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Principles of Digital Communication

The renowned communication theorist Robert Gallager brings his lucid writing style to
this first-year graduate textbook on the fundamental system aspects of digital commu-
nication. With the clarity and insight that have characterized his teaching and earlier
textbooks he develops a simple framework and then combines this with careful proofs
to help the reader understand modern systems and simplified models in an intuitive
yet precise way. Although many features of various modern digital communication
systems are discussed, the focus is always on principles explained using a hierarchy
of simple models.

A major simplifying principle of digital communication is to separate source coding
and channel coding by a standard binary interface. Data compression, i.e., source
coding, is then treated as the conversion of arbitrary communication sources into binary
data streams. Similarly digital modulation, i.e., channel coding, becomes the conversion
of binary data into waveforms suitable for transmission over communication channels.
These waveforms are viewed as vectors in signal space, modeled mathematically as
Hilbert space.

A self-contained introduction to random processes is used to model the noise and
interference in communication channels. The principles of detection and decoding
are then developed to extract the transmitted data from noisy received waveforms.
An introduction to coding and coded modulation then leads to Shannon’s noisy-
channel coding theorem. The final topic is wireless communication. After developing
models to explain various aspects of fading, there is a case study of cellular CDMA
communication which illustrates the major principles of digital communication,

Throughout, principles-are developed with both mathematical precision and intu-
itive explanations, allowing readers to choose their own mix of mathematics and
engineering. An extensive set of exercises ranges from confidence-building examples
to more challenging problems. Instructor solutions and other resources are available
at www.cambridge.org/9780521879071.

‘Prof. Gallager is a legendary figure. . . known for his insights and excellent style of
exposition’
Professor Lang Tong, Cornell University

‘a compelling read’
Professor Emre Telatar, EPFL

‘It is surely going to be a classic in the field’
Professor Hideki Imai, University of Tokyo

Robert G. Gallager has had a profound influence on the development of modern digital
communication systems through his research and teaching. As a Professor at M.L.T.
since 1960 in the areas of information theory, communication technology, and data
networks. He is a member of the U.S. National Academy of Engineering, the U.S.
National Academy of Sciences, and, among many honors, received the IEEE Medal of
Honor in 1990 and the Marconi prize in 2003. This text has been his central academic
passion over recent years.
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1 Introductlonto dlgltal communlcatlon

Communication has been one of the deepest needs of the human race throughout
recorded history. It is essential to forming social unions, to educating the young, and
to expressing a myriad of emotions and needs. Good communication is central to a
civilized society.

The various communication dlsmplmes in engineering have the purpose of providing
technological aids to human communication. One could view the smoke signals and

“drum rolls of primitive societies as being technological aids to communication, but
communication technology as we view it today became important with telegraphy,
then telephony, then video, then computer communication, and today the amazing
mixture of all of these in inexpensive, small portable devices.

Initially these technologies were developed as separate networks and were viewed
as having little in common. As these networks grew','howevef, the fact that all parts of
a given network had to work together, coupled with the fact that different components
were developed at different times using different design methodologies, caused an
increased focus on the underlying principles and architectural understanding required
for continued system evolution,

This need for basic principles was probably best understood at American Telephone
and Telegraph (AT&T), where Bell Laboratories was created as the research and devel-
opment arm of AT&T. The Math Center at Bell Labs became the predominant center
for communication research in the world, and held that position until quite recently.
The central core of the principles of communication technology were developed at
that center.

Perhaps the greatest contribution from the Math Center was the creation of Informa-
tion Theory [27] by Claude Shannon (Shannon, 1948). For perhaps the first 25 years
of its existence, Information Theory was regarded as a beautiful theory but not as
a central guide to the architecture and design of communication systems. After that
time, however, both the device technology and the engineering understanding of the
theory were sufficient to enable system development to follow information theoretlc
principles.

A number of information theoretic ideas and how they affect commumcatmn system
design will be explained carefully in subsequent chapters. One pair of ideas, however,

—is central to almost every topic-—The- first-is to-view-all communication sources, e.g.,
speech waveforms, image waveforms, and.text files, as being representable by binary
sequences. The second is to design communication systems that first convert the
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2 Intraduction to digital communication
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Figure 1.1.  Placing a binary interface between source and channel. The source encoder converts the source
output to a binary sequence and the channel encoder (often called a modulator) processes the
binary sequence for transmission over the channel. The channel decoder (demodulator)
récreates the incoming binary sequence (hopefully reliably), and the source decoder recreates
the source output.

source output into a binary sequence and then convert that binary sequence into a form
suitable for transmission over particular physical media such as cable, twisted wire
pair, optical fiber, or electromagnetic radiation through space.

Digital communication systems, by definition, are communication systems that use
such a digital' sequence as an interface between the source and the channel input (and -
similarly between the channel output and final destination) (see Figure 1.1).

The idea of converting an analog source output to a binary sequence was quite
revolutionary in 1948, and the notion that this should be done before channel processing
was even more revolutionary. Today, with digital cameras, digital video, digital voice,

- etc., the idea of digitizing any kind of source is commonplace even among the most
technophobic. The notion of a binary interface before channel transmission is almost
as commonplace. For example, we all refer to the speed of our Internet connection in
bits per second.

There are a number of reasons why communication systems now usually contain a
binary interface between source and channel (i.e., why digital communication systems
are now standard). These will be explained with the necessary qualifications later, but
briefly they are as follows.

e Digital hardware has become so cheap, reliable, and miniaturized that digital
interfaces are eminently practical,

¢ A standardized binary interface between source and channel simplifies implement-
ation and understanding, since source coding/decoding can be done independently
of the channel, and, similarly, channel coding/decoding can be done independently
of the source.

1 A digital sequence is a sequence made up of elements from a finite alphabet (e.g. the binary digits
{0, 1}, the decimal digits {0, 1, ..., 9}, or the letters of the English alphabet). The binary digits are almost
universally used for digital commumcauon and storage, so we only distinguish dxgxta] from binary in those
few places where the difference is significant.
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1.1 Standardized interfaces and layering 3

1.1

¢ A standardized binary interface between source and channel simplifies networking,
which now reduces to sending binary sequences through the network.

® One of the most important of Shannon’s information theoretic results is that if a
source can be transmitted over a channel in any way at all, it can be transmitted using
a binary interface between source and channel. This is known as the source/channel
separation theorem.

In the remainder of this chapter, the problems of source coding and decoding and
channel coding and decoding are briefly introduced. First, however, the notion of
layering in a communication system is introduced. One particularly important example
of layering was introduced in Figure 1.1, where source coding and decoding are
viewed as one layer and channel coding and decoding are viewed as another layer.

Standardized interfaces and layering

Large communication systems such as the Public Switched Telephone Network
(PSTN) and the Internet have incredible complexity, made up of an enormous variety
of equipment made by different manufacturers at different times following different
design principles. Such complex networks need to be based on some simple archi-
tectural principles in order to be understood, managed, and maintained. Two such
fundamental architectural principles are standardized interfaces and layering.

A standardized interface allows the user or equipment on one side of the interface
to ignore all details about the other side of the interface except for certain specified
interface characteristics. For example, the binary interface? in Figure 1.1 allows the
source coding/decoding to be done independently of the channel coding/decoding.

The idea of layering in communication systems is to break up communication
functions into a string of separate layers, as illustrated in Figure 1.2.

Each layer consists of an input module at the input end of a communcation system
and a “peer” output module at the other end. The input module at layer i processes the
information received from layer i + 1 and sends the processed information on to layer
i~ 1. The peer output module-at layer i works in the opposite direction, processing
the received information from layer i — 1 and sending it on to layer i.

As an example, an input module might receive a voice waveform from the next
higher layer and convert the waveform into a binary data sequence that is passed on to
the next lower layer. The output peer module would receive a binary sequence from
the next lower layer at the output and convert it back to a speech waveform.

As another example, a modem consists of an input- module (a modulator) and
an output module (a demodulator). The modulator receives a binary sequence from
the next higher input layer and generates a corresponding modulated waveform for
transmission over a channel. The peer module is the remote demodulator at the other
end of the channel. It receives a more or less faithful replica of the transmitted

2 The use of a binary sequence at the interface is not quite enough to specify it, as will be discussed later.
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4 introduction to digital communication
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Figure 1.2.  Layers and interfaces. The specification of the interface between layers i and i — 1 should
specify how input module { communicates with input module i — 1, how the corresponding
output modules communicate, and, most important, the input/output behavior of the system to
the right of the interface. The designer of layer i — 1 uses the input/output behavior of the
layers to the right of i —1 to produce the required input/output performance to the right of layer
i. Later examples will show how this multilayer process can simplify the overall system design.

waveform and reconstructs a typically faithful replica of the binary sequence. Similarly,
the local demodulator is the peer to a remote modulator (often collocated with the
remote demodulator above). Thus a modem is an input module for communication in
one direction and an output module for independent communication in the opposite
direction. Later chapters consider modems in much greater depth, including how noise
affects the channel waveform and how that affects the reliability of the recovered
binary sequence at the output. For now, however, it is enough simply to view the
modulator as converting a binary sequence to a waveform, with the peer demodulator
converting the waveform back to the binary sequence.

As another example, the source coding/decoding layer for a waveform source can be
split into three layers, as shown in Figure 1.3. One of the advantages of this layering is
that discrete sources are an important topic in their own right (discussed in Chapter 2)
and correspond to the inner layer of Figure 1.3. Quantization is also an important topic
in its own right (discussed in Chapter 3). After both of these are understood, waveform
sources become quite simple to understand.

. | | I
input . -| discrete
———— sampler uanti }
waveform P T q zer T encoder i
analog symbol binary binary
sequence sequence interface |channel
output | analog | table __:_ discrete !
waveform| filter r:_ lookup l decoder ;

Figure 1.3.  Breaking the source coding/decoding layer into three layers for a waveform source. The input
side of the outermost layer converts the waveform into a sequence of samples and the output
side converts the recovered samples back to the waveform. The quantizer then converts each
sample into one of a finite set of symbols, and the peer module recreates the sample (with
some distortion). Finally the inner layer encodes the sequence of symbols into binary digits.
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1.2 Communication sources 5

1.2

The channel coding/decoding layer can also be split into several layers, but there are
a number of ways to do this which will be discussed later. For example, binary error-
correction coding/decoding can be used as an outer layer with modulation and demod-
ulation as an inner layer, but it will be seen later that there are a number of advantages
in combining these layers into what is called coded modulation.> Even here, however,
layering is important, but the layers are defined differently for different purposes.

It should be emphasized that layering is much more than simply breaking a system
into components. The input and peer output in each layer encapsulate all the lower
layers, and all these lower layers can be viewed in aggregate as a communication
channel. Similarly, the higher layers can be viewed in aggregate as a simple source
and destination. :

The above discussion of layering implicitly assumed a point-to-point communi-
cation system with one source, one channel, and one destination. Network situations
can be considerably more complex. With broadcasting, an input module at one layer
may have multiple peer output modules. Similarly, in multiaccess communication a
multiplicity of input modules have a single peer output module. It is also possible
in network situations for a single module at one level to interface with multiple
modules at the next lower layer or the next higher layer. The use of layering is at
least as important for networks as it is for point-to-point communications systems.
The physical layer for networks is essentially the channel encoding/decoding layer
discussed here, but textbooks on networks rarely discuss these physical layer issues
in depth. The network control issues at other layers are largely separable from the
physical layer communication issues stressed here. The reader is referred to Bertsekas
and Gallager (1992), for example, for a treatment of these control issues.

The following three sections provide a fuller discussion of the components of
Figure 1.1, i.e. of the fundamental two layers (source coding/decoding and channel
coding/decoding) of a point-to-point digital communication system, and finally of the
interface between them. -

Communication sources

. The source might be discrete, i.e. it might produce a sequence of discrete symbols,

such as letters from the English or Chinese alphabet, binary symbols from a computer
file, etc. Alternatively, the source might produce an analog waveform, such as a voice
signal from a microphone, the output of a sensor, a video waveform, etc. Or, it might
be a sequence of images such as X-rays, photographs, etc. ’
Whatever the nature of the source, the output from the source will be modeled as a
sample function of a random process. It is not obvious why the inputs to communication

3 Terminology is nonstandard here. A channel coder (including both coding and modulation) is often
referred to (both here and elsewhere) as a modulator. It is also often referred to as a modem, although a
modem is really a device that contains both modulator for communication in one direction and demodulator
for communication in the other.
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6 Introduction to digital communication

systems should be modeled as random, and in fact this was not apprec1ated before
Shannon developed information theory in 1948.

The study of communication before 1948 (and much of it well after 1948) was
based on Fourier analysis; basically one studied the effect of passing sine waves
through various kinds of systems and components and viewed the source signal as a
superposition of sine waves. Our study of channels will begin with this kind of analysis
(often called Nyquist theory) to develop basic results about sampling, intersymbol
interference, and bandwidth.

Shannon’s view, however, was that if the recipient knows that a sine wave of a
given frequency is to be communicated, why not simply regenerate it at the output
rather than send it over a long distance? Or, if the recipient knows that a sine wave of
unknown frequency is to be communicated, why not simply send the frequency rather
than the entire waveform?

The essence of Shannon’s viewpoint is that the set of possible source outputs, rather
than any particular output, is of primary interest. The reason is that the communication
system must be designed to communicate whichever one of these possible source

_ outputs actually occurs. The objective of the communication system then is to trans-
form each possible source output into a transmitted signal in such a way that these
possible transmitted signals can be best distinguished at the channel output. A prob-
ability measure is needed on this set of possible source outputs to distinguish the
typical from the atypical. This point of view drives the discussion of all components
of communication systems throughout this text.

1.21 Source coding

The source encoder in Figure 1.1 has the function of converting the input from its
original form into a sequence of bits. As discussed before, the major reasons for
this almost universal conversion to a bit sequence are as follows: inexpensive digital
hardware, standardized interfaces, layering, and the source/channel separation theorem.

The simplest source coding techniques apply to discrete sources and simply involve
representing each successive source symbol by a sequence of binary digits. For exam-
ple, letters from the 27-symbol English alphabet (including a sPACE symbol) may be
encoded into 5-bit blocks. Since there are 32 distinct 5-bit blocks, each letter may
be mapped into a distinct 5-bit block with a few blocks left over for control or other
symbols. Similarly, upper-case letters, lower-case letters, and a great many special
symbols may be converted into 8-bit blocks (“bytes”) using the standard ASCII code.

Chapter 2 treats coding for discrete sources and generalizes the above techniques in
many ways. For example, the input symbols might first be segmented into m-tuples,
which are then mapped into blocks of binary digits. More generally, the blocks of binary
digits can be generalized into variable-length sequences of binary digits. We shall
find that any given discrete source, characterized by its alphabet and probabilistic
description, has a quantity called entropy associated with it. Shannon showed that this
source entropy is equal to the minimum number of binary digits per source symbol
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1.3 Communication channels 7

1.3

required to map the source output into binary digits in such a way that the source
symbols may be retrieved from the encoded sequence.

Some discrete sources generate finite segments of symbols, such as email messages,
that are statistically unrelated to other finite segments that might be generated at other
times. Other discrete sources, such as the output from a digital sensor, generate a
virtually unending sequence of symbols with a given statistical characterization. The
simpler models of Chapter 2 will correspond to the latter type of source, but the
discussion of universal source coding in Section 2.9 is sufficiently general to cover
both types of sources and virtually any other kind of source.

The most straightforward approach to analog source coding is called analog to
digital (A/D) conversion. The source waveform is first sampled at a sufficiently high
rate (called the “Nyquist rate”). Each sample is then quantized sufficiently finely for
adequate reproduction. For example, in standard voice telephony, the voice waveform
is sampled 8000 times per second; each sample is then quantized into one of 256 levels
and represented by an 8-bit byte. This yields a source coding bit rate of 64 kilobits
per second (kbps). .

Beyond the basic objective of conversion to bits, the source encoder often has the
further objective of doing this as efficiently as possible — i.e. transmitting as few bits
as possible, subject to the need to reconstruct the input adequately at the output. In this
case source encoding is often called data compression. For example, modern speech
coders can encode telephone-quality speech at bit rates of the order of 6~16 kbps
rather than 64 kbps. » . '

The problems of sampling and quantization are largely separable. Chapter 3 devel-
ops the basic principles of quantization. As with discrete source coding, it is possible to
quantize each sample separately, but it is frequently preferable to segment the samples
into blocks of n and then quantize the resulting n-tuples. As will be shown later, it is
also often preferable to view the quantizer output as a discrete source output and then
to use the principles of Chapter 2 to encode the quantized symbols. This is another
example of layering.

Sampling is one of the topics in Chapter 4. The purpose of sampling is to convert the

_ analog source into a sequence of real-valued numbers, i.e. into a discrete-time, analog-

amplitude source. There are many other ways, beyond sampling, of converting an
analog source to a discrete-time source. A general approach, which includes sampling
as a special case, is to expand the source waveform into an orthonormal expansion
and use the coefficients of that expansion to represent the source output. The theory of
orthonormal expansions is a major topic of Chapter 4. It forms the basis for the signal
space approach to channel encoding/decoding. Thus Chapter 4 provides us with the
basis for dealing with waveforms for both sources and channels.

Communication channels

Next we discuss the channel and channel coding in a generic digital communication
system.
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Introduction to digital communication '

In general, a channel is viewed as that part of the communication system between
source and destination that is given and not under the control of the designer. Thus, to
a source-code designer, the channel might be a digital channel with binary input and
output; to a telephone-line modem designer, it might be a 4kHz voice channel; to a
cable modem designer, it might be a physical coaxial cable of up to a certain length,
with certain bandwidth restrictions.

When the channel is taken to be the physical medium, the amplifiers, antennas, lasers,
etc. that couple the encoded waveform to the physical medium might be regarded as
part of the channel or as as part of the channel encoder. It is more common to view
these coupling devices as part of the channel, since their design is quite separable from
that of the rest of the channel encoder. This, of course, is another example of layering.

Channel encoding and decoding when the channel is the physical medium (either
with or without amplifiers, antennas, lasers, etc.) is usually called (digital) modulation
and demodulation, respectively. The terminology comes from the days of analog
communication where modulation referred to the process of combining a lowpass
signal waveform with a high-frequency sinusoid, thus placing the signal waveform in
a frequency band appropriate for transmission and regulatory requirements. The analog
signal waveform could medulate the amplitude, frequency, or phase, for example, of
the sinusoid, but, in any case, the original waveform (in the absence of noise) could
be retrieved by demodulation.

As digital communication has increasingly replaced analog communication, the
modulation/demodulation terminology has remained, but now refers to the entire pro-
cess of digital encoding and decoding. In most cases, the binary sequence is first
converted to a baseband waveform and the resulting baseband waveform is converted
to bandpass by the same type of procedure used for analog modulation, As will be
seen, the challenging part of this problem is the conversion of binary data to baseband
waveforms. Nonetheless, this entire process will be referred to as modulation and
demodulation, and the conversion of baseband to passband and back will be referred
to as frequency conversion.

As in the study of any type of system, a channel is usually viewed in terms of
its possible inputs, its possible outputs, and a description of how the input affects
the output. This description is usually probabilistic. If a channel were simply a linear
time-invariant system (e.g. a filter), it could be completely characterized by its impulse
response or frequency response. However, the channels here (and channels in practice)
always have an extra ingredient — noise.

Suppose that there were no noise and a single input voltage level could be commu-
nicated exactly. Then, representing that voltage level by its infinite binary expansion,
it would be possible in principle to transmit an infinite number of binary digits by
transmitting a single real number. This is ridiculous in practice, of course, precisely
because noise limits the number of bits that can be reliably distinguished. Again, it
was Shannon, in 1948, who realized that noise provides the fundamental limitation to
performance in communication systems. _

The most common channel model involves a waveform input X(¢), an added noise
waveform Z(t), and a waveform output Y(¢) = X(¢) + Z(?) that is the sum of the input
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1.3 Communication channels 9
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Figure 1.4.  Additive white Gaussian noise (AWGN) channel.

and the noise, as shown in Figure 1.4. Each of these waveforms are viewed as random
processes. Random processes are studied in Chapter 7, but for now they can be viewed
intuitively as waveforms selected in some probabilitistic way. The noise Z() is often
modeled as white Gaussian noise (also to be studied and explained later). The input is
usually constrained in power and bandwidth. ‘

Observe that for any channel with input X(f) and output ¥(z), the noise could be
defined to be Z(f) = ¥(¢) — X(¢). Thus there must be something more to an additive-
noise channel model than what is expressed in Figure 1.4. The additional required
ingredient for noise to be called additive is that its probabilistic characterization does
not depend on the input.

In a somewhat more general model, called a linear Gaussian channel, the input
waveform X(¢) is first filtered in a linear filter with impulse response h(t), and then
independent white Gaussian noise Z(¢) is added, as shown in Figure 1.5, so that the
channel output is given by

Y() =X({©)xh(1) +Z(2),

where “x” denotes convolution. Note that Y at time ¢ is a function of X over a range
of times, i.e.

)= : X(t = Dh(r)dr + Z(1).

The linear Gaussian channel is often a good model for wireline communication and
for line-of-sight wireless communication. When engineers, journals, or texts fail to
describe the channel of interest, this model is a good bet.

The linear Gaussian channel is a rather poor model for non-line-of-sight mobile
communication. Here, multiple paths usually exist from source to destination. Mobility
of the source, destination, or reflecting bodies can cause these paths to change in time
in a way best modeled as random. A better model for mobile communication is to-

Z(t) .

roise
X —22 " ht |——D WP, vin

Figure 1.5,  Linear Gaussian channel model.
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10 Introduction to digital communication

replace the time-invariant filter A(¢) in Figure 1.5 by a randomly time varying linear
filter, H(¢, 7), that represents the multiple paths as they change in time. Here the output
is given by

r)=[ : X(¢ — u)H(u, )du-+Z(1).

These randomly varying channels will be studied in Chapter 9.

1.3.1 Channel encoding (modulation)

The channel encoder box in Figure 1.1 has the function of mapping the binary sequence
at the source/channel interface into a channel waveform. A particularly simple approach
to this is called binary pulse amplitude modulation (2-PAM). Let {u,, u,,. .., } denote

. the incoming binary sequence, and let each u, = =1 (rather than the traditional 0/1).
Let p(f) be a given elementary waveform such as a rectangular pulse or a sin(wf)/wt
function. Assuming that the binary digits enter at Rbps, the sequence Uy, Uy, . . - is
mapped into the waveform ), u,p(t — n/R).

Even with this trivially simple modulation scheme, there are a number of interesting
questions, such as how to choose the elementary waveform p(r) so as to satisfy
frequency constraints and reliably detect the binary digits from the received waveform
in the presence of noise and intersymbol interference.

Chapter 6 develops the principles of modulation and demodulation. The simple
2-PAM scheme is generalized in many ways. For example, multilevel modulation
first segments the incoming bits into m-tuples. There are M = 2™ distinct m-tuples,
and in M-PAM, each m-tuple is mapped into a different numerical value (such as
+1, £3, 15, £7 for M = 8). The sequence u,, u,, . . . of these values is then mapped
into the waveform ¥, u,p(t — mn/R). Note that the rate at which pulses are sent is
now m times smaller than before, but there are 2™ different values to be distinguished
at the receiver for each elementary pulse.

The modulated waveform can also be a complex baseband waveform (which is then
modulated up to an appropriate passband as a real waveform). In a scheme called
quadrature amplitude modulation (QAM), the bit sequence is again segmented into
m-tuples, but now there is a mapping from binary m-tuples to a set of M =2" complex
numbers. The sequence uy, 4,, ... of outputs from this mapping is then converted to .
the complex waveform }_, u,p(t — mn/R).

Finally, instead of using a fixed signal pulse p(t) mulnphed by a selection from
M real or complex values, it is possible to choose M different signal pulses,
pi1(®, ..., pyu(1). This includes frequency shift keying, pulse position modulation,
phase modulation, and a host of other strategies.

It is easy to think of many ways to map a sequence of binary digits into a waveform.
We shall find that there is a simple geometric “signal-space” approach, based on the
results of Chapter 4, for looking at these various combinations in an integrated way.

Because of the noise on the channel, the received waveform is different from
the transmitted waveform. A major function of the demodulator is that of detection.
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1.3 Communication channels 11

The detector attempts to choose which possible input sequence is most likely to
have given rise to the given received waveform. Chapter 7 develops the background
in random processes necessary to understand this problem, and Chapter 8 uses the
geometric signal-space approach to analyze and understand the detection problem.

1.3.2 Error correction

Frequently the error probability incurred with simple modulation and demodulation
techniques is too high. One possible solution is to separate the channel encoder into
two layers: first an error-correcting code, then a simple modulator. _

As a very simple example, the bit rate into the channel encoder could be reduced
by a factor of three, and then each binary-input could be repeated three times before
entering the modulator. If at most one of the three binary digits coming out of the
demodulator were incorrect, it could be corrected by majority rule at the decoder, thus
reducing the error probability of the system at a considerable cost in data rate.

The scheme above (repetition encoding followed by majority-rule decoding) is a
very simple example of error-correction coding. Unfortunately, with this scheme, small
error probabilities are achieved only at the cost of very small transmission rates.

What Shannon showed was the very unintuitive fact that more sophisticated coding
schemes can achieve arbitrarily low error probability at any data rate below a value
known as the channel capacity. The channel capacity is a function of the probabilistic
description of the output conditional on each possible input. Conversely, it is not
possible to achieve low error probability at rates above the channel capacity. A brief
proof of this channel coding theorem is given in Chapter 8, but readers should refer to
texts on Information Theory such as Gallager (1968) and Cover and Thomas (2006)
for detailed coverage.

The channel capacity for a bandlimited additive white Gaussian noise channel is
perhaps the most famous result in information theory. If the input power is limited to
P, the bandwidth limited to W, and the noise power per unit bandwidth is N, then the
capacity (in bits per second) is given by

P
C= Wlogz(l + N_OW-) .

Only in the past few years have channel coding schemes been developed that can

closely approach this channel capacity.

-.- Early uses of error-correcting codes were usually part of a two-layer system similar
~ to that above, where a digital error-correcting encoder is followed by a modulator. At

the receiver, the waveform is first demodulated into a noisy version of the encoded

sequence, and then this noisy version is decoded by the error-correcting decoder.

Current practice frequently achieves better performance by combining error correction

coding and modulation together in coded modulation schemes. Whether the error

correction and traditional modulation are separate layers or combined, the combination

is generally referred to as a modulator, and a device that does this modulation on data

in one direction and demodulation in the other direction is referred to as a modem.
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12 Introduction to digital communication

The subject of error correction has grown over the last 50 years to the point where
complex and lengthy textbooks are dedicated to this single topic (see, for example,
Lin and Costello (2004) and Forney (2005)). This text provides only an introduction
to error-correcting codes.

Chapter 9, the final topic of the text, considers channel encoding and decoding for
wireless channels. Considerable attention is paid here to modeling physical wireless
media. Wireless channels are subject not only to additive noise, but also random
fluctuations in the strength of multiple paths between transmitter and receiver. The
interaction of these paths causes fading, and we study how this affects coding, signal
selection, modulation, and detection. Wireless communication is also used to discuss
issues such as channel measurement, and how these measurements can be used at
input and output. Finally, there is a brief case study of CDMA (code division multiple
access), which ties together many of the topics in the text.

14 Digital interface

The interface between the source coding layer and the channel coding layer is a
sequence of bits. However, this simple characterization does not tell the whole story.
The major complicating factors are as follows.

o Unequal rates: the rate at which bits leave the source encoder is often not perfectly
- matched to the rate at which bits enter the channel encoder.
e Errors: source decoders are usually designed to decode an exact replica of the
encoded sequence, but the channel decoder makes occasional errors.
e Networks: encoded source outputs are often sent over networks, traveling serially
over several channels; each channel in the network typically also carries the output
from a number of different source encoders. '

The first two factors above appear both in point-to-point communication systems
and in networks. They are often treated in an ad hoc way in point-to-point systems,
whereas they must be treated in a standardized way in networks. The third factor, of
course, must also be treated in a standardized way in networks.

The usual approach to these problems in networks is to convert the superficially
simple binary interface into multiple layers, as illustrated in Figure 1.6

How the layers in Figure 1.6 operate and work together is a central topic in the
study of networks and is treated in detail in network texts such as Bertsekas and
Gallager (1992). These topics are not considered in detail here, except for the very
brief introduction to follow and a few comments as required later.

1.4.1 Network aspects of the digital interface

The output of the source encoder is usually segmented into packets (and in many cases,
such as email and data files, is already segmented in this way). Each of the network
layers then adds some overhead to these packets, adding a header in the case of TCP
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- source} source | f TCP P DLC | I channel
input | encoder input input input encoder
channel
source| source TCP IP DLC channel
output | decoder [ output output [ | output decoder

Figure 1.6.  The replacement of the binary interface in Figure 1.5 with three layers in an oversimplified
view of the internet. There is a TCP (transport control protocol) module associated with each
source/destination pair; this is responsible for end-to-end error recovery and for slowing down
the source when the network becomes congested. There is an IP (Internet protocol) module
associated with each node in the network; these modules work together to route data through
the network and to reduce congestion. Finally there is a DLC (data link control) module
associated with each channel; this accomplishes rate matching and error recovery on the
channel. In network terminology, the channel, with its encoder and decoder, is called the
physical layer.

(transmission control protocol) and IP (internet protocol) and adding both a header and
trailer in the case of DLC (data link control). Thus, what enters the channel encoder
is a sequence of frames, where each frame has the structure illustrated in Figure 1.7.

