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where I is the identity matrix, I' is the autocorrelation matrix of the received
signal, C, is the (2K + 1)-dimensional vector of equalizer tap gains, and £ is the
vector of cross-correlations given by (10-2-45). The recursive relation in
(11-1-20) can be represented as a closed-loop control system as shown in Fig.
11-1-3. Unfortunately, the set of 2K + 1 first-order difference equations in
{11-1-20) are coupled through the autocorrelation matrix I'. In order to solve
these equations and, thus, establish the convergence properties of the recursive
algorithm, it is mathematically convenient to decouple the equations by
performing a linear transformation. The appropriate transformation is
obtained by noting that the matrix ' is Hermitian and, hence, can be
represented as

I'=UAU* ) (11-1-21)

where U is the normalized modal matrix of I and A is a diagonal matrix with
diagonal elements equal to the eigenvalues of T

When (11-1-21) is substituted into (11-1-20) and if we define the trans-
formed (orthogonalized) vectors Cf = U'*C, and £ = U'*£, we oblain

Gy =(1-AA)C; + A (11-1-22)
This set of first order difference equations is now decoupled. Their conver-
gence is determined from the homogeneous equation
Gl =(1-A4AA)C; (11-1-23)
We see that the recursive relation will converge provided that all the poles lie
inside the unit circle, ie.,
1-AaA)<1l, k=-K ...,-1,0,1,....K (11-1-24)

where {A,} is the set of 2K + 1 (possibly nondistinct) eigenvalues of I'. Since I'
i an autocorrelation matrix, it is positive-definite and, hence, A, >0 for all £
Consequently convergence of the recursive relation in (11-1-22) is ensured if A
satisfies the inequality

0<A<r2- (11-1-25)

max

where A, is the largest eigenvaiue of [
Since the largest eigenvalue of a positive-definite matrix is less than the sum
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of all the eigenvalues of the matrix and, furthermore, since the sum of the
cigenvalues of a matrix is equal to its trace, we have the following simple upper
bound on A,,,:

K
Amax < 20 Ag =tr I'= (2K + 1),

k=—K

= (2K + 1)(xo + No) (11-1-26)

From (11-1-23) and (11-1-24) we observe that rapid convergence occurs
when |1 — AA,| is small, i.e., when the pole positions are far from the unit
circle. But we cannot achieve this desirable condition and still satisfy (11-1-25)
if there is a large difference between the largest and smallest eigenvalues of T
In other words, even if we select A to be near the upper bound given in
(11-1-25), the convergence rate of the recursive MSE algorithm is determined
by the smallest eigenvalue An;,. Consequently, the ratio A,,/An, ultimately
determines the convergence rate. If Ap,/Amin is small, A can be selected so as
to achieve rapid convergence. However, if the ratio A/ A, is large, as is the
case when the channel frequency response has deep spectral nulls, the
convergence rate of the algorithm will be slow.

11-1-4 Excess MSE Due to Noisy Gradient Estimates

The recursive algorithm in (11-1-11) for adjusting the coefficients of the linear
equalizer employs unbiased noisy estimates of the gradient vector. The noise in
these estimates causes random fluctuations in the coefficients about their
optimal values and, thus, leads to an increase in the MSE at the output of the
equalizer. That is, the final MSE is J,, + J,, where J, is the variance of the
measurement noise. The term J, due to the estimation noise has been termed
excess means-square error by Widrow (1966).

The total MSE at the output of the equalizer for any set of coefficients C
can be expressed as

J =T + (€ = Cop) *T(C = Copy) (11-1-27)

where C,,, represents the optimum coefficients, which satisfy (11-1-6). This
expression for the MSE can be simplified by performing the linear orthogonal
transformation used above to establish convergence. The result of this
transformation applied to (11-1-27) is

XK
J=dmint 2 ME|c5= ol (11-1-28)
k=—K

where the {c} are the set of transformed equalizer coefficients. The excess
MSE is the expected value of the second term in (11-1-28), ie.,

K
Ja= 2 MEI= 5 opl’ (11-1:29)

k=-K
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It has been shown by Widrow (1970, 1975) that the excess MSE is

K Ai
}é = AzJrrlin 2

——— 11-1-30
Wkl (1= AN ( )

The expression in (11-1-30) can be simplified when A is selected such that
Al << 1 for all k. Then

K
ja”%Afmin 2 Ay
k=-K

=~iAJ i tr T
= 3A(2K + 1) minlxo + No) (11-1-31)

Note that x,+ N, represents the received signal plus noise power.
It is desirable to have J, <J_;.. That is, A should be selected such that

T BAGK + 1) + N <1
or, equivalently,
2
A< 11-1-3
(2K + D(xo + Np) - ( 2
For example, if A is selected as
9.2 (11-1-33)

T 2K + 1)(xo + No)

the degradation in the output SNR of the equalizer due to the excess MSE is
less than 1 dB.

The analysis given above on the excess mean square error is based on the
assumption that the mean value of the equalizer coefficients has converged to
the optimum value C,,. Under this condition, the step size A should satisfy the
bound in (11-1-32). On the other hand, we have determined that convergence
of the mean coefficient vector requires that A <2/A,,.,. While a choice of A
near the upper bound 2/A.,, may lead to initial convergence of the
deterministic (known) steepest-descent gradient algorithm, such a large value
of A will usually result in instability of the LMS stochastic gradient algorithm.

The initial convergence or transient behavior of the LMS algorithm has
been investigated by several researchers. Their results clearly indicate that the
step size must be reduced in direct proportion to the length of the equalizer as
specified by (11-1-32). Hence, the upper bound given by (11-1-32) is also
necessary to ensure the initial convergence of the LMS algorithm. The papers
by Gitlin and Weinstein (1979) and Ungerboeck (1972) contain analyses of the
transient behavior and the convergence properties of the LMS algorithm.

654



FIGURE 11-1-4

646 DIGITAL COMMUNICATIONS

Initial convergence characteristics of the LMS

algorithm with different step sizes. [From Digital

Signal Processing, by J. G. Proakis and D. G. Manoiakis, ) . . ) )
1988. Macmillan Publishing Company. Reprinted with 0 100 200 300 400 SO0
permission of the publisher.} Number of iterations

The following example serves to reinforce the important points made above
regarding the initial convergence of the LMS algorithm.

Example 11-1-1

The LMS algorithm was used to adaptively equalize a communication
channel for which the autocorrelation matrix I' has an eigenvalue spread of
Amax/Amin = 11. The number of taps selected for the equalizer was 2K + 1 =
11. The input signal plus noise power x,+ N, was normalized to unity.
Hence, the upper bound on A given by (11-1-32) is 0.18. Figure 11-1-4
illustrates the initial convergence characteristics of the LMS algorithm for
A=0.045, 0.09, and 0.115, by averaging the (estimated) MSE in 200
simulations. We observe that by selecting A =0.09 (one-half of the upper
bound) we obtain relatively fast initial convergence. If we divide A by a
“factor of 2 to A=0.045, the convergence rate is reduced but the excess
mean square error is also reduced, so that the LMS algorithm performs
better in steady state (in a time-invariant signal environment). Finally, we
note that a choice of A =0.115, which is still far below the upper bound,
causes large undesirable fluctuations in the output MSE of the algorithm.

In a digital implementation of the LMS algorithm, the choice of the
step-size parameter becomes even more critical. In an attempt to reduce the
€XCess mean square error, it is possible to reduce the step-size parameter to the
point where the total mean square error actually increases. This condition
occurs when the estimated gradient components of the vector & V¥ after
multiplication by the small step-size parameter A are smaller than one-hatf of
the least significant bit in the fixed-point representation of the equalizer
coefficients. In such a case, adaptation ceases. Consequently, it is important for
the step size to be large eaough to bring the equalizer coefficients in the
vicinity of C,,. If it is desired to decrease the step size significantly, it is
necessary to increase the precision in the equalizer coefficients. Typically, 16
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bits of precision may be used for the coefficients, with about 10-12 of the most
significant bits used for arithmetic operations in the equalization of the data.
The remaining least significant bits are required to provide the necessary
precision for the adaptation process. Thus, the scaled, estimated gradient
components AeV¥ usually affect only the [east-significant bits in any one
iteration. In effect, the added precision also allows for the noise to be averaged
out, since many incremental changes in the least-significant bits are required
before any change occurs in the upper more significant bits used in arithmetic
operations for equalizing the data. For an analysis of roundoff errors in a
digital implementation of the LMS aigorithm, the reader is referred to the
papers by Gitlin and Weinstein (1979), Gitlin er al (1982), and Caraiscos and
Liu (1984).

As a final point, we should indicate that the LMS algorithm is appropriate
for tracking slowly time-invariant signat statistics. In such a case, the minimum
MSE and the optimum coefficient vector will be time-variant. In other words,
Jmin(n1) is a function of time and the (2K + 1)-dimensional error surface is
moving with the time index n. The LMS algorithm attempts to follow the
moving minimum Jp;,(n) in the (2K + 1)-dimensional space, but it is always
lagging behind due to its use of (estimated) gradient vectors. As a conse-
quence, the LMS algorithm incurs another form of error, called the lag error,
whose mean square value decreases with an increase in the step size A. The
total MSE error can now be expressed as

Jtotal = jmin(") + '}1 + J!

where J; denotes the mean square error due to the lag.

In any given nonstationary adaptive equalization problem, if we plot the
errors Jy, and J; as a function of A, we expect these errors to behave as
illustrated in Fig. 11-1-5. We observe that J, increases with an increase in A
while J; decreases with an increase in A. The total error will exhibit a
minimum, which will determine the optimum choice of the step-size parameter.

When the statistical time variations of the signal occur rapidly, the lag error

Mean square error

I+ 4,

7, error due to
Excess mean square error J, and lag -7 sy gradients

error J; as a function of the step size.

[From Digital Signal Processing, by J. G. IS el

Proakis and D. G. Manolakis, 1988. ‘ Tiel”

Macmillan Publishing Company. I

Reprinted with permission of the T ' T Jierror due to lag
publisher | A, A
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will dominate the performance of the adaptive equalizer. In such a case,
Jy>> i +J5, even when the largest possible value of A is used. When this
condition occurs, the LMS algorithm is inappropriate for the application and
one must rely on the more complex recursive least-squares algorithms
described in Section 11-4 to obtain faster convergence and tracking.

11-1-5 Baseband and Passband Linear Equalizers

Our treatment of adaptive linear equalizers has been in terms of equivalent
lowpass signals. However, in a practical implementation, the linear adaptive
equalizer shown in Fig. 11-1-2 can be realized either at baseband or at
bandpass. For exampie Fig. 11-1-6 illustrates the demodulation of QAM (or
multiphase PSK) by first translating the signal to baseband and equalizing the
baseband signal with an equalizer having complex-valued coefficients. In effect,
the complex equalizer with complex-valued (in-phase and quadrature com-
ponents) input is equivalent to four parallel equalizers with real-valued tap
coefficients as shown in Fig. 11-1-7.

As an alternative, we may equalize the signal at passband. This is

In-phase
ignal [Retc, )1 A
component + .. Rell}
—— ] +
timie, 3 -
Quadralure .
signal -k
component [tmic,)) + lml?.l
i +
FIGURE 11-1.7  Complex-valued baseband equalizer for | IRetc, )} *
QAM signals. —
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FIGURE 11-1.8 QAM or PSK signal equalization al passband.

accomplished as shown in Fig. 11-1-8 for a two-dimensional signal constellation
such as QAM and PSK. The received signal is filtered and, in parallel, it is
passed through a Hilbert transformer, called a phase-splitting filter. Thus, we
have the equivalent of in-phase and gquadrature components at passband,
which are fed to a passband complex equalizer. Following the equalization, the
signal is down-converted to a baseband and detected. The error signal
generated for the purpose of adjusting the equalizer coefficients is formed at
baseband and frequency-translated to passband as illustrated in Fig. 11-1-8.

11-2 ADAPTIVE DECISION-FEEDBACK EQUALIZER

As in the case of the linear adaptive equalizer, the coefficients of the
feedforward filter and the feedback filter in a decision-feedback equalizer may
be adjusted recursively, instead of inverting a matrix as implied by (10-3-3).
Based on the minimization of the MSE at the output of the DFE, the
steepest-descent algorithm takes the form

Cii1=Cy + AE(e, VDY) (11-2-1)

where C, is the vector of equalizer coefficients in the kth signal interval,
E(g,V}) is the cross-correlation of the error signal g, = I, — I, with V, and
Ve=[vgsk, .. % Ly ... fi_x)]', representing the signal values in the
feedforward and feedback filters at time ¢ = k7. The MSE is minimized when
the cross-correlation vector E(£,V¥) =0 as k —» oc.

Since the exact cross-correlation vector is unknown at any time instant, we

use as an estimate the vector £, V} and average out the noise in the estimate
through the recursive equation

Cii=C, +Ag, V2 (11-22)
This is the LMS algorithm for the DFE.
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FIGURE 11-2.1  Decision-feedback equalizer.

As in the case of a linear equalizer, we may use a training sequence 1o
adjust the coefficients of the DFE initially. Upon convergence to the (near-)
optimum coefficients (minimum MSE), we may switch to a decision-directed
mode where the decisions at the output of the detector are used in forming the
error signal €, and fed to the feedback filter. This is the adaptive mode of the
DFE, which is illustrated in Fig 11-2-1. In this case, the recursive equation for
adjusting the equalizer coefficient is

Ci =C, + A2,V {11-2-3)

where £, =Ik _Ik and V,‘ =[vk+K. . I‘_l P i*_xz]'.
The performance characteristics of the LMS algorithm for the DFE are

basically the same as the development given in Sections 11-1-3 and 11-1-4 for
the linear adaptive equalizer.

11-2-1 Adaptive Equalization of Trellis-Coded Signals

Bandwidth efficient trellis-coded modulation that was described in Section 8-3
is frequently used in digital communications over telephone channels to reduce
the required SNR per bit for achieving a specified error rate. Channel
distortion of the trellis-coded signal forces us to use adaptive equalization in
order to reduce the intersymbol interference. The output of the equalizer is

then fed to the Viterbi decoder, which performs soft-decision decoding of the
trellis-coded signal.
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The question that arises regarding such a receiver is how do we adapt the
equalizer in a data transmission mode? One possibility is to have the equalizer
make its own decisions at its output solely for the purpose of generating an
error signal for adjusting its tap coefficients, as shown in the block diagram in
Fig. 11-2-2. The problem with this approach is that such decisions are generally
unreliable, since the pre-decoding coded symbol SNR is relatively low. A high
error rate would cause a significant degradation in the operation of the
equalizer, which would ultimately affect the reliability of the decisions at the
output of the decoder. The more desirable alternative is to use the post-
decoding decisions from the Viterbi decoder, which are much more reliable, to
continuously adapt the equalizer. This approach is certainly preferable and
viable when a linear equalizer is used prior to the Viterbi decoder. The
decoding delay inherent in the Viterbi decoder can be overcome by introduc-
ing an identical delay in the tap weight adjustment of the equalizer coefficients
as shown in Fig. 11-2-3. The major price that must be paid for the added delay
is that the step-size parameter in the LMS algorithm must be reduced, as
described by Long et al. (1987, 1989), in order to achieve stability in the
algorithm,

In channels with one or more in-band spectral nulls, the linear equalizer is

Adjustment of equalizer based on decisions from the Viterbi decoder.

Error signal
e
Ay
Received
signal
samples | Adaptive Vertibi
—_— imc?r . -+ Decisions
equalizer )
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FIGURE 11-2-4  Use of predictive DFE with interleaving and trellis-coded modulation.

no longer adequate for compensating the channel intersymbol interference.
Instead, we should like to use a DFE. But the DFE requires reliable decisions
in its feedback filter in order to cancel out the intersymbol interference from
previously detected symbols. Tentative decisions prior to decoding would be
highly unreliable and, hence, inappropriate. Unfortunately, the conventional
DFE cannot be cascaded with the Viterbi algorithm in which post-decoding
decisions from the decoder are fed back to the DFE.

One alternative is to use the predictive DFE described in Section 10-3-3. In
order to accommodate for the decoding delay as it affects the linear predictor,
we introduce a periodic interleaver/deinterleaver pair that has the same delay
as the Viterbi decoder and, thus, makes it poss:ble to generate the appropriate
error signal to the predictor as illustrated in the block diagram of Fig. 11-2-4.
The novel way in which a predictive DFE can be combined with Viterbi
decoding to equalize trellis-caoded signals is described and analyzed by
'Eyuboglu (1988). This same idea has been carried over to the equalization of
fading multipath channels by Zhou er al. (1988, 1990), but the structure of the
DFE was modified to use recursive least-squares lattice-type filters, which
provide faster adaptation to the time variations encountered in the channel.

11-3 AN ADAPTIVE CHANNEL ESTIMATOR
FOR ML SEQUENCE DETECTION

The ML sequence detection criterion implemented via the Viterbi algorithm as
embodied in the metric computation given by (10-1-23) and the probabilistic
symbol-by-symbol detection aigorithm described in Section 5-1-5 require
knowledge of the equivalent discrete-time channel coefficients {f;}. To accom-
modate a channel that is unknown or slowly time-varying, one may include a
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channei estimator connected in paralle! with the detection algorithm, as shown
in Fig. 11-3-1. The channel estimator, which is shown in Fig. 11-3-2 is identical
in structure to the linear transversal equalizer discussed previously in Section
11-1. In fact, the channel estimator is a replica of the equivalent discrete-time
channel filter that models the intersymbol interference. The estimated tap
coefficients, denoted by {f.}, are adjusted recursively to minimize the MSE
between the actual received sequence and the output of the estimator. For
example, the steepest-descent algorithm in a decision-directed mode of
operation is

t.. =1+ gl (11-3-1)

where i, is the vector of tap gain coefficients at the kth iteration, 4 is the step
size, g = v, — ¥, is the error signal, and I, denotes the vector of detected
information symbols in the channe] estimator at the kth iteration.

We now show that when the MSE between v, and 9, is minimized, the
resulting values of the tap gain coefficients of the channel estimator are the
values of the discrete-time channel model. For mathematical tractability, we
assume that the detected information sequence {I,} is correct, i.e., {I,} is

Adaptive transversal filter for estimating the channel dispersion.

—t 21 paeeaf ot 7t

AN
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identical to the transmitted sequence {/,}. This is a reasonable assumption
when the system is operating at a low probability of error. Thus, the MSE
beiween the received signal v, and the estimate 3, is

N 2
J(H= E( v~ 2 Fl, ) (11-3-2)
i=0
The tap coefficients {f,} that minimnize J(f) in (11-3-2) satisfy the set of N linear
equations
-l
2 fibi=di, k=0.1,..., N -1 (11-3-3)
el
where
N1
by, = E(LIX), di= 2 fd; (11-3-4)

Faul)]

From (11-3-3) and (11-3-4), we conclude that, as long as the information
sequence {/;} is uncorrelated, the optimum coefficients are exactly equal to the
respective values of the equivalent discrete-time channel. It is also apparent
that when the number of taps N in the channel estimator is greater than or
equal to L+ 1, the optimum tap gain coefficients {f;} are equal to the
respective values of the {f;}, even when the information sequence is correlated.
Subject to the above conditions, the minimum MSE is simply equal to the
noise vartance N,.

In the above discussion, the estimated information sequence at the output of
the Viterbi algorithm or the probabilistic symbol-by-symbol algorithm was
used in making adjustments of the channel estimator. For startup operation,
one may send a short training sequence to perform the initial adjustment of the
tap coefficients. as is usually done in the case of the linear transversal
equalizer. In an adaptive mode of operation, the receiver simply uses its own
decisions to form an error signal.

11-4 RECURSIVE LEAST-SQUARES ALGORITHMS
FOR ADAPTIVE EQUALIZATION

The LMS algorithm that we described in Sections 11-1 and 11-2 for adaptively
adjusting the tap coefficients of a linear equalizer or a DFE is basically a
(stochastic) steepest-descent algorithm in whick the true gradient vector is
approximated by an estimate obtained directly from the data.

The major advantage of the steepest-descent algorithm lies in its computa-
tional simplicity. However, the price paid for the simplicity is slow conver-
gence, especially when the channel characteristics result in an autocorrelation
mairix " whose eigenvalues have a large spread. i.e., A/ Amia >> 1. Viewed in
another way, the gradient algorithm has only a single adjustable parameter for

663



CHAPTER 1I: ADAPTIVE EQUALIZATION 055

controlling the convergence rate, namely, the parameter A. Consequently the
slow convergence is due to this fundamental limitation.

In order to obtain faster convergence, it is necessary to devise more complex
algorithms involving additional parameters. In particular, if the matrix T is
N XN and has eigenvalues A, A;, ..., Ay, we may use an algorithm that
contains N parameters—one for each of the eigenvalues. The optimum
selection of these parameters to achieve rapid convergence is a topic of this
section.

In deriving faster converging algorithms, we shall adopt a least-squares
approach. Thus, we shall deal directly with the received data in minimizing the
quadratic performance index, whereas previously we minimized the expected
value of the squared error. Put simply, this means that the performance index
is expressed in terms of a time average instead of a statistical average.

It is convenient to express the recursive least-squares algorithms in matrix
form. Hence, we shall define a number of vectors and matrices that are needed
in this development. In so doing, we shall change the notation slightly.
Specifically, the estimate of the information symbol at time 1, where  is an
integer, from a linear equalizer is now expressed as

K
Iy=2% ¢t-1y,

=K

By changing the index j on c¢i(t—1) to run from j=0 to j=N-1 and

simultaneously defining

: ) =vk
the estimate I(¢) becomes
- N
=2 ct= 1y =)
i<
= C(t — 1YY (1) (11-4-1)

where Cy(r—1) and Y,(t) are, respectively, the column veciors of the
equalizer coefficients ¢;(t — 1), =0,1,..., N— 1, and the input signals y(r -
Ni=012.. . ,N-1

Sirilarly, in the decision-feedback equalizer, we have tap coefficients ¢,(1),

Jj=0,1,...,N—1, where the first K, + 1 are the coefficients of the feedfor-
ward ﬁlter and the remaining K, =N - K, —1 are the coefficients of the
feedback filter. The data in the estimate F(1) is vk, ..., Vpuy, [roys oo, T, g,

where T, -j» 1=j=K,, denote the decisions on previously detected symbeols. In
this development, we neglect the effect of decision errors in the algorithms.
Hence, we assume that I ,=1,_;,, 1 sj=<K,. For notational convenience, we
also define

. Vyx, 0sj=K
y(f“1)={1 amy 0S/=K)

s (Ki<j<N-1) (142
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Thus,
Yau)=[y@) ye—-1) ... y(t-N+1Y

= {u.wﬁ’, R NI SR L—K:]{ (11-4-3)

11-4-1 Recursive Least-Squares (Kalman) Algorithm

The recursive least-squares (RLS) estimation of 7(z) may be formulated as
follows. Suppose we have observed the vectors Yu(n), n=0,1,... ¢, and we
wish to determine the coefficient vector Cn(¢) of the equalizer (linear or
decision-feedback) that minimizes the time-average weighted squared error

& = E w' ™ len(n, 1) (11-4-4)
=0

where the error is defined as
en(n, 1) = 1(n) ~ CNYr(n) {11-4-5)
and w represents a weighting factor 0 <w <1. Thus we introduce exponential
weighting into past data, which is appropriate when the channel characteristics
are time-variant. Minimization of &}° with respect to the coefficient vector
C. (1) yields the set of linear equations
Ra(0)Ch(1) = Dp(r) (11-4-6)

where Rn(1) is the signal correlation matrix defined as
Ruy(t) = 2:,0 w Y ) Yh(n) (11-4-7)
and Dy(r) is the cross-correlation vector
D)= "2;" w' T )Y ¥(n) (1i-4-8)

The solution of (11-4-6) is
Cn() =Ry (NDA(1) (11-4-9)

The matrix Ry(¢) is akin to the statistical autocorrelation matrix I'y, while
the vector Dx(?) is akin to the cross-correlation vector £y, defined previously.
We emphasize, however, that Rx(f) is not a Toeplitz matrix. We also should
mention that, for small values of 1, Ry(r) may be ill conditioned: hence, it is
customary to initially add the matrix 8ly to Ry(r), where 8 is a small positive
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constant and Iy is the identity matrix, With exponential weighting into the
past, the effect of adding 61y dissipates with time.

Now suppose we have the solution (11-4-9) for time 1 -1, ie., Cy(r — 1),
and we wish to compute Cuf¢). It is inefficient and, hence, impractical to solve
the set of N linear equations for each,new signal component that is received.
To avoid this, we proceed as foliows. First, R, (f) may be computed recursively
as

Ra(t)=wRy(t = 1} + YH(O)Y M) (11-4-10)
We call (11-4-10) the rime-update equation for Ru/(1).
Since the inverse of Ry(r) is needed in (11-4-9), we use the matrix-inverse
identity
R - DYXOYLORR' (- 1)
w+ YN(OR (1 — )Y

RO - [RVG-1)

(11-4-11)

Thus Ry'(r) may be computed recursively according to (11-4-11).
For convenience, we define P, (t) = R5'(¢). It is also convenient to define an
N-dimensional vector, called the Kaiman gain vector, as

l *
Knlt) = iy P~ DY) (11-4-12)

+
where py(r) is a scalar defined as

mn() = YnOBN(r — 1)Y(0) (11-4-13)
With these definitions, (11-4-11) becomes

I
Pu(r) = ” [Pa(z = 1) = Kx ()Y MOPA(r = 1)] (11-4-14)
Suppose we postmultiply both sides of (11-4-14) by Y%(t). Then

P.()YX() = i{PN(I = DY) — Ka() YMOPN{r — 1YY ()]

- %{[W + sl ]Kn () — Kn(pn()}

= Kp(r) (114-15)

Therefore, the Kalman gain vector may also be defined as Py(r)Y(¢).
Now we use the matrix inversion identity to derive an equation for
obtaining Cn(r) from Cy(r — 1). Since

Ca(r) = Pa(t)D(1)
and

Dr(1) = wDn(t — 1) + I(1)Y2(?) (11-4-16)
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we have
Cu(n) = i[PNU = 1) = Kp(OYMOPA (= Dl Du(e — 1)+ HOYE(D)]
=Py =D - )+ ;:— HOP (e — DYX()
= KA OYWUOPL(r = DD (e = 1)

i
= OKAOYNOP (7~ LYo

= Cy(r = D+ Ky (1) = YOG (r = 1] {11-4-17)
Note that Y\ ()C(r — 1) is the output of the equalizer at time 7, i.e.,
() = YU)Cult — 1) (11-4-18)
and
exlt, t = 1)y =1(t) = () = ey(1) (11-4-19)

15 the error between the desired symbol and the estimate. Hence, Cn (1} is
updated recursively according to the relation
Cault) = Culr = 1) + Kntt)en(t) (11-4-20)

The residual MSE resulting from this optimization is

Eta = 2w IR — C(ODA() (11-421)

n=i

To summarize. suppose we have Cy(t —1) and P(r ~ 1), When a new
signal component is received, we have Y,(¢). Then the recursive computation
for the time update of Cy(r) and P.{r) proceeds as follows:

* compute output:
H) = Y€yt = 1)
* compute error:
ex(t)=I(t)~ I ()
» compute Kalman gain vector:
Py(r - 1)Y\(1)
w o+ YO (- DY X0

* update inverse of the correlation matrix:

K1) =

1
Pu(t) == [Pu(t = 1) = Kn()YM(1)Pu(r ~ 1)

update coefiicients:
Cu()=Cu(t = 1) + K (then(t)
= Cn(r = 1) + Py(0)Y*(t)en(?) (11-4-22)
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Comparison of convergence rate for the
Kalman and gradient algorithms.

The algorithm described by (11-4-22) is called the RLS direct form or Kalman
algorithm. It is appropriate when the equalizer has a transversal (direct-form)
structure.

Note that the equalizer coefficients change with time by an amount equal to
the error en(f) multiplied by the Kalman gain vector Ky (r). Since Ky(f) is
N-dimensional, each tap coefficient in effect is controlled by one of the
elements of Ky(t). Consequently rapid convergence is obtained. In contrast,
the steepest-descent algorithm, expressed in our present notation, is

Cr(t) = Calt — 1) + AYH(Nen(r) (11-4-23)

and the only variable parameter is the step size A.

Figure 11-4-1 illustrates the initial convergence rate of these two algorithms
for a channel with fixed parameters f; = 0.26, f, =0.93, f, = 0.26, and a linear
equalizer with 11 taps. The eigenvalue ratio for this channel is A /A, = 11.
All the equalizer coefficients were initialized to zero. The sieepest-descent
algorithm was implemented with A = 0.020. The superiority of the Kalman
algorithm is clearly evidenmt. This is especially important in tracking a
time-variant channel. For example, the time variations in the characteristics of
an (iorospheric) high-frequency (HF) radio channel are too rapid to be
equalized by the gradient algorithm, but the Kalman algorithm adapts
sufficiently rapidly to track such variations.

In spite of its superior tracking performance, the Kalman algorithm
described above have two disadvantages. One is its complexity. The second is
its sensitivity to roundoff noise that accumulates due to the recursive
computations. The latter may cause instabilities in the algorithm.

The number of computations or operations (multiplications, divisions, and
subtractions) in computing the variables in (11-4-22) is proportional to N,
Most of these operations are involved in the updating of Py(t). This part of the
computation is also susceptible to roundoff noise. To remedy that problem,
algorithms have been developed that avoid the computation of P(r) according

to (11-4-14). The basis of these algorithms lies in the decomposition of Py(¢) in
the form

Pu(t) = Sp{O)AN(1SMY) (11-4-24)
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where Sy(t) is a lower-triangular matrix whose diagonal elements are unity,
and A,(1) is a diagonal matrix, Such a decomposition is called a square-root
factorization (see Bierman, 1977). This factorization is described in Appendix
D. In a square-root algorithm, P,(¢) is not updated as in (11-4-14) nor is it
computed. Instead, the time updating is performed on Sy(r) and A.(r).

Square-root algorithms are frequently used in control systems applications
in which Kalman filtering is involved. In digital communications, the square-
root Kalman aigorithm has been implemented in a decision-feedback-equalized
PSK modem designed to transmit at high speed over HF radio channels with a
nominal 3 kHz bandwidth. This algorithm is described in the paper by Hsu
(1982). It has a computational complexity of 1.5N? +6.5N (complex-valued
multiplications and divisions per output symbol). It is also numerically stable
and exhibits good numerical properties. For a detailed discussion of square-
root algorithms in sequential estimation, the reader is referred to the book by
Bierman (1977).

It is also possible to derive RLS algorithms with computational complexities
that grow linearly with the number N of equalizer coefficients. Such algorithms
are generally called fast RLS algorithms and have been described in the papers
by Carayannis ez al. (1983), Cioffi and Kailath (1984), and Slock and Kailath
(1988).

11-4-2 Linear Prediction and the Lattice Filter

In Chapter 3, we considered the linear prediction of a signal, in the context of
speech encoding. In this section, we shall establish the connection between
linear prediction and a lattice filter.

The linear prediction problem may be stated as follows: given a set of data

y(t—1), y(t=2),...,y(t — p), predict the value of the next data point y(f).
The predictor of order p is

()= ;{ an y(t — k) (11-4-25)
Minimization of the MSE, defined as
& =Ey® -]
2
- [y - 21 o= 1) (11-4-26)
with respect 10 the predictor coefficients {a,.} yields the set of linear equations

f:a,*tﬁ(k ~D=¢(), (=12,...,p (11-4-27)

k=1
where

()= Efy(t)yt + 1)
These are called the normal equations or the Yule—Walker equations.
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The matrix @ with elements ¢(k —!) is a Toeplitz matrix, and, hence, the
Levinson-Durbin algorithm described in Appendix A provides an efficient
means for solving the linear equations recursively, starting with a first-order
predictor and proceeding recursively to the solution of the coefficients for the
predictor of order p. The recursive relations for the Levinson—-Durbin
algorithm are

#(1)

ay, =—=, =¢(0
Al Ar

. ¢(m) — Al (114-28)
gm—l

Aok = -1 k — Q@ —1m-k

%, =8, (1-ak.)

form=1,2,...,p, where the vectors A, _, and d,,_, are defined as

Am-—l=[am—ll A2 - am—lmul]'
m-1=[dlm —1) ¢(m-2) ... ¢Q1)f

The linear prediction filter of order m may be realized as a transversal filter
with transfer function ‘

An(z)=1- i a2 " (11-4-29)

Its input is the data {y(¢)} and its output is the error e(t) = y(¢) — §(¢). The
prediction filter can also be realized in the form of a lattice, as we now
demonstrate.

Our starting point is the use of the Levinson—Durbin algorithm for the
predictor coefficients a,,, in (11-4-29). This substitution yields

m=—1
Am(z) =1- 2 (am-l kT Qmmm- m*k)z - amz_m
k=]

m-1 m=1

— -k -

=1- 2 Qn-1xZ Al m(l - 2 am—iizk)
k=1 k=1

=An-2) —apnz A, (27) (11-4-30)

Thus we have the transfer function of the mth-order predictor in terms of the
transfer function of the (m — 1)th-order predictor, '
Now suppose we define a filter with transfer function G,,(z) as

G(2)=2""An(z7") (11-4-31)
Then (11-4-30) may be expressed as
Anl2) = Ap1(2) = Bz 'Gu i (2) (11-4-32)
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Note that G, .,(z) represents a transversal filter with tap coefficients
(@1 m-ts =Gm-im-2s -+ —Gm-11,1), while the coefficients of A, 1(:)
are exactly the same except that they are given in reverse order.

More insight into the relationship between A,,(z) and G.(z) can be
obtained by computing the output of these two filters to an input sequence
y{t). Using z-transform rejations, we have

A ()Y (2)= Ap- ()Y (2) — Gt G (D)Y(2)  (11-4-33)
We define the outputs of the filters as

"FR(2)=AL(2)Y(2)

(11-4-34)
B.(2)=G,(2)Y(2)
Then (11-4-33) becomes
Foa(2) = Fopi(2) = @pum2 7' By - (2) (11-4-35)
In the time domain, the relation in {11-4-35) becomes
Fn@) = fouailt) = b 1 (t -1), m=1 (11-4-36)
where
falt)=y() - E‘ Qi Y{£ — k) (11-4-37)
-1
bu(t)=y(t=m)— 3, apmey(t —m+k) (11-4-38)
k=1

To elaborate, ]S,,(r) in (11-4-37) represents the error of an mth-order forward
predictor, whilc b,(t) represents the error of an mth-order backward
predictor.

The relation in (11-4-36) is one of two that specifies a lattice filter. The
second relation is obtained from G,,(z) as follows:

Gn(2)=2""A(z")
=2 " A (271 — Az ™A, (2)]
=Z“IGm—I(z)_ammA'm‘l(z) (11'4'39)

Now, if we multiply both sides of (11-4-39) by ¥(z) and express the result in
terms of £,,(z) and B,,(z) using the definitions in (11-4-34), we obtain

B,(z)=27"'Bp-1(2) = @puFrn-1(2) (11-4-40)

By transforming (11-4-40) into the time domain, we obtain the second relation
that corresponds to the lattice filter, namely,

bu(t) = bp-s(t = 1) = Gpnfinr(t), m=1 (11-4-41)
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A lattice filter,
The initial condition is
Jo(t) = bolt) = y(r) (11-4-42)

The lattice filter described by the recursive relations in (11-4-36) and (11-4-41)
is illustrated in Fig. 11-4-2. Each stage is characterized by its own multiplication
factor {a;}, i=1, 2,...,m, which is defined in the Levinson-Durbin algorithm.
The forward and backward errors f,(f) and b,(f) are usually called the
residuals. The mean square value of these residuals is

€. = E(fn(1)] = E[b2.()] (11-4-43)
&, is given recursively, as indicated in the Levinson-Durbin algorithm, by
gm = Sm—l(l - azmm)

S JICE (114-44)

i=1
where % = ¢(0).
The residuals {f,,(¢)} and {b,,(r)} satisfy a number of interesting properties,
as described by Makhoul (1978). Most important of these are the orthogonality
properties

Ebm()ba()] = &5,

E[fult + m)fy(t + 1)) = €15,y (11-4-45)
Furthermore, the cross-correlation between f,,(r) and b, (1) is
_ &, (m=n)
Elm@bu0] = { ) mn0 (11-4-46)

As a consequence of the orthogonality properties of the residuals, the
different sections of the lattice exhibit a form of independence that allows us to
add or delete one or more of the last stages without affecting the parameters of
the remaining stages. Since the residual mean square error €, decreases
monotonically with the number of sections, &, can be used as a performance
index in determining where the lattice should be terminated.

From the above discussion, we observe that a linear prediction filter can be °
implemented either as a linear transversal filter or as a lattice filter. The lattice
filler is order-recursive, and, as a consequence, the number of sections it
contains can be easily increased or decreased without affecting the parameters
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of the remaining sections. In contrast, the coefficients of a transversal filter
obtained on the basis of the RLS criterion are interdependent. This means that
an increase or a decrease in the size of the filter results in a change in all
coefficients. Consequently, the Kalman algorithm described in Section 11-4-1 is
recursive in time but not in order.

Based on least-squares optimization, RLS lattice algorithms have been
developed whose computational complexity grow linearly with the number Nz
of filter coefficients (lattice stages). Hence, the lattice equalizer structure is
computationally competitive with the direct-form fast RLS equalizer algo-
rithms. RLS lattice algorithms are described in the papers by Morf er al.
(1973), Saterius and Alexander (1979), Satorius and Pack (1981), Ling and
Proakis (1984), and Ling et al. (1986).

RLS lattice algorithms have the distinct feature of being numerically robust
to round-off error inherent in digital implementations of the algorithm. A
treatment of their numerical properties may be found in the papers by Ling et
al. (1984, 1986).

11-5 SELF-RECOVERING (BLIND) EQUALIZATION

%

In the conventional zero-forcing or minimum MSE equalizers, we assumed that
a known training sequence is transmitted to the receiver for the purpose of
initially adjusting the equalizer coefficients. However, there are some applica-
tions, such as multipoint communication networks, where it is desirable for the
receiver to synchronize to the received signal and to adjust the equalizer
without having a known training sequence available. Equalization techniques
based on initial adjustment of the coefficients without the benefit of a training
sequence are said to be self-recovering or blind.

Beginning with the paper by Sato (1975), three different classes of adaptive
blind equalization algorithms have been developed over the past two decades.
One class of algorithms is based on steepest descent for adaptation of the
equalizer. A second class of algorithms is based on the use of second- and
higher-order (generally, fourth-order) statistics of the received signal to
estimate the channel characteristics and to design the equalizer. More recently,
a third class of blind egualization algorithms based on the maximum-likelihood
criterion have been investigated. In this section, we briefly describe these
approaches and give several relevant references to the literature.

11-.5-1 Blind Equalization Based on Maximum-Likelihood

Criterion

It is convenient to use the equivalent, discrete-time channel model described in
Section 10-1-2. Recall that the output of this channel model with ISI is

L
Vo= D, fln-s + 1, (11-5-1)
k=0
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where {f;} are the equivalent discrete-time channel coefficients, {I,} represents
the information sequence, and {7,} is a white gaussian noise sequence.

For a block of N received data points, the (joint) probability density
function of the received data vector v={v, v, ... vy] conditioned on
knowing the impulse response vector f=[f, f, ... f.]' and the data vector
I= [1'. !2 . !N]' is

2) (11-5-2)

1 -1 X L
=———exp|(-z5 > .= D fil.-
P(v|tD (ZJraz)Ner( 207 .,gl 0= 2 il
The joint maximum-likelihood estimates of f and I are the values of these
vectors that maximize the joint probability density function p(v |1, 1) or,
equivalently, the values of [ and I that minimize the term in the exponent.
Hence, the ML solution is simply the minimum over f and I of the metric

N L 2
DM@, = 2, [vn = 2 filu-s|
= |lv - Af||? (11-5-3)
where the matrix A is called the date matrix and is defined as
K 0 ... 0 7
L I o ... 0

A=15L L L ... 0 (11-5-4)

Iv Ivoy Iny ... Iy

We make several observations. First of all, we note that when the data
vector I (or the data matrix A) is known, as is the case when a training
sequence is available at the receiver, the ML channel impulse response
estimate obtained by minimizing (11-5-3) over f is

£ (D) = (A'A)'A'v (11-5-5)

On the other hand, when the channel impulse response f is known, the
optimum ML detector for the data sequence I performs a trellis search (or tree
search) by utilizing the Viterbi algorithm for the ISI channel.

When neither I nor f are known, the minimization of the performance index
DM(Lf) may be performed jointly over I and f. Alternatively, f may be
estimated from the probability density function p(v | f), which may be obtained
by averaging p(v,f| I) over all possible data sequences. That is,

- e
POV ID=2 P17 [D) (1-546)

=2 p(v|I7, HPA™)
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where P(I'") is the probability of the sequence 1 =1"", form=1,2,..., M"
and M is the size of the signal constellation.

Channel Estimation Based on Average over Data Sequences As indi-
cated in the above discussion, when both 1 and f are unknown, one approach is
to estimate th= impulse response f after averaging the probability density
p(v,1| £) over »ll possible data sequences. Thus, we have

p(vIH =2 pv 1™, HEI™)
m (11-5-7)

-3 lz)ﬁ,exp(_ v = Avmru*)]pw»,)

(2no 247

Then, the estimate of f that maximizes p(v | f) is the solution of the equation

M = 2 P(I'™)
A ” (11-5-8)
B ||‘, - A{m)l-uz) o

(A(M)IA(M]l’ - Atmu‘,} exp ( 5 3
[

Hence, the cstimate of f may be expressed as

t= [ S Pam)A Ay, A )
" (11-5-9)
x 2 P(l"’")g(v, AV, nAtm)r‘,

where the funciion g(v, A, f) is defined as

lv- A‘""rn’)

g(v,A" ) = exp ( = (11-5-10)

The resulting sclution for the optimum f is denoted by f,,, .

Equation (11-5-9) is a nonlinear equation for the estimate of tne channel
impulse response, given the received signal vector v. It is generally difficult to
obtain the optimum solution by solving (11-5-9) directly. On the other hand, it
is relatively simple to devise a numerical method that solves for f,,
recursively. Specifically, we may write

‘(k+l) —_ [2 P(l(m))A(m):A(m]g(v’ A(m)’ r(l;))] =1
X 3 PI™)g (v, A™, f0) Aty (11-5-11)

Once fy,, is obtained from the solution of (11-5-9) or (11-5-11), we may
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simply use the estimate in the minimization of the metric DM(L. £, }. given by
{11-5-3), aver all the possible data sequences. Thus, I, is the scquence 1 thas
mimimizes DM (L £, ). i.e.,

min DM (1, fm_)-:mlin ilv — Ay I? (11-5-12)
I

We know that the Viterbi algorithm is the computationally efficient algorithm
for performing the minimization of DAM(I, f,,,) over L.

This algorithm has two major drawbacks. First, the recursion for €, ,, given
by (11-5-11) is computationally intensive. Second, and, perhaps, more impor-
tantly, the estimate fy,, is not as good as the maximum-likelihood estimate
£y, (1) that is obtained when the sequence I is known, Consequently, the error
rate performance of the blind equalizer (the Viterbi algorithm) based on the
estimate fy, is poorer than that based on f,, (I). Next, we consider joint
channel and data estimation,

Joint Channel and Data Estimation Here, we consider the joint optimiza-
tion of the performance index DM(I, f) given by (11-5-3). Since the elements
of the impulse response vector, f are continuous and the elements of the data
vector I are discrete, one approach is to determine the maximum-likelihood
estimate of f for each possible data sequence and, then, to select the data
sequence that minimizes DM(I,f) for each corresponding channel estimate.
Thus, the channe] estimate corresponding to themth data sequence 1™ is

Frr e (T77) = (AU ALy =1 glmdty (11-5-13)
For the mth data sequence, the metric DM(L, f) becomes
DM, Ly (1)) = flv — A8y, (1)) (11-5-14)

Then, from the set of M" possible sequences, we select the data sequence that
minirnizes the cost function in (11-5-14), i.e., we determine

T«’;? DMI™, 1, (1)) {11-5-15)

The approach described above is an exhaustive computational search
method with a computational complexity that grows exponentially with the
length of the data block. We may select N = L, and, thus, we shall have one
channel estimate for each of the M* surviving sequences. Thereafter, we may
continue to maintain a separate channel estimate for each surviving path of the
Viterbi algorithm search through the trellis.

A similar approach has been proposed by Seshadri (1991). In essence.
Seshadni’s algorithm is a type of generalized Viterbi algorithm (GVA) that
retains K =1 best estimates of the transmitted data sequence into each state
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of the trellis and the corresponding channel estimates. In Seshadri's GVA, the
search is identical to the conventional VA from the beginning up to the L stage
of the trellis, i.e., up to the point where the received sequence (v, va,..., v)
has been processed. Hence, up to the L stage, an exhaustive search is
performed. Associated with each data sequence I, there is a corresponding
channel estimate f,,, (I*). From this stage on, the search is modified, to retain
K =1 surviving sequences and associated channel estimates per state instead of
only one sequence per state. Thus, the GVA is used for processing the
received signal sequence {v,,n =L +1}. The channel estimate is updated
recursively at each stage using the LMS algorithm to further reduce the
computational complexity. Simulation results given in the paper by Seshadri
(1991) indicate that this GYA blind equalization algorithm performs rather
well at moderate signal-to-noise ratios with X =4. Hence, there is a modest
increase in the computational complexity of the GVA compared with that for
the conventional VA. However, there are additional computations involved
with the estimation and updating of the channel estimates (I} associated
with each of the surviving data estimates.

An alternative joint estimation algorithm that avoids the ieast-squares
computation for channel estimation has been devised by Zervas et al. (1991).
In this algorithm, the order for performing the joint minimization of the
performance index DM(I, f) is reversed. That is, a channel impuise response,
say f=f" is selected and then the conventional VA is used to find the
optimum sequence for this channel impuise response. Then, we may modify f"
in some manner to f* =" + Af") and repeat the optimization over the data
sequences {I""}.

Based on this general approach, Zervas developed a new ML blind
equalization algorithm, which is called a quantized-channel algorithm. The
algorithm operates over a grid in the channel space. which becomes finer and
finer by using the ML criterion to confine the estimated channel in the
neighborhood of the original unknown channel. This algorithm leads to an
efficient parallel implementation, and its storage requirements are only those
of the VA,

11-5-2 Stochastic Gradient Algorithm

Another class of blind equalization algorithms are stochastic-gradient iterative
equalization schemes that apply a memoryless nonlinearity in the output of a
linear FIR equalization filter in order to generate the “desired response™ in
each iteration.

Let us begin with an initial guess of the coefficients of the optimum
equalizer, which we denote by {c,}. Then, the convolution of the channel
response with the equalizer response may be expressed as

{ead H{f,}={8,} +{e.} (11-5-16)
where {§,} is the unit sample sequence and {e,} denotes the error sequence
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that results from our initial guess of the equalizer coefficients. 1f we convolve
the equalizer impulse response with the received sequence {v,}, we obtain

{1} = {wa} * {c.}
={L} % {fu} % {cn} + {ma} % {c,}
={L} % ({8} + {e,}) + {na} * {ca}
={L}+{L} * {e.} + {n.} % {c,} (11-5-17)

The term {l} in (11-5-17) represents the desired data sequence, the term
{I.} * {e,} represents the residual ISI, and the term {»,} % {c,} represents the
additive noise. Our problem is to utilize the deconvolved sequence {I,} to find
the “best” estimate of a desired response, denoted in general by {d,}. In the
case of adaptive equalization using a training sequence, {d,} ={L,}. In a blind
equalization mode, we shall generate a desired response from {I,}.

The mean square error (MSE) criterion may be employed to determine the
“best” estimate of {/,} from the observed equalizer output {f,}. Since the
transmitted sequence {/,} has a nongaussian pdf, the MSE estimate is a
nonlinear transformation of {7,}. In general, the “‘best” estimate {d,} is given
by

d,=g(l,) (memoryless) (11-518)
d,=g(l,1..1,..., 1,_) (mth-order memory)

where g( ) is a nonlinear function. The sequence {4,} is then used to generate
an error signal, which is fed back into the adaptive equalization filter, as shown
in Fig. 11-5-1.

A well-known classical estimation problem is the following. If the equalizer
output 7, is expressed as

=L+, (11-5-19)

where 1), is assumed 1o be zero-mean gaussian (the central limit theorem may

i i Decisi
nput Adapiive | Output sion

equalizer

FIGURE 11-5-1  Adaptive blind equalization with stochastic
gradient algorithms.
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STOCHASTIC GRADIENT ALGORITHMS FOR BLIND EQUALIZATION

Equalizer tap coefficients {c, . 0<n=N-1}
Received signal sequence {g,,}

Equalizer output sequence {la}= v, } * e, }
Equalizer error sequence fey=gll)-1,

Tap coefficient update equation e, ., =c, + Av’e,

Algorithm Nonlinearity: g(I,)
I, iy . < EL

Godard b (] + Ry 1, — 1LY, Ry = B

iy - EllRe (1))
e A AT
Benveniste-Goursat Lo+ kol ~ 1) + koW, =10 [ csgn(F,) - 1,), k&, and

k, are positive conslants

Stop-and-Go I, +%Ad, - 1) + §B(I, - 1)* (A, B)=(2,0), (1.1),

(1. =1). or (0.0), depending on the signs of decision-
directed error I, -, and the error ¢csgn () -1,

be invoked here for the residual ISI and the additive noise), {1,} and {7,} are
statistically independent, and {/,} are statistically independent and identically
distributed random variables, then the MSE estimate of {I,} is

d,=EU,|1) (11-5-20)

which is a nonlinear function of the equalizer output when {/,} is nongaussian.

Table 11-5-1 illustrates the gerieral form of existing blind equalization
algorithms that are based on LMS adaptation. We observe that the basic
difference among these algorithms lies in the choice of the memoryless
nonlinearity. The most widely used algorithm in practice is the Godard
algorithm, sometimes also called the constant-modulus algorithm (CMA).

It is apparent from Table 11-5-1 that the output sequence {d,} obtained by
taking a nonlinear function of the equalizer output plays the role of the desired
response or a training sequence. It is also apparent that these algorithms are
simple to implement, since they are basically LMS-type algorithms. As such,
we expect that the convergence characteristics of these algorithms will depend
on the autocorrelation matrix of the received data {v.}

With regard to convergence, the adaptive LMS-type algorithms converge in
the mean when

Elv,g*(1.)] = E[vaI2] (11-5-21)
and, in the mean square sense, when (superscript /# denotes the conjugate

transpose)
E[civ,g*(1,)] = E[cv,[#]

Ell.g*(.)] = E.P] (11-5-22)
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Therefore, it is required that the equalizer ou}put {1,} satisfy (11-5-22). Note
that (11-5-22) states that the autocorrelation of {I,} (the right-hand side) equals
the cross-correlation between 1, and a nonlinear transformation of J, (left-hand
side). Processes that satisfy this property are called Bussgang (1952), as named
by Bellini (1986). In summary, the algorithms given in Table 11-5-1 converge
when the equalizer output sequence I, satisfies the Bussgang property.

The basic limitation of stochastic gradient algorithms is their relatively slow
convergence. Some improvement in the convergence rate can be achieved by
modifying the adaptive algorithms from LMS-type to recursive-least-square
(RLS) type.

Godard Algorithm As indicated above, the Godard blind equalization
algorithm is a steepest-descent algorithm that is widely used in practice when a
lraining sequence is not available. Let us describe this algorithm in more detail.

Godard considered the problem of combined equalization and carrier phase
recovery and tracking. The carrier phase tracking is performed at baseband,
following the equalizer as shown in Fig. 11-5-2. Based on this structure, we
may express the equalizer output as

K
L= 2 coven (11-5-23)

n=-K

and the input to the decision device as I, exp (—jd,), where @, is the carrier
phase estimate in the kth symbol interval.
If the desired symbol were known, we could form the error signal

£, =1, — fe % (11-5-24)
and minimize the MSE with respect to ¢, and {c,}, i.e..
min E(Jl, — I,e /%) (11-5-25)
#4,C

Godard scheme for combined adaptive (blind) equalization and carrier phase tracking.

C[Bm‘l

1] Qam | Phase —‘é}—‘ Adaptive

modulator splitter equalizer
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This critenon leads us to use the LMS algorithm for recursively estimating €
and ¢,. The LMS algorithm based on knowledge of the transmitted sequence
is '

Cooi=C + Al — I e ¥)VEerd (11-5-26)
Gur = G + Ay Im (L™ (11-5-27)

where A, and 4, are the step-size parameters for the two recursive equations.
Note that these recursive equations are coupled together. Unfortunately, these
equations will not converge. in general, when the desired symbol sequence {I;}
is unknown.

The approach proposed by Godard is to use a criterion that depends on the
amount of intersymbol interference at the output of the equalizer bul one that
is independent of the QAM signal constellation and the carrier phase. For
example, a cost function that is independent of carrier phase and has the
property that its minimum leads to a small MSE is

G = E(L* ~ ki (11-5-28)

where p is a positive and real integer. Minimization of G'”’ with respect to the
equalizer coefficients results in the equalization of the signal amplitude only.
Based on this observation, Godard selected a mare general cost function,
called the dispersion of order p, defined as

D" =E(L) - R, (11-5-29)

where R, is a positive real constant. As in the case of G'7', we observe that
D¢ is independent of the carrier phase.

Minimization of D'”’ with respect to the equalizer coefficients can be
performed recursively according to the steepest-descent algorithm

thm

C;,H =Ck "ﬁ_,. dC
"

(11-5-30)

where A, is the step-size parameter. By differentiating D'”’ and dropping the
expectation operation, we obtain the following LMS-type algorithm for
adjusting the equalizer coefficients:

Conr=Co+ A, VEL LY 2 (R, - 11)") (11-5-31)
where 4, is the step-size parameter and the optimum choice of R, is
E(L™)
=—k 7 11-5-32
» = E(LP) (1132

As expected, the recursion in (11-5-31) for €, does not require knowledge
of the carrier phase. Carrier phase tracking may be carried out in a
decision-directed mode according to (11-5-27).
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Of particular importance is the case p =2, which leads to the relatively
simple algorithm

Cov = Co+ A VEL(R, - (1%

- X o 11-5-33)
Gra =+ A, Im (!kjfe'm) (
where I, is the output decision based on 7, and
Pt
L= E(Ifklz) (11-5-34)
E(LI)

Convergence of the algorithm given in (11-5-33) was demonstrated in the
paper by Godard (1980). Initially, the equalizer coefficients were set to zero
except for the center (reference) tap, which was set according to the condition

E Ll

2
ol > S e (EQLPT

(11-5-35)
which is sufficient, but not necessary, for convergence of the algorithm.
Simulation results performed by Godard on simulated telephone channels with
typical frequency response characteristics and transmission rates of 7200-
12 000 bits/s indicate that the algorithm in (11-5-31) performs well and leads to
convergence in 5000-20 000 iterations, depending on the signal constellation.
Initially, the eye pattern was closed prior to equalization. The number of
iterations required for convergence is about an order of magnitude greater
than the number required to equalize the channels with a known training
sequence. No apparent difficulties were encountered in using the decision-
directed phase estimation algorithm in (11-5-33) from the beginning of the
equalizer adjustment process.

11-5-3 Blind Equalization Algorithms Based on Second- and
Higher-Order Signal Statistics

It is well known that second-order statistics (autocorrelation) of the received
signal sequence provide information on the magnitude of the channel
characleristics, but not on the phase. However, this statement is not correct if
the autocorrelation function of the received signal is periodic, as is the case
for a digitally modulated signal. In such a case, it is possible to obtain a
measurement of the amplitude and the phase of the channel from the received
signal. This cyclostationarity property of the received signat forms the basis for
a channel estimation algorithm devised by Tong et al. (1993).

It is also possible to estimate the channel response from the received signal
by using higher-order statistical methods. In particular, the impulse response of
a linear, discrete-time-invariant system can be obtained explicitly from
cumulants of the received signal, provided that the channel input is nongaus-
sian. We describe the following simple method for estimation of the channel
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impulse response from fourth-order cumulants of the received signal sequence.
The fourth-order cumutant is defined as

ClUL Uy Ve U =0 (m o )
= E(U Uk Vi Vi 1)
— E(vy vgam)E(Ug Vi)
= Elv, vy DEW o Vs )
= E(v, v JEWe i Vi) (11-5-36)

(The fourth-order cumutant of a gaussian signal process is zero.) Consequently,
it follows that

o mon Y= el Lo Do 1)) z fifcvmbernferr (11-5-37)
Pyury

For a statistically independent and identically distributed input sequence {I,}
to the channel, ¢({y. Ix . &y v, Ii ) = k, a constant, called the kurtosis. Then,
if the length of the channel response is L+ [, we may let m=n=/= —[ so
that

cA{-L,-L, ~L)=kf fi (11-5-38)
Similarly. if we let m =0, n = L and [ = p. we obtain
c{0. L, p) = kf, fif, (11-5-39)

If we combine (11-5-38) and (11-5-39). we obtain the impulse response within a
scale factor as

cA0. L. p)
j‘:’_ﬁ'c,(hL,-L, 0 p=12.. ., L (11-5-40)
The cumalants ¢,(m, n, l) are estimated from sample averages of the received
signal sequence {v,}.

Another approach based on higher-order statistics is due to Hatzinakos and
Nikias (1991). They have introduced the first polyspectra-based adaptive blind
equalization method named the tricepstrum equalization algorithm (TEA). This
method estimates the channel response characteristics by using the complex
cepstrum of the fourth-order cumulants (tricepstrum) of the received signal
sequence {v,}. TEA depends only on fourth-order cumulants of {u,} and is
capable of separately reconstructing the minimum-phase and maximum-phase
characteristics of the channel. The channel equalizer coefficients are then
computed from the measured channel characteristics. The basic approach used
in TEA is to compute the tricepstrum of the received sequence {v,}, which is
the inverse (three-dimensional) Fourier transform of the logarithm of the
trispectrum of {v,}. (The trispectrum is the three-dimensional discrete Fourier
transform of the fourth-order cumulant sequence ¢,(m, n, f)). The equalizer
coefficients are then computed from the cepstral coefficients.
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By separating the channel estimation from the channel equalization. it is
possible to use any type of equalizer for the ISIL, ie., either linear. or
deciston-feedback, or maximum-likelihood sequence detection. The major
disadvantage with this class of algorithms is the large amount of data and the
inherent computational complexity involved in the estimation of the higher-
order moments (cumulants) of the received signal.

