability of error may be approximated as

P,~ Ko( V2)
In contrast, the use of K analog repeaters in the channel] reduces the received
SNR by K, and hence, the bit error probability is

P, ~9(2) (5-5-3)
Clearly, for the same probability of error performance. the use of regenerative
repeaters results in a significant saving in transmitter power compared with
analog repeaters. Hence, in digital communication systems. regenerative
Tepeaters are preferable. However, in wireline telephone channels that are
used to transmit both analog and digital signals. analog repeaters are generally
employed.

(5-5-2)

Example 5-5-1

A binary digital communication system transmits data over a wireline
channel of length 1000km. Repeaters are used every 10km to offset the
effect of channel attenuation. Let us determine the 4,/N,that is required to
achieve a probability of a bit error of 10° if (a) analog repeaters are
employed, and (b) regenerative repeaters are employed.

The number of repeaters used in the system is K = 100. If regenerative
repeaters are used, the 4,/N, obtained from (5-5-2) is

10 *=1000( *)No

10 7= Of “|o

whichyields approximately 11.3 dB. If analog repeaters are used, the &./ No
obtained from (5-5-3) is

2%,
1g 3s —o( Ves)

which vields @,/No ~ 29.6 dB. Hence, the difference in the required SNR is
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FIGURE5-5-2 _Isotropically radiating antenna. wee

about 18.3dB, or approximately 70 times the transmitter power of the
digital communication system.

5-5-2 Communication Link Budget Analysis

In the design of radio communications systems that transmit over line-of-sight
microwave channels andsatellite channels, the system designer must specify
the size of the transmit and receive antennas, the transmitted power, and the
SNR required to achieve a given level of performance at some desired data
rate. The system design procedureis relatively straightforward and is outlined
below.

Let us begin with a transmit antennathatradiates isotropically in free space
at a power level of P; watts as shown in Fig. 5-5-2. The power density at a
distance d from the antenna is P,/4ad? W/m’. If the transmitting antenna has
some directivity in a particular direction, the power density in that direction is
increased by a factor called the antenna gain and denoted by G;. In such.a
case, the power density at distance d is P;-G;/42d? W/m. The product P,G;is
usually called the effective radiated power (ERP or EIRP), which is basically
the radiated powerrelative to an isotropic antenna, for which G, = 1.

A receiving antenna pointed in the direction of the radiated powergathers a
portion of the powerthat is proportionalto its cross-sectional area. Hence, the
received power extracted by the antenna may be expressed as

_PrGrAr
Pa 4nd? (5-5-4)

where Ag is the effective area of the antenna. From electromagnetic field
theory, we obtain. the basic relationship between the gain Gg of an antenna and
its effective area as

_ Ged”2
4x

where A =c/fis the wavelength of the transmitted signal, c is the speed oflight
(3 x 10° m/s), and f is the frequency of the transmitted signal.

If we substitute (5-5-5) for Ag ihto (5-5-4), we obtain an expression for the
received power in the form

Ar (5-5-5)

_PrGrGr
R (4nd/Aye (5-5-6)
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The factor

A’ 2
=| — 5-5-7Le= (Fa) 550

is called the free-space path loss. lf other losses, such as atmospheric losses, are
encountered in the transmission of the signal, they may be accounted for by
introducing an additional loss factor, say L,. Therefore, the received power
may be written in general as

Pp = PrGrGeLl,L, (5-5-8)

Asindicated above, the important characteristics of an antenna are its gain
and its effective area. These generally depend on the wavelength of the
radiated power and the physical dimensions of the antenna. For example, a
parabolic (dish) antenna of diameter D has an effective area

Ag =inD?y (5-5-9)

where }xD° is the physical area and 7 is the illumination efficiency factor,
which falls in the range 0.5 < y <0.6. Hence, the antenna gain for a parabolic
antenna of diameter D is

nD\?*Ge= (=) (5-5-10)
As a second example, a horn antenna of physical area A has an efficiency
factor of 0.8, an effective area of Ag = 0.8A, and an antenna gain of

10A
Ge=— (5-5-11)

Another parameterthatts related to the gain (directivity) of an antenna is
its beamwidth, which we denote as @, and whichis illustrated graphically in
Fig. 5-5-3. Usually, the beamwidth is measured as the —3dB width of the

Antenna beamwidth and pattern.

 
 

Beamwidth 6, G;

 
Transminer _fi.os 9°

I 0 1
~7 Oy 3°

(a) Beamwidth of antenna (4) Antenna patie

326



327

 

318  oraitat COMMUNICATIONS

antennapattern. For example, the -3 dB beamwidth of a parabolic antennais
approximately

9, = 70(A/D)° (5-5-12)

so that G; is inversely proportional to @%. Thatis, a decrease of the beamwidth
by a factor of two, which is obtained by doubling the diameter D, increases the
antenna gain by a factor of four (6 dB).

Based on the general relationship for the received signal power given by
(5-5-8), the system designer can compute P, from a specification of the antenna
gains and the distance between the transmitter and the receiver. Such
computations are usually done on a powerbasis, so that

(Pras = (Pras + (Gras + (Gran + (Ls das + (Laan (5-5-13)

Example 5-5-2

Suppose that we havea satellite in geosynchronous orbit (36 000 km above
the earth’s surface) that radiates 100 W of power, i.e., 20dB above 1W
(20dBW). The transmit antenna has a gain of 17dB, so that the ERP =
37dBW, Also, suppose that the earth station employs a 3m_ parabolic
antenna and that the downlink is operating at a frequency of 4GHz. The
efficiency factor is y = 0.5. By substituting these numbers into (5-5-10), we
obtain the value of the antenna gain as 39 dB. The free-space pathlossis

L, = 195.6 dB

Noother losses are assumed. Therefore, the received signal poweris
(Pelag = 20+ 17+ 39+ 195.6

= -119.6dBW

or, equivalently,

Pr=1.1*10°" W

To complete the link budget computation, we miust also considerthe effect
of the additive noise at the receiver front end. Thermal noise thatarises at the
receiver front end has a relatively flat power density spectrum up to about
10’ Hz, and is given as

No = kg Ty W/Hz (5-5-14)

where kg is Boltzmann's constant (1.38 X 10°? Ws/K) and 7, is the noise
temperature in Kelvin. Therefore, the total noise power in the signal
bandwidth W is N,W.

The performance of the digital communications system is specified by the
,/No required to keep the error rate performance below some given value.
Since .