These data frames, interspersed as needed by idle-fill, are strung together, and the
resulting bit stream enters the channel encoder at its synchronous bit rate. The header
and trailer supplied by the DLC must contain the information needed for the receiving
DLC to parse the received bit stream into frames and eliminate the idle-fill.

The DLC also provides protection against decoding errors made by the channel
decoder. Typically this is done by using a set of 16 or 32 parity checks in the frame
trailer. Each parity check specifies whether a given subset of bits in the frame contains
an even or odd number of 1s. Thus if errors occur in transmission, it is highly likely
that at least one of these parity checks will fail in the receiving DLC. This type of
DLC is used on channels that permit transmission in both directions. Thus, when
an erroneous frame is detected, it is rejected and a frame in the opposite direction
requests a retransmission of the erroneous frame. Thus the DLC header must contain
information about frames traveling in both directions. For details about such protocols,
see, for example, Bertsekas and Gallager (1992).

An obvious question at this point is why error correction is typically done both at
the physical layer and at the DLC layer. Also, why is feedback (i.e. error detection
and retransmission) used at the DLC layer and not at the physical layer? A partial
answer is that, if the error correction is omitted at one of the layers, the error
probability is increased. At the same time, combining both procedures (with the same

DLC IP TCP source encoded DLC
header | header | header packet trailer

Figure 1.7,  Structure of a data frame using the layers of Figure 1.6.
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overall overhead) and using feedback at the physical layer can result in much smaller
error probabilities. The two-layer approach is typically used in practice because of
standardization issues, but, in very difficult communication situations, the combined
approach can be preferable. From a tutorial standpoint, however, it is preferable to
acquire a good understanding of channel encoding and decoding using transmission
in only one direction before considering the added complications of feedback.

When the receiving DLC accepts a frame, it strips off the DLC header and trailer
and the resulting packet enters the IP layer. In the IP layer, the address in the IP
header is inspected to determine whether the packet is at its destination or must be
forwarded through another channel. Thus the IP layer handles routing decisions, and
also sometimes the decision to drop a packet if the queues at that node are too long.

When the packet finally reaches its destination, the IP layer strips off the IP header
and- passes the resulting packet with its TCP header to the TCP layer. The TCP
module then goes through another error recovery phase,* much like that in the DLC
module, and passes the accepted packets, without the TCP header, on to the destination
decoder. The TCP and IP layers are also jointly responsible for congestion control,
which ultimately requires the ability either to reduce the rate from sources as required
or simply to drop sources that cannot be handled (witness dropped cell-phone calls).

In terms of sources and channels, these extra layers simply provide a sharper under-
standing of the digital interface between source and channel. That is, source encoding
still maps the source output into a sequence of bits, and, from the source viewpoint,
all these layers can simply be viewed as a channel to send that bit sequence reliably

.to the destination.

In a similar way, the input to a channel is a sequence of bits at the channel’s
synchronous input rate. The output is the same sequence, somewhat delayed and with
occasional errors. »

Thus both source and channel have digital interfaces, and the fact that these are
slightly different because of the layering is, in fact, an advantage. The source encoding
can focus solely on minimizing the output bit rate (perhaps with distortion and delay
constraints) but can ignore the physical channel or channels to be used in transmission,
Similarly the channel encoding can ignore the source and focus solely on maximizing
the transmission bit rate (perhaps with delay and error rate constraints).

Supplementary reading

An excellent text that treats much of the material here with more detailed coverage
but less depth is Proakis (2000). Another good general text is Wilson (1996). The
classic work that introduced the signal space point of view in digital communication is

4 Even after all these layered attempts to prevent errors, occasional errors are inevitable. Some are caught
by human intervention, many do not make any real difference, and a final few have consequences. C’est la
vie. The purpose of communication engineers and network engineers is not to eliminate all errors, which is
not possible, but rather to reduce their probability as much as practically possible.
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Wozencraft and Jacobs (1965). Good undergraduate treatments are provided in Proakis
and Salehi (1994), Haykin (2002), and Pursley (2005). A

Readers who lack the necessary background in probability should consult Ross
(1994) or Bertsekas and Tsitsiklis (2002). More advanced treatments of probability are
given in Ross (1996) and Gallager (1996). Feller (1968, 1971) still remains the classic
text on probability for the serious student. _

Further material on information theory can be found, for example, in Gallager (1968)
and Cover and Thomas (2006). The original work by Shannon (1948) is fascinating
and surprisingly accessible.

The field of channel coding and decoding has become an important but specialized
part of most communication systems. We introduce coding and decoding in Chapter 8,
but a separate treatment is required to develop the subject in depth. At MIT, the text
here is used for the first of a two-term sequence, and the second term uses a polished
set of notes by D. Forney (2005), available on the web. Alternatively, Lin and Costello
(2004) is a good choice among many texts on coding and decoding.

Wireless communication is probably the major research topic in current digital
communication work. Chapter 9 provides a substantial introduction to this topic, but
a number of texts develop wireless communcation in much greater depth. Tse and
Viswanath (2005) and Goldsmith (2005) are recommended, and Viterbi (1995) is a
good reference for spread spectrum techniques.
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4 Source and channel waveforms

4.1 Introduction

This chapter has a dual objective. The first is to understand analog data compression,
i.e. the compression of sources such as voice for which the output is an arbitrarily
varying real- or complex-valued function of time; we denote such functions as wave-
forms. The second is to begin studying the waveforms that are typically transmitted
at the input and received at the output of communication channels. The same set of
mathematical tools is required for the understanding and representation of both source
and channel waveforms; the development of these results is the central topic of this
chapter.

These results about waveforms are standard topics in mathematical courses on
analysis, real and complex variables, functional analysis, and linear algebra. They
are stated here without the precision or generality of a good mathematics text, but
with considerably more precision and interpretation than is found in most engineering
texts.

411 Analog sources

The output of many analog sources (voice is the typical example) can be represented as
a waveform,' {u(f) : R — R} or {u() : R — C}. Often, as with voice, we are interested
only in real waveforms, but the simple generalization to complex waveforms is essential
for Fourier analysis and for baseband modeling of communication channels. Since a
real-valued function can be viewed as a special case of a complex-valued function,
the results for complex functions are also useful for real functions.

We observed earlier that more complicated analog sources such as video can be
viewed as mappings from R" to R, e.g. as mappings from horizontal/vertical posi-
tion and time to real analog values, but for simplicity we consider only waveform
sources here.

! The notation {u(f) : R — R} refers to a function that maps each real number 7 € R into another real
number u(#) € R. Similarly, {u(f) : R — C} maps each real number ¢ € R into a complex number u(r) € C.
These functions of time, i.e. these waveforms, are usually viewed as dimensionless, thus allowing us to
separate physical scale factors in communication problems from the waveform shape.
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Figure 41.  Encoding and decoding a waveform source.

We recall in the following why it is desirable to convert analog sources into bits.

o The use of a standard binary interface separates the problem of compressing sources
from the problems of channel coding and modulation.

o The outputs from multiple sources can be easily multiplexed together. Multiplexers
can work by interleaving bits, 8-bit bytes, or longer packets from different sources.

® When a bit sequence travels serially through multiple links (as in a network), the
noisy bit sequence can be cleaned up (regenerated) at each intermediate node,
whereas noise tends to accumulate gradually with noisy analog transmission.

A common way of encoding a waveform into a bit sequence is as follows.

(1) Approximate the analog waveform {u(t); t € R} by its samples? {u(mT); m € Z}
at regularly spaced sample times, ...,—71,0, T, 2T, ...

(2) Quantize each sample (or n-tuple of samples) into a quantization region.

(3) Encode each quantization region (or block of regions) into a string of bits.

These three layers of encoding are illustrated in Figure 4.1, with the three corresponding
layers of decoding.

Example 4.1.1 In standard telephony, the voice is filtered to 4000Hz (4kHz) and
then sampled? at 8000 samples/s. Each sample is then quantized to one of 256 possible
levels, represented by 8 bits. Thus the voice signal is represented as a 64 kbps sequence.
(Modern digital wireless systems use more sophisticated voice coding schemes that
reduce the data rate to about 8 kbps with little loss of voice quality.)

The sampling above may be generalized in a variety of ways for converting
waveforms into sequences of real or complex numbers. For example, modern voice

2 Z denotes the set of integers —oo < m < 00, 50 {u(mT); m € Z} denotes the doubly infinite sequence of
samples with —co < m < oo.

3 The sampling theorem, to be discussed in Section 4.6, essentially says that if a waveform is baseband-
limited to W Hz, then it can be represented perfectly by 2W samples/s. The highest note on a piano is about
4 kHz, which is considerably higher than most voice frequencies.
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compression techniques first segment the voice waveform into 20ms segments and
then use the frequency structure of each segment to generate a vector of numbers. The
resulting vector can then be quantized and encoded as previously discussed.

An individual waveform from an analog source should be viewed as a sample
waveform from a random process. The resulting probabilistic structure on these sample
waveforms then determines a probability assignment on the sequences representing
these sample waveforms. This random characterization will be studied in Chapter 7;
for now, the focus is on ways to map deterministic waveforms to sequences and vice
versa. These mappings are crucial both for source coding and channel transmission.

41.2 Communication channels

Some examples of communication channels are as follows: a pair of antennas separated .
by open space; a laser and an optical receiver separated by an optical fiber; a microwave
transmitter and receiver separated by a wave guide. For the antenna example, a real
waveform at the input in the appropriate frequency band is converted by the input
antenna into electromagnetic radiation, part of which is received at the receiving
antenna and converted back to a waveform. For many purposes, these physical channels
can be viewed as black boxes where the output waveform can be described as a function
of the input waveform and noise of various kinds.

Viewing these channels as black boxes is another example of layering. The optical
or microwave devices or antennas can be considered as an inner layer around the
actual physical channel. This layered view will be adopted here for the most part,
since the physics of antennas, optics, and microwaves are largely separable from the
digital communication issues developed here. One exception to this is the description
of physical channels for wireless communication in Chapter 9. As will be seen,
describing a wireless channel as a black box requires some understanding of the
underlying physical phenomena.

The function of a channel encoder, i.e. a modulator, is to convert the incoming
sequence of binary digits into a waveform in such a way that the noise-corrupted
waveform at the receiver can, with high probability, be converted back into the original
binary digits. This is typically achieved by first converting the binary sequence into a
sequence of analog signals, which are then converted to a waveform. This procession —
bit sequence to analog sequence to waveform ~ is the same procession as performed
by a source decoder, and the opposite to that performed by the source encoder. How
these functions should be accomplished is very different in the source and channel
cases, but both involve converting between waveforms and analog sequences.

The waveforms of interest for channel transmission and reception should be viewed
as sample waveforms of random processes (in the same way that source waveforms
should be viewed as sample waveforms from a random process). This chapter, how-
ever, is concerned only with the relationship between deterministic waveforms and
analog sequences; the necessary results about random processes will be postponed
until Chapter 7. The reason why so much mathematical precision is necessary here,
however, is that these waveforms are a priori unknown. In other words, one cannot use
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4.2

the conventional engineering approach of performing some computation on a function
and assuming it is correct if an answer emerges.*

Fourier series

Perhaps the simplest example of an analog sequence that can represent a waveform
comes from the Fourier series. The Fourier series is also useful in understanding Fourier
transforms and discrete-time Fourier transforms (DTFTs). As will be explained later,
our study of these topics will be limited to finite-energy waveforms. Useful models
for source and channel waveforms almost invariably fall into the finite-energy class.

The Fourier series represents a waveform, either periodic or time-limited, as a
weighted sum of sinusoids. Each weight (coefficient) in the sum is determined by the
function, and the function is essentially determined by the sequence of weights. Thus
the function and the sequence of weights are essentially equivalent representations.

Our interest here is almost exclusively in time-limited rather than periodic wave-
forms.> Initially the waveforms are assumed to be time-limited to some interval
—T/2 <t <T/2 of an arbitrary duration T > 0 around 0. This is then generalized to
time-limited waveforms centered at some arbitrary time. Finally, an arbitrary waveform
is segmented into equal-length segments each of duration T'; each such segment is then
represented by a Fourier series. This is closely related to modern voice-compression
techniques where voice waveforms are segmented into 20 ms intervals, each of which
is separately expanded into a Fourier-like series.

Consider a complex function {u(#) : R — C} that is nonzero only for —T/2 <t <T/2
(i.e. u(f) =0 for t < —T/2 and t > T/2). Such a function is frequently indicated by
{u(®) : [-T/2, T/2] — C}. The Fourier series for such a time-limited function is
given by?®

[T for—T/2<t<T/2;
u(r) = [0 : elsewhere, (“.1)

where i denotes’ +/—1. The Fourier series coefficients &, are, in general, complex
(even if u(r) is real), and are given by

B =4 fm u(f)e 2T gy -0 <k<oo (4 2)
k T » . .
-172

4 This is not to disparage the use of computational (either hand or computer) techniques to get a quick
answer without worrying about fine points. Such techniques often provide insight and understanding, and
the fine points can be addressed later. For a random process, however, one does not know a priori which
sample functions can provide computational insight.

3 Periodic waveforms are not very interesting for carrying information; after one period, the rest of the
waveform carries nothing new.

6 The conditions and the sense in which (4.1) holds are discussed later.

7 The use of i for +/—1 is standard in all scientific fields except electrical engineering. Electrical engineers
formerly reserved the symbol i for electrical current and thus often use j to denote +/—1.
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The standard rectangular function,

1 for-1/2<t<1/2;
rect(t) = [0 elsewhere,

can be used to simplify (4.1) as follows:

u(t) = i i ek Trect (%) 4.3)

k=—cc

This expresses u(t) as a linear combination of truncated complex sinusoids,

u(t) = 0,0,(1),  where 6,(r) =™/ Trect (i) . (4.4)
kez T

Assuming that (4.4) holds for some set of coefficients {&;; k € Z}, the following
simple and instructive argument shows why (4.2) is satisfied for that set of coef-
ficients. Two complex waveforms, 6,(¢) and 6,,(¢), are defined to be orthogonal if
J= 6,(1)67,(1) dt =0. The truncated complex sinusoids in (4.4) are orthogonal since the
interval [—7/2, T/2] contains an integral number of cycles of each, i.e., fork#m e Z,

. 00 7/2 .
[_awen@e= [ L EmITa = o,

Thus, the right side of (4.2) can be evaluated as follows:

1 72 ~2mi LS Rl Y .
T/;mu(t)e kT gy — ?/w 3 #,6,(00;()dt

= = [ 18P
noAT2

=% [ G =p,. 4.5)
T Jo1p

An expansion such as that of (4.4) is called an orthogonal expansion. As shown later,
the argument in (4.5) can be used to find the coefficients in any orthogonal expansion.
At that point, more care will be taken in exchanging the order of integration and
summation above.

Example 4.2.1 This and Example 4.2.2 illustrate why (4.4) need not be valid for -
all values of #. Let u(z) =rect(2t) (see Figure 4.2). Consider representing u(f) by a
Fourier series over the interval —1/2 <t < 1/2. As illustrated, the series can be shown
to converge to u(z) at all £ € [—1/2,1/2], except for the discontinuities at ¢ = +1/4.
At t = £1/4, the series converges to the midpoint of the discontinuity and (4.4) is not
valid® at those points. Section 4.3 will show how to state (4.4) precisely so as to avoid
these convergence issues. . .

 Most engineers, including the author, would say “So what? Who cares what the Fourier series converges
to at a discontinuity of the waveform?” Unfortunately, this example is only the tip of an iceberg, especially
when time-sampling of waveforms and sample waveforms of random processes are considered.
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Figure 42.  The Fourier series (over [—-1/2, 1/2]) of a rectangular pulse rect(2¢), shown in (a). (b) Partial
sum with k = —1, 0, 1. (c) Partial sum with —3 < k < 3. Part (d) illustrates that the series
converges to u(f) except at the points ¢ = +1/4, where it converges to 1/2.
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Figure 43.  The Fourier series over [—1/2, 1/2] of the same rectangular pulse shifted right by 1/4, shown
in (a). (b) Partial expansion with k = —1,0, 1. Part (c) depicts that the series converges to
v(#) except at the points t = —1/2,0, and 1/2, at each of which it converges to 1/2. '

Example 4.2.2 As a variation of the previous example, let v(f) be 1 for0 <t <1/2
and O elsewhere. Figure 4.3 shows the corresponding Fourier series over the interval
—-1/2<t=<1/2.

A peculiar feature of this example is the isolated discontinuity at ¢ = —1/2, where
the series converges to 1/2. This happens because the untruncated Fourier series,
Y De?™¥_is periodic with period 1 and thus must have the same value at both
t=-—1/2 and t = 1/2. More generally, if an arbitrary function {v(¢) : [-T/2,T/2] »
C} has v(—T/2) # v(T/2), then its Fourier series over that interval cannot converge
to u(f) at both those points.

4.21 Finite-energy waveforms

The energy in a real or complex waveform u(z) is defined® to be [ |u(f)[2dz. The
energy in source waveforms plays a major role in determining how well the waveforms
can be compressed for a given level of distortion. As a preliminary explanation,
consider the energy in a time-limited waveform {u(z) : [-7/2, 7/2] — R}. This energy

% Note that u? = |u[? if u is real, but, for complex u, u? can be negative or complex and |uf2 = uu® =
[R()]? + [S(u)]? is required to correspond to the intuitive notion of energy.
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is related to the Fourier series coefficients of u(t) by the following energy equation
which is derived in Exercise 4.2 by the same argument used in (4.5):

T2 00
/ u@Pdt=T ¥ |, 4.6)
1=-T/2

k=—o0

Suppose that u(#) is compressed by first generating its Fourier series coefficients,
{&;; k € Z}, and then compressing those coefficients. Let {1,; k € Z} be this sequence
of compressed coefficients. Using a squared distortion measure for the coefficients,
the overall distortion is Y", |#, — 3, |>. Suppose these compressed coefficients are now
encoded, sent through a channel, reliably decoded, and converted back to a waveform
v(t) = ¥, 0,e¥™*/T as in Figure 4.1. The difference between the input waveform u(t)
and the output v(f) is then u(¢) — v(¢), which has the Fourier series 3", (&1, — 9, )e?™/T,
Substituting u(r) — v(¢) into (4.6) results in the difference-energy equation:

/r/z [u(®) —v(OPFde =T o, — b, [ @7
1==T/2 z

Thus the energy in the difference between u(r) and its reconstruction v(¢) is simply T
times the sum of the squared differences of the quantized coefficients. This means that
reducing the squared difference in the quantization of a coefficient leads directly to
reducing the energy in the waveform difference. The energy in the waveform difference
is a common and reasonable measure of distortion, but the fact that it is directly related
to the mean-squared coefficient distortion provides an important added reason for its
widespread use.

There must be at least T units of delay involved in finding the Fourier coefficients
for u(t) in [-T/2, T/2] and then reconstituting v(¢) from the quantized coefficients
at the receiver. There is additional processing and propagation delay in the channel.
Thus the output waveform must be a delayed approximation to. the input. All of this
delay is accounted for by timing recovery processes at the receiver. This timing delay
is set so that v(¢) at the receiver, according to the receiver timing, is the appropriate
approximation to u(z) at the transmitter, according to the transmitter timing. Timing
recovery and delay are important problems, but they are largely separable from the
problems of current interest. Thus, after recognizing that receiver timing is delayed
from transmitter timing, delay can be otherwise ignored for now.

Next, visualize the Fourier coefficients &, as sample values of independent random
variables and visualize u(f), as given by (4.3), as a sample value of the corresponding
random process (this will be explained carefully in Chapter 7). The expected energy
in this random process is equal to T times the sum of the mean-squared values of
the coefficients. Similarly the expected energy in the difference between u(r) and v(f)
is equal to T times the sum of the mean-squared coefficient distortions. It was seen
by scaling in Chapter 3 that the the mean-squared quantization error for an analog
random variable is proportional to the variance of that random variable. It is thus not
surprising that the expected energy in a random waveform will have a similar relation
to the mean-squared distortion after compression.
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There is an obvious practical problem with compressing a finite-duration waveform
by quantizing an infinite set of coefficients. One solution is equally obvious: compress
only those coefficients with a significant mean-squared value. Since the expected
value of 3 |&#|? is finite for finite-energy functions, the mean-squared distortion
from ignoring small coefficients can be made as small as desired by choosing a
sufficiently large finite set of coefficients. One then simply chooses 9, =0 in (4.7) for
each ignored value of k.

The above argument will be explained carefully after developing the required tools.
For now, there are two important insights. First, the energy in a source waveform is
an important parameter in data compression; second, the source waveforms of interest
will have finite energy and can be compressed by compressing a finite number of
coefficients. '

Next consider the waveforms used for channel transmission. The energy used over
any finite interval T is limited both by regulatory agencies and by physical constraints
on transmitters and antennas. One could consider waveforms of finite power but infinite
duration and energy (such as the lowly sinusoid). On one hand, physical waveforms
do not last forever (transmitters wear out or become obsolete), but, on the other hand,
models of physical waveforms can have infinite duration, modeling physical lifetimes
that are much longer than any time scale of communication interest. Nonetheless, for
reasons that will gradually unfold, the channel waveforms in this text will almost
always be restricted to finite energy.

There is another important reason for concentrating on finite-energy waveforms.
Not only are they the appropriate models for source and channel waveforms, but
they also have remarkably simple and general properties. These properties rely on an
additional constraint called measurability, which is explained in Section 4.3. These
finite-energy measurable functions are called £, functions. When time-constrained,
they always have Fourier series, and without a time constraint, they always have
Fourier transforms. Perhaps the most important property, however, is that £, functions
can be treated essentially as conventional vectors (see Chapter 5).

One might question whether a limitation to finite-energy functions is too con-
straining. For example, a sinusoid is often used to model the carrier in passband
communication, and sinusoids have infinite energy because of their infinite duration.
As seen later, however, when a finite-energy baseband waveform is modulated by that
sinusoid up to passband, the resulting passband waveform has finite energy.

As another example, the unit impulse (the Dirac delta function 8(¢)) is a generalized
function used to model waveforms of unit area that are nonzero only in a narrow region
around ¢ =0, narrow relative to all other intervals of interest. The impulse response of
a linear-time-invariant filter is, of course, the response to a unit impulse; this response
approximates the response to a physical waveform that is sufficiently narrow and
has unit area. The energy in that physical waveform, however, grows wildly as the
waveform narrows. A rectangular pulse of width £ and height 1/¢, for example, has
unit area for all £ > 0, but has energy 1/&, which approaches oo as £ — 0. One could
view the energy in a unit impulse as being either undefined or infinite, but in no way
could one view it as being finite.
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43 L, functions and Lebesgue integration 101

To summarize, there are many useful waveforms outside the finite-energy class.
Although they are not physical waveforms, they are useful models of physical wave-
forms where energy is not important. Energy is such an important aspect of source
and channel waveforms, however, that such waveforms can safely be limited to the
finite-energy class.

43 £, functions and Lebesgue integration over [—T/2, T/2]

A function {u(¢) : R — C} is defined to be £, if it is Lebesgue measurable and has
a finite Lebesgue integral [ |u(#)[>dr. This section provides a basic and intuitive
understanding of what these terms mean. Appendix 4.9 provides proofs of the results,
additional examples, and more depth of understanding. Still deeper understanding
requires a good mathematics course in real and complex variables. Appendix 4.9 is
not required for basic engineering understanding of results in this and subsequent
chapters, but it will provide deeper insight.

The basic idea of Lebesgue integration is no more complicated than the more com-
mon Riemann integration taught in freshman college courses. Whenever the Riemann
integral exists, the Lebesgue integral also exists'® and has the same value. Thus all the
familiar ways of calculating integrals, including tables and numerical procedures, hold
without change. The Lebesgue integral is more useful here, partly because it applies to
a wider set of functions, but, more importantly, because it greatly simplifies the main
results. ‘

This section considers only time-limited functions, {u(¢) : [-T/2, T/2] — C}. These
are the functions of interest for Fourier series, and the restriction to a finite interval
avoids some mathematical details better addressed later.

Figure 4.4 shows intuitively how Lebesgue and Riemann integration differ. Conven-
tional Riemann integration of a nonnegative real-valued function u(f) over an interval
[~T/2, T/2] is conceptually performed in Figure 4.4(a) by partitioning [—-7/2, T/2]
into, say, i, intervals each of width T/i,. The function is then approximated within the

u 720 Wi B
3 3 - - -
u |2 Uy b = 1 AN 0 = R A
vo 25 PTTHIFTEIIETEITIISY =+ D+ -t
i G T Y AR D T 0 s YR
=772 772 =772 TR
JTR, ult) dt= 5k, uify J72, ult) dt=Z, mé

(a) (b}

Figure 44.  Example of (a) Riemann and (b) Lebesgue integration.

10 There is a slight notional qualification to this which is discussed in the sinc function example of Section
4.5.1. .
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102 Source and channel waveforms

ith such interval by a singie value u;, such as the midpoint of values in the interval. The
integral is then approximated as E::":l(T/io)u,-. If the function is sufficiently smooth,
then this approximation has a limit, called the Riemann integral, as iy — oo. ;

To integrate the same function by Lebesgue integration, the vertical axis is par-
titioned into intervals each of height 8, as shown in Figure 4.4(b). For the mth
such interval,'! [mé, (m+1)8), let &, be the set of values of ¢ such that mé <
u(t) < (m+1)8. For example, the set &, is illustrated by arrows in Figure 4.4(b) and
is given by

& ={t:26 <u(t) <38} =[t,, L) U(tss ).

As explained below, if &, is a finite union of separated'? intervals, its measure, u,, is
the sum of the widths of those intervals; thus u, in the example above is given by

by =p(&) = (6 — 1)+ (1, —13). (4.8)

Similarly, &, =[-T/2, ;) U (84, T/2] and p; = (¢, +T/2) +(T/2—1,).

The Lebesque integral is approximated as ) _,,(m6)u,,. This approximation is indi-
cated by the vertically shaded area in Figure 4.4(b). The Lebesgue integral is essentially
the limit as § — 0. 4

In short, the Riemann approximation to the area under a curve splits the horizon-
tal axis into uniform segments and sums the corresponding rectangular areas. The
Lebesgue approximation splits the vertical axis into uniform segments and sums the
height times width measure for each segment. In both cases, a limiting operation is
required to find the integral, and Section 4.3.3 gives an example where the limit exists
in the Lebesgue but not the Riemann case.

431 Lebesgue measure for a union of intervals

In order to explain Lebesgue integration further, measure must be defined for a more
general class of sets,

The measure of an interval I from a to b, a < b, is defined to be u(l) =b—a >0.
For any finite union of, say, £ separated intervals, £ = U§=1 I;, the measure w(€) is
defined as follows:

[4 .
(&) = n(l). 4.9)
j=1 .

1 The notation [a, b) denotes the semiclosed interval a < t < b. Similarly, (a, b] denotes the semiclosed
interval a <t < b, (a, b) the open interval @ < ¢ < b, and [a, b] the closed interval a < ¢ < b. In the special
case where a = b, the interval [a, a] consists of the single point a, whereas [a, a), (a, g}, and (a, a) are
empty.

12 Two intervals are separated if they are both nonempty and there is at least one point between them that
lies in neither interval; i.e., (0, 1) and (1, 2) are separated. In contrast, two sets are disjoint if they have no
points in common. Thus (0, 1) and [1, 2] are disjoint but not separated.
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4.3 L, functions and Lebesgue integration 103

This definition of (&) was used in (4.8) and is necessary for the approximation in
Figure 4.4(b) to correspond to the area under the approximating curve. The fact that the
measure of an interval does not depend on the inclusion of the endpoints corresponds
to the basic notion of area under a curve. Finally, since these separated intervals are
all contained in [—7/2, T/2], it is seen that the sum of their widths is at most T, i.e.

0<u@<T (4.10)

Any finite union of, say, £ arbitrary intervals, & = U§=, I;, can also be uniquely
expressed as a finite union of at most £ separated intervals, say I,...,I;, k < £ (see
Exercise 4.5), and its measure is then given by

N
(&) = LI, @1

im1

The union of a countably infinite collection'® of separated intervals, say B =72, I i
is also defined to be measurable and has a measure given by

[4 .
#(B) = lim 3 (7). (4.12)
j=1

The summation on the right is bounded between 0 and T for each £. Since p(I;) > 0,
the sum is nondecreasing in £. Thus the limit exists and lies between 0 and 7. Also
the limit is independent of the ordering of the I; (see Exercise 4.4).

Example 4.3.1 Let [; = (T27%,T27%*") for all integers j > 1. The jth interval
then has measure p(l;) = 27%. These intervals get smaller and closer to 0 as j
increases. They are easily seen to be separated. The union B = J; I, then has measure
p(B) = 372, T2~ = T/3. Visualize replacing the function in Figure 4.4 by one that
oscillates faster and faster as ¢ — 0; B could then represent the set of points on the
horizontal axis corresponding to a given vertical slice.

Example 4.3.2 As a variation of Example 4.3.1, suppose B = |J;I;, where [; =
[T27%,T27%] for each j. Then interval I; consists of the single point T27% so
p(I}) =0. In this case, ¥/, u(I;) =0 for each £. The limit of this as £ — oo is also
0, so i(B) =0 in this case. By the same argument, the measure of any countably
infinite set of points is 0.

Any countably infinite union of arbitrary (perhaps intersecting) intervals can be
uniquely'® represented as a countable (i.e. either a countably infinite or finite) union
of separated intervals (see Exercise 4.6); its measure is defined by applying (4.12) to
that representation.