In conclusion, we have provided an overview of three classes of blind
equalization algorithms that find applications in digital communications. Of the
three families of algorithms described. those based on the maximum-likelihood
criterion for jointly estimating the channel impulse response and the data
sequence are optimal and require relatively few received signal samples for
performing channel estimation. However, the computational complexity of the
algorithms is large when the ISI spans many symbols. On some channels, such
as the mobile radio channel, where the span of the ISI is relatively short, these
algorithms are simple to implement. However, on telephone channels, where
the [SI spans many symbols but is usually not too severe. the LMS-type
(stochastic gradient) algorithms are generally employed.

11-6 BIBLIOGRAPHICAL NOTES AND REFERENCES

Adaptive equalization for digital communications was developed by Lucky
(1965, 1966). His algorithm was based on the peak distortion criterion and led
to the zero-forcing algorithm. Lucky's work was a major breakthrough, which
led to the rapid development of high-speed modems within five years of
publication of his work. Concurrently, the LMS algorithm was devised by
Widrow (1966), and its use for adaptive equalization for complex-valued
(in-phase and quadrature components) signals was described and analyzed in a
tutorial paper by Proakis and Miller (1969).

A tutorial treatment of adaptive equalization algorithms that were de-
veloped during the period 1965-1975 is given by Proakis (1975). A more recent
tutorial treatment of adaptive equalization is given in the paper by Qureshi
(1985). The major breakthrough in adaptive equalization techniques, beginning
with the work of Lucky in 1965 coupled with the development of trellis-coded
modulation, which was proposed by Ungerboeck and Csajka (1976), has led to
the development of commercially available high speed modems with a
capability of speeds of 9600-28 800 bits/s on telephone channels.

The use of a more rapidly converging algorithm for adaptive equalization
was proposed by Godard (1974). Our derivation of the RLS (Katman)
algorithm, described in Section' 11-4-1, follows the approach outlined by
Picinbono (1978). RLS lattice algorithms for general signal estimation applica-
tions were developed by Morf er al. (1977, 1979). The applications of these
algorithms have been investigated by several researchers, including Makhout
(1978), Satorius and Pack (1981), Satorius and Alexander (1979), and Ling and
Proakis (1982, 1984a-c, 1985). The fast RLS Kalman algorithm for adaptive
equalization was first described by Falconer and Liung (1978). The above
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references are just a few of the important papers that have been published on
RLS algorithms for adaptive equalization and other applications.

Sato’s (1975) original work on blind equalization was focused on PAM
(one-dimensinal) signal constellations. Subsequently it was generalized to
two-dimensional and multidimensional signal constellations in the algorithms
devised by Godard (1980), Benveniste and Goursat (1984), Sato (1986),
Foschini (1983), Picchi and Prati (1987), and Shalvi and Weinstein (1990).
Blind equalization methods based on the use of second- and higher-order
moments of the received signal were proposed by Hatzinakos and Nikias
(1991) and Tong er al. (1994). The use of the maximum-likelihood criterion for
joint channel estimation and data detection has been investigated and treated
in papers by Seshadri (1991), Ghosh and Weber (1991), Zervas er al. (1991)
and Raheli e al. (1995). Finally. the convergence characteristics of stochastic
gradient blind equalization algorithms have been investigated by Ding (1990),
Ding er al. (1989). and Johnson (1991).

11-1 An equivalent discrete-time channel with white gaussian noise is shown in Fig.
P11-1.
a Suppose we use a linear equalizer to equalize the channel. Determine the tap
coefficients ¢ _,, ¢, ¢, of a three-tap equalizer. To simplify the computation, let
the AWGN be zero.

b The tap coefficients of the linear equalizer in (a) are determined recursively via
the algorithm

Ck+l=ck—Agk- Cn::[f-u Cog Cu.r

where g, =I'C, ~ b is the gradient vector and A is the step size. Determine the
range of values of A to ensure convergence of the recursive algorithm. To
simplify the computation, let the AWGN be zero.
¢ Determine the tap weights of a DFE with two feedforward taps and one
feedback gap. To simplify the computation, let the AWGN be zero.
11-2 Refer to Problem 10-18 and answer the following questions.
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a Determine the maximum value of A that can be used 1o ensure thal the
equalizer coefficients converge during operation in the adaptive mode.

b What is the variance of the self-noise generated by the three-tap equalizer when
operating in an adaptive mode, as a function of A? Suppose it is desired 1o limit
the variance of the self-noise to 10% of the minimum MSE for the three-tap
equalizer when N, =0.1. What value of A would you select?

¢ if the optimum coefficients of the equalizer are computed recursively by the
method of steepest descent. the recursive equation can be expressed in the form

Cm‘ n=({1-4ar¢,, + AE

where 1 is the identity matrix. The above represents a set of three coupled
first-order difference equations. They can be decoupled by a linear transforma-
tion that diagonalizes the matrix I'. That is, I’ = UAU' where A is the diagonal
matrix having the eigenvalues of I' as its diagonal elements and U is the
{normalized) modal matrix that can be oblained from your answer 10 10-18(b).
Let C' = U'C and determine the steady-state solution for C'. From this, evaluate
C=(U') 'C'=UC and, thus, show that your answer agrees with the result
obtained in 10-18(a).

11-3 When a periodic pseudo-random sequence of length N is used to adjust the

114

11-5

coefficients of an N-tap linear equalizer, the computations cany be performed
efficiently in the frequency domain by use of the discrete Fourier transform
(DFT). Suppose that {y,} is a sequence of N received samples (taken at the symbol
rate) at the equalizer input. Then the computation of the equalizer coefficients is
performed as follows.

a Compule the DFT of one period of the equalizer input sequence {v,}, i.e.,

N -1

How 3 e

n=A1
b Compute the desired equalizer spectrum

_xn
A

where {X.} is the precomputed DFT of the training sequence.
¢ Compute the inverse DFT of {C,} to obtain the equalizer coefficients {c,}. Show
that this procedure in the absence of noise yields an equalizer whose frequency
response is equal to the frequency response of the inverse folded channel
spectrum at the N uniformly spaced frequencies f, = &/NT, k =0,1,..., N — 1.
Show that the gradient vector in the minimization of the MSE may be expressed as

G, =~E (e.¥})
where the error €, =/, ~ I, and the estimate of G,, i.c..
e,,- = —E‘;,V:

satisfies the condition that £(G,) = G,.
The tap-leakage LMS algorithm proposed in the paper by Gitlin er o/, (1982) may
be expressed as

Cul(n +1) = wCy(n) + Ae(n)V3(n)
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where 0<w <1, A is the step size, and V,(n) is the data vector at time n.
Determine the condition for the convergence of the mean value of Cy(n).
11-6 Consider the random process

x(n)=gv(n)+w(n), n=01... M-1

where v(n) is a known sequence, g is a random variable with £(g)=0, and
E(g’) = G. The process w(n) is a white noise sequence with

Youlm) =038,
Determine the coefficients of the linear estimator for g, that is,
M1
g= 2 h(m)x(n)
A=

that minimize the mean squére error
11-7 A digital transversal filter can be realized in the frequency-sampling form with
system function (see Problem 10-25)

l*Z_MEI Hk

M = 1 _eﬂx&-wz B

=H(z W(z)

H(z)=

where #,(2) is the comb filter, Hy(z) is the parallel bank of resonators, and {H,}

are the values of the discrete Fourier transform (DFT).

& Suppose that this structure is implemented as an adaptive filter using the LMS
algorithm to adjust the filter (DFT) parameters {H,}). Give the time-update
equation for these parameters. Sketch the adaptive filter structure.

b Suppose that this structure is used as an adaptive channel equalizer in which the
desired signal is

M1 2 k
d(n)= 2 Ay coswen, w,= X
&=ty M

With this form for the desired signal, what advantages are there in the LMS
adaptive algorithm for the DFT coefficients {H,} over the direct-form structure
with coefficients {h{n})}? (see Proakis, 1970).

H-8 Consider the performance index

J=H +40h + 28

Suppose that we search for the minimum of J by using the steepest-descent
algorithm

h(n + 1) = h(n) ~ jAg(n)

where g(n) is the gradient.

# Determine the range of values of A that provides an overdamped system for the
adjustment process. :

b Plot the expression for J as a function of n for a value of A in this range.
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Xl »
L IS | f"l

FIGURE P11-9

119 Determine the cocfiicients a, and a, for the linear predictor shown in Fig. P11-9,
given that the autocorrelation y,.(rm) of the input signal is

yo{m)y=b", O<b<l

11-10 Determine the lattice filter and its optimum reflection coefficients corresponding to
the linear predictor in Problem 11-9.

11-11 Consider the adaptive FIR filter shown in Fig. P11-11. The system C((z) 1is
characterized by the system function

1

=00
Determine the optimum coefficients of the adaptive transversal (FIR} filter
B(z)=b,+ b,z"' that minimize the mean square error. The additive noise is
white with variance o2 =0.1.

11.12 An N XN cormrelation matrix I' has eigenvalues A, >A,>...>A,>0 and
associated eigenvectors vy, ¥,, . .., v,. Such a matrix can be represented as

N
r=> Avy®
i=1
a If T=T'""T"", where T'"? is the square root of I', show that I''* can be

represented as
N

r'2= E )“uz‘,",;.,r

i=1

b Using this representation, determine a procedure for computing I''”.

Adaptive
FIR + ein)
filter

win) 17
]

xtm Ciz)

FIGURE P11-11
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12

MULTICHANNEL AND
MULTICARRIER SYSTEMS

In some applications, it is desirable to transmit the same information-bearing
signal over several channels. This mode of transmission is used primarily in
situations where there is a high probability that one or more of the channels
will be unreliable from time to time. For example, radio channels such as
ionospheric scatter and tropospheric scatter suffer from signal fading due to
multipath, which renders the channels unreliable for short periods of time. As
another example. multichannel signaling is sometimes employed in military
communication systems as a means of overcoming the effects of jamming of the
transmitted signal. By transmitting the same information over multiple
channels, we are providing signal diversity, which the receiver can exploit to
recover the information.

Another form of multichannel communications is multiple carrier transmis-
sion, where the frequency band of the channel is subdivided into a number of
subchannels and information is transmitted on each of the subchannels. A
rationale for subdividing the frequency band of a channel into a number of
narrowband channels is given below.

In this chapter, we consider both multichannel signal transmission and
multicarrier transmission. We begin with a treatment of multichannel
transmission.

12-1 MULTICHANNEL DIGITAL COMMUNICATION
IN AWGN CHANNELS

In this section, we confine our attention to multichannel signaling over fixed
channels that differ only in attenuation and phase shift. The specitic model for

630
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the multichannel digital signaling system may be described as follows. The
signal waveforms, in general are expressed as

sP() = Re{sipn)e” ™). O0st<T
n=12.... L, m=12,.... M (12-1-1)

where L is the number of channels and M is the number of waveforms. The
waveforms are assumed to have equal energy and to be equally probable a
priori. The waveforms {s{7’(r)} transmitted over the L channcls are scaled by
the factors {a,}, phase-shifted by {¢,}. and corrupted by additive noise. The
equivalent lowpass signals received from the L channels may be expressed as

1 = ape s ~z,(1), O0=<i<T

n=12,....L m=12....M (1212)

where {s},(1)} are the equivalent lowpass transmitted waveforms and {z,.(1)}
represent the additive noise processes on the L channels. We assume that
{z,(1)} are mutually statistically independent and identically distributed gaus-
sian noise random processes.

- We consider two types of processing at the receiver, namely, coherent
detection and noncoherent detection. The receiver for coherent detection
estimates the channel parameters {a,} and {¢,} and uses the estimates in
computing the decision variables. Suppose we define g, = a,¢ '* and let §,, be
the estimate of g,. The multichannel receiver correlates each of the L received
signals with a replica of the corresponding transmitted signals, multiplies each
of the correlator outputs by the corresponding estimates {g*}, and sums the
resulting signals. Thus, the decision variables for coherent detection are the
correlation metrics

i s
CM,, = 2, Re [g:j Fi s (1) d.']. m=12,....M (12-1-3)
LES! 1]

In noncoherent detection, no attempt is made to estimate the channel
parameters. The demodulator may base its decision either on the sum of the
envelopes (envelope detection) or the sum of the squared envelopes (square-
law detection) of the matched filter outputs. In general, the performance
obtained with envelope detection differs little from the performance obtained
with square-law detection in AWGN. However, square-law detection of
multichannel signaling in AWGN channels is considerably easier to analyze
than envelope detection. Therefore, we confine our attention to square-law
detection of the received signals of the L channels, which produces the
decision variables

i,
M, =3

=i

.J.. 2
f rsE* (0 d], m=1,2,.... M (12-1-4)
L1}

Let us consider binary signaling first, and assume that s{}’, n=1,2,..., L
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are the [l transmitted waveforms. Then an error is committed if CM, > CM,,
or. equivalently, if the difference D =CM, - CM,<0. For noncoherent
detection, this difference may be expressed as

1.
D=3 (X, -1Y,]) (12-1-5)

=1

where the variables {X,} and {Y,} are defined as

I
XJl:j !‘"? { {adx t df, 2];2»-‘-11'
s den (12-16)

,
'Y, =f WSO d, n=1.2,....L

4]

The {X,,} are mutually independent and identically distributed gaussian random
variables. The same statement applies to the variables {Y,}. However, for any
n, X, and ¥, may be correlated. For coherent detection, the difference
D = CM, - CM, may be expressed as

L
D=13 (X, Y+ XY, (12-1-7)
=1

where, by definition,

-

Y=g, n=12_..,L

, (12-1-8)
X, = f PO ) = s di
1]

If the estimates {g,,} are obtained from observation of the received signal over
one or more signaling intervals, as described in Appendix C, their statistical
characteristics are described by the gaussian distribution. Then the {Y,} are
characterized as mutually independent and identically distributed gaussian
random variables. The same statement applies to the variables {X,}. As in
noncoherent detection. we allow for correlation between X, and Y,, but not
between X, and Y, for m #n.

12-1-1 Binary Signals
In Appendix B, we derive the probability that the general quadratic form
i.
D=3 (AIXL+ BIY,F+CX, Y+ CrXLY,) (12-1-9)

|

in complex-valued gaussian random variables is less than zero. This prob-
ability, which is given in (B-21) of Appendix B. is the probability of error for
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binary multichannel signaling in AWGN. A number of special cases are of
particular importance.

If the binary signals are antipodal and the estimates of {g,,} are perfect, as in
coherent PSK, the probability of error takes the simple form

P, = Q(VZy) (12-1-10)
where
%' 1.
Y =G 2 |3nl2
On-
2 ol (12-1-11)
(P =]
is the SNR per bit. If the channels are all identical, ,, = & for all n and, hence,
L%’ o
12-1-12
T = Ma ( z)

We observe that L€ is the total transmitted signal energy for the L signals. The
interpretation of this result is that the receiver combines the energy from the L
channels in an optimum manner. That is, there is no loss in performance in
dividing the total transmitted signal energy among the L channels. The same
performance is obtained as in the case in which a single waveform having
energy L€ is transmitted on one channel. This behavior hoids true only if the
estimates g, =g,, for all n If the estimates are not perfect, a loss in
performance occurs, the amount of which depends on the quality of the
estimates, as described in Appendix C.

Perfect estimates for {g,} constitute an extreme case. At the other extreme,
we have binary DPSK signaling. In DPSK, the estimates {3,} are simply the
(normalized) signal-plus-noise samples at the outputs of the matched filters in
the previous signaling interval. This is the poorest estimate that one might
consider using in estimating {g,}. For binary DPSK, the probability of error
obtained from (B-21) is

1 i.--1
P;,=F_—le“’* > . vh (12-1-13)
n=
where, by definition,
1 e 2L -1
G 2 ( . (12-1-14)

and ¥, is the SNR per bit defined in (12-1-11) and. for identical channels in
(12-1-12). This result can be compared with the single-channel (L = 1) error
probability. To simplify the comparison, we assume that the L channels have
identical attenuation factors. Thus, for the same value of v,, the performance
of the multichannel system is poorer than that of the single-channel system.
That is, splitting the total transmitted energy among L channels results in a loss
in performance, the amount of which depends on L.
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FIGURE 12-1-1  Combining loss in noncoherent detection and combination of binary multichannel signals.

A loss in performance also occurs in square-law detection of orthogonal
signals transmitted over L channels. For binary orthogonal signaling, the
expression for the probability of error is identical in form to that for binary
DPSK given in (12-1-13), except that 7y, is replaced by 3y, That is,
binary orthogonal signaling with noncoherent detection is 3dB poorer than
binary DPSK. However, the loss in performance due to noncoherent combina-
tion of the signals received on the L channels is identical to that for binary
DPSK.

Figure 12-1-1 illustrates the loss resulting from noncoherent (square-law)
combining of the L signals as a function of L. The probability of error is not
shown, but it can be easily obtained from the curve of the expression

Pl (12-1-15)

which is the error probability of binary DPSK shown in Fig. 5-2-12 and then

degrading the required SNR per bit, y,, by the noncoherent combining loss
corresponding to the value of L.

12-1-2 M-ary Orthogonal Signals

Now let us consider M-ary orthogonal signaling with square-law detection and
combination of the signals on the L channels. The decision variables are given
by (12-1-4). Suppose that the signals sf’(¢), n=1,2,..., L, are transmitted
over the L AWGN channels. Then, the decision variables are expressed as

L

U = 2, 2%a, + N,
n=l

2 (12-1-16)
Um:ZINMF! m=2!3n"'1M

n=1
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where the {N,,} are complex-valued zero-mean gaussian random variables
with variance o = }E(IN,,..I") = 2€N,. Hence U, is described statistically as a
noncentral chi-square random variable with 2L degrees of freedom and
noncentrality parameter

[ L
si= D (2%a, ) =4% 2 a? (12-1-17)

n=1 n=1

Using (2-1-118), we obtain the pdf of U, as

R O s°+u, sV,
P = N, (52) e""(” 4EN, )’L“-(zsw.,)' “=0 (2118

On the other hand, the {U,}, m=2,3,..., M, are statistically independent
and identically chi-square-distributed random variables, each having 2L
degrees of freedom. Using (2-1-110), we obtain the pdf for U, as

1

— L, e AEN,
@eNgrL -y e =0

plu,) =
m=213,.... M (12-1-19)

The probability of a symbol error is

Py=1-F
=1"P(U2<UI,U3<U;,,,., UM< Ul)

=l"'J;:[P(U2<u1 | Ul'—-ul)]M»lp(“l) dul (12'1-20)

But
. L= I u &
PlU,<u, U =u)=1~ (—ul) -—( 1)
(Uz <y [ Uy =) =1~ exp 4%N, ,,E.:okt 42N,
(12-1-21)
Hence,
x L=1 1 u kM —1
P, =1_J. [1_ —uy AN, ___( 1 )]
M A € *Z_:Uk! 42N, plu,) du,
x L=1, k\M~-1 (L-1)2
[ S e
A ¢ E,m . e~ V) dv  (12-1-22)
where

L
')’=82 “i/No

n=]
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The integral in (12-1-22) can be evaluated numerically. It is also possibie to
expand the term (1 — x)» ™" in (12-1-22) and carry out the integration term by
term. This approach yields an expression for Py, in terms of finite sums.

An alternative approach is to use the union bound

P, <(M—1)P(L) (12-1-23)

where P,(L) is the prabability of error in choosing between U, and any one of
the M —1 decision variables {U,}, m=2,3,..., M. From our previous
discussion on the performance of binary orthogonal signaling, we have

1 - £-1

PL)=sp=ie "™ 2 calikm)' (12-1-24)
#=0

where ¢, is given by (12-1-14). For relatively small values of M, the union

bound in (12-1-23) is sufficiently tight for most practical applications.

12-2 MULTICARRIER COMMUNICATIONS

From our treatment of nonideal linear filter channels in Chapters 10 and 11, we
have observed that such channels introduce ISI, which degrades performance
compared with the ideal channel. The degree of performance degradation
depends on the frequency response characteristics. Furthermore, the com-
plexity of the receiver increases as the span of the ISI increases.

Given a particular channel characteristic, the communication system desig-
ner must decide how to efficiently utilize the available channel bandwidth in
order to transmit the information reliably within the transmitter power
constraint and receiver complexity constraints. For a nonideal linear filter
channel, one option is to employ a single carrier system in which the
information sequence is transmitted serially at some specified rate R symbols/s.
In such a channel, the time dispersion is generally much greater than the
symbol rate and, hence, ISI results from the nonideal frequency response
characteristics of the channel. As we have observed, an equalizer is necessary
to compensate for the channel distortion.

An alternative approach to the design of a bandwidth-efficient communica-
tion system in the presence of channel distortion is to subdivide the available
channel bandwidth into a number of subchannels, such that each subchannel is
nearly ideal. To elaborate, suppose that C(f) is the frequency response of a
nonideal, band-limited channel with a bandwidth W, and that the power
spectral density of the additive gaussian noise is ®,,,(f). Then, we divide the
bandwidth W into N = W/Af subbands of width Af, where Af is chosen
sufficiently small that |C{f)}*/®,.(f) is approximately a constant within each
subband. Furthermore, we shall select the transmitted signal power to be
distributed in frequency as P(f), subject to the constraint that

J P(f)df <P, (12-2-1)
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where, P,, is the available average power of the transmitter. Let us evaluate
the capacity of the nonideal additive gaussian noise channel.

12-2-1 Capacity of a Nonideal Linear Filter Channel
Recall that the capacity of an ideal, band-limited, AWGN channel is

PI\" )
= 12-2-2
C WI°g2(1+WN0 (12:29)
where C is the capacity in bits/s, W is the channel bandwidth, and P,, is the
average transmitted power. In a multicarrier system, with Af sufficiently small,
the subchannel has capacity

2
C.=Af logg[l +——-———af:;£) I(C;{ ) ] {12-2-3)
Hence, the total capacity of the channel is
N N : (2
c=§1 o =Af§log2[l +——————P(£)'gf)'] (12-2-9)

In the limit as Af — 0, we obtain the capacity of the overall channel in bits/s as

2
C= L log, [1 + f-%z%{—)l] df (12-2-5)

Under the constraint on P(f) given by (12-2-1), the choice of P(f) that
maximizes C may be determined by maximizing the integral

jw {!ogz [l + ﬂ%ﬂ%{)—lz] + AP(f)} af (12-2-6)

where A is a Lagrange multiplier, which is chosen to satisfy the constraint. By
using the calculus of variations to perform the maximization, we find that the
optimum distribution of transmitted signal power is the solution to the
equation

l

ICORPU) + omn) T~

Therefore, P(f) + ®,,(f)/|C(f)I* must be a constant, whose value is adjusted
to satisfy the average power constraint in (12-2-1). That is,

K=®,.(NNCHI (FeWw)
0 (feW)

This expression for the channel capacity of a nonideal linear filter channel with
additive gaussian noise is due to Shannon (1949), The basic interpretation of
this result is that the signal power shouid be high when the channel SNR
IC(f)*/®,.(f) is high, and low when the channel SNR is low. This result on

0 (12-2-7)

P(f)= { (12-2-8)
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FIGURE 12.2-2
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The optimum water-pouring spectrum. ' Frequency f

the transmitted power distribution is iilustrated in Fig. 12-2-1. Observe that if
@ (FYIC(f)? is interpreted as the bottom of a bow! of unit depth, and we
pour an amount of water equal to F,, into the bowl, the water will distribute
itself in the bowl so as to achieve capacity. This is called the warter-filling
interpretation of the optimum power distribution as a function of frequency.

It is interesting to note that the channel capacity is the smallest when the
channel SNR |C(f)*/®,..(f) is a constant for all f € W. In this case, P(f) is a
constant for all f e W. Equivalently, if the channel frequency résponse is ideal,
i.e., C(f)=1for f € W, then the worst gaussian noise power distribution, from
the viewpoint of maximizing capacity, is white gaussian noise.

The above development suggests that multicarrier modulation that divides
the available channel bandwidth into subbands of relatively narrow width
Af = W/N provides a solution that could yield transmission rates close to
capacity. The signal in each subband may be independently coded and
modulated at a synchronous symbol rate of 1/Af, with the optimum power
allocation P(f). If Af is small enough then C(f) is essentially constant across
each subband, so that no equalization is necessary because the 18I is negligible.

Multicarrier modulation has been used in modems for both radic and
telephone channels. Multicarrier modulation has also been proposed for future
digital audio broadcast applications.

A particularly suitable application of multicarrier modulation is in digital
transmission over copper wire subscriber loops. The typlcal channel attenua-
tion characteristics for such subscriber lines are illustrated in Fig, 12-2-2. We

S

Attenuation (dB)

383883y

Agenuation characteristic of a 24 gauge 12 kft PIC loop. 4]
[From Wemer (1991} @ IEEE.)
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observe that the attenuation increases rapidly as a function of frequency. This
characteristic makes it extremely difficult to achieve a high transmission rate
with a single modulated carrier and an equalizer at the receiver. The ISI
penalty in performance is very large. On the other hand, multicarrier
modulation with optimum power distribution provides the potential for a
higher transmission rate.

The dominant noise in transmission over subscriber lines is crosstalk
interference from signals carried on other telephone lines located in the same
cable. The power distribution of this type of noise is also frequency-
dependent, which can be taken into consideration in the allocation of the
available transmitted power.

A design pracedure for a multicarrier QAM system for a nonideal linear
filter channel has been given by Kalet (1989). In this procedure, the overall bit
rate is maximized, through the design of an optimal power division among the
subcarriers and an optimum selection of the number of bits per symbol (sizes
of the QAM signal constellations) for each subcarrier, under an average power
constraint and under the constraint that the symbol error probabilities for all
subcarriers are equal.

Below, we present an implementation of a multicarrier QAM modulator
and demodulator that is based on the discrete Fourier transform (DFT) for the
generation of the multiple carriers.

12-2-2 An FFT-Based Multicarrier System

In this section, we describe a multicarrier communication system that employs
the fast Fourier transform (FFT) algorithm to synthesize the signal at the
transmitter and to demodulate the received signal at the receiver. The FFT is
simply the efficient computational tool for implementing the discrete fourier
transform (DFT).

Figure 12-2-3 illustrates a block diagram of a multicarrier communication

FIGURE 12-2-3  MuMicarrier communication system.

" i Add cyclic
Serial-1 Multicarrier
Input nato- ulf . prefix, and D/A Output
r paralle - ator - lel-to- -,
‘ buffer “ ol tinverseDFT) {_: pers fonverter
*1  serial conven
E: b=~ Remove
Parallel- . et P ] eyclic
R Multicarrier |
Ouiput - :
.P‘-' 1o ban D Jemodulatar pn{ixam! AD I
bits serial oty (DFT) : serial-lo- convenes
converier : - paralle|
i l— — COHVEr
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system. A serial-to-parailel buffer segments the information sequence into
frames of N, bits, The N bits in each frame are parsed into N groups, where
the ith group is assigned A, bits, and

S a=N, (12:2-9)

Each group may be encoded separately, so that the number of output bits from
the encoder for the ith group is n, = 4,

It is convenient to view the multicarrier modulation as consisting of N
independent QAM channels, each operating at the same symbol rate 1/7, but
each channel having a distinct QAM constellation, i.e., the ith channel will
employ M, =2" signal points. We denote the complex-valued signal points
corresponding to the information symbols on the subchannels by X, k =
0,1,...,N -1 In order to modulate the N subcarriers by the information
symbols {X,}, we employ the inverse DFT (IDFT),

However, if we compute the N-point IDFT of {X,}, we shall obtain a
conplex-valued time series, which is nol equivalent fo N QAM-modulated
subcarriers. Instead, we create N = 2N information symbols by defining

Xvox=X% k=1,...,N-1 (12-2-10)

and X = Re (X,), Xy =Im (X,). Thus, the symbol X, is split into two parts,
both real. Then, the N-point IDFT yields the real-valued sequence

1 N--1

o= 75 2 XaN, n=01,...,N=1 (12-2-11)
k=0

where 1/VN is simply a scale factor.
The sequence {x,, 0 <n < N — 1} corresponds to the samples of the sum x(1)
of N subcarrier signals, which is expressed as

1
0= 7 X Xt 0sisT (122-12)

k=0

where T is the symbol duration. We observe that the subcarrier frequencies are
fi=k{T, k=0,1,..., N. Furthermore, the discrete-time sequence {x,} in
(12-2-10) represents the samples of x(f) taken at times t=nT/N where
n=0,1... N-1

The computation of the IDFT of the data {X,} as given in {12-2-10) may be
viewed as multiplication of each data point X, by a corresponding vector

\ [‘Uko L/ UK(N-—I)] (12'2‘13)
where
1
Ve = 75 €7 (12-2-14)
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FIGURE 12-2-4  Signal synthesis for multicarrier modulation
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Add eyclic | To
prefix | channel

based on inverse DFT.

as illustrated in Fig. 12-2-4. In any case, the computation of the DFT 1s
performed efficiently by the use of the FFT algorithm.

In practice, the signal samples {x,} are passed through a D/A converter
whose output, ideally, would be the signal waveform x(¢). The output of the
channel is the waveform

r(t) = x(t) % h (1) + n(t) (12-2-15)

where A(r) is the impulse response of the channel and % denotes convolution.
By selecting the bandwidth Af of each subchannel to be very small, the symbol
duration T = 1/Af is large compared with the channel time dispersion. To be
specific, let us assume that the channel dispersion spans v + 1 signal samples
where v «< N. One way to avoid the effect of IS] is to insert a time guard band
of duration vT /N between transmissions of successive blocks.

An aiternative method that avoids ISI is to append a cyclic prefix to each
block of N signal samples {x,, x|, ..., xn_,}. The cyclic prefix for this block of
samples consists of the samples xy_,, Xy—y+1, ..., Xy—1. These new samples
are appended to the beginning of each block. Note that the addition of the
cyclic prefix to the block of data increases the length of the block to N + v
samples, which may be indexed from n=-v,..., N —1, where the first v
samples constitute the prefix. Then, if {h,, 0<n =< v} denotes the sampled
channel impulse response, its convolution with {x,,, —v <n < N — 1} produces
{r.}, the received sequence. We are interested in the samples of {r,} for
0=<n=<N -1, from which we recover the transmitted sequence by using the
N-point DFT for demodulation. Thus, the first v samples of {r,} are discarded.

From a frequency-domain viewpoint, when the channel impulse response is
{h., 0<n =< v}, its frequency response at the subcarrier frequencies f, = k/N is
H, = H(ggf) = > R, RN (12-2-16)

=0

Due to the cyclic prefix. successive blocks (frames) of the transmitted
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information sequence do not interfere and, hence, the demodulated sequence
may be expressed as

Ye=HX +n k=01,...,N-1 (12-2-17)

where {X,} is the output of the N-point DFT demodulator, and 7, is the
additive noise corrupting the signal. We note that by selecting N >> v, the rate
loss due to the cyclic prefix can be rendered negligible.

As shown in Fig. 12-2-3, the information is demodulated by computing the
DFT of the received signal after it has been passed through an A/D converter.
The DFT computation may be viewed as a multiplication of the received signal
samples {r.} from the A/D converter by v}, where v, is defined in (12-2-12). As
in the case of the modulator, the DFT computation at the demodulator is
performed efficiently by use of the FFT algorithm.

It is a simple matter to estimate and compensate for the channel factors {H,}
prior to passing the data to the detector and decoder, A training signal
consisting of either a known modulated sequence on each of the subcarriers or
unmodulated subcarriers may be used to measure the {H,} at the receiver. If
the channel parameters vary slowly with time, it is also possible to track the
time variations by using the decisions at the output of the detector or the
decoder, in a decision-directed fashion. Thus, the multicarrier system can be
rendered adaptive.

Multicarrier QAM modulation of the type described above has been
implemented for a variety of applications, including high-speed transmission
over telephone lines, such as digital subscriber lines,

Other types of implementation besides the DFT are possible. For example,
a digital filter bank that basically performs the DFT may be substituted for the
FFT-based implementation when the number of subcarriers is small, e.£.,
N =32. For a large number of subcarriers, e.g., N > 32, the FFT-based systems
are computatively more efficient.

One limitation of the DFT-type modulators and demodulators arises from
the relatively large sidelobes in frequency that are inherent in DFT-type filter
banks. The first sidelobe is only 13dB down from the peak at the desired
subcarrier. Consequently, the DFT-based implementations are vulnerable to
interchannel interference (ICI) unless a full cyclic prefix is used. If ICI is a
problem, due to channel anomalies, one may resort to other types of digital
filter banks that have much lower sidelobes. In particular, the class of multirate
digital filter banks that have the perfect reconstruction property associated
with wavelet-based filters appear to be an attractive alternative (see Tzannes e
al., 1994; Rizos et al., 1994).

12-3 BIBLIOGRAPHICAL NOTES AND REFERENCES

Multichannel signal transmission is commonly used on time-varying channels
to overcome the effects of signal fading. This topic is treated in some detail in
Chapter 14, where we provide a number of references 1o published work. Of
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particular relevance to the treatment of multichannel digital communications
given in this chapter are the two publications by Price (1962a,b).

There is a large amount of literature on multicarrier digital communication
systems. Such systems have been implemented and used for over 30 years. One
of the earliest systems, described by Doeltz et al. (1957) and called Kineplex,
was used for digital transmission in the HF band. Other early work on
multicarrier system design has been reported in the papers by Chang (1966)
and Saltzburg (1967). The use of the DFT for modulation and demodulation of
multicarrier systems was proposed by Weinstein and Ebert (1971).

Of particular interest in recent years is the use of multicarrier digital
transmission for data, facsimile, and video on a variety of channels, including
the narrowband (4kHz) switched telephone network, the 48kHz group
telephone band, digital subscriber lines, cellular radio, and audio broadcast.
The interested reader may refer to the many papers in the literature. We cite
as examples the papers by Hirosaki er al. (1981, 1986), Chow ef al. (1991), and
the survey paper by Bingham (1990). The paper by Kalet (1989) gives a design
procedure for optimizing the rate in a multicarrier QAM system given
consiraints on transmitter power and channel characteristics. Finally, we cite
the book by Vaidyanathan (1993) and the papers by Tzannes et al. (1994) and
Rizos ef al. (1994) for a treatment of multirate digital filter banks.

12-1 X,, X3, ..., Xx are a set of N statistically independent and identically distributed
real gaussian random variables with moments E(X;) = m and var (X)) = o
a Define

Evaluate the SNR of U, which is defined as

(sNRy, = [EQF
2oy,
where &% is the variance of U,
b Define
N
v=3 x2

Evaluate the SNR of V, which is defined as
_EWY
(SNR), 20,

where o% is the variance of V.
¢ Plot (SNR), and (SNR), versus m?/a” on the same graph and, thus, compare
the SNRs graphically.
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d What does the result in (¢) imply regarding coherent detection and combining
versus square-law detection and combining of multichanne! signals?

12-2 A binary communication system transmits the same information on two diversity

12-3

12-5

12-6

127

channels. The two received signals are

r,=:|:\r'8,,+n|
r2=ﬂ:\'gh+ng

where £(n))=£E(n;)=0, E(n}) =0} and E(nl) =o3, and n, and n, are encorre-
lated gaussian,variables. The detector bases its decision on the linear combination
of r, and r, i.e.,

r=r, +kr

a Determine the value of £ that minimizes the probability of error.

b Plot the probability of error for ¢? =1, ¢l =3, and either k=1 or k is the
optimum value found in (a). Compare the results.

Assess the cost of the cyclic prefix (used in multitone modulation to avoid 1S1) in

terms of

a extra channel bandwidth:

b extra signal energy.

Let x(n) be a finite-duration signal with fength ¥ and tet X'(k) be its N-point DFT.

Suppose we pad x{n) with L zeros and compute the (N + L)-point DFT, X (k).

What is the relationship between X (0} and X '(0)? If we plot |X (k)] and 1.X (k)| on

the same graph, explain the relationships between the two graphs.

Show that the sequence {x,} given by (12-2-11) corresponds to the samples of the

signal x(r) given by (12-2-12).

Show that the [DFT of a sequence {X,, 0 <k <N - 1} can be computed by passing

the sequence {X,} through a bank of N linear discrete-time filters with system-
functions

Hiz) =

2aniN - |
._e!"-" 2

Plot P{L) for L =1 and L =2 as a function of 10 log v, and determine the loss in
SNR due to the combining loss for y, = 10,
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13

SPREAD SPECTRUM
SIGNALS FOR DIGITAL
COMMUNICATIONS

Spread spectrum signals used for the transmission of digital information are
distinguished by the characteristic that their bandwidth W is much greater than
the information rate R in bits/s. That is, the bandwidth expansion factor
B, = W/R for a spread spectrum signal is much greater than unity, The large
redundancy inherent in spread spectrum signals is required to overcome the
severe levels of interference that are encountered in the transmission of digital
information over some radio and satellite channels. Since coded waveforms are
also characterized by a bandwidth expansion factor greater than unity and
since coding is an efficient method for introducing redundancy, it follows that
coding is an important element in the design of spread spectrum signals.

A second important element employed in the design of spread spectrum.
signals is pseudo-randomness, which makes the signals appear similar to
random noise and difficult to- demodulate by receivers other than the intended
ones. This element is intimately related with the application or purpose of such
signals.

To be specific, spread spectrum signals are used for

* combatting or suppressing the detrimental effects of interference due to
jamming, interference arising from other users of the channel, and self-
interference due to multipath propagation; ,

* hiding a signal by transmitting it at low power and, thus, making it
difficult for an unintended listener to detect in the presence of background
noise;

¢ achieving message privacy in the presence of other listeners.

In applications other than communications, spread spectrum signals are used

695
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ta obtain accurate range (time delay) and range rate (velocity) measurements
in radar and navigation. For the sake of brevity, we shall limit our discussion to
digital communications applications.

In combatting intentional interference (jamming), it is important to the
communicators that the jammer who is trying to disrupt the communication
does not have prior knowledge of the signal characteristics except for the
overall channel bandwidth and the type of modulation, (PSK, FSK, etc.) being
used. If the digital information is just encoded as described in Chapter 8, a
sophisticated jammer can easily mimic the signal emitted by the transmitter
and, thus, confuse the receiver. To circumvent this possibility, the transmitter
introduces an element of unpredictability or randomness (pseudo-randomness)
in each of the transmitted coded signal waveforms that is known to the
intended receiver but not to the jammer. As a consequence, the jammer must
synthesize and transmit an interfering signal without knowledge of the
pseudo-random pattern.

Interference from the other users arises in multiple-access communication
systems in which a number of users share a common channel bandwidth. At
any given time, a subset of these users may transmit information simul-
taneously over the common channel to corresponding receivers. Assuming that
all the users employ the same code for the encoding and decoding of their
respective information sequences, the transmitted signals in this common
spectrum may be distinguished from one another by superimposing a different
pseudo-random pattern, also called a code, in each transmitted signal. Thus, a
particular receiver can recover the transmitted information intended for it by
knowing the pseudo-random pattern, i.e., the key, used by the corresponding
transmitter. This type of communication technique, which allows multiple users
to simultaneously use a commor channel for transmission of information, is
called code division multiple access (CDMA). CDMA will be considered in
Sections 13-2 and 13-3.

Resolvable meltipath components resulting from time-dispersive propaga-
tion through a channel may be viewed as a form of self-interference. This type
of interference may also be suppressed by the introduction of a pseudo-random
pattern in the transmitted signal, as will be described below.

A message may be hidden in the background noise by spreading its
bandwidth with coding and transmitting the resultant signal at a low average
power. Because of its low power level, the transmitted signal is said to be
“covert.” It has a low probability of being intercepted (detected) by a casual
listener and, hence, is also called a low-probability-of -intercept (LPI) signal.

Finally, message privacy may be obtained by superimposing a pseudo-
random paitern on a transmitted message. The message can be demodulated
by the intended receivers, who know the pseudo-random pattern or key used
at the transmitter, but not by any other receivers who do not have knowledge
of the key.

In the following sections, we shall describe a number of different types of
spread spectrum signals, their characteristics, and their application. The
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Informaiion |  Channel Modulator Channel Demodulator p—a  ChAnNEl -2::%'»
sequence encoder devoder
Pseudo-random Pscudo-random
patiern pattern
generator generator
FIGURE 13-1-1 Model of spread spectrum digital communication system.

emphasis will be on the use of spread spectrum signals for combatting,
jamming (antijam or AJ signals), for CDMA, and for LPI. Before discussing
the signal design problem, however, we shall briefly describe the types of
channel] characteristics assumed for the applications cited above.

13-1 MODEL OF SPREAD SPECTRUM DIGITAL
COMMUNICATION SYSTEM

The block diagram shown in Fig. 13-1-1 illustrates the basic elements of a
spread spectrum digital communication system with a binary information
sequence at its input at the transmitting end and at its output at the receiving
end. The channel encoder and decoder and the modulator and demodulator
are basic elements of the system, which were treated in Chapters 5, 7 and 8. In
addition to these elements, we have two identical pseudo-random pattern
generators, one that interfaces with the modulator at the transmitting end and
a second that interfaces with the demodulator at the receiving end. The
generators generate a pseudo-random or pseudo-noise (PN) binary-valued
sequence, which is impressed on the transmitted signal at the modulator and
removed from the received signal at the demodulator.

Synchronization of the PN sequence generated at the receiver with the PN
sequence contained in the incoming received signal is required in order to
demodulate the received signal. Initially, prior to the transmission of informa-
tion, synchronization may be achieved by transmitting a fixed pseudo-random
bit pattern that the receiver will recognize in the presence of interference with
a high probability. After time synchronization of the generators is established
the transmission of information may commence, .

Interference is introduced in the transmission of the information-bearing
signal through the channel. The characteristics of the interference depend to a
large extent on its origin. It may be categorized as being either broadband or
narrowband relative to the bandwidth of the information-bearing signal, and
either continuous or pulsed (discontinuous) in time. For example, a jamming
signal may consist of one or more sinusoids in the bandwidth used to transmit
the information. The frequencies of the sinusoids may remain fixed or they
may change with time according to some rule. As a second example, the
interference generated in CDMA by other users of the channel may be either

¥
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broadband or narrowband, depending on the type of spread spectrum signal
that is employed to achieve multiple access. If it is broadband, it may be
characterized as an equivalent additive white gaussian noise. We shall consider
these types of interference and some others in the following sections.

Our treatment of spread spectrum signals will focus on the performance of
the digital communication system in the presence of narrowband and broad-
band interference. Two types of modulation are considered: PSK and FSK.
PSK is appropriate in applications where phase coherence between the
transmitted signal and the received signal can be maintained over a time
interval that is relatively long compared to the reciprocal of the transmitted
signal bandwidth. On the other hand, FSK modulation is appropriate in
applications where such phase coherence cannot be maintained due to
time-variant effects on the communications link. This may be the case in a
communications link between two high-speed aircraft or between a high-speed
aircraft and a ground terminal.

The PN sequence generated at the modulator is used in conjunction with the
PSK modulation to shift the phase of the PSK signal pseudo-randomly as
described in Section 13-2. The resulting modulated signal is called a direct
sequence (DS) or a pseudo-noise (PN) spread spectrum signal. When used in
conjunction with binary or M-ary (M > 2) FSK, the pseudo-random sequence
selects the frequency of the transmitted signal pseudo-randomly. The resulting
signal is called a frequency-hopped (FH) spread spectrum signal. Although a
number of other types of spread spectrum signals will be briefly described, the
emphasis of our treatment will be on PN and FH spread spectrum signals.

13-2 DIRECT SEQUENCE SPREAD SPECTRUM

SIGNALS

In the model shown in Fig. 13-1-1, we assume that the information rate at the
input to the encoder is R bits/s and the available channel bandwidth is W Hz.
The modulation is assumed to be binary PSK. In order to utilize the entire
available channel bandwidth, the phase of the carrier is shifted pseudo-
randomly according to the pattern from the PN generator at a rate W times/s.
The reciprocal of W, denoted by T, defines the duration of a rectangular
pulse, which is called a chip while 7, is called the chip interval. The pulse is the
basic element in a DS spread spectrum signal.

If we define T, = 1/R to be the duration of a rectangular pulse correspond-
ing to the transmission time of an information bit, the bandwidth expansion
factor W/R may be expressed as

W T,
B, = R™T (13-2-1)
In practical systems, the ratio 7,/7, is an integer,
L
L.= T. (13-2-2)
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The PN and data signals (a) and the QPSK modulator (b) for a DS spread spectrum system.

which is the number of chips per information bit. That is, L, is the number of
phase shifts that occur in the transmitted signal during the bit duration
T, = 1/R. Figure 13-2-1(a) illustrates the relationships between the PN signal
and the data signal.

Suppose that the encoder takes k information bits at a time and generates a
binary linear (n, k) block code. The time duration available for transmitting
the n code elements is k7,s. The number of chips that occur in this time
interval is kL .. Hence, we may select the block length of the code as n = kL.
If the encoder generates a binary convolutional code of rate k/n, the number
of chips in the time interval kT, is also n=kL, Therefore, the following
discussion applies to both block codes and convolutional codes.

One method for impressing the PN sequence on the transmitted signal is to
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alter directly the coded bits by modulo-2 addition with the PN sequence.t
Thus, each coded bit is altered by its addition with a bit from the PN sequence.
If b, represents the ith bit of thz PN sequence and c; is the corresponding bit
from the encoder, the modulo-2 sum is

a=b;®c¢ (13-2-3)

Hence, g, =1 if either b, =1 and ¢; =0 or b; = 0 and ¢; = 1; also, a; = 0 if either
b;=1and ¢,=1 or ,=0 and ¢; = 0. We may say that 2, =0 when b, =¢, and
a; =1 when b, #¢;. The sequence {a,} is mapped into a binary PSK signal of the
form s(t) = £Re [g(t)e’*™] according to the convention

gt—iT) (a=0)
~g(t~iT) (a=1)

where g(t) represents a pulse of duration 7, s and arbitrary shape.

The modulo-2 addition of the coded sequence {c;} and the sequence {b,;}
from the PN generator may also be represented as a multiplication of two
waveforms. To demonstrate this point, suppose that the elements of the coded
sequence are mapped into a binary PSK signal according to the relation

ci(t) = (2¢,— 1)g(t - iT,) (132:5)

5= (13.2-4)

Similarly, we define a waveform p;(t) as
pi(t)=(2b; = )p(t —iT.) (13-2-6)

where p(r) is a rectangular pulse of duration 7;. Then the equivalent lowpass
transmitted signal corresponding to the ith coded bit is

gt} =pit)er)
=25, = 1)(2c, — 1)g(t —iT) (13-2-7)

This signal is identical to the one given by (13-2-4), which is obtained from the
sequence {a;}. Consequently, modulo-2 addition of the coded bits with the PN
sequence followed by a mapping that yields a binary PSK signal is equivalent
to multiplying a binary PSK signal generated from the coded bits with a
sequence of unit amplitude rectangular pulses, each of duration T, and with a
polarity which is determined from the PN sequence according to (13-2-6).
Although it is easier to implement modulo-2 addition followed by PSK
modulation instead of waveform multiplication, it is convenient, for purposes
of demodulation, to consider the transmitted signal in the muitiplicative form

t When four-phase PSK is desired, one PN sequence is added to the information sequence carried
on the in-phase signal component and a second PN sequence is added to the information sequence
carried on the quadrature component. In many PN-spread spectrum systems, the same binary
informaticn sequence is added to the two PN sequences to form the two quadrature components.
Thus, a four-phase PSK signal is generated with a binary information stream.
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given by (13-2-7). A functional block diagram of a four-phase PSK DS spread
spectrum modulator is shown in Fig. 13-2-1(b).
The received equivalent lowpass signal for the ith code element ist

() =pet) + 2(), iL<i<(@+1T
=(2b; — 1)(2c; = 1)g(t —iT) + z(1) (13-28)

where z(r) represents the interferenge or jamming signal corrupting the
information-bearing signal. The interference is assumed to be a stationary
random process with zero mean.

If z(¢t) is a sample function from a complex-valued gaussian process, the
optimum demodulator may be implemented either as a filter matched to the
waveform g(t) or as a correlator, as illustrated by the block diagrams in Fig.
13-2-2. In the matched filter realization, the sampled output from the matched
filter is multiplied by 2b, — 1, which is obtained from the PN generator at the

Possible demodulator structures for PN spread spectrum signals.

rt1) Matchzd ¥
——  filter Sampl To
T, -1 decoder
vall 25;—‘
Chip-rate I PN
clock sequence
Etneralor

(a)

1) I Yi Te
“(1dr Sampler f——a 10
¢ decoder

piln) g
PN signal Chip-rate
«generator clock |
b}
rir) ¥;
JJod Sampler —» To
*(1)
& f 2,- 1
Chip-rate PN
tock sequence
generalor

()

t For simplicity, we assume that the channel attenuation a =1 and the phase shift of the

channel is zero. Since coherent PSK detection is assumed, any arbitrary chanuel phase shift is
compensated for in the demodulation,
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demodulator when the PN generator is properly synchronized. Since (2b, —
1)’ =1 when b, =0 and b, = 1, the effect of the PN sequence on the received
coded bits is thus removed.

In Fig. 13-2-2, we also observe that the cross-correlation can be accompl-
ished in either one of two ways. The first, illustrated in Fig. 13-2-2(b), involves
premultiplying r(r) with the waveform p;(r) generated from the output of the
PN generator and then cross-correlating with g*(r) and sampling the output in
each chip interval. The second method, illustrated in Fig. 13-2-2(c), involves
cross-correlation with g*(r) first, sampling the output of the correlator and,
then, multiplying this output with 2b, — 1, which is obtained from the PN
generator.

If z(¢r) is not a gaussian random process, the demodulation methods
illustrated in Fig. 13-2-2 are no longer optimum. Nevertheless, we may still use
any of these three demodulator structures to demodulate the received signal.
When the statistical characteristics of the interference z(t) are unknown a
priori, this is certainly one possible approach. An alternative methed, which is
described later, utilizes an adaptive filter prior to the matched filter or
correlator to suppress narrowband interference. The rationale for this second
method is also described later.

In Section 13-2-1, we derive the error rate performance of the DS spread
spectrum system in the presence of wideband and narrowband interference.
The derivations are based on the assumption that the demodulator is any of
the three equivalent structures shown in Fig, 13-2-2.

13-2-1 Error Rate Performance of the Decoder

Let the unquantized output of the demodulator be denoted by y, 1<j=<n
First we consider a linear binary (n, k) block code and, without loss of
generality, we assume that the all-zero code word is transmitted.

A decoder that employs soft-decision decoding computes the correlation
metrics

CM, =2 (2c;- 1)y, i=1,2,... 2 (13-2-9)
F=1
where c; denotes the jth bit in the ith code word. The correlation metric
corresponding to the all-zero code word is

CM, =2n¥_+ Z (24, — 1)(%;' -1y,
=1

=2n¥, — 2 (26, — 1)y, (13-2-10)

j=1
where v;, 1<j=n, is the additive noise term corrupting the jth coded bit and
€. is the chip energy. It is defined as

v;=Re {f “g*(zlr+ (- 1)n]d:}, i=1,2,...,n (13-2-11)
a
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Similarly, the correlation metric corresponding to code word C,, having
weight w,,, is

CM,, ~b$n(1—27) 2(2.:,,., 1)(25, — 1)y, (13-2-12)

i=1

Following the procedure used in Section 8-1-4, we shall determine the
probability that CM,, > CM,. The difference between CM, and CM,, is

D=CM -CM,

= 48w, = 2 D, Cpi(2b; ~ 1), (13-2-13)
i=1

Since the code word C,, has weight w,,, there are w,, nonzero components in
the summation of noise terms contained in (13-2-13). We shall assume that the
minimum distance of the code is sufficiently large that we can invoke the
central limit theorem for the summation of neise components. This assumption
is valid for PN spread spectrum signals that have a bandwidth expansion of 20
or more.t Thus, the summation of noise components is modeled as a gaussian
random variable. Since E(2b; —1)=0 and E(v;) =0, the mean of the second
term in (13-2-13) is also zero.

The variance is

EN
I|
.|| M;

2 CmiCr EIQ2b; = 1)(2b, = D)JE(v,v,) (13-2-14)

The sequence of binary digits from the PN generator are assumed to be
uncorrelated. Hence,

E[(Zb,- = 1}(2b, - 1)] = & (13-2-15)
and
ol = 4me(v2} {13-2-16)

where E (vz) is the second moment of any one element from the set {v;}. This
moment is easily evaluated to yield

T rT
E(W) = L | g p@ut - deae

- [ 16rena (13:217)

1 Typically, the bandwidth expansion factor in a spread spectrum signal is of the order of 100
and higher.
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where ¢, (1) = YE[2*(£)z(t + 7)] is the autocorrelation function and &, (f) is
the power spectral density of the interference z(s). _

We observe that when the interference is spectrally flat within the
bandwidtht occupied by the transmitted signal, i.e.,

@ .(f)=Jh IifisiW (13-2-18)

the second moment in (13-2-17) is E(v?) =2%J,, and, hence, the variance of
the interference term in (13-2-16) becomes

ol =8&hw,, (13-2-19)
In this case, the probability that D <0 is

2&,
Pi(m) = 0( /= n) 13-2-20)
(m=0( 7, (
But the energy per coded bit % may be expressed in terms of the energy per
information bit &, as

¢ =E ¢, =R.%, (13-2:21)
With this substituticn, {13-2-20) becomes
2
Py = ([ Row )
[}
= Q(V2y»R.w,) (13-2-22)

where vy, = &,/J, is the SNR per information bit. Finally, the code word error
probability may be upper-bounded by the union bound as

M
P.< Y Q(VZy,RWw,) (13-2.23)
m=2
where M = 2* Note that this expression is identical to the probability of a code
word error for soft-decision decoding of a linear binary block code in an
AWGN channel.

Although we have considered a binary block code in the derivation given
above, the procedure is similar for an (n, k) convolutional code. The result of
such a derivation is the following upper bound on the equivalent bit error
probability:

%

Py S BOWVIRRD (13-2:24)

The set of coefficients {8,} is obtained from an expansion of the derivative of
the transfer function T(D, N), as described in Section 8-2-3.
Next, we consider a narrowband interference centered at the carrier (at d.c.

1 If the bandwidth of the bandpass channel is W, that of the equivalent low-pass channel is iw.
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for the equivalent lowpass signal). We may fix the total (average) jamming
power to J,,=J,W, where J; is the value of the power spectral density of an
equivalent wideband interference (jamming signal). The narrowband inter-
ference is characterized by the power spectral density

Jaw _HW
o= w - w (1= (13.2.25)

0 (If1>3W)

where W > W,.
Substitution of (13-2-25) for &_,(f) into {13-2-17) yields

E(v) = ]W j“ IG(f)P df (13-2-26)

The value of E(v?) depends on the spectral characteristics of the pulse g{¢). In
the following example, we consider two special cases.

Example 13-2-1

Suppose that g(r) is a rectangular pulse as shown in Fig. 13-2-3(a) and
IG(f)F is the corresponding energy density spectrum shown in Fig.
13-2-3(b). For the narrowband interference given by (13-2-26), the variance
of the total interference is

o, = 4w, E(v?)

_8%w, T, JWZ sin um)z o
W ~wn s ®fT
88.w,J,, (? (sin x\?
= dx (13-2-27)
W, —gn \ AX
Rectangular pulse and its energy density spectrum.
IGIfR
£(n
1 .
. T,
-1 TN - f
o c 23 2 1o 1 2 3
Tl.' TC TC . ?1, Fl. i:
(a) (h)
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where B = W,T. Figure 13-2-4 illustrates the value of this integral for
0= B =<1. We observe that the value of the integral is upper-bounded by
W, T,. Hence, o2, < 84w, T.J,..

In the limit as W, becomes zero, the interference becomes an impulse at
the carrier. In this case the interference is a pure frequency tone and it is
usually called a CW jamming sigrnai. The power spectral density is

®..(f) = 1. 8(f) (13-2-28)
and the corresponding variance for the decision variable D = CM, - CM,, is
o = 4wty IGO)

= 8w, & 1./, (13-2-29)
The probability of a code word error for CW jamming is upper-bounded as

M 2%,
Py< 2, Q( o wm) (13-2-30)

m=2

But % = R &, Furthermore, T, =1/W and J,,/W = J;. Therefore (13-2-30)

may be expressed as
Y, 2€,
Pys Q( TRcwm) (13-2-31)
m=2 0

which is the result obtained previously for broadband interference. This
result indicates that a CW jammer has the same effect on performance as an
equivalent broadband jammer. This equivalence is discussed further below.

Example 13.2-2

Let us determine the performance of the DS spread spectrum system in the
presence of a CW jammer of average power J,, when the transmitted signal
pulse g{r) is one-half cycle of a sinusoid as illustrated in Fig. 13-2-5, i.e.,

4¢ m
g(t) = T sin T O=s¢=<T, (13-2-32)

715



FIGURE 13-2-5

CHAPTER 13 SPREAD SPECTRUM SIGNALS FOR DIGITAL COMMUNICATIONS  TO7

(1)
[
44 W
‘?l- sin T
0 T
A sinusoidal signal pulse.
The variance of the interference of this pulse is
Thn = 4w, IG(O)
64
=2 &1\ Wn (13-2-33)
Hence, the upper bound on the code word error probability is
M 3285
Py = ( R. m) 13-2-34
M MZ=2 Q ., W ( )

We observe that the performance obtained with this pulse is 0.9 dB better
than that obtained with a rectangular pulse. Recall that this pulse shape
when used in offset QPSK results in an MSK signal. MSK modulation is
frequently used in DS spread spectrum systems.