& _T.Pe_ 1 Pp
Ny No RNs (5-5-15)
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it follows that

Pr ( =»ER _ {© (5-5-16)
No No req

where (&,/No)req iS the required SNR per bit. Hence, if we have Py/No and the
required SNR per bit, we can determine the maximum data rate that is
possible.

Example 5-5-3

For the link considered in Example 5-5-2, the received signal poweris

Pp=1110°"W (-119.6dBW)

Now, suppose the receiver front end has a noise temperature of 300 K,
whichis typical for receiver in the 4 GHz range. Then

No = 4.1 * 1077! W/Haz

or, equivalently, ~ 203.9 dBW/Hz. Therefore.

Pr
NN” ~119.6 + 203.9 = 84.3 dB Hza

[f the required SNR per bit is 10dB then, from (5-5-16}, we have the
available rate as

Rag = 84.3 - 10

=74.3dB (with respect to 1 bit/s)

This corresponds to a rate of 26.9 megabits/s, which is equivalent to about
420 PCM channels, each operating at 64 000 bits/s.

It is a good idea to introduce some safety margin, which we shall call the
link margin Mg, in the above computations for the capacity of the com-
munication link. Typically, this may be selected as My, = 6 dB. Then, the link
budget computation for the link capacity may be expressed in the simple form

P, &

ea (22), (8) =m“e No dB He (N “eBreq

= (Pr)usw + (Gras + (Gras

4,
+ (Laan + (LE Qan — | — M, {5-5-17)aH dB (x). tb

BIBLIOGRAPHICAL NOTES AND REFERENCES

In the derivation of the optimum demodulator for a signal corrupted by
AWGN,we applied mathematical techniques that were originally used in
deriving optimum receiver structures for radar signals. For example. the
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matched filter was first proposed by North (1943) for use in radar detection,
and is sometimes called the North filter. An alternative method for deriving
the optimum demodulator and detector is the Karhunen-Loeve expansion,
which is described in the classical texts by Davenport and Root (1958),
Helstrom (1968), and Van Trees (1968). Its use in radar detection theory is
described in the paper by Kelly er af. (1960). These detection methods are
based on the hypothesis testing methods developed by statisticians, e.g.,
Neyman and Pearson (1933) and Wald (1947}.

The geometric approachto signal design and detection, which was presented
in the context of digital modulation and which has its roots in Shannon's
original work, is conceptually appealing and is now widely used since its
introduction in the text by Wozencraft andJacobs (1965).

Design and analysis of signal constellations for the AWGN channel have
received considerable attention in the technical literature. Of particular
Significance is the performance analysis of two-dimensional (QAM) signal
constellations that has been treated in the papers of Cahn (1960), Hancock and
Lucky (1960), Campopiano and Glazer (1962), Lucky and Hancock (1962),
Salz et af. (1971), Simon and Smith (1973), Thomaser af. (1974), and Foschini
et al. (1974). Signal design based on multidimensional signal constellations has
been described and analyzed in the paper by Gersho and Lawrence (1984).

The Viterbi algorithm was devised by Viterbi (1967) for the purpose of
decoding convolutional codes. Its use as the optimal maximum-likelihood
Sequence detection algorithm for signals with memory was described by Forney
(1972) and Omura (1971). Its use for carrier modulated signals was considered
by Ungerboeck (1974) and MacKenchnie (1973). It was subsequently applied
to the demodulation of CPM by Aulin and Sundberg (198ia, b) and others.

5-1 A matchedfilter has the frequency response

1-e7?

HU)=
a Determine the impulse response A(t) corresponding to H(f).
b Determinethe signal waveform to whichthefilter characteristic is matched.

§-2 Consider the signal

s(t) = {Arm cos2afr (0<=1<T)0 (otherwise)

@ Determine the impulse response of the matched filter for the signal.
b Determine the output of the matchedfilter at ¢ = T.
¢ Suppose the signal s(t) is passed through a correlator that correlates the input

s(t) with s(2). Determine the value of the correlator output at ¢ = 7. Compare
your result with thatin (b).
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§-3 This problem deals with the characteristics of a DPSK signal.
a Suppose we wish to transmit the data sequence

110100010110

by binary DPSK Let s(:)= A cos (2aft + @) represent the transmitted signal in
any signaling interval of duration 7. Give the phase of the transmitted signal for
the data sequence. Begin with @=0 for the phase of the first bit to be
transmitted.

b If the data sequence is uncorrelated, determine and sketch the power density
spectrum of the signal transmitted by DPSK.

5-4 A binary digital communication system employs the signals

s{f}=0, O=1=T

S{(Q=A, Ost<cT

for transmitting the information. Thisis called on-off signaling. The demodulator
cross-correlates the received signal r(¢} with s(t) and samples the output of the
‘correlatorat ¢ = T.

a Determine the optimum detector for an AWGN channel and the optimum
threshold, assumingthatthe signals are equally probable.

b Determine the probability of error as a function of the SNR. How does on-off
signaling compare with antipodal signaling?

5-5 The correlation metrics given by (5-1-44) are
N N

C(r, 8.) =2 >) taSmn ~ Ds Seanr m=1,2,...,Mn=l

where

i, = [ron dt
San[sult

Show that the correlation metrics are equivalent to the metrics
F T

C(r,s,) =2 [ r(t)s,.(t) dt — [ s2,(t} de
5-6 Consider the equivalent lowpass (complex-valued) signal s(f), O<:<=T, with

energy

1 r=[ wor ar2 to

Suppose that this signal is corrupted by AWGN, which is represented by its
equivalent lowpass form z(t). Hence, the observed signalis

r(th=s(t)+z(t), Ost<eT

The received signal is passed through a filter that has an (equivalent lowpass)
impulse response h,(t), Determine &,(t) so that the filter maximizes the SNRatits
output (at f= T).

5-7 Let z(f)=x(t)+jy(t} be a complex-valued, zero-mean white gaussian noise
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process with autocorrelation function ¢,,(r} = N)4(t). Let f(t}, m =1,2,...,™M,
be a set of M orthogonal equivalent lowpass waveforms defined on the interval
O<1<T. Define

Nyy = Re [fcofae|, m=1,2,...,M
a Determine the variance of N,,,-
b Show that E(N,,,,,) = 0 for & # m.