13 An elementary discussion of countability is given in Appendix 4.9.1. Readers unfamiliar with ideas such
as the countability of the rational numbers are strongly encouraged to read this appendix.

14 The collection of separated intervals and the limit in (4.12) is unique, but the ordering of the intervals is
not.
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104 Source and channel waveforms

43.2 Measure for more general sets

It might appear that the class of countable unions of intervals is broad enough to
represent any set of interest, but it turns out to be too narrow to allow the general
kinds of statements that formed our motivation for discussing Lebesgue integration.
One vital generalization is to require that the complement B (relative to [—T}/2, T/2])

" of any measurable set B also be measurable.!® Since u([—7/2, T/2]) =T and every
point of [—T/2, T/2] lies in either B or B but not both, the measure of B should
be T — u(B). The reason why this property is necessary in order for the Lebesgue
integral to correspond to the area under a curve is illustrated in Figure 4.5.

—r —r —f

T4lth

] p

-T2 T2

Figure 45.  Let f(f) have the value 1 on a set B and the value 0 elsewhere in [—7/2, T/2]. Then
S f(¢)dr = u(B). The complement B of B is also illustrated, and it is seen that 1 — f(z) is 1
on the set B and 0 elsewhere. Thus f[1— f(r)]dt = 1(B), which must equal T — u(B) for
integration to correspond to the area under a curve.

The subset inequality is another property that measure should have: this states that if
A and B are both measurable and A C B, then p(A) < pu(B). One can also visualize
from Figure 4.5 why this subset inequality is necessary for integration to represent the
area under a curve.

Before defining which sets in [—7/2, T/2] are measurable and which are not, a
measure-like function called outer measure is introduced that exists for all sets in
[~T/2, T/2]. For an arbitrary set .4, the set B is said to cover Aif ACBand Bisa
countable union of intervals. The outer measure u°(A) is then essentially the measure
of the smallest cover of 4. In particular,'¢

p’(A) = inf p(B). (4.13)

B:Bceovers A

" 15 Appendix 4.9.1 uses the set of rationals in [—772, T/2] to illustrate that the complement 7 of a countable

union of intervals B need not be a countable union of intervals itself. In this case, (B) = T — u(B), which
is shown to be valid also when 7 is a countable union of intervals.
16 The infimum (inf) of a set of real numbers is essentially the minimum of that set. The difference between
the minimum and the infimum can be seen in the example of the set of real numbers strictly greater than 1.
This set has no minimum, since for each number in the set, there is a smaller number still greater than 1.
To avoid this somewhat technical issue, the infimum is defined as the greatest lowerbound of a set. In
the example, all numbers less than or equal to 1 are lowerbounds for the set, and 1 is then the greatest
lowerbound, i.e. the infimum. Every nonempty set of real numbers has an infinum if one includes —o0 as a
choice.
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4.3 L, functions and Lebesgue integration 105

Not surprisingly, the outer measure of a countable union of intervals is equal to its
measure as already defined (see Appendix 4.9.3).

Measurable sets and measure over the interval [—T7/2, T/2] can now be defined as
follows.

Definition 4.3.1 A set A (over [—T/2, T/2]) is measurable if p°(A) +p°(A) =T.
If A is measurable, then its measure, 1(A), is the outer measure p°(A).

Intuitively, then, a set is measurable if the set and its complement are sufficiently
untangled that each can be covered by countable unions of intervals which have
arbitrarily little overlap. The example at the end of Appendix 4.9.4 constructs the
simplest nonmeasurable set we are aware of; it should be noted how bizarre it is and
how tangled it is with its complement. ‘ :

The definition of measurability is a “mathematician’s definition” in the sense that
it is very succinct and elegant, but it does not provide many immediate clues about
determining whether a set is measurable and, if so, what its measure is. This is now
briefly discussd.

It is shown in Appendix 4.9.3 that countable unions of intervals are measurable
according to this definition, and the measure can be found by breaking the set into
separated intervals. Also, by definition, the complement of every measurable set is
also measurable, so the complements of countable unions of intervals are measurable.
Next, if A € A', then any cover of A’ also covers A, so the subset inequality is
satisfied. This often makes it possible to find the measure of a set by using a limiting
process on a sequence of measurable sets contained in or containing a set of interest.
Finally, the following theorem is proven in Appendix 4.9.4.

Theorem 4.3.1 Let A,, A,,... be any sequence of measurable sets. Then 8 =
Ui 4; and D =N}, A; are measurable. If Ay, A, ... are also disjoint, then
1(8) = ;u(A)). If u°(A) =0, then A is measurable and has zero measure.

This theorem and definition say that the collection of measurable sets is closed under
countable unions, countable intersections, and complementation. This partly explains
why it is so hard to find nonmeasurable sets and also why their existence can usually
be ignored — they simply do not arise in the ordinary process of analysis.

Another consequence concerns sets of zero measure. It was shown earlier that any
set containing only countably many points has zero measure, but there are many other
sets of zero measure. The Cantor set example in Appendix 4.9.4 illustrates a set of
zero measure with uncountably many elements. The theorem implies that a set .4 has
zero measure if, for any £ > 0, 4 has a cover B such that ¢(B) < e. The definition
of measurability shows that the complement of any set of zero measure has measure
T, i.e. [-T/2, T/2] is the cover of smallest measure. It will be seen shortly that, for
most purposes, including integration, sets of zero measure can be ignored and sets of
measure T can be viewed as the entire interval [—T/2, T/2].

This concludes our study of measurable sets on [~7/2, T/2]. The bottom line is
that not all sets are measurable, but that nonmeasurable sets arise only from bizarre
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106 Source and channel waveforms

and artificial constructions and can usually be ignored. The definitions of measure and
measurability might appear somewhat arbitrary, but in fact they arise simply through
the natural requirement that intervals and countable unions of intervals be measurable
with the given measure!’” and that the subset inequality and complement property be
satisfied. If we wanted additional sets to be measurable, then at least one of the above
properties would have to be sacrificed and integration itself would become bizarre.
The major result here, beyond basic familiarity and intuition, is Theorem 4.3.1, which
is used repeatedly in the following sections. Appendix 4.9 fills in many important
details and proves the results here

433 Measurable functions and integration over [-7/2, T/2]

A function {u(t) : [~T/2, T/2] — R} is said to be Lebesgue measurable (or more
briefly measurable) if the set of points {¢: u(t) < B} is measurable for each 8 € R. If
u(t) is measurable, then, as shown in Exercise 4.11, the sets {¢: u(f) < B8}, {#: u(t) = B},
{t:u(®) > B}, and {: @ < u(t) < B} are measurable for all @ < B € R. Thus, if a
function is measurable, the measure p,, = u({r: m8 < u(t) < (m+1)8}) associated
with the mth horizontal slice in Figure 4.4 must exist for each 6 > 0 and m.

For the Lebesgue integral to exist, it is also necessary that the Figure 4.4 approx-
imation to the Lebesgue integral has a limit as the vertical interval size § goes to
0. Initially consider only nonnegative functions, u(z) > 0 for all ¢. For each integer
n > 1, define the nth-order approximation to the Lebesgue integral as that arising from
partitioning the vertical axis into intervals each of height 8, =2~". Thus a unit increase
in n corresponds to halving the vertical interval size as illustrated in Figure 4.6.

Let u,, , be the measure of {t:m2™" < u(r) < (m+1)27"}, i.e. the measure of the
set of ¢t € [—T/2, T/2] for which u(r) is in the mth vertical interval for the nth-order

” T
26y Il I il I

-712 T2 T

Figure 46. Improvement in the approximation to the Lebesgue integral by a unit increase in »n is indicated
by the horizontal crosshatching.

17 We have not distinguished between the condition of being measurable and the actual measure assigned
a set, which is natural for ordinary integration. The theory can be trivially generalized, however, to random
variables restricted to [—7/2, 7/2]. In this case, the measure of an interval is redefined to be the probability
of that interval. Everything else remains the same except that some individual points might have nonzero
probability.
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4.3 L, functions and Lebesgue integration 107

approximation. The approximation ¥",, m2~" ,, , might be infinite'® for all n, and in
this case the Lebesgue integral is said to be infinite. If the sum is finite for n =1,
however, Figure 4.6 shows that the change in going from the approximation of order n
to n+ 1 is nonnegative and upperbounded by 72~"~1. Thus it is clear that the sequence °
of approximations has a finite limit which is defined'? to be the Lebesgue integral
of u(z). In summary, the Lebesgue integral of an arbitrary measurable nonnegative
function {u(t) : [—~T/2, T/2] — R} is finite if any approximation is finite and is then
given by

/ u(tyde=lim ) m2™"p,, ., where @, , =p(t:m2™" <u(f) < (m+1)27").
’l-‘)wmﬂ
4.149)

Example 4.3.3 Consider a function that has the value 1 for each rational number
in [-T/2,T/2] and O for all irrational numbers. The set of rationals has zero mea-
sure, as shown in Appendix 4.9.1, so that each approximation is zero in Figure 4.6,
and thus the Lebesgue integral, as the limit of these approximations, is zero. This
is a simple example of a function that has a Lebesgue integral but no Riemann
integral.

Next consider two nonnegative measurable functions () and v(¢) on [-T/2, T/2]
and assume u(f) = v(r) except on a set of zero measure. Then each of the approx-
imations in (4.14) are identical for u(f) and v(f), and thus the two integrals are
identical (either both infinite or both the same number). This same property will
be seen to carry over for functions that also take on negative values and, more
generally, for complex-valued functions. This property says that sets of zero mea-
sure can be ignored in integration. This is one of the major simplifications afforded
by Lebesgue integration. Two functions that are the same except on a set of zero
measure are said to be equal almost everywhere, abbreviated a.e. For example, the
rectangular pulse and its Fourier series representation illustrated in Figure 4.2 are
equal ae,

For functions taking on both positive and negative values, the function u(t) can be
separated into a positive part u*(f) and a negative part 4~ (r). These are defined by

_Ju(t) for t:u(r)=0 —n_ |0 for r:u(t)=0
ut() = [0 for t:u(®) <0’ w1 = [—u(t) for t:u(t) <O.
For all t € [-T/2, T/2] then,
u(t) = u* (1) —u= (). (4.15)

18 For example, this sum is infinite if u(f) = 1/|¢} for —T/2 < t < T/2. The situation here is essentially the
same for Riemann and Lebesgue integration.
19 This limiting operation can be shown to be independent of how the quantization intervals approach 0.
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If u(f) is measurable, then u*(f) and u~(¢) are also.?® Since these are nonnegative, they
can be integrated as before, and each integral exists with either a finite or infinite value.
If at most one of these integrals is infinite, the Lebesgue integral of u(f) is defined as

f u(f) = f ut (1) — f u=()dr. (4.16)

If both f u*(f)dr and [ u~(f)dr are infinite, then the integral is undefined.

Finally, a complex function {u(z) : [-T/2T/2] — C} is defined to be measurable
if the real and imaginary parts of u(¢) are measurable. If the integrals of R(u(z)) and
S(u(t)) are defined, then the Lebesgue integral [ u(r)dt is defined by

f u(@dr= [ Ru()dr+i [ S(u)de. (4.17)

The integral is undefined otherwise. Note that this implies that any integration property
of complex-valued functions {u(t) : [-T/2, T/2] - C} is also shared by real-valued
functions {u(t) : [-T/2, T/2] - R}.

434 Measurability of functions defined by other functions

The definitions of measurable functions and Lebesgue integration in Section 4.3.3 were
quite simple given the concept of measure. However, functions are often defined in
terms of other more elementary functions, so the question arises whether measurability
of those elementary functions implies that of the defined function. The bottom-line
answer is almost invariably yes. For this reason it is often assumed in the following
sections that all functions of interest are measurable. Several results are now given
fortifying this bottom-line view. :

First, if {u(?) : [~T/2, T/2] — R} is measurable, then —u(%), u(?)|, ¥(r), ',
and Inju(z)| are also measurable. These and similar results follow immediately from
the definition of measurable functions and are derived in Exercise 4.12.

Next, if u(t) and v(¢) are measurable, then u(r) +v(r) and u(r)v(¢) are measurable
(see Exercise 4.13).

Finally, if {u,(¢) : [-T/2, T/2] — R} is a measurable function for each integer
k = 1, then inf, u,(¢) is measurable. This can be seen by noting that {¢: inf [1,(r)] <
a} = U, {t: u,(r) < a}, which is measurable for each a. Using this result, Exercise
4.15 shows that lim, u, () is measurable if the limit exists for all t € [-T/2, T/2].

4.3.5 £, and £, functions over [-T/2, T/2]

A function {u(f) : [-T/2, T/2] — C} is said to be £,, or in the class £,, if u() is
measurable and the Lebesgue integral of |u(#)| is finite.?!

. 2 To see this, note that for 8> 0, {t: u* () < B} ={¢: u(t) < B}. For <0, {#: u*(r) < B} is the empty
set. A similar argument works for u~(t).
21 £, functions are sometimes called integrable functions.
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For the special case of a real function, {u(?) : [-T/2, T/2] -> R}, the magnitude
Ju()} can be expressed in terms of the positive and negative parts of u(r) as |u(r)| =
ut(?) +u~(¢). Thus u(f) is £, if and only if both u*(f) and u~(¢) have finite integrals.
In other words, u(f) is £, if and only if the Lebesgue integral of u(f) is defined
and finite.

For a complex function {u(¢) : [~T/2, T/2] — C}, it can be seen that u(?) is £, if
and only if both R[u(7)] and I[u(r)] are £,. Thus u(t) is £, if and only if [ u(r)ds is
defined and finite. ‘

A function {u(s) : [-T/2, T/2] — R} or {u(t) : [-T/2, T/2] — C} is said to be an
L, function, or a finite-energy function, if u(t) is measurable and the Lebesgue integral
of |u(#)? is finite. All source and channel waveforms discussed in this text will be
assumed to be £,. Although £, functions are of primary interest here, the class of £
functions is of almost equal importance in understanding Fourier series and Fourier
transforms. An important relation between £, and £, is given in the following simple
theorem, illustrated in Figure 4.7.

Theorem 4.3.2 If {u(t) : [-T/2, T/2]) — C} is £,, then it is also L,.

Proof: Note that [u(f)] < |u(f)[? for all ¢ such that |u(¢)| = 1. Thus |u(?)| < [u()[*+1
for all 1, so that  |u(r)|dt < [ |u(z)|*dz+T. If the function u(r) is £,, then the right
side of this equation is finite, so the function is also ;. O

( Ly functions [-T/2, T/21 » C )
Ly functions [-T/2,7T/2] » C

measurable functions [-7/2, T/2] - C

Figure 4,7.  Dlustration showing that for functions from [—7/2, T/2] to C, the class of £, functions
is contained in the class of £; functions, which in turn is contained in the class of measurable
functions. The restriction here to a finite domain such as [—7/2, 7/2] is necessary, as seen later.

This completes our basic introduction to measure and Lebesgue integration over
the finite interval {—7/2, T/2]. The fact that the class of measurable sets is closed
under complementation, countable unions, and countable intersections underlies the
results about the measurability of functions being preserved over countable limits and
sums. These in turn underlie the basic results about Fourier series, Fourier integrals, and
orthogonal expansions. Some of those results will be stated without proof, but an under-
standing of measurability will enable us to understand what those results mean. Finally,
ignoring sets of zero measure will simplify almost everything involving integration.

44 Fourier series for .G, waveforms

The most important results about Fourier series for £, functions are as follows.
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Theorem 4.4.1 (Fourier series) Let {u(?) : [-T/2, T/2] — C} be an L, function.
Then for each k € Z, the Lebesgue integral

. 1 7 ~27ikt/T
B=7 f_ 0T dr (4.18)

exists and satisfies |i,| < 1/T [ [u(z){dt < 0. Furthermore,

2

2 ¢ .
lim u()— Y @™ dr=0, (4.19)

t—ooJ_1/2

==

where the limit is monotonic in £. Also, the energy equation (4.6) is satisfied.

Conversely, if {u; k € Z} is a two-sided sequence of complex numbers satisfying
Yo oo |2 < o0, then an L, function {u(t) : [—~T/2, T/2] - C} exists such that (4.6)
and (4.19) are satisfied.

The first part of the theorem is simple. Since u(f) is measurable and e 27*/7 js
measurable for each k, the product u(r)e=27*%T is measurable. Also |u(f)e"*/T| =
{u(?)] so that u(r)e=2™*/T is £, and the integral exists with the given upperbound (sce
Exercise 4.17). The rest of the proof is given in, Section 5.3.4.

The integral in (4.19) is the energy in the difference between u(f) and the partial
Fourier series using only the terms —£ < k < ¢. Thus (4.19) asserts that u(f) can be
approximated arbitrarily closely (in terms of difference energy) by finitely many terms
in its Fourier series. ‘ '

A series is defined to converge in £, if (4.19) holds. The notation Lim. (limit
in mean-square) is used to denote £, convergence, so (4.19) is often abbreviated as
follows:

u(f) =Lim. ) f,e?™ Trect(—t-) . (4.20)
- T .

The notation does not indicate that the sum in (4.20) converges pointwise to u() at
each t; for example, the Fourier series in Figure 4.2 converges to 1/2 rather than 1 at
the values ¢ = £1/4. In fact, any two £, functions that are equal a.e. have the same
Fourier series coefficients. Thus the best to be hoped for is that ¥, &t,e*"*/Trect(t/T)
converges pointwise and yields a “canonical representative” for all the £, functions
that have the given set of Fourier coefficients, {i; k € Z}.

Unfortunately, there are some rather bizarre £, functions (see the everywhere dis-
continuous example in Appendix 5.5.1) for which ¥, i, e>™*/T rect(t/T) diverges for
some values of ¢.

There is an important theorem due to Carleson (1966), however, stating that if u(z)
is £,, then Y, i1,e>™*/Trect(¢/T) converges a.e. on [—T/2, T/2]. Thus for any £,
function u(z), with Fourier coefficients {, : k € Z}, there is a well defined function,

() = [ Y oo €™ HIT rect(¢/T) if the sum converges;
10

otherwise. (421)
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4.4 Fourier series for .C, waveforms 11

Since the sum above converges a.e., the Fourier coefficients of %(¢) given by (4.18)
agree with those in (4.21). Thus #%(#) can serve as a canonical representative for all
the £, functions with the same Fourier coefficients {ii,; k € Z}. From the difference-
energy equation (4.7), it follows that the difference between any two £, functions with
the same Fourier coefficients has zero energy. Two £, functions whose difference
has zero energy are said to be L,-equivalent; thus all £, functions with the same
Fourier coefficients are .£,-equivalent. Exercise 4.18 shows that two £, functions are
L;-equivalent if and only if they are equal a.e.

In summary, each £, function {u(z) : [-T/2, T/2] — C} belongs to an equivalence
class consisting of all .£, functions with the same set of Fourier coefficients, Each
pair of functions in this equivalence class are £,-equivalent and equal a.e. The canon-
ical representative in (4.21) is determined solely by the Fourier coefficients and is
uniquely defined for any given set of Fourier coefficients satisfying 3", |&#,|* < oo; the
corresponding equivalence class consists of the £, functions that are equal to i(?) a.e.

From an engineering standpoint, the sequence of ever closer approximations in
(4.19) is usually more relevant than the notion of an equivalence class of functions
with the same Fourier coefficients. In fact, for physical waveforms, there is no physical
test that can distinguish waveforms that are .£,-equivalent, since any such physical test
requires an energy difference. At the same time, if functions {u(z) : [-T/2, T/2] = C}
are consisténtly represented by their Fourier coefficients, then equivalence classes can
usually be ignored. '

For all but the most bizarre .C, functions, the Fourier series converges everywhere
to some function that is £,-equivalent to the original function, and thus, as with the
points ¢ = :£1/4 in the example of Figure 4.2, it is usually unimportant how one
views the function at those isolated points. Occasionally, however, particularly when
discussing sampling and vector spaces, the concept of equivalence classes becomes
relevant,

- 441 The T-spaced truncated sinusoid expansion

There is nothing special about the choice of 0 as the center point of a time-limited func-
- tion. For a function {v(¢) : [A—T/2, A+ T/2] — C} centered around some arbitrary
' time A, the shifted Fourier series over that interval is given by?

o o t—A .
v(t) =Lim. Y ,e?"*/Trect ( T ) , 4.22)
k
where
1 ra+172 R
By == f v()e™Tdr,  —o0 <k <0, (4.23)
T Ja-t;2

2 Note that the Fourier relationship between the function v(:) and the sequence {v,} depends implicitly on
the interval T and the shift A. ’
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112 Source and channel waveforms

To see this, let u(t) = v(t+ A). Then u(0) = v(A) and u(z) is centered around 0 and
has a Fourier series given by (4.20) and (4.18). Letting 9, = &i,e™2"*4/T yields (4.22)
and (4.23). The results about measure and integration are not changed by this shift in
the time axis.

Next, suppose that some given function u(#) is either not time-limited or limited

- to some very large interval. An important method for source coding is first to break
such a function into segments, say of duration T, and then to encode each segment®
separately. A segment can be encoded by expanding it in a Fourier series and then
encoding the Fourier series coefficients.

Most voice-compression algorithms use such an approach, usually breaking the
voice waveform into 20ms segments. Voice-compression algorithms typically use
the detailed structure of voice rather than simply encoding the Fourier series coeffi-
cients, but the frequency structure of voice is certainly important in this process. Thus
understanding the Fourier series approach is a good first step in understanding voice
compression. ,

The implementation of voice compression (as well as most signal processing tech-
niques) usually starts with sampling at a much higher rate than the segment duration
above. This sampling is followed by high-rate quantization of the samples, which are
then processed digitally. Conceptually, however, it is preferable to work directly with
the waveform and with expansions such as the Fourier series. The analog parts of the
resulting algorithms can then be implemented by the standard techniques of high-rate
sampling and digital signal processing. )

Suppose that an £, waveform {u(¢) : R — C} is segmented into segments u,, (z) of
duration T. Expressing u(#) as the sum of these segments,?*

u() =1im. > u,(s), where u,,(f) = u(r) rect(—;; - m) . (4.24)

Expanding each segment u,(z) by the shifted Fourier series of (4.22) and (4.23) we
obtain

: t
u,(f) =1im. Y, e*™*/Trect (_T-' - m) , (4.25)
n A

where

.1 mT+T/2 -
Uy = - uy(de de
’ T Jmr-112

1 po . .
== / u(t)e= 2™ Trect (% - m)dt. (4.26)

23 Any engineer, experienced or not, when asked to analyze a segment of a waveform, will automatically
shift the time axis to be centered at 0. The added complication here simply arises from looking at multiple
segments together so as to represent the entire waveform.

24 This sum double-counts the points at the ends of the segments, but this makes no difference in terms of
£L,-convergence. Exercise 4.22 treats the convergence in (4.24) and (4.28) more carefully.
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4.4 Fourier series for .C, waveforms 113

Combining (4.24) and (4.25):
1 A 2aikyT t
u() =1im. > > iy e rect(— - m) .
m k ) T
This expands u(t) as a weighted sum® of the doubly indexed functions:
. t -
u() =1im. Y > & .6, . (), where 6, ,, (1) = 2™k rect(-f - ) . (4.27)
m k )

The functions 6, ,,(¢) are orthogonal, since, for m # m’, the functions 6, ,(r) and
0. (2) do not overlap, and, for m =m’ and k # ¥, 6, ,,(r) and 6,, ,,(?) are orthogonal
as before. These functions, {6, ,(¢); k,m € Z}, are called the T-spaced truncated
sinusoids and the expansion in (4.27) is called the T-spaced truncated sinusoid
expansion.

The coefficients %, ,, are indexed by k,m € Z and thus form a countable set.?
This permits the conversion of an arbitrary £, waveform into a countably infinite
sequence of complex numbers, in the sense that the numbers can be found from the
waveform, and the waveform can be reconstructed from the sequence, at least up to
£L,-equivalence.

The Lim. notation in (4.27) denotes £,-convergence; i.e.,

2

"= 3 5 By nn(9)] dr=0 (428)

m=—nk=—

lim

nlsco

This shows that any given u(f) can be approximated arbitrarily closely by a finite
set of coefficients. In particular, each segment can be approximated by a finite set of
coefficients, and a finite set of segments approximates the entire waveform (although
the required number of segments and coefﬁc1ents per segment clearly depend on the
particular waveform).

For data compression, a waveform u(r) represented by the coefficients {&; ,; k,m €
Z} can be compressed by quantizing each #, ,, into a representative 9, ,,. The energy
equation (4.6) and the difference-energy equation (4.7) generalize easily to the 7-
spaced truncated sinusoid expansion as follows:

[Cuora=1 ¥ ¥ b (4.29)
m=—00 k=—c0
[ |u<r)—v(t)|2dr~r_z Z it m = Bp,ml?- (4.30)

2 Exercise 4.21 shows why (4.27) (and similar later expressions) are independent of the order of the limits.
% Example 4.9.2 in Section 4.9.1 explains why the doubly indexed set above is countable.

Constellation Exhibit 2004, Page 41 of 229



114

Source and channel waveforms

4.5

As in Section 4.2.1, a finite set of coefficients should be chosen for compression and
the remaining coefficients should be set to 0. The problem of compression (given this
expansion) is then to decide how many coefficients to compress, and how many bits
to use for each selected coefficient. This of course requires a probabilistic model for
the coefficients; this issue is discussed later.

There is a practical problem with the use of T-spaced truncated sinusoids as an
expansion to be used in data compression. The boundaries of the segments usually act
like step discontinuities (as in Figure 4.3), and this leads to slow convergence over the
Fourier coefficients for each segment. These discontinuities could be removed prior
to taking a Fourier series, but the current objective is simply to illustrate one general
approach for converting arbitrary £, waveforms to sequences of numbers. Before
considering other expansions, it is important to look at Fourier transforms.

Fourier transforms and .C, waveforms

The T-spaced truncated sinusoid expansion corresponds closely to our physical notion
of frequency. For example, musical notes correspond to particular frequencies (and
their harmonics), but these notes persist for finite durations and then change to notes
at other frequencies. However, the parameter T in the T-spaced expansion is arbitrary,
and quantizing frequencies in increments of 1/T is awkward.

The Fourier transform avoids the need for segmentation into T'-spaced intervals,
but also removes the capability of looking at frequencies that change in time. It maps
a function of time, {u(f) : R — C}, into a function of frequency,”” {#(f):R — C}.
The inverse Fourier transform maps #(f) back into u(t), essentially making &(f) an
alternative representation of u(t).

The Fourier transform and its inverse are defined as follows:

an=[  u()erm dr; ‘ (431)
u) = " a(neraf. (4.32)

The time units are seconds and the frequency units hertz (Hz), i.e. cycles per second.
For now we take the conventional engineering viewpoint that any respectable func-

tion u(t) has a Fourier transform &(f) given by (4.31), and that u(f) can be retrieved

from a(f) by (4.32). This will shortly be done more carefully for £, waveforms.

~ . The following list of equations reviews a few standard Fourier transform rela-

tions. In the list, u(¢) and 2(f) denote a Fourier transform pair, written u(¢) < a(yf),
and similarly v(¢) < 0(f):

2 The notation #(f), rather than the more usual U(f), is used here since capitalization is used to distinguish
random variables from sample values. Later, {U(f) : R — C} will be used to denote a random process,
where, for each ¢, U(?) is a random variable,
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au(t) + bu(t) « aia(f) + bo(f) linearity; 4.33)
w(=n el conjugation; (4.34)

(®) < u(=p) time—frequency duality;  (4.35)

u(t—1) o e7M(f) time shift; (4.36)

u(f) ™ o i(f — fo) frequency shift; 4.37)

u(t/T) < T a(fT) scaling (for T > 0); (4.38)

du(?)/dt < 2mifiu(f) differentiation; 4.39)

j : u(n)v(t — 7)d7 < a(H() convolution; (4.40)
[ utayr =z < 2 () correlation. (4.41)

These relations will be used extensively in what follows. Time—frequency duality is par-
ticularly important, since it permits the translation of results about Fourier transforms
to inverse Fourier transforms and vice versa.

Exercise 4.23 reviews the convolution relation (4.40). Equation (4.41) results from
conjugating d(f) in (4.40).

Two useful special cases of any Fourier transform pair are as follows:

u(©)= [ " WHAf: (4.42)
2(0) = [ Tu@dr (4.43)

These are useful in checking multiplicative constants. Also Parseval’s theorem results
from applying (4.42) to (4.41): ' ‘

/_ u(t)v* (1)dt = ]_ W(H* (Ndf. (4.44)
As a corollary, replacing v(r) by u(f) in (4.44) results in the energy equation for
Fourier transforms, namely

[ w@ra=[" anrds : (445)

The magnitude squared of the frequency function, |&(f)|?, is called the spectral density
of u(#). It is the energy per unit frequency (for positive and negative frequencies) in the
waveform. The energy equation then says that energy can be calculated by integrating
over either time or frequency.

As another corollary of (4.44), note that if u(f) and v(z) are orthogonal, then #(f)
and ¥(f) are orthogonal, i.e.

—o0

[ u@vydr=0 ifandontyif | Tar (=0, (446)
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116 Source and channel waveforms

The following gives a short set of useful and familiar transform pairs:

) __ sin(art) _J1 for |fl=1/2;
sinc(?) = el rect(f) = [ 0 for |f|>1/2. 447)
e ™ e, (4.48)
1
—al. _— 4.4

e ’t2090+27rif for a>0, (4.49)

2a
—ill o ———— . 4.50
e 9a2+(277if)2 for a>0 (4.50)

Equations (4.47)-(4.50), in conjunction with the Fourier relations (4.33)-(4.41), yield
a large set of transform pairs. Much more extensive tables of relations are widely
available.