The Processing Gain and the Jamming Margin An interesting interpreta-
tion of the performance characteristics for the DS spread spectrum signal is
obtained by expressing the signal energy per bit &, in terms of the average
power. That is, §, = P,,T,, where P,, is the average signal power and 7, is the
bit interval. Let us consider the performance obtained in the presence of CW
jamming for the rectangular pulse treated in Example 13-2-1. When we
substitute for %, and J, into (13-2-31), we obtain

Py < i Q( 2T, Rcw,,,)= i Q( 2k L,Rcw,,.) (13-2-35)

m=2 Jav r: m=2 le

where L, is the number of chips per information bit and P, /J,, is the
signal-to-jamming power ratio.

An identical result is obtained with broadband jamming for which the
performance is given by (13-2-23). For the signal energy per bit, we have

&E =R T = % (13-2-36)
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where R is the information rate in bits/s. The power spectral density for the
jamming signal may be expressed as

Jo=

'

(13-2-37)

Using the relation in (13-2-36) and (13-2-37), the ratio &,/J, may be
expressed as

%_PulR_ WIR

Jo JnIW I lBy

The ratio J,,/F,, is the jamming-to-signal power ratio, which is usually
greater than unity. The ratio W/R=T,/T. =B, = L, is just the bandwidth
expansion factor, or, equivalently, the number of chips per information bit.
This ratio is usually called the processing gain of the DS spread spectrum
system. It represents the advantage gained over the jammer that is obtained by
expanding the bandwidth of the transmitted signal. If we interpret &,/J, as the
SNR required to achieve a specified error rate performance and W/R as the
available bandwidth expansion factor, the ratio J,,/P,, is called the jamming
margin of the DS spread spectrum system. In other words, the jamming margin
is the largest value that the ratio J,./P,, can take and still satisfy the specified
error probability.

The performance of a soft-decision decoder for a linear (n, k) binary code,
expressed in terms of the processing gain and the jamming margin, is

P < i Q( . /i“;:f R,w,,,) <(M- 1)Q( ivj}/f Rcd,,,i.,)

(13-2-39)

In addition to the processing gain W/R and J,,/P,,, we observe that the
performance depends on a third factor, namely, R_w,,. This factor is the coding
gain. A lower bound on this factor is R.dy, Thus the jamming margin

achieved by the DS spread spectrum signal depends on the processing gain and
the coding gain.

(13-2-38)

Uncoded DS Spread Spectrum Sigmals The performance results given
above for DS spread spectrum signals generated by means of an {n, k) code
may be specialized to a trivial type of code, namely, a binary repetition code.
For this case, k =1 and the weight of the nonzero code word is w = n. Thus,
R.w =1 and, hence, the performance of the binary signaling system reduces to

P2=Q(\/2%)

= Q( f:;:,f) (13-2-40)
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Note that the trivial (repetition) code gives no coding gain. It does result in
a processing gain of W/R.

Example 13-2-3

Suppose that we wish to achieve an error rate performance of 107° or less
with an uncoded DS spread spectrum system. The available bandwidth
expansion factor is W/R = 1000. Let us determine the jamming margin.

The &,/J, required to achieve a bit error probability of 10™* with
uncoded binary PSK is 10.5 dB. The processing gain is 10 log,, 1000 = 30 dB.
Hence the maximum jamming-to-signal power that can be tolerated, i.e., the
jamming margin, is

10 1og,, ;ﬁ =30-10.5=19.5dB

Since this is the jamming margin achieved with an uncoded DS spread
spectrum system, it may be increased by coding the information sequence.

There is another way to view the modulation and demodulation processes
for the uncoded (repetition code) DS spread spectrum system. At the
modulator, the signal waveform generated by the repetition code with
rectangular pulses, for example, is identical to a unit amplitude rectangular
puise s(r) of duration T, or its negative, depending on whether the information
bit is 1 or 0, respectively. This may be seen from (13-2-7), where the coded
chips {ci} within a single information bit are either all 1s or Os. The PN
sequence multiplies either s(t) or —s(r). Thus, when the information bit is a 1,
the L, PN chips generated by the PN generator are transmitted with the same
polarity. On the other hand, when the information bit is a 0, the L, PN chips
when muitiplied by ~s(¢) are reversed in polarity.

The demodulator for the repetition code, implemented as a correlator, is
illustrated in Fig. 13-2-6. We observe that the integration interval in the
integrator is the bit interval T,. Thus, the decoder for the repetition code is
eliminated and its function is subsumed in the demodulator.

Now let us qualitatively assess the effect of this demodulation process on

r(1)
' IFOdi »  Sampler |—»
PN Chip-rate Symbal-
FIGURE 13-246 Correlation-type demodulator for a sequence = clack rae
repetition code. gencrilor clook
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the interference z(¢). The multiplication of z(r) by the output of the PN
generator, which is expressed as

w() =3, (2b,— Dp(t —iTy)

yields
v(e) =w()z(’)

The waveforms w(r) and z(t) are statistically independent random processes
each with zero mean and autocorrelation functions ¢, (1) and ¢,,(1),
respectively. The product v(?) is also a random process having an autocorrela-
tion function equal to the product of 4,.,(1) with ¢_,(7). Hence, the power
spectral density of the process v(r) is equal to the convolution of the power
spectral density of w(r) with the power spectral density of z(r).

The effect of convolving the two spectra is to spread the power in
bandwidth. Since the bandwidth of w(t) occupies the available channel
bandwith W, the result of convolution of the two spectra is to spread the power
spectral density of z(¢) over the frequency band of width W. If z(;) is a
narrowband process, i.e., its power spectral density has a~width much less than
W, the power spectral density of the process v(f) will occupy a bandwidth
equal to at least W.

The integrator used in the cross-correlation shown in Fig. 13-2-6 has a
bandwidth approximately equal to 1/7;,. Since 1/7, << W, only a fraction of the
total interference power appears at the output of the correlator. This fraction is
approximately equal to the ratio of bandwidths 1/7, to W. That is,

In other words, the multiplication of the interference with the signal from the
PN pgenerator spreads the interference to the signal bandwidth W, and the
narrowband integration following the multiplication sees only the fraction 1/L,
of the total interference. Thus, the performance of the uncoded DS spread
spectrum system is enhanced by the processing gain L..

Linear Code Concatenated with a Binary Repetition Code As illustrated
above, a binary repetition code provides a margin against an interference or
jamming signal but yields no coding gain. To obtain an improvement in
performance, we may use a linear (n,, k) block or convolutional code, where
ny<n=kL. One possibi. ty is to select n, <n and to repeat each code bit n,
times such that 7 =nn,. Thus, we can construct a linear (n,, k) code by
concatenating the (n, k) code with a binary (n,, 1) repetition code. This may
be viewed as a trivial form of code concatenation where the outer code is the
(n,, k) code and the inner code is the repetition code.

Since the repetition code yields no coding gain, the coding gain achieved by
the combined code must reduce to that achieved by the (n,, k) outer code. It
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is demonstrated that this is indeed the case. The coding gain of the overall
combined code is

k
wam=;wm, m=273...,2%

But the weights {w,,} for the combined code may be expressed as
wW,, = “zwﬂm

where {w',} are the weights of the outer code. Therefore, the coding gain of the
combined code is

k K
nowt, =—wh = RWY, (13-2-41)
nin, m

Rw, =

which is just the coding gain obtained from the outer code.

A coding gain is also achieved if the (n,, k) outer code is decoded using
hard decisions. The probability of a bit error obtained with the (n,, 1)
repetition code (based on soft-decision decoding) is

p=Q( znjzgi) 0 2%’,, )

_ 2W/R _,
Q( \/J“ R ) (13-2-42)

Then the code word error probability for a linear (n,, k) block code is
upper-bounded as

My

Pe< 3 (M)pra-pye (13-243)

m=r+1

where r = {(d.. — 1), or as
M 1]
Pu< 2 [4p(1-p)]™~ (13-2-44)
m=2

where the latter is a Chernoff bound. For an (n,, k) binary convolutional code
the upper bound on the bit error probability is

P D BuP(d) (13-2-45)

d=direy

where Py(d) is defined by (8-2-28) for odd d and by (8-2-29) for even 4.

Concatenated Coding for DS Spread Spectrum Systems It is apparent
from the above discussion that an improvement in performance can be
obtained by replacing the repetition code by a more powerful code that will
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yield a coding gain in addition to the processing gain. Basically, the objective in
a DS spread spectrum system is to construct a long, low.rate code having a
large minimum distance. This may be best accomplished by+'using code
concatenation. When binary PSK is used in conjunction with DS spread
spectrum, the elements of a concaienated code word must be expressed in
binary form.

Best performance is obtained when soft-decision decoding is used on both
the inner and outer codes. However, an alternative, which usually results in
reduced complexity for the decoder, is to employ soft-decision decoding on the
inner code and hard-decision decoding on the outer code. The expressions for
the error rate performance of these decoding schemes depend, in part, on the
type of codes (block or convolutional) selected for the inner and outer codes.
For example, the concatenation of two block codes may be viewed as an
overall long binary (, k) block code having a performance given by (13-2-39).
The performance of other code combinations may also be readily derived. For
the sake of brevity, we shall not consider such code combinations.

13-2-2 Some Applications of DS Spread Spectrum Signals

In this subsection, we shall briefly consider the use of coded DS spread
spectrum signals for three specific applications. One is concerned with
providing immunity against a jamming signal. In the second, a communication
signal is hidden in the background noise by transmitting the signal at a very
low power level. The third application js concerned with accommodating a
number of simultaneous signal transmissions on the same channel, i.e.,
CDMA.

Antijamming Application In Section 13-2-1, we derived the error rate
performance for a DS spread spectrum signal in the presence of either - a
narrow band or a wideband jamming signal. As examples to illustrate the
performance of a digital communications system in the presence of a jamming
signal, we shall select three codes. One is the Golay (24,12), which is
characterized by the weight distribution given in Table 8-1-1 and has a
minimum distance d,,;, =8. The second code is an expurgated Golay (24, 11)
obtained by selecting 2048 code words of constant weight 12, Of course this
expurgated code is nonlinear. These two codes will be used in conjunction with
a repetition code. The third code to be considered is a maximum-length
shifi-register code.

The error rate performance of the Golay (24,12) with soft-decision
decoding is

P, < [759@( J:;‘if ) +2576Q( 1_,2‘:;{ f )

+ 759@( X /%) + Q( ii‘r;R)] (13-2-46)
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where W/R is the processing gain and J,,/P,, is the jamming margin. Since
n=nn,=12W/[R and n, =24, each coded bit is, in effect, repeated n, =
W /2R times. For example, if W/R =100 (a processing gain of 20dB), the
block length of the repetition code is n; = 50.

If hard-decision decoding is used, the probability of error for a coded bit is

W/R )
= — 13-247
r=0(\7m (13-247)
and the corresponding probability of a code word error is upper-bounded as
X /24
Pa< 3 (Z)pra-prem (13-248)
=4

As an alternative, we may use the Chernoff bound for hard-decision decoding,
which is

P, <759[4p(1 — p)I* + 2576[4p(1 - p)}*
+75904p(1 - p)I* + [4p(1 - p)]*? (13-249)

Figure 13-2-7 illustrates the performance of the Golay (24, 12) as a function of
the jamming margin J,,/P,,, with the processing gain as a parameter. The
Chernoff bound was used to compute the error probability for hard-decision
decoding. The error probability for soft-decision decoding is dominated by the
term

1)

and that for hard-decision decoding is dominated by the term 759{4p(1 — p)}*.
Hence, the coding gain for soft-decision decoding t is at most 10log4 = 6 dB.
We note that the two curves corresponding to W/R=1000 (30dB) are
identical in shape to the ones for W/R = 100 (20 dB), except that the latter are
shifted by 10dB to the right relative to the former. This shift is simply the
difference in processing gain between these two DS spread spectrum signals.
The error rate performance of the expurgated Golay (24,11) is upper-

bounded as
11W/R
Py= 2047Q(-\ f‘}“‘l—;—-) (13-2-50)

for soft-decision decoding and as}

759Q (

Py =<2047[4p(1 - p)]* (13-2-51)

t The coding gain is less than 6 dB due to the multiplicative factor of 759, which increases the
error probability relative to the performance of the binary uncoded system.
# We remind the reader that the union boand is not very tight for large signal sets.
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for hard-decision decoding, where p is given as

11W/R
ol
The performance characteristics of this code are also plotted in Fig. 13-2-7 for
W/R =100. We observe that this expurgated Golay (24, 11) code performs
about 1 dB better than the Golay (24, 12) code.

Instead of using a block code concatenated with a low-rate (1/n,) repetition
code, let us consider using a single low-rate code. A particularly suitable set of
low-rate codes is the set of maximum-length shift-register codes described in
Section 8-1-3. We recall that for this set of codes,

(r, k)= ) t.m) (13-2-53)
dmin =27 !
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All code woards except the ali-zero word have an identical weight of 27",
Hence, the error rate for soft-decision decoding is upper-bounded as?

P 1 = Q127K Red)
<ze(\iin 7=1)

(13-2-54)

comexp - VIR T
= exp Jaleav o1

For moderate values of m, R.d;, ~ im and, hence, (13-2-54) may be expressed
as

W W/R
PMsZ”Q( ; /f m)éZ”‘ exp(—-; ; ) (13-2-55)

Hence, the coding gain is at most 10 log 3m.

For example, if we select m = 10 then n =2'° — | = 1023. Since n = kW/R =
mW/R, it follows that W/R =~ 102. Thus, we have a processing gain of about
20dB and a coding gain of 7dB. This performance is comparable to that
obtained with the expurgated Golay (24, 11) code. Higher coding gains can be
achieved with larger values of m.

If hard-decision decoding is used for the maximum-length shift-register
codes, the error rate is upper-bounded by the Chernoff bound as

Py = (M= D[4p(1 —p)I*~?* = 2" = )[ap(1 - p)""  (13-2-56)

where p is given as

r=o(\ i r) e\ hs) w2

For m = 10, the code word error rate P, is comparable to that obtained with
the expurgated Golay (24, 11) code for hard-decision decoding.

The reslts given above illustrate the performance that can be cbtained with
a single level of coding. Greater coding gains can be achieved with concaten-
ated codes.

t The M = 2™ waveforms generated by a maximum-length shift-register code form a simplex set
(see Problem 8-13). The exact expression for the error probability, given in Section 5-2-4, may be
used for large values of M, where the union bound becomes very loose.
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Low-Detectability Signal Transmission In this application, the signal is
purposely transmitted at 3 very low power level relative to the background
channel noise and thermal noise that is generated in the front end of the
receiver, If the DS spread spectrum signal occupies a bandwidth W and the
spectral density of the additive noise is N, W/Hz, the average noise power in
the bandwidth W is N,, = WN,.

The average received signal power at the intended receiver is F,,. If we wish
to hide the presence of the signal from receivers that are in the vicinity of the
intended receiver, the signal is transmitted at a low power level such that
P,./N,, <« 1. The intended receiver can recover the information-bearing signal
with the aid of the processing gain and the coding gain. However, any other
receiver that has no prior knowledge of the PN sequence is unable to take
advantage of the processing gain and the coding gain. Hence, the presence of
the information-bearing signal is difficult to detect. We say that the signal has a
low probability of being intercepted (LPI) and it is called an LP/ signal.

The probability of error results given in Section 13-2-1 aiso apply to the
demodulation and decoding of LPI signals at the intended receiver.

Code Division Multiple Access The enhancement in performance ob-
tained from a DS spread spectrum signal through the processing gain and
<oding gain can be used to enable many DS spread spectrum signals to occupy
the same channel bandwidth provided that each signal has its own distinct PN
sequence. Thus, it is possible to have several users transmit messages
simultaneously over the same channel bandwidth. This type of digital
communication in which each user (transmitter-receiver pair) has a distinct PN
code for transmitting over a common channel bandwidth is called either code
division multiple access (CDMA) or spread spectrum multiple access (SSMA).

In the demodulation of each PN signal, the signals from the other
simultaneous users of the channel appear as an additive interference. The level
of interference varies, depending on the number of users at any given time. A
major advantage of CDMA is that a large number of users can be accommod-
ated if each transmits messages for a short period of time. In such a multiple
access system, it is relatively easy either to add new users or to decrease the
number of users without disrupting the system.

Let us determine the number of simultaneous signals that can be supported
in a CDMA system.t For simplicity, we assume that all signals have identical
average powers. Thus, if there are N, simultaneous users, the desired
signal-to-noise interference power ratio at a given receiver is

é_ P." — 1
Jav (Nu - I)Pav Nu -1

(13-2-58)

1 [n this section the interference from other users is treated as a random process. This is the
case if there is no cooperation among the users. In Chapter 15 we consider CDMA transmission in
which interference from other users is known and is suppressed by the receiver.

725



CHAPTER 13 SPREAD SPECTRUM $IGNALS FOR DIGITAL COMMUNICATIONs T17

Hence, the performance for soft-decision decoding at the given receiver is
upper-bounded as

M RPW/R 2W/R )
- ——R.d in
Pﬁmgzg(\/h,u_l&wm)s(u Do o R
(13-2-59)
In this case, we have assumed that the interference from other users is

gaussian.
As an example, suppose that the desired level of performance (error

probability of 107°) is achieved when

W/R

N, ~1

Then the maximum number of users that can be supported in the CDMA
system is

thmin =20

N, = -“if—JR-R‘.dmi,, +1 (13-2-60)
20
If W/R =100 and R.d, =4, as obtained with the Golay (24, 12) code, the
maximum number is N, =21. If W/R = 1000 and R.dmin =4, this number
becomes N, = 201.

In determining the maximum number of simultaneous users of the channel,
we have implicitly assumed that the PN code sequences are mutually
orthogonal and the interference from other users adds on a power basis only.
However, orthogonality among a number of PN code sequences is not easily
achieved, especially if the number of PN code sequences required is large. In
fact, the selection of a good set of PN sequences for a CDMA system is an
important problem that has received considerable attention in the technical
literature. We shall briefly discuss this problem in Section 13-2-3.

13-2-3 Effect of Pulsed Interference on DS Spread Spectrum

Systems

Thus far, we have considered the effect of continuous interference or jamming
on a DS spread spectrum signal. We have observed that the processing gain
and coding gain provide a means for overcoming the detrimental effects of this
type of interference. However, there is a jamming threat that has a dramatic
effect on the performance of a DS spread spectrum system. That jamming
signal consists of pulses of spectrally flat noise that covers the entire signal
bandwidth W. This is usually called puised interference or partial-time jamming,

Suppose the jammer has an average power J,, in the signal bandwidth W.
Hence J, = 1,,/W. Instead of transmitting continuously, the jammer transmits
pulses at a power J,./a for a% of the time, ie., the probability that the
jammer is transmitting at a given instant is @. For simplicity, we assume that
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an interference pulse spans an integral number of signaling intervals and, thus,
it affects an integral number of bits. When the jammer is not transmitting, the
transmitted bits are assumed to be received error-free, and when the jammer is
transmitting, the probability of error for an uncoded DS spread spectrum
system is Q(V2a¥%,/J;). Hence, the average probability of a bit error is

ZaW/R)
Jol Pay

Pya) = aQ(V2a¥,/)y) = aQ( (13-2-61)
The jammer selects the duty cycle « to maximize the error probability. On
differentiating (13-2-61) with respect to a, we find that the worst-case pulse
jamming occurs when
0.71
— (%/45=0.71
a*=13 &/, (&l ) (13-2-62)

1 (%/J,<0.71)
and the corresponding error probability is
0.083 0.083/,./P,,

= (&1Jo>0.71)
%
p= /o 2;;::? (13-2-63)
Q( J“/P“) (%1J0<0.71)

The error rate performance given by (13-2-61) for « =1.0, 0.1, and 0.01
along with the worst-case performance based on a* is plotted in Fig. 13-2-8.

1o f

0 |

Probability of a bit error, P,

jamming.
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By comparing the error rate for continuous gaussian noise jamming with
worst-case pulse jamming, we observe a large difference in performance, which
is approximately 40 dB at an error rate of 107°.

We should point out that the above analysis applies when the jammer pulse
duration is equal to or greater than the bit duration. In addition, we should
indicate that practical considerations may prohibit the jammer from achieving
high peak power (small values of a). Nevertheless, the errcr probability given
by (13-2-63) serves as an upper bound on the performance of the uncoded
binary PSK in worst-case pulse jamming. Clearly, the performance of the DS
spread spectrum system in the presence of such jamming is extremely poor.

If we simply add coding to the DS spread spectrum system, the improve-
ment over the uncoded system is the coding gain. Thus, &,/J; is reduced by the
coding gain, which in most cases is limited to less than 10 dB. The reason for
the poor performance is that the jamming signal pulse duration may be
selected to affect many consecutive coded bits when the jamming signal is
turned on. Consequently, the code word error probability is high due to the
burst characteristics of the jammer.

In order to improve the performance, we should interieave the coded bits
prior to transmission over the channel. The effect of the interleaving, as
discussed in Section 8-1-9, is 10 make the coded bits that are hit by the jammer
statistically independent.

The block diagram of the digital communication system that includes
mterleaving/deinterleaving is shown in Fig. 13-2-9. Also shown is the pos-
sibility that the receiver knows the jammer state, i.e., that it knows when
the jammer is on or off. Knowledge of the jammer state (called side
informaiion) is sometimes available from channel measurements of noise
power levels in adjacent frequency bands. In our treatment, we consider two

Block diagram of AJ communication system.

Data
————p{ Encoder Interleaver »
,
PN
genesaior
L
wate Channe!
PN
generalor
Data
+——— Decoder Decoder o Demodulator
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extreme cases, namely, no knowledge of the. jammer state or cqmplete
knowledge of the jammer state. In any case, the random variable ¢
represeriting the jammer state is characterized by the probabilities

Pii=D=a, PL=0)=1-a

When the jammer is on, the channel is modeled as an AWGN with power
spectral density N, =Jo/a = J,./aW; and when the jammer is off, there is no
noise in the channel. Knowledge of the jammer state implies that the decoder
knows when {=1 and when ¢ =0, and uses this information in the
computation of the correlation metrics. For example, the decoder may weight
the demodulator output for each coded bit by the reciprocal of the noise power
level in the interval. Alternatively, the decoder may give zero weight (erasure)
to a jammed bit.

First, Jet us consider the effect of jamming without knowledge of the jammer
state. The interleaver/deinterleaver pair is assumed to result in statistically
independent jammer hits of the coded bits. As an example of the performance
achieved with coding, we cite the performance resuits from the paper of Martin
and McAdam (1980). There the performance of binary convolutional codes is
evaluated for worst-case pulse jamming. Both hard and soft-decision Viterbi
decoding are considered. Soft decisions are obtained by quantizing the
demodulator output to eight levels. For this purpese, a uniform quantizer is
used for which the threshold spacing is optimized for the pulse jammer noise
level. The quantizer plays the important role of limiting the size of the
demodulator output when the pulse jammer is on. The limiting action ensures
that any hit on a coded bit does not heavily bias the corresponding path
metrics.

The optimum duty cycle for the pulse jammer in the coded system is
generally inversely proportional to the SNR, but its value is different from that
given by (13-2-62) for the uncoded system. Figure 13-2-10 illustrates graphi-
cally the optimal jammer duty cycle for both hard- and soft-decision decoding
of the rate 1/2 convolutional codes. The corresponding error rate results for
this worst-case pulse jammer are illustrated in Figs 13-2-11 and 13-2-12 for rate
1/2 codes with constraint lengths 3<K <9 For example, note that at
P,=10"° the K =7 convolutional code with soft-decision decoding requires
&,/Jo=7.6dB, whereas hard-decision decoding requires &,/J,=11.7dB. This
4.1dB difference in SNR is relatively large. With continuous gaussian noise,
the corresponding SNRs for an error rate of 10 are 5dB for soft-decision
decoding and 7dB for hard-decision decoding. Hence, the worst-case pulse
jammer has degraded the performance by 2.6 dB for soft-decision decoding
and by 4.7 dB for hard-decision decoding. These levels of degradation increase
as the constraint length of the convolutional code is decreased. The important
point, however, is that the loss in SNR due to jamming has been reduced from
40 dB for the uncoded system to less than 5 dB for the coded system based on
a K =7, rate 1/2 convolutional code.
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A simpler method for evaluating the performance of a coded Al com-
munication system 1s to usc the cutoff rate parameter R, as proposed by
Omura and Levitt (1982). For example, with binary-coded modulation, the
cutoff rate may be expressed as

Ro=1-1log(1+D,) (13-2-64)
1ot Union bound
Optimal pulse jamming
Binary phase shift keying

Rare 1/2 convoluiona! code
with Viterbi decoding

104 Hard decisions
o K=1
‘g‘ K=4
: K=3
] K=6
Yot =
E‘ K=7
= K=%
g K=9

3

Performance of rate 1/2 convolutional codes

with hard-decision Viterbi decoding binary i L L 1
PSK with optimal pulse jamming. [From 5 Tos oo
Martin and McAdam (1980). © 1980 IEEE]] £,/J,(dB)
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PSK with optimal pulse jamming. {From 2 4 6 8B 10 12 14 16
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where the factor D, depends on the channel noise characteristics and the
decoder processing. Recall that for binary PSK in an AWGN channel and
soft-decision decoding,

D, =g %M (13-2-65)
where € is the energy per coded bit; and for hard-decision decoding,
D, = Vap(1-p) (13-2-66)

where p is the probability of a coded bit error. Here, we have Ny=J,.
For a coded binary PSK, with puise jamming, Omura and Levitt (1982} have
shown that

D, = qe %M for soft-decision decoding with
knowledge of jammer state (13-2-67)
D, = min {{a exp (AT€ENo/a) + 1 - a]exp (~24€.)}
-
for soft-decision decoding with

no knowledge of jammer state (13-2-68)

D,=aVip(l -p) for hard-decision decoding with
knowiedge of the jammer state (13-2-69)

D, =Vaap(l —ap) for hard-decision decoding with
no knowledge of the jammer state  (13-2-70)
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Cutoff rate for coded DS binary PSK modulation. (From QOmura and Levitt (1982;. © 1962 IEEE )

where the probability of error for hard-deciston decoding of binary PSK is

2a¥,
p= Q( N, )

The graphs for R, as a function of %./N, are illustrated in Fig. 13-2-13 for
the cases given above. Note that these graphs represent the cutoff rate for the
worst-case value of a = a* that maximizes D, (minimizes R,) for each value of
é./Ny. Furthermore, note that with soft-decision decoding and no knowledge
of the jammer state, Ro=0. This situation results from the fact that the
demodulator output is not quantized.

The graphs in Fig. 13-2-13 may be used to evaluate the performance of
coded systems. To demonstrate the procedure, suppose that we wish to
determine the SNR required to achieve an error probability of 10 with coded
binary PSK in worst-case pulse jamming. To be specific, we assume that we
have a rate 1/2, K =7 convolutional code. We begin with the performance of
the rate 1/2, K =7 convolutional code with soft-decision decoding in an
AWGN channel. At P,=10"°, the SNR required is found from Fig. 8-2-21 to
be

% IN;=5dB
Since the code is rate 1/2, we have
gr,Nﬁ =2 dB
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Now, we go to the graphs in Fig. 13-2-13 and find that for the AWGN channel
(reference system) with &./N,=2dB, the corresponding value of the cutoff
rate is

Ry = 0.74 bits/symbol

If we have another channel with different noise characteristics (a worst-case
pulse noise channel) but with the same value of the cutoff rate R, then the
upper bound on the bit error probability is the same, i.e., 1075 in this case.
Consequently, we can use this rate to determine the SNR required for the
worst-case pulse jammer channel. From the graphs in Fig. 13-2-13, we find that

(10dB  for hard-decision decoding with
no knowledge of jammer state

€ ) 5dB for hard-decision decoding with
Jo knowledge of jammer state

3dB forsoft-decision decoding with
\ knowledge of jammer state

Therefore, the corresponding values of %,/J, for the rate 1/2, K = 7 convolu-
tional are 13, 8, and 6 dB, respectively.

This general approach may be used to generate error rate graphs for coded
binary signals in a worst-case pulse jamming channel by using corresponding
error rate graphs for the AWGN channel. The approach we describe above is
easily generalized to M-ary coded signals as indicated by Omura and Levitt
(1982).

By comparing the cutoff rate for coded DS binary PSK modulation shown in
Fig. 13-2-13, we note that for rates below 0.7, there is no penalty in SNR with
soft-decision decoding and jammer state information compared with the
performance on the AWGN channel (a« =1). On the other hand, at R, = 0.7,
there is a 6dB difference in performance between the SNR in an AWGN
channel and that required for hard-decision decoding with no jammer state
information. At rates below 0.4, there is no penalty in SNR with hard-decision
decoding if the jammer state is unknown. However, there is the expected 2dB
loss in hard-decision decoding compared with soft-decision decoding in the
AWGN channel.

13-2-4 Generation of PN Sequences

The generation of PN sequences for spread spectrum applications is a topic
that has received considerable attention in the technical literature. We shall
briefly discuss the construction of some PN sequences and present a number of
important properties of the autocorrelation and cross-correlation functions of
such sequences. For a comprehensive treatment of this subject, the interested
reader may refer to the book by Golomb (1967).
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General m-stage shift register with linear feedback.

By far the most widely known binary PN sequences are the maximum-
length shift-register sequences introduced in Section 8-1-3 in the context of
coding and suggested again in Section 13-2-2 for use as low-rate codes. A
maximum-length shift-register sequence, or m-sequence for short, has length
n=2"—1 bits and is generated by an m-stage shift register with linear
feedback as illustrated in Fig. 13-2-14. The sequence is periodic with period #.
Each period of the sequence contains 27" ones and 2™ ' — 1 zeros.

In DS spread specttum applications the binary sequence with elements {0, 1}
is mapped into a corresponding sequence of positivé and negative pulses
according to the relation

pit) = (2bi—1)p(t — il

where p,(t) is the pulse corresponding to the element b, in the sequence with
elements {0, 1}. Equivalently, we may say that the binary sequence with
elements {0, 1} is mapped into a corresponding binary sequence with elements
{=1,1}. We shall call the equivalent sequence with elements {~1.1} a bipolar
sequence, since it results in pulses of positive and negative amplitudes.

An important characteristic of a periodic PN sequence is its periodic
autocorrelation function, which is usually defined in terms of the bipoiar
sequence as

() =2 b, —1)(2b,,, - 1), O<jsn—1 (13-2-71)
i=1
where n is the period. Clearly, ¢(j + rn) = ¢{j) for any integer value r.
Ideally, a pseudo-random sequence should have an autocorrelation function
with the property that $(0) = n and ¢(j) =0 for 1<j<n — 1. In the case of m
sequences, the periodic autocorrelation function is

n (j=0)

“b(’):{—l (<jsn-1) (13-2-72)
For large values of #, ie., for long m sequences, the size of the off-peak values
of &(j) relative to the peak value ¢(j)/¢(0)=—1/n is small and, from a
practical viewpoint, inconsequential. Therefore, m sequences are almost ideal

when viewed in terms of their autocorrelation function.
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In antijamming applications of PN spread spectrum signals, the period of
the sequence must be large in order to prevent the jammer from learning the
feedback connections of the PN generator. However, this requirement is
impractical in most cases because the jammer can determine the feedback
connections by observing only 2m chips from the PN sequence. This
vulnerability of the PN sequence is due to the linearity property of the
generator. To reduce the vulnerability to a jammer, the output sequences from
several stages of the shift register or the outputs from several distinct m
sequences are combined in a nonlinear way to produce a nonlinear sequence
that is considerably more difficult for the jammer to learn. Further reduction in
vulnerability is achieved by frequently changing the feedback connections
and/or the number of stages in the shift register according to some prear-
ranged plan formujated between the transmitter and the intended receiver.

In some applications, the cross-correlation properties of PN sequences are
as important as the autocorrelation properties. For example, in CDMA, each
user is assigned a particular PN sequence. Ideally, the PN sequences among
users should® be mutually orthogonal so that the level of interference
experienced by any one user from transmissions of other users adds on a power
basis. However, the PN sequences used in practice exhibit some correlation,

To be specific, we consider the class of m sequences. It is known (Sarwate
and Pursley, 1980) that the periodic cross-correlation function between any
pair of m sequences of the same period can have relatively large peaks. Table
13-2-1 lists the peak magnitude &,,,, for the periodic cross-correlation between
pairs of m sequences for 3<m <12. The table also shows the number of
sequences of length n =27 ~1 for 3<m <12. As we can see, the number of
m sequences of length n increases rapidly with m. We also observe that, for
most sequences, the peak magnitude ¢,,,, of the cross-correlation function is a
large percentage of the peak value of the autocorrelation function.

Such high values for the cross-correlations are undesirable in CDMA.

TABLE 13-2-1 PEAK CROSS-CORRELATION OF m SEQUENCES AND GOLD SEQUENCES

Peak
Number of cross-correlation
m n=2"-1  m sequences @ ax Gx/ B0 1(m)  H(m)D(O)
3 7 2 5 0.7% 5 0.71
4 15 2 g .60 g 0.60
5 3 6 1 0.35 9 0.29
6 63 6 23 0.36 17 0.27
7 127 18 41 032 17 0.13
8 255 16 95 0.37 33 0.13
9 511 48 113 0.22 33 0.06
10 1023 60 383 0.37 65 0.06
i1 2047 176 287 0.14 65 0.03
12 4095 144 1407 0.34 129 0.03
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Although it is possible to select a small subset of m’ sequences that have
relatively smaller cross-correlation peak values, the number of sequences in the
set is usually too small for CDMA applications.

PN sequences with better periodic cross-correlation properties than m
sequences have been given by Gold (1967, 1968) and Kasami (1966). They are
derived from m sequences as described below.

Gold and Kasami proved that certain pairs of m sequences of length »n
exhibit a three-valued cross-correlation function with values {—1, —t(m).
t(m) -2}, where

2(m+l}f2+1 (oddm)

t(m)= {2(,,,,,2,,2 +1 (evenm) (13-2-73)

For example, if m = 10 then 1(10) = 2° + 1 = 65 and the three possible values of
the periodic cross-correlation function are {1, —65, 63}. Hence the maximum
cross-correlation for the pair of m sequences is 65, while the peak for the
family of 60 possible sequences generated by a 10-stage shift register with
different feedback connections is ¢, = 383—about a sixfold difference in
peak values. Two m sequences of length n with a periodic cross-correlation
function that takes on the possible values {—1, —t(m), t(m) — 2} are called
preferred sequences. i

From a pair of preferred sequences, say a=[a;a;...4,] and b=
[b1b; ... b,], we construct a set of sequences of length n by taking the
modulo-2 sum of a with the n cyclicly shifted versions of b or vice versa. Thus,
we obtain » new periodic sequencest with period n =2" - 1. We may also
include the original sequences 8 and b and, thus, we have a total of n +2
sequences. The n + 2 sequences constructed in this manner are called Gold
sequences.

Example 13-2-4

- Let us consider the generation of Gold sequences of length n =31 =2 - 1.
As indicated above for m =5, the cross-correlation peak is

(3)=22+1=9

Two preferred sequences, which may be obtained from Peterson and
Weldon (1972), are described by the polynomials

g(p)=p°+p*+1
gAp)=p’+p*+p*+p+1
t An equivalent method for generating the n new sequences is to employ a shift register of
length 2m with feedback comnections specified by the polynomial h(p) = g,(p)g,(p), where g,(p)

and g,(p) are the polynomials that specify the feedback connections of the m-stage shift registers
that generate the m sequences a and b.
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FIGURE 13-2-15  Generation of Gold sequences of length 31.

The shift registers for generating the two m sequences and the
corresponding Gold sequences are shown in Fig. 13-2-15. In this case, there
are 33 different sequences, corresponding to the 33 relative phases of the
two m sequences. Of these, 31 sequences are non-maximal-length
sequences.

With the exception of the sequences a and b, the set of Gold sequences does
not comprise maximum-iength shift-register sequences of length n. Hence,
their autocorrelation functions are not two-valued. Gold (1968) has shown that
the cross-correlation function for any pair of sequences from the set of n + 2
Gold sequences is three-valued with possible values {~1, —1(m), t(m) -2},
where !(m) is given by (13-2-73). Similarly, the off-peak autocorrelation
function for a Gold sequence takes on values from the set {~1, —t(m), t(m) ~
2}. Hence, the off-peak values of the autocorrelation function are upper-
bounded by (m).

The values of the off-peak autocorrefation function and the peak cross-
correlation function, i.e., t(m), for Gold sequences is listed in Table 13-2-1.
Also listed are the values normalized by ¢(0).

It is interesting to compare the peak cross-correlation value of Gold
sequences with a known lower bound on the cross-correlation between any
pair of binary sequences of period n in a set of M sequences. A lower bound
developed by Welch (1974) for .., is

M-1
Mn-1
which, for large values of n and M, is well approximated as Vn. For Gold
sequences, n = 2™ — 1 and, hence, the lower bound is ¢,,,, =2™?2. This bound

is lower by V2 for odd m and by 2 for even m relative to ¢, = t(m) for Gold
sequences.

- (13-2-74)
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A procedure similar to that used for generating Gold sequences will
generate a smaller set of M =2"" binary sequences of period n=2" -1,
where m is even. In this procedure, we begin with an m sequence a and we
form a binary sequence b by taking every 22 + 1 bit of a. Thus, the sequence
b is formed by decimating a by 27 + 1. It can be verified that the resulting b is
periodic with period 2”">—}. For example, if m =10, the period of a is
n =1023 and the period of b is 31. Hence, if we observe 1023 bits of the
sequence b, we shall see 33 repetitions of the 31-bit sequence. Now, by taking
n =2" —1 bits of the sequences a and b, we form a new set of sequences by
adding, modulo-2, the bits from a and the bits from b and all 2”72 ~ 2 eyclic
shifts of the bits from b. By including a in the set, we obtain a set of 272 binary
sequences of length n =27 — 1. These are called Kasami sequences. The
autocorrelation and cross-correlation functions of these sequences take on
values from the set {—1, —(2™% +1),2™2—1}. Hence, the maximum cross-
correlation value for any pair of sequences from the set is

Pmax =272+ 1 (13-2-75)

This value of ¢,.,, satisfies the Welch lower bound for a set of 22 sequences
of length n = 2" — 1. Hence, the Kasami sequences are optimal.

Besides the well-known Gold and Kasami sequences, there are other binary
sequences appropriate for CDMA applications. The interested reader may
refer to the work of Scholtz (1979), Olsen (1977), and Sarwate and Pursley
(1980).

Finally, we wish to indicate that, although we have discussed.the periodic
cross-correlation function between pairs of periodic sequences, many practical
CDMA systems may use information bit durations that encompass only
fractions of a periodic sequence. In such cases, it is the partial-period
cross-correlation between two sequences that is important. A number of
papers deal with this problem, including those by Lindholm (1968), Wainberg
and Wolf (1970), Fredricsson (1975), Bekir et al. (1978), and Pursley (1979).

13-3 FREQUENCY-HOPPED SPREAD SPECTRUM

SIGNALS

In a frequency-hopped (FH) spread spectrum communications system the
available channel bandwidth is subdivided into a large number of contiguous
frequency slots. In any signaling interval, the transmitted signal occupies one
or more of the available frequency slots. The selection of the frequency slot(s)
in each signaling interval is made pseudo-randomty according to the output
from a PN generator. Figure 13-3-1 illustrates a particular frequency-hopped
pattern in the time-frequency plane.

A block diagram of the transmitter and receiver for a frequency-hopped
spread spectrum system is shown in Fig. 13-3-2. The modulation is usually
either binary or M-ary FSK. For example, if binary FSK is employed, the
modulator selects one of two frequencies corresponding to the transmission of
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either a 1 or a 0. The resulting FSK signal is translated in frequency by an
amount that is determined by the output sequence from the PN generator,
which, in turn, is used to select a frequency that is synthesized by the frequency
synthesizer. This frequency is mixed with the output of the modulator and the
resultant frequency-translated signal is transmitted over the channel. For
example, m bits from the PN generator may be used to specify 2™ — 1 possible
frequency translations.

At the receiver, we have an identical PN generator, synchronized with the
received signal, which is used to control the output of the frequency
synthesizer. Thus, the pseudo-random frequency translation introduced at the
transmitter is removed at the receiver by mixing the synthesizer output with
the received signal. The resultant signal is demodulated by means of an FSK
demodulator. A signal for maintaining synchronism of the PN generator with
the frequency-translated received signal is usually extracted from the received
signal.

Although PSK modulation gives better performance than FSK in an

Block diagram of a FH spread spectrum system,
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Block diagram of an independent tone FH spread spectrum system.

AWGN channel, it is difficult to maintain phase coherence in the synthesis of
the frequencies used in the hopping pattern and, also, in the propagation of the
signal over the channel as the signal is hopped from one frequency to-another
over a wide bandwidth. Consequently, FSK modulation with noncoherent
detection is usually employed with FH spread spectrum signals.

In the frequency-hopping system depicted in Fig. 13-3-2, the carrier
frequency is pseudo-randomly hopped in every signaling interval. The M
information-bearing tones are contiguous and separated in frequency by 1/7,,
where T; is the signaling interval. This type of frequency hopping is called
block hopping. “

Another type of frequency hopping that is less vulnerable to some jamming

strategies is independent tone hopping. In this scheme, the M possible tones
from the modulator are assigned widely dispersed frequency slots. One method
for accomplishing this is illustrated in Fig. 13-3-3. Here, the m bits from the PN.
generator and the k information bits are used to specify the frequency slots for
the transmitted signal.
. The frequency-hopping rate is usually selected to be either equal to the
(coded or uncoded) symbol rate or faster than that rate. If there are multiple
hops per symbol, we have a fast-hopped signal. On the -other hand, if the
hopping is performed at the symbol rate, we have a slow-hopped signal.

Fast frequency hopping is employed in AJ applications when it is necessary
to prevent a type of jammer, called a follower jammer, from having sufficient
time to intercept the frequency and retransmit it along with adjacent
frequencies so as to create interfering signal components. However, there is a
penalty incurred in subdividing a signal into several frequency-hopped ele-
ments because the energy from these separate elements is combined non-
coherently. Consequently, the demodulator incurs a penalty in the form of a
noncoherent combining loss as described in Section 12-1.

FH spread spectrum signals are used primarily in digital communications
systems that require AJ projection and in CDMA, where many users share a
common bandwidth. In most cases, a FH signal is preferred over a DS spread
spectrum signal because of -the stringent synchronization requirements
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inherent in DS spread spectrum signals. Specifically, in a DS system, timing
and synchronization must be established to within a fraction of the chip
interval 7. =1/W. On the other hand, in an FH system, the chip interval is the
time spent in transmitting a signal in a particular frequency slot of bandwidth
B <« W. But this inierval is approximately 1/B, which is much larger than 1/W.
Hence the timing requirements in a FH system are not as stringent as in a PN
system.

ysln Sections 13-3-2 and 13-3-3, we shall focus on the AJ and CDMA
applications of FH spread spectrum signals. First, we shall determine the error
rate performance of an uncoded and a coded FH signal in the presence of
broadband AWGN interference. Then we shall consider a more serious type of
interference that arises in AJ and CDMA applications, called partial-band
interference. The benefits obtained from coding for this type of interference are
determined. We conclude the discussion in Section 13-3-3 with an example of
an FH CDMA system that was designed for use by mobile users with a satellite
serving as the channel.

13-3-1 Performance of FH Spread Spectrum Signals in
AWGN Channel

Let us consider the performance of a FH spread spectrum signal in the
presence of broadband interference characterized statistically as AWGN with
power spectral density J,. For binary orthogonal FSK with noncoherent

detection and slow frequency hopping (1 hop/bit), the probability of error,
derived in Section 5-4-1, is

Py=}e ™" (13-3-1)

where v, = &,/J,. On the cther hand, if the bit interval is subdivided into L
subintervals and FH binary FSK is transmitted in each subinterval, we have a
fast FH signal. With square-law combining of the output signals from the
corresponding matched filters for the L subintervals, the error rate perfor-
mance of the FH signal, obtained from the results in Section 12-1, is

L1
PAL = e ™ 3 Kb 1332)

where the SNR per bit is v, = %,/J,= LY., y. is the SNR per chip in the
L-chip symbol, and

X, =—L§' (2L Y (13:33)

! r=0

We recall that, for a given SNR per bit y,, the error rate obtained from
(13-3-2) is larger than that obtained from (13-3-1). The difference in SNR for a
given error rate and a given L is called the noncoherent combining loss, which
was described and illustrated in Section 12-1.

Coding improves the performance of the FH spread spectrum system by an

741



CHAFTER 13 SPREAD SPECTRUM SIGNALS FOR DIGITAL COMMUNICATIONS 733

amount, which we call the coding gain, that depends on the code parameters.
Suppose we use a linear binary (n, k) block code and binary FSK modulation
with one hop per coded bit for transmitting the bits. With soft-decision
decoding of the square-law -demodulated FSK signal, the probability of a code
word error is upper-bounded as

A
Py< > Pym) (13-3-4)

m=2
where Pp(m) is the error probability in deciding between the mth code word
and the all-zero code word when the latter has been transmitted. The
expression for F(m) was derived in Section 8-1-4 and has the same form as
(13-3-2) and (13-3-3), with L being replaced by w,, and 7y, by y,R.w,,, where
w,, is the weight of the mth code word and R, is the code rate. The product
R.w,,, which is not less than R.d,, represents the coding gain. Thus, we have
the performance of a block coded FH system with slow frequency hopping in
broadband interference.

The probability of error for fast frequency hopping with n, hops per coded
bit is obtained by reinterpreting the binary event probability P,(m) in (13-3-4).
The n; hops per coded bit may be interpreted as a repetition code, which,
when combined with a nontrivial (n,, k) binary linear code having weight
distribution {w,,}, yields an (nn,, k) binary linear code with weight distribu-
tion {n,w,,}. Hence, P,(m) has the form given in (13-3-2), with L replaced by
nw, and y,' by y,R.nw,, where R.=k/nn,. Note that y,R.m,w,, =
YsWmk/n,, which is just the coding gain obtained from the nontrivial (n,, k)
code. Consequently, the use of the repetition code will result in an increase in
the noncoherent combining loss.

With hard-decision decoding and slow frequency hopping, the probability of
a coded bit error at the output of the demodulator for noncoherent detection is

p =te 2 (13-3-5)

The code word error probability is easily upper-bounded, by use of the
Chernoff bound, as

M
Pu= 3 [4p(1=p)" (13-36)

However, if fast frequency hopping is employed with n, hops per coded bit,
and the square-law-detected outputs from the corresponding matched filters
for the n; hops are added as in soft-decision decoding to form the two decision
variables for the coded bits, the bit error probability p is also given by (13-3-2),
with L replaced by n; and y, replaced by y,R.n,, where R. is the rate of the
nontrivial (n,, k) code. Consequently, the performance of the fast FH system
in broadband interference is degraded relative to the stow FH system by an
amount equal to the noncoherent combining loss of the signals received from
the n; hops.
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We have observed that for both hard-decision and soft-decision decoding,
the use of the repetition code in a fast-frequency-hopping system yields no
coding gain. The only coding gain obtained comes from the (r,, k) block code.
Hence, the repetition code is inefficient in a fast FH system with noncoherent
combining. A more efficient coding method is one in which either a single
low-rate binary code or a concatenated code is employed. Additional improve-
ments in performance may be obtained by using nonbinary codes in conjunc-
tion with M-ary FSK. Bounds on the error probability for this case may be
obtained from the results given in Section 12-1.

Although we have evaluated the performance of linear block codes only in
the above discussion, it is relatively easy to derive corresponding performance
results for binary convolutional codes. We leave as an exercise for the reader
the derivation of the bit error probability for soft-decision Viterbi decoding
and hard-decision Viterbi decoding of FH signals corrupted by broadband
interference.

Finally, we observe that &,, the energy per bit, can be expressed as
é, = P,,/R, where R is the information rate in bits per second and J, =J,./W.
Therefore, y, may be expressed as

&_WIR
Jﬂ Jav!Pav

In this expression, we recognize W/R as the processing gain and J,./P,, as the
jamming margin for the FH spread spectrum signal.

Yo =

(13-3-7)

13-3-2 Performance of FH Spread Spectrum Signals in
Partial-Band Interference

The partial-band interference considered in this subsection is modeled as a
zero-mean gaussian random process with a flat power spectral density over a
fraction o of the total bandwidth W and zero elsewhere. In the region or
regions where the power spectral density is nonzero, its value is ®,,(f) = Jo/a,
0<a =1 This model of the interference may be applied to a jamming signal
or to interference from other users in a FH CDMA system.

Suppose that the partial-band interference comes from a jammer who may
select a to optimize the effect on the communications system. In an uncoded
pseudo-randomly hopped (slow-hopping) FH system with binary FSK modula-
tion and noncoherent detection, the received signal will be jammed with
probability « and it will not be jammed with probability 1 — a. When it is
jammed, the probability of error is lexp (~%,a/2/,), and when it is not
jammed, the demodulation is error-free. Consequently, the average probability
of error is

. a¥
Pfa)=laexp (-%’3) (13-3-8)
{)

where €,/J, may also be expressed as (W/R)/(J,./P..).
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Figure 13-3-4 illustrates the error rate as a function of %,/J, for several
values of a. The jammer’s optimum strategy is to select the value of « that
maximizes the error probability. By differentiating P(a) and solving for the
extremum with the restriction that 0 <« < 1, we find that

1 ]av/Pav
=2 Jo=2
a*=1%/%, ~ W/R (&/do=2) (13-3.9)
1 (&/1<2)
The corresponding error probability for the worst-case partial-band jammer is
Tl
P — 3 - -
: gb.;"'i] ¢ Javflpav (13 3 10)

Whereas the error probability decreases exponentially for full-band jamming,
we now find that the error probability decreases only inversely with %,/J, for
the worst-case partial-band jamming. This result is similar to the error rate
performance of binary FSK in a Rayleigh fading channel (see Section 14-3) and
to the uncoded DS spread spectrum system corrupted by worst-case pulse
jamming (see Section 13-2-3),

As we shall demonstrate below, signal diversity obtained by means of
coding provides a significant improvement in performance relative to uncoded
signals. This same approach to signal design is also effective for signaling over
a fading channel, as we shall demonstrate in Chapter 14.

To illustrate the benefits of diversity in a FH spread spectrum signal with
partial-band interference, we assume that the same information symbol is
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transmitted by binary FSK on 1. independent frequency hops. This may be
accomplished by subdividing the signaling interval into L subintervals, as
described previously for fast frequency hopping. After the hopping pattern is
removed, the signal is demodulated by passing it through a pair of matched
filters whose outputs are square-law-detected and sampled at the end of each
subinterval. The square-law-detected signals corresponding to the L frequency
hops are weighted and summed to form the two decision variables (metrics),
which are denoted as U, and Uh.

When the decision variable U, contains the signal components, U, and U,
may be expressed as

i
U= 2 Ba €+ Nuf?
o (13-3-11)

L
U, = E B $N2x|2
k=1

where {B,} represent the weighting coefficients, &, is the signal energy per chip
in the L-chip symbol, and {N,} represent the additive gaussian noise terms at
the output of the matched filters. ,

The coefficients -are optimally selected to prevent the jammer from
saturating the combiner should the transmitted frequencies be successfully hit
in one qr more hops. Ideally, B, is selected to be equal to the reciprocal of the
variance of the corresponding noise terms {N,}. Thus, the noise variance for
each chip is normalized to unity by this weighting and the corresponding signal
is also scaled accordingly. This means that when the signal frequencies on a
particular hop are jammed, the corresponding weight is very small. In the
absence of jamming on a given hop, the weight is relatively large. In practice,
for partial-bound noise jamming, the weighting may be accomplished by use of
an AGC having a gain that is set on the basis of noise power measurements
obtained from frequency bands adjacent to the transmitted tones. This is
equivalent to having side information (knowledge of jammer state) at the
decoder.

Suppose that we have broadband gaussian noise with power spectral density
N, and partial-band interference, over aW of the frequency band, which is also
gaussian with power spectral density Jy/a. In the presence of partial-band
interference, the second moments of the noise terms N,, and N», are

oi= LENuD) = JENP =26 (M + ) (13312)

In this case, we select B, =1/0;=[2¢(Ny+Jo/a)]"". In the absence of

partial-band interference, o} = 2N, and, hence, B, = (2&N,)~". Note that 8,
is a random variable. '

An error occurs in the demodulation if U, > U,. Although it is possible to

determine the exact error probability, we shall resort to the Chernoff bound,
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which yields a result that is much easier to evaluate and interpret. Specifically.
the Chernoff (upper) bounds in the error probability is

Py=P(U; - U, >0) < Efexp [v(U, — Ui}
L
- e[V 2 Bt mr-mn]] @333
k=1

where v is a variable that is optimized to yield the tightest possible bound.

The averaging in (13-3-13) is performed with respect to the statistics of the
noise components and the statistics of the weighting coefficients {8,}, which are
random as a consequence of the statistical nature of the interference. Keeping
the {B,} fixed and averaging over the noise statistics first, we obtain

PAB) = E[exp ( -y ki; Bx I2€ + Ny * + ‘Ifg‘ B« |N2k[2)]

Elexp (—vB € + Nyl )]E[exp (vBi INu )]

43‘331&")
4 Ie"p( 1+2v

Since the FSK tones are jammed with probablllty a, it follows that 8, =
[28(Ny + Jy/a)] ™" with probability a and (2€.Ny)~' with probability 1 -«
Hence, the Chernoff bound is

& ﬁ{1 4y "p[(N,,u;/ig}(:nv)] 11:4‘:2 P [E%]}

{1—4v2 [(N0+J:!i§(:+2v)} 1_4 zexP[No(_lzf;v)]}L
(13-3-15)

The next step is to optimize the bound in (13-3-15) with respect to ‘the
variable v. In its present form, however, the bound is messy to manipulate. A
significant simplification occurs if we assume that Jo/ a > Ny, which renders the
second term in (13-3-15) negligible compared with the first. Alternatively, we
let Np=0, so that the bound on P, reduces to

a -2av¥ N
Pzﬁ{x 4 P [10(1 n 2v)]} (13-3-16)

The minimum value of this bound with respect to v and the maximum with
respect 1o a (worst-case partial-band interference) is easily shown to occur
when o = 3/,/%.<1 and v=1 For these values of the parameters, (13-3-16)
reduces to

l

-1l
s

(13-3-14)

M

1l

4\" 14Nt & &
f’ gP L =( ) =( ) ! = = -
2= (L) eYe Ye * % Un;s (13-3-17)
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where vy, is the SNR per chip in the L-chip symbol. Equivalently,

L
p< [1.47(1.";1’..,}} o _WIR 4 (13-3-18)

W/R L{JaviPy)

The result in (13-3-17) was first derived by Viterbi and Facobs (1975).

We observe that the probability of error for the worst-case partial-band
interference decreases exponentially with an increase in the SNR per chip ¥..
This result is very similar to the performance characteristics of diversity
techniques for Rayleigh fading channels (see Section 14-4). We may express
the right-hand side of (13-3-17) in the form

P(L)=exp[=yoh(¥.)] (13-3-19)

where the function A(y,) is defined as

h(y,) = —%[m (yi) - 1] (13-320)

A plot of h(y,.) is given in Fig. 13-3-5. We observe that the function has a
maximum value of { at y. = 4. Consequently, there is an optimum SNR per
chip of 101log y. = 6 dB. At the optimum SNR, the error rate is upper-bounded
as

Py < PyLy,)=e ™" (13-3-21)
opt

When we compare the error probability bound in (13-3-21) with the error
probability for binary FSK in spectrally flat noise, which is given by (13-3-1),
we see that the combined effect of worst-case partial-band interference and the
noncoherent combining loss in the square-law combining of the L chips is 3 dB.
We emphasize, however, that for a given %,/J,, the loss is greater when the
order of diversity is not optimally selected.
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FIGURE 13-35  Graph of the function h(y,). .
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Coding provides a means for improving the performance of the frequency-
hopped system corrupted by partial-band interference. In particular, if a block
orthogonal code is used, with M =2* code words and Lth-order diversity per
code word, the probability of a code word error is upper-bounded as

PMs(z‘*—1)P2(L)=(2*—1)(1‘47)L=(2*—1)( L47 )L (13-3-22)

Ye k Yb! L
and the equivalent bit error probability is upper-bounded as
1.47 \*
P, < 2*—‘(' ) 13-3-23
b Kva/L ( )

Figure 13-3-6 illustrates the probability of a bit error for L =1, 2, 4, § and

Performance of binary and octal FSK with L-order diversity for a channel with worst-case
partial-band interference.
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k=1, 3. With an optimum choice of diversity, the upper bound can be
expressed as

P, 2" Yexp(—ikvy)=texp[—k(iy, —n2)) (13-3-24)

Thus, we have an improvement in performance by an amount equal to
10tog [k(1 — 2.77/v,)]. For example, if y, =10 and k =3 (octal modulation)
then the gain is 3.4dB, while if & =5 then the gain is 5.6dB.

Additional gains can be achieved by employing concatenated codes in
conjunction with soft-decision decoding. In the example below, we employ a
dual-k convolutional code as the outer code and a Hadamard code as the inner
code on the channel with partial-band interference.