5-8 The two equivalent lowpass signals shown in Fig. P5-8 are used to transmit a
binary sequence over an additive white gaussian noise channel. The received signal
can be expressed as

nit) =s(t)+2(), O<t<T, §=1,2

where z(¢) is a zero-mean gaussian noise process with autocorrelation function

(2) = SE[z*(t)2(t + t)] = NeS(t)

a Determine the transmitted energy in s,(¢) and s,(f) and the cross-correlation
coefficient 9,2.

b Suppose the receiver is implemented by means of coherentdetection using two
matched filters, one matched to s,(t) and the other to s,(r). Sketch the
equivalent lowpass impulse responses of the matchedfilters.

c Sketch the noise-free response of the two matchedfilters when the transmitted
signal is s(t).

d Suppose the receiver is implemented by means of two cross-cortelators
(multipliers followed by integrators) in parallel. Sketch the output of each
integrator as a fynction of time for the interval 0<+ < T when the transmitted
signal is s_(r).

e Compare the sketches in (c) and (d). Are they the same? Explain briefly.
f From your knowledge of the signal characteristics, give the probability of error

for this binary communications system.
5-9 Suppose that we have a complex-valued gaussian random variable z =x + jy,

where (x,y) are statistically independent variables with zero mean and variance
E(x’) = E(y?) = 0”. Let

=z+m, where m=m, + jm,
and define r as

r=a+tjb

Clearly, a= x +m, and b=y +m, Determine the following probability density
fonctions:

a pla, b);
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b p(u, d). where u = Va’ +B? and @ =tan | b/a:
© p(u).

Nete: In (b) it is convenient to define @=tan | (m,/m,) so that

m=Vmit+micos@, m= Vm" +m sin 4.

Furthermore, you must use the relation

1 " ce tok deb - Gh — —_ aml, ° do = bia) &smo
where /,(@)} is the modified Bessel function of order zero.

A ternary communication system transmits one of three signals, s(t), 0, or ~s(1).
every 7 seconds. The received signal is either -(r) =s(t)+ z(t), et) =2(0), or
r(t)= —3(¢) + z(t), where z(t) is white gaussian noise with E(z(s)]=0 and
,.(7} = 5E[2(t)z*(2)] = N,8(¢— 1). The optimum receiver computes the cor-
relation metric

x an

r

U=Re [| r(tj}s*(r) a |
and compares U with a threshold A and a threshold ~A. If U> A, the decision is
made that s(t} was sent. If U < —A, the decision is made in favor of —s(z). If
-A<U<A, the decision is made in favor of 0.

a Determine the three conditional probabilities of errors P, given that s(f) was
sent, 2. given that —s(r) was sent, and P. given that 0 was sent.

b Determine the average probability of error P. as a function of the threshold A,
assuming that the three‘symbols are equally probable a priori.

¢ Determine the value of A that minimizes P..
The two equivalent lowpass signals shown in Fig. P5-11 are used to transmit a
binary information sequence. The transmitted signals, which are equally probable.
are corrupted by additive zero-mean white gaussian noise having an equivalent
lowpass representation z{f} with an autocorrelation function

b..(t) = sE[2*(t)z(¢ + 1)]

= No6(t)

a Whatis the transmitted signal energy?
b Whatis the probability of a binary digit error if coherent detection is employed

at the receiver?

¢ What is the probability of a binary digit error if noncoherent detection is
employed at the receiver?

In Section 4-3-1 it was shown thai the minimum frequency separation for
orthogonality of binary FSK signals with coherent detection is Af = 1/27.

sp iff)
A A

0 0
Tot 3 Tor

57-A -A
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However, a lower error probability is possible with coherent detection of FSK if Af
is increased beyond 1/27. Show that the optimum value of Af is 0.715/T and
determine the probability of error for this value of AY.

§-13 The equivalent lowpass waveforms for three signal sets are shown in Fig. P5-13.
Each set may be used to transmit one of four equally probable messages over an
additive white gaussian noise channel. The equivaient lowpass noise z(r) has zero
mean and autocorrelation function $,,(t} = Np6(r).
a Classify the signal waveforms in sets I, II, and IH. In other words, state the

category or class to which each signal set belongs.
b Whatis the average transmitted energy for each signal set?
¢ For signal set I, specify the average probability of error if the signals are

detected coherently.
d Forsignal set II, give a union bound on the probability of a symbolerror if the

detgétion is performed (i) coherently and (ii) noncoherently.
e Is it possible to use noncoherent detection on signal set III? Explain.
f Which signal set or signal sets would youselect if you wished to achieve a ratio

of bit rate to bandwidth (R/W) ofat least 2. Brieffy explain your answer,
5-14 Consider a quaternary (Af =4) communication system that transmits, every T

seconds, one of four equally probable signals: s,(¢), —s,(t}, s(t), ~s2(t). The
signals s;(1) and s,(t) are orthogonal with equal energy. The additive noise is white
gaussian with zero mean and autocorrelation function ¢,,(1)=N,6(t). The
demodulator consists of twofilters matchedto s,(1) and s,(t), and their outputs at
the sampling instant are U, and U,. The detector bases its decision on the
following rule:

U,>|0,;95,(), Ur <-|UA> —-5,(0

U,>|U,)> st), U.<-jU,)> -s.{d)

Since the signalset is biorthogonal, the error probability is given by (1 — P.) where
P. is given by (5-2-34). Express this error probability in terms of a single integral
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Syl)  
and, thus, show that the symbol error probability for a biorthogonalsignal set with
M = 4 is identical to that for four-phase PSK. Hint: A changein variables from U,
and U, io W, = U, + U5 and W, = U, — U; simplifies the problem.
The input s{t) to a bandpassfilter is

s(t) = Re [s\(e""]

where S)(/) is a rectangular pulse as shown in Fig. PS-15(2).
a Determine the output y(r) of the bandpass filter for all r20 if the impulse

response ofthefilter is

g(t) = Re [2h(r)e?™"]

where #(¢) is an exponential as shown in Fig. 5-15(b).
b Sketch the equivalent lowpass outputof the filter.
c¢ When would you sample the output of the filter if you wished to have the

maximum output at the sampling instant? What is the value of the maximum
output?

d Suppose that in addition to the input signal s(r), there is additive white gaussian
noise

n(t) = Re [z(r)e***]

where 6,,(7)=N,5(t). At the sampling instant determined in (c), the signal
sample is corrupted by an additive gaussian noise term. Determine its mean and
variance.

e Whatis the signal-to-noise ratio y of the sampled output?
f Determine the signal-to-noise ratio when A(t) is the matchedfilter to s(1) and

compare this result with the value of y obtained in (e).
Consider the octal signal point constellations in Fig. P5-16.