451 Measure and integration over R

A set A C R is defined to be measurable if AN[~T/2, T/2] is measurable for all
T > 0. The definitions of measurability and measure in Section 4.3.2 were given
in terms of an overall interval [—7/2, T/2], but Exercise 4.14 verifies that those
definitions are in fact independent of T. That is, if D € [-T/2, T/2] is measurable -
relative to [~7/2, T/2], then D is measurable relative to [—T}/2, T;/2], for each
T, > T, and p(D) is the same relative to each of those intervals. Thus measure is
defined unambiguously for all sets of bounded duration.
For an arbitrary measurable set .4 € R, the measure of A is defined to be

- 1(A) = lim w(AN[-17/2, T/2)). (4.51)

Since AN[-T/2, T/2] is increasing in T, the subset inequality says that w(AN
[—T/2, T/2)]) is also increasing, so the limit in (4.51) must exist as either a finite or
infinite value. For example, if A is taken to be R itself, then u(RN[-772, T/2])=T
and u(R) = oo. The possibility for measurable sets to have infinite measure is the
primary difference between measure over [—7/2, T/2] and R.%®

Theorem 4.3.1 carries over without change to sets defined over R. Thus the collection
of measurable sets over R is closed under countable unions and intersections. The
measure of a measurable set might be infinite in this case, and if a set has finite
measure, then its complement (over R) must have infinite measure.

A real function {u(z) : R ~> R} is measurable if the set {¢: u(f) < B} is measurable
for each B € R. Equivalently, {u(t) : R — R} is measurable if and only if u(z) rect(t/T)
is measurable for all 7> 0. A complex function {u(¢) : R — C} is measurable if the
real and imaginary parts of u(t) are measurable.

28 In fact, it was the restriction to finite measure that permitted the simple definition of measurability in
terms of sets and their complements in Section 4.3.2.
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4.5 Fourier transforms and .C, waveforms 117

If {u(z) : R — R} is measurable and nonnegative, there are two approaches to its
Lebesgue integral. The first is to use (4.14) directly and the other is to evaluate first
the integral over [—7/2, T/2] and then go to the limit T — co. Both approaches give
the same result.?

For measurable real functions {u(f) : R — R} that take on both positive and negative
values, the same approach as in the finite duration case is successful. That is, let u*(¢)
and u~(t) be the positive and negative parts of u(f), respectively. If at most one of
these has an infinite integral, the integral of u(?) is defined and has the value

/ u(f)ds = / w*(1)dt — / u=(1)dr.

Finally, a complex function {u(#) : R — C} is defined to be measurable if the real and
imaginary parts of u(f) are measurable. If the integral of R(u(r)) and that of J(u(s))
are defined, then

[ u(f)de = f R(u(r))dr +i j S(u(f))ds. (4.52)

A function {u(f) : R — C} is said to be in the class £, if u(#) is measurable and the
Lebesgue integral of [u(#)] is finite. As with integration over a finite interval, an £;
function has real and imaginary parts that are both .£;. Also the positive and negative
parts of those real and imaginary parts have finite integrals.

Example 4.5.1 The sinc function, sinc(¢) = sin(7rt)/ 7t is sketched in Figure 4.8 and
provides an interesting example of these definitions. Since sinc(f) approaches 0 with
increasing ¢ only as 1/, the Riemann integral of |sinc(#)| is infinite, and with a little
thought it can be seen that the Lebesgue integral is also infinite. Thus sinc(¢) is not an
£, function. In a similar way, sinc*(¢) and sinc™(#) have infinite integrals, and thus
the Lebesgue integral of sinc(z) over (—oo, o0) is undefined.

The Riemann integral in this case is said to be improper, but can still be calculated
by integrating from —A to +A and then taking the limit A — oo. The result of this
integration is 1, which is most easily found through the Fourier relationship (4.47)
combined with (4.43). Thus, in a sense, the sinc function is an example where the-
Riemann integral exists but the Lebesgue integral does not. In a deeper sense, however,

=2

Figure 48.  The function sinc(f) goes to 0 as 1/ with increasing ¢.

2 As explained shortly in the sinc function example, this is not necessarily true for functions taking on
positive and negative values. '
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the issue is simply one of definitions; one can always use Lebesgue integration over
[—A, A] and go to the limit A — oo, getting the same answer as the Riemann integral
provides.

A function {u(r) : R — C]} is said to be in the class £, if u(t) is measurable and
the Lebesgue integral of [u(r)|? is finite. All source and channel waveforms will be
assumed to be £,. As pointed out earlier, any ., function of finite duration is also
£L,. However, £, functions of infinite duration need not be £;; the sinc function is a
good example. Since sinc(f) decays as 1/t, it is not £;. However, |sinc(f)|* decays as
1/1% as t — oo, so the integral is finite and sinc(?) is an £, function.

In summary, measure and integration over R can be treated in essentially the same
way as over [—T/2, T/2]. The point sets and functions of interest can be truncated to
[—T/2, T/2] with a subsequent passage to the limit T — co. As will be seen, however,
this requires some care with functions that are not £,.

4.5.2 Fourier transforms of .£, functions

The Fourier transform does not exist for all functions, and when the Fourier transform

- . does exist, there is not necessarily an inverse Fourier transform. This section first
discusses £, functions and then £, functions. A major result is that £; functions
always have well defined Fourier transforms, but the inverse transform does not
always have very nice properties; .£, functions also always have Fourier transforms,
but only in the sense of £,-equivalence. Here however, the inverse transform also
exists in the sense of £,-equivalence. We are primarily interested in .C, functions, but
the results about £, functions will help in understanding the £, transform. -

Lemma 4.5.1 Ler {u(r) : R — C} be £,. Then a(f) = [ u(t)e"2"/dt both exists
and satisfies |a(f)| < [ |u(?)|dt for each f € R. Furthermore, {i(f):R — C} isa
continuous function of f.

Proof Note that [u(r)e™>"/| = |u(f)| for all real ¢ and f. Thus u(f)e~"/* is L, for
each f and the integral exists and satisfies the given bound. This is the same as the
argument about Fourier series coefficients in Theorem 4.4.1. The continuity follows
from asimple ¢/6 argument (see Exercise 4.24). a

As an example, the function u(f) =rect(t) is £,, and its Fourier transform, defined
at each f, is the continucus function sinc(f). As discussed before, sinc(f) is not L.
The inverse transform of sinc(f) exists at all ¢, equaling rect(r) except at = 1:1/2,
where it has the value 1/2. Lemma 4.5.1 also applies to inverse transforms and verifies
that sinc(f) cannot be £,, since its inverse transform is discontinuous.

Next consider £, functions. It will be seen that the pointwise Fourier transform
Ju()e~*/dr does not necessarily exist at each f, but that it does exist as an £,
limit. In exchange for this added complexity, however, the inverse transform exists
in exactly the same sense. This result is called Plancherel’s theorem and has a nice
interpretation in terms of approximations over finite time and frequency intervals.
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For any £, function {u(f) : R — C} and any positive number A, define i,(f) as
the Fourier transform of the truncation of u(z) to [—A, A]; i.e.,

A ,
B () = /_ ) u(f)e 2™ dr. (4.53)

The function u(f)rect(t/2A) has finite duration and is thus £,. It follows that &, (f) is
continuous and exists for all f by Lemma 4.5.1. One would normally expect to take
the limit in (4.53) as A — oo to get the Fourier transform #(f), but this limit does
not necessarily exist for each f. Plancherel’s theorem, however, asserts that this limit
exists in the £, sense. This theorem is proved in Appendix 5.5.1.

Theorem 4.5.1 (Plancherel, part 1) For any £, function {u(f) :R — C}, an £,
Sunction {a(f) : R — C} exists satisfying both

Iim / [3() -, (D df =0 (4.54)
and the energy equation, (4.45).

This not only guarantees the existence of a Fourier transform (up to £,-equivalence),
but also guarantees that it is arbitrarily closely approximated (in difference energy) by
the continuous Fourier transforms of the truncated versions of u(f). Intuitively what
is happening here is that £, functions must-have an arbitrarily large fraction of their
energy within sufficiently large truncated limits; the part of the function outside of
these limits cannot significantly affect the .£,-convergence of the Fourier transform.

The inverse transform is treated very similarly. For any £, function {#(f) : R — C}
and any B, 0 < B < oo, define

B .
ug(t) = /_ , a(fer s df. (4.55)

As before, ug(t) is a continuous £, function for all B, 0<B<oo. The final part of
Plancherel’s theorem is then given by Theorem 4.5.2.

Theorem 4.5.2 (Plancherel, part 2) For any £, function {u(t) : R — C}, let {i( f) :
R — C} be the Fourier transform of Theorem 4.5.1 and let ug(t) satisfy (4.55). Then

lim [ : [u(e) — 5 ()| dt = 0. (4.56)

The interpretation is similar to the first part of the theorem. Specifically the inverse
transforms of finite frequency truncations of the transform are continuous and converge
to an £, limit as B — oo. It also says that this .C, limit is equivalent to the original
function u(r). ) }

Using the limit in mean-square notation, both parts of the Plancherel theorem can be
expressed by stating that every £, function u(¢) has a Fourier transform #(f) satisfying

' B

a(f) =lim. ! u()e~2"dr u(f) = Li.m. . a(fer i df,

A—+oc0 Y—A B—soo J—
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i.e., the inverse Fourier transform of a(f) is £,-equivalent to u(#). The first integral
above converges pointwise if u(?) is also £, and in this case converges pointwise to
a continuous function &(f). If u(r) is not £, then the first integral need not converge
pointwise. The second integral behaves in the analogous way.

It may help in understanding the Plancherel theorem to interpret it in terms of
finding Fourier transforms using Riemann integration. Riemann integration over an
infinite region is defined as a limit over finite regions. Thus, the Riemann version of
the Fourier transform is shorthand for :

A -
&() = lim /_ (e dr = fim i, (). (4.57)

Thus, the Plancherel theorem can be viewed as replacing the Riemann integral with
a Lebesgue integral and replacing the pointwise limit (if it exists) in (4.57) with £,-
convergence. The Fourier transform over the finite limits —A to A is continuous and
well behaved, so the major difference comes in using £,-convergence as A — co.

As an example of the Plancherel theorem, let u(f) = rect(z). Then & ,(f) = sinc(f)
for all A > 1/2, so u(f) = sinc(f). For the inverse transform, uz(f) = ffB sinc(f)df is
messy to compute but can be seen to approach rect(r) as B — oo except at t ==+1/2,
where it equals 1/2. At t = %1/2, the inverse transform is 1/2, whereas u(t) = 1.

As another example, consider the function u(f), where u(f) = 1 for rational values
of ¢t € [0, 1] and u(¢) =0 otherwise. Since this is 0 a.e, the Fourier transform u(f)
is O for all f and the inverse transform is 0, which is £,-equivalent to u(). Finally,
Example 5.5.1 in Appendix 5.5.1 illustrates a bizarre £, function g() that is every-
where discontinuous. Its transform g(f) is bounded and continuous by Lemma 4.5.1,
but is not £,. The inverse transform is again discontinuous everywhere in (0, 1) and
unbounded over every subinterval. This example makes clear why the inverse trans-
form of a continuous function of frequency might be bizarre, thus reinforcing our focus
on £, functions rather than a more conventional focus on notions such as continuity.

In what follows, £,-convergence, as in the Plancherel theorem, will be seen as
increasingly friendly and natural. Regarding two functions whose difference has zero
energy as being the same (formally, as .£,-equivalent) allows us to avoid many triv-
ialities, such as how to define a discontinuous function at its discontinuities. In this
case, engineering commonsense and sophisticated mathematics arrive at the same
conclusion.

Finally, it can be shown that all the Fourier transform relations in (4.33)-(4.41)
except differentiation hold for all £, functions (see Exercises 4.26 and 5.15). The
derivative of an ., function need not be £,, and need not have a well defined Fourier
transform.

4.6 The DTFT and the sampling theorem

The discrete-time Fourier transform (DTFT) is the time-frequency dual of the Fourier
series. It will be shown that the DTFT leads immediately to the sampling theorem.

Constellation Exhibit 2004, Page 48 of 229



4.6 The DTFT and the sampling theorem 121

46.1 The discrete-time Fourier transform

Let &2(f) be an £, function of frequency, nonzero only for ~W < f <W. The DTFT
of u(f) over [-W, W] is then defined by

a(f) =1im. Y u,e "W rect (%W) , (4.58)

k

where the DTFT coefficients {i,; k € Z} are given by

b= o / " a(er gf, (4.59)
W/ w

These are the same as the Fourier series equations, replacing ¢ by f, T by 2W, and
e?™ by e~2", Note that &i(f) has an inverse Fourier transform u(t) which is thus
baseband-limited to [-W, W]. As will be shown shortly, the sampling theorem relates
the samples of this baseband waveform to the coefficients in (4.59).

The Fourier series theorem (Theorem 4.4.1) clearly applies to (4.58) and (4.59) with
the above notational changes; it is repeated here for convenience.

Theorem 4.6.1 (DTFT) Let {i(f) : [-W, W] = C} be an L, function. Then for each
k € Z, the Lebesgue integral (4.59) exists and satisfies {u,| < (1/2W) [ |a()|df < oo.

Furthermore,
W ¢ P
lim | \a(f) - Y u eI df =0 (4.60)
—oo/-W k=-20
and
w o
[ 1P af =20 3 |l (4.61)

k=-—c0

Finally, if {u,, k€Z) is a sequence of complex numbers satisfying Y |u;|* < oo, then
an L, function {i(f) : [-W, W] — C} exists satisfying (4.60) and (4.61).

As before, (4.58) is shorthand for (4.60). Again, this says that any desired approxi-
mation accuracy, in terms of energy, can be achieved by using enough terms in the
series.

Both the Fourier series and the DTFT provide a one-to-one transformation (in the
sense of £,-convergence) between a function and a sequence of complex numbers.
In the case of the Fourier series, one usually starts with a function u(¢) and uses the
sequence of coefficients to represent the function (up to £,-equivalence). In the case
of the DTFT, one often starts with the sequence and uses the frequency function to
represent the sequence. Since the transformation goes both ways, however, one can
view the function and the sequence as equally fundamental.
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462  The sampling theorem

The DTFT is next used to establish the sampling theorem, which in turn will help
interpret the DTFT. The DTFT (4.58) expresses u(f) as a weighted sum of truncated
sinusoids in frequency,

2N =1im. Y u; ¢ (f), where ¢, (f) =e 2N rect(-sz) . (4.62)
k

Ignoring any questions of convergence for the time being, the inverse Fourier transform
of u(f) is then given by u(z) = 3", u,¢,(¢), where ¢,(¢) is the inverse transform of
&.(). Since the inverse transform® of rect(f/2W) is 2Wsinc(2Ws), the time-shift
relation implies that the inverse transform of (?J,‘(f) is given by

(1) =2Wsinc(@Wr—k) < (P = e 2mkIW rect(%) . (4.63)

Thus u(r), the inverse transform of &(f), is given by

-]

u®) = Y wde(r) = fj 2Wu, sinc(QWr— k). (4.64)

==—00 ==00

Since the set of truncated sinusoids {a),‘;k € Z} is orthogonal, the sinc functions
{ds; k € Z} are also orthogonal, from (4.46). Figure 4.9 illustrates ¢, and ¢, for the
normalized case where W=1/2.

Note that sinc(r) equals 1 for £ =0 and O for all other integer ¢. Thus if (4.64) is
evaluated for ¢ = k/2W, the result is that u(k/2W) = 2Wu, for all integer k. Substituting
this into (4.64) results in the equation known as the sampling equation:

u(t) = i u(EkW) sinc(2Wr — k).

k=-00

Figure 49,  Sketch of sinc(t) = sin(7rt) /¢ and sinc(z — 1). Note that these spaced sinc functions are
orthogonal to each other.

30 This is the time/frequency dual of (4.47). &(f) = rect(f/2W) is both £, and £y; u(f) is continuous and
£, but not £;. From the Plancherel theorem, the transform of u(r), in the £, sense, is &(f).
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This says that a baseband-limited function is specified by its samples at intervals
T =1/2W. In terms of this sample interval, the sampling equation is given by

oo

w= Y u(kT)sinc(%— ). (4.65)

==—00

The following theorem makes this precise. See Appendix 5.5.2 for an insightful proof.

Theorem 4.6.2 (Sampling theorem) Let {u(t) : R — C} be a continuous L, function
baseband-limited to W. Then (4.65) specifies u(t) in terms of its T-spaced samples with
T = 1/2W. The sum in (4.65) converges to u(t) for each t € R, and u(t) is bounded
at each t by |u(t)| < fl”w |a(f)]df < oo.

The following example illustrates why u(¢) is assumed to be continuous above.

Example 4.6.1 (A discontinuous baseband function) Let u(f) be a continuous £,
baseband function limited to |f| < 1/2. Let v(r) satisfy v(f) = u(z) for all noninteger
t and v(t) = u(t) + 1 for all integer ¢. Then u(¢) and v(¢) are £,-equivalent, but their
samples at each integer time differ by 1. Their Fourier transforms are the same, say
u(f), since the differences at isolated points have no effect on the transform. Since
(f) is nonzero only in [-W, W], it is £,. According to the time-frequency dual of
Lemma 4.5.1, the pointwise inverse Fourier transform of &(f) is a continuous function,
say u(t). Out of all the £,-equivalent waveforms that have the transform u(f) only
u(t) is continuous, and it is that u(¢) that satisfies the sampling theorem.

The function v(¢) is equal to u(¢) except for the isolated discontinuities at.each
integer point. One could view u(f) as baseband-limited also, but this is clearly not
physically meaningful and is not the continuous function of the theorem.

Example 4.6.1 illustrates an ambiguity about the meaning of baseband-limited func-
tions. One reasonable definition is that an £, function v(t) is baseband-limited to W
if &i(f) is O for | f| > W. Another reasonable definition is that u(¢) is baseband-limited
to W if u(z) is the pointwise inverse Fourier transform of a function &(f) that is O for
|| > W. For a given (), there is a unique u(f) according to the second definition
and it is continuous; all the functions that are .£,-equivalent to u(z) are bandlimited
by the first definition, and all but u(f) are discontinuous and potentially violate the
sampling equation. Clearly the second definition is preferable on both engineering and
mathematical grounds.

Definition 4.6.1 An £, function is baseband-limited to W if it is the pointwise
inverse transform of an £, function a(f) that is O for |f] > W. Equivalently, it is
baseband-limited to W if it is continuous and its Fourier transform is 0 for |f{ > 0.

The DTFT can now be further interpreted. Any baseband-limited £, function {a(f):
[-W, W] — C} has both an inverse Fourier transform u(f) = f #(f)e?/*df and a
DTFT sequence given by (4.58). The coefficients u, of the DTFT are the scaled
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samples, Tu(kT), of u(t), where T =1/2W. Put in a slightly different way, the DTFT
in (4.58) is the Fourier transform of the sampling equation (4.65) with u(kT) =u, /T *!

It is somewhat surprising that the sampling theorem holds with pointwise conver-
gence, whereas its transform, the DTFT, holds only in the £,-equivalence sense. The
reason is that the function #(f) in the DTFT is £, but not necessarily continuous,
whereas its inverse transform u(r) is necessarily continuous but not necessarily £,.

The set of functions {¢,(f); k € Z} in (4.63) is an orthogonal set, since the interval
[-W, W] contains an integer number of cycles from each sinusoid. Thus, from (4.46),
the set of sinc functions in the sampling equation is also orthogonal. Thus both the
DTFT and the sampling theorem expansion are orthogonal expansions. It follows (as
will be shown carefully later) that the energy equation,

[ Iu(t)lzdt—TkE lukT)?, _ (4.66)

holds for any continuous £, function u(¢) baseband-limited to [-W, W] with T=1/2W.

In terms of source coding, the sampling theorem says that any ., function u(z) that

is baseband-limited to W can be sampled at rate 2W (i.e. at intervals T = 1/2W) and the

samples can Jater be used to reconstruct the function perfectly. This is slightly different

from the channel coding situation where a sequence of signal values are mapped into

a function from which the signals can later be reconstructed. The sampling theorem

shows that any ., baseband-limited function can be represented by its samples. The
following theorem, proved in Appendix 5.5.2, covers the channel coding variation.

Theorem 4.6.3 (Sampling theorem for transmission) Let {a;; k€Z} be an arbi-
trary sequence of complex numbers satisfying ¥, |a;|? < oo. Then 3", a; sinc(2Wr —k)
converges pointwise to a continuous bounded L, function {u(t) : R — C} that is
baseband-limited to W and satisfies a, = u(k/2W) for each k.

4.6.3 - .. Source coding using sampied' waveforms

Section 4.1 and Figure 4.1 discuss the sampling of an analog waveform u(z) and
quantizing the samples as the first two steps in analog source coding. Section 4.2
discusses an alternative in which successive segments {u,,(#)} of the source are each
expanded in a Fourier series, and then the Fourier series coefficients are quantized.
In this latter case, the received segments {v,,(f)} are reconstructed from the quantized
coefficients. The energy in u,,(t) — v,,(¢) is given in (4.7) as a scaled version of the sum
“of the squared coefficient differences. This section treats the analogous relationship
when quantizing the samples of a baseband-limited waveform.
For a continuous function u(t), baseband-limited to W, the samples {u(kT); k € Z} at
intervals T = 1/2W specify the function. If u(kT) is quantized to v(kT) for each k, and

31 Note that the DTFT is the time-frequency dual of the Fourier series but is the Fourier transform of the
sampling equation.

Constellation Exhibit 2004, Page 52 of 229



4.6 The DTFT and the sampling theorem 125

u(#) is reconstructed as v(t) = Y°, v(kT) sinc(¢/T — k), then, from (4.66), the mean-
squared error (MSE) is given by

f_ ") —v @R =T 3° [u(kT) - vk (4.67)

k=—oc

Thus, whatever quantization scheme is used to minimize the MSE between a sequence
of samples, that same strategy serves to minimize the MSE between the corresponding
waveforms,

The results in Chapter 3 regarding mean-squared distortion for uniform vector
quantizers give the distortion at any given bit rate per sample as a linear function of
the mean-squared value of the source samples. If any sample has an infinite mean-
squared value, then either the quantization rate is infinite or the mean-squared distortion
is infinite. This same result then carries over to waveforms. This starts to show why
the restriction to £, source waveforms is important. It also starts to show why general
results about £, waveforms are important.

The sampling theorem tells the story for sampling baseband-limited  waveforms.
However, physical source waveforms are not perfectly limited to some frequency W;
rather, their spectra usually drop off rapidly above some nominal frequency W. For
example, audio spectra start dropping off well before the nominal cutoff frequency of
4kHz, but often have small amounts of energy up to 20kHz. Then the samples at rate
2W do not quite specify the waveform, which leads to an additional source of error,
called aliasing. Aliasing will be discussed more fully in Section 4.7.

There is another unfortunate issue with the sampling theorem. The sinc function is
nonzero over all noninteger times. Recreating the waveform at the receiver’? from a
set of samples thus requires infinite delay. Practically, of course, sinc functions can
be truncated, but the sinc waveform decays to zero as 1/¢, which is impractically
slow. Thus the clean result of the sampling theorem is not quite as practical as it first
appears.

464 The sampling theorem for [A — W, A+ W]

Just as the Fourier series generalizes to time intervals centered at some arbitrary time
A, the DTFT generalizes to frequency intervals centered at some arbitrary frequency A.

Consider an £, frequency function {3(f) : [A — W, A + W] — C}. The shifted
DTFT for 3(f) is then given by

W(f) = Li.m. ) v,e 2N rect (f;NA) , (4.68)
S

32 Recall that the receiver time reference is delayed from that at the source by some constant 7. Thus v(f),
the receiver estimate of the source waveform u(r) at source time #, is recreated at source time 74 7. With
the sampling equation, even if the sinc function is approximated, 7 is impractically large.
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4,7

where
1 AW, 2mikf/2W
= I g f. 4.69
w=gy ), SNSf, (469)

Equation (4.68) is an orthogonal expansion,
D i 6 B ~2mik f2W f-A
() =Lim. Y v 0,(f), where 6,(f)=e rect{ S )-
. k .

The inverse Fourier transform of 6,(f) can be calculated by shifting and scaling as
follows:

8, () = 2Wsinc(2Wz — k) 240K o §.(f) =‘e'2"’"‘f/2wrcct(£§‘7—vé). (4.70)

Let v(t) be the inverse Fourier transform of ¥(f):

() = Y v0,(f) = Y 2Wu, sinc(2Wr — k)e?ma¢-H/20,
x k

For t = k/2W, only the kth term is nonzero, and v(k/2W) = 2Wy,. This generalizes the
sampling equation to the frequency band [A — W, A + W]:

. k .
v = v (—) sinc(2Wt — k)e2mal=+2)
T \2W
Defining the sampling interval T = 1/2W as before, this becomes
. t 2miA(1—kT)
u() = Y v(kT) sinc (— - k) e2misU-kD) 4.71)
k T ‘

Theorems 4.6.2 and 4.6.3 apply to this more general case. That is, with v(s) =
:jvy B(f)er™ df, the function v(r) is bounded and continuous and the series in
(4.71) converges for all ¢. Similarly, if 3, ju(kT)|* < oo, there is a unique continuous

£, function {v(r) : [A = W, A + W] — C}, W=1/2T, with those sample values.

Aliasing and the sinc-weighted sinusoid expansion

In this section an orthogonal expansion for arbitrary £, functions called the T-spaced
sinc-weighted sinusoid expansion is developed. This expansion is very similar to
the T-spaced truncated sinusoid expansion discussed earlier, except that its set of
orthogonal waveforms consists of time and frequency shifts of a sinc function rather
than a rectangular function. This expansion is then used to discuss the important
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concept of degrees of freedom. Finally this same expansion is used to develop the
concept of aliasing., This will help in understanding sampling for functions that are
only approximately frequency-limited. '

47.1 The T-spaced sinc-weighted sinusoid expansion

Let u(t) < a(f) be an arbitrary £, transform pair, and segment #(f) into intervals®
of width 2W. Thus,

a(f) =1im.)_9,(N, where - 9,,(f) = &(f) rect(éfw —m) .

Note that 3,(f) is nonzero only in [—W, W] and thus corresponds to an £, function
v, (#) baseband-limited to W. More generally, for arbitrary integer m, v,,(f) is nonzero
only in [A — W, A + W] for A =2Wm. From (4.71), the inverse transform with
T = 1/2W satisfies the following: '

un(®) = ¥ 0, (kT) sinc(i — k) g¥eitn/ =41
p T
=Y v, (kT) sinc(i — k) rimT, (4.72)
k T .
Combining all of these frequency segments,
u(f) =Lim.Y v, () =lim. ) v,(kT) sinc(% - k) e2mimi/T, 4.73)
m mk

This converges in £L,, but does not not necessarily converge pointwise because of the
infinite summation over m. It expresses an arbitrary £, function u(z) in terms of the
samples of each frequency slice, v,,(1), of u(z).

This is an orthogonal expansion in the doubly indexed set of functions

{Ymi(D) = SinC(-;: - k)ez’"""" T, m,keZ). (4.74)

These are the time and frequency shifts of the basic function yr (f) = sinc(¢/T). The
time shifts are in multiples of T and the frequency shifts are in multiples of 1/T. This
set of orthogonal functions is called the set of T-spaced sinc-weighted sinusoids.
The T-spaced sinc-weighted sinusoids and the T-spaced truncated sinusoids are quite
similar. Each function in the first set is a time and frequency translate of sinc(#/T).
Each function in the second set is a time and frequency translate of rect(¢/T). Both sets
are made up of functions separated by multiples of T in time and 1/7 in frequency.

33 The boundary points between frequency segments can be ignored, as in the case for time segments.
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47.2 Degrees of freedom

An important rule of thumb used by communication engineers is that the class of
real functions that are approximately baseband-limited to W, and approximately time-
limited to [—T,/2, Tp/2] have about 2T W, real degrees of freedom if T,W, >> 1. This
means that any function within that class can be specified approximately by specifying
about 2T, W, real numbers as coefficients in an orthogonal expansion. The same rule
is valid for complex functions in terms of complex degrees of freedom.

This somewhat vague statement is difficult to state precisely, since time-limited
functions cannot be frequency-limited and vice versa. However, the concept is too
important to ignore simply because of lack of precision. Thus several examples are
given. .

First, consider applying the sampling theorem to real (complex) functions u(z) that
are strictly baseband-limited to W,,. Then u(r) is specified by its real (complex) samples
at rate 2W,. If the samples are nonzero only within the interval [—T7,/2, T,/2], then
there are about 2TyW, nonzero samples, and these specify u(f) within this class. Here
a precise class of functions have been specified, but functions that are zero outside of
an interval have been replaced with functions whose samples are zero outside of the
interval, '

Second, consider complex functions u(f) that are again strictly baseband-limited to
W,, but now apply the sinc-weighted sinusoid expansion with W =W;/(2n+ 1) for
some positive integer n. That is, the band [-W,, W,] is split into 2rn+ 1 slices and
each slice is expanded in a sampling-theorem expansion. Each slice is specified by
samples at rate 2W, so all slices are specified collectively by samples at an aggregate
rate 2W, as before. If the samples are nonzero only within [—7,/2, T,/2], then there
are about®* 2TyW, nonzero complex samples that specify any u(¢) in this class.