Example 13-3-1

Suppose we use a Hadamard H(n, k) constant weight code with on-off
keying (OOK) moduiation for each code bit. The minimum distance of the
code is d,,,, = in, and, hence, the effective order of diversity obtained with
OOK modulation is id,;, = jn There are in frequency-hopped tones
transmitted per code word. Hence.

k
Ye = ; Yo = ZR‘-)’;, {13'3'25)
when this code is used alone. The bit error rate performance for
soft-decision decoding of these codes for the partial-band interference
channel is upper-bounded as

- 1.47 )""‘

P, <2 Py(id ) = 2¢ ‘(ZR . (13-3-26)
v Fir

Now, if a Hadamard (n, k) code is used as the inner code and a rate 1/2
dual-k convolutional code (see Section 8-2-6) is the outer code. the bit error

performance in the presence of worst-case partial-band interference is (see
(8-2-40))

k-1 = kool

2 =
v 2 BuPimdng) = 2 3 B Piimn)  (133:27)
2 l =i 2 l =4

P, =<
where Py(L) is given by (13-3-17) with

k
Yem o W= Revs (13-3-28)
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Figure 13-3-7 illustrates the performance of the dual-k codes for k =35, 4,
and 3 concatenated with the Hadamard H(20,5), H(16, 4), and H(12, 3)
codes, respectively. ,

In the above discussion, we have focused on soft-decision decoding. On the
other hand, the performance achieved with hard-decision decoeding is sig-
nificantly (several decibels) poorer than that obtained with soft-decision
decoding. In a concatenated coding scheme, however, a mixture involving
soft-decision decoding of the inner code and hard-decision decoding of the
outer code represents a reasonable compromise between decoding complexity
and performance.

Finally, we wish to indicate that another serious threat in a FH spread
spectrum system is partial-band multitone jamming. This type of interference is
similar in effect to partial-band spectrally flat noise jamming. Diversity
obtained through coding is an effective means for improving the performance
of the FH system. An additional improvement is achieved by properly
weighting the demodulator outputs so as to suppress the effects of the jammer.

13-3-3 A CDMA System Based on FH Spread Spectrum

Signais

In Section 13-2-2, we considered a CDMA system based on use of DS spread
spectrum signals, As previously indicated, it is also possible to have a CDMA
system based on FH spread spectrum signals. Each transmitter—receiver pair in
such a system is assigned its own pseudo-random frequency-hopping pattern.
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Aside from this distinguishing feature, the transmitters and receivers of all the
users may be identical in that they may have identical encoders, decoders,
modulators, and demodulators.

CDMA systems based on FH spread spectrum signals are particularly
attractive for mobile (land, air, sea) users because timing requirements are not
as stringent as in a PN spread spectrum signal. In addition, frequency synthesis
techniques and associated hardware have been developed that make it possible
to frequency-hop over bandwidths that are significantly larger than those
currently possible with DS spread spectrum systems. Consequently, larger
processing gains are possible with FH. The capacity of CDMA with FH is also
relatively high. Viterbi (1978) has shown thal with dual-k codes and M-ary
FSK modulation, it is possible to accomodate up to W /R simultaneous users
who transmit at an information rate R bits/s over a channel with bandwidth W.

One of the earliest CDMA systems based on FH coded spread spectrum
signals was built to provide multiple-access tactical satellite communications
for small mobile (land, sea, air) terminals each of which transmitted relatively
short messages over the channel intermittently. The system was called the
Tactical Transmission System (TATS) and it is described in a paper by
Drouithet and Bernstein {1969).

An octal Reed-Solomon (7,2) code is used in the TATS system. Thus, two
3 bit information symbols from the input to the encoder are used to generate a
seven-symbol code word. Each 3 bit coded symbol is transmitted by means of
octal FSK modulation. The eight possible frequencies are spaced 1/7, Hz
apart, where 7. is the time (chip} duration of a single frequency transmission.
In addition to the seven symbals in a code word, an eighth symbol is included.
That symbol and its corresponding frequency are fixed and transmitted at the
beginning of each code word for the purpose of providing timing and
frequency synchronizationt at the receiver. Consequently, each code word is
transmitted in 87 s.

TATS was designed to transmit at information rates of 75 and 2400 bits/s.
Hence, 7. =10ms and 312.5 us, respectively. Each frequency tone corres-
ponding to a code symbol is frequency-hopped. Hence, the hopping rate is
100 hops/s at the 75 bits/s rate and 3200 hops/s at the 2400 bits/s rate.

There are M = 2°= 64 code words in the Reed—Solomon (7, 2) code and the
minimum distance of the code is d,,;, = 6. This means that the code provides an
effective order of diversity equal to 6.

At the receiver, the received signal is first dehopped and then demodulated
by passing it through a paraliel bank of eight matched filters, where each filter
is tuned to one of the eight possible frquencies. Each filter output is
envelope-detected, quantized to 4bits (one of 16 fevels), and fed to the
decoder. The decoder takes the 56 filter outputs corresponding to the

tSince mobile users are involved, there is a Doppler frequency offset associated with
transmission. This frequency offset must be tracked and compensated for in the demodulation of
the signal. The sync symbol is used for this purpose.
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reception of each seven-symboi code word and forms 64 decision variables
corresponding to the 64 possible code words in the (7.2) code by linearly
combining the appropriate envelope detected outputs. A decision is made in
favor of the code word having the largest decision variable.

By limiting the matched filter outputs to 16 levels, interference (crosstalk)
from other users of the channel causes a relatively small loss in performance
(0.75dB with strong interference on one chip and 1.5dB with strong
interference on two chips out of the seven). The AGC used in TATS has a
time constant greater than the chip interval T, so that no attempt is made to
perform optimum weighting of the demodulator outputs as described in
Section 13-3-2.

The derivation of the error probability for the TATS signal in AWGN and
worst-case partial-band interference is left as an exercise for the reader
(Problems 13-23 and 13-24).

13-4 OTHER TYPES OF SPREAD SPECTRUM

SIGNALS

DS and FH are the most common forms of spread spectrum signais used in
practice. However, other methods may be used to introduce pseudo-
randomness in a spread spectrum signal. One method, which is analogous 10
FH, is time hopping (TH). In TH, a time interval, which is selected to be much
larger than the reciprocal of the information rate, is subdivided into a large
number of time slots. The coded information symbols are transmitted in a
pseudo-randomly selected time slot as a block of one or more code words. PSK
modulation may be used to transmit the coded bits.

For example, suppose that a time interval 7 is subdivided into 1000 time
slots of width T/1000 each. With an information bit rate of R bits/s, the
number of bits to be transmitied in 7's is RT. Coding increases this number to
RT/R,_ bits, where R, is the coding rate. Censequently, in a time interval of
T/1000s, we must transmit RT/R, bits. If binary PSK is used as the
modulation method, the bit rate is 1000R/R, and the bandwidth required is
approximately W = J000R/R..

A block diagram of a transmitter and a receiver for a TH spread spectrum
system is shown in Fig. 13-4-1. Due to the burst characteristics of the
transmitted signal. buffer storage must be provided at the transmitter in a TH
system, as shown in Fig, 13-4-1. A buffer may also be used at the receiver to
provide a uniform data stream to the user.

Just as partial-band interference degrades an uncoded FH spread spectrum
system, partial-time (pulsed) interference has a similar effect on a TH spread
spectrum system. Coding and interleaving are effective means for combatting
this type of interference, as we have already demonstrated for FH and DS
systems. Perhaps the major disadvantage of a TH system is the stringent timing
requirements compared not only with FH but, also. with DS.

Other types of spread spectrum signals can be obtained by combining DS.
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Block diagram of time-hopping (TH) spread spectrum system.

FH, and TH. For example, we may have a hybrid DS/FH, which means that a
PN sequence is used in combination with frequency hopping. The signal
transmitted on a single hop consists of a DS spread spectrum signal which is
demodulated coherently. However, the received signals from different hops are
combined noncoherently (envelope or square-law combining). Since coherent
detection is performed within a hop, there is an advantage obtained relative to
a pure FH system. However, the price paid for the gain in performance is an
increase in complexity, greater cost, and more stringent timing requirements.

Another possible hybrid spread spectrum signal is DS/TH. This does not
seem to be as practical as DS/FH, primarily because of an increase in system
complexity and more stringent timing requirements.

13-5 SYNCHRONIZATION OF SPREAD SPECTRUM

SYSTEMS

Time synchronization of the receiver to the received spread spectrum signal
may be separated into two phases. There is an initial acquisition phase and a
tracking phase after the signal has been initially acquired.

Acquisition 1In a direct sequence spread spectrum system, the PN code
must be time-synchronized to within a small fraction of the chip interval
T.=1/W. The problem of initial synchronization may be viewed as one in
which we attempt to synchronize in time the receiver clock to the transmitter
clock. Usuaily, extremely accurate and stable time clocks are used in spread
spectrum systems. Consequently, accurate time clocks result in a reduction of
the time uncertainty between the receiver and the transmitter. However, there
is always an initial timing uncertainty due to range uncertainty between the
transmitter and the receiver. This is especially a problem when communication
is taking place between two mobile users. In any case, the usual procedure for
establishing initial synchronization is for the transmitter to send a known
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pscudo-random dala sequence to the receiver. The receiver is continuously in a
search mode looking for this sequence in order to establish initial
synchronization.

Let us suppose that the initial timing uncertainty is 7, and the chip duration
is T.. If initial synchronization is to take place in the presence of additive noise
and other interference, it is necessary to dwell for 7, = NT, in order to test
synchronism at each time instant. If we search over the time uncertainty
interval in (coarse) time steps of 7. then the time required to establish initial
synchronization is
T:l
T NT. =2N
Clearly, the synchronization sequence transmitted to the receiver must be at
least as long as 2NT. in order for the receiver to have sufficient time to perform
the necessary search in a serial fashion.

In principle, matched filtering or cross-correlation are optimum methods for
establishing initial synchronization. A filter matched to the known data
waveform generated from the known pseudo-random sequence continuously
looks for exceedence of a predetermined threshold. When this occurs, initial
synchronization is established and the demodulator enters the “‘data receive”
mode.

Alternatively, we may use a sliding correlator as shown in Fig. 13-5-1. The
correlator cycles through the time uncertainty, usually in discrete time intervals
of iT,, and correlates the received signal with the known synchronization
sequence. The cross-correlation is pérformed over the time interval N7, (N
chips) and the correlator output is compared with a threshold to determine if
the known signal sequence is present. If the threshold is not exceeded, the
known reference sequence is advanced in time by 4T.s and the correlation
process is repeated. These operations are performed until a signal is detected
or until the search has been performed over the time uncertainty interval 7. In
the latter case, the search process is then repeated.

A similar process may also be used for FH signals. In this case, the problem
is to synchronize the PN code that controls the hopped frequency pattern. To
accomplish this initial synchronization, a known frequency hopped signal is

~

(13-5-1)

T;nil syne

A sliding correlator for DS signal acquisition.

Received
signal f;\ [%rdr - Threshold
i delecior
1 Sync.
pulse
PN Search
code controt
generator clock
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System for acquisition of a FH signal,

transmitted to the receiver. The initial acquisition system at the receiver looks
for this known FH signal pattern. For example, a bank of matched filters tuned
to the transmitted frequencies in the known pattern may be employed. Their
outputs must be properly delayed. envelope- or square-law-detected, weighted,
if necessary, and added (noncoherent integration) to produce the signal output
which is compared with a threshold. A signal present is declared when the
threshold is exceeded. The search process is usually performed continuously in
time until a threshold is exceeded. A block diagram illustrating this signal
acquisition scheme is given in Fig. 13-5-2. As an alternative, a single
matched-flter-envelope detector pair may be used, preceded by a frequency-
hopping pattern generator and followed by a post-detection integrator and a
threshold detector. This configuration, shown in Fig. 13-5-3, is based on a serial
search and is akin 1o the sliding correlator for DS spread spectrum signals.

The sliding correlator for the DS signals or its counterpart shown in Fig.
13-5-3 for FH signals basically perform a serial search that is generally
time-consuming. As an alternative, one may introduce some degree of
parallelism by having two or more such correlators operating in parallel and
searching over nonoverlapping time slots. In such a case, the search time is
reduced at the expense of a more complex and costly implementation. Figure
13-5-2 represents such a paralle! realization for the FH signals.

During the search mode, there may be false alarms that occur at the
designed false alarm rate of the system. To handle the occasional false alarms,
it is necessary to have an additional method or circuit that checks to confirm
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that the received signal at the output of the correlator remains above the
threshold. With such a detection strategy, a large noise pulse that causes a false
alarm will cause only a temporary exceedence of the threshold. On the other
hand, when a signal is present, the correlator or matched filter output will stay
above the threshold for the duration of the transmitted signal. Thus, if
confirmation fails, the search is resumed.

Another initial search strategy, called a sequential search, has been
investigated by Ward (1965, 1977). In this method, the dwell time at each delay
in the search process is made variable by employing a correlator with a
variable integration period whose (biased) output is compared with two
thresholds. Thus, there are three possible decisions:

1if the upper threshold is exceed by the correlator output, initial
synchronization is declared established;

2 if the correlator output falls below the lower threshold, the signal is
declared absent at that delay and the search process resumes at a different
delay:

3 if the correlator output falls between the two thresholds, the integration

time is increased by one chip and the resulting output is compared with the two
thresholds again.

Hence, steps 1, 2, and 3 are repeated for each chip interval until the correlator
output either exceeds the upper threshold or falls below the lower threshold.
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FIGURE 13-5-4  Initial search for Doppler frequency offset in a DS system.

The sequential search method falls in the class of sequential estimation
methods proposed by Wald (1947), which are known to result in a more
efficient search in the sense that the average search time is minimized. Hence,
the search time for a sequential search is less than that for the fixed dwell time
integrator. .

In the above discussion, we have considered only time uncertainty in
eslablishing initial synchronization. However, another aspect of initial synchro-
nization is frequency uncertainty. If the transmitter and/or the receiver are
mobile, the relative velocity between them results in a Doppler frequency shift
in the received signal relative to the transmitted signal. Since the receiver does
not usually know the relative velocity, a priori, the Doppler frequency shift is
unknown and must be determined by means of a frequency search method.
Such a search is usually accomplished in parallel over a suitably quantized
frequency uncertainty interval and serially over the time uncertainty interval.
A block diagram of this scheme is shown in Fig. 13-5-4. Appropriate Doppler
frequency search methods can also be devised for FH signals.

Tracking Once the signal is acquired, the initial search process is stopped
and fine synchronization and tracking begins. The tracking maintains the PN
code generator at the receiver in synchronism with the incoming signal.
Tracking includes both fine chip synchronization and, for coherent demodula-
tion, carrier phase tracking.

The commonly used tracking loop for a DS spread spectrum signal is the
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Delay-locked loop (DLL) for PN code tracking.

delay-locked loop {DLL), which is shown in Fig. 13-5-5. In this tracking loop,
the received signal is applied to two multipliers, where it is multiplied by two
outputs from the local PN code generater, which are delayed relative to each
other by an amount 28 <7, Thus, the product signals are the cross-
correlations between the received sighal and the PN sequence at the two values
of delay. These products are bandpass-filtered and envelope- (or square-law-)
detected and then subtracted. This difference signal is applied to the loop filter
that drives the voltage controlled clock (VCC). The VCC serves as the clock
for the PN code signal generator.

If the synchronism is not exact, the filtered output from one correlator will
exceed the other and the VCC will be appropriately advanced or delayed. At
the equilibrium point. the two filtered correlator outputs will be equally
displaced from the peak value, and the PN code generator output will be
exactly synchronized to the received signal that is fed to the demodulator. We
observe that this implementation of the DLL for tracking a DS signal is
equivalent to the early-late gate bit tracking synchronizer previously discussed
in Section 6-3-2 and shown in Fig. 6-3-5.

An alternative method for time tracking a DS signal is to use a tau-dither
{oop (TDL), illustrated by the block diagram in Fig. 13-5-6. The TDL employs
a single “‘arm™ instead of the two “arms” shown in Fig, 13-5-5. By providing a
suitable gating waveform, it is possible to make this “‘single-arm’ implementa-
tion appear to be equivalent to the “two-arm” realization. In this case, the
cross-correlation is regularly sampled at two values of delay, by stepping the
code clock forward or backward in time by an amount 8. The envelope of the
cross-correlation that is sampled at +8 has an amplitude modulation whose
phase relative to the tau-dither modulator determines the sign of the tracking
eITor.
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A major advantage of the TDL is the less costly implementation resulting
from elimination of one of the two arms that are employed in the conventional
DLL. A second and less apparent advantage is that the TDL does not suffer
from performance degradation that is inherent in the DLL when the amplitude
gain in the two arms is not properly balanced.

The DLL (and its equivalent, the TDL) generate an error signal by
sampling the signal correlation function at +8 off the peak as shown in Fig.
13-5-7(a). This generates an error signal as shown in Fig. 13-5-7(b). The
analysis of the performance of the DLL is similar to that for the phase-locked
loop (PLL) carried out in Section 6-3. If it were not for the envelope detectors
in the two arms of the DLL, the loop would resemble a Costas loop. In
general, the variance of the time estimation error in the DLL is inversely
proportional to the loop SNR, which depends on the input SNR to the loop
and the loop bandwidth. Its performance is somewhat degraded as in the
squaring PLL by the nonlinearities inherent in the envelope detectors, but this
degradation is relatively small.

Autocorrelation function and tracking error signal for DLL.
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FIGURE 13-5-8  Trracking method for FH signals. [From Pickholiz et al. (1982). © 1982 IEEE ]

A typical tracking technique for FH spread spectrum signals is illustrated in
Fig. 13-5-8(a). This method is also based on the premise that, although initial
acquisitton has been achieved, there is a small timing error between the
received signal and the receiver clock. The bandpass filter is tuned 1o a single
intermediate frequency and its bandwidth is of the order of 1/T,, where 7, is
the chip interval. Its output is envelope-detected and then multiplied by the
clock signal to produce a three-level signal, as shown. in Fig. 13-5-8(b), which
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drives the loop filter. Note that when the chip transitions from the locally
generated sinusoidal waveform do not occur at the same time as the transitions
in the incoming signal, the output of the loop filter will be either negative or
positive, depending on whether the VCC is lagging or advanced relative to the
timing of the input signal. This error signal from the loop filter will provide the
control signal for adjusting the VCC timing signal so as to drive the frequency
synthesized pulsed sinusoid to proper synchronism with the received signal.

13-6 BIBLIOGRAPHICAL NOTES AND REFERENCES

The introductory treatment of spread spectrum signals and their performance
that we have given in this chapter is necessarily brief. Detailed and more
specialized treatments of signal acquisition techniques, code tracking methods,
and hybrid spread spectrum systems, as well as other general topics on spread
spectrum signals and systems, can be found in the vast body of technical
literature that now exists on the subject.

Historically, the primary application of spread spectrum communications
has been in the development of secure (AJ) digital communication systems for
military use. In fact, prior to 1970, most of the work on the design and
development of spread spectrum communications was classified. Since then,
this trend has been reversed. The open literature now contains numerous
publications on all aspects of spread spectrum signal analysis and design.
Moreover, we have recently seen publications dealing with the application of
spread spectrum signaling techniques to commercial communications such as
interoffice radio communications (see Pahlavan, 1985) and mobile-user radio
communications (see Yue, 1983).

A historical perspective on the development of spread spectrum com-
munication systems covering the period 1920-1960 is given in a paper by
Scholtz (1982). Tutorial treatments focusing on the basic concepts are found in
the papers by Scholtz (1977) and Pickholtz et al. (1982). These papers also
contain a large number of references to previous work. In addition, there are
two papers by Viterbi (1979, 1985) that provide a basic review of the
performance characteristics of DS and FH signaling techniques.

Comprehensive treatments of various aspects of analysis and design of
spread spectrum signals and systems, including synchronization techniques are
now available in the texts by Simon er al. (1985), Ziemer and Peterson (1985),
and Holmes (1982). In addition to these iexts, there are several special issues
of the FEEE Transactions on Communications devoted to spread spectrum
communications (August 1977 and May 1982) and the JEEE Transactions on
Selected Areas in Communication (September 1985, May 1989, May 1990, and
June 1993). These issues contain a collection of papers devoted to a variety of
topics, including multiple access techniques, synchronization techniques, and
performance analyses with various types of interference. A number of
important papers that have been published in [EEE journals have also been
reprinted in book form by the IEEE Press (Dixon, 1976, Cook ef al. 1983).
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Finally. we recommend the book by Golomb (1967) as a basic reference on
shift register sequences for the reader who wishes to delve deeper into this
topic.

13-1

13-2

13-3

134

13-5

13-6

Following the procedure outlined in Example 13-2-2, determine the error rate
performance of a DS spread spectrum system in the presence of CW jamming
when the signal pulse is
16¢ .In ;

&(r) 3T S [ (t :?})]. O=i=<T
The skeltch in Fig. P13-2 illustrates the power spectral densities of a PN spread
spectrum signal and narrowband interference in an uncoded (trivial repetition
code) digital communication system. Referring to Fig. 13-2-6, which shows the
demodulator for this signal, sketch the (approximate) spectral characteristics of
the signal and the interference after the multiplication of r(f) with the output of
the PN generator. Determine the fraction of the total interference that appears at
the output of the correlator when the number of PN chips per bit is L,.
Consider the concatenation of 2 Reed-Solomon (31, 3) (g =32-ary alphabet) as
the outer code with a Hadamard (16, 5) binary code as the inner code in a DS
spread spectrum system. Assume that soft-decision decoding is performed on both
codes. Determine an upper (union)} bound on the probability of a bit error based
on the minimum distance of the concatenated code.
The Hadamard (n, k) = (2", m + 1) codes are low-rate codes with d,,,=2" "
Determine the performance of this class of codes for DS spread, spectrum signals
with binary PSK modulation and either soft-decision or hard-decision decoding.
A rale 1/2 convolutional code with d,,.. =10 is used to encode a data sequence
occurring at a rate of 1000bits/s. The modulation is binary PSK. The DS
spread-spectrum sequence has a chip rate of 10 MHz.
a Determine the coding gain.
b Determine the processing gain.
¢ Determine the jamming margin assuming an %,/J, = 10.
A 1otal of 30 equal-power users are to share a common communication channel by
CDMA. Each user transmits information at a rate of 10kbits/s via DS spread-
spectrum and binary PSK. Determine the minimum chip rate 10 obtain a bit error
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probability of 107, Additive noise at the receiver may be ignored in this

computation.

A CDMA system is designed based on DS spread spectrum with a processing gain

of 1000 and binary PSK modulation. Determine the number of users if cach user

has equal power and the desired level of performance is an error probability of

10 ". Repeat the computation if the processing gain is changed to 500.

A DS spread-spectrum system transmits at a rate of 1000 bits/s in the presence of

a tone jammer. The jammer power is 20 dB greater than the desired signal and the

requived #4,/J, to achieve satisfactory performance is 10 dB.

a Determine the spreading bandwidth required to meet the specifications,

b If the jammer is a pulse jammer, determine the pulse duty cyefe that results in
worst-case jamming and the corresponding probability of error.

A CDMA system consists of 15 equal-power users that transmit information at a

rate of 10000 bits/s, each using a DS spread spectrum signal operating at a chip

rate of 1 MHz. The modulation is binary PSK.

a Determine the &,//,. where J, is the spectral density of the combined
interference.

b What is the processing gain?

¢ How much should the processing gain be increased to allow for doubling the
number of users without affecting the output SNR?

A DS binary PSK spread spectrum signal has a processing gain of 500. What is the

jamming margin against a continuous-tone jammer if the desired error probability

is 10 *?

Repeat Problem 13-10 if the jammer is a pulsed-noise jammer with a duty cycle of

1%.

Consider the DS spread spectrum signal

c(t)= 2, c,p(t —nT)

where ¢, s a periodic m sequence with a peried N = 127 and p(r) is a rectangular
pulse of duration T. =1 us. Determine the power spectral density of the signal
clt).
Suppose that {c, } and {c,,} are two binary (0, 1) periodic sequences with periods N,
and N;, respectively. Determine the period of the sequence obtained by forming
the modulo-2 sum of {c,.} and {c;,}.
An m = 10 ML shift register is used to generate the pseudorandom sequence in a
DS spread spectrum system. The chip duration is 7, = 1 us, and the bit duration is
T, = NT,, where N is the length {period) of the m sequence.
a Determine the processing gain of the system in dB.
b Determine the jamming margin if the required & //, = 10 and the jammer is a

tone jammer with an average power J,,.
A FH binary orthogonal FSK system employs an m = 15 stage linear feedback
shift register that generates an ML sequence. Each state of the shift register selects
one of L nonoverlapping frequency bands in the hopping patiern. The bit rate is
100bits/s and the hop rate is once per bit. The demodulator employs noncoherent
detection.
a Determine the hopping bandwidth for this channel.
b What is the processing gain?
¢ What is the probability of error in the presence of AWGN?
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Consider the FH binary orthogonal FSK system described in Problem 13-15.
Suppose that the hop rate is increased to 2 hops/bit. The receiver uses sguare-law
combining to combine the signal over the two hops.

a Determine the hopping bandwidth for the channel.

b What is the processing gain?

¢ What is the error probability in the presence of AWGN?

In a fast FH spread-spectrum system, the information is transmitted via FSK, with

nonccherent detection. Suppose there are N =3 hops/bit, with hard-decision

decoding of the signal in each hop.

a Determine the probability of error for this system in an AWGN channel with
power spectral densily N, and an SNR =13dB (total SNR over the three
hops).

b Compare the result in (a) with the error probability of a FH spread-spectrum
system that hops once per bit.

A slow FH binary FSK system with noncoherent detection operates at &, /J, =10,

with a hopping bandwidth of 2 GHz, and a bit rate of 10 kbits/s.

a What is the processing gain for the system?

b If thc jammer operates as a partial-band jammer, what is the bandwidih
occupancy for worst-case jamming?

¢ What is the probability of error for the worst-case partial-band jammer?

Determine the error probability for a FH spread spectrum signal in which a binary

convolutional code is used in combination with binary FSK. The interference on

the channel is AWGN. The FSK demodulator outputs are square-law detected and
passed to the decoder. which performs optimum soft-decision Viterbi decoding as
described in Section 8-2. Assume that the hopping rate is 1 hop per coded bit.

Repeat Problem 13-19 for hard-decision Viterbi decoding.

Repeat Problem 13-19 when fast frequency hopping is performed at a hopping rate

of L hops per coded bit.

Repeat Problem 13-19 when fast frequency hopping is performed with L hops per

coded bit and the decoder is a hard-decision Viterbi decoder. The 1. chips per

coded bit are square-law-detected and combined prior to the hard decision.

The TATS signal described in Section 13-3-3 is demodulated by a parallel bank of

eight matched fitters (octal FSK), and each filter output is square-law-detected.

The eight outputs obtained in each of seven signal intervals (56 total outputs) are

used to form the 64 possible decision variables corresponding tc the Reed--

Selomon (7, 2) code. Determine an upper (union) bound of the code word error

probability for AWGN and soft-decision decoding.

Repeat Problem 13-23 for the worst-case partial-band interference channel.

Derive the results in (13-2-62) and (13-2-63} from (13-2-61).

Show that (13-3-14) follows from (13-3-13).

Derive (13-3-17) from (13-3-16).

The generator polynomials for constructing Gold code sequences of length n =7

arec

gip)=p'+p+1
gAp)=p +p +1

Generate all the Gold codes of length 7 and determine the cross-correlations of
one sequence with each of the others.
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13-29 In Section 13-2-3, we demonstrated techniques for evaluating the error probability

of a coded system with interleaving in pulse interference by using the cutoff rate
parameter R,. Use the error probability curves given in Fig. P13-29 for rate 1/2
and 1/3 convolutional codes with soft-decision Viterbi decoding to determine the
corresponding error rates for a coded system in pulse interference. Perform this
computation for K =3, 5, and 7.

13-30 In coded and interleaved DS binary PSK modulation with pulse jamming and

soft-decision decoding, the cutoff rate is
Ro=1—log, (1 + ae "%

where « is the fraction of the time the system is being jammed, & = &,R, R is the
bit rate, and N, =/,.
a Show that the SNR per bit, &,/N,, can be expressed as

g 1 o

N, aR™3 R

b Determine the value of « that maximizes the required #,/N, (worst-case pulse
jamming) and the resulting maximum value of &,/N,.

b Plot the graph of 101og (%,/rN,) versus R,, where r = R,/R, for worst-case
pulse jamming and for AWGN (a =1). What conclusions do you reach
regarding the effect of worst-case pulse jamming?
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13-31 In a coded and interleaved frequency-hopped g-ary FSK modulation with partial

band jamming and coherent demodulation with soft-decision decoding, the cutoff
rate is

Bo =108 | T g T )ae o
where a is the fraction of the band being jammed, &, is the chip (or tone) energy,
and Nuzjn‘
2 Show that the SNR per bit can be expressed as

ﬁ__l_,m (g — Ve
Ny aR g2 Ro—1

b Determine the value of & that maximizes the required &,/N, {(worst-case partial
band jamming) and the resulting maximum value of %,/N,.

e Define r = Ro/R in the result for ,/N, from (b), and plot 101og (&,/rN,) versus
the normalized cutoff rate R./log, g for ¢ =2, 4, 8, 16, 32. Compare these
graphs with the results of Problem 13-30(c). What conclusions do you reach
regarding the effect of worst-case partial band jamming? What is the effect of
increasing the alphabet size ¢? What is the penalty in SNR between the results
in Problem 13-30(c) and g-ary FSK as g — «?
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14

DIGITAL
COMMUNICATION
THROUGH FADING
MULTIPATH CHANNELS

The previous chapters have described the design and performance of digital
communications systems for transmission on either the classical AWGN
channel or a linear filter channel with AWGN. We observed that the distortion
inherent in linear filter channels requires special signal design techniques and
rather sophisticated adaptive equalization algorithms in order to achieve good
performance.

In this chapter, we consider the signal design, receiver structure, and
receiver performance for more complex channels, namely, channels having
randomly time-variant impulse responses. This characterization serves as a
model for signal transmission over many radio channels such as shortwave
ionospheric radio communication in the 3-30MHz frequency band (HF),
tropospheric scatter (beyond-the-horizon) radio communications in the 300-
3000 MHz frequency band (UHF) and 300030000 MHz frequency band
(SHF), and ionospheric forward scatter in the 30-300 MHz frequency band
(VHF). The time-variant impulse responses of these channels are a conse-
quence of the constantly changing physical characteristics of the media. For
example, the ions in the ionospheric layers that reflect the signals transmitted
in the HF frequency band are always in motion. To the user of the channel, the
motion of the ions appears to be random. Consequently, if the same signal is
transmitted at HF in two widely separated time intervals, the two received
signals will be different. The time-varying responses that occur are treated in
statistical terms.

We shall begin our treatment of digital signalling over fading multipath
channels by first developing a statistical characterization of the channel. Then
we shall evaluate the performance of several basic digital signaling techniques
for communication over such channels. The performance results will demons-
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trate the severe penalty in SNR that must be paid as a consequence of the
fading characteristics of the received signal. We shall then show that the
penalty in SNR can be dramatically reduced by means of efficient
modulation/coding and demodulation/decoding techniques.

14-1 CHARACTERIZATION OF FADING MULTIPATH

CHANNELS

FIGURE 14-1-1

If we transmit an extremely short pulse, ideally an impulse. over a time-varying
multipath channel, the received signal might appear as a train of pulses, as
shown in Fig. 14-1-1. Hence, one characteristic of a multipath medium is the
time spread introduced in the signal that is transmitted through the channel.
A second characteristic is due to the time variations in the structure of the
medium. As a result of such time variations, the nature of the multipath varies
with time, That is, if we repeat the pulse-sounding experiment over and over,
we shall observe changes in the received pulse train, which will include changes
in the sizes of the individual pulses, changes in the relative delays among the
pulses, and, quite often, changes in the number of pulses observed in the
received pulse train as shown in Fig. 14-1-1. Moreover, the time variations
appear to be unpredictable to the user of the channel. Therefore, it is
reasonable to characterize the time-variant multipath channel statistically.

Transmited signal Received signal
1=1, () 1= :-:ﬁt,
=t "‘n
=140 (b r=ty T-‘-tz+t“
[=0tTy 1=+,

H N ”nﬂ

t=1,+B . = T R T Pty

PELpTy, tmiT,

Example of the response of a time-variant H ” I—I

multipath channel to a very narrow pulse. I=+y P t=tTy,
pa ry p o
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Toward this end, let us examine the effects of the channel on a transmitted
signal that is represented in general as

s(r) = Re [s,(r)e’*™] (14-1-1)

We assume that there are multiple propagation paths. Associated with each
path is a propagation delay and an attenuation factor. Both the propagation
delays and the attenuation factors are time-variant as a resuit of changes in the
structure of the medium. Thus, the received bandpass signal may be expressed
in the form

1) =2, a()s(t ~ T,(1) (14-1-2)

where a,(z) is the atienuation factor for the signal received on the nth path
and 1,(r) is the propagation delay for the nth path. Substitution for s(r) from
(14-1-1) into (14-1-2) yields the result

x()=Re {{2 a,(t)e TG (4 — r,,(r])]e”"“] (14-1-3)

It is apparent from (14-1-3) that the equivalent lowpass received signal is
n(e) =2 a,(t)e 7 Os (¢ ~ 1,(0)) (14-1-4)
Since r(r) is the response of an equivalent lowpass channel to the equivalent

lowpass signal s5,(t), it follows that the equivalent lowpass channel is described
by the time-variant impulise response

(T 0) = e, (e 2= 08(1 — 1,(1)) (14-1-5)

For some channels, such as the tropospheric scatter channel, it is more
appropriate to view the received signal as consisting of a continuum of
multipath components. In such a case, the received signal x(¢) is expressed in
the integral form

x{t) = }:a(r; HDs(t ~r)dr {14-1-6)

where a(r;f) denotes the attenuation of the signal components at delay 7 and
at time instant 2. Now substitution for s(¢) from (14-1-1) into {14-1-6) yields

*()=Re {[f _a(® e st~ 1) df]e’ ””} (14-1-7)

Since the integral in (14-1-7) represents the convolution of 5,(t) with an
equivalent lowpass time-variant impulse response c(7;¢), it follows that

c(t; 1) = a(t; t)e 24" (14-1-8)
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where ¢(r: 1) represents the response of the channel at time ¢ due to an 1mpulse
applied at time - t. Thus (14-1-8) is the appropriate definition of the
equivalent lowpass impulse response when the channel results in continuous
multipath and (14-i-5) is appropriate for a channel that contains discrete
multipath components.

Now let us consider the transmission of an unmaodulated carrier at frequency
f.. Then s{t)=1 for all 1, and, hence, the received signal for the case of
discrete multipath, given by (14-1-4), reduces to

(1) = 3 a, (e e

"

=2 a,(t)e o (14-1-9)

where 8,(r) =2nf 1,(¢). Thus, the received signal consists of the sum of a
number of time-variant vectors (phasors) having amplitudes «, (¢} and phases
6,(t). Note that large dynamic changes in the medium are required for (1) to
change sufficiently to cause a significant change in the received signal. On the
other hand, 6,(7) will change by 27 rad whenever 7, changes by 1/f. But 1/f is
a small number and, hence, 8, can change by 2z rad with relatively small
motions of the medium. We also expect the delays r,(1) associated with the
different signal paths to change at different rates and in an unpredictable
(random) manner. This implies that the received signal 7,(¢) in (14-1-9) can be
modeled as a random process. When there are a large number of paths, the
central himit theorem can be applied. That is, r,(r) may be modeled as a
complex-valued gaussian random process. This means that the time-varianl
impulse response c¢(7:¢) is a complex-valued gaussian random process in the
variable.

The multipath propagation model for the channel embodied in the received
signal r/(t), given in (14-1-9), results in signal fading. The fading phenomenon
is primarily a result of the time variations in the phases {8,(r)}. That is, the
randomly time-variant phases {6,(1)} associated with the vectors {a,e '*} at
times result in the vectors adding destructively. When that occurs, the resultant
received signal r,(r) is very small or practically zero. At other times, the vectors
{a.e 7*} add constructively, so that the received signal is large. Thus, the
amplitude variations in the received signal, termed signal fading, are due to the
time-variant multipath characteristics of the channel.

When the impulse response c(r:f) is modeled as a zero-mean complex-
valued gaussian process, the envelope |c(7;1)| at any instant ¢ is Rayleigh-
distributed. In this case the channel is said to be a Rayleigh fading channel. In
the event that there are fixed scatterers or signal reflectors in the medium, in
addition to randomly moving scatterers, c(7;!) can no longer be modeled as
having zero mean. In this case, the envelope |c(t;¢)| has a Rice distribution
and the channel is said to be a Ricean fading channel. Another probability
distribution function that has been used to model the envelope of fading
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signals is the Nakagami-m distribution. These fading channel models are
considered in Section 14-1-2.

14-1-1 Channel Correlation Functions and Power Spectra

FIGURE 14-1-2

We shall now develop a number of useful correlation functions and power
spectral density functions that define the characteristics of a fading multipath
channel. Our starting point is the equivalent lowpass impulse response c(r;7),
which is characterized as a complex-valued random process in the ¢ variable.
We assume that ¢{r;r) is wide-sense-stationary. Then we define the autocor-
relation function of ¢(1:t) as

&1y, T A = FE[c*(1: De(Ty 1 + Ar)] (14-1-10)

In most radio transmission media, the attenuation and phase shift of the
channel associated with path delay 7, is uncorrelated with the attenuation and
phase shift associated with path delay r,. This is usually called wuncorrelated
scattering. We make the assumption that the scattering at two different delays
is uncorrelated and incorporate it into (14-1-10) to obtain

%E[('*(T:Z Ne(tzi1 + AnN] = ¢ (1,1 And(1, — 13) (14-1-11)

If we let Az=0, the resulting autocorrelation function ¢.(1,0)=¢.(1) is
simply the average powar output of the channel as a function of the time delay
7. For this reason, ¢.(7) is called the multipath intensity profile or the delay
power spectrum of the channel. In general, ¢.(7; At} gives the average power
output as a function of the time delay 7 and the difference Ar in observation
time.

In practice, the function ¢.(7: Ar) is measured by transmitting very narrow
pulses or, equivalently, a wideband signal and cross-correlating the received
signal with a delayed version of itself. Typically, the measured function ¢, (1)
may appear as shown in Fig. 14-1-2. The range of values of 7 over which ¢.(1)

6.0

Multipath intensity profile.
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is essentially nonzero is called the multipath spread of the channel and is
denoted by T,,.. :

A completely analogous characterization of the time-variant multipath
channel begins in the frequency domain. By taking the Fourier transform of
c(t;1) we obtain the time-variant transfer function C(f:;r), where f is the
frequency variable. Thus,

C(f; r)=£== c{T; 1)e 725 dt {14-1-12)

If ¢(z;7) is modeled as a complex-valued zero-mean gaussian random process
in the ¢ variable, it follows that C(f;¢) also has the same statistics. Under the
assumption that the channel is wide-sense-stationary, we define the autocor-
relation function

dc(fi, fr Aty = SE[C*(f;; NC(for 1 + A1) (14-1-13)

Since C{(f:1) is the Fourier transform of ¢(7;¢), it is not surprising to find
that _¢c( fis fz; Ar) is related to ¢t Ar) by the Fourier transform. The
relationship is easily established by substituting (14-1-12) into (14-1-13). Thus,

dclfi, fri Ar) = %f r Efc*{(ti:0)c(ty £ + Ar)je?in £ gr | g,
- f J« ¢ L1): A1)8(7, ~ Ty)e 2 AR g (1,
=r b (71; M) i Am g,

=f b.(T1:At)e RV 41, = b (Af: A1) (14-1-18)

where Af =f, — f;. From (14-1-14), we observe that ¢(Af: Ar) is the Fourier
transform of the multipath intensity profile. Furthermore, the assumption of
- uncorrelated scattering implies that the autocorrelation function of C(f:7) in
fre'quency is a function of only the frequency difference Af = f; - f,. Therefore,
it is appropriate to call ¢.(Af:Ar) the spaced-frequency, spaced-time correla-
:iofr function of the channel. it can be measured in practice by transmitting a
pair of sinusoids separated by Af and cross-correlating the two separately
received signals with a relative delay Ar.

Suppose we set Ar =0 in ([4-1-14). Then. with S (Af:0y= ¢ (Af) and
¢.(1.0) = ¢.(7), the transform relationship is simply

dc(Af) = f de(t)e 2T 4y (14-1-15)
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The relationship is depicted graphically in Fig. 14-1-3, Since éc(Af) is an
autocorrelation function in the frequency variable, it provides us with a
measure of the frequency coherence of the channel. As a result of the Fourier
transform relationship between ¢c(Af) and ¢.(7), the reciprocal of the
multipath spread is a measure of the coherence bandwidih of the channel. That
18,

(af). = %“ (14-1-16)

”

where (Af). denotes the coherence bandwidth. Thus, two sinusoids with
frequency separation greater than (Af), are affected differently by the channel.
When an information-bearing signal is transmitted through the channel, if
(Af). is small in comparison to the bandwidth of the transmitted signal, the
channel is said 10 be frequency-selective. In this case, the signal is severely
distorted by the channel. On the other hand, if (Af). is large in comparison
with the bandwidth of the transmitted signal, the channel is said to be
frequency-nonselective.

We now focus our attention on the time variations of the channel as
measured by the parameter Ar in ¢~(Af; Ar). The time variations in the
channel are evidenced as a Doppler broadening and, perhaps, in addition as a
Doppler shift of a spectral line. In order to relate the Doppler effects to the
time variations of the channel, we define the Fourier transform of ¢~(Af; Ar)
with respect to the variable At to be the function S-(Af; A). That is,

Sc(Af;A) = f Dc(Af: Ar)e 2" 3 Ay (14-1-17)
With Af set to zero and Sc(0; A) = Sc(A), the relation in (14-1-17) becomes

Sc(A) = f dc(Ar)e 723 gA (14-1-18)
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FIGURE 14-1-4  Relationship between ¢-(Af) and Sc(A).

The function S-(A) is a power spectrum that gives the signal intensiy as a
function of the Doppler frequency A. Hence, we call S-(A) the Doppler power
spectrum of the channel.

From (14-1-18), we observe that if the channel is time-invariant, dc(At) =1
and S~(A) becomes equal to the delta function 8(A). Therefore, when there are
no time variations in the channel, there is no spectral broadening observed in
the transmission of a pure frequency tone.

The range of values of A over which S-(A) is essentially nonzero is cailed the
Dappler spread B, of the channel. Since Sc(A) is related to d(At) by the
Fourier transform, the reciprocal of B, is a measure of the coherence time of
the channel. That is,

(Ar), ==§1- (14-1-19)

o

where (Ar). denotes the coherence time. Ciearly, a slowly changing channel has
a large coherence time or, equivalently, a small Doppler spread. Figure 14-1-4
illustrates the relationship between ¢(Ar) and Sc(A).

We have now established a Fourier transform relationship between
¢c(Af: Ay and ¢.{1; Ar) involving the variables (r, &f), and a Fourier
transform relationship between ¢(Af; Ar) and Sc(8f: A) involving the vari-
ables (Ar, A). There are two additional Fourier transform relationships that we
can define. which serve to relate ¢.(; A1) to Sc(Af: A) and, thus, close the
loop. The desired relationship is obtained by defining a new function, denoted
by $(; A), to be the Fourier transform of ¢.(; At) in the At variable. That is,

S(1; A) =j S (T: An)e 2™ A g Ar (14-1-20)
It follows that §(t; A) and S.(Af; A) are a Fourier transform pair. That is,

S(r;A)= ja Sc(Af; M)A dAf (14-1-21)
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Furthermore, S{(r;A) and o (Af: Ar) are related by the double Fourier
transform

S(riA)= f J‘ G (Af; Ar)e ™A 227 M dAL dAS (14-1-22)

his new function S (7 A) is called the scattering function of the channel. Tt
provides us with a measure of the average power output of the channel as a
function of the time delay 7 and the Doppler frequency A.

The relationships among the four functions o (Af:Ar), é.(T.8¢)
@c(Af: A), and S(r; A) are summarized in Fig. 14-1-5.

Relationships among the channel correlation functions and power spectra. [From Green (1962).
with permission.|
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FIGURE 14-1-6  Scattering function of a medium-range tropospheric scatter channel. The taps delay increment is
0.1 ps.

The scattering function S(7: A) measured on a 150 mi tropospheric scatter
link is shown in Fig. 14-1-6. The signal used to probe the channel had a time
resofution of 0.1 ps. Hence, the time-delay axis is quantized in increments of
0.1 us. From the graph, we observe that the multipath spread 7,, = 0.7 ps. On
the other hand, the Doppler spread, which may be defined as the 3 dB
bandwidth of the power spectrum for each signal path. appears to vary with
each signal path. For example, in one path it is less than 1 Hz, while in some
other paths it is several hertz. For our purposes, we shall take the largest of
these 3dB bandwidths of the various paths and call that the Doppler spread.

14-1.2 Statistical Models for Fading Channels

There are several probability distributions that can be considered in attempting
to model the statistical characteristics of the fading channel. When there are a
large number of scatterers in the channel that contribute to the signal at the
receiver, as is the case in ionospheric or tropospheric signal propagation,
application of the central limit theorem leads to a gaussian process model for
the channel impulse response. If the process is zero-mean. then the envelope of
the channel response at any time instant has a Rayleigh probability distribution
and the phase is uniformly distributed in the interval (0, 27). That is,

r g

pﬂ(r)=5e . r=0 (14-1-23)
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where
Q=E(R?) (14-1-24)

We observe that the Rayleigh distribution is characterized by the single
parameter £(R?).

An alternative statistical model for the envelope of the channel response is
the Nakagami-m distribution given by the pdf in (2-1-147). In consirast to the
Rayleigh distribution, which has a single parameter that can be used to match
the fading channel statistics, the Nakagami-m is a two-parameter distribution,
namely, involving the parameter m and the second moment Q= E(R?). As a
consequence, this distribution provides more flexibility and accuracy in
maiching the observed signal statistics,. The Nakagami-m distribution can be
used to model fading channel conditions that are either more or less severe
than the Rayleigh distribution, and it includes the Rayleigh distribution as a
special case (m = 1). For example, Turin (1972) and Suzuki (1977) have shown
that the Nakagami-m distribution is the best fit for data signals reccived in
urban radio multipath channels.

The Rice distribution is also a two-parameter distribution. It may be
expressed by the pdf given in (2-1-141), where the parameters are s and o
Recall that s>is called the noncentrality parameter in the equivalent chi-square
distribution. It represents the power in the nonfading signal components,
sometimes called specular components, of the received signal.

There are many radio channels in which fading is encountered that are
basically line-of-sight (LOS) communication links with multipath components
arising from secondary reflections, or signal paths, from surrounding terrain. In
such channels, the number of multipath components is small, and, hence, the
channel may be modeled in a somewhat simpler form. We cite two channel
models as examples,

As the first example, let us consider an airplane to ground communication
link in which there is the direct path and a single multipath component at a
delay ¢, relative to the direct path. The impulse response of such a channel may
be modeled as

c(t; 1) = ad(t) + B(1)8(1 — 1(1)) {14-1-25)

where a is the attenuation factor of the direct path and B(r) represents the
time-variant multipath signal component resulting from terrain reflections.
Often, 8(¢) can be characterized as a zero-mean gaussian random process. The
transfer function for this channel model may be expressed as

C(fi1) = a + B(r)e 727w (14-1-26)

This channe! fits the Ricean fading model defined previously. The direct path
with attenuation a represents the specular component and B(r) represents the
Rayleigh fading component.

A similar model has been found to hold for microwave LOS radio channels
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used for long-distance voice and video transmission by telephone companies
throughout the world. For such channels, Rummier (1979) has developed a
three-path model based on channel measurements performed on typicai LOS
links in the 6 GHz frequency band. The differential delay on the two multipath
components s relatively small, and, hence, the model developed by Rummler
is one that has a channel transfer function

c(f)= a“ - Be -J2x{f—.h)fn] (14-1-27)

where a is the overall attenuation parameter, 8 is called a shape parameter
which is due to the multipath components, f; is the frequency of the fade
minimum, and 71, is the relative time delay between the direct and the
multipath components. This simplified model was used to fit data derived from
channel measurements,

Rummier found that the parameters o« and 8 may be characterized as
random variables that, for practical purposes, are nearly statistically indepen-
dent. From the channel measurements, he found that the distribution of 8 has
the form (1 - B)**. The distribution of a is well modeled by the lognormal
distribution, i.e., —log e is gaussian. For 8 >0.5, the mean of ~20loga was
found to be 25dB and the standard deviation was 5 dB. For smaller values of
B, the mean decreases to 15dB. The delay parameter determined from the
measurements was 7, = 6.3 ns. The magnitude-square response of C(f) is

KCUAF = o?[1 + B% = 28 cos 2n(f — fi)To] (14-1-28)

IC(f)) is plotied in Fig. 14-1-7 as a function of the frequency f —f, for
To=6.3ns. Note that the effect of the multipath compaonent is to create a deep
attenuation at f = f, and at multiples of 1/7,~ 159 MHz. By comparison, the
typical channel bandwidth is 30 MHz. This model was used by Lundgren and
Rummler (1979) to determine the error rate performance of digital radio
systems.

Magnitude frequency response of LOS channel model
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14-2 THE EFFECT OF SIGNAL CHARACTERISTICS
ON THE CHOICE OF A CHANNEL MODEL

Having discussed the statistical characterization of time-variant multipath
channels generally in terms of the correlation functions described in Section
14-1, we now consider the effect of signal characteristics on the selection of a
channel model that is appropriate for the specified signal. Thus, let 5,(¢) be the
equivalent lowpass signal transmitted over the channel and let §,(f) denote its
frequency content. Then the equivalent lowpass received signal, exclusive of
additive noise, may be expressed either in terms of the time domain variables
c(7; 1) and s,(¢) as

ry= [ ctwnsi - de (14-2-1)

or in ferms of the frequency functions C(f;r) and S,(f) as

7= [ cUiosepe af (14-22)

Suppose we are transmitting digital information over the channel by
modulating (either in amplitude, or in phase, or both) the basic pulse s,(f) at a
rate 1/T, where T is the signaling interval. It is apparent from (14-2-2) that the
lime-variant channel characterized by the transfer function C(f;) distorts the
signal §;(f). If S(f) has a bandwidth W greater than the coherence bandwidth
(Af). of the channel, S,(f) is subjected to different gains and phase shifts across
the band. In such a case, the channel is said to be frequency-selective.
Additional distortion is caused by the time variations in C(f;¢). This type of
distortion is evidenced as a variation in the received signal strength, and has
been termed fading. It should be emphasized that the frequency selectivity and
fading are viewed as two different types of distortion. The former depends on
the multipath spread or, equivalently, on the coherence bandwidth of the
channel relative to the transmitted signal bandwidth W. The latter depends on
the time variations of the channel, which are grossly characterized by the
coherence time (Ar), or, equivalently, by the Doppler spread B,.

The effect of the channel on the transmitted signal s,(¢) is a function of our
choice of signal bandwidth and signal duration. For example, if we select the
signaling interval T to satisfy the condition T >> T,,, the channel introduces a
negligible amount of intersymbol interference. If the bandwidth of the signal
pulse s,(¢) is W = 1/T, the condition 7 > T,, implies that

W« :ri = (Af). (14-2-3)

m

That is, the signal bandwidth W is much smaller than the coherence bandwidth
of the channel. Hence, the channel is frequency-nonselective. In other words,

779



CHAPTER 14 DIGITAL COMMUNICATION THROUGH FADING MULTIPATH CHANNELS 771

all of the frequency components in S,(f) undergo the same attenuation and
phase shift in transmission through the channel. But this implies that, within
the bandwidth occupied by S,(f), the time-variant transfer function C(f;1) of
the channel is a complex-valued constant in the frequency variable. Since S,{f)
has its frequency content concentrated in the vicinity of f =0, C(f:1) = C(0:1).
Consequently, (14-2-2) reduces to

70 = o[ s af
= C(0: 1)s/(1) (14-2-4)

Thus, when the signal bandwidth W is much s¢malier than the coherence
bandwidth (Af). of the channel, the received signal is simply the transmitted
signal multiplied by a complex-valued random process C(0;t), which rep-
resents the time-variant characteristics of the channel. In this case, we say that
the multipath components in the received are not resolvable because W «
(af)r'

The transfer function C(0;1) for a frequency-nonselective channel may be
expressed in the form

C(0: 1) = a(t)e /*" (14-2-5)

where a(r) represents the envelope and &(7) represents the phase of the
equivalent lowpass channel. When C(0; 1) is modeled as a zero-mean complex-
valued gaussian random process, the envelope a(r) is Rayleigh-distributed for
any fixed value of t and ¢(r) is uniformly distributed over the interval (—n, r).
The rapidity of the fading on the frequency-nonselective channel is determined
either from the correlation function ¢-(Ar) or from the Doppler power
spectrum Sc-(A). Alternatively, either of the channel parameters (Az), or B, can
be used to characterize the rapidity of the fading.

For example, suppose it is possible to select the signal bandwidth W to
satisfy the condition W « (Af), and the signaling interval T to satisfy the
condition T « (At),. Since T is smaller than the coherence time of the channel,
the channel attenuation and phase shift are essentially fixed for the duration of
at least one signaling interval. When this condition holds, we call the channel a
slowly fading channel. Furthermore, when W = 1/T, the conditions that the
channel be frequency-nonselective and slowly fading imply that the product of
T,, and B, must satisfy the condition T, B, < L.

The product T, B, is called the spread factor of the channel. If T,,B, <1, the
channel is said to be underspread; otherwise, it is overspread. The multipath
spread, the Doppler spread, and the spread factor are listed in Table 14-2-1 for
several channels. We observe from this table that several radio channels,
including the moon when used as a passive reflector, are underspread.
Consequently, it is possible to select the signal s,(r) such that these channels
are frequency-nonselective and slowly fading. The slow-fading condition
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TABLE [4-2-1 MULTIPATH SPREAD. DOPPLER SPREAD, AND SPREAD FACTOR
FOR SEVERAL TIME-VARIANT MULTIPATH CHANNELS

Multipath Doppler Spread
Type of channe! duration spread factor

Shortwave ionospheric

propagation {HF) 1071077 107 '-1 W*-107?
Ionospheric propagation

under disturbed auroral

conditions (HF) 10?2 10-100 1072-1
[onospheric forward scatter

{VHF) 1974 10 10}
Tropospheric scatter {SHF) 107 10 10°°
Orbital scatter (X band) 107" 10 107"
Moon at max. libration

(/o = G.dkmc) 1672 10 w0

implies that the channel characteristics vary sufficiently slowly that they can be
measured.

In Section 14-3, we shall determine the error rate performance for binary
signaling over a frequency-nonselective siowly fading channel. This channel
model is, by far, the simplest to analyze. More importantly, it yields insight
into the performance characteristics for digital signaling on a fading channel
and serves to suggest the type of signal waveforms that are effective in
overcoming the fading caused by the channel.

Since the multipath components in the received signal are not resolvable
when the signal bandwidth W is less than the coherence bandwidth (Af), of the
channel, the received signal appears to arrive at the receiver via a single fading
path. On the other hand, we may choose W > (Af)., so that the channel
becomes frequency-selective. We shall show later that, under this condition,
the muitipath components in the received signal are resolvable with a
resolution in time delay of 1/W. Thus, we shall illustrate that the frequency-
selective channel can be modeled as a tapped delay line (transversal) filter with
time-variant tap coefficients. We shall then derive the performance of binary
signaling over such a frequency-selective channel model.

14-3 FREQUENCY-NONSELECTIVE, SLOWLY
FADING CHANNEL

In this section, we derive the error rate performance of binary PSK and binary
FSK when these signals are transmitted over a frequency-nonselective, slowly
fading channel. As described in Section 14-2, the frequency-nonselective
channei results in multiplicative distortion of the transmitted signal s,(r).
Furthermore, the condition that the channel fades slowly implies that the
multiplicative process may be regarded as a constant during at least one
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signaling interval. Consequently, if the transmitted signal is s,(f), the received
equivalent lowpass signal in one signaling interval is

nt)=ae sty +z(t), 0<i<T (14-3-1)
where z(r) represents the complex-valued white gaussian noise process
corrupting the signal,

Let us assume that the channel fading is sufficiently slow that the phase shift
¢ can be estimated from the received signal without error. In that case, we can
achieve ideal coherent detection of the received signal. Thus, the received
signal can be processed by passing it through a matched filter in the case of
binary PSK or through a pair of matched filters in the case of binary FSK. One
method that we can use to determine the performance of the binary
communications systems is to evaluate the decision variables and from these
determine the probability of error. However, we have already done this for a
fixed (time-invariant) channel. That is, for a fixed attenuation a, we have
previously derived the probability of error for binary PSK and binary FSK.
From (5-2-5), the expression for the error rate of binary PSK as a function of
the received SNR 1y, is

o) = Q(V27,) (143-2)
where y, = a’¥,/N,. The expression for the error rate of binary FSK, detected
coherently, is given by (5-2-10) as _

Po(vs) = Q(V75) (14-3-3)
We view (14-3-2) and (14-3-3) as conditional error probabilities, where the
condition is that a is fixed. To obtain the error probabilities when a is random,
we must average Py(y,), given in (14-3-2) and (14-3-3), over the probability
density function of y,. That is, we must evaluate the integrai

P= f P(yo)p (o) e (14:3-9)

where p(y,) is the probability density function of vy, when « is random.