8-PSK 8-QAM
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FIGURE P5-i9

a The nearest-neighbor signal points in the 8-QAM signal constellation are
separated in distance by A units. Determine the radii a and b of the inner and
outer circles. :

b The adjacent signal points in the 8-PSK are separated by a distance of A units.
Determine the radiusr of thecircle.

c¢ Determine the average transmitter powers for the two signal constellations and
compare the two powers. What is the relative power advantage of one
constellation over the other? (Assume that all signal points are equally
probable.)

5-17 Consider the 8-point QAM signal constellation shown in Fig. P5-16.
a Is it possible to assign three data bits to each point of the signal constellation

such that nearest (adjacent) points differ in only one bit position?
b Determine the symbolrate if the desired bit rate is 90 Mbits/s.

5-18 Suppose that binary PSK is used for transmitting information over an AWGN with
a power spectral density of }Ny=10°'°W/Hz. The transmitted signal energy is
&, = 3A°T, where T is the bit interval and A is the signal amplitude. Determine
the signal amplitude required to achieve an error probability of 10-° when the data
rate is (a) 10 kbits/s, (b) 100 kbits/s, and (c) 1 Mbit/s.

5-19 Considerasignal detector with an input
r=+t+Atn

where +A and —A occur with equal probability and the noise variable n is
characterized by the (Laplacian) pdf shown in Fig. P5-19.
a Determine the probability of error as a function of the parameters A and o
b Determine the SNR required to achieve an error probability of 107°. How does

the SNR compare with the result for a Gaussian pdf?
5-20 Consider the two 8-point QAM signal constellations shown in Fig. P5-20. The

minimum distance between adjacent points is 24. Determine the average
transmitted power for each constellation, assuming that the signal points are
equally probable. Which constellation is more power-efficient?

5-21 For the QAM signal constellation shown in Fig. PS-21, determine the optimum
decision boundaries for the detector, assuming that the SNR is sufficiently high so
that errors only occur between adjacent points.

 
FIGUREP5-20
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FIGUREP5§-21

5-22

§-23

5-24

§-25

FIGURE P5-25

 

 

Specify a Gray code for the 16-OAMsignal constellation shown in Fig. P5-21.
Two quadrature carriers cos2af¢ and sin2afit are used to transmit digital
information through an AWGN channelat two differentdata rates, 10 kbits/s and
100 kbits/s. Determine the relative amplitudes of the signals for the two carriers so
that the @,/M, for the two channels is identical.

Three messages m,, m,, and m, are to be transmitted over an AWGN channel!
with noise power spectral density 5No. The messages are

_f1 (0s1<T)(0 to (otherwise)
1 (O0sf<5T)

8) = -s(f)=) -1 ($T SOT)

0 (otherwise)

a Whatis the dimensionality of the signal space’?
b Find an appropriate basis for the signal space. [Hint: You can find the basis

without using the Gram—Schmidt procedure.]
¢ Drawthe signal constellation for this problem.
d Derive and sketch the optimal decision regions R,, R>, and R,.
e Which of the three messages is more vulnerable to errors and why? In other

words, which of P(error | m, transmitted), / = 1, 2, 3, is larger?
When the additive noise at the input to the demodulator is colored, the filter
matchedto the signal no longer maximizes the output SNR.In such a case we may
consider the use ofa prefilter that “whitens” the colored noise. The prefilter is
followed by a filter matched to the prefiltered signal. Towards this end, consider
the configuration shown in Fig. P5-25.
a Determine the frequency response characteristic of the prefilter that whitens the

noise,

 
 

 

  
   

Prewhitent - - - i
rifpscaG)+au) Towler r= Xtth+ ar) Filter- filter matched QOJUTE D gs . _

AAP tovert Sample -colored noise   wre T
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b Determine the frequency response characteristic of the filter matched to (1).
e Consider the prefilter and the matched filter as a single “generalized matched

filter.” Whatis the frequency response characteristic of this filter?
d Determine the SNR at the input to the detector.

5-26 Consider a digital communication system that transmits information via QAM
over a voice-band telephone channel at a rate 2400 symbols/s. The additive noise
is assumed to be white and gaussian.
a Determine the @,/N, required to achieve an error probability of 10°* at

4800 bits/s.

b Repeat (a) for a rate of 9600 bits/s.
¢ Repeat (a) for a rate of 19 200 bits/s.
d What conclusions do you reach from these results?

5-27 Consider the four-phase and eight-phase signal constellations shown in Fig, PS-27.
Determine the radii r, and r, of the circles such that the distance between two
adjacent points in the two constellations is d. From this result, determine the
additional transmitted energy required in the 8-PSK signal to achieve the same
error probability as the four-phase signal at high SNR, where the probability of
error is determined by errors in selecting adjacent points.

5-28 Digital informationis to be transmitted by carrier modulation through an additive
gaussian noise channel with a bandwidth of 100kHz and N,= 107" W/Hz.
Determine the maximum rate that can be transmitted through the channel for
four-phase PSK, binary FSK, and four-frequency orthogonal FSK, which is
detected noncoherently.

5-29 In a MSKsignal, the initial state for the phase is either 0 or a rad. Determine the
terminal phase state for the following four input pairs of input data: (a) 00; (b) 01:
(c} 10; (d) 1.

5-3) A continuous-phase FSK signal with # = $ is represented as

-., P& (£) 2 sin()s(t) 2% cos 27, cos 27ft + 7, sin 27, sin2aft, O<1<2T,
where the + signs depend on the information bils transmitted.
a Show that this signal has constant amplitude.
b Skeich a block diagram of the modulator for synthesizing the signal.
e Skeich a black diagram of the demodulator and detector for recovering the

information.

5-31 Sketch the phase tree, the stale trellis, and the state diagram for partial-respanse
CPM with 4 = | and

WaT (O<1<2T)

0 (otherwise}wo={

FIGUREP5-27
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§-32 Determine the number of terminal phase states in the state trellis diagram for (a) a
full response binary CPFSK with either 4 = 3 or 3 and (b) a partial-response L = 3
binary CPFSK with either 4 =} or 2.

§-33 Consider a biorthogonal signal set with M =8 signal points. Determine a union
bound for the probability of a symbol error as a function of &/N,. The signal
points are equally likely a priori.