If the functions in this class are further constrained to be real, then the coefficients
for the central frequency slice are real and the negative slices are specified by the
positive slices. Thus each real function in this class is specified by about 2T,W, real

- numbers.

This class of functions is slightly different for each choice of n, since the detailed
interpretation of what “approximately time-limited” means is changing. From a more
practical perspective, however, all of these expansions express an approximately
baseband-limited waveform by samples at rate 2W,. As the overall duration T of
the class of waveforms increases, the initial transient due to the samples centered close
to —T,/2 and the final transient due to samples centered close to T,/2 should become
unimportant relative to the rest of the waveform.

The same conclusion can be reached for functions that are strictly time-limited to
[—T,/2, Ty/2] by using the truncated sinusoid expansion with coefficients outside of
[—W,, W,] set to 0.

3 Caleulating this number of samples carefully yields (2ﬁ+ 1) (1 + L%‘}J)
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In summary, all the above expansions require roughly 2W,T, numbers for the
approximate specification of a waveform essentially limited to time T, and frequency
W, for T,W, large.

It is possible to be more precise about the number of degrees of freedom in a given
time and frequency band by looking at the prolate spheroidal waveform expansion (see
Appendix 5.5.3). The orthogonal waveforms in this expansion maximize the energy
in the given time/frequency region in a certain sense. It is perhaps simpler and better,
however, to live with the very approximate nature of the arguments based on the
sinc-weighted sinusoid expansion and the truncated sinusoid expansion.

47.3 Aliasing — a time-domain approach

Both the truncated sinusoid and the sinc-weighted sinusoid expansions are conceptually
useful for understanding waveforms that are approximately time- and bandwidth-
limited, but in practice waveforms are usually sampled, perhaps at a rate much higher
than twice the nominal bandwidth, before digitally processing the waveforms. Thus it
is important to understand the error involved in such sampling.

Suppose an £, function u(f) is sampled with T-spaced samples, {u(kT); k € Z}.
Let s(¢) denote the approximation to u(r) that results from the sampling theorem
expansion:

t
= kT)sinc{ ——k). 4.75
s() = Su(kDsinc( 7. =) (4.75)

If u(t) is baseband-limited to W = 1/2T, then s(¢) = u(¢), but here it is no longer
assumed that u(f) is baseband-limited. The expansion of u(z) into individual frequency
slices, repeated below from (4.73), helps in understanding the difference between u(f)

and s(2): ;
=Lim.} v, (kT)sinc( — —k)e?™™/7T, 4,76
u(f) =lim mZJEv ( T)smc(T )e (' )
where
v, () = / () rect(fT — m)e* i df. @)

For an arbitrary £, function u(#), the sample points u(kT) might be at points of
discontinuity and thus be ill defined. Also (4.75) need not converge, and (4.76) might
not converge pointwise. To avoid these problems, &(f) will later be restricted beyond
simply being £,. First, however, questions of convergence are disregarded and the
relevant equations are derived without questioning when they are correct.

From (4.75), the samples of s(¢) are given by s(kT) = u(k7), and combining with
(4.76) we obtain

s(kT) = u(kT) =Y _ v, (kT). (4.78)

Thus the samples from different frequency slices are summed together in the samples
of u(r). This phenomenon is called aliasing. There is no way to tell, from the samples
{u(kT); k € Z} alone, how much contribution comes from each frequency slice and
thus, as far as the samples are concerned, every frequency band is an “alias” for every
other. ‘
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Although u(¢) and s(¢) agree at the sample times, they differ elsewhere (assuming
that u(f)-is not strictly baseband-limited to 1/27’). Combining (4.78) and (4.75) we
obtain

s() =YY v, (kT) sinc(% — k) . (4.79)

The expresssions in (4.79) and (4.76) agree at m =0, so the difference between u(t)
and s(t) is given by

t : t
u(®) —s(t) =Y. Y —v,,(kT) sinc (— - k) +3 > vm(kT)ez”‘"”/Tsinc(— - k) .
k mA0 T k m#0 T
'The first term above is vy(f) — s(¢), i.¢. the difference in the nominal baseband [—W, W].
This is the error caused by the aliased terms in s(¢). The second term is the energy in
the nonbaseband portion of u(#), which is orthogonal to the first error term. Since each
term is an orthogonal expansion in the sinc-weighted sinusoids of (4.74), the energy
in the error is given by

f lu(t)—s(t)}zdt=T;‘ gvm(mrwzz |v,,,(kT)|2. (4.80)

k m#0

Later, when the source waveform u(f) is viewed as a sample function of a random
process U(t), it will be seen that under reasonable conditions the expected values of
these two error terms are approximately equal. Thus, if u(r) is filtered by an ideal
lowpass filter before sampling, then s() becomes equal to v, (#) and only the second
error term in (4.80) remains; this reduces the expected MSE roughly by a factor of 2.
It is often easier, however, simply to sample a little faster.

474 Aliasing — a frequency-domain approach

Aliasing can be, and usually is, analyzed from a frequency-domain standpoint. From
(4.79), s(¢) can be separated into the contribution from each frequency band as follows:

t
s(H) =Y s,(1), where  s,,(t) = >_ v, (kT) sinc(? - k) . (4.81)
m k
Comparing s,,(f) to v,,(£) = ¥4 v,,(kT) sinc(¢/T — k)e*™™/T it is seen that
() = 8, (DT
From the Fourier frequency shift relation, 9,,(f) =5,,(f —m/T), so

n() =0u(f+7). (4.82)

35 As shown by example in Exercise 4.38, s(f) need not be £, unless the additional restrictions of Theorem
5.5.2 are applied to (/). In these bizarre situations, the first sum in (4.80) is infinite and s(Z) is a complete
failure as an approximation to x(z).
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Figure 4.10. The transform §(f) of the baseband-sampled approximation s() to u(f) is constructed by
folding the transform #(f) into [—1/27, 1/2T]. For example, using real functions for pictorial
clarity, the component a is mapped into a’, b into ', and ¢ into ¢’. These folded components
are added to obtain $(f). If #(f) is complex, then both the real and imaginary parts of ()
must be folded in this way to get the real and imaginary parts, respectively, of $(f). The figure
further clarifies the two terms on the right of (4.80). The first term is the energy of &(f) —5()
caused by the folded components in part (b). The final term is the energy in part (a) outside of
[—172, 172].

Finally, since d,,(f) = &(f) rect(fT — m), one sees that 3,,(f +m/T)=u(f+m/T)
rect(f7). Thus, summing (4.82) over m, we obtain

(=Y a(f+ %) rect(fT). (4.83)

Each frequency slice 3,,(f) is shifted down to baseband in this equation, and then
all these shifted frequency slices are-summed together, as illustrated in Figure 4.10.
This establishes the essence of the following aliasing theorem, which is proved in
Appendix 5.5.2. '

Theorem 4.7.1 (Aliasing theorem) Let u(f) be £,, and let u(f) satisfy the condition
limy, . B(H)|f]'"+ =0 fa.r some & > 0. Then u(f) is £,, and the inverse Fourier
transform u(t) = [ a(f)e?™/ df converges pointwise to a continuous bounded function.
For any given T > 0, the sampling approximation _, u(kT)sinc(¢/T —k) converges
pointwise to a continuous bounded L, function s(t). The Fourier transform of s(1)
“satisfies

3(H=lim. Y& ( f+ g) rect(fT). (4.84)

The condition that lim #(f) f'*¢ =0 implies that &(f) goes to O with increasing f ata
faster rate than 1/f. Exercise 4.37 gives an example in which the theorem fails in the
absence of this condition.

Without the mathematical convergence details, what the aliasing theorem says is
that, corresponding to a Fourier transform pair u(t) <> #(f), there is another Fourier
transform pair s(f) <> 3(f); s(r) is a baseband sampling expansion using the T-spaced
samples of u(r), and 5(f) is the result of folding the transform a(f) into the band
[—W, W] with W=1/2T.
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4.8

Summary

The theory of £, (finite-energy) functions has been developed in this chapter. These
are, in many ways, the ideal waveforms to study, both because of the simplicity and
generality of their mathematical properties and because of their appropriateness for
modeling both source waveforms and channel waveforms.

For encoding source waveforms, the general approach is as follows:

¢ expand the waveform into an orthogonal expansion;
® quantize the coefficients in that expansion;
e use discrete source coding on the quantizer output.

The distortion, measured as the energy in the difference between the source waveform
and the reconstructed waveform, is proportional to the squared quantization error in
the quantized coefficients.

For encoding waveforms to be transmitted over communication channels, the
approach is as follows:

e map the incoming sequence of binary digits into a sequence of real or complex
symbols;
e use the symbols as coefficients in an orthogonal expansion.

Orthogonal expansions have been discussed in this chapter and will be further discussed
in Chapter 5. Chapter 6 will discuss the choice of symbol set, the mappmg from binary
digits, and the choice of orthogonal expansion. K

This chapter showed that every £, time-limited waveform has a Fourier series,
where each Fourier coefficient is given as a Lebesgue integral and the Fourier series
converges in £,, i.e. as more and more Fourier terms are used in approximating the
function, the energy difference between the waveform and the approximation gets
smaller and approaches 0 in the limit.

Also, by the Plancherel theorem, every £, waveform u(z) (time-limited or not) has
a Fourier integral &(f). For each truncated approximation, u,(f) = u(#) rect(#/24),
the Fourier integral &, (f) exists with pointwise convergence and is continuous. The
Fourier integral i(f) is then the £, limit of these approximation waveforms. The
inverse transform exists in the same way.

These powerful £,-convergence results for Fourier series and integrals are not
needed for computing the Fourier transforms and series for the conventional wave-
forms appearing in exercises. They become important both when the waveforms are
sample functions of random processes and when one wants to find limits on possible
performance. In both of these situations, one is dealing with a large class of potential
waveforms, rather than a single waveform, and these general results become important.

The DTFT is the frequency-time dual of the Fourier series, and the sampling
theorem is simply the Fourier transform of the DTFT, combined with a little care
about convergence.

The T-spaced truncated sinusoid expansion and the T-spaced sinc-weighted sinusoid
expansion are two orthogonal expansions of an arbitrary £, waveform. The first is
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formed by segmenting the waveform into 7-length segments and expanding each
segment in a Fourier series. The second is formed by segmenting the waveform in
frequency and sampling each frequency band. The orthogonal waveforms in each
are the time~frequency translates of rect(¢/T) for the first case and sinc(z/T) for the
second. Each expansion leads to the notion that waveforms roughly limited to a time
interval T, and a baseband frequency interval Wy have approximately 2T, W, degrees
of freedom when ToW, is large. _

Aliasing is the ambiguity in a waveform that is represented by its T-spaced samples.
If an £, waveform is baseband-limited to 1/2T, then its samples specify the waveform,
but if the waveform has components in other bands, these components are aliased with
the baseband components in the samples. The aliasing theorem says that the Fourier
transform of the baseband reconstruction from the samples is equal to the original
Fourier transform folded into that baseband.

4.9 Appendix: Supplementary material and proofs

The first part of the appendix is an introduction to countable sets. These results are
used throughout the chapter, and the material here can serve either as a first exposure
or a review. The following three parts of the appendix provide added insight and
proofs about the results on measurable sets.

4.9.1 Countable sets

A collection of distinguishable objects is countably-infinite if the objects can be put
into one-to-one correspondence with the positive integers. Stated more intuitively, the
collection is countably infinite if the set of elements can be arranged as a sequence
a;, a,,... A setis countable if it contains either a finite or countably infinite set of
elements.

Example 4.9.1 (The set of all integers) The integers can be arranged as the sequence
0, -1, +1, -2, +2, —3,..., and thus the set is countably infinite. Note that each
integer appears once and only once in this sequence, and the one-to-one correspondence
is (0 <> 1), (-1 © 2), (+1 © 3), (=2 <> 4), etc. There are many other ways to list
the integers as a sequence, such as 0, —1, +1, +-2, -2, 43, 44, -3, 45, ..., but, for
example, listing all the nonnegative integers first followed by all the negative integers
is not a valid one-to-one correspondence since there are no positive integers left over
for the negative integers to map into.

Example 4.9.2 (The set of 2-tuples of positive integers) Figure 4.11 shows that
this set is countably infinite by showing one way to list the elements in a sequence.
Note that every 2-tuple is eventually reached in this list. In a weird sense, this means
that there are as many positive integers as there are pairs of positive integers, but
what is happening is that the integers in the 2-tuple advance much more slowly than
the position in the list. For example, it can be verified that (n, n) appears in position
2n(n—1)+1 of the list.
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e(2,4) o(3,4) e(4,4)

1e(1,1)
e(3,3) (4,3 2 (1,2
3 o (2 1).
4 & (1,3)
5 & 122
6 & (3, 1)
(5, 1) 7 & (1,4
and so forth

®(4,2)

Figure 411. One-to-one correspondence between positive integers and 2-tuples of positive integers.

By combining the ideas in the previous two examples, it can be seen that the
collection of all integer 2-tuples is countably infinite. With a little more ingenuity, it
can be seen that the set of integer n-tuples is countably infinite for all positive integer
n. Finally, it is straightforward to verify that any subset of a countable set is also
countable. Also a finite union of countable sets is countable, and in fact a countable
union of countable sets must be countable.

Example 4.9.3 (The set of rational numbers) Each rational number can be repre-
sented by an integer numerator and denominator, and can be uniquely represented by
its irreducible numerator and denominator. Thus the rational numbers can be put into
one-to-one correspondence with a subset of the collection of 2-tuples of integers, and
are thus countable. The rational numbers in the interval [—7/2, T/2] for any given
T > 0 form a subset of all rational numbers, and therefore are countable also.

As seen in Section 4.3.1, any countable set of numbers a,, a,, . . . can be expressed as
a disjoint countable union of zero-measure sets, [a,, a,], [a;, @3], - . ., s0 the measure
of any countable set is zero. Consider a function that has the value 1 at each rational
argument and 0 elsewhere.

The Lebesgue integral of that function is 0. Since rational numbers exist in every
positive-sized interval of the real line, no matter how small, the Riemann integral of
this function is undefined. This function is not of great practical interest, but provides
insight into why Lebesgue integration is so general.

Example 4.9.4 (The set of binary sequences) An example of an uncountable set of .
elements is the set of (unending) sequences of binary digits. It will be shown that this
set contains uncountably many elements by assuming the contrary and constructing
a contradiction. Thus, suppose we can list all binary sequences, a;,a,,a;,... Each
sequence, a,, can be expressed as a, = (a,, @, 2, - . - ), resulting in a doubly infinite
array of binary digits. We now construct a new binary sequence b = b;,b;,... in
the following way. For each integer n > 0, choose b, # a,, ,; since b, is binary, this
specifies b, for each n and thus specifies b. Now b differs from each of the listed
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sequences in at least one binary digit, so that b is a binary sequence not on the list.
This is a contradiction, since by assumption the list contains each binary sequence.

This example clearly extends to ternary sequences and sequences from any alphabet
with more than one member.

Example 4.9.5 (The set of real numbers in [0, 1)) This is another uncountable set,
and the proof is very similar to that of Example 4.9.4. Any real number r € [0, 1)
can be represented as a binary expansion 0.r;r,,... whose elements r, are chosen to
satisfy r =35 | ;2™* and where each r; € {0, 1}. For example, 1/2 can be represented
as 0.1, 3/8 as 0.011, etc. This expansion is unique except in the special cases where
r can be represented by a finite binary expansion, r = Y";_, r;; for example, 1/2 can
also be represented as 0.0111---, By convention, for each such r (other than r =0)
choose m as small as possible; thus in the infinite expansion, r,, =1 and r, =0 for all
k > m. Each such number can be alternatively represented with r,, =0 and r, = 1 for
all k > m.

" By convention, map each such r into the expansion terminating with an infinite
sequence of Os. The set of binary sequences is then the union of the representations of
the reals in [0, 1) and the set of binary sequences terminating in an infinite sequence
of 1s. This latter set is countable because it is in one-to-one correspondence with the
rational numbers of the form Y[, r,2~* with binary r, and finite m. Thus if the reals
were countable, their union with this latter set would be countable, contrary to the
known uncountability of the binary sequences.

By scaling the interval [0,1), it can be seen that the set of real numbers in any
interval of nonzero size is uncountably infinite. Since the set of rational numbers in
such an interval is countable, the irrational numbers must be uncountable (otherwise
the union of rational and irrational numbers, i.e. the reals, would be countable).

The set of irrationals in [~7/2, T/2] is the complement of the rationals and thus
has measure T'. Each pair of distinct irrationals is separated by rational numbers. Thus
the irrationals can be represented as a union of intervals only by using an uncountable
union®® of intervals, each containing a single element. The class of uncountable unions
of intervals is not very interesting since it includes all subsets of R.

4.9.2 Finite unions of intervals over [—7/2, T/2]

Let 2, be the class of finite unions of intervals, i.e. the class of sets whose elements
can each be expressed as £ = U‘.=l I;, where {I,,...,I,} are intervals and £ > 1 is ‘an
integer. Exercise 4.5 shows that each such £ € M; can be uniquely expressed as a finite
union of k < £ separated intervals, say £ = Uj;, I;. The measure of £ was defined

as u(é) = §=1 p(l}). Exercise 4.7 shows that u(€) < ;¢'=1 ;L(Ij) for the on’ging.l

36 This might be a shock to one’s intuition. Each partial union U;_, [a,, a;]) of rationals has a complement
which is the union of k+ 1 intervals of nonzero width; each unit increase in k simply causes one interval
in the complement to split into two smaller intervals (although maintaining the measure at T). In the limit,
however, this becomes an uncountable set of separated points.
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intervals making up £ and shows that this holds with equality whenever I}, ..., I, are
disjoint.”

The class M; is closed under the union operation, since if & and &, are each finite
unions of intervals, then £, U¢&, is the union of both sets of intervals. It also follows
from this that if & and &, are disjoint then

(& VE) = p(€) +u(E)- (4.85)

The class M is also closed under the intersection operation, since, if & =U,1;
and & = U, b, then £;N & =U; (1) ;N 1,,,). Finally, M; is closed under comple-
mentation. In fact, as illustrated in Figure 4.5, the complement € of a finite union
of separated intervals & is simply the union of separated intervals lying between the
intervals of &. Since & and its complement & are disjoint and fill all of [~7/2, T/2],
each & € M, satisfies the complement property,

T = (&) + 1(8). (4.86)
An important generalization of (4.85) is the following: for any &, &, € M,
r(EUE) + (€N &) = (&) + (&) (4.87)

To see this intuitively, note that each interval in £, N &, is counted twice on each side
of (4.87), whereas each interval in only &, or only &, is counted once on each side.
More formally, & U&, = & U (& NE,). Since this is a disjoint union, (4.85) shows
that u(&, U &) = p(&) + p(& NE)). Similatly, p(&,) = p(&;,N &) +u(€; NE).
Combining these equations results in (4.87).

49.3 Countable unions and outer measure over [~T/2, T/2]

.Let M, be the class of countable unions of intervals, i.e. each set B € M, can be
expressed as B = |J;I;, where {I},,,...} is either a finite or countably infinite
collection of intervals. The class M is closed under both the union operation and the
intersection operation by the same argument as used for M;. Note that M is also
closed under countable unions (see Exercise 4.8) but not closed under complements
or countable intersections.’® '
Each B € M, can be uniquely® expressed as a countable union of separated intervals,
say B =\J; 1}, where {I}, I, . .. } are separated (see Exercise 4.6). The measure of B
is defined as

37 Recall that intervals such as (0,1], (1,2] are disjoint but not separated. A set £ e M '+ has many repre-
sentations as disjoint intervals but only one as separated intervals, which is why the definition refers to
separated intervals,

3% Appendix 4.9.1 shows that the complement of the rationals, i.e. the set of irrationals, does not belong to
M.. The irrationals can also be viewed as the intersection of the complements of the rationals, giving an
example where M, is not closed under countable intersections.

3 What is unique here is the collection of intervals, not the particular ordering; this does not affect the
infinite sum in (4.88) (see Exercise 4.4).
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w(B) =2 Iy | (4.88)
7

As shown in Section 4.3.1, the right.side of (4.88) always converges to a number
between Q0 and T. For B=J i 1 where I,, I, ... are arbitrary intervals, Exercise 4.7
establishes the following union bound:

w(B) <Y u(l;)  with equality if I, I, .. . are disjoint. (4.89)
i

The outer measure p°(A) of an arbitary set A was defined in (4.13) as

wA)=_ if B (4.90)
Note that [-7/2, T/2] ié a cover of A for all A (recall that only sets in [-T/2, T/2]
are being considered). Thus u°(A) must lie between 0 and T for all A. Also, for any
two sets A C A’, any cover of A’ also covers .A. This implies the subset inequality
for outer measure:

wo(A) <p°(A) forACA. 4.91)

The following lemma develops the union bound for outer measure called the union
bound. Its proof illustrates several techniques that will be used frequently.

Lemma 4.9.1 Let 8 =J, A, be a countable union of arbitrary sets in [—T/2, T/2).
Then ’

1°(8) s;mwk){ (4.92)

Proof The approach is first to establish an arbitrarily tight cover to each .4, and
then show that the union of these covers is a cover for §. Specifically, let £ be an
arbitrarily small positive number, For each k > 1, the infimum in (4.90) implies that
covers exist with measures arbitrarily little greater than that infimum. Thus a cover
B, to A, exists with

(B, < e27% +p°(A4,).
For each k, let B, =\J; I}, where I} ;, I ;, . .. represents B, by separated intervals.

Then B =J, B, = U, U, I}, is a countable union of intervals, so, from (4.89) and
Exercise 4.4, we have

u(B) < ;;#‘(1},!‘) = Zk:/"(zk)'

Since B, covers A, for each k, it follows that B covers 8. Since p°(S) is the infimum
of its covers,

p°(S) < u(B) < IMICAEDY (27 +po(Ay) = e+ 2 H ().

Since € > 0 is arbitrary, (4.92) follows. O
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An important special case is the union of any set A4 and its complement A. Since
[-T/2, T/2) = AUA,
T < p°(A) +p°(A). (4.93)

Section 4.9.4 will define measurability and measure for arbitrary sets. Before that, the
following theorem shows both that countable unions of intervals are measurable and
that their measure, as defined in (4.88), is consistent with the general definition to be
given later.

Theorem 4.9.1 Let B =\J;I;, where {I},1,,...} is a countable collection of
intervals in [-T/2, T/2] (i.e., B € M_). Then

po(B)+p°(B) =T (494)
and
K (B) = u(B). (4.95)
Proof Let {IJ'-; J =1} be the collection of separated intervals representing B and let
&= U:=1 L
then

r(E) S (€ S w(€) < -2 < Jim p(€h) = u(B).
.-For any & > 0, choose k large enough that
M(E) = u(B) —s. (4.96)

The idea of the_proof is to approximate B by &*, which, being in M;, satisfies
T = u(&*) + n(&X). Thus, -

p(B) <p(E)+e=T—pn(E)+e<T—p°(B)+s, (4.97)

thfe the final inequality follows because & C B, and thus _§ C &% and ,u,°(§) <
u(E). |

Next, since B € M, and B C B, B is a cover of itself and is a choice in the infimum
defining u°(B); thus, 1°(B) < u(B). Combining this with (4.97), u°(B) +ur°(B) <
T + ¢. Since € > 0 is arbitrary, this implies

2 (B)+u(B) < T. (4.98)

This combined with (4.93) establishes (4.94). Finally, substituting T < u°(B) + u°(3B)
into (4.97), u(B) < p°(B) + €. Since p°(B) < u(B) and £ > 0 is arbitrary, this
establishes (4.95). ' O

Finally, before proceeding to arbitrary measurable sets, the joint union and intersection
property, (4.87), is extended to M.
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Lemma 4.9.2 Let B, and B, be arbitrary sets in M,. Then
(B, UB,) +u(B,NBy) = u(B,) + 1(3B,). (4.99)

Proof Let B, and B, be represented, respectively, by separated intervals, B, =

U; 5 and B, =U; L ;. For £=1,2, let & =U}_; I, and D} = URes1 It ;- Thus

B, = EFU D} for each integer k > 1 and £ = 1, 2. The proof is based on using &%, which
is in M; and satisfies the joint union and intersection property, as an approximation
to B,. To see how this goes, note that

B,NB, = (EfUDNN(EU D)) = (EINE)U(EIND)U(DINB,).

For any & > 0 we can choose k large enough that u(&f) > u(B,) — e and u(Df) <e
for £ =1, 2. Using the subset inequality and the union bound, we then have

#(B) N By) < W(ETNE) + (D) + u(Dy)
<u(EENEY +28.
By a similar but simpler argument,
1(B,UB,) < p(EfUE) +pu(Dy) +p(D3)
< u(EFUEL) +2¢.
Combining these inequalities and using (4.87) on & € M; and &% C M;, we have
B(B,NB,) + (B, UB,) < (€5 NEX) + p(EEUER) +45

— (D) + (D) +4e
S u(By) +pn(By) +4e,

where we have used the subset in'equality in the final inequality.
For a bound in the opposite direction, we start with the subset inequality:

(B, UB,) +u(B, N B,) > w(EF UER) + pm(Ef NES)
= p(ER) + 1(&3)
> u(B)) + u(B,) - 2e.

Since & is arbitrary, these two bounds establish (4.99). O

49.4 Arbitrary measurable sets over [—7/2, T/2]
An arbitrary set A € [—T/2, T/2] was defined to be measurable if

T = u°(A) + u°(A). (4.100)
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~

The measure of a measurable set was defined to be p(A) = u°(A). The class of
measurable sets is denoted as M. Theorem 4.9.1 shows that each set B € M, is
measurable, i.e. B € M and thus M; € M_ € M. The measure of B € M, is u(B) =
3= (1) for any disjoint sequence of intervals, I, I, . . ., Whose union is 3.

Although the complements of sets in M, are not necessarily in M, (as seen from
the rational number example), they must be in M; in fact, from (4.100), all sets in M
have complements in M, i.e. M is closed under complements. We next show that M
is closed under finite, and then countable, unions and intersections. The key to these
results is to show first that the joint union and intersection property is valid for outer
measure.

Lemma 4.9.3 For any measurable sets A, and A,,
RO(A U A,) + 10 (A NA,) = p°(A)) + p°(A). (4.101)

Proof The proof is very similar to that of Lemma 4.9.2, but here we use sets in
M, to approximate those in M. For any £ > 0, let B, and B, be covers of A, and
A,, respectively, such that u(B,) < u°(A,) +¢ for £=1,2. Let D, = B,NA, for
£=1,2. Note that A4, and D, are disjoint and B, = A,UD,:

B] 032 = (A]UDl)n(Azuﬂz) = (‘Al anz)U(Dl ﬂAZ)U(Bl nmz).

Using the union bound and subset inequality for outer measure on this and the
corresponding expansion of B; UB,, we obtain

k(B NBy) < p°(A1NA) +p°(D) +p°(Dy) S (A N A,) + 26,
1(B U B,) S p° (A UA,) + p°(D) +1°(D,) < p°(A U A,) + 26,

where we have also used the fact (see Exercise 4.9) that u°(2,) <& for £ =1,2.
Summing these inequalities and rearranging terms, we obtain

RO(A UA) +p° (A NA,) = w(B,NB,) +p(B,UB,)—4e
=pu(B)) + u(B,) —4¢
> p(A)) + p°(A,) —4e,

where we have used (4.99) and then used A, € B, for £ =1,2. Using the subset
inequality and (4.99) to bound in the opposite direction,

w(B))+1(B;) = u(B,UB,) + 1(B,NB,) = p’(A U A,) + p'(A;NA,).
Rearranging and using p(3B,) < n°(A,) + &, we obtain
H(AUA,) + p°(A;NAY) < p°(A)) +1°(A,) +2e.

Since ¢ is arbitrary, these bounds establish (4.101). : O
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" Theorem 4.9.2 Assume A, A, € M. Then A,;UA, e M and A,NA, € M.
Proof Apply (4.101) to A, and A,, to obtain
w2 (A UA) +p° (A, NA) = p°(Ay) +1°(Ay).
Rewriting A, U A, as A, NA, and A, NA, as A, UA, and adding this to (4.101)
yields '
[1°(4, U 4) + 1 (FUR | + [0, 0 A) + 02D 2) |
= p°(Ay) + 10 (Ap) +p°(Ap) +1°(4y) = 2T, (4.102)

where we have used (4.100). Each of the bracketed terms above is at least T from
(4.93), so each term must be exactly T. Thus A, U A, and A, N .4, are measurable.
O

Since A;UA, and A, N A, are measurable if 4; and A, are, the joint union and
intersection property holds for measure as well as outer measure for all measurable
functions, i.e.

(AU AY) +p(A N A) = pu(Ay) + p(A). (4.103)
If A, and A, are disjoint, then (4.103) simplifies to the additivity property:
(A UAp) = p(A) + (A (4.104)

Actually, (4.103) shows that (4.104) holds whenever (A, N A,) =0. That is, A, and
A, need not be disjoint, but need only have an intersection of zero measure. This is
another example in which sets of zero measure can be ignored.

The following theorem shows that M is closed over disjoint countable unions and
that M is countably additive.