Rayleigh Fading Since o is Rayleigh-distributed, o® has a chi-square
probability distribution with two degrees of freedom. Consequently, y, also is
chi-square-distributed. It is easily shown that

1 .
p(w)= 5 R 20 (14-3-5)
b

where ¥, is the average signal-to-noise ratio, defined as
7o =2 E(a?) (143-6)
No

The term E(a?) is simply the average value of a2
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Now we can substitute (14-3-5) into (14-3-4) and carry out the integration
for Ps(y,) as given by (14-3-2) and (14-3-3). The result of this integration for

binary PSK is
1 o
p== (1 - —_) 14-3-7
N e (14-3-7)

If we repeat the integration with Py(y,) given by (14-3-3), we obtain the
probability of error for binary FSK, detected coherently, in the form

1 [
p == ( _ __) 14-3-8
2=5 1 2+ 7 ( )

In arriving at the error rate results in (14-3-7) and (14-3-8), we have
assumed that the estimate of the channel phase shift, obtained in the presence
of slow fading, is noiseless. Such an ideal condition may not hold in practice. In
such a case, the expressions in (14-3-7) and (14-3-8) should be viewed as
representing the best achievable performance in the presence of Rayleigh
fading. In Appendix C we consider the problem of estimating the phase in the
presence of noise and we evaluate the error rate performance of binary and
multiphase PSK. ]

On channels for which the fading is sufficiently rapid to preclude the
estimation of a stable phase reference by averaging the received signal phase
over many signaling intervals, DPSK, is an alternative signaling method. Since
DPSK requires phase stability over only two consecutive signaling intervals,
this modulation technique is quite robust in the presence of signal fading. In
deriving the performance of binary DPSK for a fading channel, we begin again
with the error probability for a nonfading channel, which is

Pyp)=3e ™ (14-3-9)

This expression is substituted into the integral in (14-3-4) along with p(v,)
obtained from (14-3-5). Evaluation of the resulting integral yields the
probability of error for binary DPSK, in the form
pP= —IT
21+ 7%,)
If we choose not to estimate the channel phase shift at all, but instead

employ a noncoherent (envelope or square-law) detector with binary, orthogo-
nal FSK signais, the error probability for a nonfading channel is

Py(yp) = te " (14-3-11)

When we average Pi(y,) over the Rayleigh fading channel attenuation, the
resulting error probability is

(14-3-10)

1 _
Py = 2+, (14-3-12)
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The error probabilities in (14-3-7), (14-3-8), (14-3-10), and (14-3-12) are
illustrated in Fig. 14-3-1. In comparing the performance of the four binary
signaling systems, we focus our attention on the probabilities of error for large
SNR, ke, ¥, > 1. Under this condition, the error rates in (14-3-7), (14-3-8).
(14-3-10). and (14-3-12) simplify to

1/4%, for coherent PSK

1/2y,  for coherent, orthogonal FSK
1/2%, for DPSK

1/, for noncoherent, orthogonal FSK

P~ (14-3-13)

From (14-3-13), we observe that coherent PSK is 3 dB better than DPSK
and 6dB better than nonccherent FSK. More striking, however. is the .
observation that the error rates decrease only inversely with SNR. In contrast.
the decrease in error rate on a nonfading channel is exponential with SNR.
This means that, on a fading charnel, the transmitter must transmit a large
amount of power in order 10 obtain a low probability of error. In many cases. a
large amount of power is not possible, technically and/or economically. An
alternative solution to the problem of obtaining acceptable performance on a
fading channet is the use of redundancy. which can be obtained by means of
diversity techniques, as discussed in Section 14-4.
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Nakagami Fading [f o is charactenzed statistically by the Nakagami-m
distribution, the random variable y = a’%,/N, has the pdf (see Problem 14-15)

e

o1y (14-3-14)

ply) = F(mw’""

where 7= E(a”)é/N,. :

The average probability of error for any of the modulation methods is
simply obtained by averaging the appropriate error probability for a nonfading
channel over the fading signal statistics.

As an example of the performance obtained with Nakagami-m fading
statistics, Fig. 14-3-2 illustrates the probability of error of binary PSK with m as
a parameter. We recall that m = 1 corresponds to Rayleigh fading. We observe
that the performance improves as m is increased above m =1, which is
indicative of the fact that the fading is less severe. On the other hand., when
m <1, the performance is worse than Rayleigh fading.

Other Fading Signal Statistics Following the procedure described above,
one can determine the performance of the various modulation methods for
other types of fading signal statistics, such as the Rice distribution.

Error probability results for Rice-distributed fading statistics can be found
in the paper by Lindsey (1964), while for Nakagami-m fading statistics. the
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=
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Average error probability far two-phase PSK
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reader may refer to the papers by Esposito (1967), Miyagaki et al (1978),
Charash (1979), Al-Hussaini e al. (1985), and Beaulieu ef al. (1991).

144 DIVERSITY TECHNIQUES FOR FADING

MULTIPATH CHANNELS
Diversity techniques are based on the notion that errors occur in reception
when the channel attenuation is large, i.e., when the channel is in a deep fade.
If we can supply to the receiver several replicas of the same information signal
transmitted over independently fading channels, the probability that all the
signal components will fade simultanecusly is reduced considerably, That is, if
p is the probability that any one signal will fade below some critical value then
p* is the probability that all L independently fading replicas of the same signal
will fade below the critical value. There are several ways in which we can
provide the receiver with L independently fading replicas of the same
information-bearing signal.

One method is to employ frequency diversity. That is, the same information-
bearing signal is transmitted on L carriers, where the separation between
successive carriers equals or exceeds the coherence bandwidth (Af). of the
channel.

A second method for achieving L independently fading versions of the same
information-bearing signal is to transmit the signal in L different time slots,
where the separation between successive time slots equals or exceeds the
coherence time (At). of the channel. This method is called time diversity.

Note that the fading channel fits the model of a bursty error channel.
Furthermore, we may view the transmission of the same information either at
different frequencies or in difference time slots (or both) as a simple form of
repetition coding. The separation of the diversity transmissions in time by (Ar).
or in frequency by (Af), is basically a form of block-interleaving the bits in the
repetition code in an attempt to break up the error bursts and, thus, to obtain
independent errors. Later in the chapter, we shall demonstrate that, in general,
repetition coding is wasteful of bandwidth when compared with nontrivial
coding.

Another commonly used method for achieving diversity employs multiple
antennas. For example, we may employ a single transmitting antenna and
multiple receiving antennas. The latter must be spaced sufficiently far apart
that the multipath components in the signal have significantly different
propagation delays at the antennas. Usually a separation of at least 10
wavelengths is required between two antennas in order to obtain signals that
fade independently.

A more sophisticated method for obtaining diversity is based on the use of a
signal having a bandwidth much greater than the coherence bandwidth (Af). of
the channel. Such a signal with bandwidth W will resolve the multipath
components and, thus, provide the receiver with several independently fading
signal paths. The time resolution is 1/W. Consequently, with a multipath

786



T78  DIGITAL COMMUNICATIONS

spread of 7, s, there are T,,W resolvable signal components. Since 7, =
1/(Af),.. the number of resolvable signal components may also be expressed as
W /(Af).. Thus, the use of a wideband signal may be viewed as just another
method for obtaining frequency diversity of order L =~ W /(Af),. The optimum
receiver for processing the wideband signal will be derived in Section 14-5. It is
called a RAKE correlator or a RAKE matched filter and was invented by Price
and Green (1958).

There are other diversity techniques that have received some consideration
in practice, such as angle-of-arrival diversity and polarization diversity.
However, these have not been as widely used as those described above.

14-4-1 Binary Signals

We shall now determine the error rate performance for a binary digital
communications system with diversity. We begin by describing the mathemati-
cal model for the communications system with diversity. First of all, we assume
that there are L diversity channels, carrying the same information-bearing
signal. Each channel is assumed to be frequency-nonselective and slowly fading
with Rayleigh-distributed envelope statistics. The fading processes among the
L diversity channels are assumed to be mutually statistically independent. The
signal in each channel is corrupted by an additive zero-mean white gaussian
noise process. The noise processes in the L channels are assumed to be
mutually statistically independent, with identical autocorrelation functions.
Thus, the equivalent low-pass received signals for the L channels can be
expressed in the form

) = age s, (N + (0, k=1,2,...,L, m=1,2 (14-4-1)

where {a,e '} represent the attenuation factors and phase shifts for the L
channels, s,,(r) denotes the mth signal transmitted on the kth channel, and
z;(#) denotes the additive white gaussian noise on the kth channel. All signals
in the set {s,,, (1)} have the same energy.

The optimum demodulator for the signal received from the kth channel
consists of two matched filters, one having the impulse response

b (8) =sk(T —1) (14-4-2)
and the other having the impulse response
bty =sE(T —1) (14-4-3)

Of course, if binary PSK is the modulation method used to transmit the
information. then s, (r) = —5,,(r). Consequently, only a single matched filter is
required for binary PSK. Following the matched filters is a combiner that
forms the two decision variables. The combiner that achieves the best
performance is one in which each matched filter output is muitiplied by the
corresponding complex-valued (conjugate) channel gain a,e'*. The effect of
.this multiplication is to compensate for the phase shift in the channel and to
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weight the signal by a factor that is proportional to the signal strength. Thus, a
strong signal carries a larger weight than a weak signal. After the complex-
valued weighting operation is performed, two sums are formed. One consists of
the real parts of the weighted outputs from the matched filters corresponding
to a transmitted 0. The second consists of the real part of the outputs from the
matched filters corresponding to a transmitted 1. This optimum combiner is
called a maximal ratio combiner by Brennan (1959). Of course, the realization
of this optimum combiner is based on the assumption that the channel
attenuations {a,} and the phase shifts {¢} are known perfectly. That is, the
estimates of the parameters {a,} and {¢;} contain no noise. (The effect of noisy
estimates on the error rate performance of multiphase PSK is considered in
Appendix C.

A block diagram illustrating the model for the binary digital communica-
tions system described above is shown in Fig. 14-4-1.

Let us first consider the performance of binary PSK with Lth-order
diversity. The output of the maximal ratio combiner can bé expressed as a
single decision variable in the form

L L
U=Re (23’ >ai+ a,‘Nk)

k=1 k=1

L I N
=2¢€ > al+ D N, (14-4-4)

k=1 k=1
where N, denotes the real part of the complex-valued gaussian noise variable

) T
N, = et fo ()5 di (14-4-5)

We follow the approach used in Section 14-3 in deriving the probability of
error. That is, the probability of error conditioned on a fixed set of attenuation
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factors [a,} is obtained first. Then the conditional probability of error is
averaged over the probability density function of the {a,}.

Rayleigh Fading For a fixed set of {a,} the decision variable U is gaussian

with mean

E(U) =28’§: a; (14-4-6)
and variance B

ol = 28N, ki: a? (14-4-7)

For these values of the mean and variance, the probability that U is less than
zero is simply

Piv) = Q(V2y,) (14-4-8)

where the SNR per bit, v,, is given as
Yo =

L
> ai
k=1

Z | o&

0

I
M-

x
I

1

where y, = €a;/N, is the instantaneous SNR on the kth channel. Now we
must determine the probability density function p(y,). This function is most
easily determined via the characteristic function of v,. First of all, we note that
for L=1, y,=1v, has a chi-square probability density function given in
(14-3-5). The characteristic function of v, is easily shown to be

&, (jv) = E(e™)
_ 1
T 1-juy.

(14-4-10)

where ¥, is the average SNR per channel, which is assumed to be identical for
all channels. That is,

€
y(=p- E(a}) (14-4-11)
o

independent of k. This assumption applies for the results throughout this
section. Since the fading on the L channels is mutually statistically indepen-
dent, the {y,} are statistically independent, and, hence, the characteristic
function for the sum 1y, is simply the result in (14-4-10) raised to the Lth
power, i.e.,

¥(jv) = (144-12)

_
(1 - juy)*
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But this is the characteristic function of a chi-square-distributed random
variable with 21, degrees of freedom. It follows from (2-1-107) that the
probability density function p(y;) is

1 L1, = w7,
T — v/ 14-4-13
The final step in this derivation is to average the conditional error

probability given in (14-4-8) over the fading channel statistics. Thus, we
evaluate the integral

p,= j Pi(ys)p (1) dv (14-4-14)

There is a closed-form sclution for (14-4-14), which can be expressed as

L-1 L -
P= {1 -p))t 3 ( 1_+k)[%(1 + Wl (14-4-15)
k=0 k ;

where, by definition,

T -4
b=ATTS (14-4-16)

When the average SNR per channel, ¥, satisfies the condition ¥, >> 1, the term
31+ ux)=1 and the term (1 — ) = 1/4%,. Furthermore,

:g(l_~;+k)=(2LL+1) (144-17)

Therefore, when . is sufficiently large (greater than 10 dB), the probability of
error in (14-4-15) can be approximated as

P~ (;;—C)L(zLL_ 1) (14-4-18)

We observe from {14-4-18) that the probability of error varies as 1/, raised to
the Lth power. Thus, with diversity, the error rate decreases inversely with the
Lth power of the SNR.

Having obtained the performance of binary PSK with diversity, we now turn
our attention to binary, orthogonal FSK that is detected coherently. In this
case, the two decision variables at the output of the maximal ratio combiner
may be expressed as

I3 L
Ul =Re (Zg E ﬂ'i + 2 Q‘gNkl)

k=1 k=1
(14-4719)

1
Uz = RC (Z akaz)

k=1

‘where we have assumed that signal s,,(¢) was transmitted and where {N,,} and
{Ny,} are the two sets of noise component at the output of the matched filters,
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The probability of error is simply the probability that U, > U,. This computa-
tion is similar to the one performed for PSK, except that we now have twice
the noise power. Consequently, when the {a:} are fixed, the conditional
probability of error is

Py(vs) = Q(Vy,) (14-4-20)

We use (14-4-13) to average F5(y,) over the fading. It is not surprising to find
that the result given in (14-4-15) still applies, with §, replaced by i¥.. That is,
(14-4-15) is the probability of error for binary, orthogonal FSK with coherent
detection, where the parameter u is defined as

¥e
R N (I 14-4-21
V245, ¢ )

Furthermore, for large values of ,. the performance P, can be approximated

as
1 V20 -1
=50 () (14422
In comparing (14-4-22) with (14-4-18), we observe that the 3 dB difference in
performance between PSK and orthogonal FSK with coherent detection, which
exists in a nonfading, nondispersive channel, is the same also in a fading
channel.

In the above discussion of binary PSK and FSK, detected coherently, we
assumed that noiseless estimates of the complex-valued channel parameters
{axe7*} were used at the receiver. Since the channel is time-variant, the
parameters {a,e '*"} cannot be estimated perfectly. In fact, on some channels,
the time variations may be sufficiently fast to preclude the implementation of
coherent detection. In such a case, we should consider using either DPSK or
FSK with noncoherent detection.

Let us consider DPSK first. In order for DPSK to be a viable digital
signaling method, the channel variations must be sufficiently siow so that the
channel phase shifts {¢,} do not change appreciably over two consecutive
signaling intervals. In our analysis, we assume that the channel parameters
{a,e "} remain constant over two successive signaling intervals. Thus the
combiner for binary DPSK will yield as an output the decision variable

L
U=Re [2 (2€aie ' + N,,)(2€are™ + N, )] (14-4-23)
k=1

where {N,,} and {N,,} denote the received noise components at the output of
the matched filters in the two consecutive signaling intervals. The probability
of error is simply the probability that U< 0. Since U is a special case of the
general quadratic form in complex-valued gaussian random vanables treated in
Appendix B, the probability of error can be obtained directly from the results
given in that appendix. Alternatively, we may use the error probability given in
(12-1-3), which applies to binary DPSK transmitted over I time-invariant
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channels, and average it over the Rayleigh fading channel statistics. Thus, we
have the conditional error probability

L-1

Piy) = e » 3 bk (14-424)

k=0

where 7, is given by (14-4-9) and
L-1-k _
b, 1 (ZL 1) (14-4-25)

k! n=0 n

The average of Py(y,) over the fading channel statistics given by p(y,) in
(14-4-13) is easily shown to be

1 £L-1

£

_ _ _¥ Y i
LT E & L1 k’!(1 T -;r) (14-4-26)

We indicate that the resuit in (14-4-26) can be manipuiated into the form given

in (14-4-15), which applies also to coherent PSK and FSK. For binary DPSK,
the parameter w in (14-4-15) is defined as (see Appendix C)

_
1+7,

" (14-4-27)

For y.> 1, the error probability in (14-4-26) can be approximated by the

expression
1 \f2L -1
() () =
~(5) (7, (144-28)

Orthogonal FSK with noncoherent detection is the final signaling technique
that we consider in this section. It is appropriate for both slow and fast fading.
However, the analysis of the performance presented below is based on the
assumption that the fading is sufficiently slow so that the channel parameters
{aye™’®} remain constant for the duration of the signaling interval. The
combiner for the multichannel signals is a square-law combiner. Its output
consists of the two decision variables

L

U= D RBaie* + N,
“:' (14-4-29)
U= 2 [Nio

k=1

where U, is assumed to contain the signal. Consequently the probability of
error is the probability that U, > U,.
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As in DPSK, we have a choice of two approaches in deriving the
performance of FSK with square-law combining. In Section 12-1, we indicated
that the expression for the error probability for square-law combined FSK is
the same as that for DPSK with y, replaced by 3v,. That is, the FSK system
requires 3dB of additional SNR to achieve the same performance on a
time-invariant channel. Consequently, the conditional error probability for
DPSK given in (14-4-24) applies to square-law-combined FSK when 1y, is
replaced by }y,. Furthermore, the result obtained by averaging (14-4-24) over
the fading, which is given by (14-4-26), must also apply to FSK with ¥,
replaced by }7.. But we also stated previously that (14-4-26) and (14-4-15) are
equivalent. Therefore, the error probability given in (14-4-15) also applies to
square-law-combined FSK with the parameter u defined as

¥e
- 4-4-
w5t (14-4-30)

An alternative derivation used by Pierce (1958) to obtain the probability
that the decision variable U, > U, is just as easy as the method described
above. It begins with the probability density functions p(U,) and p(U;). Since
the complex-valued random variables {a,e /*¢, {N,,}, and {N,,} are zero-mean
gaussian-distributed, the decision variables U, and U, are distributed according
to a chi-square probability distribution with 2L degrees of freedom. That is,

P(U1)=607l)'z(17_—1)! ?"exp(-%) (14-4-31)
where
ot = JE(28are 7 + Ny
=28N(1+7%,)
Similarly,
p(ly) = a'—g)-g(gr_-_—l—)-; Us ' exp (— 5%) (14-4-32)
where

The probability of error is just the probability that U,> U,. It is left as an
exercise for the reader to show that this probability is given by (14-4-15),
where p is defined by (14-4-30).

When 7. > 1, the performance of square-law-detected FSK can be simpl-
ified as we have done for the other binary multichannel systems. In this case,
the error rate is well approximated by the expression '

SOIew o

The error rate performance of PSK, DPSK, and square-law-detected
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FIGURE 14-4-2  Performance of binary signals with diversity.

orthogonal FSK is illustrated in Fig. 14-4-2 for L=1, 2, and 4. The
performance is plotted as a function of the average SNR per bit, ¥,, which is
related to the average SNR per channel, 7., by the formula

Y, = L%, (14-4-34)

The results in Fig. 14-4-2 clearly illustrate the advantage of diversity as a
means for overcoming the severe penalty in SNR caused by fading.

14-4-2 Multiphase Signals

Multiphase signaling over a Rayleigh fading channel is the topic presented in
some detail in Appendix C. Our main purpose in this section is to cite the
general result for the probability of a symbol error in M-ary PSK and DPSK
systems and the probability of a bit error in four-phase PSK and DPSK.
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The general result for the probability of a symbol error in M-ary PSK and
DPSK is

B Gt D O T30 S A iy S W PO
Pu= (L -1)! (ab""{b Z[M(M D

wsin (m/ M) .y —pcos(n/M) _
Vb - u’cos (1/M) RV u? cos? (JI}M)]})J,-, (14-4-35)

where
Y (14-4-36)
1+ %
for coherent PSK and
¥e
=—" 14-4-37
o1+ ( )

for DPSK. Again, 7, is the average received SNR per channel. The SNR per
bit is ¥, = Ly./k, where k = log, M.

The bit error rate for four-phase PSK and DPSK is derived on the basis that
the pair of information bits is mapped into the four phases according to a Gray
code. The expression for the bit error rate derived in Appendix C is

resli-AtmE (G5 e

where p is again given by (14-4-36) and (14-4-37) for PSK and DPSK,
respectively.

Figure 14-4-3 illustrates the probability of a symbol error of DPSK and
coherent PSK for M =2, 4, and 8 with L =1. Note that the difference in
performance between DPSK and coherent PSK is approximately 3dB for all
three values of M. In fact, when %,>1 and L =1, (14-4-35) is well
approximated as

M-1
Pa=~ (M log, M)|[sin® (7/M)]7, (14-4-39)
for DPSK and as
M-1
P, =
M= (M logs M)(sin® (x/M)[23, (14-4-40)

for PSK. Hence, at high SNR, coherent PSK is .3 dB better than DPSK on a
Rayleigh fading channel. This difference also holds as L is increased.

Bit error probabilities are depicted in Fig. 14-4-4 for two-phase, four-phase,
and eight-phase DPSK signaling with L =1, 2, and 4. The expression for the
bit error probability of eight-phase DPSK with Gray encoding is not given
here, but it is available in the paper by Proakis (1968). In this case, we observe
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FIGURE 14-4-3  Probability of symbol error for PSK and DPSK for Rayleigh fading.

that the performances for two- and four-phase DPSK are (approximately) the
same, while that for eight-phase DPSK is about 3dB poorer. Although we
have not shown the bit error probability for coherent PSK, it can be
demonstrated that two- and four-phase coherent PSK also yield approximately
the same performance.

14-4-3 M-ary Orthogonal Signals

In this sub-section, we determine the performance of M-ary orthogonal signals
transmitted over a Rayleigh fading channel and we assess the advantages of
higher-order signal alphabets relative to a binary alphabet. The orthogonal
signals may be viewed as M-ary FSK with a minimum frequency separation of
an integer multiple of 1/7, where T is the signaling interval. The same
information-bearing signal is transmitted on L diversity channels. Each
diversity channel is assumed to be frequency-nonselective and slowly fading,
and the fading processes on the L channels are assumed to be mutually
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Probability of a bit error for DPSK with diversity for Rayleigh fading.

statistically independent. An additive white gaussian noise process corrupts the
signal on each diversity channel. We assume that the additive noise processes
are mutually statistically independent,

Although it is relatively easy to formulate the structure and analyze the
performance of a maximal ratio combiner for the diversity channels in the
M-ary communication system, it is more likely that a practical system would
employ noncoherent detection. Consequently, we confine our attention to
square-law combining of the diversity signals. The output of the combiner
containing the signal is

3

U, = 2 [2€aze ™/ + Ny, [* (14-4-41)
k=1
while the outputs of the remaining M — 1 combiners are
L
Un=2 Neml>, m=2,3,4,..., M (14-4-42)
k=1
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The probability of error is simply 1 minus the probability that U, > U, for
m=2,3,..., M. Since the signals are orthogonal and the additive noise
processes are mutually statistically independent, the random variables
U, U,,..., Uy are also mutually statistically independent. The probability
density function of U, was given in (14-4-31). On the other hand, Us, ..., Uy
are identically distributed and described by the marginal probability density
function in (14-4-32). With U, fixed, the joint probability P(I,< U, U3 <
U, ..., U, < U,) is equal to P(U, < U)) raised to the M — 1 power, Now,

i
P(U<U) = L p(Us) dU,

= 1-exp(- 2[;12 ) S ’_‘17(5%1';)Jt (144-43)

k=0

where o3 =2€N,. The M — 1 power of this probability is then averaged over
the probability density funciion of U, to yield the probability of a correct
decision. If we subtract this result from unity, we obtain the probability of
error in the form given by Hahn (1962)

=1 J: (2«';‘)%11, Ty Ut exe (_ E{i_!g)
L-1 kM =1
[“"""(‘z%) Saba)]
[ oyt e (i)

L-1 Uf M-1
x(l et H-) du, (14-4-44)

k=0 k!

where 7, is the average SNR per diversity channel. The average SNR per bit is
Yo = Ly./log, M =Ly, /k.

The integral in (14-4-44) can be expressed in closed form as a double
summation. This can be seen if we write

(Lg: f:) *Z " Bt (14-4-45)

where 8., is the set of coefficients in the above expansion. Then it follows that
(14-4-44) reduces to
(M1
w2 (51 l( m )

1
P, =
“ (L-l)r,..z.l (1 +m +my.)*
m(L-1) — k
1+
x ,..L—l+k!(—‘—-) )
E) Bunl ) 1+m+my, (14-4-46)
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When there is no diversity (L. = 1), the error probability in (14-4-46) reduces to
the simple form
m+ M - 1
e ()

Py = (14-4-47)

m=1 1+M+m'?c

The symbot error rate P,, may be converted to an equivalent bit error rate by
multiplying Py, with 2*71/(2% —1).

Although the expression for P, given in (14-4-46) is in closed form, it is
computationally cumbersome to evaluate for large values of M and L. An
alternative is to evaluate Py, by numerical integration.using the expression in
(14-4-44). The results illustrated in the following graphs were generated from
(14-4-44),

First of all, let us observe the error rate performance of M-ary orthogonal
signaling with square-law combining as a function of the order of diversity.
Figures 14-4-5 and 14-4-6 illustgate the characteristics of Py, for M =2 and 4 as

| — =3
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FIGURE 144-5  Performance of square-law-detected 1w : :
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a function of L. when the total SNR, defined as ¥, = L¥,, remains fixed. These
results indicate that there is an optimum order of diversity for each ¥, That is.
for any ¥, there is a value of L for which P, is a minimum. A careful
observation of these graphs reveals that the minimum in P,, is obtained when
¥. = /L = 3. This result appears to be independent of the alphabet size M.
Second, let us observe the error rate Py as a function of the average SNR
per bit, defined as ¥, = L¥y./k. (If we interpret M-ary orthogonai FSK as a
form of codingt and the order of diversity as the number of times a symbol is
repeated in a repetition code then ¥, = ¥./R,, where R.=k/L is the code
rate.) The graphs of P, versus 9, for M=2,4, 8, 16, 32 and L =1, 2, 4 are
shown in Fig. 14-4-7. These results illustrate the gain in performance as M
increases and L increases. First, we note that a significant gain in performance
is obtained by increasing L. Second, we note that the gain in performance
obtained with an increase in M is relatively small when L is small, However,

t In Section 14-6, we show that M-ary orthogonal FSK with diversity may be viewed as a block
orthogonal code.
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as L increases, the gain achieved by increasing M also increases. Since an
increase in either parameter results in an expansion of bandwidth, i.e.,

LM
““log, M
the results illustrated in Fig, 14-4-7 indicate that an increase in L is more
efficient than a corresponding increase in M. As we shall see in Section 14-6,

coding is a bandwidth-effective means for obtaining diversity in the signal
transmilted over the fading channel.

Chernoff Bound Before concluding this section, we develop a Chernoff
upper bound on the error probability of binary orthogonal signaling with
Lth-order diversity, which will be useful in our discussion of coding for fading
channels, the topic of Section 14-6. Our starting point is the expression for the
two decision variables U; and U, given by (14-4.29), where U, consists of the
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square-law-combined signal-plus-noise terms and U, consists of square-law-
combined noise terms. The binary probability of error, denoted here by P5(L),
as

Py(L) = P(U, - U, >0)
=P(X >0)= J: plx)dx (14-4-48)

where the random variable X is defined as
X=U-U-= :‘i (N2l = 2%ax + Ni?) (14-4-49)

The phase terms {¢,} in U, have been dropped since they do not affect the
performance of the square-law detector.

Let S(X) denote the unit step function. Then the error probability in
(14-4-48) can be expressed in the form

PL)y = E[S(X)] (14-4-50}

Following the development in Section 2-1-5, the Chernoff bound is obtained by
overbounding the unit step function by an exponential function. That is,

S(X)<e™, =0 (14-4-51)
where the parameter { is optimized to yield a tight bound. Thus, we have
B(L) = E[S(X)] < E(¢™) (14-4-52)

Upon substituting for the random variable X from (14-4-49) and noting that
the random variables in the summation are mutually statistically independent,
we obtain the result

L
PL) < 1‘[l E(ef My E (g cR2%ar Nul'y (14-4-53)
i
But
E(e™Nafy = ! , {<—l— (14-4-54)
1-2¢{o3} 203
and
Ee-tmrmiy- 1 o 71 (14-4-55)
1+ 203 202

where 0 =28N,, o} =2€Ny(1+ %), and 7, is the average SNR per diversity
channel. Note that o] and o3 are independent of X, i.e., the additive noise
terms on the L diversity channels as well as the fading statistics are identically
distributed. Consequently, (14-4-53) reduces to :

1 L 1
FlL)= [(1 ~20o3)(1 + 2;&)] » O=g= 202 (14-4-56)
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By differentiating the right-hand side of (14-4-56) with respect to [, we find
that the upper bound is minimized when

2 2
{= z'a%:; (14-4-57)
Substitution of (14-4-57) for { into (14-4-36) yields the Chernoff upper bound
in the form
> £
P(L)= [%5(%_1)3] (14-4-58)
It is interesting to note that (14-4-58) may also be expressed as
P(L)<[4p(1-p)I" (14-4-59)

where p =1/(2+ ¥,) is the probability of error for binary orthogonal signaling

on a fading channel without diversity,
A comparison of the Chemnoff bound in (14-4-58) with the exact error

probability for binary orthogonal signaling and square-law combining of the L
diversity signals, which is given by the expression

e

1+?r: k=
LV rL-1+k
=2 (77, Ja-er (14-4-60)

reveals the tightness of the bound. Figure (14-4-8) illustrates this comparison.
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We observe that the Chernoff upper bound is approximately 6 dB from the
exact error probability for L =1, but, as L increases, it becomes tighter, For
example, the difference between the bound and the exact error probability is
about 2.5dB when L = 4. :

Finally we mention that the error probability for M-ary orthogonal signaling
with diversity can be upper-bounded by means of the union bound

Pu<(M—1)P(L) (14-4-61)

where we may use either the exact expression given in {14-4-60) or the
Chernoff bound in (14-4-58) for A(L).

14-5 DIGITAL SIGNALING OVER A FREQUENCY-
SELECTIVE, SLOWLY FADING CHANNEL

When the spread factor of the channel satisfies the condition 7,8, <1, it is
possible to select signals having a bandwidth W « (Af), and a signal duration
T <« (4?),. Thus, the channel is frequency-nonselective and slowly fading. In
such a channel, diversity techniques can be employed to overcome the severe
consequences of fading.

When a bandwidth W >>(Af), is available to the user, the channel can be
subdivided into a number of frequency-division multiplexed (FDM) subchan-
nels having a mutual separation in center frequencies of at least (Af).. Then
the same signal can be transmitted on the FDM subchannels, and, thus,
frequency diversity is obtained. In this section, we describe an alternative
method.

14-5-1 A Tapped-Delay-Line Channel Model

As we shall now demonstrate, a more direct method for achieving basically the
same result is to employ a wideband signal covering the bandwidth W. The
channel is still assumed to be slowly fading by virtue of the assumption that
T <« (Af).. Now suppose that W is the bandwidth occupied by the real
bandpass signal. Then the band occupancy of the equivalent lowpass signal
s(r) is |fl=iW. Since s,(r) is band-limited to [f|<iW, application of the
sampling theorem resuits in the signal representation

e i W(t-n/W
sw= 3 s3] ““x[;(‘(jn ;";',) ) (14-5-1)
The Fourier transform of s,(¢) is
1 & )
. w - fZxfhiw =
50f) = w,;_.."(“’ Je (If| < iw) (145.2)

0 (f >1w)
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The noiseless received signal from a frequency-selective channel was
previously expressed in the form

W= [ Crioseas (1453)

where C(f;1) is the time-variant transfer function. Substitution for §,(f) from
(14-5-2) into (14-5-3) yields

r,(t]=% i s,(n!W)f C(f:1)e/We=n¥) g4f

n=-—x

=% S snIW)e(t - nfW: 1) (14-54)

n=E —x

where ¢(r;¢) is the time-variant impulse response. We observe that (14-5-4)
has the form of a convolution sum. Hence, it can also be expressed in the
alternative form

r(r)=“i, i st = nIWe(n/W; 6) (14-5-5)

n=—,

It is convenient to define a set of time-variable channel coefficients as

elt) = %c(%; r) (14-5-6)

Then (14-5-5) expressed in terms of these channel coefficients becomes

()= 2 cut)si(t —n/W) (14-5-7)

n=-u

The form for the received signal in (14-5-7) implies that the time-variant
frequency-selective channel can be modeled or represented as a tapped delay
line with tap spacing 1/W and tap weight coefficients {c,,(+)}. In fact, we deduce
from (14-5-7) that the lowpass impulse response for the channel is

*=

)= > c()8(t—n/W) (14-5-8)

n=-=

and the corresponding time-variant transfer function is

Clfit)= 2 cl(t)e 2™ (14-5-9)

n=-=
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AGURE 14-51 Trapped delay line mode] of frequency-selective channel

Thus, with an equivalent lowpass signal having a bandwidth }W, where
W >> (Af)., we achieve a resolution of 1/W in the multipath delay profile.
Since the total multipath spread is 7T,,, for all practical purposes the tapped
delay line model for the channel can be truncated at L =[7,,W] + 1 taps. Then
the noiseless received signal can be expressed in the form

(1) = 2‘ c,.(r)s;(t - %) (14-5-10)

The truncated tapped delay line model is shown in Fig. 14-5-1. In
accordance with the statistical characterization of the channel presented in
Section 14-1, the time-variant tap weights {c,(¢)} are complex-valued stationary
random processes. In the special case of Rayleigh fading, the magnitudes
fea(t)} = @, (1) are Rayleigh-distributed and the phases ¢,(t) are uniformly
distributed. Since the {c,(r)} represent the tap weights corresponding to the L
different delays 7=n/W, n=1,2,...,L, the uncorrelated scattering
assumption made in Section 7-1 implies that the {c,(t)} are mutually
uncorrelated. When the {c,(f)} are gaussian random processes, they are
statistically independent.

14-5-2 The RAKE Demodulator
We now consider the problem of digital signaling over a frequency-selective
channel that is modeled by a tapped delay line with statistically independent
time-variant tap weights {c,(r)}. It is apparent at the outset, however, that the
tapped delay. line model with statistically independent tap weights provides us
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with L replicas of the same transmitted signal at the receiver. Hence, a receiver
that processes the received signal in an optimum manner will achieve the
performence of an equivalent Lth-order diversity communications system.

Let us consider binary signaling over the channel. We have two equal-
energy signals s,,(z) and s,,(r), which are either antipodal or orthogonal. Their
time duration T is selected to satisfy the condition T>> T,,. Thus, we may
neglect any intersymbol interference due to multipath. Since the bandwidth of
the signal exceeds the coherent bandwidth of the channel, the received signal is
expressed as

L

n(i) = 2 cul)su(t - k/W) + 2(1)

k=1
=y +z(r), Ost<T, i=12 (14-5-11)

where z(1) is a complex-valued zero-mean white gaussian ncise process.
Assume for the moment that the channel tap weights are known. Then the
optimum receiver consists of two filters matched to v,(r) and v,(t), followed by
samplers and a decision circuit that selects the signal corresponding to the
largest output. An equivalent optimum receiver employs cross correlation
instead of matched filtering. In either case, the decision variables for coherent
detection of the binary signals can be expressed as

U, =Re U: A dt]

=Re[i j Tr,(t}cf(t)s,‘,‘,,(r—k/W)dr], m=1,2 (14-5-12)
k=140

Figure 14-5-2 illustrates the operations involved in the computation of the
decision variables, In this realization of the optimum receiver, the two
reference signals are delayed and correlated with the received signal r,(;).

An alternative realization of the optimum receiver employs a single delay
line through which is passed the received signal r(¢). The signal at each tap is
correlated with c,(¢)s},(¢), where k =1,2,..., L and m =1, 2. This receiver
structure is shown in Fig. 14-5-3. In effect, the tapped delay line receiver
attempts to collect the signal energy from all the received signal paths that fall
within the span of the delay line and carry the same information. Its action is
somewhat analogous to an ordinary garden rake and, consequently, the name

“RAKE receiver” has been coined for this receiver structure by Price and
Green (1958).

14-5-3 Performance of RAKE Receiver

We shall now evaluate the performance of the RAKE receiver under the
condition that the fading is sufficiently slow to allow us to estimate c,()
perfectly (without noise). Furthermore, within any one signaling interval, c,(¢)
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FIGURE 14-5-2  Optimum demodulator for wideband binary signals (delayed reference configuration).
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is treated as a constant and denoted as ¢,. Thus the decision variables in
(14-5-12) may be expressed in the form

Suppose the transmitted signal is 5,,(¢); then the received signal is

L
)= casn(t—niW)y+z(1), Ost<T
n=1

Substitution of (14-5-14) into (14-5-13) yields

L
U,=Re|> ¢
k=1

L T
e, j; splt - afW)sE(t — k/W) dt]

n=1

I3 T
: +Re[2 c¥ z(r)sf,.(r—k/W)dr], m=1,2
k=1 Jo

808

L T
U, =Re [ > el rest - kw) d:]. m=1,2  (14-5-13)
k=1 1]

(14-5-14)

(14-5-15)
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FIGURE 14-5.3 Optimum demodulator for wideband binary signals (delayed received signal configuration).

Usually the wideband signals s,,(t) and 3‘,,(!} are generated from pseudo-
random sequences, which result in signals that have the property

.
f st = /W)t —k/W)d1=0, k#n, i=1,2 (14-516)
a

If we assume that our binary signals are designed to satisfy this property then
(14-5-15) simpilifies tot

L T
U,,,=Re[‘2 |ck|’L s;,(:-k!W)sﬁ,,(l—k{W)dt]
=1

L

T
+Re[§: C:L z(:)sz,,(:—k;W)dr]. m=1,2 (14-517)

k=1

t Although the orthogonality property specified by (14-5-16) can be satisfied by proper
selection of the pseudo-random sequences, the cross-correlation of s,,(r — n/W) with sp(r — k/W)
gives rise to a signal-dependent self-noise, which ultimately limits the performance. For simplicity,
we do not consider the self-noise term in the following calculations. Consequently, the
performance results presented below should be considered as lower bounds (ideal RAKE). An
approximation 1o the performance of the RAKE can be obtained by ireating the self-noise as an
additional gaussian noise component with noise power equal to its variance.
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When the binary signals are antipodal, a single decision variable suffices. In
this case, (14-5-17) reduces to

L L
U, =Re (23’ D ai+ > agNk) (14-5-18)
k=1 k=1
where a, =|c,| and
T
N, =e/* [ (st —k/W)dt (14-5-19)
]

But (14-5-18) is identical to the decision variable given in (14-4-4), which
corresponds to the output of 2 maximal ratio combiner in a system with
Lth-order diversity. Consequently, the RAKE receiver with perfect (noiseless)
estimates of the channel tap weights is equivalent to a maximal ratio combiner
in a system with Lth-order diversity. Thus, when all the tap weights have the
same mean-square value, i.e., E(aZ) is the same for all &, the error rate
performance of the RAKE receiver is given by (14-4-15) and (14-4-16). On the
other hand, when the- mean square values E(a3}) are not identical for all k, the
derivation of the error rate performance must be repeated since (14-4-15) no
longer applies.

We shall derive the probability of error for binary antipodal and orthogonal
signals under the condition that the mean-square values of {a,} are distinct.
We begin with the conditional error probability

Pv) = Q(Vy,(1 - p,)) (14-5-20)
where p, = —1 for antipodal signals, p, = 0 for orthogonal signals, and
€&,
N
L
=2 % (14-5-21)
k=1

Each of the {y,} is distributed according to a chi-squared distribution with
two degrees of freedom. That is,

1 _
p(n)=—e mn ¢14-5-22)
Y
where 7, is the average SNR for the kth path, defined as
_ _ & 2
¥ = E(ay) (14-5-23)
Ny
Furthermore, from (14-4-10) we know that the characteristic function of Vi 18
1
w,(jv) = — 14-5-24
W)= T (14-5-24)
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Since v, is the sum of L statistically independent components {y,}, the
characteristic function of v, is
[4

Uy (jv) = ﬂ] T

(14-5-25)

The inverse Fourier transform of the characteristic function in {14-5-25) yields
the probability density function of 1, in the form

L
plyn) =3 Ze-whn 20 (14-5-26)

k=1 Yk

where 7, is defined as
L -

“k"—l—[ Y&

=1 Y — ¥i
ixk

(14-5-27)

When the conditional error probability in (14-5-20) is averaged over the
probability density function given in (14-5-26), the result is

- L —_
=1 _ ‘Yk(l - pr) 5.
P,=1 2‘1 x,[l \ }2————~——+ e p’)] (14-5-28)

This error probability can be approximated as (¥, > 1)

2L -1y & 1
P, ==( ) e 14-5-29
? L aU: 2%:{1-p,) ( )

By comparing (14-5-29) for p, = —1 with (14-4-18), we observe that the same
type of asymptotic behavior is obtained for the case of unequal SNR per path
and the case of equal SNR per path.

In the derivation of the error rate performance of the RAKE receiver, we
assumed that the estimates of the channel tap weights are perfect. In practice,
relatively good estimates can be obtained if the channel fading is sufficiently
slow, e.g., (Ar)./T =100, where T is the signaling interval. Figure 14-5-4
illustrates a method for estimating the tap weights when the binary signaling
waveforms are orthogonal. The estimate is the output of the lowpass filter at
each tap. At any one instant in time, the incoming signal is either s,,(¢) or sp(r).
Hence, the input to the lowpass filter used to estimate c,(t) contains signal plus
noise from one of the correlators and noise only from the other correlator.
This method for channel estimation is not appropriate for antipodal signals,
because the addition of the two correlator outputs results in signal cancellation.
Instead, a single correlator can be employed for antipodal signals. Its output is
fed to the input of the lowpass filter after the information-bearing signal is
removed. To accomplish this, we must introduce a delay of one signaling
interval into the channel estimation proeedure, as illustrated in Fig. 14-5-5.
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FIGURE 4-5-6 RAKE demodulator for DPSK signals.

That is, first the receiver must decide whether the information in the received
signal is +1 or —1 and, then, it uses the decision to remove the information
from the correlator output prior to feeding it to the lowpass fiter.

If we choose not to estimate the tap weights of the frequency-selective
channel, we may use either DPSK signaling or noncoherently detected
orthogonal signaling. The RAKE receiver structure for DPSK is illustrated in
Fig 14-5-6. It is apparent that when the transmitted signal waveform s(t)
satisfies the orthogonality property given in (14-5-16), the decision variable is
identical that given in (14-4-23) for an Lth-order diversity system. Conse-
quently, the error rate performance of the RAKE receiver for a binary DPSK
is identical to that given in (14-4-15) with u = ¥./(1 + ¥.), when ail the signal
paths have the same SNR ¥.. On the other hand, when the SNRs {¥,} are
distinct, the error probability can be obtained by averaging (14-4-24), which is
the probability of error conditioned on a time-invariant channel, over the
probability density function of 7y, given by (14-5-26). The result of this
integration is

RGPS mib, S ?(—f—"_)w (14-5-30)
m=0 k=1 Ye Mt P

where =, is defined in (14-5-27) and b,, in (14-4-25).
Finally, we consider binary orthogonal signaling over the frequency-
selective channel with square-law detection at the receiver. This type of signal
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RAKE demodulator for square-law combination of orthogonal signals.

is appropriate when either the fading is rapid enough to preclude a good
estimate of the channel tap weights or the cost of implementing the channel
estimators is high. The RAKE receiver with square-law combining of the signal
from each tap is illustrated in Fig. 14-5-7. In computing its performance, we
again assume that the orthogonality property given in (14-5-16) holds. Then
the decision variables at the output of the RAKE are

L
u= E 12%c, + Ny
i (14-5.31)
U= Zl INeal?
k=

where we have assumed that s,(¢r) was the transmitted signal. Again we
observe that the decision variables are identical to the ones given in (14-4-29),
which apply to orthogonal signals with Lth-order diversity. Therefore, the
performance of the RAKE receiver for square-law-detected orthogonal signals
is given by (14-4-15) with u = %./(2 + ¥.) when all the signal paths have the
same SNR. If the SNRs are distinct, we can average the conditional error
probability given by (14-4-24), with 1, replaced by }y,, over the probability
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density function p(y,) given in (14-5-26). The result of this averaging is given
by (14-5-30), with ¥, replaced by i¥,.

[n the above analysis, the RAKE demodulator shown in Fig. i4-5-7 for
square-law combination of orthogonal signals is assumed to contain a signal
component at each delay. If that is not the case, its performance will be
degraded, since some of the tap correlators will contribute only noise. Under
such conditions, the low-tevel, noise-only contributions from the tap cor-
refators should be excluded from the combiner, as shown by Chyi er al. (1988).

This concludes our discussion of signaling over a frequency-selective
channel. The configurations of the RAKE receiver presented in this section
can be casily generalized to multilevel signaling. In fact, if M-ary PSK or
DPSK is chosen, the RAKE structures presented in this section remain
unchanged. Only the PSK and DPSK detectors that follow the RAKE
correlator are different.

14-6 CODED WAVEFORMS FOR FADING CHANNELS

Up to this point, we have demonstrated that diversity techniques are very
effective in overcoming the detrimental effects of fading caused by the
time-variant dispersive characteristics of the channel, Time- and/or frequency-
diversity techniques may be viewed as a form of repetition (block) coding of
the information sequence. From this point of view, the combining techniques
described previously represent soft-decision decoding of the repetition code.
Since a repetition code is a trivial form of coding, we shall now consider the
additional benefits derived from more efficient types of codes. In particular, we
demonstrate that coding provides an efficient means for obtaining diversity on
a fading channel. The amount of diversity provided by a code is directly related
to its minimum distance,

As explained in Section 14-4, time diversity is obtained by transmitting the
signal components carrying the same information in multiple time intervals
mutually separated by an amount equal 10 or exceeding the coherence time
(1), of the channel. Similarly, frequency diversity is obtained by transmitting
the signal components carrying the same information in multiple frequency
slots mutually separated by an amount of at least equal to the coherence
bandwidth (Af), of the channel. Thus, the signal components carrying the same
information undergo statistically independent fading.

To extend these notions to a coded information sequence, we simply require
that the signal waveform corresponding 10 a particular code or code symbol
fade independently of the signal waveform corresponding to any other code bit
or code symbol. This requirement may result in inefficient utilization of the
available time-frequency space, with the existence of large unused portions in
this two-dimensional signaling space. To reduce the inefficiency, a number of
code words may be interleaved in time or in frequency or both, in such a
manner that the waveform corresponding to the bits or symbols of a given code
word fade independently. Thus. we assume that the time-frequency signaling
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space is partitioned into nonoverlapping time-frequency cells. A signal
waveform corresponding to a code bit or code symbol is transmitted within
such a cell.

In addition to the assumption of statistically independent fading of the
signat components of a given code word, we also assume that the additive noise
components corrupting the received signals are white gaussian processes that
are statistically independent and identically distributed among the cells in the
time-frequency space. Also, we assume that there is sufficient separation
between adjacent cells so that intercell interference is negligible.

An important issue is the modulation technique that is used to transmit the
coded information sequence. If the channel fades slowly enough to allow the
establishment of a phase reference then PSK or DPSK may be employed. If
this is not possible then FSK modulation with noncoherent detection at the
receiver is appropriate. In our treatment. we assume that it is not possible to
establish a phase reference or phase references for the signals in the different
cells occupied by the transmitted signal. Consequently, we choose FSK
modulation with noncoherent detection.

A model of the digital communications system for which the error rate
performance will be evaluated is shown in Fig. 14-6-1. The encoder may be
binary, nonbinary, or a concatenation of a nonbinary encoder with a binary
encoder. Furthermore, the code generated by the encoder may be a block
code, a convolutional code, or, in the case of concatenation, a mixture of a
block code and a convolutional code.

In order to explain the modulation, demodulation, and decoding for
FSK-type (orthogonal) signals, consider a linear binary block code in which &
information bits are encoded into a block of » bits. For simplicity and without
loss of generality, let us assume that all n bits of a code word are transmitted
simultaneously over the channel on multiple frequency cells. A code word C,
having bits {c,} is mapped into FSK signal waveforms in the following way. If
c; =0, the tone f;, is transmitted, and if ¢; =1, the tone f;; is transmitted. This
means that 2n tones or cells are available to transmit the n bits of the code
word, but only n tones are transmitted in any signaling interval. Since each
code word conveys k bits of information, the bandwidth expansion factor for
FSK is B, =2n/k. .

The demodulator for the received signal separates the signal into 2n

b Rayleigh
tnpun _ FS5K fuding
1 Encoder modulator AWGN
channe|
Ot ilwer-
o . ‘__':_f_i Decoder Filter-bank -
Meodel of communications system with FSK demodulator
modulation/demodulation and encoding/decoding.
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spectral components corresponding to the available tone frequencies at the
transmitter. Thus, the demodulator can be realized as a bank of 2n filters,
where each filter is matched to one of the possible transmitted tones. The
outputs of the 2n filters are detected noncoherently. Since the Rayleigh fading
and the additive white gaussian noises in the 2n frequency cells are mutually
statistically independent and identically distributed random processes, the
optimum maximum-likelihood soft-decision decoding criterion requires that
these filter responses be square-law-detected and appropriately combined for
each code word to form the M =2* decision variables. The code word
corresponding to the maximum of the decision variables is selected. If
hard-decision decoding is employed, the optimum maximum-likelihood de-
coder selects the code word having the smallest Hamming distance relative to
the received code word.

Although the discussion above assumed the use of a block code, a
convolutional encoder can be easily accommodated in the block diagram
shown in Fig. 14-6-1. For example, if a binary convolutional code is employed,
each bit in the output sequence may be transmitted by binary FSK. The
maximum-likelihood soft-decision decoding criterion for the convolutional
code can be efficiently implemented by means of the Viterbi algorithm, in
which the metrics for the surviving sequences at any point in the trellis consist
of the square-law-combined outputs for the corresponding paths through the
trellis. On the other hand, if hard-decision decoding is employed, the Viterbi
algorithm is implemented with Hamming distance as the metric.

14-6-1 Probability of Error for Soft-Decision Decoding of
Linear Binary Block Codes

Consider the decoding of a linear binary (n, k) code transmitted over a
Rayleigh fading channel, as described above. The optimum soft-decision
decoder, based on the maximum-likelihood criterion, forms the M = 2*
decision variables

[(r- c,) l)’oflz + 0y l)’i,«'lzl

U= i

iz

= -2. Dyl + clmP ~ b)), i=1,2,..., 2 (14-6-1)
-

where y,[°, j=1,2,... .n,and r=0, ! represent the squared envelopes at the
outputs of the 2x filters that are tuned to the 2n possible transmitted tones. A
decision is made in favor of the code word corresponding to the largest
decision variable of the set {U,}.

Our objective in this section is the determination of the error rate
performance of the soft-decision decoder. Toward this end, let us assume that
the all-zero code word C, is transmitted. The average received signal-to-noise
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ratio per tone (cell) is denoted by ¥.. The total received SNR for the n tones in
n¥y. and, hence, the average SNR per bit is

1I

x| x
il

¥

(14-6-2)

I
|z

where R. is the code rate.

The decision variable U, corresponding to the code word C, is given by
(14-6-1) with c; = 0 for all j. The probability that a decision is made in favor of
the mth code word is just

Pym)=P(U,>U)=PU, - U, <0)
= P[E (€1;~ cm)Iyuf* = Iyl <0]

J=1

= P[g Uyel® = Iy < 0] (14-6-3)

where w,, is the weight of the mth code word. But the probability in (14-6-3) is
Just the probability of error for square-law combining of binary orthogonal
FSK with w,,th-order diversity. That is,

Wy~ 1

=L+ .
Pim) = p- *20 ("~ T Ja-p (14-6-4)
-1+k 2w, -1
(VLY e
where
PRE S— (14-6-6)

2+%. 2+R.%y,

As an alternative, we may use the Chernoff upper bound derived in Section
14-4, which in the present notation is

Py(m) =< [4p(1 - p)I"™~ (14-6-7)

The sum of the binary etror events over the M — | nonzero-weight code
words gives an upper bound on the probability of error. Thus,

Py < E Py(m) (14-6-8)

Since the minimum distance of the linear code is equal to the minimum
weight, it follows that

(l +Rc?b)—wm = (2 + Rfib)_d-m
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The use of this relation in conjunction with (14-6-5) and (14-6-8) yields a
simple, albeit looser, upper bound that may be expressed in the form

M 2w, -1
5 ()
m=2 Wy

< _—mmm
M (2 + Rc'}-’h)dwn

This simple bound indicates that the code provides an effective order of
diversity equal to d,,,,. An even simpler bound is the union bound

Py <(M = 1)[4p(1 — p)}= (14-6-10)

which is obtained from the Chernoff bound given in (14-6-7).

As an example serving to illustrate the benefits of coding for a Rayleigh
fading channel, we have plotted in Fig. 14-6-2 the performance obtained with
the extended Golay (24,12) code and the performance of binary FSK and
quarternay FSK each with dual diversity. Since the extended Golay code
requires a total of 48 cells and k = 12, the bandwidth expansion factor B, = 4.
This is also the bandwidth expansion factor for binary and quaternary FSK
with L =2. Thus, the three types of waveforms are compared on the basis of
the same bandwidth expansion factor. Note that at P, = 107%, the Golay code
outperforms quaternary FSK by more than 6dB, and at P, =107 the
difference is approximately 10 dB.

(14-6-9)

5
2 &Q B,=4
- N =
10-2 .
AN
- \\  Binary 5K
. 2 L=2
E o AL NN
£ " NEE
£ . \ AN
g 104 \\\
5 \ Golay \
\ (24.12) N
2 sofi-decision decoding
10~
5 \
2
FIGURE 14-6-2 Example of performance obtained \
with conventional diversity versus coding N T T T T

for B, =4 SNR per bit. ¥,(dB)
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The reason for the superior performance of the Golay code is its large
minimum distance (dn;, = 8), which translates into an equivalent eighth-order
(L = 8) diversity. In contrast, the binary and quaternary FSK signals have only
second-order diversity. Hence, the code makes more efficient use of the
available channel bandwidth. The price that we must pay for the superior
performance of the code is the increase in decoding complexity.

14-6-2 Probability of Error for Hard-Decision Decoding of
Linear Binary Block Codes

Bounds on the performance obtained with hard-decision decoding of a linear
binary (n, k) code have already been given in Section 8-1-5. These bounds are
applicable to a general binary-input binary-output memoryless (binary sym-
metri¢) channel and, hence, they apply without modification to a Rayleigh
fading AWGN channel with statistically independent fading of the symbols in
the code word. The probability of a bit error needed to evaluate these bounds
when binary FSK with noncoherent detection is used as the modulation and
demodulation technique is given by (14-6-6).

A particularly interesting result is obtained when we use the Chernoff upper
bound on the error probability for hard-decision decoding given by (8-1-89).
That is,

Py(m) < [4p(1 ~ p)]*? (14-6-11)

and P, is upper-bounded by (14-6-8). In comparison, the Chernoff upper
bound for Py(m) when soft-decision decoding is employed is given by (14-6-7).
We observe that the effect of hard-decision decoding is a reduction in the
distance between any two code words by a factor of 2. When the minimum
distance of a code is relatively small, the reduction of the distances by a factor
of 2 is much more noticeable in a fading channel than in a nonfading channel.

For illustrative pruposes we have piotted in Fig. 14-6-3 the performance of
the Golay (23, 12) code when hard-decision and soft-decision decoding are
used. The difference in performance at P, = 10 is approximately 6 dB. This is
a significant difference in performance compared with the 2dB difference
between soft- and hard-decision decoding in a nonfading AWGN channel. We
also note that the difference in performance increases as P, decreases. In short,
these results indicate the benefits of a soft-decision decoding over hard-
decision decoding on a Rayleigh fading channel.

14-6-3 Upper Bounds on the Performance of Convolutional
Codes for a Rayleigh Fading Channel

In this subsection, we derive the performance of binary convolutional codes
when used on a Rayleigh fading AWGN channel. The encoder accepts k
binary digits at a time and puts out » binary digits at a time. Thus, the code
rate is R, = k/n. The binary digits at the output of the encoder are transmitted
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over the Rayleigh fading channel by means of binary FSK, which is
square-law-detected at the receiver. The decoder for either soft- or hard-
decision decoding performs maximum-likelihood sequence estimation, which is
efficiently impiemented by means of the Viterbi aigorithm.

First, we consider soft-decision decoding. In this case, the metrics computed
in the Viterbi algorithm are simply sums of square-law-detected outputs from
the demodulator. Suppose the all-zero sequence is transmitted. Following the
procedure outlined in Section 8-2-3, it is easily shown that the probability of
error in a pairwise comparison of the metric corresponding to the all-zero
sequence with the metric corresponding 1o another sequence that merges for
the first time at the all-zero state is

r@=p 3 (471 Fa-pr (14612)

where d is the number of bit positions in which the two sequences differ and p
is given by (14-6-6). That is, P(d) is just the probability of error for binary
FSK with square-law detection and dth-order diversity. Alternatively, we may
use the Chernoff bound in (14-6-7) for P)(d). In any case, the bit error
probability is upperbounded, as shown in Section 8-2-3 by the expression

Pb<— E B4Pyd) (14-6-13)

d=dpe.
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where the weighting coefficients {8,} in the summation are obtained from the
expansion of the first derivative of the transfer function 7(D, N), given by
(8-2-25).

When hard-decision decoding is performed at the receiver, the bounds on
the error rate performance for binary convolutional codes derived in Section
8-2-4 apply. That is, P, is again upper-bounded by the expression in (14-6-13),
where P»(d) is defined by (8-2-28) for odd 4 and by (8-2-29) for even d, or
upper-bounded (Chernoff bound) by (8-2-31), and p is defined by (14-6-6).

As in the case of block coding, when the respective Chernoff bounds are
used for Py(d) with hard-decision and soft-decision decoding, it is interesting to
note that the effect of hard-decision decoding is to reduce the distances
(diversity) by a factor of 2 relative to soft-decision-decoding,.

The following numerical results illustrate the error rate performance of
binary, rate 1/n, maximal free distance convolutional codes for n =2, 3, and 4
with soft-decision Viterbi decoding. First of all, Fig. 14-6-4 shows the
performance of the rate 1/2 convolutional codes for constraint lengths 3, 4, and
5. The bandwidth expansion factor for binary FSK modulation is B, =2n.
Since an increase in the constraint length results in an increase in the
complexity of the decoder to go along with the corresponding increase in the
minimum free distance, the system designer can weigh these two factors in the
selection of the code.