$-34 Consider an M-ary digital communication system where Af =2™, and WV is the
dimension of the signal space. Suppose that the M signal veetors lie on the vertices
of a hypercubethatis centered at the origin. Determine the average probability of
a symbolerror as a function of #/Ny where ¥, is the energy per symbol, 4A,is the
power spectral density of the AWGN,andall signal points are equally probable.

§-35 Consider the signal waveform

$= Deee-kT)

where p(i) is a rectangular pulse of unit amplitude and duration 7.. The {c,} may
be viewed as a code vector C =[c, c, ... c,}, where the elements c, = +1. Show
that the filter matched to the waveform s(t) may be realized as a cascade ofa filter
matched to p(t) followed by a discrete-time filter matched to the vector ¢€.
Determine the value of the output of the matched filter at the sampling instant
t=nT..

5-%6 A speech signal is sampled at a rate of 8 kHz, logarithmically compressed and
encoded into a PCM format using 8 bits/sample. The PCM data is transmitted
through an AWGN baseband channel via M-level PAM. Determine the band-
width required for transmission when (a) M = 4, (b) M =8, and (c) M = 16.

5-37 A Hadamard matrix is defined as a matrix whose elements are +1 and whose row
vectors are pairwise orthogonal. in the case when 7 is a power of 2, ann Xn
Hadamard matrix is constructed by means of the recursion

Holt th Aelia]
a Let C; denote the ith row of an m X 2 Hadamard matrix as defined above. Show

that the waveforms constructed as

s(t)= > cep-kT), i=1.2,...,9aed

are orthogonal, where p(?) is an arbitrary pulse confined to the time interval
O<r=7,,

b Show that the matchedfilters (or cross-correlators) for the n waveforms {s,(r)}
can be realized by a single filter (or correlator) matched to the pulse p(t)
followed by a set of n cross-carrelators using the code words {C,}.

5-38 The discrete sequence

m= VE6c,+m, kK=1,2,...,0

represents the output sequence of samples from a demodulator, where c, = +1 are
elements of one of two possible code words, C,= [1 1... 1} and C,=
fli... -1.,. —1]. The code word C; has w elements that are +1 and n —w
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elements that are ~1, where w is some positive integer. The noise sequence {n,} is
white gaussian with variance o’.
a What is the optimum maximum likelihood detector for the two possible

transmitted signals?
b Determine the probability of error as a function of the parameters (c’, ,, w).
c Whatis the value of w that minimizes the error probability?

5-39 Derive the outputs 7, and 7, of the two correlators shown in Fig. 5-4-1. Assume
that a signal s,,(¢} is transmitted and that

rt) = 5, (tle + z(8)

where z(t) =,(t) + jn,(t) is the additive gaussian noise.
5-40 Determine the covariances and variances of the gaussian random noise variables

Fics Macs Mys, and n., in (5-4-15) and the joint pdf.
5-41 Derive the matched filter outputs given by (5-4-10).
5-42 In on-off keying of a carrier-modulated signal, the two possible signals are

so{f}=0, O<r=T,

2

s,(t) = cos2a O<r=T,b

The corresponding received signals are

Man), OStsT,

r(t) = 7cos (Qrfit+d+n), O<'<F,b

where ¢ is the carrier phase and #(t} is AWGN.
a Sketch a block diagram ofthe receiver (demodulator and detector) that employs

noncoherent (envelope) detection.
b Determine the pdfs for the two possible decision variables at the detector

correspondingto the two possible received signals.
¢ Derive the probability of error for the detector.

5-43 In two-phase DPSK,the received signal in onesignaling interval is used as a phase
reference for the received signal in the following signaling interval. The decision
variable is

D=Re(V,,VE.,) 20

Vv, =2a €eli%-* + N,

represents the complex-valued output of the filter matched to the wansmitted
signal u(z). N, is a complex-valued gaussian variable having zero mean and
statistically independent components.
a Writing V, = X, + j¥,, show that D is equivalent to

d= [2(Xee + Xm? + [B¥on + Yona)? = (Xe — Xe OP — En > Yor OP
b For mathematical convenience; suppose that @, =6,_,. Show that the random

variables U,, U,, U;, and U, are statistically independent gaussian variables,
where UO = Xn + Xmas U2 =H Yn + Yn), Uy= HX, -X,-), and Uy=
i(¥, ~ Yn).
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c Define the random variables W, = U? + U2 and W, = Ul4 U2. Then
a

D=W,-W,20

Determine the probability density functions for W, and W,.
d Determine the probability of error P,,, where

P, = P(D <0) = POW, - w.<o)= | P(W, > w, | we) pln) de,nl

5-44 Recall that MSK can be represented as a four-phase offset PSK modulation having
the lowpass equivalent form

u(t) =>) [u(t - 2kT;,) + put — 2kT, — Th)

where

(y= fone (0=1=27,)0 {otherwise )

and {/,} and {/,} are sequences of information symbols (+1).
a Sketch the block diagram of an MSK demodulator for offset OPSK.
b Evaluate the performance of the four-phase demodulator for AWGN if no

accountis taken of the memory in the modulation.
c Compare the performance obtained in (b) with that for Viterbi decoding of the

MSKsignal.

d The MSKsignalis also equivalent to binary FSK. Determine the performance of
noncoherent detection of the MSK signal. Compare your result with (b)
and (c).

5-45 Consider a transmission line channel that employs n — | regenerative repeaters
plus the terminal receiver in the transmission of binary information. Assume that
the probability or error at the detector of each receiver is p and that errors among
repeaters are Statistically independent.
a Show that the binary error probability at the terminal receiver is

P= 3[1~ (- 2p")

b If p = 10 ° and mn = 100, determine an approximate value of P..
5-46 A digital communication system consists of a transmission line with 100 digital

(regenerative) repeaters. Binary antipodal signals are used for transmitting the
information. If the overall end-ta-end error probability is 10°°. determine the
probability of error for each repeater and the required &,/N, to achieve this
performance in AWGN.

5-47 A radio transmitter has a power output of P, = 1 W at a frequency of 1 GHz. The
transmitting and receiving antennas are parabolic dishes with diameter D = 3m.
a Determine the antenna gains,
b Determine the EIRP for the transmitter.