Theorem 4.9.3  Assume that A; € M for each integer j > 1 and that u(A;NA,) =0
forall j#¢ Let A=\J; A;. Then Ac M and

BA) = X 1l A4,). (4.105)

Proof Let A* =}, A; for each integer k > 1. Then A**! = A*UA,,, and, by
induction on Theorem 4.9.2, A% € M for all k > 1. It also follows that

. .
u(A*) =3 u(4)).
j=1

The sum on the right is nondecreasing in k and bounded by T, so the limit as k — co
exists. Applying the union bound for outer measure to A,

no(A) = 3 p(A4)) = lim p*(A%) = lim p(A°). (4.106)
J
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Since A* C A, we see that A € A* and u°(A4) < uw(A4*) =T — u(A*). Thus
u(A)<T - lim w(AY). (4.107)

Adding (4.106) and (4.107) shows that u°(A) + u°(A) < T. Combining with (4.93),
(1°(A) + p°(A) =T and (4.106) and (4.107) are satisfied with equality. Thus A € M
and countable additivity, (4.105), is satisfied. O

Next it is shown that M is closed under arbitrary countable unions and intersections.

Theorem 4.9.4 Assume that A; € M for each integer j > 1. Then A=J;A; and
D =(;A;j are both in M.

Proof Let.A) =.A, and, foreach k> 1, let A* = UL, A; and let A} ) = A, DA%,
By induction, the sets A}, A;, ... are disjoint and measurable and A = J; A}. Thus,
from Theorem 4.9.3, A is measurable. Next suppose D = N.A,. Then D = UA;,. Thus,

DeM,soDeM also. O

Proof of Theorem 4.3.1 The first two parts of Theorem 4.3.1 are Theorems 4.9.4
and 4.9.3. The third part, that .4 is measurable with zero measure if 1°(A) =0, follows
from T < p°(A) + p°(A) = u°(A) and u°(A) < T, ie. that u°(4) =T. 0

Sets of zero measure are quite important in understanding Lebesgue integration, so
it is important to know whether there are also uncountable sets of points that have
zero measure. The answer is yes; a simple example follows.

Example 4.9.6 (The Cantor set) Express each point in the interval (0,1) by a terary
expansion. Let B be the set of points in (0,1) for which that expansion contains only
0Os and 2s and is also nonterminating. Thus B excludes the interval {1/3, 2/3), since all
these expansions start with 1. Similarly, B excludes {1/9,2/9) and [7/9, 8/9), since
the second digit is 1 in these expansions. The right endpoint for each of these intervals
is also excluded since it has a terminating expansion. Let B, be the set of points with
no 1 in the first n digits of the ternary expansion. Then u(B,) = (2/3)". Since B is
contained in B, for each n > 1, B is measurable and x(B) =0.

The expansion for each pointin B is a binary sequence (viewing 0 and 2 as the binary
digits here). There are uncountably many binary sequences (see Section 4.9.1), and
this remains true when the countable number of terminating sequences are removed.
Thus we have demonstrated an uncountably infinite set of numbers with zero measure.

Not all point sets are Lebesgue measurable, and an example follows.

Example 4.9.7 (A non-measurable set) Consideér the interval [0, 1). We define a
collection of equivalence classes where two points in [0, 1) are in the same equivalence
class if the difference between them is rational. Thus one equivalence class consists of
the rationals in [0,1). Each other equivalence class consists of a countably infinite set
of irrationals whose differences are rational. This partitions [0, 1) into an uncountably
infinite set of equivalence classes. Now consider a set .4 that contains exactly one
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number chosen from each equivalence class. We will assume that A is measurable
and show that this leads to a contradiction.

For the given set A, let A+ r, for r rational in (0, 1), denote the set that results
from mapping each t € A into either t+r or ¢+ r — 1, whichever lies in [0, 1). The
set A+ r is thus the set A, shifted by r, and then rotated to lie in [0, 1). By looking
at outer measures, it is easy to see that A+ r is measurable if 4 is and that both
then have the same measure. Finally, each ¢ € [0, 1) lies in exactly one equivalence
class, and if 7 is the element of A in that equivalence class, then ¢ lies in A+ r,
where r =t — 7 or t — 7+ 1. In other words, [0, 1) = |J,(A+r) and the sets A+ r are
disjoint. Assuming that A is measurable, Theorem 4.9.3 asserts that 1 =3, w(A+7r).
However, the sum on the right is 0 if 1£(A) =0 and infinite if x(A) > 0, establishing
the contradiction.

410 Exercises

4.1 (Fourier series)

(a) Consider the function u(t) = rect(2r) of Figure 4.2. Give a general expression
for the Fourier series coefficients for the Fourier series over [-1/2, 1/2] and
show that the series converges to 1/2 at each of the endpoints, —1/4 and
1/4. [Hint. You do not need to know anything about convergence here.]

(b) Represent the same function as a Fourier series over the interval [—1/4, 1/4].
What does this series converge to at —1/4 and 1/4? Note from this exercise
that the Fourier series depends on the interval over which it is taken.

4.2 (Energy equation) Derive (4.6), the energy equation for Fourier series. [Hint.
Substitute the Fourier series for u(f) into [ u(f)u*(z)dr. Don’t worry about
convergence or interchange of limits here.]

4.3 (Countability) As shown in Appendix 4.9.1, many subsets of the real numbers,
including the integers and the rationals, are countable. Sometimes, however, it is
necessary to give up the ordinary numerical ordering in listing the elements of
these subsets. This exercise shows that this is sometimes inevitable.

(a) Show that every listing of the integers (such as 0,-1,1,-2,...) fails
to preserve the numerical ordering of the integers. [Hint. Assume such a
numerically ordered listing exists and show that it can have no first element
(ie., no smallest element).]

(b) Show that the rational numbers in the interval (0, 1) cannot be listed in a
way that preserves their numerical ordering.

(c) Show that the rationals in [0,1] cannot be listed with a preservation of
numerical ordering. (The first element is no problem, but what about the
second?)

4.4 (Countable sums) Let a;, a,, . .. be a countable set of nonnegative numbers and
assume that 5,(k) =% _ a ; < A for all k and some given A > 0.
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(a) Show that the limit lim,_, , s,(k) exists with some value S, between O and
A. (Use any level of mathematical care that you feel comfortable with.)

(b) Now let by, by, ... be another ordering of the numbers ay, a,, ... That is,
let by =a;), by = a;q), - - - s by =ajy), . . ., where j(£) is a permutation of
the positive integers, i.e. a one-to-one function from Z* to Z*. Let s, (k) =

%_, b,. Show that lim,_, , 5,(k) < S,. Note that

k k
sz =¢2;aj(¢).

=1

(c) Define §, =lim,_, , 5, (k) and show that S, > S,. [Hint. Consider the inverse
permuation, say £~*(j), which for given j is that £ for which j(£) = j'.] Note
that you have shown that a countable sum of nonnegative elements does not
depend on the order of summation.

(d) Show that the above result is not necessarily true for a countable sum of
numbers that can be positive or negative. [Hint. Consider alternating series.]

4.5 (Finite unions of intervals) Let & = f.___, 1; be the union of £ > 2 arbitrary
nonempty intervals. Let a; and b; denote the left and right endpoints, respectively,
of I;; each endpoint can be included or not. Assume the intervals are ordered so

thata]sazs"'sa"

(a) For £=2, show that either I, and I, are separated or that & is a single interval
whose left endpoint is a,.

(b) For£>2and2<k <?,let& = Uj;, 1;. Give an algorithm for constructing
a union of separated intervals for £t given a union of separated intervals
for &,

(c) Note that using part (b) inductively yields a representation of £ as a union of
separated intervals. Show that the left endpoint for each separated interval is
drawn from a,, ..., a, and the right endpoint is drawn from b,..., b,.

(d) Show that this representation is unique, i.e. that £ cannot be represented as
the union of any other set of separated intervals. Note that this means that
(&) is defined unambiguously in (4.9).

4.6 (Countable unions of intervals) Let B ={J;I; be a countable union of arbitrary
(perhaps intersecting) intervals. For each k > 1, let B* = Uj;, I;, and for each
k > jlet I, be the separated interval in B* containing [ ; (see Exercise 4.5).

(a) Foreach k> j>1, show that I;, C I;,4,. :

(b) Let UL I, = Ij. Explain why I is an interval and show that I; C B.

(c) For any i, j, show that either /; =I; or I} and I; are separated intervals.

(d) Show that the sequence {Ij;1 < j < oo} with repetitions removed is a
countable separated-interval representation of B.

(e) Show that the collection {I; j > 1} with repetitions removed is unique; i.e.,
show that if an arbitrary interval [ is contained in B, then it is contained in
one of the IJ’.. Note, however, that the ordering of the IJ’. is not unique.
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4.7 (Union bound for intervals) Prove the validity of the union bound for a countable
collection of intervals in (4.89). The following steps are suggested.

(a) Show that if B =I,|J1I, for arbitrary intervals I,, I, then u(B) < u(l,))+
p(l;) with equality if I; and ], are disjoint. Note: this is true by definition
if I, and I, are separated, so you need only treat the cases where I, and I,
intersect or are disjoint but not separated.

(b) Let B* = jf=, I; be represented as the union of, say, m, separated intervals
(my < k), so B¥ =72, I;. Show that pu(B* Ul,,1) < p(BY) +p(lyy,) with
equality if B* and I, are disjoint.

(c) Use finite induction to show that if B = Uf=1 I; is a finite union of arbitrary
intervals, then u(B) < 235:, 1(I;) with equality if the intervals are disjoint.

(d) Extend part (c) to a countably infinite union of intervals,

4.8 For each positive integer n, let B, be a countable union of intervals. Show that
B=\J;, B, is also a countable union of intervals. [Hint. Look at Example 4.9.2
in Section 4.9.1.]

4.9 (Measure and covers) Let .4 be an arbitrary measurable set in [—-7/2, T/2] and
let B be a cover of A. Using only results derived prior to Lemma 4.9.3, show
that u°(BNA) = u(B) — n(A4). You may use the following steps if you wish.

(2) Show that u°(BNA) > u(B) — u(A).

(b) For any & > 0, let B’ be a cover of A with u(B’) < u(A) + 6. Use Lemma
4.9.2 to show that u(BNB') = u(B)+ u(B)-T.

(c) Show that u°(BNA) < u(BNB') < u(B) — u(A) +6.

(d) Show that u°(BNA) = u(B) — u(A).

4.10 (Intersection of covers) Let A4 be an arbitrary set in {~77/2, T/2].

(a) Show that A has a sequence of covers, B;, B,, .. ., such that u°(A) = u(D),
where D =N, B,.

(b) Show that 4 C D. A

(c) Show that if 4 is measurable, then (2 N'A4) = 0. Note that you have shown
that an arbitrary measurable set can be represented as a countable intersection
of countable unions of intervals, less a set of zero measure, Argue by example
that if 4 is not measurable, then u°(DN'A) need not be 0.

4.11 (Measurable functions)

(a) For {u(t) : [-T/2, T/2] - R}, show that if {¢: u(t) < B} is measurable, then
{z: u(r) = B} is measurable.
(b) Show that if {r: u(f) < B} and {¢: u(t) < a} are measurable, @ < B, then
{t: a < u(f) < B} is measurable.
(c) Show that if {r: u(r) < B} is measurable for all B, then {¢: u(r) < B} is
-also measurable. [Hint. Express {t: u(r) < B} as a countable intersection of
measurable sets.]
(d) Show that if {z: u(f) < B} is measurable for all B, then {z: u(t) < B} is also
measurable, i.e. the definition of measurable function can use either strict or
nonstrict inequality.
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4.12 (Measurable functions) Assume throughout that {u(f) : [-7/2,T/2] - R} is
measurable.

(a) Show that —u(#) and |u(¢)| are measurable. ,

(b) Assume that {g(x) : R — R} is an increasing function (ie. x; <x, =
8(x;) < g(x,)). Prove that v(z) = g(u(r)) is measurable. [Hint. This is a one
liner. If the abstraction confuses you, first show that exp(u(t)) is measurable
and then prove the more general result.]

(c) Show that exp[u(?)], #*(z), and Infu(s)| are all measurable

4.13 (Measurable functions)

(2) Show that if {u(t) : [-7/2,7/2] — R} and {v(?) : [-7/2,T/2] - R} are
measurable, then u(f) 4 v(f) is also measurable. [Hint. Use a discrete
approximation to the sum and then go to the limit.]

(b) Show that u(#)v(?) is also measurable.

4.14 (Measurable sets) Suppose A is a subset of [~T/2, T/2] and is measurable
over [~7/2, T/2). Show that A is also measurable, with the same measure,
over [-T'/2, T'/2] for any T’ satisfying 7’ > T. [Hint. Let u'(A) be the outer
measure of A over [—T"/2, T'/2] and show that p'(A) = u°(A), where u° is
the outer measure over [~T/2, T/2]. Then let A be the complement of A over
[~T"/2, T'/2] and show that p/'(A ) = pu°(A) +T' — T

4.15 (Measurable limits)

(a) Assume that {u, () : [-T/2, T/2] — R} is measurable for each n > 1. Show
that liminf, u,(¢) is measurable (liminf,u,(r) means lim, v,(f), where
v,,(t) =inf;._, u,(¢) and infinite values are allowed).

(b) Show that lim, u,(r) exists for a given ¢ if and only if liminf, u, () =
lim sup, u,(1). »

(c) Show that the set of ¢ for which lim, u,(#) exists is measurable. Show that
a function u(¢) that is lim, u,(¢) when the limit exists and is O otherwise is
measurable.

4.16 (Lebesgue integration) For each integer n > 1, define u,(f) = 2" rect(2"t—1).
Sketch the first few of these waveforms. Show that lim,_, ., #,(¢) =0 for all ¢.
Show that [lim, u,(r)dt # lim, { u,(s)dr.

4.17 (£, integrals)

(a) Assume that {u(¢) : [—T/2, T/2] - R} is £,. Show that

| / u(t)dtl = ‘ [utma-[ u‘(t)dtl < [ u@ldr.
(b) Assume that {u(t) : [—T/2, T/2] — C} is £,. Show that

| [ u(t)dtl < j lu(0)| dr.

[Hint. Choose @ such that « J u(t)dt is real and nonnegative and |a} = 1.
Use part (a) on au(t).]
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4.18 (L,-equivalence) Assume that {u(f) : [-T/2, T/2] — C} and {v(?) : [~T/2,
T/2] - C} are £, functions.

(a) Show that if u(¢) and v(t) are equal a.c., then they are £,-equivalent.

(b) Show that if u(f) and v(f) are £,-equivalent, then for any £ > 0 the set
{2:|u(t) = v(£)|> = €} has zero measure.

(c) Using (b), show that u{z: [u(r) — v(t)| > 0} =0, i.e. that u(r) = v(t) a.e.

4.19 (Orthogonal expansions) Assume that {u(f): R — C} is £,. Let {6,(s); 1 <k <
oo} be a set of orthogonal waveforms and assume that u(r) has the following
orthogonal expansion:

u(t) = Zukek(t). .
k=1
Assume the set of orthogonal waveforms satisfy

f® . _JO  for k#j;
./_wo"(t)ej(t)dt_(Aj for k=j,

where {A;; j € Z*} is an arbitrary set of positive numbers. Do not concern
yourself with convergence issues in this exercise.

(a) Show that each u, can be expressed in terms of . u(f)0;(f)dt and A,.

(b) Find the energy [ {u(?)]* dt in terms of {u,} and {A}.

(c) Suppose that v(t) = X", v,6,(f), where v(f) also has finite energy. Express
[ u(2)v*(¢) dr as a function of {uy, v, A;; k € Z}).

4.20 (Fourier series)

(a) Verify that (4.22) and (4.23) follow from (4.20) and (4.18) using the
transformation u(t) = v(t + A).

(b) Consider the Fourier series in periodic form, w(f) = X, i,e*™/7,
where @, = (1/7) [. T;.jzw(t)e‘z”“"/rdt. Show that for any real A,

1 T/2HA (H)e27%IT 4t is also equal to i, providing an alternative
T/24+A q b P g

derivation of (4.22) and (4.23).
4.21 Equation (4.27) claims that

tim [ lu(t)— )3 ‘i ak,mo,‘_,,(r)lzdmo.

n=-»00,{—>00 )

(a) Show that the integral above is nonincreasing in both £ and n.

(b) Show that the limit is independent of how n and £ approach co. [Hint. See
Exercise 4.4.]

(c) More generally, show that the limit is the same if the pair (k, m), k€ Z, me€ Z,
is ordered in an arbitrary way and the limit above is replaced by a limit on
the partial sums according to that ordering.
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4.22 (Truncated sinusoids)
(a) Verify (4.24) for £, waveforms, i.e. show that

lim [ Iu(t)—- 3 u,,,(t)lzdt=0.

ms=--n

(b) Break the integral in (4.28) into separate integrals for |¢] > (n+1/2)T and
{t] < (n+1/2)T. Show that the first integral goes to 0 with increasing n.
(c) For given n, show that the second integral above goes to 0 with increasing €.

4.23 (Convolution) The left side of (4.40) is a function of ¢. Express the Fourier trans-
form of this as a double integral over ¢ and 7. For each ¢, make the substitution
r =t —7 and integrate over r. Then integrate over 7 to get the right side of
(4.40). Do not concern yourself with convergence issues here.

4.24 (Continuity of £, transform) Assume that {u(¢) : R — C} is £, and let &1(f) be
its Fourier transform. Let £ be any given positive number.

(2) Show that for sufficiently large T, f,  lu()e™"/ — u(t)e U= dr <g/2
for all f and all 6 > 0.

(b) For the & and T sclected above, show that f _,[u()e™>"" —
u(f)e~2"iU-dr < g/2 for all f and sufficiently small § > 0. This shows
that () is continuous. ’

4.25 (Plancherel)-The purpose of this exercise is to get some understanding
of the Plancherel theorem. Assume that u(r) is £, and has a Fourier transform
a(f). '

(a) Show that u(f) — i, (f) is the Fourier transform of the function x,(z) that is
0 from —A to A and equal to u(f) elsewhere.

(b) Argue that since [ |u(#)[? dt is finite, the integral [ |x,(£)]*df must go
to 0 as A — oo. Use whatever level of mathematical care and common sense
that you feel comfortable with.

(c) Using the energy equation (4.45), argue that

}i_{r;j:mlﬁ(f)—ﬁA(f)lzdt=0.

Note: this is only the easy part of the Plancherel theorem. The difficult
part is to show the existence of &(f). The limit as A — oo of the integral
ffA u(t)e~>"f* d¢ need not exist for all £, and the point of the Plancherel
theorem is to forget about this limit for individual f and focus instead
on the energy in the difference between the hypothesized &(f) and the
approximations.

4.26 (Fourier transform for £,) Assume that {u(?) : R — C} and {v(t) : R — C} are
L, and that a and b are complex numbers. Show that au(r) + bu(r) is £,. For
T >0, show that u(¢—T) and u(t/T) are £, functions.
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4.27 (Relation of Fourier series to Fourier integral) Assume that {u(¢t) : [-T/2, T/2] >
C} is £,. Without being very careful about the mathematics, the Fourier series
expansion of {u(r)} is given by

¢
~ ; t
u(t) = lim u®(@), where uO@) =Y @™ rect(i;) ;
k=—¢

By=a / " u(e T g
k= T .
-12

(a) Does the above limit hold for all ¢ € [-7/2, T/2]? If not, what can you say
about the type of convergence?

(b) Does the Fourier transform &(f) = f_% u(t)e~27f d¢ exist for all £? Explain.

(c) The Fourier transform of the finite sum u©(f) is &9 =

Yt 8, Tsinc(fT —k). In the limit £ — oo, &i(f) =lim,_,, #9(), so

¢
a(f) = tlim > T sinc(fT —k).
—> 00 k=t
Give a brief explanation why this equation must hold with equality for all
f € R. Also show that {&(f) : f € R} is completely specified by its values,
{a(k/T): k € Z} at multiples of 1/T.

4.28 (Sampling) One often approximates the value of an integral by a discrete sum, i.e.

[ sdr~ 83 g(ks).
o P
(a) Show that if u(r) is a real finite-energy function, lowpass-limited to W Hz,
then the above approximation is exact for g(t) = u2(z) if & < 1/2W; i.e., show
that

[ " Adr = 8 (k).
—o -k

(b) Show that if g(¢) is a real finite-energy function, lowpass-limited to W Hz,
then for § < 1/2W, .
/ g()dt =8 g(ks).

—0 p
(c) Show that if & > 1/2W, then there exists no such relation in general.

4.29 (Degrees of freedom) This exercise explores how much of the energy of a
baseband-limited function {u(z) : [—1/2, 1/2] = R} can reside outside the region
where the sampling coefficients are nonzero. Let T=1/2W=1, and let n be a
positive even integer. Let u, = (—1)* for —n <k <n and u, =0 for |k| > n.
Show that Ju(n+ 1/2)| increases without bound as the endpoint 7 is increased.
Show.that |u(n+m+1/2)| > [u(n—m—1/2)]| for all integers m,0 <m <n.In
other words, shifting the sample points by 1/2 leads to most of the sample point
energy being outside the interval [—n, n].
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4.30 (Sampling theorem for [A —W, A+W)])

(a) Verify the Fourier transform pair in (4.70). [Hint. Use the scaling and shifting
rules on rect(f) <> sinc(¢).]

(b) Show that the functions making up that expansion are orthogonal. [Hint.
Show that the corresponding Fourier transforms are orthogonal.]

(c) Show that the functions in (4.74) are orthogonal.

4.31 (Amplitude-limited functions) Sometimes it is important to generate baseband
waveforms with bounded amplitude. This problem explores pulse shapes that can
accomplish this -

(a) Find the Fourier transform of g(f) = sinc®(Wz). Show that g(¢) is bandlimited
to f <W and sketch both g(r) and g(f). [Hint. Recall that multipli-
cation in the time domain corresponds to convolution in the frequency
domain.]

(b) Let u(z) be a continuous real £, function baseband-limited to f <W (ie.
a function such that u(t) = Y, u(k7) sinc(t/T — k), where T = 1/2W. Let
v(t) = u(r) * g(¢). Express v(#) in terms of the samples {u(kT); k € Z} of
u(t) and the shifts {g(t —k7); k € Z} of g(r). [Hint. Use your sketches in
part (a) to evaluate g(t) »sinc(¢/T).]

(c) Show that if the T-spaced samples of u(#) are nonnegative, then v(f) > 0 for
all ¢.

(d) Explain why >, sinc(¢/T ~k) =1 for all ¢. .

(e) Using (d), show that ", g(t—kT) = ¢ for all ¢ and find the constant ¢. [Hint.
Use the hint in (b) again.]

(f) Now assume that u(t), as defined in part (b), also satisfies u(k7) <1 for all
k € Z. Show that v(r) <2 for all ¢. )

(g) Allow u(t) to be complex now, with |u(kT)| < 1. Show that |u(f)| < 2 for
all 7,

4.32 (Orthogonal sets) The function rect(t/T) has the very special property that it, plus
its time and frequency shifts, by kT and j/T, respectively, form an orthogonal
set. The function sinc(z/T) has this same property. We explore other functions
that are generalizations of rect(t/T) and which, as you will show in parts (a)~(d),
have this same interesting property. For simplicity, choose T = 1.

These functions take only the values 0 and 1 and are allowed to be nonzero
only over [—1, 1] rather than [—1/2, 1/2] as with rect(). Explicitly, the functions
considered here satisfy the following constraints:

p()=p*(1) forall + (0/1 property); (4.108)
p()=0 for |t} > 1; (4.109)
p(®)=p(-19) forall ¢t (symmetry); (4.110)
pi)=1-p(t-1)  for0=<r<1/2. (4.111)
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) another choice
of p(t) that
satisfies (4.108) to {(4.111)

1
rect(t) ) H
] ! 1 ] ]

-1/2 12 -1 -1/2 0 1/2 1

Figure 412. Two functions that each satisfy (4.108)—(4.111)

Note: because of property (4.110), condition (4.111) also holds for 1/2 <t <1.
Note also that p(#) at the single points ¢ = 31/2 does not affect any orthogonality
properties, so you are free to ignore these points in your arguments. Figure 4.12
illustrates two examples of functions satisfying (4.108)(4.111).

(a) Show that p(#) is orthogonal to p(t—1). [Hint. Evaluate p(f)p(t ~ 1) for
each ¢ € [0, 1] other than t =1/2.]

(b) Show that p(¢) is orthogonal to p(t — k) for all integer k #0.

(c) Show that p(¢) is orthogonal to p(t — k)e™>™ for integer m # 0 and k # 0.

(d) Show that p(t) is orthogonal to p(f)e?>™™ for integer m # 0. [Hint. Evaluate
p(t)c-Z'rrimt +p(t _ l)e-21rim(l-l)_]

(e) Let h(t) = p(t) where p(f) is the Fourier transform of p(r). If p(s) satisfies
properties (4.108)—(4.111), does it follow that h(f) has the property that itis
orthogonal to h(f — k)e?™™™ whenever either the integer k or m is nonzero?

Note: almost no calculation is required in this problem.
4.33 (Limits) Construct an example of a sequence of £, functions v™(z), m €Z, m >0,
such that lim v®™(z) =0 for all ¢ but for which Lim. v () does not exist. In

other words show that pointwise convergence does not imply £,-convergence.
[Hint. Consider time shifts.]

4.34 (Aliasing) Find an example where &(f) is O for |f| > 3W and nonzero for
W < |f| < 3W, but where, s(kT) = vo(kT) for all k € Z. Here vo(k7) is defined
in (4.77) and T = 1/2W. [Hint. Note that it is equivalent to achieve equality
between 5(f) and @(f) for |f] <W. Look at Figure 4.10.]

4.35 (Aliasing) The following exercise is designed to illustrate the sampling of an
approximately baseband waveform. To avoid messy computation, we look at a
waveform baseband-limited to 3/2 which is sampled at rate 1 (i.e. sampled at
only 1/3 the rate that it should be sampled at). In particular, let u(f) = sinc(3).

(a) Sketch ii(f). Sketch the function ,(f) = rect(f —m) for each integer m
such that v,,(f) # 0. Note that &(f) = 3, U,,(f).

(b) Sketch the inverse transforms v,,(f) (real and imaginary parts if complex).

(c) Verify directly from the equations that u(t) = > v,(f). [Hint. This is eas-
ier if you express the sine part of the sinc function as a sum of complex
exponentials.]

(d) Verify the sinc-weighted sinusoid expansion, (4.73). (There are only three
nonzero terms in the expansion.)

() For the approximation s(r) = u(0) sinc(¢), find the energy in the difference
between u(f) and s(r) and interpret the terms.
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4.36 (Aliasing) Let u(t) be the inverse Fourier transform of a function i(f) which
is both £, and £,. Let v,(f) = [ a(f) rect(fT—m)e?™/*df and let v (1) =
2L va()-

(2) Show that |u(t) — V()| < [l o nsryr 18NS and thus that u(r) =
lim,_, ., v (¢) forall 7. )

.(b) Show that the sinc-weighted sinusoid expansion of (4.76) then converges
pointwise for all ¢. [Hint. For any ¢ and any & > 0, choose n so that ju(t)—
v"(t)| < £/2. Then for each m, |m| < n, expand v,,(#) in a sampling expansion
using enough terms to keep the error less than £/4n+2.]

4.37 (Aliasing)

(a) Show that 3(f) in (4.83) is £, if (/) is.

(b) Let #(f) = Lyorect[k*(f —k)]. Show that i(f) is £; and £L,. Let T =1 for
3(/) and show that 5(f) is not £,. [Hint. Sketch &(f) and 3(f).]

(c) Show that &(f) does not satisfy lim_, , #()|f]'** =0.

4.38 (Aliasing) Let u(f) = ¥.orect[k?(t — k)] and show that u(f) is £,. Find s() =
3, u(k) sinc(r —k) and show that it is neither £; nor £L,. Find 37, u?(k) and
explain why the sampling theorem energy equation (4.66) does not apply here.
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6 Channels, modulation,
and demodulatlon

6.1 Introduction

Digital modulation (or channel encoding) is the process of converting an input
sequence of bits into a waveform suitable for transmission over a communication
channel. Demodulation (channel decoding) is the corresponding process at the receiver
of converting the received waveform into a (perhaps noisy) replica of the input bit
sequence. Chapter 1 discussed the reasons for using a bit sequence as the interface
between an arbitrary source and an arbitrary channel, and Chapters 2 and 3 discussed
how to encode the source output into a bit sequence.

Chapters 4 and 5 developed the signal-space view of waveforms. As explained in .
those chapters, the source and channel waveforms of interest can be represented as real
or complex' £, vectors. Any such vector can be viewed as a conventional function of
time, x(¢). Given an orthonormal basis {¢,(), $,(¢), ...} of £,, any such x(t) can
be represented as

x(t) = L x,9,(0). _ (6.1)

Each x; in (6.1) can be uniquely calculated from x(t), and the above series converges
in £, to x(t). Moreover, starting from any sequence satisfying 3, |x;[* < oo, there
is an ., function x(¢) satisfying (6.1) with £,-convergence. This provides a simple
and generic way of going back and forth between functions of time and sequences
of numbers. The basic parts of a modulator will then turn out to be a procedure for
mapping a sequence of binary digits into a sequence of real or complex numbers,
followed by the above approach for mapping a sequence of numbers into a waveform.

! As explained later, the actual transmitted waveforms are real. However, they are usually bandpass real
waveforms that are conveniently represented as complex baseband waveforms.
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In most cases of modulation, the set of waveforms ¢,(r), ¢,(z), . . . in (6.1) will be
chosen not as a basis for £, but as a basis for some subspace? of £, such as the set
of functions that are baseband-limited to some frequency W, or passband-limited to
some range of frequencies. In some cases, it will also be desirable to use a sequence

" of waveforms that are not orthonormal.