Another way to increase the distance without increasing the constraint

Comstraint length = 3

z, Y

\\\ Constraint length = 4

Probability of & bit error, P,
n
L q

Cmamhnleamb=5\ \\

FIGURE 14-64  Performance of rate 1/2 binary convolutional 6 8 10 2 14 16 18 20
- codes with soft decision decoding. SNR per bit, 7,(dB}
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length of the code is to repeat each output bit m times. This is equivalent to
reducing the code rate by a factor of m or expanding the bandwidth by the
same factor. The result is a convolutional code that has a minimum free
distance of md;,.., where dy,., is the minimum free distance of the original code
without repetitions. Such a code is almost as good, from the viewpoint of
minimum distance, as a maximum free distance, rate 1/mn code. The error rate
performance with repetitions is upper-bounded by

£ < ;cl- i BaP(md) ' (14-6-14)

direy

where Po(md) is given by (14-6-12). Figure (14-6-5) illustrates the performance
of the rate 1/2 codes with repetitions (m = 1, 2, 3, 4) for constraint length 5.

14-6-4 Use of Constant-Weight Codes and Concatenated -
Cades for a Fading Channel

FIGURE 14-6-5

Our treatment of coding for a Rayleigh fading channel to this point was based
on the use of binary FSK as the modulation technique for transmitting each of
the binary digits in a code word. For this modulation technique, all the 2* code

. 11

2 Constraint length = § ———f

Probability of a bit error, P,
L)
=
|

m=3 \
2 =4
Performance of rate 1/2m, constraint 104 \
length 5, binary convolutional codes 6 8 won 14168 w0
with soft-decision decoding. SNR per bit, 7,(dB)
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words in the (1, k) code have identical transmitted energy. Furthermore, under
the condition that the fading on the n transmitted tones is mutually statistically
independent and identically distributed, the average received signal energy for
the: M = 2* possible code words is also identical. Consequently, in a soft-
decision decoder, the decision is made in favor of the code word having the
largest decision variable.

The condition that the received code words have identical average SNR has
an important ramification in the implementation of the receiver. I the received
code words do not have identical average SNR, the receiver must provide bias
compensation for each received code word so as to render it equal energy. In
general, the determination of the appropriate bias terms is difficult to
implement because it requires the estimation of the average received signal
power; hence, the egual-energy condition on the received code words
considerably simplifies the receiver processing.

There is an alternative modulation method for generating equal-energy
waveforms from code words when the code is constant-weight, i.e., when every
code word has the same number of 1s. Note that such a code is nonlinear.
Nevertheless, suppose we assign a single tone or cell to each bit position of the
2% code words. Thus, an (n, k) binary block code has n tones assigned.
Waveforms are constructed by transmitting the tone corresponding to a
particular bit in a code word if that bit is a 1; otherwise, that tone is not
transmitted for the duration of the interval. This modulation technique for
transmitting the coded bits is called on-off keying (OOK). Since the code is
constant-weight, say w, every coded waveform consists of w transmitted tones
that depend on the positions of the 1s in each of the code words.

As in FSK, all tones in the QOOK signal that are transmitted over the
channel are assumed to fade independently across the frequency band and in
time from one code word to another. The received signal envelope for each
tone is described statistically by the Rayleigh distribution. Statistically inde-
pendent additive white gaussian noise is assumed to be present in each
frequency cell.

The receiver employs maximum-likelihood (soft-decision) decoding to map
the received waveform into one of the M possible transmitted code words. For
this purpose, n matched filters are employed, each matched to one of the »
frequency tones. For the assumed statistical independence of the signal fading
for the n frequency cells and additive white gaussian noise, the envelopes of

the matched filter outputs are squared and combined to form the M decision
variables

U=Xc,lyf? i=12... 2 (14-6-15)
j=1
where |y corresponds to the squared envelope of the filter corresponding to
the jth frequency, where j=1.2,...,n

It may appear that the constant-weight condition severely restricts our
choice of codes. This is not the case, however. To illustrate this point. we
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briefiy describe some methods for constructing constant-weight codes. This
discussion is by no means exhaustive.

Method 1: Nonlinear Transformation of & Linear Code In general, if in
each word of an arbitrary binary code we substitute one binary sequence for
every occurrence of a 0 and another sequence for each 1, a constant-weight
binary block code will be obtained if the two substitution sequences are of
equal weights and lengths. If the length of the sequénce is v and the original
code is an (n, k) code then the resulting constant-weight code will be an (wn, k)
code. The weight will be » times the weight of the substitution sequence, and
the minimum distance will be the minimum distances of the original code times
the distances between the two substitution sequences. Thus, the use of
complementary sequences when v is even results in a code with minimum
distance vd;, and weight }v.

The simplest form of this method is the case v =2, in which every 0 is
replaced by the pair 01 and every 1 is replaced by the complementary sequence
10 (or vice versa). As an example, we take as the initial code the (24,12)
extended Golay code. The parameters of the original and the resultant
constant-weight code are given in Table 14-6-1.

Note that this substitution process can be viewed as a separate encoding.
This secondary encoding clearly does not alter the information content of a
code word—it merely changes the form in which it is transmitted. Since the
new code word is composed of pairs of bits—one “‘on’” and one “off '—the use
of OOK transmission of this code word produces a waveform that is identical
to that obtained by binary FSK modulation for the underlying linear code.

Method 2: Expurgstion In this method, we start with an arbitrary binary
block code and select from it a subset consisting of all words of a certain
weight. Several different constant-weight codes can be obtained from one
initial code by varying the choice of the weight w, Since the code words of the
resulting expurgated code can be viewed as a subset of all possible permuta-
tions of any one code word in the set, the term binary expurgated permuration
modulation (BEXPERM) has been used by Gaarder (1971) to describe such a
code, In fact, the constant-weight binary block codes constructed by the other

EXAMPLE OF CONSTANT-WEIGHT CODE FORMED BY
METHOD 1

Code parameters Origina) Golay Constant-weight

" 24 48
12 12

4096 4W6

Ao 8 6
W variable 24
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TABLE 14-6-2 EXAMPLES OF CONSTANT-WEIGHT CODES FORMED BY EXPURGATION

Parameters Original Counstant weight No. 1 Constant weight No. 2

n 24 24 24
k 12 9 11
M 4096 759 2576
donn 8 =3 =8
w variable 8 12

methods may also be viewed as BEXPERM codes. This method of generating
constant-weight codes is in a sense opposite to the first method in that the
word length n is held constant and the code size M is changed. The minimum
distance for the constant-weight subset will clearly be no less than that of the
original code. As an example, we consider the Golay (24, 12) code and form
the two different constant-weight codes shown in Table 14-6-2.

Method 3: Hadamard Matrices This method might appear to form a
constant-weight binary block code directly, but it actually is a special case of
the method of expurgation. In this method, a Hadamard matrix is formed as
described in Section 8-1-2, and a constant-weight code is created by selection
of rows (code words) from this matrix. Recall that a Hadamard matrix is an
n X n matrix- (n even integer) of 1s and Os with the property that any row
differs from any other row in exactly }n positions. One row of the matrix is
normally chosen as being ali Os.

In each of the other rows, half of the elements are 0s and‘the other half Is.
A Hadamard code of size 2(n ~1) code words is obtained by selecting these
n—1 rows and their complements. By selecting M =2%<2(n — 1) of these
code words, we obtain a Hadamard code, which we denote by H(n, k), where
each code word conveys k information bits. The resulting code has constant
weight in and minimum distance d,,,, = 4n.

Since n frequency cells are used to transmit k information bits, the
bandwidth expansion factor for the Hadamard H(n, k) code is defined as

d
k
which 1s simply the reciprocal of the code rate. Also, the average signai-to-

noise ratio (SNR) per bit, denoted by ¥,, is related to the average SNR per
cell, ¥, by the expression

B, =7 cells per information bit

= —k— v,
Ye iﬂ Yo
k 2%
=2-,= 2R, = E"i’ (14-6-16)
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Let us compare the performance of the constant-weight Hadamard codes
under a fixed bandwidth constraint with a conventional M-ary orthogonal set
of waveforms where each waveform has diversity L. The M orthogonal
waveforms with diversity are equivalent to a block orthogonal code having a
block length n = LM and k =log, M. For example, if M=4 and L =2, the
code words of the block orthogonal code are

C={1 100000 0
C,=f0 01 10 0 0 0]
C.=f0 0001 10 0

C.=(0 0 0 00 01 1]
To transmit these code words using OOK modulation requires n = 8 cells, and
since each code word conveys k=2 bits of information, the bandwidth

expansion factor B, =4. In general, we denote the block orthogonal code as
O(n, k). The bandwidth expansion factor is

(14-6-17)

k.
Y- L ]
- M(’i)% —m2 (146-18)
n B,

Now we turn our attention to the performance characteristics of these
codes. First, the exact probability of a code word (symbol) error for M-ary
orthogonal signaling over a Rayleigh fading channel with diversity was given in
closed form in Section 14-4. As previously indicated, this expression is rather
cumbersome to evaluate, especially if either L or M or both are large. Instead,
we shall use a union bound that is very convenient. That is, for a set of M
orthogonal waveforms, the probability of a symbol error can be upper-
bounded as

Py =(M -1)P(L)
=(2* - 1)P(L) <2*Py(L) (14-6-19)
where (L), the probability of error for two orthogonal waveforms, each with

diversity L, is given by (14-6-12) with p =1/(2 + %,.). The probability of bit
error is obtained by multiplying Py, by 2°~'/(2* — 1), as explained previously.
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A simple upper (union) bound on the probability of a code word error for
the Hadamard H(n, k) code is obtained by noting the probability of error in
deciding between the transmitted code word and any other code word is
bounded from above by Py(3dmin), Where d;, is the minimum distance of the
code. Therefore, an upper bound on Py, is

P < (M — 1)Py(3d i) < 2°Py(3d i) (14-6-20)

Thus the “effective order of diversity” of the code for OOK modulation is
bdmin. The bit error probability may be approximated as 3P, or slightly
overbounded by multiplying P,, by the factor 2* ' /(2% — 1), which is the factor
used above for orthogonal codes. The latter was selected for the error
probability computations given below.

Figures 14-6-6 and 14-6-7 illustrate the error rate performance of a selected
number of Hadamard codes and block orthogonal codes, respectively, for
several bandwidth expansion factors. The advantage resulting from an increase
in the size M of the alphabet (or k, since k = log, M) and an increase in the
bandwidth expansion factor is apparent from observation of these curves.
Note, for example, that the H(20, 5) code when repeated twice results in a
code that is denoted by ,/4(20, 5) and has a bandwidth expansion factor B, = 8.
Figure 14-6-8 shows the performance of the two types of codes compared on
the basis of equal bandwidth expansion factors. It is observed that the error
rate curves for the Hadamard codes are steeper than the corresponding curves
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FIGURE 14-6-6 Performance of Hadamard codes. SNR per bit. ¥,(dB)
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Probability of a bit error, P,

FIGURE 14-6-7 Performance of block orthogonal codes.
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for the block orthogonal codes. This characteristic behavior is due simply to
the fact that, for the same bandwidth expansion factor, the Hadamard codes
provide more diversity than block orthogonal codes. Alternatively, one may
say that Hadamard codes provide better bandwidth efficiency than block
orthogonal codes. It should be mentioned, however, that at low SNR, a
lower-diversity code outperforms a higher-diversity code as a consequence of
the fact that, on a Rayleigh fading channel, there is an optimum distribution of
the total received SNR among the diversity signals. Therefore, the curves for
the block orthogonal codes will cross over the curves for the Hadamard codes
at the low-SNR (high-error-rate) region.

Method 4: Concatenation In this method, we begin with two codes: one
binary and the other nonbinary. The binary code is the inner code and is an
(n, k) constant-weight (nonlinear) block code. The nonbindry code, which may
be linear, is the outer code. To distinguish it from the inner code, we use
uppercase letters, e.g., an (N, K) code, where N and K are measured in terms
of symbols from a g-ary alphabet. The size ¢ of the alphabet over which the
outer code is defined cannot be greater than the number of words in the inner
code. The outer code, when defined in terms of the binary inner code words
rather than g-ary symbols, is the new code.

An important special case is obtained when g = 2* and the inner code size is
chosen to be 2% Then the number of words is M = 2*X and the concatenated
structure is an (nM,kK) code. The bandwidth expansion factor of this
concatenated code is the product of the bandwidth expansions for the inner
and outer codes.

Now we shall demonstrate the performance advantages obtained on a
Rayleigh fading channel by means of code concatenation. Specifically, we
construct a concatenated code in which the outer code is a dual-k (nonbinary)
convolutional code and the inner code is either a Hadamard code or a block
orthogonal code. That is, we view the dual-k code with M-ary (M = 2%)
orthogonal signals for modulation as a concatenated code. In all cases to be
considered, soft-decision demodulation and Viterbi decoding are assumed.

The error rate performance of the dual-k convolutional codes is obtained
from the derivation of the transfer function given by (8-2-39). For a rate-1/2,
dual-k code with no repetitions, the bit error probability, appropriate for the
case in which each k-bit output symbol from the dual-k encoder is mapped into
one of M =2* orthogonal code words, is upper-bounded as

LLEE! =

Py < 2 BuPom) (14-6-21)
2" =1 m=4
where Py(m) is given by (14-6-12).
For example, a rate-1/2, dual-2 code may employ a 4-ary orthogonal code
0O(4,2) as the inner code. The bandwidth expansion factor of the resuiting
concatenated code is, of course, the product of the bandwidth expansion

830



B22  DIGITAL COMMUNICATIONS

factors of the inner and outer codes. Thus, in this example, the rate of the
outer code is 1/2 and the inner code is 1/2. Hence, B, = (4/2)(2) = 4.

Note that if every symbol of the dual-k is repeated r times, this is equivalent
to using an orthogonal code with diversity L =r. If we select r=2 in the
example given above, the resulting orthogonal code is denoted as O(8,2) and
the bandwidth expansion factor for the rate-1/2, dual-2 code becomes B, =8,
Consequently, the term Py(m) in (14-6-21) must be replaced by P(mL) when
the orthogonal code has diversity L. Since a Hadamard code has an “effective
diversity” 3d,.., it follows that when a Hadamard code is used as the inner
code with a dual-k outer code, the upper bound on the bit error probability of
the resulting concatenated code given by (14-6-21) still applies if Py(m) is
replaced by Py(dmnd,,,). With these modifications, the upper bound on the bit
error probability given by (14-6-21) has been evaluated for rate-1/2, dual-k
convolutional codes with either Hadamard codes or block orthogonal codes as
inner codes. Thus the resulting concatenated code has a bandwidth expansion
factor equal to twice the bandwidth expansion factor of the inner code.

First, we consider the performance gains due to code concatenation. Figure
14-6-9 illustrates the performance of dual-k codes with block orthogonal inner
codes compared with the performance of block orthogonal codes for band-
width expansion factors B, =4, 8, 16, and 32. The performance gains due to
concatenation are very impressive. For example, at an error rate of 10°° and
B, =8, the dual-k code outperforms the orthogonal block code by 7.5dB. In

Probability of a bit erfor, P,
L]

10-7 . -
Duu-zl B ' \
5 OB, %
Dual-4 . | .
2 |04, 4 8= \ , 0148, 3},
FIGURE 1469  Comparison of performance between block 18 L= 32 [ENANN AR AT
: orthogonal codes and dual-k with block W0 12 14 6 18 20 2 0

orthogonal inner codes. SNR per bit, ¥, (dB}
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short, this gain may be attributed to the increased diversity (increase in
minimum distance) obtained via code concatenation. Similarly, Fig. 14-6-10
illustrates the performance of two dual-k codes with Hadamard inner codes
compared with the performance of the Hadamard codes alone for B, = 8 and
12. Tt is observed that the performance gains due to code concatenation are
still significant, but certainly not as impressive as those il'ustrated in Fig.
14-6-9. The reason is that the Hadamard codes alone vield a large diversity, so
that the increased diversity arising from concatenation does not result in as
large a gain in performance for the range of error rates covered in Fig. 14-6-10.
Next, we compare the performance for the two types of inner codes used
with dual-k outer codes. Figure 14-6-11 shows the comparison for B, = 8. Note
‘that the ;H(4, 2) inner code has d,,;, = 4, and, hence, it has an effective order
of diversity equal to 2. But this dual diversity is achieved by transmitting four
frequencies per code word. On the other hand, the orthogonal code 08 2)
also gives dual diversity, but this is achieved by transmitting only two
frequencies per code word. Consequently, the O(8, 2) code is 3 dB better than
the ,#(4, 2). This difference in performance is maintained when the two codes
are used as inner codes in conjunction with dual-2 code. On the other hand. for
B, =8, one can use the H(20,5) as the inner code of a dual-5 code, and its
performance is significantly better than that of the dual-2 code at low error*
rates. This improvement in performance is achieved at the expense of an
increase in decoding complexity. Similarly, in Fig. 14-6-12, we compare the
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FIGURE 144-11 Performance of dual-k codes with either
Hadamard or block orthogonal inner code
for B, =8

FIGURE 14-6-12  Performance of dual-k codes with either

Hadamard or block orthogonal inner code
for B, =16.
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performance of the dual-k codes with two types of inner codes for B, = 16.
Note that the H(B.3) inner code has d, =12, and, hence, it yields an
effective diversity of 6. This diversity is achieved by transmitting 12 frequencies
per code word. The orthogonal inner code O(24,3) gives only third-order
diversity, which is achieved by transmitting three frequencies per code word.
Consequently the O(24, 3) inner code is more efficient at low SNR, that is, for
the range of error rates covered in Fig. 14-6-12. At large SNR, the dual-3 code
with the Hadamard ;H(8, 3) inner code outperforms its counterpart with the
0(24,3) inner code due to the large diversity provided by the Hadamard code.
For the same bandwidth expansion factor B, = 16, one may use a dual-6 code
with a H(48, 6) code to achieve an improvement over the dual-3 code with the
+H(8,3) inner code. Again, this improvement in performance (which in this
case is not as impressive as that shown in Fig. 14-6-11), must be weighed
against the increased decoding complexity inherent in the dual-6 code.

The numerical results given above illustrate the performance advantages in
using codes with good distance properties and soft-decision decoding on a
Rayleigh fading channel as an alternative to conventional M-ary orthogonal
signaling with diversity. In addition, the results illustrate the benefits of code
concatenation on such a channel, using a dual-k convolutional code as the
outer code and either a Hadamard code or a block orthogonal code as the
inner code. Although dual-k codes were used for the outer code, similar results
are obtained when a Reed-Solomon code is used for the outer code. There is
an even greater choice in the selection of the inner code.

The important parameter in the selection of both the outer and the inner
codes is the minimum distance of the resultant concatenated code required to
achieve a specified level of performance. Since many codes will meet the
performance requirements, the ultimate choice is made on the basis of
decoding complexity and bandwidth requirements.

14-6-5 System Design Based on the Cutoff Rate

In the above treatment of coded waveforms, we have demonstrated the
effectiveness of various codes for fading channels. In particular, we have
observed the benefits of soft-decision decoding and code concatenation as a
means for increasing the minimum distance and, hence, the amount of diversity
in the coded waveforms. In this subsection, we consider randomly selected
code words and derive an upper (union) bound on the error probability that
depends on the cutoff rate parameter for the Rayleigh fading channel.

Let us consider the model for the communication system illustrated in Fig.
14-6-1. The modulator has a g-ary orthogonal FSK alphabet. Code words of
block length n are mapped into waveforms by selecting » tones from the
alphabet of g tones. The demoduiation is performed by passing the signal
through a bank of g matched filters followed by square-law detectors. The
decoding is assumed to be soft-decision. Thus, the square-law detected outputs
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from the demodulator are appropriately combined (added) with equal weight-
ing to form M decision variables corresponding to the M possible transmitted
code words.

To evaluate the union bound on the probability of error in a Rayleigh
fading channel with AWGN, we first evaluate the binary error probability
involving the decision variable U;, which corresponds to the transmitted code
word, and any of the other M — | decision variables corresponding to the other
code words. Let U, be the other decision variable and suppose that U, and U,
have / tones in common. Hence, the contributions to U, and U, from these !
tones are identical and, therefore, cance! out when we form the difference
U, ~ U,. Since the two decision variables differ in n —/ tones, the probability of
error is simply that for a binary orthogonal FSK system with n -/ order
diversity. The exact form for this probability of error is given by (14-6-4),
where p =1/(2 + ¥.), and ¥, is the average SNR per tone. For simplicity, we
choose to use the Chernoff bound for this binary event error probability, given
by (14-6-7), i.e., '

PU, Uy | < [4p(1 = p)]" ! (14-6-22)

Now, let us average over the ensemble of binary communication systems.
There are ¢" possible code words, from which we randomly select two code
words. Thus. each code word is selected with equal probability. Then, the
probability that two randomly selected code words have / tones in common is

P(l) = (T)(};)J(l —é)"_’ (14-6-23)

When we average (14-6-22) over the probability distribution of I given by
« (14-6-23), we obtain

S XURAR E PAUL Uy | PQ)

<{E G- Pra-n]
({1t +sa-vpa-pf (14:6:24)

Finaily, the union bound for communication systems that use M =2*
randomly selected code words is simply

Pu<(M - 1)P(U,, Uy) < MP(U,, Uy) (14-6-25)

By combining (14-6-24) with (14-6-25), we obtain the upper bound on the
symbol error probability as

Py, < 2-nRe- RO (14-6-26)
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Cutoff rate R, (hits/rone)

Cutoff rate as a function of ¥, for 0 2 4 6 3 10 12 14 16 18 20
Rayleigh fading channel. SNR per tone. ¥, (dB)

where R. = k/n is the code rate and R, is the cutoff rate defined as

q
Ry=lo
0T OB g - 1p(l-p)

(14-6-27)

with
S (14-6-28)
P7avs,
Graphs of R, as a function of %, are shown in Fig. 14-6-13 for ¢ =2, 4,
and 8.
A more interesting form of (14-6-26) is obtained if we express P, in terms
of the SNR per bit. In particular, (14-6-26) may be expressed as

PM < 2k verla. 7~ 1) (14-6-29)
where, by definition,
_ R

8@ ¥)=—"
Ye
o0 =)

= —lo, (14-6-30

% 8T 4 - p(i-p) )
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Graphs of g(q, ¥.) as a function of ¥, are plotted in Fig. 14-6-14, with ¢ as a
parameter. First, we note thate is an optimum ¥, for each value of g that
minimizes the probability of error. For large g, this value is approximately
¥. =3 (5dB), which is consistent with our previous observation for ordinary
square-law diversity combining. Furthermore, as ¢ — =, the function g{(g, ¥.)
approaches a limit, which is

: - oy 2+ i)zl
1  Y) = ge(F.) =T lo [-—-——:— 14-6-31
ql_{llg(q ¥e) = 8=(¥%) P PTTEL ( )
The value of g..(7.) evaluated at ¥, =3 is
g8~(3) = maxg.(¥.)
Y
=0.215 (14-6-32)

Therefore, the error probability in (14-6-29) for this optimum division of total
SNR is

PM < 2_0.2|5k[ﬁ—4.bﬁl (14-6—33)

837



CHAPTER i4: DIGITAL COMMUNICATION THROUGH FADING MULTIPATH CHANNELS 8§29

This result indicates that the probability of error can be made arbitrarily small
with optimum SNR per code chip, if the average SNR per bit ¥, >4.65
(6.7 dB). Even a relatively modest value of ¢ = 20 comes close to this minimum
value. As seen from Fig. 14-6-14, g(20, 3) = 0.2, so that P, — 0, provided
¥» > 5 (7dB). On the other hand, if ¢ = 2, the maximum value of g(2, ¥.)=
0.096 and the corresponding minimum SNR per bit is 10.2 dB.

In the case of binary FSK waveforms (g = 2), we may easily compare the
cutoff rate for the unquantized (soft-decision) demodulator output with the
cutoff rate for binary quantization, for which

Ro=1-logll+Vip(I=p), Q=2

as was given in (8-1-104). Figure 14-6-15 illustrates the graphs for R, and Ry,.
Note that the difference between R, and Ry, is approximately 3 dB for rates
below 0.3 and the difference increases rapidly at high rates. This loss may be
reduced significantly by increasing the number of quantization levels to Q =8
(three bits).

Similar comparisons in the relative performance between unquantized
soft-decision decoding and quantized decision decoding can also be made for

qg>2
10
09 F
08
o1}
Mu 06 F
&
1 0.5
g
§ ool
2
£ o3l
3
02
FIGURE 146-15  Cutoff rate for (unquantized) sofi- 0.1 . - .
decision and hard-decision decoding of a 4 8 12 le 20 4 2
coded binary FSK. SNR per tone, ¥, (dB)
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14-6-6 Trellis-Coded Modulation

FIGURE 14-6-16

Trellis-coded modulation was described in Section 8-3 as a means for achieving
a coding gain on bandwidth-constrained channels, where we wish to transmit at
a bit-rate-to-bandwidth ratio R/W >1. For such channels, the digital com-
munication system is designed to use bandwidth-efficient multilevel or multi-
phase modulation (PAM, PSK, DPSK, or QAM), which allows us to achieve
an R/W >1. When coding is applied in signal design for a bandwidth
constrained channel, a coding gain is desired without expanding the signal
bandwidth. This goal can be achieved, as described in Section 8-3, by
increasing the number of signal points in the consteflation over the corres-
ponding uncoded system to compensate for the redundancy introduced by the
code, and designing the trellis code so that the euclidean distance in a sequence
of transmitted symbols corresponding to paths that merge at any node in the
trellis is larger than the euclidean distance per symbol in an uncoded system.

In contrast, the coding schemes that we have described above in conjunction
with FSK modulation expand the bandwidth of the modulated signal for the
purpose of achieving signal diversity, Coupled with FSK modulation, which is
not bandwidth-eficient, the coding schemes we have described are inappropri-
ate for use on bandwidth-constrained channels.

In designing trellis-coded signal waveforms for fading channels, we may usc
the same basic principles that we have learned and applied in the design of
conventional coding schemes. In particular, the most important objective in
any coded signal design for fading channels is to achieve as large a signal
diversity as possible. This implies that successive output symbols from the
encoder must be interleaved or sufficiently separated in transmission, either in
time or in frequency, so as to achieve independent fading in a sequence of
symbols that equals or exceeds the minimum free distance of the trellis code.
Therefore, we may represent such a trellis-coded modulation system by the
block diagram in Fig. 14-6-16, where the interleaver is viewed broadly as a
device that separates the successive coded symbols so as to provide indepen-
dent fading on each symbol (through frequency or time separation of symbols)
in the sequence. The receiver consists of a signal demodulator whose output is
deinterleaved and fed to the trellis decoder.

Block diagram of trellis-coded modulaticn systems.

Input daza Trellis
— Encoder Interleaver
Fading
channel
Output duta Trellis
———] decoder Deintericaver Demodul
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As indicated above, the candidate modulation methods that achieve high
bandwidth efficiency are M-ary PSK, DPSK, QAM and PAM. The choice
depends to a large extent on the channel characteristics. If there are rapid
amplitude variations in the received signal, QAM and PAM may be particu-
larly vulnerable, becausc a wideband automatic gain control (AGC) must be
used to compensate for the channel variations. In such a case, PSK or DPSK
are more suitable, since the information is conveyed by the signal phase and
not by the signal amplitude. DPSK provides the additional benefit that carricer
phase coherence is required only over two successive symbols. However, there
is an SNR degradation in DPSK relative to PSK.

In the design of the trellis code, our objective is to achieve as large a free
distance as possible, since this parameter is equivalent to the amount of
diversity in the received signal. In conventional Ungerboeck trellis coding,
each branch in the trellis corresponds to a single M-ary (PSK, DPSK, QAM)
output channel symbol. Let us define the shortest error event path as the error
event path with the smallest number of nonzero distances between itself and
the correct path, and let L be its length. In other words, . is the Hamming
distance between the M-ary symbols on the shortest error event path and those
in the correct path. Hence, if we assume that the transmitted sequence
corresponds to the all-zero path in the trellis, L is the number of branches in
the shortest-length path with a nonzero M-ary symbol. In a trellis diagram with
parallel paths, the paths are constrained to have a shortest error event length
of one branch, so that L =1. This means that such a trellis code provides no
diversity in a fading channel and, hence, the probability of error is inverselv
proportional to the SNR per symbol. Therefore, in conventional trellis coding
for a fading channel, it is undesirable to design a code that has parallel paths in
its trellis, because such a code yields neo diversity. This is the case in a
conventional rate-m/(m + 1) trellis code, where we are forced to have parallel
paths when the number of states is less than 2.

One possible way to increase the minimum free distance and, thus, the
order of diversity in the code, is to introduce asymmetry in the signal point
constellation. This approach appears to be somewhat effective, and has been
investigated by Simon and Divsalar (1985), Divsalar and Yuen (1984), and
Divsalar er al. (1987),

A more effective way to increase the distance L and, thus, the order of
diversity is to employ multiple trellis-coded modulation (MTCM). In MTCM,
illustrated in Fig. 14-6-17, b input bits to the encoder are coded into ¢ output
bits, which are then subdivided into k groups, each of m bits, such that ¢ = km.
Each m-bit group is mapped into an M-ary symbol. Thus, we obtain the M-ary
output symbols. The special case k =1 corresponds to the conventional
Ungerboeck codes. With k M-ary output symbols, it is possible to design trellis
codes with parallel paths having a distance L =k. Thus, we can achieve an
error probability that decays inversely as (&/N,)*.

An important consideration in the design of the decoder for the trellis code
is the use of any side information regarding the channel attenuation for each
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FIGURE 14-6-17  Block diagram of MTCM transmitter.

symbol. In the case of FSK modulation with square-law combination at the
decoder to form the decision metrics, it is not necessary to know the channel
attenuation for demodulated symbols. However, with coherent detection, the
optimum euclidean distance metric for each demodulated symbol is of the form
Ir. — a@,s,1°, where a, is the channel attenuation for the transmitted symbol s,
and 7, is the demodulation output. Hence, the sum of branch metrics for any
given path through the trellis is of the form

D(r, ) =3 Iru ~ aus$f
n

where the superscript (¢) indicates the ith path through the trellis. Therefore,
the estimation of the channel attenuation must be performed in order to
realize the optimum trellis decoder. The estimation of the channel attenuation
and phase shift, is considered in Appendix C for the case of PSK modulation
and demodulation, The effect of the quality of the attenuation and phase
estimates on the performance of PSK (uncoded) modulation is also assessed in
Appendix C.

147 BIBLIOGRAPHICAL NOTES AND REFERENCES

In this chapter, we have considered a number of topics concerned with digital
communications over a fading multipath channel. We began with a statistical
characterization of the channel and then described the ramifications of the
channel characteristics on the design of digital signals and on their perfor-
mance. We observed that the reliability of the communication system is
ephanced by the use of diversity transmission and reception. Finally we
demonstrated that channel encoding and soft-decision decoding provide a
bandwidth-efficient means for obtaining diversity over such channels.

The pioneering work on the characterization of fading multipath channels
and on signal and receiver design for reliable digital communications over such
channels was done by Price (1954, 1956). This work was followed by additional
significant contributions from Price and Green (1958, 1960), Kailath (1960,
1961), and Green (1962). Diversity transmission and diversity combining
techniques under a variety of channei conditions have been considered in the
papers by Pierce (1958), Brennan (1959), Turin (1961, 1962), Pierce and Stein
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(1960), Barrow (1963), Bello and Nelin (1962a, b, 1963), Price (1962a, b), and
Lindsey (1964). :

Our treatment of coding for fading channels has relied on contributions
from a number of researchers. In particular, the use of dual-k codes with
M-ary orthogonal FSK was proposed in publications by Viterbi and Jacobs
(1975) and Odenwalder (1976). The importance of coding for digital com-
munications over a fading channe] was also emphasized in a paper by Chase
(1976). The benefits derived from concatenated coding with soft-decision
decoding for a fading channel were demonstrated by Pieper et al. (1978).
There, a Reed-Solomon code was used for the outer code and a Hadamard
code was selected as the inner code. The performance of dual-k codes with
either block orthogonal codes or Hadamard codes as inner code were
investigated by Proakis and Rahman (1979). The error rate performance of
maximal free distance binary convolutional codes was evaluated by Rahman
(1981). Finally, the derivation of the cutoff rate for Rayleigh fading channels is
due to Wozencraft and Jacobs (1965).

Trellis-coded modulation for fading channels has been investigated by many
researchers, whose work was motivated to a large extent by applications to
mobile and cellular communications. The book by Biglieri et al. (1991) gives a
tutorial treatment of this topic and contains a large number of references to the
technical literature,

Our treatment of digital communications over fading channels focused
primarily on the Rayleigh fading channel model. For the most part, this is due
to the wide acceptance of this model for describing the fading effects on many

- radio channels and to its mathematical tractability. Although other statistical

models, such as a Ricean fading model or the Nakagami fading model may be
more appropriate for characterizing fading on some real channels, the general
approach in the design of reliable communications presented in this chapter
carries over.

14-1 The scattering function S(7; A) for a fading multipath channel is nonzero for the
range of values 0 < r<1ms and —0.t Hz < A <0.1 Hz. Assume that the scattering
function is approximately uniform in the two variables.

a Give numerical values for the following parameters:
(i) the multipath spread of the channel;
(ii) the Doppler spread of the channel;
{iii) the coherence time of the channel:
(iv) the coherence bandwidth of the channel;
(v) the spread factor of the channel,
b Explain the meaning of the following, taking into consideration the answers
given in (a):
(i) the channel is frequency-nonselective;
(ii) the channel is slowly fading;
(iii} the channel is frequency-selective.
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¢ Suppose that we have a frequency allocation (bandwidth) of 10kHz and we wish
to transmi! at a rate of 100bits/s over this channel. Design a binary
communications system with frequency diversity. In particular, specify (i) the
type of modulation, (ii) the number of subchannels, (iii) the frequency
separation between adjacent carriers, and (iv) the signaling interval used in your
design. Justify your choice of parameters.

14-2 Consider a binary communications system for transmitting a binary sequence over

a fading channel. The modulation is orthogonal FSK with third-order frequency
diversity (L =3). The demodulator consists of matched filters followed by
square-law detectors. Assume that the FSK carriers fade independently and
identically according to a Rayleigh envelope distribution. The additive noises on
the diversity signals are zero-mean gaussian with autocorrelation functions
VE[zF(0)zule + 1) = N,8(1). The noise processes are mutually statistically
independent.

a The transmitted signal may be viewed as binary FSK with square-law detection.

generated by a repetition code of the lorm

I-C=[1 1 1. 0-C,=[0 0 0]

Determine the error rate performance Py, for a hard-decision decoder following
the square-law-detected signals.

b Evaluate P,, for ¥, = 100 and 1000,

¢ Evaluate the error rate P, for ¥, =100 and 1000 if the decoder employs
soit-decision decoding.

d Consider the generalization of the result in (a). Il a repetition code of block
length L (L odd) is used, determine the error probability P, of the
hard-decision decoder and compare that with P, the error rate of the
soft-decision decoder. Assume y>> 1.

14-3 Suppose that the binary signal s,{r) is transmiited over a fading channel and the

received signal is
rdtY= xas{t)+z (1), O0=t=T

where z(t) is zero-mean while gaussian noise with astocorrelation function
b, (T) = No8(1)

The energy in the transmitted signal is ¥ =} [§ Is,())° dr. The channel gain a is
specified by the probability density function

pla) = 0.18(a) + 0.95(a —2)

a Determine the average probability of error P; for the demodulator that employs
a filter matched to s,(1).

b What value does P; approach as #/N, approaches infinity.
¢ Suppose that the same signal is transmitted on two statistically independently
fading channels with gains ¢, and «,, where

play) =0.18(a,) + 098, -2). k=12

The noises on the 1wo channels are statistically independent and identically
distributed. The demodulator employs 4 maiched filter for each channel and
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simply adds the two filter outputs to form the decision variable. Determine the
average P,.
For the case in (c) what value does P, approach as &/N, approaches infinity.

14-4 A muitipath fading channel has a multipath spread of 7,,=1s and a Doppler
spread B, = 0.01 Hz. The total channel bandwidth at bandpass available for signal
transmission is W =5 Hz. To reduce the effects of intersymbol interference, the
signal designer selects a pulse duration T = 10s.

14-5

a
b
C
d

Determine the coherence bandwidth and the coherence time.

Is the channel frequency selective? Explain.

Is the channel lading slowly or rapidly? Expiain.

Suppose that the channel is used to transmit binary data via (antipodal)
coherently detected PSK in a frequency diversity mode. Explain how you would
use the available channel bandwidth to obtain frequency diversity and deter-
mine how much diversity is available.

For the case in (d), what is the approximate SNR required per diversity 1o
achieve an error probability of 10 *?

Suppose that a wideband signal is used for transmission and a RAKE-type
receiver is used for demodulation. How many taps would you use in the RAKE
receiver?

Explain whether or not the RAKE receiver can be implemented as a coherent
receiver with maximal ratio combining.

If binary orthogonal signals are used for the wideband signal with square-law
postdetection combining in the RAKE receiver, what is the approximate SNR
required to achieve an error probability of 10 °?.(assume that all taps have the
same SNR.)

In the binary communications system shown in Fig. P14-5, z,(t) and z,(t) are
statistically independent white gaussian noise processes with zero mean and
identical autocorrelation functions ¢..(t) = N,5(1). The sampled values U, and U,
represent the real/ parts of the matched filter outputs. For example, if 5,(t) is
transmitted, then we have

Ul =23+N,
U, =N, +N,

where & is the transmitted signal energy and

N, =Re [J:s,*(.r)z.,(:) dr]. k=12

7 i Filter /_.
SN -0 [y, = Ret )
Sample a1
=T : v
50 ::r:bn::e"r. -
U=U,+ By,
0 Filter /
ST =0 { i, = Re( )

844



836 DICITAL COMMUNICATIONS

It is apparent that U/, and U; are correlated gaussian varables while N, and M, are
independent gaussian variables. Thus,

p(nz)= \/'— CXP( 2n§)

where the variance of N, is o = 2€N,,.
a Show that the joint probability density function for U, and U, is

1 1
(U“ Uz)“‘ zexp{ 20'2 [{U.'zg)z_UZ([)l}_zg)"‘EUg]}
if s(r) is transmitted and
1
PUL U =5z exp {55 (U, + 287 - U0, +28)+ 103

if ~s(¢) is transmitted.
b Based on the likelihood ratio, show that the optimum combination of U, and U,
results in the decision variable

U=U +8U,

where B is a constant. What is the optimum value of 8?
¢ Suppose that s(r) is transmitted. What is the probability density function of U?
d What is the probability of error assuming that s(r) was transmitted? Express
your answer as a function for the SNR &/N,.
e What is the loss in performance if only U = U, is the decision variable?
14-6 Consider the model for a binary communications system with diversity as shown in
Fig. P14-6. The channels have fixed attenuations and phase shifts. The {z,(1)} are

0 e U=Re()
";_(f ) m °

z,_m

FIGURE P14-6
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complex-valued white gaussian noise processes with zero mean and autocorrela-
tion functions

¢:a{f) = %E[Zf(f)h(f + t)I = Nﬂka('r)

(Note that the spectral densities {N,} are all different.) Also, the noise processes
{z(N)} are mutually statistically independent. The {8,} are complex-valued
weighting factors to be determined. The decision variable from the combiner is

U=Re(‘§ﬁ*u&) 20

a Determine the pdf p(U) when +1 is transmitted.

b Determine the probability of error P, as a function of the weights {8, ).

¢ Determine the values of {8,} that minimize P,.

14-7 Determine the probability of error for binary orthogonai signaling with Lth-order
diversity over a Rayleigh fading channel. The pdfs of the two decision variables
are given by (14-4-31) and (14-4-32).

14-8 The rate-1/3, L =3, binary convolutional code with transfer function given by
{8-2-5) is used for transmitting data over a Rayleigh fading channel via binary
PSK.

a Determine and plot the probability of error for bard-decision decoding. Assume
that the transmitted waveforms corresponding to the coded bits fade
independently.

b Determine and plot the probability of error for sofi-decision decoding. Assume
that the waveforms corresponding to the coded bits fade independently.

149 A binary sequence is transmitted via binary antipodal signaling over a Rayleigh
fading channe! with Lth-order diversity. When s/{r) is transmitted, the received
equivalent lowpass signals are

() =ae ™)+ 2,0, k=12,...,L

The fading among the L subchannels is statistically independent. The additive
noise terms {z:(t)} are zero-mean, statistically independent and identicaily
distributed white gaussian noise processes with autocorrelation function ¢, (t} =
N,o8(7). Each of the L signals is passed through a filter matched to s,(t) and the
output is phase-corrected to yield

r
U, =Re [e”‘j r(e)s*(¢) dr], k=1,2,...,L
o

The (U} are combined by a linear combiner to form the decision variable

L

U=3>3 U,

k=1

a Determine the pdf of U conditional on fixed values for the {a,}.
b Determine the expression for the probability of error when the {a,} are
statistically independent and identically distributed Rayleigh random variables.
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The Chernoff bound for the probability of error for binary FSK with diversity L in
Rayleigh fading was shown to be

PALY< [4p(1 - p)]' = [4

<27

1+ 7. ]‘-
2Z+%)

where
(5 1 o [(2'*'?‘-)2]
Y=z VPR
& 5 B 4+ 3,)
a Plot g(y,) and determine its approximate maximum value and the value of 7,
where the maximum occurs.
b For a given ¥,, determine the optimal order of diversity.
¢ Compare P,(L), under the condition that g(¥,) is maximized (optimal diversity).
with the error probability for binary FSK in AWGN with no fading. which is

P =le ™?

and determine the penalty in SNR due to fading and noncoherent (square-law)
combining,.
A DS spread-spectrum system is used to resolve the multipath signal components
in a two-path radio signal propagation scenario. If the path length of the secondary
path is 300 m longer than that of the direct path, determine the minimum chip rate
necessary 10 resolve the muitipath components,
A baseband digital communication system employs the signals shown in Fig.
P14-12(a) for the transmission of two equiprobable messages. It is assumed that
the communication problem studied here is a “*one-shot” communication problem;
that is, the above messages are transmitted just once and no transmission takes
place afterward. The channel has no attenuation {a = 1), and the noise is AWG
with power spectral density iN,.
a Find an appropriate orthonormal basis for the representation of the sigrals.
b In a block diagram, give the- precise specifications of the optimum receiver using
matched filters. Label the diagram carefully.
¢ Find the error probability of the optimum recetver.
d Show that the optimum receiver can be implemented by using just one filter

LRGY 5()
A Y
0 4r i 0 ,i'r T >
AWGN
hir)
En
-En--l Modulwor - Maiched Samplle'r and Ol.ll?ul
filter . decision
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(see the block diagram in Fig. P14-12(b). What are the characteristics of the

matched filter and the sampler and decision device?

e Now assume that the channel is not ideal but has an impuise response of
c(ty=8(1) + 18(t — !T). Using the same matched filter as (d), design an
optimum reciever.

f Assuming that the channel impulse response is c(f) = 8(1) + ad(r = iT), where a
is a random variable uniformly distributed on [0, 1], and using the same matched
filter as in (d), design the optimum receiver.

A communication system employs dual antenna diversity and binary orthogonal

FSK modulation. The received signals at the two antennas are

r(f) = as(1) +ny(t)
rf1) = axs(t) +m(t)

where a, and «; are statistically iid Rayleigh random variables, and n,{1) and n,{r)

are statistically independent, zero-mean white gaussian random processes with

power-spectral density iN,. The two signals are demodulated, squared and then

combined (summed) prior to detection.

a Sketch the functional block diagram of the entire receiver, including the
demodulator, the combiner and the detector.

b Plot the probability of error for the detector and compare the result with the
case of no diversity.

The two equivalent lowpass signals shown in Fig. P14-14 are used to transmit a

binary sequence. The equivalent lowpass impulse response of the channel is

h(r) =48(1) — 28(t — T). To avoid pulse overlap between successive transmissions,

the transmission rate in bits/s is selected to be R =1/2T. The transmitted signals

are equally probable and are corrupted by additive zero-mean white gaussian

noise having an equivalent lowpass representation z(t) with an autocorrelation
function

é..(1) = FE[2*(0)z{t + 1)) = No8(7)

a Sketch the two possible equivalent lowpass noise-free received waveforms.

b Specify the optimum receiver and sketch the equivalent lowpass impuise
responses of all filters used in the optimum receiver. Assume coherent detection
of the signals.

Verify the relation in (14-3-14) by making the change of variable y = o®%,/N, in

the Nakagami-m distribution.
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MULTIUSER
COMMUNICATIONS

Our treatment of communication systems up 1o this point has been focused on
a single communication link involving a transmitter and a receiver. In this
chapter, the focus shifts to multiple users and muitiple communication links.
We explore the various ways in which the multiple users access a common
channel to transmit information. The multiple access methods that are
described in this chapter form the basis for current and future wireline and
wireless communication networks, such as satellite networks, cellular and
mobile communication networks, and underwater acoustic networks.

15-1 INTRODUCTION TO MULTIPLE ACCESS

TECHNIQUES

It is instructive to distinguish among several types of multiuser communication
systems. One type is a multiple access system in which a large number of users
share a common communication channel to transmit information to a receiver.
Such a system is depicted in Fig. 15-1-1. The common channel may be the
up-link in a satellite communication system, or s cable to which are connected
a set of terminals that access a central computer, or some frequency band in
the radio spectrum that is used by multiple users to communicate with a radio
receiver. For example, in a mobile cellular communication system, the users
are the mobile transmitters in any particular cell of the system and the receiver
resides in the base station of the particular cell.

A second type of multiuser communication system is a broadcast network in
which a single transmitter sends information to multiple receivers as depicted

840
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FIGURE 15-1-2
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Trarsmitter | -

Transmitier 2

Channel - Receiver

Transmitter K -

A multiple access system.

in Fig. 15-1-2. Examples of broadcast systems include the common radio and
TV broadcast systems, as well as the down-links in a satellite system.

The multiple access and broadcast networks are probably the most common
multiuser communication systems. A third type of multiuser system is a
store-and-forward network, as depicted in Fig. 15-1-3. Yet a fourth type is the
two-way communication system shown in Fig. 15-1-4,

In this chapter, we focus on multiple access methods for multiuser
communications. In general, there are several different ways in which multiple
users can send information through the communication channel to the receiver.
One simple method is to subdivide the available channel bandwidth into a
number, say N, of frequency nonoverlapping subchannels, as shown in Fig.
15-1-5, and to assign a subchannel to each user upon request by the users. This

A broadcast network.
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FIGURE I15-1-4

FIGURE I5-1-5
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Sarellite Satellite

L Transmitter Reveiver
A store-and-forward communication

network with satellite relays.

Transmitier — Recziver
User 1 Channel User 2
Receiver - Transmitter
A two-way communication channel.
Band | Band I Band | Band Frequency
Subdivisions of (he channel into L2 KLkl o

nonoverlapping frequency bands,

method is generally called frequency-division multiple access (FDMA), and is
commonly used in wireline channels to accommodate multiple users for voice
and data transmission.

Another method for creating multiple subchannels for multiple access is to
subdivide the duration T;, called the frame duration. into. say. N
nonoverlapping subintervals, each of duration 7;/N. Then each user who
wishes to transmit information is assigned to a particular time slot within each
frame.” This multiple access method is called tsime-division rnudtiple access
{TDMA) and it is frequently used in data and digital voice transmission.

We observe that in FDMA and TDMA. the channel is basically partitioned
into independent single-user subchannels. In this sense. the communication
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system design methods that we have described for single-user communication
are directly applicable and no new problems are encountered in a multiple
access environment, except for the additional task of assigning users to
available channels.

The interesting problems arise when the data from the users accessing the
network is bursty in nature. In other words, the information transmissions from
a single user are separated by periods of no tfransmission, where these periods
of silence may be greater than the periods of transmission. Such is the case
generally with users at various terminals in a computer communications
network that contains a central computer. To some extent, this is also the case
in mobile cellular communication systems carrying digitized voice, since speech
signals typically contain long pauses.

In such an environment where the transmission from the various users is
bursty and low-duty-cycle. FDMA and TDMA tend to be inefficient because a
certain percentage of the available frequency slots or time slots assigned to
users do not carry information. Ultimately, an inefficiently designed multiple
access system limits the number of simultaneous vsers of the channel.

An alternative to FDMA and TDMA is to allow more than one user to
share a channel or subchannel by use of direct-sequence spread spectrum
signals. In this method, each user is assigned a unique code sequence or
signature sequence that allows the user to spread the information signal across
the assigned frequency band. Thus signals from the various users are separated
at the receiver by cross-correlation of the received signal with each of the
possible user signature sequences. By designing these code sequences to have
relatively small cross-correlations, the crosstalk inherent in the demodulation
of the signals received from multiple transmitters is minimized. This multiple
access method is called code-division multiple access (CDMA).

In CDMA, the users access the channel in a random manner. Hence, the
signal transmissions among the multiple users completely overlap both in time
and in frequency. The demodulation and separation of these signals at the
receiver is facilitated by the fact that each signal is spread in frequency by the
pseudo-random code sequence. CDMA is sometimes called spread-spectrum
multiple access (SSMA ).

An alternative to CDMA is nonspread random access. In such a case, when
two users attempt to use the common channel simultaneously, their transmis-
sions collide and interfere with each other. When that happens, the informa-
tion is lost and must be retransmitted. To handle collisions, one must establish
protocols for retransmission of messages that have collided. Protocols for
scheduling the retransmission of collided messages are described below.

15-2 CAPACITY OF MULTIPLE ACCESS METHODS

It is interesting to compare FDMA, TDMA, and CDMA in terms of the
information rate that each multiple access method achieves in an ideal AWGN
channel of bandwidth W. Let us compare the capacity of K users, where each
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user has average power P,=P, for all 1=<i/<K. Recall that in an ideal
band-limited AWGN channel of bandwidth W, the capacity of a single user is

P
- P 15-2-1
C =W log, (1 WNO) ( )

where N, is the power spectral density of the additive noise.
In FDMA, each user is allocated a bandwidth W /K. Hence, the capacity of
each user is

w
Cx=—=log:

)
1+ e 15-2-2
K [ (W/K)N, ( )
and the total capacity for the K users is
Kp
KCx = W logs (1 o Nﬂ) (15-2-3)

Therefore, the total capacity is equivalent to that of a single user with average
power P,,= KP.

It is interesting to ncte that for a fixed bandwidth W, the total capacity goes
to infinity as the number of users increases linearly with K. On the other hand,
as K increases, each user is allocated a smaller bandwidth (W/K) and,
consequently, the capacity per user decreases. Figure 15-2-1 illustrates the
capacity Cx per user normalized by the channel bandwidth W, as a function of
&,/Np, with K as a parameter. This expression is given as

—_ ,l —_ | — iy I
—=—=log, |1 +K . (15-2-4)

A more compact form of (15-2-4) is obtained by defining the normalized

12 :
3
] K=1
=
T
g s
E of
- K=1
&
K=}
2 K=§
K=10
. 0 : \ .
Normalized capacity as a function of 0 5 10 15 0 25
¥,/N, for FDMA, AN, (dB)
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total capacity C, = KC/W, which is the total bit rate for all K users per unif
of bandwidth. Thus, (15-2-4) may be expressed as

C, =log, (1 + C,,ﬁ) (15-2-5)
No
or, equivalently,
& 29-1
—= 15-2-6
N C, ( )

The graph of C, versus &,/N, is shown in Fig. 15-2-2. We observe that C,
increases as &,/N, increases above the minimum value of 1n 2.

In a TDMA system, each user transmits for 1/K of the time through the
channel of bandwidth W, with average power KP. Therefore, the capacity per
user is '

1 P
which is identical to the capacity of an FDMA system. However, from a
practical standpoint, we should emphasize that, in TDMA, it may not be
possible for the transmitters to sustain a transmitter power of KP when X is
very large. Hence, there is a practical limit beyond which the transmitter power
cannot be increased as K is increased.

In a CDMA system, each user transmits a pseudo-random signal of a
bandwidth W and average power P. The capacity of the system depends on the
level of cooperation among the K users. At one extreme is noncooperative
CDMA, in which the receiver for each user signal does not know the spreading
waveforms of the other users, or chooses to ignore them in the demodulation
process. Hence, the other users signals appear as interference at the receiver of
each user. In this case, the multiuser receiver consists of a bank of K
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single-user receivers. If we assume that each user's pseudorandom signal
wavelorm is gaussian then each user signal is corrupted by gaussian
interference of power (K — 1)P and additive gaussian noise of power WAN,.
Therefore, the capacily per user is

P
=Wl [1+~—-——] 15-2-8
Cr=Wlog | 1+ g e T K- 1)P (13-2:8)
or, equivalently,
Ck [ Ci /Ny ]
K1 1+ =& 15-2-9
w8 T W IR (K- 1)(CIW)EIN, (15-29)
Figure 15-2-3 illustrates the graph of Cx/W versus &,/N,, with K as a
parameter.
For a large number of users, we may use the approximation In (1 + x) < x.
Hence,

Cx_Cx &/Nq
W~ W1+ K(Ce/W)&IN,)

log; e (15-2-10)

or, equivalently,

1
C,<log, e -
& &/ Ny
Lot 1
In2 &/N, In2
In this case, we observe that the total capacity does not increase with K as in
TDMA and FDMA.

On the other hand, suppose that the K users cooperate by transmitting
synchronously in time, and the multiuser receiver knows the spreading

(15-2-11)
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waveforms of all users and joirntly demodulates and detects all the users’
signals. Thus, each user is assigned a rate R, 1=<i<K, and a codebook
containing a set of 2% codewords of power P. In each signal interval, each
user selects an arbitrary codeword, say X,, from its own codebook and all users
transmit their codewords simultaneously. Thus, the decoder at the receiver
observes

K
Y=>X+2 (15-2-12)
il
where Z is an additive noise vector. The optimum decoder looks for the K
codewerds, one from each codebook, that have a vector sum closest to the
received vector Y in euclidean distance.
The achievable K-dimensional rate region for the K users in an AWGN
channel, assuming equal power for each user, is given by the following
equations:

P

< W +——), 1<i<sK 2.
R, ogz(l WA i (15-2-13)
R +R<WI (1+£. l<ij<K 5-2-14
t i 0g2 WM',l h"'IJJ = ( L= )

K KP

R <W (1+—) -2-15
2. log, WAL (15-2-15)

In the special case when all the rates are identical, the inequality (15-2-15) is
dominant over the other K —1 inequalities. It follows that if the rates
{R.,1<i=<K} for the K cooperative synchronous users are selected to fall in
the capacity region specified by the inequalities given above then the
probabilities of error for the K users tend to zero as the code block length n
tends to infinity.

From the above discussion, we conclude that the sum of the rates of the K
users goes to infinity with K. Therefore, with cooperative synchronous users,
the capacity of CDMA has a form similar to that of FDMA and TDMA. Note
that if all the rates in the CDMA system are selected to be identical to R then
(15-2-15) reduces to

R< —E log, (1 +

KP ) (15-2-16)

which is identical to the rate constraint in FDMA and TDMA. In this case,
CDMA does not yield a higher rate than TDMA and FDMA. However, if the
rates of the K users are selected to be unequal such that the inequalities
(15-2-13)-(15-2-15) are satisfied then it is possible to find the points in the

achievable rate region such that the sum of the rates for the K users in CDMA
exceeds the capacity of FDMA and TDMA.
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Example 15-2-1

Consider the case of two users in a CDMA system that employs coded
signals as described above. The rates of the two users must satisfy the
inequalities

P
R; < W log, (1 + WNO)

R, < W lo (1+-—£—)
F 82 WN,

4

2P
R, + Ry < W log, (1 + WNO)
where P is the average transmitted power of each user and W is the signal
bandwidth. Let us determine the capacity region for the two-user CDMA
gystem.
The capacity region for the two-user CDMA system with coded signal
waveforms has the form illustrated in Fig. 15-2-4, where

P,
C=Wiog (1+25), i=12
BT Wa,
are the capacities corresponding to the two users with P, = B, = P. We note
that if user 1 is transmitting at capacity C,, user 2 can transmit up to a
maximum rate

2P
Ry, =W ( + )~
2m log; | 1 N C,

P
= Wiogs (14 5= ) 2
og:l1 Py WA, (15-2-17)

which is illustrated in Fig. 15-2-4 as point A. This result has an interesting

FIGURE 15-2-4  Capacity region of two-user CDMA muitipie
access gaussian channel.
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interpretation. We note that rate R, corresponds to the case in which the
signal from user 1 is considered as an equivalent additive noise in the
detection of the signal of user 2. On the other hand, user 1 can transmit at
capacity C,, since the receiver knows the transmitted signal from user 2 and,
hence, it can eliminate its effect in detecting the signal of user 1.

Due toc symmetry, a similar situation exists if user 2 is transmitting at
capacity C,. Then, user 1 can transmit up to @ maximum rate R,,, = R,,,,
which is illustrated in Fig. 15.2.4 as point B. In this case, we have a similar
interpretation as above, with an interchange in the roles of user 1 and user
2.

The points A and B are connected by a straight line. It is easily seen that
this straight line is the boundary of the achievable rate region, since any
point on the line corresponds to the maximum rate W log, (1 + 2P/WN,),
which can be obtained by simply time-sharing the channel between the two
USErs.

In the next section, we consider the problem of signal detection for a
multiuser CDMA system and assess the performance and the computational
complexity of several receiver structures.

15-3 CODE-DIVISION MULTIPLE ACCESS

As we have observed, TDMA and FDMA are multiple access methods in
which the channel is partitioned into independent, single-user subchannels, i.c..
nonoverlapping time slots or frequency bands, respectively. In CDMA, each
user is assigned a distinct signature sequence (or waveform), which the user
employs to modulate and spread the information-bearing signal. The signature
sequences also allow the receiver to demodulate the message transmitted by
multiple users of the channel, who transmit simultaneously and, generally,
asynchronously.

In this section, we treat the demodulation and detection of multiuser
CDMA signals. We shall see that the optimum maximum-likelihood detector
has a computational complexity that grows exponentially with the number of
users. Such a high complexity serves as a motivation to devise suboptimum
detectors having lower computational complexities. Finally, we consider the
performance characteristics of the various detectors.