¢ The distance (free space) between the transmitting and receiving antennas is
20km. Determine the signal power at the output of the receiving antenna in
dim.
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A radio communication system transmits at a power level of 0.1 W at | GHz. The
transmitting and receiving antennas are parabolic, each having a diameter of | m.
The receiver is located 30km from the transmitter.

a Determine the gains of the transmitting and receiving antennas.
b Determine the EIRP of the transmitted signal.
c Determine the signal power from the receiving antenna.
A satellite in synchronous orbit is used to communicate with an earth station at a
distance of 40000 km. The satellite has an antenna with a gain of 15 dB and a
transmitter power of 3 W. The earth station uses a 10 m parabolic antenna with an
efficiency of 0.6. The frequency band is at f = 10GHz. Determine the received
powerlevel at the output of the receiver antenna.
A spacecraft located 100000km from the earth is sending data at a rate of
R bits/s. The frequency band is centered at 2 GHz and the transmitted poweris
10W. The earth station uses a parabolic antenna, 50m in diameter, and the
spacecraft has an antenna with a gain of 10dB. The noise temperature of the
receiver front end is J, = 300 K.

a Determine the received powerlevel.
b If the desired %,/M,=10dB, determine the maximum bit rate that the

spacecraft can transmit.
A satellite in geosynchronous orbit is used as a regenerative repeater in a digital
communication system. Consider the satellite-to-earth link in which the satellite
antenna has a gain of 6 dB and the earth station antenna has a gain of 50dB. The
downlink is operated at a center frequency of 4 GHz, and the signal bandwidth is
1 MHz. If the required @,/N, for reliable communication is 15 dB, determine the
transmitted powerfor the satellite downlink. Assume that N, = 4.1 x 1077! W/Hz.
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We have observed that in a digital communication system, the output of the
demodulator must be sampled periodically, once per symbolinterval, in order
to recover the transmitted information. Since the propagation delay from the
transmitter to the receiver is generally unknown atthe receiver, symbol timing
must be derived from the received signal in order to synchronously sample the
output of the demodulator.

The propagation delay in the transmitted signal also results in a carrier
offset, which must be estimated at the receiver if the detector is phase-
coherent. In this chapter, we consider methods for deriving carrier and symbol
synchronization at the receiver.

6-1 SIGNAL PARAMETER ESTIMATION

Let us begin by developing a mathematical modelfor the signal at the input to
the receiver. We assume that the channel delays the signals transmitted
through it and corrupts them by the addition of gaussian noise. Hence, the
received signal may be expressed as

r(t)=s(t—7)+a(t)
where

5(t} = Re [5,()e?"'] (6-1-1)
and where t is the propagation delay ands,(t) is the equivalent lowpasssignal.

The received signal may be expressed as

r(t) = Re {[s,(t ~ t)e!* + z(t)Je} (6-1-2)

where the carrier phase }, due to the propagation delay 7, is @ = —2af.t
333
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Now, from this formulation, it may appear that there is only one signal
parameter to be estimated, namely, the propagation delay, since one can
determine ¢ from knowledge of f, and t. However,this is not the case. First of
all, the oscillator that generates the carrier signal for demodulation at the
receiver is generally not synchronous in phase with that at the transmitter.
Furthermore, the two oscillators may be drifting slowly with time, perhaps in
different directions. Consequently, the received carrier phase is not only
dependent on the time delay t. Furthermore, the precision to which one must
synchronize in time for purpose of demodulating the received signal depends
on the symbolinterval 7. Usually, the estimation error in estimating T must be
a relatively small fraction of 7. For example, +1% of T is adequate for
practical applications. However, this level of precision is generally inadequate
for estimating the carrier phase, even if ¢ depends only on t. This is due to the
fact that f- is generally large, and, hence, a small estimation error in t causes a
large phase error.

In effect, we must estimate both parameters t and @ in order to demodulate
and coherently detect the received signal. Hence, we may express the received
signal as

rt) =s(t; d, tr) +n(t) (6-1-3)

where ¢ and f representthe signal parametersto be estimated. To simplify the
notation, we let % denote the parameter vector {@, t}, so that s(t; ¢, t) is
simply denoted by s(r; W).

There are basically two criteria that are widely applied to signal parameter
estimation: the maximum-likelihood (ML) criterion and the maximum a
posteriori probability (MAP) criterion. In the MAPcriterion, the signal
parameter vector is modeled as random, and characterized by an a priori
probability density function p(w). In the maximum-likelihood criterion, the
signal parameter vector is treated as deterministic but unknown.

By performing an orthonormal expansion of r(t) using N orthonormal!
functions {f,(t)}, we may represent r(r) by the vector of coefficients
[nr ... ryJ=r. The joint pdf of the random variables [rt 72... Mw] in the
expansion can be expressed as p(r|). Then, the ML estimate of a is the
value that maximizes p(r |). On the other hand, the MAPestimateis the
value of i that maximizes the a posteriori probability density function

ply |) = PEP) (6-1-4
Wenotethatif there is no prior knowledge of the parameter vector wy, we

may assume that p(s) is uniform (constant) over the range of values of the
parameters. In such a case, the value of y that maximizes p(r|w) also
maximizes p(s | r). Therefore, the MAP and MLestimates are identical.

In our treatment of parameter estimation given below, we view the
parameters ¢ and t as unknown, but deterministic, Hence, we adopt the ML
criterion for estimating them.
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In the ML estimation of signal parameters, we require that the receiver
extract the estimate by observing the received signal over a time interval
T= T7, which is called the observation interval, Estimates obtained from a
single observation interval are sometimes called one-shot estimates. In
practice, however, the estimation is performed on a continuous basis by using
tracking loops (either analog or digital} that continuously update the estimates.
Nevertheless, one-shot estimates yield insight for tracking loop implementa-
tion. In addition, they prove useful in the analysis of the performance of ML
estimation. and their performance can be related to that obtained with a
tracking loop.

6-1-1 The Likelihood Function

Although it is possible to derive the parameter estimates based onthe joint pdf
of the random variables[r, r, ... r] obtained from the expansionofr(¢), it is
convenient to deal directly with the signal waveforms when estimating their
parameters. Hence, we shall develop a continuous-time equivalent of the
maximization of p(r| Ws).

Since the additive noise 7(z) is white and zero-mean gaussian, the joint pdf
p(e| as) may be expressed as

pir|W=(Te-)exp{~ > Masel) (6-1-5)
where

n= [ron dt
“ (6-1-6)

su(ah)= [s(t yale) ae
where 7) represents the integration interval in the expansion ofr(r) and s(t; us}.