We can view the mapping from bits to numerical signals and the conversion of
signals to a waveform as separate layers. The demodulator then maps the received
waveform to a sequence of received signals, which is then mapped to a bit sequence,
hopefully equal to the input bit sequence. A major objective in designing the modulator
and demodulator is to maximize the rate at which bits enter the encoder, subject to
the need-to retrieve the original bit stream with a suitably small error rate. Usually
this must be done subject to constraints on the transmitted power and bandwidth. In
practice there are also constraints on delay, complexity, compatibility with standards,
etc., but these need not be a major focus here.

Example 6.1.1 As a particularly simple example, suppose a sequence of binary
symbols enters the encoder at T-spaced instants of time. These symbols can be mapped
into real numbers using the mapping O — +1 and 1 — —1. The resulting sequence
Iy, Uy, . .. of real numbers is then mapped into a transmitted waveform given by

t
= inc{——k). 6.2
u(?) Xk: u, sinc (T ) 6.2)

This-is baseband-limited to W, =1 /2T. At the receiver, in the absence of noise,
attenuation, and other imperfections, the received waveform is u(#). This can be
sampled at times T,2T,... to retrieve u;, u,, ..., which can be decoded into the
original binary symbols.

The above example contains rudimentary forms of the two layers discussed above.
The first is the mapping of binary symbols into numerical signals® and the second
is the conversion of the sequence of signals into a waveform. In general, the set
of T-spaced sinc functions in (6.2) can be replaced by any other set of orthogonal
functions (or even nonorthogonal functions). Also, the mapping 0 — +1, 1 - —1 can
be generalized by segmenting the binary stream into b-tuples of binary symbols, which
can then be mapped into n-tuples of real or complex numbers. The set of 2% possible
n-tuples resulting from this mapping is called a signal constellation. B

2 Equivalently, ¢,(1), $2(t),... can be chosen as a basis of £,, but the set of indices for which x; is
allowed to be nonzero can be restricted.

3 The word signal is often used in the communication literature to refer to symbols, vectors, waveforms, or
almost anything else. Here we use it only to refer to real or complex numbers (or n-tuples of numbers) in
situations where the numerical properties are important. For example, in (6.2) the signals (numerical values)
uy, Uy, ... determine the real-valued waveform u(f), whereas the binary input symbols could be ‘Alice’
and ‘Bob’ as easily as 0 and 1.
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binary | bitsto | + [signalsto| 7 _|basebandto| <
input signals [ 1 | waveform é "| passband :
i i H '
sequence of baseband passband |channel|-
signals waveform waveform
binary | signals | ¢ [waveform| | |passbandto] !
output | to bits + |[tosignals [T : |baseband '

Figure 6.1.  Layers of a modulator (channel encoder) and demodulator (channel decoder).

Modulators usually include a third layer, which maps a baseband-encoded waveform,
such as u(#) in (6.2), into a passband waveform x(f) = R{u(r)e*"<'} centered on a
given carrier frequency f.. At the decoder, this passband waveform is mapped back
to baseband before the other components of decoding are performed. This frequency
conversion operation at encoder and decoder is often referred to as modulation and
demodulation, but it is more common today to use the word modulation for the entire
process of mapping bits to waveforms. Figure 6.1 illustrates these three layers.

We have illustrated the channel as a one-way device going from source to desti-
nation. Usually, however, communication goes both ways, so that a physical location
can send data to another location and also receive data from that remote loca-
tion, A physical device that both encodes data going out over a channel and also
decodes oppositely directed data coming in from the channel is called a modem (for
modulator/demodulator). As described in Chapter 1, feedback on the reverse channel
can be used to request retransmissions on the forward channel, but in practice this

- is usually done as part of an automatic retransmission request (ARQ) strategy in the
data link control layer. Combining coding with more sophisticated feedback strategies
than ARQ has always been an active area of communication and information-theoretic
research, but it will not be discussed here for the following reasons:

e it is important to understand communication in a single direction before addressing
the complexities of two directions;

e feedback does not increase channel capacity for typical channels (see Shannon
(1956));

o simple error detection and retransmission is best viewed as a topic in data networks.

There is an interesting analogy between analog source coding and digital modulation,
With analog source coding, an analog waveform is first mapped into a sequence of real
or complex numbers (e.g. the coefficients in an orthogonal expansion). This sequence
of signals is then quantized into a sequence of symbols from a discrete alphabet, and
finally the symbols are encoded into a binary sequence. With modulation, a sequence
of bits is encoded into a sequence of signals from a signal constellation, The elements
of this constellation are real or complex points in one or several dimensions. This
sequence of signal points is then mapped into a waveform by the inverse of the
process for converting waveforms into sequences. ‘
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6.2 Pulse amplitude modulation (PAM)

Pulse amplitude modulation* (PAM) is probably the simplest type of modulation. The
incoming binary symbols are first segmented into b-bit blocks. There is a mapping
from the set of M = 2° possible blocks into a signal constellation A = {a,, a,, .. . , ay}
of real numbers. Let R be the rate of incoming binary symbols in bits per second. Then
the sequence of b-bit blocks, and the corresponding sequence u,, u,,... of M-ary
signals, has a rate of R; = R/b signals/s. The sequence of signals is then mapped into
a waveform u(#) by the use of time shifts of a basic pulse waveform p(r), i.e.

u(t) = X up(t kT, 63)
k

where T = 1/R; is the interval between successive signals. The special case where
b=1 is called binary PAM and the case b > 1 is called multilevel PAM. Example
6.1.1 is an example of binary PAM where the basic pulse shape p(¢) is a sinc function.
Comparing (6.1) with (6.3), we see that PAM is a special case of digital modulation
in which the underlying set of functions ¢, (1), $,(2), ... is replaced by functions that
are T-spaced time shifts of a basic function p(¢).

In what follows, signal constellations (i.e. the outer layer in Figure 6.1) are discussed
in Sections 6.2.1 and 6.2.2. Pulse waveforms (i.e. the middle layer in Figure 6.1) are
then discussed in Sections 6.2.3 and 6.2.4. In most cases,’ the pulse waveform p(#) is a
baseband waveform, and the resulting modulated waveform u(z) is then modulated up
to some passband (i.e. the inner layer in Figure 6.1). Section 6.4 discusses modulation
from baseband to passband and back.

6.2.1 Signal constellations

A standard M-PAM signal constellation A (see Figure 6.2) consists of M = 2°
d-spaced real numbers located symmetrically about the origin; i.e.,

g [ma=1) -d d d(M—1)
= g T e —— -

In other words, the signal points are the same as the representation points of a
symmetric M-point uniform scalar quantizer. v

If the incoming bits are independent equiprobable random symbols (which is a good
approximation with effective source coding), then each signal u, is a sample value of a
random variable U, that is equiprobable over the constellation (alphabet) A. Also the

4 This terminology comes from analog amplitude modulation, where a baseband waveform is modulated up
to some passband for communication. For digital communication, the more interesting problem is turning a
bit stream into a waveform at baseband. .
% Ultra-wide-band modulation (UWB) is an interesting modulation technique where the transmitted wave-
form is essentially a baseband PAM system over a “baseband” of multiple gigahertz. This is discussed
briefly in Chapter 9.
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Figure 62. An 8-PAM signal set.

sequence U, U, ... is independent and identically distributed (iid). As derived in
Exercise 6.1, the mean squared signal value, or “energy per signal,” E; = E[UZ], is
then given by

_dMP-1)  d(2*-1)
- 12 - 12

For example, for M =2, 4, and 8, we have E, = d*/4, 5d2/4, and 21d% /4, respectively.
For b > 2, 2% —1 is approximately 2?%, so we see that each unit increase in b
increases E, by a factor of 4. Thus, increasing the rate R by increasing b requires
impractically large energy for large b.
Before explaining why standard M-PAM is a good choice for PAM and what factors
affect the choice of constellation size M and distance d, a brief introduction to channel
imperfections is required.

E, (6.4)

6.2.2 Channel imperfections: a preliminary view

Physical waveform channels are always subject to propagation delay, attenuation, and
noise. Many wireline channels can be reasonably modeled using only these degrada-
tions, whereas wireless channels are subject to other degradations discussed in Chapter
9. This section provides a preliminary look at delay, then attenuation, and finally noise.

The time reference at a communication receiver is conventionally delayed relative
to that at the transmitter. If a waveform u(r) is transmitted, the received waveform (in
the absence of other distortion) is u(t — 7), where 7 is the delay due to propagation
and filtering. The receiver clock (as a result of tracking the transmitter’s timing) is
ideally delayed by 7, so that the received waveform, according to the receiver clock,
is u(#). With this convention, the channel can be modeled as having no delay, and
all equations are greatly simplified. This explains why communication engineers often
model filters in the modulator and demodulator as being noncausal, since responses
before time O can be added to the difference between the two clocks. Estimating the
above fixed delay at the receiver is a significant problem called timing recovery, but
is largely separable from the problem of recovering the transmitted data.

The magnitude of delay in a communication system is often important. It is one
of the parameters included in the quality of service of a communication system.
Delay is important for voice communication and often critically important when the
communication is in the feedback loop of a real-time control system. In addition to the
fixed delay in time reference between modulator and demodulator, there is also delay
in source encoding and decoding. Coding for error correction adds additional delay,
which might or might not be counted as part of the modulator/demodulator delay.
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Either way, the delays in the source coding and error-correction coding are often much
larger than that in the modulator/demodulator proper. Thus this latter delay can be
significant, but is usually not of primary significance. Also, as channel speeds increase,
the filtering delays in the modulator/demodulator become even less significant.

Amplitudes are usually measured on a different scale at transmitter and receiver.
The actual power attenuation suffered in transmission is a product of amplifier gain,
antenna coupling losses, antenna directional gain, propagation losses, etc. The process
of finding all these gains and losses (and perhaps changing them) is called “the link
budget.” Such gains and losses are invariably calculated in decibels (dB). Recall that
the number of decibels corresponding to a power gain a is defined to be 10log,,a.
The use of a logarithmic measure of gain allows the various components of gain to be
added rather than multiplied.

The link budget in a communication system is largely separable from other issues,
so the amplitude scale at the transmitter is usually normalized to that at the receiver.

By treating attenuation and delay as issues largely separable from modulation, we
obtain a model of the channel in which a baseband waveform u(f) is converted
to passband and transmitted. At the receiver, after conversion back to baseband, a
waveform v(¢) = u(r) +z(¢) is received, where z(z) is noise. This noise is a fundamental
limitation to communication and arises from a variety of causes, including thermal
effects and unwanted radiation impinging on the receiver. Chapter 7 is largely devoted
to understanding noise waveforms by modeling them as sample values of random
processes. Chapter 8 then explains how best to decode signals in the presence of noise.
These issues are briefly summarized here to see how they affect the choice of signal
constellation. '

For reasons to be described shortly, the basic pulse waveform p(z) used in PAM
often has the property that it is orthonormal to all its shifts by multiples of T. In this
case, the transmitted waveform u(t) = 3", u, p(t — k/T) is an orthonormal expansion,
and, in the absence of noise, the transmitted signals u,, u,, ... can be retrieved from
the baseband waveform u(r) by the inner product operation

U, = / u(t) p(t — kT)dt.

In the presence of noise, this same operation can be performed, yielding
v, = / v()p(t —kT)dt = u, + 2, (6.5)

where z; = [ z(f) p(t —kT)dt is the projection of z(#) onto the shifted pulse p(z —kT).

The most common (and often the most appropriate) model for noise on channels is
called the additive white Gaussian noise model. As shown in Chapters 7 and 8, the
above coefficients {z;; k € Z} in this model are the sample values of zero-mean, iid
Gaussian random variables {Z,; k € Z). This is true no matter how the orthonormal
functions {p(¢ —kT); k € Z} are chosen, and these noise random variables {Z,; k € Z}
are also independent of the signal random variables {U,; k € Z}. Chapter 8 also shows
that the operation in (6.5) is the appropriate operation to go from \waveform to signal
sequence in the layered demodulator of Figure 6.1.
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Now consider the effect of the noise on the choice of M and d in a PAM modulator.
Since the transmitted signal reappears at the receiver with a zero-mean Gaussian
random variable added to it, any attempt to retrieve Uy from V; directly with reasonably
small probability of error® will require d to exceed several standard deviations of the
noise. Thus the noise determines how large d must be, and this, combined with the
power constraint, determines M.

The relation between error probability and signal-point spacing also helps explain
why multi-level PAM systems almost invariably use a standard M-PAM signal set.
Because the Gaussian density drops off so fast with increasing distance, the error
probability due to confusion of nearest neighbors drops off equally fast. Thus error
probability is dominated by the points in the constellation that are closest together. If
the signal points are constrained to have some minimum distance d between points, it
can be seen that the minimum energy E, for a given number of points M is achieved
by the standard M-PAM set.

To be more specific about the relationship between M, d, and the variance o of the
noise Z,, suppose that d is selected to be o, where « is chosen to make the detection
sufficiently reliable. Then with M = 2%, where b is the number of bits encoded into
each PAM signal, (6.4) becomes

- a2g?(2% —1) 1 12E,
Es———i2_—, b_ilog(l+%—i). (66)

This expression looks strikingly similar to Shannon’s capacity formula for additive
white Gaussian noise, which says that, for the appropriate PAM bandwidth, the capacity
per signal is C = (1/2) log(1 + E,/o?). The important difference is that in (6.6) & must
"be increased, thus decreasing b, in order to decrease error probability. Shannon’s result,
on the other hand, says that error probability can be made arbitrarily small for any
number of bits per signal less than C. Both equations, however, show the same basic
form of relationship between bits per signal and the signal-to-noise ratio E,/a%. Both
equations also say that if there is no noise (o2 =0), then the the number of transmitted
bits per signal can be infinitely large (i.e. the distance d between signal points can be
made infinitesimally small). Thus both equations suggest that noise is a fundamental
limitation on communication. o

6.2.3 Choice of the modulation pulse

As defined in (6.3), the baseband transmitted waveform, u(t) = 3, u;p(t — kT), for
a PAM modulator is determined by the signal constellation A, the signal interval T,
and the real £, modulation pulse p().

6 If error-correction coding is used with PAM, then 4 can be smaller, but for any given error-correction
code, d still depends on the standard deviation of Z;.

7 On the other hand, if we choose a set of M signal points to minimize E, for a given error probability,
then the standard M-PAM signal set is not quite optimal (see Exercise 6.3).

Constellation Exhibit 2004, Page 87 of 229



188 Channels, modulation, and demodulation

It may be helpful to visualize p(t) as the impulse response of a linear time-invariant
filter. Then u(t) is the response of that filter to a sequence of T-spaced impulses
3, 4;8(t—kT). The problem of choosing p(f) for a given T turns out to be largely
separable from that of choosing A. The choice of p(r) is also the more challenging
and interesting problem.

The following objectives contribute to the choice of p(?).

e p(¢) must be O for ¢ < —7 for some finite 7. To see this, assume that the kth
input signal to the modulator arrives at time Tk — 7. The contribution of u, to the
transmitted waveform u(f) cannot start until kT — 7, which implies p(f) = O for
t < —7 as stated. This rules out sinc(¢/T) as a choice for p(r) (although sinc(¢/T)
could be truncated at ¢ = —7 to satisfy the condition).

o In most situations, p(f) should be essentially baseband-limited to some bandwidth
B, slightly larger than W, = 1/2T. We will see shortly that it cannot be baseband-
limited to less than W, = 1/2T, which is called the nominal, or Nyquist, bandwidth.
There is usually an upper limit on B, because of regulatory constraints at bandpass
or to allow for other transmission channels in neighboring bands. If this limit were
much larger than W, = 1/2T, then T could be increased, increasing the rate of
transmission.

o The retrieval of the sequence {u,; k € Z} from the noisy received waveform should
be simple and relatively reliable. In the absence of noise, {u;; k € Z} should be
uniquely specified by the received waveform.

The first condition above makes it somewhat tricky to satisfy the second condition. In
particular, the Paley—~Wiener theorem (Paley and Wiener, 1934) states that a necessary
and sufficient condition for a nonzero £, function p(r) to be zero for all £ <0 is that
its Fourier transform satisfies

f°° i[OI

e Y < 6.7)

Combining this with the shift condition for Fourier transforms, it says that any £,
function that is 0 for all ¢+ < —7 for any finite delay 7 must also satisfy (6.7). This
is a particularly strong statement of the fact that functions cannot be both time- and
frequency-limited. One consequence of (6.7) is that if p(f) =0 for t < —7, then p(f)
must be nonzero except on a set of measure 0. Another consequence is that p(f) must
go to 0 with increasing f more slowly than exponentially.

The Paley-Wiener condition turns out to be useless as a tool for choosmg p(1).
First, it distinguishes whether the delay 7 is finite or infinite, but gives no indication
of its value when finite. Second, if an £, function p(¢) is chosen with no concem for
(6.7), it can then be truncated to be O for ¢ < —7. The resulting £, error caused by
truncation can be made arbitrarily small by choosing 7 to be sufficiently large. The
tradeoff between truncation error and delay is clearly improved by choosing p(r) to
approach O rapidly as t —» ~o0.

In summary, we will replace the first objective above with the objective of choosing
p(?) to approach O rapidly as ¢ — —oo. The resulting p(f) will then be truncated
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to satisfy the original objective. Thus p(f) < p(f) will be an approximation to the
transmit pulse in what follows. This also means that p(f) can be strictly bandlimited
to a frequency slightly larger than 1/2T.

We now turn to the third objective, particularly that of easily retrieving the sequence
uy, Uy, . . . from u(t) in the absence of noise. This problem was first analyzed in 1928
in a classic paper by Harry Nyquist (Nyquist, 1928). Before looking at Nyquist’s
results, however, we must consider the demodulator.

6.24 PAM demodulation

For the time being, ignore the channel noise. Assume that the time reference and the
amplitude scaling at the receiver have been selected so that the received baseband
waveform is the same as the transmitted baseband waveform u(z). This also assumes
that no noise has been introduced by the channel.

The problem at the demodulator is then to retrieve the transmitted signals u, u,, ...
from the received waveform u(¢) = Y, u, p(t—kT). The middle layer of a PAM demod-
ulator is defined by a signal interval T (the same as at the modulator) and a real £,
waveform g(z). The demodulator first filters the received waveform using a filter with
impulse response g(f). It then samples the output at T-spaced sample times. That is,
the received filtered waveform is given by

1= [ uqt—r)dr, 6.)

and the received samples are r(T), r(27),...

Our objective is to choose p(t) and g(z) so that r(kT) = u, for each k. If this objective
is met for all choices of u;, u,, ..., then the PAM system involving p(¢) and g(¢) is
said to have no intersymbol interference. Otherwise, intersymbol interference is said
to exist. The reader should verify that p(f) = q(r) = (1/+/T)sinc(¢/T) is one solution.

This problem of choosing filters to avoid intersymbol interference appears at first to
be somewhat artificial. First, the form of the receiver is restricted to be a filter followed
by a sampler. Exercise 6.4 shows that if the detection of each signal is restricted to
a linear operation on the received waveform, then there is no real loss of generality
in further restricting the operation to be a filter followed by a T-spaced sampler. This
does not explain the restriction to linear operations, however.

The second artificiality is neglecting the noise, thus neglecting the. fundamental
limitation on the bit rate. The reason for posing this artificial problem is, first, that
avoiding intersymbol interference is significant in choosing p(f), and, second, that
there is a simple and elegant solution to this problem. This solution also provides part
of the solution when noise is brought into the picture.

Recall that u(t) = ¥, u,p(t — kT); thus, from (6.8),

r(®) —/ S up(r—kT)g(t—7)dr. (6.9)

-0 g
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Let g(¢) be the convolution g(t) = p(f) *q(¢) = [ p(7)q(t — 7)d7 and assume8 that g(r)
is £,. We can then simplify (6.9) as follows:

r(t) =) u,g(t—kT). . (6.10)
N

This should not be surprising. The filters p(f) and g(¢) are in cascade with each other.
Thus r(¢) does not depend on which part of the filtering is done in one and which
in the other; it is only the convolution g(f) that determines r(¢). Later, when channel
noise is added, the individual choice of p(f) and g(¢) will become important.

There is no intersymbol interference if ((kT) = u, for each integer k, and from (6.10)
this is satisfied if g(0) = 1 and g(kT) =0 for each nonzero integer k. Waveforms with
this property are said to be ideal Nyquist or, more precisely, ideal Nyquist with
interval T.

Even though the clock at the receiver is delayed by some finite amount relative to
that at the transmitter, and each signal &, can be generated at the transmitter at some
finite time before kT, g(¢) must still have the property that g(f) = 0 for t < — for
some finite 7. As before with the transmit pulse p(f), this finite delay constraint will
be replaced with the objective that g(f) should approach 0 rapidly as || — oo. Thus
the function sinc(2/7) is ideal Nyquist with interval T, but is unsuitable because of
the slow approach to 0 as |t| — 0.

As another simple example, the function rect(¢/T) is ideal Nyquist with interval T
and can be generated with finite delay, but is not remotely close to being baseband-
limited.

In summary, we want to find functions g(r) that are ideal Nyquist but are approx-
imately baseband-limited and approximately time-limited. The Nyquist criterion,
discussed in Section 6.3, provides a useful frequency characterization of functions
that are ideal Nyquist. This characterization will then be used to study ideal Nyquist
functions that are approximately baseband-limited and approximately time-limited.

6.3 The Nyquist criterion

The ideal Nyquist property is determined solely by the T-spaced samples of the
waveform g(#). This suggests that the results about aliasing should be relevant. Let
5(t) be the baseband-limited waveform generated by the samples of g(?), i.e.

. t '
s() = ;g(kT) sinc (? - k) . (6.11)
If g(¢) is ideal Nyquist, then all the above terms except k = 0 disappear and s(f) =

sinc(¢/T). Conversely, if s(t) = sinc(t/7T), then g(f) must be ideal Nyquist. Thus g(#)

% By looking at the frequency domain, it is not difficult to construct a g{) of infinite energy from £,
functions p(f) and ¢(#). When we study noise, however, we find that there is no point in constructing such
a g(1), so we ignore the possibility.
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is ideal Nyquist if and only if s(¢) = sinc(¢/T). Fourier transforming this, g(¢) is ideal
Nygqist if and only if

5(f) = Trect(fT). ‘ (6.12)

From the aliasing theorem,
3(f) =lim. Zg(f+ g) rect(fT). (6.13)

The result of combining (6.12) and (6.13) is the Nyquist criterion.

Theorem 6.3.1 (Nyquist criterion) Ler g(f) be L, and satisfy the condition
im0 8(f)1f]'* = 0 for some & > 0. Then the inverse transform, g(t), of g(f)
is ideal Nyquist with interval T if and only if §(f) satisfies the “Nyquist criterion” for
T, defined as®

Lim. Y g(f +m/T)rect(fT) = T rect(fT). (6.14)

Proof From the aliasing theorem, the baseband approximation s(z) in (6.11) con-
verges pointwise and is £,. Similarly, the Fourier transform $(f) satisfies (6.13). If
g(1) is ideal Nyquist, then s(¢) = sinc(¢/T). This implies that 5(f) is £,-equivalent
to Trect(fT), which in turn implies (6.14). Conversely, satisfaction of the Nyquist
criterion (6.14) implies that $(f) = T rect(fT). This implies s(f) = sinc(¢/T), implying
that g(¢) is ideal Nyquist. a

There are many choices for g(f) that satisfy (6.14), but the ones of major interest are
those that are approximately both bandlimited and time-limited. We look specifically
at cases where 2(f) is strictly bandlimited, which, as we have seen, means that g(z)
is not strictly time-limited. Before these filters can be used, of course, they must be
truncated to be strictly time-limited. It is strange to look for strictly bandlimited and
approximately time-limited functions when it is the opposite that is required, but the
reason is that the frequency constraint is the more important. The time constraint is
usually more flexible and can be imposed as an approximation.

6.3.1 Band-edge symmetry

The nominal or. Nyquist bandwidth associated with a PAM pulse g(r) with signal
interval T is defined to be W, = 1/(27). The actual baseband bandwidth'® B, is
defined as the smallest number B, such that g(f) = 0 for | f| > B,. Note that if g(f) =0

% It can be seen that ¥, 8(f +m/T) is periodic and thus the rect(f7) could be essentially omitted from
both sides of (6.14). Doing this, however, would make the limit in the mean meaningless and would also
complicate the intuitive understanding of the theorem.

10 1t might be better to call this the design bandwidth, since after the truncation necessary for finite delay,
the resulting frequency function is nonzero a.e. However, if the delay is large enough, the energy outside
of By is negligible. On the other hand, Exercise 6.9 shows that these approximations must be handled with
great care,
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for |f| > Wy, then the left side of (6.14) is zero except for m =0, so g(f) = Trect(fT).
This means that B, > W,, with equality if and only if g(f) = sinc(¢/7).

As discussed above, if W, is much smaller than B,, then W, can be increased, thus
increasing the rate R, at which signals can be transmitted. Thus g(t) should be chosen
in such a way that B, exceeds W, by a relatively small amount. In particular, we now
focus on the case where Wy, < B, < 2W,.

The assumption B, < 2W, means that g(f) =0 for | f| = 2W,. Thus for 0 < f <W,,
2(f +2mW,) can be nonzero only for m = 0 and m = —1. Thus the Nyquist criterion
(6.14) in this positive frequency interval becomes

Since p(t) and ¢(r) are real, g(¢) is also real, so g(f —2W,) = §*(2W, — f). Substituting
this in (6.15) and letting A = f —W,, (6.15) becomes

T—g(W,+4) =g"(W, - 4). ' (6.16)

This is sketched and interpreted in Figure 6.3. The figure assumes the typical situation
in which g(f) is real. In the general case, the figure illustrates the real part of g(f)
and the imaginary part satisfies J{g(W, +A)} = I{g(W, — A)}.

Figure 6.3 makes it particularly clear that B, must satisfy B, > W, to avoid inter-
symbol interference. We then see that the choice of g(f) involves a tradeoff between
making g(f) smooth, so as to avoid a slow time decay in g(¢), and reducing the excess
of B, over the Nyquist bandwidth W,. This excess is expressed as a rolloff factor,!
defined to be (B,/W,) — 1, usually expressed as a percentage. Thus Z(f) in the figure
has about a 30% rolloff.

T-G(Wp-4)
gtf)

G(Wp+A
p gWp+4)

0 - Wb Bb

Figure 6.3.  Band-edge symmetry illustrated for real g(f). For each A, 0 <A < W,, g(W,+A) =
T —~ g(W, —A). The portion of the curve for f > W,, rotated by 180° around the point
(W,, T/2), is equal to the portion of the curve for f <W,.

' The requirement for a small rolloff actually arises from a requirement on the transmitted pulse p(f), i.e.
on the actual bandwidth of the transmitted channel waveform, rather than on the cascade g(r) = p(#) * (r).
The tacit assumption here is that p(f) = 0 when 2(f) = 0. One reason for this is that it is silly to transmit
energy in a part of the spectrum that is going to be completely filtered out at the receiver. We see later that

P(f) and §(} are usually chosen to have the same magnitude, ensuring that p(f) and g(f) have the same
rolloff.
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PAM filters in practice often have raised cosine transforms. The raised cosine
frequency function, for any given rolloff  between 0 and 1, is defined by

T, 0=<|fl<(1—-a)/2T;
2.(f) =1 T cos?[Z(If|-52)], (1—a)/2T) <|fl<Q+@)/2T); (6.17)
0, If] = (1 +a)/2T).

The inverse transform of g,(f) can be shown to be (see Exercise 6.8)

. ¢ty cos(mat/T)

ga(t) =sinc (?) m‘ , (6.18)
which decays asymptotically as 1/73, compared to 1/t for sinc(¢/T). In particular, for
a rolloff @ = 1, 2,(f) is nonzero from —2W, = —1/T to 2W, = 1/T and g,(7) has
most of its energy between —T and T. Rolloffs as sharp as 5-10% are used in current
practice. The resulting g, () goes to 0 with increasing [¢| much faster than sinc(t/T),
but the ratio of g,(¢) to sinc(z/7T) is a function of at/T and reaches its first zero at
t = 1.5T/a. In other words, the required filtering delay is proportional to 1/a.

The motivation for the raised cosine shape is that g(f) should be smooth in order
for g(2) to decay quickly in time, but g(f) must decrease from T at Wy(1—a) to 0
at W, (14 ). As seen in Figure 6.3, the raised cosine function simply rounds off the
step discontinuity in rect(f/2W,) in such a way as to maintain the Nyquist criterion
while making g(f) continuous with a continuous derivative, thus guaranteeing that
g(#) decays asymptotically with 1/£%.

6.3.2 Choosing {p(f — kT); k € Z} as an orthonormal set

In Section 6.3.1, the choice of g(f) was described as a compromise between rolloff
and smoothness, subject to band-edge symmetry. As illustrated in Figure 6.3, it is not a
serious additional constraint to restrict g(f) to be real and nonnegative. (Why let g(f)
go negative or imaginary in making a smooth transition from T to 0?) After choosing
2(H) = 0, however, there is still the question of how to choose the transmit filter p(¢)
and the receive filter g(¢) subject to p(f)g(f) = g(f). When studying white Gaussian
noise later, we will find that §(f) should be chosen to equal p*(f). Thus,?