15-3-1 CDMA Signal and Channel Models

Let us consider a CDMA channel that is shared by K simultaneous users. Each
user is assigned a signature waveform g, (1) of duration T, where T is the
symbol interval. A signature waveform may be expressed as

L-1

gl =2 ai(n)p(t—nT.), O=st=<T (15-3-1)

n=
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where {a,(n),0=n =L -1} is a pseudo-noise {PN) code sequence consisting
of L chips that take vatues {£1}, p(t} is a pulse of duration T, and T, is the
chip interval. Thus, we have L chips per symbol and 7 = L7.. Without loss of
generality, we assume that all X signature waveforms have unit energy, i.e.,

-
j giydr=1 (15-3-2)
1

The cross-correlations between pairs of signature waveforms play an
important role in the metrics for the signal detector and on its performance.
We define the following cross-correlations:

pi(7) =JD gilgr—n)d, i<j (15-3-3)

T
p{T}= L gt +T—1)dt, isj (15-3-4)

For simplicity, we assume that binary antipodal signals are used to transmit
the information from cach user. Hence, let the information sequence of the kth
user be denoted by {b,(m}}, where the value of each information bit may be
+1. It is convenient to consider the transmission of a block of bits of some
arbitrary length, say N. Then, the data block from the kth user is

b =[be(1) ... BbuN)J (15-3-5)
and the corresponding equivalent lowpass, transmitted waveform may be
expressed as

) = V&2 bilidgult ~ iT) (153-6)

where &, is the signal energy per bit. The composite transmitted signal for the
K users may be expressed as

K
s(t) :;_:l Self—10)

K N
= > V& buli)gt—iT — 1) (15-3-7)
k=1 i=1

where {7,} are the transmission delays, which satisfy the condition 0<1, < 7T
for 1 <k < K. Without loss of generality, we assume that 0<7,<7,<...=<
% < T. This is the model for the multiuser transmitted signal in an asynchro-
nous mode. In the special case of synchronous transmission, 7, =0 for
1=k = K. The values of 7 of interest in the cross-correlations given by (15-3-3)
and (15-3-4) may also be restricted to 0< 7 < T, without loss of generality.

The transmitted signal is assumed to be corrupted by AWGN, Hence, the
received signal may be expressed as

r(}=s()+ n(1) (15-3-8)
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where s(7) is given by {15-3-7) and n(r) is the noise, with power spectral density
1
iMI‘

15-3-2 The Optimum Receiver

The optimum receiver is defined as the receiver that selects the most probable
sequence of bits {b,(n), 1=sn=<N, 1<k =<K} given the received signal r(r)
abserved over the time interval 0<¢<NT + 27. First, let us consider the case
of synchronous transmission; later, we shall consider asynchronous
transmission.

Synchronous Transmission In synchronous transmission, each (user) inter-
ferer produces exactly one symbol which interferes with the desired symbol. In
additive white gaussian noise, it is sufficient to consider the signal received in
one signal interval, say 0<t< T, and determine the optimum receiver. Hence,
r(t) may be expressed as

K
rt)= 2 Véb(gi(r) +n(r), 0si<T (15-3-9)
k=1
The optimum maximum-likelihood receiver computes the log-likelihood
function
T K 2
A® = [ [0 - 3 Vabuo] a (15-3-10)
0 k=1

and selects the information sequence {b,(1), 1 < k < K} that minimizes A(b). If
we expand the integral in (15-3-10), we obtain

A(b) = L A dt -2 f) V&b, (1) L Tr(r]gk(l) dr

k=1
K K T
+> :21 VE &b (1)b(1) f 8 (t)g;(2) dt (15-3-11)
i=1 = 4]
We observe that the integral involving /(1) is common to all possible

sequences {b,(1)} and is of no relevance in determining which sequence was
transmitted. Hence, it may be neglected. The term

.
" =J r(Ng(Hdr, 1<k<K (15-3-12)
i

represents the cross-correlation of the received signal with each of the X
signature sequences. Instead of cross-correlators, we may employ matched
filters. Finally, the integral involving g, (¢) and g;(t) is simply

T
o0} = fo & (1)gi(t) dt (15-3-13)

Therefore, (15-3-11) may be expressed in the form of correlation metrics
K

K LY
Clex bi) =2 2 VEb(Dn ~ 2 3 VEGb(1),(pu(0) (15:3-14)
=1 k=1

i=1
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These correlation metrics may also be expressed in vector inner product form
as

Clrg, bg) = 2b%ryx — iR by (15-3-15)
where

t=[n n ... ], be=[VEB() ... V&b,(1)]

and R, is the correlation matrix, with elements p;(0). It is observed that the
optimum detector must have knowledge of the received signal energies in
order to compute the correlation metrics.

There are 2% possible choices of the bits in the information sequence of the-
K users. The optimum detector computes the correlation metrics for each
sequence and selects the sequence that yields the largest correlation metric.
We observe that the optimum detector has a complexity that grows exponen-
tially with the number of users, X.

In summary, the optimum receiver for symbol-synchronous transmission
consists of a bank of K correlators or matched filters followed by a detector
that computes the 2% correlation metrics given by (15-3-15) corresponding to
the 2% possible transmittéd information séquences. Then, the detector selects
the sequence corresponding to the largest correlation metric.

Asynchronous Transmission In this case, there are exactly two consecutive
symbols from each interferer that overlap a desired symbol. We assume that
the receiver knows the received signal energies {%,} for the K users and the
transmission delays {r,}. Clearly, these parameters must be measured at the
receiver or provided to the receiver as side information by the users via some
control channel.

The optimum maximum-likelihood receiver computes the log-likelihood
function

NT +27T K N 2
AO=[ [r0- ZVES b -iT- )| a
L] k=1 i=1
NT +2T

NT+2T X N
-[ T roa-2 2 vES b g —iT - ) dr
(] k=1 i=1 (4]

X K N N T+27
+ 2 DVEED D bi(ibij) f gult —iT = 1)g(t = jT ~ 1) dr

k=1 f=1 i=] =1
(15-3-16)

where b represents the data sequences from the K users. The integral involving
r*(r) may be ignored, since it is common to all possible information sequences.
The integral

(i+1)T+7

r(i)= r(g(t—iT—t)d, 1<sisN (15-3-17)

i+ T,

861



CHAPTER 15: MULTIUSER COMMUNICATIONS 853

represents the outputs of the correlator or matched filter for the kth user in
each of the signal intervals. Finally, the integral

NT+2T
J gult = iT — 1)git—jT - ) dt
1]

NT 2T iT -1,
=j gl)g(t +iT — T+ 1, — 1) dt  (15-3-18)
—iT-1

may be easily decomposed into terms involving the cross-correlation py(7) =
p{Te — 1) for k=<1 and pu(71) for k >L Therefore, we observe that the
log-likelihood function may be expressed in terms of a correlation metric that
involves the outputs {r.(i), 1<k <K,l=i<N} of K correlators or matched
filters—one for each of the K signature sequences. Using vector notation, it
can be shown that the NK correlator or matched filter outputs {r,(i)} can be
expressed in the form

r=Ryb+n (15-3-19)
where, by definition
r=[r() @) ... YN
() =@ RO ... @) (13320
b=[b() W) ... BN aa
b(i) = [VEb() VELG) ... Vb — OF
n=[n(l) wQ) ... W@N)]
n) =[G na@) ... k@) (15322)
R,(0) R() 0 ... ... 0 "
R() R0 Ry) o ... 0
R, = : : : : : : (15-3-23)

0 0 0 Ra.(l) R,(0) RL.(l)
0 0 0 0 R.() R0

and R,(m) 1s a K X K matrix with elements

Ry(m)= J &t —T)g(t + mT — 1) dt (15-3-24)

The gaussian noise vectors n(i) have zero mean and autocorrelation matrix

E[n(k)n'(j)] = $NoR, (k - /) (15-3-25)

Note that the vector r given by (15-3-19) constitutes a set of sufficient statistics
for estimating the transmitted bits &, (i).

If we adopt a block processing approach, the optimum ML detector must

compute 2% correlation metrics and select the K sequences of length N that

correspond to the largest correlation metric. Clearly, such an approach is
much too complex computationally to be implemented in practice, especially
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when K and N are large. An alternative approach is ML sequence estimation
employing . the Viterbi algorithm. In order to construct a sequential-type
detector, we make use of the fact that each transmitted symbol overlaps at
most with 2K —2 symbols. Thus, a significant reduction in computational
complexity is obtained with respect to the block size parameter N, but the
exponential dependence on K cannot be reduced.

It is apparent that the optimum ML receiver employing the Viterbi
algorithm involves such a high computational complexity that its use in practice
is limited to communication systems where the number of users is extremely
small, e.g., K < 10. For larger values of K, one should consider a sequential-
type detector that is akin to either the sequential decoding or the stack
algorithms described in Chapter 8. Below, we consider a number of sub-
optimums detectors whose complexity grows linearly with K.

15-3-3 Suboptimum Detectors

In the above discussion, we observed that the optimum detector for the K
CDMA users has a computational complexity, measured in the number of
arithmetic operations (additions and muitiplications/divisions) per modulated
symbol, that grows exponentially with K. In this subsection we describe
suboptimum detectors with computational complexities that grow linearly with
the number of users, K. We begin with the simplest suboptimum detector,
which we call the conventional (single-user) detector.

Conventional Single-User Detector In conventional single-user detection,
the receiver for each user consists of a demodulator that correlates (or
match-filters) the received signal with the signature sequence of the user and
passes the correlator output to the detector, which makes a decision based on
the single correlator output. Thus, the conventional detector neglects the
presence of the other users of the channel or, equivalently, assumes that the
aggregate noise plus interference is white and gaussian,

Let us consider synchronous transmission. Then, the output of the cor-
relator for the kth user for the signal in the interval 0 <1< Tis

r
e =j r()g.{t) dr {15-3-26)
|l K
=VE&b(1) + 2 VED(1)p,(0) + ne(1) (15-3-27)
i=1
j=k
where the noise component n, (1) is given as
T
n.(1)= f n(r)gi(t) dt (15-3-28)
(i}
Since n(¢) is white gaussian noise with power spectral density !N, the variance
of n,(1) is ,
Elni(D) = 4Ny £30) di = I, (15-329)
1]
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Clearly, if the signature sequences are orthogonal, the interference from the
other users given by the middle term in (15-3-27) vanishes and the conven-
tional single-user detector is optimum. On the other hand, if one or more of
the other signature sequences are not orthogonal to the user signature
sequence, the interference from the other users can become excessive if the
power levels of the signals (or the received signal energies) of one or more of
the other users is sufficiently larger than the power level of the kth user. This
situation is generally called the near—far problem in multiuser communications.
and necessitates some type of power control for conventional detection.

- In asynchronous transmission, the conventiona! detector is more vulnerable
to interference from other users. This is because it is not possible to design
signature sequences for any pair of users that are orthogonal for all time
offsets. Consequently, interference from other users is unavoidable in asyn-
chronous transmission with the conventional single-user detection. In such a
case, the near-far problem resulting from unequal power in the signals trans-
mitted by the various users is particularly serious. The practical solution
generally requires a power adjustment method that is controlied by the
receiver via a separate communication channel that all users are continuously
monitoring. Another option is o employ one of the multiuser detectors
described below.

Decorrelating Detector We observe that the conventional detector has a
complexity that grows linearly with the number of users, but its vulnerability to
the near—far problem requires some tvpe of power control. We shall now
devise another type of detector that also has a linear computational complexity
but does not exhibit the vulnerability to other-user interference.

Let us first consider the case of symbol-synchronous transmission. In this
case, the received signal vector ry that represents the output of the K matched
filters is

r« = Rby + 0y (15-3-30)
where by =[\f‘c?]bl(l) Vé&bi(l) ... \/%;b,‘-(l)]‘ and the noise vector with
elements ng = [n,(1} nx(1) ... ng(1)] has a covariance

E(ngni) =R, (15-3-31)

Since the noise is gaussian, ry is described by a K-dimensional gaussian pdf
with mean R.by and covariance R,. That is,

1 .
pre | by) = VanF detR S*P [—3(rc = Rbe )R, (e —Rbg)] (15-3-32)
The best linear estimate of by ts the value of by that minimizes the likelthood

function
Abi) = (rx — Rby )R, (rx — R,by) (15-3-33)
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The result of this minimization yields
0 =R, (15-3-34)

Then, the detected symbols are obtained by taking the sign of each elemen: of
b%, ie.
by =sgn (%) (15-3-35)

Figure 15-3-1 illustrates the receiver structure. Note from (15-3-34) and
{15-3-35) that the decorrelator requires knowledge of the relative delays, in
general, to form R,; no knowledge of the signal amplitudes is required.

Since the estimate b is obtained by performing a linear transformation on
the vector of correlator outputs, the computational compiexity is linear in X.

The reader should observe that the best (maximum-likelihood) linear
estimate of by given by (15-3-34) is different from the optimum nonlinear ML
sequence detector that finds the best discrete-valued {+1} sequence that
maximizes the likelitood function. It is also interesting to note that the
estimate b} is the best iinear estimate that maximizes the correlation metric
given by (15-3-15).

An interesting interpretation of the detector that computes b) as in
(15-3-34) and makes decisions according to (15-3-35) is obtained by considering
the case of K =2 users. In this case,

R,=[1 "] (15-3-36)

p 1

_ 1 1 -p

R,‘=——[ ] -3-3
il 1 (15-3.37)
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where

)
o= [ ag0 a (153-38)

Then. if we correlate the received signal
r(1) = V&b g (1) + VEbg,ir) + n(r) (15-3-39)
with g,{r} and g.(r). we obtain
VEb, +pVéaby+n,
= [p\’?,bl + V&b, +n2]

where /1, and n- are the noise components at the output of the correlators.
Therefore,

(15-3-40)

ht_'r)= R_."Irg
_ [\/?.bl + (= pra)/(1 pz)]

15-3-41)
V&b, + (12— pn) (1 - p?) (

This is a very interesting result, because the transformation R, ' has eliminated
the interference components between the two users. Consequenily, the
near~far problem is eliminated and there is no need for power control.

It is interesting to note that a result similar to (15-3-41) is obtained if we
correlate r(7) given by (15-3-39) with the two modified signature waveforms

gilt) = g:(t) — pga(1) (15-3-42)
&:(1) = g2(1) ~ pga(t) (15-3-43)

This means that, by correlating the received signal with the modified signature
waveforms,’ we have tuned out or decorrelated the multiuser interference.
Hence, the detector based on (15-3-34) is called a decorrelating detector.

In asynchronous transmission, the received signal at the output of the
correlators is given by (15-3-19). Hence, the log-likelihood function is given as

A(b) = (r— Ryb)'Ry'(r — Ryb) (15-3-44)

where Ry is defined by (15-3-23} and b is given by (15-3-21). It is relatively
easy to show that the vector b that minimizes A(b) is

b’ =R.'r (15-3-45)

This is the ML estimate of b and it is again obtained by performing a linear
transformation of the outputs from the bank of correlators of matched filters.
Since r=Ryb + n, it follows from (15-3-45) that

b’=b+Ry'n (15-3-46)

Therefore, b” is an unbiased estimate of b. This means that the multiuser

866



858 DIGITAL COMMUNICATIONS

interference has been eliminated, as in the case of symbol-synchronous
transmissicn. Hence, this detector for asynchronous transmission is also called
a decorrelating detector.

A computationally efficient method for obtaining the solution given by
(15-3-45) is the square-root factorization method described in Appendix D. Of
course, there are many other methods that may be used to invert the matrix
Ry. lterative methods to decorrelate the signals have also been explored.

Minimum Mean-Square-Error Detector In the above discussion, we
showed that the linear ML estimate of b is obtained by minimizing the
quadratic log-likelihcod function in (15-3-44}. Thus, we obtained the result
given by (15-3-45), which is an estimate derived by performing a linear
transformation on the outputs of the bank of correlators or matched filters.

Another, somewhat different, solution is obtained if we seek the linear
transformation b° = Ar, where the matrix A is to be determined so as to
minimize the mean square error (MSE)

J{b) = E[(b - b°Y (b - b")]

=E[(b- Ar)(b — Ar)] (15-3-47)
It is easily shown that the optimum choice of A that minimizes J(b) is

A’ =(Ry + IND) ! (15-3-48)
and, hence,

b'=(Ry + INJD) 'r (15-3-49)

The output of the detector is then b= sgn (b°).

The estimate given by (15-3-49) is called the minimum MSE (MMSE)
estimate of b. Note that when 3N, is small compared with the diagonal
elements of Ry, the MMSE solution approaches the ML solution given by
(15-3-45). On the other hand, when the noise level is large compared with the
signal level in the diagonal elements of Ry, A° approaches the identity matrix
(scaled by IN,). In this low-SNR case, the detector basically ignores the
interference from other users, because the additive noise is the dominant term.
It should also be noted that the MMSE criterion produces a biased estimate of
b. Hence, there is some residual multiuser interference.

To petform the computations that lead to the values of b, we solve the set of
linear equations

(Ry + 5NDb =r (15-3-50)

This solution may be computed efficiently using a square-root factorization of
the matrix R, + 3N, as indicated above. Thus, to detect NK bits requires
3NK®> multiplications. Therefore, the computational complexity is 3K
multiplications per bit, which is independent of the block length N and is linear
in X.
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Other Types of Detectors The decorrelating detector and the MMSE
detector described above involve performing linear transformations on a block
of data from a bank of K correlators or matched filters. The MMSE detector is
akin to the linear MSE equalizer described in Chapter 10. Consequently,
MMSE multiuser detection can be implemented by employing a tapped-delay-
line filter with adjustable coefficients for each user and selecting the filier
coefficients to minimize the MSE for each user signal. Thus, the received
information bits are estimated sequentially with finite delay, instead of as a
block.

The estimate b" given by (15-3-46), which is obtained by processing a block
of N bits by a decorrelating detector, can also be computed sequentially. Xie er
al. (1990) have demonstrated that the transmitted bits may be recovered
sequentially from the received signal, by employing a form of a decision-
feedback cqualizer with finite delay. Thus, there is a similarity between the
detection of signals corrupted by ISI in a single-user communrication system
and the detection of signals in a multiuser system with asynchronous
transmission.

15-3-4 Performance Characteristics of Detectors

The bit error probability is generally the desirable performance measure in
multiuser communications. In evaluating the effect of multiuser interference on
the performance of the detector for a single user, we may use as a benchmark
the probability of a bit error for a single-user receiver in the absence of other
users of the channel, which is

Pilye) = Q(V2y,) (15-3-51)

where y, = & /N,, & is the signal energy per bit and N, is the power spectral
density of the AWGN.

In the case of the optimum detector for either synchronous or asynchronous
transmission, the probability of error is extremely difficult and tedious to
evaluate. In this case, we may use (15-3-51) as a lower bound and the
performance of a suboptimum detector as an upper bound.

Let us counsider, first, the suboptimum, conventional single-user detector.
For synchronous transmission, the output of the correlator for the kth user is
given by (15-3-27). Therefore, the probability of error for the kth user.
conditional on a sequence b, of bits from other users, is

P (b;) = Q( \/2[\’37 + g V@,-b,.(l)p}.km)]z/m,) (15-3-52)

Jk

Then, the average probability of error is simply

K
= (3! 2 Pe(b,) (15-3-53)

1=k
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The probability in (15-3-33) will be dominated by the term that has the
smallest argument in the Q function. The smallest argument will result in an
SNR of

1o & ?
SNy =2 | VE = 2 VEipu0)] (15-354)
%L

Therefore,
(i)K-lQ(vm} (f'k < (%)K-’(K - I)Q( V Z(SNR)mm) (15-3'55)

A similar development can be used to obtain bounds on the performance for
asynchronous transmission.

In the case of a decorrelating detector, the other-user interference is
cqmpletcly eliminated. Hence, the probability of error may be expressed as

P, =Q(%/o%) (15-3-56)

where o} is the variance of the noise in the kth element of the estimate b’

Example 15-3-1

Consider the case of synchronous, two-user transmission, where b is given
by (15-3-41). Let us determine the probability of error.

The signal component for the first term in (15-3-41) is V€,. The noise
component is

L B e
1-p°

where p is the correlation between the two signature signals. The variance
of this noise is

2_ E[(n, - a'l'l"lz)]2

oy

(1-p%?
1 N,
. —29 (15-3-57)

and

P = Q(\/%(l ~o?) (15-3-58)

A similar result is obtained for the performance of the second user.
Therefore, the noise variance has increased by the factor (1 — p?)~% This
noise enhancement is the price paid for the elimination of the multiuser
interference by the decorrelation detector.

The error rate performance of the MMSE detector is similar to that for the
decorrelation detector when the noise level is low. For example, from
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(15-3-49), we observe that when N, is small relative to the diagonal elements of
the signal correlation matrix Ry,
b’=~Ry'r (15-3-59)

which 1s the solution for the decorrelation detector. For low multiuser
interference, the MMSE detector results in a smaller noise enhancement
compared with the decorrelation detector, but has some residual bias resulting
tfrom the other users. Thus, the MMSE detector attempts to strike a balance
between the residual interference and the noise enhancement.

An alternative to the error probability as a figure of merit that has been
used to characterize the performance of a multiuser communication system is
the ratio of SNRs with and without the presence of interference. In particular,
{15-3-51) gives the error probability of the kth user in the absence of
other-user interference. In this case, the SNR is y, = &/N,. In the presence of
multiuser interference, the user that transmits a signal with energy &, will have
an error probability P, that exceeds Pi(y.). The effective SNR v, is defined as
the SNR required to achieve the error probability

P = Pi(ye) = Q(V2y.,) (15-3-60)

The efficiency is defined as the ratio v,./y, and represents the performance
loss due to the multiuser interference. The desirable figure of merit is the

asvmptotic efficiency, defined as
i = lim 2 (15-3-61)

Na—sll Yy

Thus figure of merit is often simpler to compute than the probability of error.

Example 15-3-2

Consider the case of two symbol-synchronous users with signal energies ¢,
and #,. Let us determine the asymptatic efficiency of the conventional
detector.

In this case, the probability of error is easily obtained from (15-3-52) and
(15-3-53) as

P = S0(V2AVE + pVEYNo) + 5Q(V2VE ~ pVEYIN)

However, the asymptotic efficiency is much easier to compute. It follows
from the definition (15-3-61) and from (15-3-52} that

-

n = [max (O, 1— \/% iPi)JA

A similar expression is obtained for 7.

The asymptotic efficiency of the optimum and suboptimum detectors that
we have described has been evaluated by Verdu (1986), Lupas and Verdu
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FIGURE 15-3-2  Asymptotic efficiencies of optimum (Viterbi) detector, conventional detector, MMSE detector,

and linear ML detector in a two-user synchronous DS/SSMA system. [From Xie et al. (1990),
©IEEE)

(1989), and Xie et al. (1990). Figure 15-3-2 illustrates the asymptotic efficiencies
of these detectors when K =2 users are transmitting synchronously. These
graphs show that when the interference is small (%,— 0), the asymptotic
efiiciencies of these detectors are relatively large (near unity) and comparable.
As &, increases, the asymptotic efficiency of the conventional detector
deteriorates rapidly. However, the other linear detectors perform relatively
well compared with the optimum detector. Similar conclusions are reached by

computing the error probabilities, but these computations are often more
tedious.

15-4 RANDOM ACCESS METHODS

In this section, we consider a multiuser communication system in which users
transmit information in packets over a common channel. In contrast to the
CDMA method described in Section 15-3, the information signals of the users
are not spread in frequency. As a consequence, simultaneous transmission of
signals from multiple users cannot be separated at the receiver. The access
methods described below are basically random, because packets are generated
according to some statistical model. Users access the channel when they have
one or more packets to transmit. When more than one user attempts to
transmit packets simultancously, the packets overlap in time, i.e., they collide,
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and, hence, a conflict results, which must be resolved by devising some channel
protocol for retransmission of the packets. Below, we describe several random
access channel protocols that resolve conflicts in packet transmission.

15-4-1 ALOHA Systems and Protocols

FIGURE 15-4-2

Suppose that a random access scheme is employed where each user transmits a
packel as soon as it is generated. When a packet s transmitted by a user and
no other user transmits a packet for the duration of the time interval then the
packet is considered successfully transmitted. However, if one or more of the
other users transmits a packet that overlaps in time with the packet from the
first user. a collision- occurs and the transmission is unsuccessful. Figure 15-4-1
illustrates this scenario. If the users know when their packets are transmitted
successfully and when they have collided with other packets, it is possible to
devise a scheme, which we may call a channel access protocol, for retransmis-
sion of collided packets.

Feedback 10 the users regarding the successful or unsuccessful transmission
of packets is necessary and can be provided in a number of ways. In a radio
broadcast system, such as one that employs a satellite relay as depicted in Fig.
15-4-2. the packets are broadcast to all the users on the down-link. Hence, all

Broadeast
satetlite

N S S

Broadcast system.
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the transmitters can monitor their transmissions and, thus, obtain the following
ternary information: no packet was transmitted, or a packet was transmitted
successfully, or a collision occurred. This type of feedback to the transmitters is
generally denoted as (0,1, ¢) feedback. In systems that empioy wireline or
filer-optic channels, the receiver may transmit the feedback signal on a
separate channel.

"The ALOHA system devised by Abramson (1973, 1977) and others at the
University of Hawaii employs a satellite repeater that broadcasts the packets
received from the various users who access the satellite. In this case, all the
users can monitor the satellite transmissions and, thus, establish whether or not
their packets have been transmitted successfully.

There are basically two types of ALOHA systems: synchroitized or slotted
and unsynchronized or unslotred. In an unslotted ALOHA system, a user may
begin transmitting a packet at any arbitrary time. In a slotted ALOHA, the
packets are transmitted in time slots that have specified beginning and ending
times.

We assume that the start time of packets that are transmitted is a Poisson
point process having an average rale of A packets/s. Let T, denote the time
duration of a packet. Then, the normalized channel traffic G, also called the
offered channel traffic, is defined as

G = AT, (15-4-1)

There are many channel access protocols that can be used to handle
collisions. Let us consider the one due to Abramson (1973). In Abramson’s
protocol, packets that have collided are retransmitted with some delay T,
where 7 is randomly selected according to the pdf

p(1) = ae " | (15-4-2)

where « is a design parameter. The random delay 1 is added to the time of the
initial transmission and the packet is retransmitted at the new time. If a
collision occurs again, a new value of r is randomly selected and the packet is
retransmitted with a new delay from the time of the second transmission. This
process is continued until the packet is transmitted successfully. The design
parameter « determines the average delay between retransmissions. The
smaller the value of a, the longer the delay between retransmissions.
Now, let A’, where A'< A, be the rate at which packets are transmitted
successfully. Then, the normalized channel throughput is
S=A'T, (15-4-3)
We can relate the channel throughput S to the offered channel traffic G by
making use of the assumed start time distribution. The probability that a
packet will not overlap a given packet is simply the probability that no packet

873



FIGURE 15-4.3

CHAPTER 15 MULTIUSER COMMUNICATIONS 868

08

06

Throughput §

04

02

(4]
0ol 01 I 10 {Li]
Offered chennel raffic G

Throughput in ALOHA systems.

begins T, s before or T, s after the start time of the transmitted packet. Since
the start time of all packets is Poisson-distributed, the probability that a packet
will not overlap is exp (—2AT,) = exp (—2G). Therefore,

S =Ge ¢ (15-4-4)
This relationship is plotted in Fig. 15-4-3, We observe that the maximum
throughput is S, = 1/Ze =0.184 packets per slot, which occurs at G = ..
When G >3, the throughput S decreases. The above development illustrates

that an unsynchronized or unslotted random access method has a relatively
small throughput and is inefficient.

Throughput for slotted ALOHA To determine the throughput in a
slotted ALOHA system, let G; be the probability that the ith user will transmit
a packet in some slot. If all the K users operate independently and there is no
statistical dependence between the transmission of the user's packet in the
current slot and the transmission of the user’s packet in previous time slots, the
total (normalized) offered channel traffic is

X
G=3G, (15-4-5)
i=1
Note that, in this case, G may be greater than unity.
Now, let §; = G, be the probability that a packet transmitted in a time slot is

received without a collision. Then, the normalized channel throughput is

LS
5=, (15-4-6)
i=1
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The probability that a packet from the ith user will not have a collision with
another packet is

0. = ﬁ (1-6) (15-4-7)

Theretore.
S =G0, (15-4-8)

A simple expression for the channel throughput is obtained by considering
K identical users. Then,

M G
S =—. G ==
K K
and
(; L
S=Gl1~— 15-4-9
(%) (1549
Then, if we let K — =, we obtain the throughput
§=Ge (15-4-10)

This result is also plotted in Fig. 15-4-3. We observe that § reaches a maximum
throughput of §,,, .. = 1/e = (.368 packets per slot at G =1, which is twice the
throughput of the unslotted ALOHA system.

The performance of the slotted ALOHA system given above is based on
Abramson’s protocol for handling collisions. A higher throughput is possible
by devising a better protocol.

A basic weakness in Abramson’s protocol is that it does not take into
account the information on the amount of traffic on the channel that is
available from observation of the collisions that occur. An improvement in
throughput of the slotted ALOHA system can be obtained by using a tree-type
protocol devised by Capetanakis (1979). In this algorithm, users are not
allowed to transmit new packets that are generated until afl earlier collisions
are resolved. A user can transmit a new packet in a time slot immediately
following its generation, provided that all previous packets that have collided
have been transmitted successfully. If a new packet is generated while the
channel is clearing the previous collisions, the packet is stored in a buffer.
When a new packet collides with another, each user assigns its respective
packet to one of two sets, say A or B, with equal probability (by flipping a
coin). Then, if a packet is put in set A, the user transmils it in the next time
slot. If it collides again, the user will again randomly assign the packet to one
of two sets and the process of transmission is repeated. This process continues
until all packets contained in set A are transmitted successfully. Then, all
packets in set B are transmitted following the same procedure. All the users
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monitor the state of the channel, and, hence, they know when all the collisions
have been serviced.

When the channel becomes available for transmission of new packets, the
earliest generated packets are transmitted first. To establish a queue, the time
scale is subdivided into subintervals of sufficiently short duration such that, on
average, approximately one packet is generated by a user in a subinterval.
Thus, each packet has a “‘time tag" that is associated with the subinterval in
which it was generated. Then, a new packet belonging to the first subinterval is
transmitted in the first available time slot. If there is no collision then a packet
from the second subinterval is transmitted, and so on. This procedure
continues as new packets are generated and as long as any backlog of packets
for transmission exists. Capetanakis has demonstrated that this channel access
protocol achieves a maximum throughput of 0.43 packets per slot.

In addition to throughput, another important performance measure in a
random access system is the average transmission delay in transmitting a
packet. In an ALOHA system, the average number of transmissions per packet
is G/S. To this number we may add the average waiting time between
transmissions and, thus, obtain an average delay for a successful transmission.
We recall from the above discussion that in the Abramson protocol, the
parameter « determines the average delay between retransmissions. If we
select « small, we obtain the desirable effect of smoothing out the channel load
at times of peak loading, but the result is a long retransmission delay. This is
the trade-off in the selection of « in (15-4-2). On the other hand, the
Capetanakis protocol has been shown to have a smaller average delay in the
transmission of packets. Hence, it outperforms Abramson’s protocol in both
average delay and throughput,

Another important issue in the design of random access protocols is the
stability of the protocol. In our treatment of ALOHA-type channel access
protocols, we implicitly assumed that for a given offered load, an equilibrium
point is reached where the average number of packets entering the channel is
equal to the average number of packets transmitted successfully. In fact, it can
be demonstrated that any channel access protocol, such as the Abramson
protocol, that does not take into account the number of previous unsuccessful
transmissions in establishing a retransmission policy is inherently unstable. On
the cther hand, the Capetanakis algorithm differs from the Abramson protocol
in this respect and has been proved to be stable. A thorough discussion of the

stability issues of random access protocols is found in the paper by Massey
(1988).

15-4-2 Carrier Sense Systems and Protocols

As we have observed, ALOHA-type (slotted and unslotted) random-access
protocols yield relatively low throughput. Furthermore, a slotted ALOHA
system requires that users transmit at synchronized time slots. In channels
where transmission delays are relatively small, it is possible to design random
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access protocols that yield higher throughput. An example of such a protocol is
carrier sensing with collision detection, which is used as a standard Ethernet
protocol in local area networks. This protocol is generally known as carrier
sense multiple access with collision detection (CSMA/CD).

The CSMA/CD protocol is simple. All users listen for transmissions on the
channel. A user who wishes to transmit a packet seizes the channel when it
senses that the channel is idle. Collisions may occur when two or more users
sense an idle channel and begin transmission. When the users that are

‘transmitting simultaneously sense a collision, they transmit a special signal,

called a jam signal, that serves to notify all users of the collision and abort their
transmissions. Both the carrier sensing feature and the abortion of transmission
when a collision occurs result in minimizing the channel down-time and, hence,
yield a higher throughput.

To elaborate on the efficiency of CSMA/CD, let us consider a local area
network having a bus architecture, as shown in Fig. 15-4-4. Consider two users
Uy and U, at the maximum separation, i.e., at the two ends of the bus, and let
7, be the propagation delay for a signal 10 travel the length of the bus. Then,
the (maximum) time required to sense an idle channel is T, Suppose that U,
transmits a packet of duration T,. User U, may seize the channel T, s later by
using carrier sensing, and begins to transmit. However, user U, would not
know of this transmission until 7,5 after {, begins transmission. Hence, we
may define the time interval 27, as the (maximum) time interval 10 detect 2
collision. If we assume that the time required to transmit the jam signal is
negligible, the CSMA/CD protocol yields a high throughput when 21, « T,

There are several possible protocols that may be used to reschedule
transmissions when a collision occurs. One protocol is called nonpersistent
CSMA, a second is called 1-persistent CSMA, and a generalization of the latter
is called p-persistant CSMA.

Nonpersistent CSMA In this protocol, a user that has a packet to transmit
senses the channel and operates according to the following rule.

() If the channel is idle, the user transmits a packet.
(b) If the channel is sensed busy, the user schedules the packet
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transmission at a later time according to some delay distribution. At the end of
the delay interval, the wser again senses the channel and repeats steps (a) and

(b).

1-Persistent CSMA  This protocol is designed to achieve high throughput
by not allowing the channel to go idle if some user has a packet to transmit.
Hence, the user senses the channel and operates according to the following

rule.

{a) If the channel is sensed idle, the user transmits the packet with
probability 1.

(b) If the channel is sensed busy, the user waits until the channel becomes
idle and transmits a packet with probabitity one. Note that in this protocol, a
collision will always occur when more than one user has a packet to transmit.

p-Persistent CSMA  To reduce the rate of collisions in 1-persistent CSMA
and increase the throughput, we should randomize the starting time for
transmission of packets. In particular, upon sensing that the channel is idle, a
user with a packet to transmit sends it with probability p and delays it by 7 with
probability 1 —p. The probability p is chosed in a way that reduces the
probability of collisions while the idle periods between consecutive (nonover-
lapping) transmissions is kept smail. This is accomplished by subdividing the
time axis into minislots of duration 7 and selecting the packet transmission at
the beginning of a minislot. In summary, in the p-persistent protocol, a user
with a packet to transmit proceeds as follows,

(a) If the channel is sensed idle, the packet is transmitted with probability
p. and with probability 1 — p the transmission is delayed by ts.

(b) If at t = 7, the channel is still sensed to be idle, step (a) is repeated. If a
collision occurs, the users schedule retransmission of the packets according to
some preselected transmission delay distribution.

(c) If at t= 1, the channel is sensed busy, the user waits until it becomes
idle. and then operates as in (a) and (b) above.

Slotted versions of the above protocol can aiso be constructed.

The throughput analysis for the nonpersistent and the p-persistent
CSMA/CD protocols has been performed by Kleinrock and Tobagi (1975),
based on the following assumptions:

1 the average retransmission delay is large compared with the packet
duration 7,;

2 the interarrival times of the point process defined by the start times of
all the packets plus retransmissions are independent and exponentially
distributed.
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For the nonpersistent CSMA, the throughput is

S B Ge—uG
G(1+2a)+e™“

where the parameter a = 1,/7,. Note that as a—0, $— G/(1 + G). Figure
15-4-5 illustrates the throughput versus the offered traffic G, with @ as a
parameter. We observe that § —» 1 as G — < for a = 0. For a >0, the value of
S..ax decreases.

For the 1-persistent protocol, the throughput obtained by Kleinrock and
Tobagi (1975) is

(15-4-11)

G[1+ G +aG(1 + G + 3aG)Je '+

=G(l +2a)— (1 —e ?C)+ (1 +aG)e U+ (15-4-12)
In this case,
1+Gle ©
Pl Igi&% (15-4-13)

which has a smaller peak value than the nonpersistent protocol.

By adopting the p-persistent protocol, it is possible to increase the
throughput relative to the 1-persistent scheme. For example, Fig. 15-4-6
illustrates the throughput versus the offered traffic with @ = 7,/7, fixed and
with p as a parameter. We observe that as p increases toward unity, the
maximum throughput decreases.

The transmission delay was also evaluated by Kleinrock and Tobagi (1975).
Figure 15-4-7 illustrates the graphs of the delay (normalized by T.) versus the
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throughput § for the sloited nonpersistent and p-persistent CSMA protocols.
Also shown for comparison is the delay versus throughput characteristic of the
ALOHA slotted and unslotted protocols. In this simulation, only the newly
generated packets are derived independently from a Poisson distribution.
Collisions and uniformly distributed random retransmissions are handled
without further assumptions. These simulation resuits illustrate the superior
performance of the p-persistent and the nonpersistent protocols relative to the
ALOHA protocols. Note that the graph labeled “optimum p-persistent’ is
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obtained by finding the optimum value of p for each value of the throughput.
We observe that for small values of the throughput, the 1-persistent (p =1)
protocol is optimal.

15-5 BIBLIOGRAPHICAL NOTES AND REFERENCES

FDMA was the dominant multiple access scheme that has been used for
decades in telephone communication systems for analog voice transmission.
With the advent of digital speech transmission using PCM, DPCM, and other
speech coding methods, TDMA has replaced FDMA as the dominant multiple
access scheme in telecommunications. CDMA and random access methods, in
general, have been developed over the past three decades, primarily for use in
wireless signal transmission and in local area wireline networks.

Multiuser information theory deals with basic information-theoretic limits in
source coding for multiple sources, and channel coding and modulation for
multiple access channels. A large amount of literature exists on these topics. In
the context of our treatment of multiple access methods, the reader will find
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the papers by Cover (1972), El Gamal and Cover (1980) Bergmans and Cover
(1974), and Hui (1984) particularly relevant. The capacity of a cellular CDMA
system has been considered in the paper by Gilhousen et al. (1991).

Signal demoduiation and detection for multiuser communications has
received considerable attention in recent years. The reader is referred 1o the
papers by Verdu (1986a~c, 1989), Lupas and Verdu (1990), Xie ez al. (1990a,
b), Poor and Verdu (1988), Zhang and Brady (1993), and Zvonar and Brady
(1995). Earlier work on signal design and demodulation for multiuser
communications is found in the papers by Van Etten (1975, 1976), Horwood
and Gagliardi (1975), and Kaye and George (1970).

The ALOHA system, which was one of the earliest random access systems,
is treated in the papers by Abramson (1970, 1977) and Roberts (1975). These
papers contain the throughput analysis for unslotted and slotted systems.
Stability issues regarding the ALOHA protocols may be found in the papers by
Carleial and Hellman (1975), Ghez et al. (1988), and Massey (1988). Stable
protocols based on tree algorithms for random access channels were first given
by Capetanakis (1977). The carrier sense multiple access protocols that we
described are due to Kleinrock and Tobagi (1975). Finally, we mention the
IEEE Press book edited by Abramson (1993), which contains a collection of
papers dealing with multiple access communications.

15-1 In the formulation of the CDMA signal and channel models described in Section
15-3-1, we assumed that the received signals are real. For K >1, this assumption
implies phase synchronism at all transmitters, which is not very realistic in a
practical system. To accommodate the case where the carrier phases are not
synchronous, we may simply alter the signature waveforms for the K users, given
by {15-3-1), to be complex-valued, of the form

L=
gty =¢* X a(n)pt —nT), 1sks<K
a =0

where 8, represents the constant phase offset of the kth transmitter as seen by the

common receiver.

a Given this complex-valued form for the signature waveforms, determine the
form of the optimum ML receiver that computes the correlation metrics
analogous to (15-3-15).

b Repeat the derivation for the optimum ML detector for asynchronous transmis-
sion that is analogous to (15-3-19).

152 Consider a TDMA system where each user is limited to a transmitted power 2,
independent of the number of users. Determine the capacity per user, C,, and the
total capacity KCx. Plot Cx and KC, as functions of %,/N, and comment on the
results as K — =,

15-3 Consider an FDMA system with K = 2 users, in an AWGN channel, where user 1
is assigned a bandwidth W, =W and user 2 is assigned a bandwidth W, =
(1 - a)W, where 0<a <. Let P, and P, be the average powers of the two users.
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a Determine the capacities C, and C, of the two users and theirsum C=C, + C,
as a function of a. On a two-dimensional graph of the rates R, versus R,, plot
the graph of the points (C;, C,) as a varies in the range 0 < a = 1.

b Recall that the rates of the two users must satisfy the conditions

P] )
R, <W, log, (1 +W.No

)
+
Rz'inlogz(l Ty

P1+Pz)

R.+R2(WI032(1+ WA,

Determine the total capacity C when P/a = Pj(l —e)=P, + P, and, thus,
show that the maximum rate is achieved when a/(1 — a} = P,/P,= W,/W,.

15-4 Consider a TDMA system with K =2 users in an AWGN channel. Suppose that

the two transmitters are peak-power-limited to P, and P,, and let user 1 transmit
for 100a % of the available time and user 2 transmit 100(1 - a)% of the time. The
available bandwidth is W.

a Determine the capacities C,, C,, and C = C, + C, as functions of a.

b Plot the graph of the points (C,, C,) as a varies in the range 0<a < 1.

5.5 Consider a TDMA system with K =2 users in an AWGN channel. Suppose that

the two transmitters are average-power-limited, with powers P, and P,. User 1

transmits 100a% of the time and user 2 transmits 100(1 ~ @)% of the time. The

channel bandwidth is W.

a Determine the capacities C,, C;, and C = C, + C, as functions of a.

b Plot the graph of the points (C,, C,) as a varies in the range 0= a <1.

¢ What is the similarity between this solution and the FDMA system in Problem
15-3.

15-6 Consider the two-user, synchronous, multiple-access channel and the signature

50

sequences shown in Fig. P15-6. The parameter A =0 describes the relative
strength between the two users, and 0 < B <1 describes the degree of correlation
between the waveforms. Let

r(f)=i i be(i)su(t — i) +n(r)

k=1 j= -

5l
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denote the received waveform at time 7, where n(r) is white gaussian noise with

power spectral density ¢, and b,(i) e{-1, +1}. In the-following problems, you

will compare the structure of the conventional multiuser detector to optimimum

receiver structures for various values of A, 0<B <1, and o’

a Show that, given the observation {r(t), —= <t =1}, a sufficient statistic for the
data b,(0) and b,(0) is the observation during ¢ e [0, L],

b Conventional {(suboptimum) multiuser detection chooses the data b,{0) accord-
ing to the following rule:

5. (0) = sgn (yi)
where

1
Y =j r{nst) di
Determine an expression for the probability of bit error for user 1, using the
notation

1
we = J s3(e)de
(1]

pia= j 52 (€)5elt)

¢ What is the form of this expression for A —0, B< 1, and arbitrary a*?

d What is the form of this expression for arbitrarily large 4, B <1, and arbitrary
o*? What does this say about conventional detection?

e What is the form of this expression for B =1, and arbitrary ¢° and 4? Why
does this differ from the result in (d)?

f Determine the form of this expression for arbitrarily large ¢, arbitrary A, and
B<1.

g Determine the form of this expressien for o — 0, arbitrary 4, and B < 1.

Refer to Problem 15-6. The maximum-likelihood sequence receiver for this

channel selects the data b,(0) and b,(0) transmitted during the interval [0, 1]

according to the rule

(B.(0). B:(0)) = argmax Alir(r), 0<r <1} | by, b

where A[{r(z),0<:<1}|h,, b,] is the likelihood function of b, and b, given an
observation of {r(r),0 < ¢ < 1}. It will be helpful to write this maximization as

((b1(0), Bo(0)) = argmax argmax Af{r(r), 0 <1< 1} | b,. b.]

where the value b¥ (hat satisfies the inner maximization may depend on b,. Note

that the need for “'sequence detection” is obviated.

8 Express this maximization in the simplest possible terms, using the same
notation as in Problem 15-6(b). Reduce this maximization 10 simplest form.,
using facts like

argmax Ke'' = argmax fi{x)

if, say, K is independent of x.
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b What is the simplest structure of the MLS receiver as the relative strength of the
interferer vanishes, A — 07 How does it compare with conventional detection?

¢ What is the simplest structure of the MLS receiver for B =1 and arbitrary 4
and ¢*? How does it compare with conventional detection? Why?

d What is the simplest structure of the MLS receiver for arbitrarily large ¢” and
arbitrary A and B? How does it compare with conventional detection?
Determine the error rate for user 1 in this case. {Hins: Use the fact that
sgn (y2) = sgn (¥, + p.,} with high probability in this case.]

e Determine the error probability of user 1 of the MLS receiver for o*—0, and
arbitrarily large A and B <1? How does it compare with conventional
detection?

f What is the structure of the MLS receiver for arbitrarily large A, and B < 1, and
arbitrary ,? How does it compare with conventional detection? What does this
say about conventional detection in this case? [Hinr: Use the fact that £ y;| is
roughly A times greater than E|y,).]

15-8 Consider the asynchronous communication system shown in Fig. P15-8. The two

receivers are not colocated, and the white noise processes n'(¢) and n'*(t) may be
considered to be independent. The noise processes are identically distributed, with
power spectral density ¢ and zero mean. Since the receivers are not colocated,
the relative delays between the users are not the same—denote the relative delay
of user k at receiver i by 7,”. All other signal parameters coincide for the receivers,
and the received signal at receiver i is

2 =
ry =3 20 bull)si (e — 1T = ) + n"(r)

k=) f=-=
where s, has support on [0, T]. You may assume that the receiver i has full
knowledge of the waveforms, energies, and relative delays i and 7). Although
receiver i is eventually interested only in the data from transmitter'i, note that
there is a free communication link between the sampler of one receiver, and the
postprocessing circuitry of the other. Follewing each postprocessor, the decision is
attained by threshold detection. In this problem, you will consider options for
postprocessing and for the communication link in crder to improve performance.
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a What is the bit error probability for users 1 and 2 of a receiver pair that does not
utilize the communication link, and does not perform postprocessing. Use the
following notation:

wi) = [ 1 - oy a
piz= f s\(¢ = t)ale — 1) dt
p';.’ = J‘.\'|(f - t‘|”}51(: + T - l";“) dt

= [sits = e de = [s30- ey

b Consider a postprocessor for receiver [ that accepts y.(f — 1) and y,(/) from the
communication link, and implements the following postprocessing on y,(/}

o) =y = p%' sgn {v{ — )] = pi% sgn {ya(D)).

Determine an exact expression for the bit error rate for user 1.

¢ Determine the asymptotic multiuser efficiency of the receiver proposed in (b).
and compare with that in (a). Does this receiver always perform betier than thai
proposed in (a)?

15-9 The haseband waveforins shown in Fig. P15-6 are assigned to two users who share
the $ame axynchronous, narrowband channel, Assume that B =1 and A =4. We
should like 1o compare the performance of several receivers, with a criterion of
A (0}, Since this expression is tco complicated in some cases, we shall also be
interested in comparing the asymptotic multiuser efficiency 7, of each receiver.
Assume that 1, =0 but that 0<71,<T is fixed and known at the receiver, and
assume thal we have infinite horizon transmission, 2M + 1 — x,

a For the conventional, multiuser detector:
(i) Find the exact bit prabability of error for user 1. Express this result in terms
of w,. pi2. pu. and o°, [Hint: Conditioning on b,(~1) and b,(0} will help.]
(1) Plot the asympltotic multiuser efficiency n, as a function of t,. Indicate and
explain the maximum and minimum values of 7, in this plot.
b For the MLS receiver:
(i} Plot n, as a function of t,. Explain maximum and minimum values, and
compare with (a)(ii).
(i) Which error sequences are most likely for each value of t,?
¢ For the limiting decorrelating detector:
{1) Find an exact expression for the probability of error for user 1. with similar
parameters as in (a)(i) [Hint: Don’t forget tc normalize p,, and p,,.]
{ii) Plot n, as a function of 7. Explain the minimum value of 7, in this case,
and compare with (a)(ii).
15-1¢ The symbol-by-symbot detector that minimizes the probability of a symbol error
differs from the maximum-likelihood sequence detector. The former is more
completely described as the detector that sefects each b,(0) according to the rule

b.(0) = argmax Al{r(1). 0 < ¢ <1} | b,(0)]

Blih
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—

a Show that this decision rule minimizes A[,(0) # b,(0)] among all decision rules
with observation {r(r), 0<<r<1}. Subject to this criteria, it is superior to the
MLS receiver.

b Show that the simplest structure of the minimum-probability-of-error receiver
for user 1 is given by

5,(0) ~b
b,(0) = ergmax [exP (!3?‘-'%,1) cosh (.‘"2 o-zlpu)] ‘
I

ci Find the simplest form of the minimum-probability-of-error receiver for B =1
and arbitrary A and ¢’. How does this compare with the above receivers?
d Find the limiting form of the minimum-probability-of-error receiver for arbit-
rarily large o” and arbitrary A and B. Compare with the above receivers.
e Find the limiting form of the minimum-probability-of-error receiver for 4 > |
and arbitrary a° and B. Compare with the above receivers,
f Find the limiting form of the minimum-probability-of-error receiver for A >> 1
¢’ — 0 and arbitrary B. Compare with the above receivers.
15-11 In a pure ALOHA system. the channel bit rate is 2400 bits/s. Suppose that each
terminal transmits a 100 bit message every minute on the average.
a Determine the maximum number of terminals that can use the channel.
b Repeat (a) if slotted ALOHA is used.
15-12 Determine the maximum input traffic for the pure ALOHA and slotted ALOHA

protocols,
15-13 For a Poisson process, the probability of & arrivals in a time interval T is
- AT, A'r. '3
Pk == :, Y. k=012

a Determine the average number or arrivals in the interval 7.
b Determine the variance ¢’ in the number of arrivals in the interval T.
¢ What is the probability of at least one arrival in the interval T?
d What is the probability of exactly one arrival in the interval T'?
15-14 Refer to Problem 15-13. The average arrival rate is A = 10 packets/s. Determine
a the average time between arrivals;
b the probability that another packet will arrive within 1s; within 100 ms.
15-15 Consider a pure ALOHA system that is operating with a throughput G = 0.1 and
packets are generated with a Poisson arrival rate A. Determine
a the value of i;
b the average number of attempted transmissions to send a packet.
15-16 Consider a CSMA/CD system in which the transmission rate on the bus is
10 Mbits/s. The bus is 2 km and the propagation delay is 5 us/km. Packets are
1000 bits long. Determine
a the end-to-end delay 7,;
b the packet duration 7,;
¢ the ratio 7,/T,;
d the maximum utitization of the bus and the maximum hit rate.
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APPENDIX

THE LEVINSON-DURBIN
ALGORITHM

The Levinson-Durbin algorithm is an order-recursive method for determining the
solution 1o the set of linear equations

©a,=0, (A-1)

where @, is a p X p Toeplitz matrix, a, is the vector of predictor coefficients expressed
as

a,=a, a, ... a,]
and ¢, is a p-dimensional vector with elements
&, =[6(1) Q) ... &(p)]
For a first-order (p = 1) predictor, we have the solution
$(0)a,, = ¢(1)
an = ¢(1)/$0) (A-2)
The residual mean square error (MSE) for the first-order predictor is
€ = ¢(0) —a,, (1)
=&(0) —a},4(0)

=6(0)(1 - ai) (A-3)
In general, we may express the solution for the coefficients of an mth-order
879
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predictor in terms of the coefficients of the (m — 1)th-order predictor. Thus, we express
a,, as the sum of two vectors, namely,

A
a = a?.zl - [IB“] 4 [d;:] (A-4)
G

where the vector d,,_, and the scalar &, are to be determined. Also, ®,, may be
expressed as

o= [ T #3)
where &, _, is just the veclor &,,,., in reverse order.
Now
D, . b, _ . -
o) -1 =
From (A-6), we obtain two cquations. The first is the matrix equation
D, 8, +D, _d, +k. b, =, (A-7)
But @, _a,.,=d, .. Hence, (A-7) simplifies to
_ G, _d,  tk.d, =0 (A-8)
This equation has the solution
d, = -k, o, b, (A-9)

But &/,_, is just &,,., in reverse order. Hence, the solution in (A-9) is simply a,, | in
reverse order multiplied by —k,,.. That is,

a,,. JETES |
[P

A==k, " (A-10)
B

The second equation obtained from (A-6) is the scalar equation
By + &L,y + B0)K,, = d(m) (A-11)

We eliminate d,, -, from (A-11) by use of (A-10). The resulting equation gives us k,,.
That is,

o(m)— b, _\a,
cbﬂ}) - ‘-b;; —14)};,]— by, -1

_ ¢(m) - ¢:u- 18, -4

km =

- ¢(0) - a:w—1¢m 1
_d(m) -l 2,
= P (A-12)
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where &, | is the residual MSE given as
gm—l=¢(0)_.:ﬂ—l¢m—l (A-ls)
By substituting (A-10) for d,,_, in (A-4), we obtain the order-recursive relation -

amkgam‘lk"kmam—lm"b k=132v“‘-m_—1' m-——l'zr‘-'rp {A'l“}
and

A = kmr

The minimum MSE may also be computed recursively. We have

€= $(0) — 3 a,ud(k) (A-15)
k=1
Using (A-14) in (A-15). we obtain

m- m=-1
=00~ 3 a0 14660 ~ | 07 = S a1k 0] (A10)

h=1 k=l
But the term in square brackets in (A-16) is just the numerator of &,, in (A-12). Hence,

., =%, — df,,...g,..-u

=€l = ahun) (A-1T)
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APPENDIX B

ERROR PROBABILITY
FOR MULTICHANNEL
BINARY SIGNALS

In mulichannel communication systems that employ binary signaling for transmitting
information over the AWGN channel, the decision variable at the detector can he
expressed as a special case of the general quadratic form

£
D =3 (A + BIYiI + CX. Y* + C*X2Y,) (B-1)
L |

in complex-valued gaussian random variables. A, B, and ( are constants: X, and Y, are
a pair of correlated complex-valued gaussian random variables. For the channels
considered, the L pairs {X,. ¥;} are mutually statistically independent and identicaily
distributed.

The probability of error is the probability that D <. This probability is evaluated
below,

The computation begins with the characteristic function. denoted by ¥, (juv), of the
general quadratic form. The probability that £ <0, denoted here as the probability of
error B, is
Q

Pa=P(D<0)=J‘ p(DYdD (B-2)

where p(D), the probability density function of D, is related to Yy, (ju) by the Fourier
transform, i.e.,

] . el
P{D)—E;E.l#n(;v}e dv
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Hence,
' 1
P, = Ldoﬁfw Yo(jv)e M du (B-3)

Let us interchange the order of integration and carry out first the integration with
respect to D. The result is

= - [ el (B-4)
e, v

where 2 small positive number € has been insenied in order 1o move the path of
integration away from the singularity at v =0 and which must be positive in order to
allow for the interchange in the order of integration.