We note that the argument in the exponent may be expressed in terms of
the signal waveforms r(t) and s(t; ), by substituting from (6-1-6) into (6-1-5).
Thatis,

1 < 1
gi MeWP = 5 |Tele) —stes Pat (6-1-7)a= 0 a

where the proofis left as an exercise for the reader (see Problem 6-1). Now,
the maximization of p(r|ws) with respect to the signal parameters is
equivalent to the maximization of the likelihood function.

1

A(b) = exp {- N. [ [rt) — s(t: WP ar (6-1-8)
Below, we shall consider signal parameter estimation from the viewpoint of
maximizing A(ds),
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Ouput
Received signal

 
FIGURE 61-1=Biock diagram of binary PSK receiver.

6-1-2 Carrier Recovery and Symbo! Synchronization
in Signal Demodulation

Symbol synchronization is required in every digital communication system
which transmits information synchronously. Carrier recovery is required if the
signal is detected coherently.

Figure 6-1-1 illustrates the block diagram of a binary PSK (or binary PAM)
signal demodulator and detector. As shown, the carrier phase estimate ¢ is
used in generating the reference signal g(t) cos (2af.1+ ¢) for the correlator.
The symbol synchronizer controls the sampler and the output of the signal
pulse generator. If the signal pulse is rectangular then the signal generator can
be eliminated.

The block diagram of an M-ary PSK demodulator is shownin Fig. 6-1-2. In
this case, two correlators (or matched filters) are required to correlate the
received signal with the two quadrature carrier signals g(t) cos (2af.t + $) and
g(t) sin (2xf,t + 6), where @ is the carrier phase estimate. The detector is now
a phase detector, which compares the received signal phases with the possible
transmitted signal phases.

The block diagram of a PAM signal demodulator is shown in Fig. 6-1-3. In
this case, a single correlator is required, and the detector is an amplitude
detector, which compares the received signal amplitude with the possible
transmitted signal amplitudes. Note that we have included an automatic gain
control (AGC)at the front-end of the demodulator to eliminate channel gain
variations, which would affect the amplitude detector. The AGC has a
relatively long time constant, so that it does not respond to the signal
amplitude variations that occur on a symbol-by-symbol basis. Instead, the
AGC maintains a fixed average (signal plus noise) power at its output.

Finally, we illustrate the block diagram of a QAM demodulator in Fig,
6-1-4, As in the case of PAM, an AGCis required to maintain a constant
average power signal at the input to the demodulator. We observe that the
demodulator is similar to a PSK demodulator,in that both generate in-phase
and quadrature signal samples (X, Y) for the detector, In the case of QAM,

eeeeee
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 Signal -
putse

generator
 
 

FIGURE 6-1-29Block diagram of M-ary PSK receiver.

the detector computes the euclidean distance between the received noise-
corrupted signal point and the M possible transmitted points, and selects the
signal closest to the received point.

6-2 CARRIER PHASE ESTIMATION

There are two basic approaches for dealing with carrier synchronization at the
receiver. One is to multiplex, usually in frequency, a special signal, called a
pilot signal, that allows the receiver to extract and, thus, to synchronize its
local oscillator to the carrier frequency and phase of the received signal. When

FIGURE 6-1-3 Block diagram of M-ary PAM receiver.

  
Automatic

gain
control 

 
 

Amplitude
detector 
 

Camer
recovery
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euclidean|Output
decision

Block diagram of QAM receiver.

an unmodulated carrier componentis transmitted along with the information-
bearingsignal, the receiver employs a phase-locked loop (PLL) to acquire and
track the carrier component. The PLLis designed to have a narrow bandwidth
so that it is not significantly affected by the presence of frequency components
from the information-bearing signal.

The second approach, which appears to be more prevalentin practice, is to
derive the carrier phase estimate directly from the modulated signal. This
approach has the distinct advantage that the total transmitter power is
allocated to the transmission of the information-bearing signal. In our
treatmentof carrier recovery, we confine our attention to the second approach:
hence, we assumethat the signal is transmitted via suppressed carrier.

In order to emphasize the importance of extracting an accurate phase
estimate, let us consider the effect of a carrier phase error on the demodulation
of a double-sideband, suppressed carrier (DSB/SC) signal. To be specific,
suppose we have an amplitude-modulated signal cf the form

s(t) = A(t) cos (2nft + d) (6-2-1)

If we demodulate the signal by multiplying s(r) with the carrier reference

c(t) = cos (2zf.t + ) (6-2-2)
we obtain

c(t)s(t) = $A(t) cos (6 — b) + SACL) cos (4af. +b + b)
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The double-frequency component may be removed by passing the product
signal c(t)s(t) through a lowpassfilter. This filtering yields the information-
bearing signal

y(t) = 4A(1) cos (¢ ~ d) (6-2-3)
Note that the effect of the phase error ¢ — ¢ is to reduce the signal level in

voltage by a factor cos (@ — ¢) and in powerby a factor cos” (@ — ¢). Hence, a
phase error of 10° results in a signal power loss of 0.13 dB, and a phase errorof
30° results in a signal powerloss of 1.25dB in an amplitude-modulatedsignal.

The effect of carrier phase errors in QAM and multiphase PSK is much
more severe. The QAM and M-PSKsignals may be represented as

S(t) = A(t) cos (2af,t + 6) — B(t) sin (nf. + $) (6-2-4)
This signal is demodulated by the two quadrature carriers

¢.(t} = cos (2nf-t + b)

c(t) = —sin (Q2ft+ d)

Multiplication ofs(r) with c.(0) followed by lowpassfiltering yields the in-phase
component

(6-2-5)

yt) = A(t) cos (b — b) — 3B(t) sin( - d) (6-2-6)
Similarly, multiplication of s(t) by c,(t) followed by lowpassfiltering yields the
quadrature component

Yolt) = 3B(t) cos (b — A) + 3A(0) sin (¢ — f) (6-2-7)
The expressions (6-2-6) and (6-2-7) clearly indicate that the phase error in the
demodulation of QAM and M-PSKsignals has a much moresevere effect than
in the demodulation of a PAM signal. Not only is there a reduction in the
powerof the desired signal component by a factor cos?(¢@ — ), but there is
also crosstalk interference from the in-phase and quadrature components.
Since the average powerlevels of A(t) and B(:) are similar. a small phase error
causes a large degradation in performance. Hence, the phase accuracy
requirements for QAM and multiphase coherent PSK are much higher than
DSB/SC PAM.