Since D is the sum of statistically independent random variables, the characteristic
function of D factors into a product of L characteristic functions, with each function
corresponding to the individual random variables d,, where

di = A X, + BIY,[ + CX, Y + C*X}Y,
The characteristic function of 4, is

nv, ex [UIUZ("UZO'H +juay, )|
@+ ju)w=ju) P L W+ oo ~jon)

bq,(jv) = (B-5)
where the parameters v,, v,, a,, and a,, depend on the means X, and Y, and the
second (central) moments u.., p,,, and ., of the complex-vlaued gaussian variables X,
and Y, through the following definitions (JC1> - AB >0):

[ 1
nE \/w * A pabtyy ~ i PUICE - AB) ¥
1
Wjtnbtye ~ 2 PNICF = AB) ©
oAttt Bpy, + Cul + Coun, (B-6)
Hbbuatirs - ane PUICE — AB)

. =2(ICP* — AB){|X.I oy VP . — X2 ﬁp_” - X Yrur)
an=A|X,}F+ BV, +CX2Y, + C*X, 7}
Moy = SE[(X, — X )(Ys = Yo )*]

v, =4 Wi w

Now, as a result of the independence of the random variables d,, the characteristic
function of D is

¥oljv) = rl ¥ (jv)

. (v,v,)" [wivs(jva; —va,)
v) = R
Yol T = ™ [+ o < jun) B
where
3 L
a, = 2 ay, a;= 2 oy (B-8}

k=i k=1
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The result (B-7) is substituted for ¢, (jv) in (B-4), and we obtain

_ {v,v)" [ dv {viu(jva; - va,) (B-9)

= " ex . .
h. 2 ) L vlv +ju) v — o)t P L + v — jvs)

This integral is evaluated as follows.
The first step is to express the exponential function in the form

%! A
exp(-—A. +—L—_3-— —}—-)
vu, vy,

where one can easily verify that the constants A,, A,, and A, are given as

A =a

v

A= lan b (B-10)
2
vz _
Aa*v]+vz(al”! as)

Second, a conformal transformation is made from the v plane onto the p plane via
the change in variable

= DY (B-11)
v v -I-;vl
In the p plane, the integral given by (B-9) becomes

_&xp fviv(=2av vy + ayy, — azv)/ (v, + ”z)’l _I__
(1 + v /vy 2nf

P, j fp)dp  (B-12)

where

flp) =

1+ (val”J)P]u“] ex [Az(”zh'l) ' As(v,fva) i] (B-13)

PLU ~p) vt vite, p

and " is a circular contour of radius less than unity that encloses the origin.
The third step is 10 evaluate the integral

L[ (v
2nj ) p(1-p)

Az(vzf:lh} + 143(”1]‘”2)_1_]d
v, + v, thtv, p

1
z';ij{p)dp=

Xexp [ (B-14)

In order to facilitate subsequent manipulations, the constanis @ 20 and b =0 are
introduced and defined as follows:

Az, fvy) Ay(vyfuy)
2, 2V p2 . D2kl :
1a o ib —— (B-15)

893



APPENDIN #1. FRROR PROBABILITY FOR MULTICHANNEL BINARY siGNals B85

-Let us also expand the function |1 + (v./v))p]™" ' as a binomial series. As a resull, we

obtain
fprdp = 3 (ZL_ ])(—)

’NI [} vy
1
X — SN
28 e p (1= p)
The contour integral given in (B-16) is one representation of the Bessel function. It
can be solved by making use of the relations

1 /a\" I '50: . ,)
— _— ——— _._+ - d
ij(b) J’p""el (p bp jdp

Ip exp —+ ,bp)dp

exp (— +4b p) dp (B-16)

I {ab) =
} K}'

where I,(x) is the »th order modified Bessel function of the first kind and the series
representation of Marcum’s Q function in terms of Bessel functions, i.e.,

First, consider the case O0<k=<L -2 in (B-16). In this case. the resulting contour
integral can be writien in the form+

ZLEJ'-LP___I P}exp( )dp Q.(a. b)exp[i(a’ + b)) + EI ‘ (g)"fn(ab)

TR

(B-17)

Next, consider the term & = L — 1. The resulting contour integral can be expressed in
terms of the Q function as follows:

s | 1a? L o i
2”3' rp(l "P) (_+ b )dp = Qi(a b)exp[i(a’ + b%) (B-18)
Finally. consider the case L. <k <21 - 1. We have
1 kL .%az -
2_,0- l_PexP(';’"' b P)dp
i.2
= k .(.+nex [__'_‘bz )d
.§u 2nxf Jy P P p
- " k<L, m
= ¥ (‘) f,(ab) = Q\(a, b) exp [4(a’+ )] - D (f) L(ab) (B-19)
LA TR S b o b

Collecting the terms that are indicated on the right-hand side of (B-16) and using
T This contour integral is related to the generalized Marcum Q function, defined as
Qn(a, b) =j:x(xfa)”"‘ exp (-3’ +a’)l,,_i(ax)dx, m=1
in the following manner:
Q. (a. b)exp[i(a®+ b)) =

;-az 2
.,(I—ﬂp(‘;’* b P) dp
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the results given in (B-17)-(B-19), the following expression for the contour integral is
obtained after some algebra:

-1
3 1@ o = (12 femp [ + 01010, b) - Itab)

o 5 (1))

S 5 (NEEY -GV T e

Equation {B-20) in conjunction with (B-12) gives the result for the probability of
errar. A further simplification results when one uses the following ideatity, which can
easily be proved:

mu,

exp {(v1 +v,)?
Therefore, it follows that
P, = Qla, b) - Ij{ab) exp[—}(a” + b"}]

, Aab) exp [~3(a’ + b)) b (ZL - 1)(3)* Lexp [’ +bY)

(—2a,v,v, + v, — azv,)] =exp{—3ia® +b?)

{1 +1’2r"vt)u_‘ k=0 k v, (1 ‘*”z!‘”u)u_l
x ‘3: 1(ab) L;zl‘: (u.k— 1) (B-21)
-G e
Po=Qula,b) ~1 0 Iab)exp (~a® + B3] (L =1)

This is the desired expression for the probability of error. It is now a simple matter
to relate the parameters a and b to the moments of the pairs {X,, Y,]. Substituting for
A, and A, from {B-10) into (B-15), we obtain
_ 2”?”2(“1”1 = ay)]'”?

(v + vy’
_[2vi(aw + ar,)]"2
(v +v)?

(B-22)
b

Since v,, v, a,, and @, have been given in (B-6) and (B-8) directly in terms of the
moments of the pairs X, and Y., our task is compieted.
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APPENDIX

ERROR PROBABILITIES
FOR ADAPTIVE RECEPTION
OF M-PHASE SIGNALS

In this appendix, we derive probabilities of error for two- and four-phase signaling over
an L-diversity-branch time-invariant additive guassian noise channel and fur M-phase
signaling over an L-diversity-branch Rayleigh fading additive gaussian noise channel.
Both channels corrupt the signaling waveforms transmitted through them by introduc-
ing additive white gaussian noise and an unknown or random multiplicative gain and
phase shift in the transmitted signal. The receiver processing consists of cross-
correlating the signal plus noise received over each diversity branch by a noisy
reference signal, which is derived either from the previously received information-
bearing signals or from the transmission and reception of a pilot signal, and adding the
outputs from all L-diversity branches to form the decision variable.

C-1 MATHEMATICAL MODEL FOR AN M-PHASE
SIGNALING COMMUNICATIONS SYSTEM

In the general case of M-phase signaling, the signaling waveforms at the transmitter
aret

5,(1} = Re [, (1)}

tThe complex representation of real signals is used throughout. Complex conjugation is
denoted by an asterisk.
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where

sty =glt) exp [j%{n - 1}]. n=12,... M, 0=st=<T (C-1)

and T is the time duration of the signaling interval.

Consider the case in which one of these M waveforms is transmitied, for the
duration of the signaling interval, over L channels. Assume that each of the channels
corrupts the signaling waveform transmitted through it by introducing a multiplicative
gain and phase shift, represented by the complex-valued number g, and an additive
noise z,(¢). Thus, when the transmitted waveform is s,,(¢), the waveform received over
the kth channel is

()= gusn() +2:(t), O=<r=<T, k=1,2...,L (C-2)

The noises {z,(¢)} are assumed to be sample functions of a stationary while gaussian
random process with zero mean and autocorrleation function ¢.(1) = N,8(t}, where N,
is the value of the spectral density. These sampie functions are assumed to be mutually
statistically independent.

At the demodulator. r,(r) is passed through a filter whose impulse response is
matched to the waveform g(r). The output of this filter, sampled at time ¢=T, is
denoted as

2
X, =2%g, exp [}'f(n - 1)] + N, (C-3)

where % is the transmitted signal energy per channel and N, is the noise sample from
the kth filter. In order for the demodulator to decide which of the M phases was
transmitted in the signaling interval 0=r<T, it attempts to unde the phase shift
introduced by each channel. In practice, this is accomplished by multiplying the
matched filter output X, by the complex conjugate of an estimate £, of the channel gain
and phase shift. The result is a weighted and phase-shifted sampled output from the
kth-channel filter, which is then added to the weighted and phase-shifted sampled
outputs from the other L — 1 channel filters.

The estimate g, of the gain and phase shift of the kth channel is assumed to be
derived either from the transmission of a pilot signal or by undoing the modulation on
the information-bearing signals received in previous signaling intervals. As an example
of the former, suppose that a pilot signal, denoted by s,.(¢), 0<st=<T, is transmitted
over the kth channel for the purpose of measuring the channel gain and phase shift.
The received waveform is

8uSp (1) +2,:(1), O0=<t=<T

where z,,(1) is a sample function of a stationary white gaussian random process with
zero mean and autocorrelation function ¢,(t)} = N;8(1). This signal plus noise is passed
through a filter maiched to s, (r). The filter output is sampled at time ¢ = T to yield the
random variable X,, =2%,g, + N,,, where &, is the energy in the pilot signal, which is
assumed to be identical for all channels, and N,, is the additive noise sample. An
estimate of g, is obtained by properly normalizing X,,, i.e., 8, =g, + N, /2€,.

On the other hand, an estimate of g, can be obtained from the information-bearing
signal as follows. If one knew the information component contained in the matched
filter output then an estimate of g, could be obtained by properly normalizing this
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output. For example, the information component in the filter output given by (C-3) is
2¥g. exp [j(2n/M)n - 1)], and hence, the estimate is

X L;E __]_ Ni
g‘ -2gexp JM (” 1) _-g* +28

where N = N, exp [—j(2x/M)(n — 1)] and the pdf of N; is identical to the pdf of N,.
An estimate that is obtained from the information-bearing signal in this manner is
called a clairvoyant estimate. Although a physically realizable receiver does not possess
such clairvoyance, it can approximate this estimate by employing a time delay of one
signaling interval and by feeding back the estimate of the transmitted phase in the
previous signaling interval.

Whether the estimate of g, is oblained from a pilot signal or from the information-
bearing signal, the estimate can be improved by extending the time interval over which
it is farmed to include several prior signaling intervals in a way that has been described
by Price (1962a, b). As a result of extending the measurement interval, the
signal-to-noise ratio in the estimate of g, is increased. In the general case where the
estimation interval is the infinite past, the normalized pilot signal estimate is

. / .
fi=gt 2 C(Npkr'/ 2€, Zf; (C-4)
=1\ i=1

where c, is the weighting coefficient on the subestimate of g, derived from the ith prior
signal interval and N,,, is the sample of additive gaussian noise at the output of the filter
matched to s,, (1) in the ith prior signaling interval. Similarly, the clairvoyant estimate
that is obtained from the information-bearing signal by undoing the modulation over
the infinite past is

e =g t 2 c‘.N*,//Z%’E ¢, {C-5)
il

e

As indicated, the demodulator forms the product between g and X, and adds this to
the products of the other L — 1 channeis. The random variable that results is

[ L
1= Xgr=23 Xt
k=1 k=)
=z +jz (C-6)
where, by definition, Y, =g, ;, = Re (z), and z, = Im (z). The phase of z is the decision

variable. This is simply

f=tan' (5) =tan"' [Im (;: X;,Y:)/Re (‘E:I X*Y:)] (C-7)

3

C-2  CHARACTERISTIC FUNCTION
AND PROBABILITY DENSITY FUNCTION
OF THE PHASE ¢

The following derivation is based on the assumption that the transmitted signal phase is
zero, i.e., n=1. If desired, the pdf of @ conditional on any other transmitted signal
phase can be obtained by transiating p(8) by the angle 2x(n — 1)/M. We also assume
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that the complex-valued numbers {g,}. which characterize the L channels, are mutually
statistically independent and identically distributed zero-mean gaussian random vari-
ables. This characterization is appropriate for slowly Rayleigh fading channels. As a
consequence, the rrandom variables (X,, Y,) are correlated, complex-valued, zero-
mean, gaussian, and statistically independent, but identically distributed with any other
pair (X., ¥).

The methed that has been used in evaluating the probability density p(8) in the
general case of diversity reception is as follows. First, the characteristic function of the
joint probability distribution function of z, and z,, where z, and z;, are «wo components
that make up the decision variable 8, is obtained. Second, the double Fourier transform
of the characteristic function is performed and yields the density p{z,, z,). Then the
transformation

r=VZ¥Z, e=un'(%) (C-8)
yields the joint pdf of the envelope r and the phase 6. Finally, integration of this joint
pdf over the random variable r yields the pdf of 8.

The joint characteristic function of the random variables z, and z, can be expressed in
the form

-—
mem,, (1= [1f)
(U_‘ 2lpjcose )2
" Nmom 1 - )

Y(ju,, jui) =

+ (l’z - 2lpisine ): + A 5 (C-9
Vmem,(1=1el))  mam,,(1— |uf)
where, by definition,
m,, = E{(X,[") identical for all k
m,. = E(Y.]) identical for ail &
m, = E(X,Y# identical for all (C-100

n=

v TS
=lule ”
mrrmy}

The result of Fourier-transforming the function ¢(jv,, Juz) with respect to the
variables v, and v, is

_ (" o
p(z,.2) =L (V22479

X exp[lpl (2 cos & + z;sin £))K,_(VzI+2D) (C-11)
where K, (x) is the modified Hanke) function of order n. Then the transformation of

random variables, as indicated in (C-8) yields the joint pdf of the envelope » and the
phase 8 in the form

(1~ Juf)"

P ) = e

rexpfluir cos (8 - £)]K,_,(r) (C12)
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Now, integration over the variable r yields the marginal pdf of the phase 8. We have
evaluated the integral to obtain p(8) in the form

_{_l]l I(l“l#F]i a.".—l 1
p(6) = 2m(L - 1) {ab"' ! [b — el cos® (8 — )
Il cos (8 - £) . _Mcosw—f} | :
b - |ulPcos* (8 - &)Y ( b'? )]}lh . (C-13)

In this equation, the notation

HL

agf(b'u)

k=1

denotes the Lth partial derivative of the function f(b, p) evaluated at b = 1.

C-3 ERROR PROBABILITIES FOR SLOWLY
RAYLEIGH FADING CHANNELS

In this section, the probability of a character error and the probability of a binary digit
error are derived for M-phase signaling. The probabilities are evaluated via the
probability density function and the probability distribution function of 6.

The Probability Distribution Function of the Phase In order to evaluate the
probability of error, we need to evaluate the definite integrai

-

P(6,<6<86) =f p(8)de

*

where &, and 6, are limits of integration and p(8) is given by (C-13). All subsequent
calculations are made for a real cross-correlation coefficient u. A real-valued p implies
that the signals have symmetric spectra. This is the usual situation encountered. Since a
complex-valued p causes a shift of £ in the pdf of 8, i.e., £ is simply a bias term, the
results that are given for real u can be altered in a trivial way to cover the more general
case of complex-valued g.

In the integration of p(8), only the range 0 < @ < x is considered, because p(8) is an
even function. Furthermore, the continuity of the integrand and its derivatives and (he
fact that the limits 8, and 6, are independent of b allow for the interchange of
integration and differentiation. When this is done, the resulting integral can be
evalualed quite readily and can be expressed as follows:

Hy _ (_I)L-—l(l — FZ)!.
J., PO dE= " L - 1)

X G { ! [“ L= (b/n" = I cot ' x
abt b —p? B

_ . xblR“ ]}.tz
cot (\/l—(b/pz“l)x’) e (C-14)

where, by definition,

- Thcosh = :

x,—m. Li=12 (C-15)
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Probability of a Symbel Error The probability of a symbol error for any M-phase
signaling system is

x

Pu=2| p(8) d6

M
When (C-14) is evaluated at these two limits, the result is
(=D = pBt 24! { 1 [x
= —(M-1
M mL-1) eb ' lb-p? m' )

pusin (/M) - - cos (/M)
Vb —plcos (A/M) cot (\/E—pzcosz(fo))]}

(C-16)

b=1

Probability of & Binary Digit Error First, let us consider two-phase signaling. In
this case, the probability of a binary digit error is obtained by integrating the pdf p(8)
over the range }n <0< 3x. Since p(8) is an even function and the signals are a priori
equally likely, this probability can be written as :

P,=2] pi6)de

L]

It is easily verified that 8, = {m implies x, =0 and 6,=# implies x, = u/VB — u. Thus,

_CDH - ) LA R — ]
AL=-1) bt b -puP B - )

After performing the difierentiation indicated in (C-17) and evaluating the resnlting
function at b =1, the probability of a binary digit error is obtained in the form

1 L-1 2N/l - ﬂ:z k
r=g e 3 G5 -
=i 2 U (C-18)
Next, we consider the case of four-phase signaling in which a Gray code is used to map
pairs of bits into phases. Assuming again that the transmitted signal is s, (1), it is clear
that a single error is committed when the received phase is m < @<ix and a double

error is committed when the received phase is {m <@ < & That is, the probability of a
binary digit error is :

{(C-17)

P

k=1

P, =j p(0)de+2| p(8)de | (C-19)

x4 Inid

It is easily established from (C-14) and (C-19) that
GV S i [ B ]

Py

AL-1) b b —p? (b- pd2b - w2,
Hence, the probability of a binary digit error for four-phase signaling is
[-at S )
Py=>[1- -
wlw i) | (€20)
Note that if one defines the quantity p = u/V2 ~ a2, the expression for P, in terms
of pis
1[ L—1 Zk 1__p2 k
re-dfir S 5] -
w a1 mr 2 U )N (C-21)
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In other words, P,, has the same form as P, given in (C-18). Furthermore, note that p,
just like m, can be interpreted as a cross-correlation coefficient, since the range of p is
0<p =<1 for < u < 1. This simple fact will be used in Section C-4.

The above procedure for obtaining the bit error probability for an M-phase signal
with a Gray code can be used to generate results for M =8, 16, etc., as shown by
Proakis (1968).

Evaluation of the Cross-Correlation Coefficient The expressions for the prob-
abilities of error given above depend on a single parameter, namely, the cross-
correlation coefficient u. The clairvoyant estimate is given by (C-5), and the matched
filter output, when signal waveform s,,(¢) is transmitted, is X, = 2¥%g, + N.. Hence, the
cross-correlation coefficient is

_ Vv
EEVGTADG 2
where, by definition,
2 3 / el
|I 1 =1
(C-23)

. &
Y(_ﬁ (lsit)! k=l-29--"L

The parameter v represents the effective number of signaling intervals over which the
estimate is formed, and ¥, is the average SNR per channel.

In the case of differential phase signaling, the weighring coefficients are ¢, =1, ¢, =0
fori#1. Hence, v=1and u =%./(1 + 7,).

When v = =, the estimate is perfect and

. Y.
lim g =
el 7 +1

Finally, in the case of a pilot signal estimate, given by (C-4) the cross-correlation

coefficient is
r+1 r +1 -2
" =[(1 =) +—-)] (C-24)
r 1 Wl’

where, by definition,

— g\!' ]

¥ _Nu E(l&lr)

£=¢+€,

r=%/¢,
The values of u given above are summarized in Table C-1.

C-4 ERROR PROBABILITIES FOR TIME-INVARIANT
AND RICEAN FADING CHANNELS

In Section C-2, the complex-valued channel gains {g,} were characlerized as zero-mean
gaussian random variables, which is appropriate for Rayleigh fading channels. In this
section, the channel gains {g,} are assumed to be nonzero-mean gaussian random
variables. Estimates of the channel gains are formed by the demodulator and are used
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RAYLEIGH FADING CHANNEL

Type of estimate Cross-correlation coeflicient p
, . Vv
Clairvoyant estimate — —
VETHIGT )
Ve
Pilot signal estimate \/
r+1) y, r+l ¥ r+l)
Differential phase signaling i +3
Perfect estimate e
Y. +1

as described in Section C-1. Moreover, the decision variable 8 is defined again by (C-7).

However, in this case, the gaussian random variables X, and Y,, which denote the

matched filter output and the estlmate, respectively, for the kth channel, have nonzero
means, which are denoted by X, and ¥,. Furthermore, the second moments are

m,. = E(1X, — X.i%) identical for all channels
W = E(1Y, — Yi?) identical for all channels
= E[(X, — X, )(Y2 - Y?)] identical for all channels
and the normalized covariance is defined as

ﬂ=#

Ty

Error probabilities are given below only for two- and four-phase signaling with this
channel model. We are interested in the special case in which the fluctuating component
of each of the channel gains {g,} is zero, so that the channels are time-invariant. If, in
addition to this time invariance, the noises between the estimate and the matched filter
output are uncorrelated then p = 0.

In the general case, the probability of error for two-phase signaling over L
statisticaily independent channels characterized in the manner described above can be

obtained from the results in Appendix B. In its most general form, the expresssion for
the binary error rate is

P, = Q\(a, b) - lo(a) exp [- (@* + b?)]
L,{ab) exp [—i(a® + b)) ! (ZL - 1)(1_-!-_;_1)*
[2/(1 - P)]u ' k=0 k 1—p
exp {=}(a* +5?)]
/- .u)]”f' (C2)

<Zue 5 CONEEEE -GV e

=Q(a, b) - i(l + wu)olab) exp [_%(az + bz)} (L=1)
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where, by definition,

[ ? 3, b2
SO
k=1 m:x myy

z)uz (C-26)

O.(a, b)= rx exp [—i(a’ + x}))ly(ax) dx

1.(x) is the modified Bessel function of the first kind and of order a.

Let us evaluate the constants a and b when the channel is time-invariant, o =0, and
the channel gain and phase estimates are those given in Section C-1. Recall that when
signal 5,(r) is transmitted, the matched filter output is &, = 2¥&g, + N,. The clairvoyant
estimate is given by (C-5). Hence, for this estimate, the moments are X, =2%g,
Y, = Bk My =4EN,, and m,, = N,/ €v, where € is the signal energy, N, is the value of
the noise spectral density, and v is defined in (C-23). Substitution of these moments inio
{C-26) results in the following expressions for a and b:

a=ViyVv-1

b=Viy, Vv+1 (C-27m
8 i

'Yb=1.7 2 lgkiz

k=1

This is a result originally derived by Price (1962).

The probability of error for differential phase signaling can be obtained by setting
v=1in (C-27).

Next, consider a pilot signal estimate. In this case, the estimate is given by (C-4) and
the matched filter output is again X, =2¥g, + N,. When the moments are caiculated
and these are substituted into (C-26), the following expressions for a and b are

obtained:
a,\/i [y _ [ |
2iNr+1 r+1
(C-28)
= };
b_\/;( r+l+ r+1)
where
% 2
7;_1&_':.;(2.1,81"
E=¥¢+€,
r=¥¢/§€,

Finally, we consider the prabability of a binary digit error for four-phase signaling
over a time-invariant channel for which the condition p = 0 obtains. One approach that
can be used to derive this error probability is to determine the pdf of # and then 1o
integrate this over the appropriate range of values of 8. Unfortunately, this approach
proves 10 be intractable mathematically. Instead, a simpler, albeit roundabout, method
may be used that involves the Laplace transform. In short, the integral in (14-4-14) of
the text that relates the error probability P(y,) in an AWGN channel to the error
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Type of estimate a b
Two-phase signaling
ClairyOyar_u %;%_ ! \%(ﬁ+]}
estimate
Diﬁ.erenltial phase 0 vab
signaling
Pilot signal 1‘ v |r \ﬁ( |y )
estimate 21Vr+1 Nr+1 2\Vr+1 r+1
Four-phase signaling
Clairvoyant VIy [Vy+ 1+ V7 1] Vgn(\/;—:; VY11
estimate —Vv+1—\/v!+ll +Vyv+1-Vi747)

Differential phase
signaling

Pilot sigrat
estimate

VIy,(V2+V2-V2-V2)

Y
Vi + 1)

————
Vy+r+ VaZ+ 7

—vvﬂ-\/?:;!ll

Viy(V2+ V2 + V2-V3)

%

Vagr+ 1)

(Vory

+\»‘v+r—m)

probability P in a Rayleigh fading channel is a Laplace transform. Since the bit error
probabilities £, and P, for a Rayleigh fading channel, given by (C-18) and (C-21)
respectively, have the same form but differ only in the correlation coefficient, it foliows
that the bit error probabilities for the time-invariant channel also have the same form.
That is, (C-23) with u =0 is also the expression for the bit error probability of a
four-phase signaling system with the parameters a and b modified to reflect the
difference in the correlation coefficient. The detailed derivation may be found in the

paper by Proakis (1968). The expressions for a and b are given in Table C-2.
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APPENDIX

SQUARE-ROOT
FACTORIZATION

Consider the solution of the set of linear equations
R, Cy = Uy (D'] )

where R, is an N X N positive-definite symmetric matrix, Cy is an N-dimensional vector
of coefficients to be determined, and Uy is an arbitrary N-dimensional vector. The
equations in (D-1) can be solved efficiently by expressing Ry, in the factored form

R, =S,D,8, (D-2)

where S, is a lower triangular matrix with elements {s,} and Dy is a diagonal matrix
with diagonal elements (d.}. The diagonal elements of Sy are set to unity, i.e., 5, =].
Then we have

r{_:Js‘.dj, lﬁﬁll_]. 132

(= 2 suhsne 15 (D-3)
n=d,

where {r;} arte the elements of R.. Consequently, the elements {s,} and {d,} are

determined from (D-3) according to the equations

dy =r,
i1
s,,d}=n-,—§ SpdiSu, 1=jsi-1, 2si<N (D-4)
d,=r, —;E-:I spdy, 2<i<N
-1
Thus, {D-4) define 8, and D, in terms of the elements of R,
897
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The solution 10 (D-1) is performed in two steps. With (D-2) substituted into (D-1)
we have
S.DE.C,=U,
Let
Y.=D.S§.C, (D-5)
Then
S.Y., =U, (D-6)

First we solve (D-6) for Y. Because of the triangular form of 8., we have

M=y

ol (D-7)
v, =, - 2 S,v.  2=i=N

Having obtained Y, the second step is to compute C,. That is,

D.§\C, =Y,
$.C,=D,'Y,
Beginning with
Cy = ¥ofdy (D-8)

the remaining coefficients of C, are obtained recursively as follows:

LY
c,=f;‘— S s, 1=isN-1 (D-9)
. FR
The number of multiplications and divisions required 1o perform the factorization of
R, is proportional 10 N°. The number of multiplications and divisions required to
compute C., once S. is determined. is proportional to N°. In contrast. when R, is
Toeplitz the Levinson-Durbin algorithm should be used to determine the solution of
{D-1). since the number of multiplications and divisions is proportional to N°. On the
other hand. in a recursive least-squares formulation. S, and D, are not computed as in
(D-3), but they are updated recursively. The update is accomplished with N- operations
{multiplications and divisions). Then the solution for the vector C. follows the steps
(D-3)-(D-9). Consequently, the computational burden of the recursive least-squares
formulation is preportional to A2,
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Adaptive equalization, 636~676
Adaptive equalizers, 636-676 (See also Equalizers)
blind, 664-675
decision-feedback, 621-625, 649-650
linear, 584-601, 648649
baseband, 648
passband, 643-649
maximum likelihood sequence estimator, 607616,
652-654
Adaptive transform coding, 137
Algorithm:
Constant-modulus, 670
Godard, 670-673
Huffman, 99-103
K means, 122
Lempel-Ziv, 106-108
Levinson-Durbin, 128, 139, §79-88]
LMS (MSE), 639-642
recursive least-squares (RLS), 654-664
RLS (fast), 660
RLS {Kalman), 656-658
RLS lattice, 660664
RLS square-root, 660
stochastic gradient, 663
zero-forcing, 637-638
Amplitude distortion, 535
Analog sources, 82
quantization of, 108-125
optimum, 113
scalar, 113-118
vector, 118
sampling of, 72-73

Antenna:

beamwidth, 317

effective area, 316

effective radiated power, 316

Hlumination efficiency factor, 317
A posteriori probability, 21
A priori probability, 21
Autocorrelation function, 64

at output of linear system, 68-70

of cyclostationary process, 75-76
Autocovariance function, 64
Autometic gain control (AGC), 336
Average power density spectrum, 77
Averages, 33-37

central moments, 33

characteristic function, 35-37

for sum of siatistically independent random
variables, 36

correlation, 34

covariance, 34

covariance matrix, 34

expected value (mean), 33

joint moments, 34

of stochastic processes, 64—67
variance, 33
AWGN (additive white Gaussian noisc) channel, 233-
234

Band-limited channels, 534-540 (See alsc Channels)
Bandpass signals, 152-157

complex envelope of, 159

envejope of, 155
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Bandpass signals (Cont.):
phase of, 155
quadrature components, 155
Bandpass system, 157-159
response of, 157-159
Bandwidth efficiency, 283-284
Bandwidth expansion factor, 444, 807
Baseband signals, 176
delay modulation, 188
Miller, 188
NRZ, 187
NRZI, 187
power spectra of, 220-223
Baudot code. 13
Bayes' theorem, 21
BCH (Bose-Chaudhuri- Hocquenghemj codes, 435-436
Bibliography, 899-916
Binary symmetric channe! (BSC), 381
capacity of, 381
transition probability, 376-377
Binomial distribution, 37-38
Biorthogonal signals, 183
Bit interval, 174
Blind equalization, 664-675
constant modulus algorithm, 670
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maximum-likelihood algorithms, 664-667
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binary. 4
concatenated, 467-468
cyclic, 423-436
Bose—Chaudhuri-Hocquenghem (BCH), 435-436
encoders for, 430-435
generator polynomial for, 437-438
Golay, 433
Hamming, 433
maximum-length shift-register (MLSR), 433-435
table of MLSR connections, 435
dual code, 426
equivalent, 418
error correction capability, 451-452
error detection capability, 451-452
extended, 420
fixed-weight, 414
generator matrix, 417
generator polynomial, 424
Golay, 423, 433
extended, 423
generator polynomial of, 433
performance on AWGN channel, 454-455
weight distribution, 423
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hard-decision decoding, 445-456
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Gilbert-Varsharmov, 463
Hamming, 462
Plotkin, 462
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perfect, 453
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reciprocal polynomiai, 426
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Block length, 414
Burst errors, 469
Burst error correction capability, 469

Capacity (see Channel capacity)
Carrier, 159
Carrier phasc estimation
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decision-directed, 347-350
ML methods, 339-341
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squaring loop, 353-355
Carrier recovery, 336-358
Canchy-Schwartz inequality. 165
Central limit theorem, 61-62
Central moments, 33
Channel:
additive white gaussian noise (AWGN), 233-234
band-limited, 534-540
binary symmetric, 375-376
capacity, 380-386
AWGN, 381-386
band limited AWGN, 383-386
DMC, 376-377
infinite bandwidth AWGN, 385
coherence bandwidth, 764
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Channel (Cent):
coherence lime, 765
cutoff rate, 394
for system design, 400406
discrete memoryless (DMC), 376-377
discrete-time model, SB6-588
distortion, 534-540
amplitude, 535
envelope delay, 535
frequency offset. S38
tmpulse noise, 538
nonlinear, 537
phase jitter, 535
squared-error, 108
thermal noise, 538
Distortion-rate function, 110
Boppler power specirum, 7658
Doppler spread. 765
encoder, -2
code rate, Z, 414
code word, 2
fading multipath: characterization of, 759-769
correlation functions for, 763-767
impulse response, 760-761
models for, 767-769
transfer fumction. 763
fiber optic. 5
frequency nonselective, 764, 772-795
digital signaling over, 772-795
frequency selective, 764, 798-806
digital signaling over, 795-806
error rate for, 798-806
RAKE demodulator for, 797-806
tap weight estimation of, 801-803
tapped delay line model of, 795-797
microwave LOS, 767-769
models for, 11-13, 375-
additive noise, 11
binary symmetric, 375-376
discrete memoryless, 376-377
discrete-time, 586-588
finear filter. 11
linear, ime-variant filter, 12
waveform, 378-380
multipath spread, 763
Nakagami fading, 762
overspread, 771
Rayleigh fading, 761
binary signaling over, 772-776
caded waveforms for, 806-832
cutoff rate for, 825-832
frequency nonselective, 764
M-ary orthogonal signaling over, 787-792
multiphase signaling over, 785-787

INDEX

Channel (Ceant. ):
Ricean fading., 76l
scattering function, 766
spread factor, 771
table, 772
storage. 10
underspread, 771
underwater acoustic, 9
wircless, §
wireline, 4
Channel encodcer, 2
Channel reliability function, 389
Characteristic function, 35-37
of binomiai, 38
of chi-square. 4244
of gaussian, 41
of mullivanate gaussian, 49-52
of uniform, 39
Chebyshev inequality, 52-54
Chernoff bound, 53-57
for BSC, 455
for Rayleigh fading channet, 792-794
Chi-square distribution, 41-45
central, 42-43
noncentral, 42-44
Code division multiple access (CDMA)
asynchroncus, 852-854
effective SNR, 861 .
efficiency of, 861
oplimum receiver for, 851-854
suboptimum detectors for, 854-861
decorrelating, 855-857
MMSE, 858-859
performance, 859
single user. B34
synchronous, 851-852
Code rate, 2
Code word, 2
fixed length. 94
variable length {Huffman), 96-103
Coded modulation, 511-526
Codes:
source:
instantaneously decodable, 9
uniquely decodable, 96
{See also Block codes; Convolutional codes)
Coding:
entropy, 97, 117
for AWGN channel: block codes. 413-468
convolutional codes, 470-511
for BSC (see Block codes; Convolutional codes)
for Rayleigh fading channel, 806-832
concatenated, 814-825
constant-weight codes, 814-825
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Coding {Con.):
for Rayleigh fading channel {(Conr.):
convolutional codes, 811-814
cutoff rate, 825-829
linear block codes, 808-814
trellis codes, 830-832
Huffman (entropy), 96-103
noiseless, 93-108
speech, 143-144
Coding gain, 441, 507, 733
Compandor, 127
Comparison of digital modulation, 282-284
Complementary error function, 40
Complete orthonormal functions, 165-158
Complex envelope, 155
of narrowband process, 155
Computational cutoff rate, 503
{See also cutoff rate)
Concatenated block codes, 467-468
Concatenated convolutional codes, 449-500
Conditional cdf (cumulative distribution function), 26-28
Conditional pdf (probability density function), 25
Conditional probabhility, 20
Consistent estimate {(see Estimate)
Consiraint length, 470
Continuous-phase frequency-shift keying (CPFSK), 190-
191
performance of, 284-301
power density spectrum of, 209-219
representation of, 284-285
Continuous-phase modulation {CPM), 191-203
demodulation: A
maximum-likelihood sequence estimation, 284-289
multiamplitude, 200-203
multi-A, 295
performance of, 290-296
symbol-by-symbol, 296-300
full response, 192
minimum-shift keying (MSK), 196-199
modulation index, 191
multiampiitude, 200203
multi-h, 295
partial response, 192
phase cylinder, 195
phase trees of, 192
power specirum of, 209--219
represenlation of, 19)-196
signal space diagram for, 199-200
state trellis, 196
tretlis of, 195
Continuously variable slope delta modutation (CVSD,
135 :
Convolutionai codes, 470-511
applications of, 506~511
binary, 470-476

Convolutional codes (Cont.):
catastrophic error propagation, 482
concatenated, 492, 499-500
constraint length, 470
decoding, 483-486
Fano aigorithm, 500-503
feedback, 505-506
sequential, 300-502
stack algorithm, 503-504
Viterbi, 483-486
distance properties of, 492-496
dual-k, 492-4%9
encoder, 470-478
generators, 471-472
hard-decision decoding, 489-492
minimum free distance., 479
nonbinary, 491-499
optimum decoding of, 483-485
performance on AGWN channel, 486-492
performance on BSC, 489-491
performance on Rayleigh fading channel, 81]1-814
quantized metrics, 508-510
soft-decision decoding, 486-489
state diagram, 474-477
lable of generators for maximum free distance, 493-497
transfer function, 477-480
tree diagram, 472
trellis diagram, 473
Correlation demodulator, 234-238
metrics for, 246
Correlative state vector, 286
Coset, 447
Coset leader, 447
Covariance, 34
Covariance function, 65
Cross-correlation function, 65
Cross-power density spectrum, 68
Cumulative distribution function {(cdf), 23
Cutoff rate, 394
comparison with channel capacity, 399-400
for binary coded signals, 396
for M-ary input. M-ary output vector channel. 403
for multiamplitude signals, 397-399
for noncoherentt charnel, 405-406
for g-ary input Q-ary output channel, 400-401
system design with, 400-406
CW jamming. 706
Cyclic codes (see Block codes. cyclic)
Cyclostationary process, 75-76. 205

Data compression, 1

Data translation codes. 566

Decision-feedback equalizer {sve Equalizers, decision-
feedback)
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Decoding of block codes:
for fading channeis: hard-decision, 811
suft-decision, 808-811
hard-decision, 445456
bounds on performance for BSC, 452-455
Chernoff bound, 455
syndrome, 449-451
table lookup method, 447448
soft-decision, 436445
bounds on performance for AWGN, 440-443
comparison with hard-decision decoding,
456-461
Decoding of convolutional codes:
for fading channel, performance, B11-814
feedback, 505-506
hard-decision, 489492
performance on AWGN channel, 486-492
performance on BSC, 439491
sequential, 500-502
soft decision, 486-489
stack algonthm, 503-504
Viterbi algorithm, 483486
Delay distortion, 335
Delay power spectrum, 762
Delta medulation (see Source, encoding)
Demodulation/Detection
carrier recovery for, 337358
Costas loop. 355-356
decision-directed, 347-350
ML methods, 339-341
non-decision-directed, 350-358
squaring PLL, 353-355
coherent:
of binary signals, 257-260
of biorthogonal signals, 264-266
comparison. of, 282284
of DPSK signals, 274-278
of equicorrelated signals, 266
of M-ary binary coded signals, 266267
optimum, 244-257
of orthagonal signals, 260264
of PAM signals, 267-269
of PSK signals, 269-274
of QAM signals, 278-282
correlation-type, 234-238
of CPF5K, 284-289
performance, 289-30!
for intersymbol interference, 584627
matched filter-type, 238-244
maximum-likelihood, 244-254
maximum likelihood sequence, 249-254
noncoherent, 302-313
of binary signals, 302-308
of M-ary orthogonal signals, 308-312
multichannel, 680-686
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Demodulation/Detection (Cont.):
noncoherent {Cont.):
optimum, 302-312
symbol-by-symbol, 254-256
Differcntial encoding, 187
Differential entropy, 92
Differential phase-shift keying {DPSK),
274-278
Digital communication system model, 1-3
Digital modulator, 2
Direct sequence (see Spread spectrum signals)
Discrete memoryless channel (DMC), 376-377
Discrete random variable, 23
Distance (see Block codes; Convolutional codes,
minimum free distance)
Distortion (See also Channel distortion);
from quantization, 113-125
granuiar noise, 134
slope overload, 134
Distortion rate funciion, 110
Distributions {see Probability distributions)
Diversity:
antenna, 777
frequency, 777
performance of, 777-795
polarization, 778
RAKE, 778
time, 777 N
Doubie-sideband modulation, (76
DPCM (Differential pulse code modulation) (see Source,
cncoding)
DPSK (differential phase-shift keying), 274-278
Dual code, 426 '
Dual-k codes, 192-499
Duobinary signal, $48- 549

Early-late gate synchronizer, 362365
Effective antenna area, 316
Effective radiated power, 316
Eigenvalue, 164
Eigenvector, 164
Elias bound, 461-463
Encoding {see Block codes: Conventional codes)
Energy, 156
Ensemble averages, 64—65
Eniropy, 88
conditional, 88
differential, 92
discrete memoryless sources, 94-103
discrete stationary sources, 103106
Entropy coding, 96, 117
Envelope, 155
Envelope detection, 306
Equalizers (See also Adaptive equalizers)
decision-feedback. 621-627, 649-650
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Equalizers (Conr.):
decision-feedback (Conr.):
adaptive, 6549—652
examples of performance, 622-623
of treltis-coded signats, 650652
minimum MSE, 622
predictive form, 626-627
linear. 601-620, 64R-649
adaptive, 636-644
convergence of MSE algorithm, 642-644
error probability, 613-617
examples of performance, 613-617
excess MSE, 644-648
fractionally spaced, 617-620
LMS (MSE) algorithm, 639-642
limit on step size, 645-646
mean-square error (MSE} criterion, 607620
minimum MSE, 610-6]1
output SNR for, 605, 610
peak distortion, 602
peak distortion criterion, 602-607
zero-forcing, 603-604, 637-638
maximum-likelihood sequence estimation, 584-586,
589-593, 607-616
self-recovering (blind}, 644675
with trellis-coded modulation, 650—652
using the Viterbi algorithm, 589-593
channel estimator for, 652-654
performance of, 593-601
Equivalent codes, 418
Equivalent lowpass impulse response, 157158
Equivalent lowpass signal. 155
Equivocation, 90
Error function, 40
Error probability:
coherent demoduiation:
binary coded, 266-267
for binary signals, 257-260
for DPSK. 274-278
for M-ary biorthogonal, 264265
for M-arv equicorrelated, 266
for M-ary orthogonal, 260-263
for M-ary PAM, 267-269
for PSK, 269-274
for QAM, 278-282
umon bound for, 263-264
multchannel, 680656
noncoherent demodulation, 301 -313
for binary signsls, 301-308
for M-ary orthogonal, 308-312
Estimate:
biased. 367
consistent, 59, 368
efficient, 368

Estimate (Cont.):
unbiased, 367
Estimate of phase (See also Carrier phase estimation)
clairvoyant, 889
pilot signal, R8%
Estimation, maximum-likelihood sequence (MLSE), 249-
254
Estimation:
maximum likelihood, 334-335
of carrter phase, 337-358
of signal parameters, 333-335
of symbol timing, 358-365
of symbol timing and carrier phase, 365-371
performance af, 367-370
Euclidean:
distance, 251
weight, 595
Events, 18
intersection of, 19
joint, 19
mutuaily exclusive, 19
null, 19
probability of, 19
union of, 19
Excess bandwidth, 546
Excess MSE, 644-648
Expected value, 33
Expurgated codes, 816-817
Extended code, 420
Exiension field, 415
Eye pattern, 541

Fading channels. 8, 756~839 (See aiso Channels)
Feedback decoding, 505-506
FH spread spectrum signals (see Spread spectrum signals)
Filter:
integrator, 238
matched, 239
Folded spectrum, 606
Follower jammer. 73]
Fourier transform, 38§
Free euclidian distance, 517
Free-space path loss, 317
Frequency diversity, 777
Frequency division multiple access (TDMA), 842-844
Frequency-hopped (FH) spread spectrum (see Spread
spectrum signals)
Frequency-shift keying (FSK), 181183, 190191
tontinuous-phase (CPFSK ) performance of, 284-301
power density spectrum of, 213-217
representation of, 194161
Functions of random variables, 28-32
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Galos field, 415

Gamma function, 42

Gaussian distribution, 39-41
multivariate, 49-52

Gayssian poise, 11

Gaussian random process, 65

Gaussian random variables. hinear transformation of,

50-52

Generator matrix, 417
Generator polynomial, 424
Gilbert—Varsharmov bound, 463
Golay codes, 423, 423

extendéd, 423

generator polynomial of, 433

performance on AWGN channel, 454--455
Gold sequences, 727
Gram—Schmidt procedure, 167-173
Crranular noise, 134
Gray encoding, 175

Hadamard codes, 422-423. 817-821
Hamming bound on mintmum distance, 462
Hamming codes, 421--422, 433
Hamming distance, 415
Hard-decision decoding:
hiock codes, 445-436
convolutional codes, 489-492
Hilbert transform, (54
Huffman coding, %6-103

Ilumination efiiciency factor, 317
Impulse noise, 538
Impulse response, 68
Independent events, 21
Independent random variables, 24
Inforamtion, B4-85
equivocation, %)
measure of, 84-91
mutual, 84
average, 87
self-, 8BS
average (entropy), B8
sequenge, 3. 83
Interleaving, 468-470
block, 459
convolutional, 470
Intersymbol interference, 536-537
controlled (see Partia) response signals)
discrete-time model for, 586-549
equivalent white noise filter model, S88
eptimum demeodulator for, S84--593
Enverse filter, 603
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Jacobian, 32

Jamming margin. 707

Joint ¢df {cumulative distribution function), 25
Joint pdf (probabiltiy density function), 235
Joint processes, 65

Kalman {RLS) algorithm, 656-658
fast, 660

Kasami sequences, 729

Kraft inequality, 97-98

Laplace probability density function, 56
Lattice:
filter, 660-664
recursive least-squares, 664
Law of targe numbers {weak). 59
Least favorable pdf, 305
Least-squares algorithms, 654-664
Lempel-Ziv algorithm, 106-108
Levinson-Durshin algorithm, 128, 139, 879-881
Likelihood ratio. 34
Line codes, 566
Linear codes (see Block codes. lincar:
Convolutioral codes)
Linear cqualization (vee Equalizers, lincar)

923

Lincar-feedback shifi-register, maximal lengih, 433435,

124727
Linear prediction, 128-130, 138- 144, 660--664
backward, 661-662
forward, 661-662
residuals, 663
Lincar prediclive coding {LPC):
specch, 138-144
Lincar ime-invariant system, 68-69
response to stochastic input, 68-72

Linear transformation of random variables, 28-29, 50-52

Link budget analysis, 216-319

Link margin, 319

Lloyd-Max quantizer, 113

Lowpass signal, 155

Lowpass system, 157

Low probability of intercept. 696, 715-716

Magnetic recording, S67--568

normahzed density, 567
Majority logic decoder, 506
Mapping by set partitioning. 512
Marginal probability density. 26
Marcum’s @Q-function, 44
Markov chain, 189

transition probability matrix of, 189
Matched filter, 238-244
Maximal ratio combining, 779

performance of, 780-782
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Maximum a posteriori probability (MAP)
criterion, 245, 254-257
Maximum free distance codes, tables of, 492-49%6
Maximum length shift-regisier codes, 433-435, 724-727
Maximum likelthood:
parameter estimation, 333-335, 339-341
for carrier phase, 339..341
for joint carrier and symbol, 365-367
for symbeol timing, 358-364
performance of, 367-370
Maximum-likelthood criterion, 245-246
Maximum-likelihood receiver, 233-257
Maximum-likelihood sequence estimation (MLSE), 249~
254
Mean-square ¢rror (MSE) criterion, 607-617
Mean value, 33
Microwave LOS channel, 768-769
Miller code, 188, 575
Minimum distance:
bounds on, 461-464
definition, 416
Euchdean, 173
Hamming, 416
Minimum-shift keying (MSK), 196199
power spectrum of, 213-219
Models:
channel, 375-386
source, 82-84, 93-95
Modified ducbinary signal, 549-550
Modulation:
binary, 257-260
bicrthogonal, 264-266
comparisor of, 282-284
continuous-phase FSK {CPFSK), 190-191
power spectrum, 213-219
DPSK, 274-278
equicorrelated (simplex), 266
index, 191
linear, 174-18¢
power spectrum of, 204-209
M-ary orthogonal, 260264
multichanne), 680-686
nonlinear, 190-203
offset QPSK, 198
PAM (ASK), 267-269
PSK, 269-274
QAM, 278-282
Modulation codes, 566-576 (See afso Partial response
signals)
capacity of, 569
Miller code, 573
NRZ, 574
NRZI, 566, 568, 574-575
run-length limited, 568-576

Moduiation codes (Cont.):
run-length limied (Cont. ):
fixed rate, 572
state dependent, 571
state independent, 571
Modulator:
binary, 2
digital, 2
M-ary, 2
Moments, 33
Morse Code, 13
Multicarrier communications
capacity of, 687-689
FFT-based system, 689-692
Multichannel communications, 680-686
with binary signals, 682-684
with M-ary orthogonal signals, 684-686
Multipath channels, 8, 758-839
Multipath intensity profile, 762
Multipath spread, 763
Multiple access methods, 840-849
capacity of, 843-849
CDMA, 843, 849-862
FDMA, 842
random access, 962-872
TDMA, 842
Multiuser communications, 840-872
Multivariate gaussian distribution, 49-52
Mutual information, 84
average, 87-88
Mutually exclusive events, 18

Narrowband interference, 704-706
Narrowband process, 152

carrier frequency of, 153
Narrowband signal, 152
Noise:

gaussian, 162

white, 162-163
Noisy channel coding theorem, 386-387
Noncoherent combining loss 683-684
Nontlinear distortion, 537
Nonlinear modulation, 190
Nonstationary stochastic process, 63
Norm, 165
Normal equations, 128

Normatl random variables (see Gaussian distribution)

Null event, 18

Null space, 416

Nyquist criterion, 542-547
Nyquist rate, 14, 72

Offset quadrature PSK (OQPSK), 198
On-off signalling (00K), 321
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Optimum demodulation: (see Demodulation/Detection)
Orthogonal signals. 165-166
Orthogonality principle. mean-square estimation, 608
Orthonormal:

expansion, 165-173

functions, 165-166

Parity check, 417
malnix, 419
Parity polynomial, 426
Partial-band interference, 734-741
Partial response signals, 348-56)
duobinary, 548-549
error probability of, 562-365
modified duobinary, 549
precoding for, 551-555
Partial-time (pulsed) jamming, 717-724
Peak distortion criterion, 602-607
Peak frequency deviation, 190
Perfect codes, 453-454
Periodically stationary, wide serse. 75-76, 205
Phase jitter, 538
Phase-locked loop (PLL), 341-346
Costas, 355-356
decisson-directed. 347-350
M-law type, 356-358
non-decision-directed, 350-351
square-law type. 353-355
Phase-shift keying (PSK), 177-178, 269-274
adaptive reception of, 887-8%
pdf of phase, 270-27]
performance for AWGN channel, 271-274
performance for Rayleigh fading channel, 780-787.
887-894
Plotkin bound on minimum distance, 462
Power density spectrum, 67-68, 204-223
at output of linzar sysiem, 69
of digitally modulated signals, 204-223
Prediction (see Lincar prediction)
Preferred sequences, 727
Prefix condition, 9%
Probability:
a priori, 21
a posteriori, 21
conditional, 20, 26-28
of events, 18
jeint, 19, 25-26
Probability density function (pdf), 24
Probability distribution function, 23
Probability distributions, 37-52
binomial, 37-38
chi-square, 41-45
central, 42-43
noncentral, 42-44
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Probability distributions (Cont.}:
gamma, 43
gaussian, 39-41
multivariate gaussian, 49-52
Nakagami. 48-49
Rayicigh, 45-46
Rice, 47-48
uniform, 39
Probability transition matrix, 377
Processing gain, 707
Pseudo-noise (PN) sequences:
autocorrelation function, 725-726
generation via shift register, 724-729
Gold. 727
Kasami, 729
maximal-length, 725--726
peak cross-correlation, 726-727
preferred, 727
{See also Spread spectrum signals)
Puise amplitude modulation (PAM), 174-176, 267-26%
Pulse code modulation (PCM), 125-133
adaprive {ADPCM), 131-133
differential (DPCM), 127-129
Pulsed interference, 717
effect on error rate performance, 717-724

Quadrature amplitude modulation (QAM), 178-180,
278-282
Quadrature components, 155
of narrowband pracess, 155-156
properties of, 161-162
Quantization, 108-125
block, 118-125
optimization (Lloyd-Max}, 113-118
scalar, 113-118
vector, 118-125
Quaatization error, 125133
Quasiperfect codes, 454

Raised cosine spectrum, 546
excess bandwidth, 546
rollof parameter, 546
RAKE correlator, 797-798
RAKE receiver:
for binary antipodal signals, 798-803
{or binary arthogonal signals, 801-802
for DPSK signals, 804
for noncoherent detection of orthogonal signals, 805
RAKE matched filter, 799-800
Random access, 862-872
ALOHA, B53-867
carrier sense, 867-872
with collision detection, 868
non persistent, 868
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Random access {Cont.):
carrier sgnse (Cont):
1-persistent. 869
p-persistent, 869
offered channel traffic, 864
slotted ALOHA, 864
throughput, 865-867
unsiotted. 864
Random coding, 390--40X
binary coded signals, 390-397
multiamplitude signals, 397-399
Random Processes (see Stochastic processes)
Random variables, 22-28
function of, 28-32
multiple. 25
orthogonal, 35
single, 22-24
statistically independent. 28
sums of, 58-63
central kmit theorem, 61-62
transformation of, 28-32
Jacobian of, 32
lincar, 28, 32, 49-52
uncorrelated, 34
Rate:
code, 2, 414
of encoded information (see Source encoding)
Rate distortion function, 10R-113
-of bandlimited gaussian source, 112
of memoryless gaussian source, 109-110
table of, 112
Rayleigh distribution, 45-46

Rayleigh fading (sez Channel. fading multipath; Channel

Rayleigh fading)
Reciprocal polynomial, 426
Recursive least squares (RLS} algorithms, 654-664

fast RL.S, 660

RLS Kalman, 656-660

RLS lattice, 660-664
Reed-Solomon codes. 464-466
References, R99-916
Reflection coefficients, 140
Regenerative repeaters, 314-316
Residuals, 663
Rice distribution, 47-4%
Ricean fading channel, 76!
Run-length limited codes, 568-576

fixed rate, 572

state dependent, 571

state independent, 571

Sample function, 63
Sample mean, 58
Sample space, 17-18

Sampling theorem, 72-73
Scattering function, 766
Seli-information, 85
average (entropy), 88
Sequential decoding, 501-503
Set partitioning, 512
Shannon limit, 264
Shortened code, 421
Signal constellations:
PAM, 174-176
PSK, 177-178
QAM, |78-180
Signal design, 540-576
for band-limited channel, 540-551
for channels with distortion, 557-560
for no intersymbol interference, 540-547
with partial response pulses, 548-551
with raised cosine spectral pulse, 546-547
Signal-to-noise ratio {SNR), 258
Signals:
bandpass, 152-157
baseband, 176, 186-189
binary antipodal, 257
binary coded, 266-267
binary orthogonal, 258
biorthogonal, 183184, 264-266
carner of, 159
characterization of. 152-163
complex envelope of, 155
digitally modulated, 173-209
cyciostationary, 204-206
representation of, 173-202
spectral characteristics of, 202-223
discrete-time, 74-76
cnergy of, 136
envelepe of, 155
equivalent lowpass, 155
lowpass, 155
M-ary orthogonal, 181-183
multiamplitude, 174-176
multidimensional, 180-181
muitiphase, 177-178
narrowband, 152
optimum demeodulation of, 233-257
quadrature amplitude modulated (QAM}, 178-180
quadrature components of, 155-156
properties of, 161-162
simplex. 184, 266
speech, 143-144
stochastic, 62-77, 159-163
autocorrelation of, 64, 68-70, 75-76
autocovariance, 64
bandbass stalionary, 159163
cross correlation of, 65
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Signals {Cont.):
stochastic (Cont):
ensemble averages of, 64-65
power density spectrum, 67-68, 204-223
properties of quadrature components, 161-162
white noisc, 162-163
Signature sequence. 843
Simplex signals, 266
Single-sideband modulation, 176
Skin depth, 9
Stope overload distortion. 134
Slope overload distortion. 134
Soft decision decoding:
block codes, 436445
convolutional codes, 486-489
Source:
analog, R2-¥3
binary, 83
discrete memoryless {DMS), 82-83
discrete stationary, [03-106
endoding, 93--144
adaptive DM, 135-136
adaptive DPCM, 131-133
adaptive PCM. 131-133
delta modulation (DM), 133136
differential pulse code modulation (DPCM), 127-1
discrete memoryless, 94-103
Huffman. 99-103
Lempel-Ziv, 106108
linear predictive coding (LPC), 138-142
puise code modulation (PCM), 125-127
models, 82-84
speech, 143-144
spectral, 136-138
waveform, 125-144
Source coding, 82-144

29

Spaced-frequency. spaced-time correlation function. 763

Spectrum:
of CPFSK and CPM, 209219
of digital signals. 203-223
of lingar modulation, 204-219
of signals with memory. 220-223
Spread factor, 771
table of, 771
Spread spectrum multiple access (SSMA). 716
Spread spectrum signals:
acquisition of, 774-74%
for antjamming, 712-715
for code division muiliple access (CDMAY}, 696, 716-
717, 741-743
concatenaled codes for, 711-712, 740-741
direct sequence, 697-700
applications of, 712-717
coding for, 710-712
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Spread spectrum signals (Cond )
dircet sequence (Cont):
demodulation of, 701-702
performance of, 702712
with pulsc interfercnce, 717-724
examples of DS, 712-717
frequency-hopped {FH), 729-743
block hopping, 731
foflower jammer for, 731
petformance of, 732-734
with partial-band interference. 734, 741
hybrid combinations, 743-744
for low-probabitlity of intercept (LP1), 696, 715-716
for multipath channels, 795-806
synchronization of, 744-752
time-hopped (TH), 743
tracking of, 748
uncoded PN, 708
Spread spectrum system model, 697-698
Square-law detection, 306
Square-root factorization, 66(), 8Y7-898
Staggered quadrature PSK (SQPSK). 198
State diagram. 196, 474477
Stationary stochastic processes, 6364
strict-sense, 63-64
wide-sense, 64
Statistical averages, 64-67
Steepest-descent (gradient) algorithm, 639-642
Stochastic process, 62-72, 159-163
cyclostationary, 75-76
discrete-time, 74-76
narrowband, 159
nonstationary, 63
strici-sense stationary, 63-64
wide-sense stationary, 64
Storage channet, 10
Strici-sense stationary, 6364
Subband coding, 137
Symbaol interval, 174
Synchronization:
carrier, 337-158
efiect of noise, 343-346
for multiphase signals, 356-3358
with Coslas loop, 355-356
with decision-feedback Toop, 347350
with phase-locked loop (PLL}, 341-346
with squaring loop, 353-355
of sprcad spectrum signals, 744-752
shding correlator, 747
symbol. 336-137
Syndrome. 446
Syndrome decoding. 446-451
System, linear, 68-72
autccorrelation function at output, 69
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System, kKnear (Cont.):

bandpass, response of, 157-159

power density spectrum at output, 69-70
Systematic code, 418

Tail probability bounds, 53-57
Chebyshev inequality, 53-54
Chernoff bound, 54-57
TATS (tactical transmission system), 741-743
Telegraphy, 13
Telephone chamnels, 4, 563-538
Thermal noise, 3, 11
Threshold decoder, 506
Time diversity, 777
Time division multiple access (TDMA), 842-844
Toeplitz matrix, 87%
Transfer function:
of convolutionat code, 477-483
of linear system, 68-72
Transformation of random variables, 29-32, 49-52
Transition probabilities, 189
Transition probability matrix, 189
for channel, 375-378
for delay modulation, 189-190
Tree diagram, 192-195, 471-472
Trellis-coded modulation, 511526
free Euclidean distance, 517
subset decoding, 519
tables of coding gains for, 522-323
Trellis diagram. 473

Uncorrelated random variables, 34
Uniform distribution, 39

Union bound, 263-264, 387-389
Union of events, 18

Uniquely decodable, 96
Universal source coding, 106

Vanable-length encoding, 95-103

Variance, 33

Vector space, 163-165

Vector quantization, 118-125

Viterbi algorithm, 251, 287-289, 483-486
Vocal tract, 141-143

Voltage-controlled osciliator (VCQ), 34i-343

Weak law of large numbers, 59
Weight:
of code word, 414
distribution, 414
for Golay, 423
Welch bound, 728
White noise, 162-163
Whitening filter, 587-588
Wide-sense stationary. 64
Wiener filter, 14

Yule-Walker equations. 128

Z transform, 587
Zero-forcing equalizer, 602605
Zero-forcing filter, 603-604
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