6-2-1 Maximum-Likelihood Carrier Phase Estimation

First, we derive the maximum-likelihoodcarrier phase estimate. For simplicity.
we assume that the delay t is known and, in particular, we set r= 0. The
function to be maximized is the likelihood function given in (6-1-8). With ¢
substituted for a, this function becomes

A(6) = exp {- Ny I, [rit)~ ste: 6)ae}
l 2 j 5= exp {- N if r°(t) dt + N I r(ts{t: @) dt — N, s(t: d) dr.hy

(6-2-8)
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Note that the first term of the exponential factor does not involve the signal
parameter ¢. The third term, which contains the integral of s7(t,@), is a
constant equal to the signal energy over the observation interval 7, for any
value of ¢. Only the second term, which involves the cross-correlation of the
received signal r(t) with the signal s(t: ¢@), depends on the choice of ¢.
Therefore, the likelihood function A(¢@) may be expressed as

A(d) = Cexp|= [ Hose: 6)e| (6-2-9)
where C is a constant independent of ¢.

The MLestimate yx, is the value of ¢ that maximizes A(#) in (6-2-9).
Equivaiently, the value dy also maximizes the logarithm of A(@), ie., the
log-likelihood function

nd) == [ r(0)s(t;) dt (6-2-10)
Note that in defining A,(¢@) we have ignored the constant term In C.

Example 6-2-1

As an example of the optimization to determine the carrier phase, let us
consider the transmission of the unmodulated carrier A cos 2zf.t, The
received signalis

r(t) = A cos (22f,t + 6) + A(t)

where @ is the unknown phase. We seek the value , say day, that
maximizes

Ac() = n[ r(1) cos (2af. + ) dt
A necessary condition for a maximum is that

dAu(d) _
dp

This condition yields

[ r(t) sin (2af.1 + du.) dt=0 (6-2-11)
or, equivalently,

out = mtan{[ r(t)sin 2af.t dt/[ r(t) cos 2xft ar| (6-2-12)
Weobserve that the optimality condition given by (6-2-11) implies the use
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yer
FIGURE6-2-1 A PLL for obtaining the ML estimate of the phase of an vco

unmodulated cartier. sint2nf t+ Om?
 

FIGURE 6-2-2. A (one-shot) ML estimate of the phase of an
unmodulated carrier.

 
of a loop to extract the estimate as illustrated in Fig. 6-2-1. The loop filter is
an integrator whose bandwidth is proportional to the reciprocal of the
integration interval 7. On the other hand, (6-2-12) implies an
implementation that uses quadrature carriers to cross-correlate with r(s).
Then, dui is the inverse tangent of the ratio of these two correlator
outputs, as shownin Fig. 6-2-2. Note thatthis estimation schemeyields da,
explicitly.

This example clearly demonstrates that the PLL provides the ML estimate
of the phase of an unmodulatedcarrier.

6-2-2 The Phase-Locked Loop

The PLL basically consists of a multiplier, a loop filter, and a voltage-
controlled oscillator (VCO), as shownin Fig. 6-2-3. If we assumethat the input
to the PLL is the sinusoid cos (2af.1+@) and the output of the VCO is
sin (2nf.t+ @), where @ represents the estimate of ¢, the product of these
two signals is

e(t) = cos (2nf-t + b) sin (2af.t + d)

=4sin(¢ — 6) +4sin (4af1+6+¢) (6-2-13)

 
[nput
signal

Loop
filter Output

FIGURE6-2-3 Basic elements of a phase-located loop (PLL). signal
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The loop filter is a lowpass filter that responds only to the low-frequency
component }sin(@—¢@) and removes the component at 2f. This filter is
usually selected to have the relatively simple transfer function

_i+ts
1+ts

G(s) (6-2-14)

where 7, and 7, are design parameters (t, > 2) that control the bandwidth of
the loop. A higher-order filter that contains additional poles may be used if
necessary to obtain a better loop response.

The output of the loop filter provides the control voltage u(r) for the VCO.
The VCOis basically a sinusoidal signal generator with an instantaneous phase
given by

Qnf.t+ b(t) = 2nf.t+ K u(t)dt (6-2-15)

where K is a gain constant in rad/V. Hence,

b(t) = Kf v(t) dt (6-2-16)
By neglecting the double-frequency term resulting from the multiplication of
the input signal with the output of the VCO, we may reduce the PLL into the
equivalent closed-loop system model shown in Fig. 6-2-4. The sine function of
the phase difference ¢—¢ makes this system nonlinear, and, as a conse-
quence, the analysis of its performance in the presence of noise is somewhat
involved but, nevertheless, it is mathematically tractable for some simple joop
filters,

In normal operation when the Joopis tracking the phase of the incoming
carrier, the phase error @~ @ is smail and, hence,

sin(6-)~b-¢ (6-2-17)

With this approximation, the PLL becomes linear and is characterized by the
closed-loop transfer function

KG(s)/s

1+ KG(s)i/s
H(s) = (6-2-18)

 
FIGURE6-2-4 Madelof phase-locked loop.

351



352



353



354



355



356



357



358



359



360



361



362



363



364



365



366



367



368



369



370



371



372



373



374



375



376



377



378



379



380



381



382



383



384



385



386



387



388



389



390



391



392



393



394



395



396



397



398



399



400



401



402



403



404



405



406



407



408



409



410



411



412



413



414



415



416



417



418



419



420



421



422



423



424



425



426



427



428



429



430



431



432



433



434



435



436



437



438



439



440



441



442



443



444



445



446



447



448



449



450



451



452



453



454



455



456



457



458



459



460



461



462



463



464



465



466



467



468



469



470



471



472



473



474



475



476



477



478



479



480



481



482



483



484



485



486



487



488



489



490



491



492



493



494



495



496



497



498



499



500



501



502



503



504



505



506



507



508



509



510



511



512



513



514



515



516



517



518



519



520



521



522



523



524



525



526



527



528



529



530



531



532



533



534



535



536



537



538



539



540



541



542



543



544



545



546



547



548



549



550



551



552



553



554



555



556



557



558



559



560



561



562



563



564



565



566



567



568



569



570



571



572



573



574



575



576



577



578



579



580



581



582



583



584



585



586



587



588



589



590



591



592



593



594



595



596



597



598



599



600



601



602



603



604



605



606



607



608



609



610



611



612



613



614



615



616



617



618



619



620



621



622



623



624



625



626



627



628



629



630



631



632



633



634



635



636



637



638



639



640



641



642



643



644



645



646



647



648



649



650



651