121 =12l = vz (. (6.19)

The phase of p(f) can be chosen in an arbitrary way, but this determines the phase of
" g(f) = p*(f). The requirement that p(f)g(f) = g(f) = 0 means that g(f) = p*(f). In
addition, if p(?) is real then p(—f) = p*(f), which determines the phase for negative f
in terms of an arbitrary phase for f> 0. It is convenient here, however, to be slightly

12 A function p(r) satisfying (6.19) is often called square root of Nyquist, although it is the magnitude of
the transform that is the square root of the transform of an ideal Nyquist pulse.
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more general and allow p(f) to be complex. We will prove the following important
theorem. :

Theorem 6.3.2 (Orthonormal shifts) Let p(t) be an L, function such that g(f) =
|B(H|? satisfies the Nyquist criterion for T. Then {p(t—kT); k € Z} is a set of
orthonormal functions. Conversely, if {p(t —kT); k € Z} is a set of orthonormal
functions, then |p(f)|? satisfies the Nyquist criterion.

Proof Let q(f) = p*(—1). Then g(f) = p(f) » g(¢), so that

g(kT) = /_: p(T)g(kT — T)dT = /‘_:p(f)p*(f - kI)dr. (6.20)

If g(f) satisfies the Nyquist criterion, then g(r) is ideal Nyquist and (6.20) has the
value O for each integer k # 0 and has the value 1 for £ = 0. By shifting the variable
of integration by jT for any integer j in (6.20), we see also that [ p(7 — jT)p*(r—
(k+ j)T)dr =0 for k # 0 and 1 for k = 0. Thus {p(t —kT); k € Z} is an orthonormal
set. Conversely, assume that {p(t —kT); k € Z} is an orthonormal set. Then (6.20) has
the value 0 for integer k 7 0 and 1 for k = 0. Thus g(r) is ideal Nyquist and g(f)
satisfies the Nyquist criterion.

Given this orthonormal shift property for p(t), the PAM transmitted waveform
u(t) =Y, u,p(t — k7T) is simply an orthonormal expansion. Retrieving the coefficient
u, then corresponds to projecting u(f) onto the 1D subspace spanned by p(r — kT).
Note that this projection is accomplished by filtering u(r) by ¢(¢) and then sampling
at time kT. The filter g(r) is called the matched filter to p(r). These filters will be
discussed later when noise is introduced into the picture.

Note that we have restricted the pulse p(f) to have unit energy. There is no loss of
generality here, since the input signals {u,} can be scaled arbitrarily, and there is no
point in having an arbitrary scale factor in both places.

For |p(H)|* = 2(f), the actual bandwidth of p(f), 3(f), and 2(f) are the same, say
B,. Thus if B, < oo, we see that p() and g(r) can be realized only with infinite delay,
which means that both must be truncated. Since g(f) = p*(—1), they must be truncated
for both positive and negative . We assume that they are truncated at such a large
value of delay that the truncation error is negligible. Note that the delay generated by
both the transmitter and receiver filter (i.e. from the time that u, p(¢ — kT) starts to be
formed at the transmitter to the time when u, is sampled at the receiver) is twice the
duration of p(t).

6.3.3 Relation between PAM and ahalog source coding

The main emphasis in PAM modulation has been that of converting a sequence of
T-spaced signals into a waveform. Similarly, the first part of analog source coding
is often to convert a waveform into a T-spaced sequence of samples. The major
difference is that, with PAM modulation, we have control over the PAM pulse p(f)
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and thus some control over the class of waveforms. With source coding, we are stuck
with whatever class of waveforms describes the source of interest.

For both systems, the nominal bandwidth is W, = 1/27, and B, can be defined as the
actual baseband bandwidth of the waveforms. In the case of source coding, B, <W, is a
necessary condition for the sampling approximation }, u(kT) sinc(¢/T—k) to recreate
perfectly the waveform u(r). The aliasing theorem and the T-spaced sinc-weighted
sinusoid expansion were used to analyze the squared error if By > W,.

For PAM, on the other hand, the necessary condition for the PAM demodulator to
recreate the initial PAM sequence is B, > W,,. With B, > W,, aliasing can be used to
advantage, creating an aggregate pulse g(¢) that is ideal Nyquist. There is considerable
choice in such a pulse, and it is chosen by using contributions from both f < W,
and f> W,. Finally we saw that the transmission pulse p(f) for PAM can be chosen
so that its T-spaced shifts form an orthonormal set. The sinc functions have this
property; however, many other waveforms with slightly greater bandwidth have the
same property, but decay much faster with ¢.

6.4 Modulation: baseband to passband and back

The discussion of PAM in Sections 6.2 and 6.3 focussed on converting a T-spaced
sequence of real signals into a real waveform of bandwidth B, slightly larger than
the Nyquist bandwidth W, = 1/2T. This section focuses on converting that baseband
waveform into a passband waveform appropriate for the physical medium, regulatory
constraints, and avoiding other transmission bands. ‘

6.4.1 Double-sideband amplitude modulation

The objective of modulating a baseband PAM waveform u(t) to some high-frequency
passband around some carrier f, is simply to shift x(z) up in frequency to u(r)e? /',
Thus if 2(f) is zero except for —B, < f < By, then the shifted version would be zero
except for f,— By < f < f.+ B, This does not quite work since it results in a complex
waveform, whereas only real waveforms can actually be transmitted. Thus u(?) is also
multiplied by the complex conjugate of e?"/<!, i.e. e~27/e!, resulting in the following
passband waveform:

x(£) = u(t)[e*" ! + 72! ] = 2u(t) cos(27f. 1), 6.21)
xf)y=u(f—f)+a(f+ ). (6.22)

As illustrated in Figure 6.4, u(f) is both translated up in frequency by f, and also
translated down by f,. Since x(f) must be real, 2(f) = *(~f), and the negative
frequencies cannot be avoided. Note that the entire set of frequencies in [—By, B,]
is both translated up to [~B, +f,, B, + f.] and down to [-B, — f., B, — f.]. Thus
(assuming f, > B,) the range of nonzero frequencies occupied by x(?) is twice as large
as that occupied by u(z).
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Figure 64.  Frequency-domain representation of a baseband waveform u(r) shifted up to a passband
around the carrier f,. Note that the baseband bandwidth B, of u(r) has been doubled to the
passband bandwidth B = 2B, of x(¢).

In the communication field, the bandwidth of a system is universally defined as the
range of positive frequencies used in transmission. Since transmitted waveforms are
real, the negative frequency part of those waveforms is determined by the positive part
and is not counted. This is consistent with our earlier baseband usage, where B, is the
bandwidth of the baseband waveform u(¢) in Figure 6.4, and with our new usage for
passband waveforms, where B = 2B, is the bandwidth of X()).

The passband modulation scheme described by (6.21) is called double-sideband
amplitude modulation. The terminology comes not from the negative frequency band
around —f, and the positive band around f,, but rather from viewing (f, — By, f.+
B,] as two sidebands, the upper, [f., f.+ B,], coming from the positive frequency
components of u(r) and the lower, [f, — B,, f.] from its negative components. Since
u(?) is real, these two bands are redundant and either could be reconstructed from the
other. . )

Double-sideband modulation is quite wasteful of bandwidth since half of the band
is redundant. Redundancy is often useful for added protection against noise, but such
redundancy is usually better achieved through digital coding.

The simplest and most widely employed solution for using this wasted bandwidth!?
is quadrature amplitude modulation (QAM), which is described in Section 6.5. PAM at
passband is appropriately viewed as a special case of QAM, and thus the demodulation
of PAM from passband to baseband is discussed at the same time as the demodulation
of QAM.

6.5 Quadrature amplitude modulation (QAM)
QAM is very similar to PAM except that with QAM the baseband waveform u(r) is

chosen to be complex. The complex QAM waveform u(?) is then shifted up to passband

13 An alternative approach is single-sideband modulation. Here either the positive or negative sideband of
a double-sideband waveform is filtered out, thus reducing the transmitted bandwidth by a factor of 2. This
used to be quite popular for analog communication, but is harder to implement for digital communication
than QAM.
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as u(#)e?™/*, This waveform is complex and is converted into a real waveform for
transmission by adding its complex conjugate. The resulting real passband waveform -
is then given by

x(f) = u(t)e*™ ! 4 u* (£)e 2kt 6.23) .

Note that the passband waveform for PAM in (6.21) is a special case of this in which
u(t) is real. The passband waveform x(¢) in (6.23) can also be written in the following
equivalent ways: '

x(£) = 2R {u(t)e?™ '} (6.24)
=2R{u()} coswf.t) —23{u(r)} sin(=f,1). (6.25)

The factor of 2 in (6.24) and (6.25) is an arbitrary scale factor. Some authors leave
it out (thus requiring a factor of 1/2 in (6.23)) and others replace it by +/2 (requiring
a factor of 1/4/2 in (6.23)). This scale factor (however chosen) causes additional
confusion when we look at the energy in the waveforms. With the scaling here,
llx]i? = 2[ju]j2. Using the scale factor +/2 solves this problem, but introduces many
other problems, not least of which is an extraordinary number of +/2s in equations.
At one level, scaling is a trivial matter, but although the literature is inconsistent,
we have tried to be consistent here. One intuitive advantage of the convention here,
as illustrated in Figure 6.4, is that the positive frequency part of x(r) is simply u(s)
shifted up by f.. -

The remainder of this section provides a more detailed explanation of QAM, and
thus also of a number of issues about PAM. A QAM modulator (see Figure 6.5) has
the same three layers as a PAM modulator, i.e. first mapping a sequence of bits to
a sequence of complex signals, then mapping the complex sequence to a complex
baseband waveform, and finally mapping the complex baseband waveform to a real
-passband waveform. S .

The demodulator, not surprisingly, performs the inverse of these operations in
reverse order, first mapping the received bandpass waveform into a baseband wave-
form, then recovering the sequence of signals, and finally recovering the binary digits.
Each of these layers is discussed in turn.

binary |signai baseband baseband to
—_— —
input | encoder modulator passband

channel
binary |signal | |baseband | | passbandto | |
output |decoder demodulator baseband

Figure 6.5. QAM modulator and demodulator.
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6.5.1 QAM signal set

The input bit sequence arrives at a rate of Rbps and is converted, b bits at a time, into
a sequence of complex signals u, chosen from a signal set (alphabet, constellation)
A of size M =|.A| =2°. The signal rate is thus R, = R/b signals/s, and the signal
interval is T =1/R, = b/R. '

In the case of QAM, the transmitted signals u, are complex numbers u; € C, rather
than real numbers. Alternatively, we may think of each signal as a real 2-tuple in R2.

A standard (M’ x M')-QAM signal set, where M = (M')? is the Cartesian product
of two M'-PAM sets; i.e.,

A={(d +id") | d e A, d" € A'),

where
A ={-dM -1)/2,...,-d/2,d/2,...,d(M —1)/2}.

The signal set A thus consists of a square array of M = (M’)? = 2° signal points
located symmetrically about the origin, as illustrated for M = 16:

The minimum distance between the 2D points is denoted by d. The average energy
per 2D signal, which is denoted by E,, is simply twice the average energy per
dimension:

d*(M")?*-1] _ d}M-1]

6 6
In the case of QAM, there are clearly many ways to arrange the signal points other
than on a square grid as above. For example, in an M-PSK (phase-shift keyed) signal
set, the signal points consist of M equally spaced points on a circle centered on the
origin. Thus 4-PSK = 4-QAM. For large M it can be seen that the signal points
become very close to each other on a circle so that PSK is rarely used for large M.
On the other hand, PSK has some practical advantages because of the uniform signal
magnitudes.

As with PAM, the probability of decoding error is primarily a function of the
minimum distance d. Not surprisingly, E; is linear in the signal power of the passband
waveform. In wireless systems the signal power is limited both to conserve battery
power and to meet regulatory requirements. In wired systems, the power is limited
both to avoid crosstalk between adjacent wires and adjacent frequencies, and also to
avoid nonlinear effects.

E =
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For all of these reasons, it is desirable to choose signal constellations that approxi-
mately minimize E, for a given d and M. One simple result here is that a hexagonal
grid of signal points achieves smaller E; than a square grid for very large M and
fixed minimum distance. Unfortunately, finding the optimal signal set to minimize
E, for practical values of M is a messy and ugly problem, and the minima have few
interesting properties or symmetries (a possible exception is discussed in Exercise 6.3).

The standard (M’ x M’)-QAM signal set is almost universally used in practice and
will be assumed in what follows.

6.5.2 QAM baseband modulation and demodulation

A QAM baseband modulator is determined by the signal interval T and a complex £,
waveform p(r). The discrete-time sequence {u,} of complex signal points modulates
the amplitudes of a sequence of time shifts {p(t—&T)} of the basic pulse p(¢) to create
a complex transmitted signal u(z) as follows:

u() =Y up(t—kT). (6.26)
keZ

As in the PAM case, we could choose p(t) to be sinc(¢/T), but, for the same reasons
as before, p(¢) should decay with increasing |f] faster than the sinc function. This
means that p(f) should be a continuous function that goes to zero rapidly but not
instantaneously as f increases beyond 1/27T. As with PAM, we define W, = 1/2T to
be the nominal baseband bandwidth of the QAM modulator and B, to be the actual
design bandwidth.

Assume for the moment that the process of conversion to passband, channel trans-
mission, and conversion back to baseband, is ideal, recreating the baseband modulator
output u(#) at the input to the baseband demodulator. The baseband demodulator is
determined by the interval T (the same as at the modulator) and an £, waveform g(z).
The demodulator filters u(¢) by ¢(r) and samples the output at T-spaced sample times.
Denoting the filtered output by

)= [ u(a(t—ndr,

we see thaf the received samples are /(T), r(27), ... Note that this is the same as the
PAM demodulator except that real signals have been replaced by complex signals. As
before, the output r(r) can be represented as

r(t) = ;ukg(t_kny

where g(f) is the convolution of p(t) and ¢(r). As before, {kT) = u, if g(t) is ideal
Nyquist, namely if g(0) =1 and g(kT) = O for all nonzero integer k.

The proof of the Nyquist criterion, Theorem 6.3.1, is valid whether or not g(t) is
real. For the reasons explained earlier, however, 2(f) is usually real and symmetric (as
with the raised cosine functions), and this implies that g(¢) is also real and symmetric.
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Finally, as discussed with PAM, p(f) is usually chosen to satisfy |p(f)| =/ &(f)-
Choosing p(f) in this way does not specify the phase of p(f), and thus p(f) might
be real or complex. However p(f) is chosen, subject to |g(f)]* satisfying the Nyquist
criterion, the set of time shifts {p(+ —k7T)} form an orthonormal set of functions. With
this choice also, the baseband bandwidth of u(r), p(#), and g(¢) are all the same. Each
has a nominal baseband bandwidth given by 1/2T and each has an actual baseband
bandwidth that exceeds 1/2T by some small rolloff factor. As with PAM, p(#) and
q(#) must be truncated in time to allow finite delay. The resulting filters are then not
quite bandlimited, but this is viewed as a negligible implementation error.

In summary, QAM baseband modulation is virtually the same as PAM baseband
modulation. The signal set for QAM is of course complex, and the modulating pulse
p(?) can be complex, but the Nyquist results about avoiding intersymbol interference
are unchanged.

6.9.3 QAM: baseband to passband and back

Next we discuss modulating the complex QAM baseband waveform u(r) to the pass-
band waveform x(r). Alternative expressions for x(¢) are given by (6.23), (6.24), and
(6.25), and the frequency representation is illustrated in Figure 6.4.

As with PAM, u(r) has a nominal baseband bandwidth W, = 1/2T. The actual
baseband bandwidth B, exceeds W, by some small rolloff factor. The corresponding
passband waveform x(r) has a nominal passband bandwidth W =2W, = 1/T and an
actual passband bandwidth B = 2B,. We will assume in everything to follow that
B/2 < f.. Recall that u(f) and x(¢) are idealized approximations of the true baseband
and transmitted waveforms, These true baseband and transmitted waveforms must
have finite delay and thus infinite bandwidth, but it is assumed that the delay is
large enough that the approximation error is negligible. The assumption’* B/2 <
f. implies that u(¢)e*™<* is constrained to positive frequencies and u(f)e=27% to
negative frequencies. Thus the Fourier transform &(f — f.) does not overlap with
a(f +£o)-

As with PAM, the modulation from baseband to passband is viewed as a two—step
process. First u(#) is translated up in frequency by an amount f, resulting in a complex
passband waveform x* () = u(f)e?™/*. Next x*(#) is converted to the real passband
waveform x(f) =[x+ (£)]* +x*(2).

Assume for now that x(¢) is transmitted to the receiver with no noise and no delay.
In principle, the received x(r) can be modulated back down to baseband by the reverse
of the two steps used in going from baseband to passband. That is, x(¢f) must first
be converted back to the complex positive passband waveform x*(f), and then x* (1)
must be shifted down in frequency by f..

14 Exercise 6.11 shows that when this assumption is violated, u(f) cannot be perfectly retrieved from x(1),
even in the absence of noise. The negligible frequency components of the truncated version of u(r) outside
of B/2 are assumed to cause negligible error in demodulation.
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Figure 66.  Baseband to passband and back.

Mathematically, x*(f) can be retrieved from x(#) simply by filtering x(f) by a
complex filter A(z) such that iz(f) =0 for f <0 and A( f) =1 for f> 0. This filter is
called a Hilbert filter. Note that A(#) is not an .C, function, but it can be converted to £,
by making /(f) have the value 0 except in the positive passband [-B/2+ f., B/2+£.]
where it has the value 1. We can then easily retrieve u(¢) from x*(z) simply by a
frequency shift. Figure 6.6 illustrates the sequence of operations from u(t) to x(¢) and
back again.

6.5.4 Implementation of QAM

From an implementation standpoint, the baseband waveform u(f) is usually imple-
mented as two real waveforms, 9t{u(#)} and 3{u(r)}. These are then modulated up to
passband using multiplication by in-phase and out-of-phase carriers as in (6.25), i.e.

x(8) = 20{u(t)} cos(2mf 1) — 23{u(r)} sin(27f 1).

There are many other possible implementations, however, such as starting with u(z)
given as magnitude and phase. The positive frequency expression x*(f) = u(t)e?"/e!
is a complex multiplication of complex waveforms which requires four real multipli-
cations rather than the two above used to form x(¢) directly. Thus, going from u(z) to
x*(2) to x(r) provides insight but not ease of implementation.

The baseband waveforms R{u(#)} and I{u(r)} are easier to generate and visualize
if the modulating pulse p(?) is also real. From the discussion of the Nyquist criterion,
this is not a fundamental limitation, and there are few reasons for desiring a complex
p(2). For real p(z),

Ru(@)} = ;m{udp(t—kT).
u(n)} = Zk:%{uk}P(t~k7')-

Letting u) = R{u,} and u; = I{u,}, the transmitted passband waveform becomes

x(t) =2cos(27f.1) (E uyp(t— kT)) —2sin(27f.1) (Z uyp(t— kT)) . (6.27)
o k k
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Figure 6.7. DSB-QC modulation.

If the QAM signal set is a standard QAM set, then Y, u}p(t —kT) and 3", u; p(t —kT)
are parallel baseband PAM systems. They are modulated to passband using “double-
sideband” modulation by “quadrature carriers” cos(2#f.t) and —sin(27f.t). These
are then summed (with the usual factor of 2), as shown in Figure 6.7. This realization
of QAM is called double-sideband quadrature-carrier (DSB-QC) modulation.!

We have seen that u(f) can be recovered from x(f) by a Hilbert filter followed by
shifting down in frequency. A more easily implemented but equivalent procedure starts
by multiplying x(¢) both by cos(27f.t) and by —sin(27f,.t). Using the trigonometric
identities 2cos?(a) = 1+ cos(2a), 2sin(a@)cos(a) = sin(2a), and 2sin’(a) =1—
cos(2a), these terms can be written as follows:

x(t) cos2mf.t) = R{u(®)} +R{u(®)} cos(@nf.t) + {u(r)} sin(47f1), (6.28)
—x(2) sin(27f, 1) = 3{u(r)} — R{u@)} sin(d7f.1) + {u(®)} cos(dmf.1). (6.29)

To interpret this, note that multiplying by cos(27f.f) = 1/2e*7e! 4- 1/2e~2"/et both
shifts x(f) up'® and down in frequency by f£.. Thus the positive frequency part of x(z)
gives rise to a baseband term and a term around 2f,, and the negative frequency part
gives rise to a baseband term and a term at —2f,. Filtering out the double-frequency
terms then yields {u()}. The interpretation of the sine multiplication is similar.

As another interpretation, recall that x(¢) is real and consists of one band of fre-
quencies around f, and another around —f,. Note also that (6.28) and (6.29) are the
real and imaginary parts of x(f)e~2"/, which shifts the positive frequency part of x(t)
down to baseband and shifts the negative frequency part down to a band around —2f,.
In the Hilbert filter approach, the lower band is filtered out before the frequency shift,
and in the approach here it is filtered out after the frequency shift. Clearly the two are
equivalent.

!5 The terminology comes from analog modulation in which two real analog waveforms are modulated,
respectively, onto cosine and sine carriers. For analog modulation, it is customary to transmit an additional
component of carrier from which timing and phase can be recovered. As we see shortly, no such additional
carrier is necessary here.

16 This shift up in frequency is a little confusing, since x(f)e=2"e! = x(1) cos(2mf,t) — ix(1) sin(27f,1) is
only a shift down in frequency. What is happening is that x(t) cos(27£.1) is the real part of x(r)e~?"/e! and
thus needs positive frequency terms to balance the negative frequency terms.
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cos 2nf t
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qlt) sampler

Figure 6.8. DSB-QC demodulation.

It has been assumed throughout that f, is greater than the baseband bandwidth of
u(1). If this is not true, then, as shown in Exercise 6.11, u(¢) cannot be retrieved from
x(¢) by any approach.

Now assume that the baseband modulation filter p(f) is real and a standard QAM
signal set is used. Then R{u(r)} = X u;p(r —kT) and J{u(t)} = Y uyp(t —kT) are
parallel baseband PAM modulations. Assume also that a receiver filter 4(z) is chosen
so that g(f) = p(f)g(f) satisfies the Nyquist criterion and all the filters have the
common bandwidth By, < f.. Then, from (6.28), if x(t) cos(2wf.1) is filtered by q(¢),
it can be seen that g(r) will filter out the component around 2f.. The output from the
remaining component R {u(¢)} can then be sampled to retrieve the real signal sequence
uy, u5, ... This, plus the corresponding analysis of —x(?) sin(2#f,1), is illustrated in
the DSB-QC receiver in Figure 6.8. Note that the use of the filter g(f) eliminates the
need for either filtering out the double-frequency terms or using a Hilbert filter.

The above description of demodulation ignores the noise. As explained in Section
6.3.2, however, if p(¢) is chosen so that {p(¢ — kT); k € Z} is an orthonormal set (i.e.
so that |p(f)|? satisfies the Nyquist criterion), then the receiver filter should satisfy
q(t) = p(—1). It will be shown later that in the presence of white Gaussian noise, this
is the optimal thing to do (in a sense to be described later).

6.6 Signal space and degrees of freedom

Using PAM, real signals can be generated at T-spaced intervals and transmitted in a
baseband bandwidth arbitrarily little more than W, = 1/2T. Thus, over an asymptoti-
cally long interval T, and in a baseband bandwidth ‘asymptotically close to W,, 2W, T,
real signals can be transmitted using PAM.

Using QAM, complex signals can be generated at T-spaced intervals and trans-
mitted in a passband bandwidth arbitrarily little more than W = 1/T. Thus, over an
asymptotically long interval T, and in a passband bandwidth asymptotically close to
W, WT, complex signals, and thus 2WTj real signals, can be transmitted using QAM.

The above dcscription'descﬂbes PAM at baseband and QAM at passband. To
achieve a better companson of the two, consider an overall large baseband bandwidth
W, broken into m passbands each of bandmdth Wy/m. Using QAM in each band,
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we can asymptotically transmit 2W, Ty, real signals in a long interval T,. With PAM
used over the entire band W, we again asymptotically send 2W,T; real signals in
a duration T,. We see that, in principle, QAM and baseband PAM with the same
overall bandwidth are equivalent in terms of the number of degrees of freedom that
can be used to transmit real signals. As pointed out earlier, however, PAM when
modulated up to passband uses only half the available degrees of freedom. Also, QAM
offers considerably more flexibility since it can be used over an arbitrary selection of
frequency bands.

Recall that when we were looking at T-spaced truncated sinusoids and T-spaced
sinc-weighted sinusoids, we argued that the class of real waveforms occupying a time
interval (—T,/2, T,/2) and a frequency interval (—W,, W,) has about 2T, W, degrees
of freedom for large W, T,. What we see now is that baseband PAM and passband
QAM each employ about 2TyW, degrees of freedom. In other words, these simple
techniques essentially use all the degrees of freedom available in the given bands.

The use of Nyquist theory here has added to our understanding of waveforms that
are “essentially” time-and frequency-limited. That is, we can start with a family of
functions that are bandlimited within a rolloff factor and then look at asymptotically
small rolloffs. The discussion of noise in Chapters 7 and 8 will provide a still better
understanding of degrees of freedom subject to essential time and frequency limits.

6.6.1 Distance and orthogonality

Previous sections have shown how to modulate a complex QAM baseband waveform
u(t) up to a real passband waveform x(¢) and how to retrieve u(f) from x(t) at the
receiver. They have also discussed signal constellations that minimize energy for given
minimum distance. Finally, the use of a modulation waveform p(f) with orthonormal
shifts has connected the energy difference between two baseband signal waveforms,
say u(f) =Y u,p(t—k7T) and v(t) = ¥, v, p(t — k1), and the energy difference in the
signal points by '

e = vl =3 | — vy .
k

Now consider this energy difference at passband. The energy |x{|? in the passband
waveform x(f) is twice that in the corresponding baseband waveform u(r). Next
suppose that x(r) and y(¢) are the passband waveforms arising from the baseband
waveforms u(f) and v(t), respectively. Then

x(8) = y(1) = 2R{u()e?™/'} ~ 2R {u()e? ™'} = 2R{[u(r) — v(r) ]}
Thus x(¢) — y(¢) is the passband waveform corresponding to u(f) — v(t), so
ll(2) = YOI = 2fju(r) = v(D) .

This says that, for QAM and PAM, distances between waveforms are preserved (aside
from the scale factor of 2 in energy or +/2 in distance) in going from baseband
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to passband. Thus distances are preserved in going from signals to baseband wave-
forms to passband waveforms and back. We will see later that the error probability
caused by noise is essentially determined by the distances between the set of passband
source waveforms. This error probability is then simply related to the choice of signal
constellation and the discrete coding that precedes the mapping of data into signals.

This preservation of distance through the modulation to passband and back is a
crucial aspect of the signal-space viewpoint of digital communication. It provides a
practical focus to viewing waveforms at baseband and passband as elements of related
L, inner product spaces.

There is unfortunately a mathematical problem in this very nice story. The set
of baseband waveforms forms a complex inner product space, whereas the set of
passband waveforms constitutes a real inner product space. The transformation x(¢) =
R{u(r)e*™ %} is not linear, since, for example, iu(f) does not map into ix(z) for
u(t) # 0. In fact, the notion of a linear transformation does not make much sense,
since the transformation goes from complex £, to real £, and the scalars are different
in the two spaces.

Example 6.6.1 As an important example, suppose the QAM modulation pulse is a
real waveform p(f) with orthonormal T-spaced shifts. The set of complex baseband
waveforms spanned by the orthonormal set {p(z — kT); k € Z} has the form ¥, u, p(t—
kT), where each u, is complex. As in (6.27), this is transformed at passband to

Y up(t — k1) — Y20t} p(t —KT) cos(2f.t) =2 Y S{ug}p(t — kD) sin(2f, ).
k k k

Each baseband function p(t — k7) is modulated to the passband waveform 2p(t —
kT)cos(2mf_1). The set of functions {p(t — kT) cos(27f.1); k € Z} is not enough to
span the space of modulated waveforms, however. It is necessary to add the additional
set {p(¢t — kT)sin(2mf.t); k € Z}. As shown in Exercise 6.15, this combined set of
waveforms is an orthogonal set, each with energy 2.

Another way to look at this example is to observe that modulating the baseband
function u(z) into the positive passband function x* (f) = u(t)e?*"'' is somewhat eas-
ier to understand in that the orthonormal set {p(t —kT); k € Z} is modulated to the
orthonormal set {p(¢ — kT)e*™/<*; k € Z}, which can be seen to span the space of com-
plex positive frequency passband source waveforms. The additional set of orthonormal
waveforms {p(t—kT)e 2"f!; k € Z} is then needed to span the real passband source
waveforms. We then see that the sine/cosine series is simply another way to express
this. In the sine/cosine formulation all the coefficients in the series are real, whereas in
the complex exponential formulation there is a real and complex coefficient for each
term, but they are pairwise-dependent. It will be easier to understand the effects of
noise in the sine/cosine formulation.

In the above example, we have seen that each orthonormal function at baseband
gives rise to two real- orthonormal functions at passband. It can be seen from a
degrees-of-freedom argument that this is inevitable no matter what set of orthonormal
functions are used at baseband. For a nominal passband bandwidth W, there are 2W
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real degrees of freedom per second in the baseband complex source waveform, which
means there are two real degrees of freedom for each orthonormal baseband waveform.
At passband, we have the same 2W degrees of freedom per second, but with a real
orthonormal expansion, there is only one real degree of freedom for each orthonormal
waveform. Thus there must be two passband real orthonormal waveforms for each
baseband complex orthonormal waveform.

The sine/cosine expansion above generalizes in a nice way to an arbitrary set of
complex orthonormal baseband functions. Each complex function in this baseband set
generates two real functions in an orthogonal passband set. This is expressed precisely
in the following theorem, which is proven in Exercise 6.16.

Theorem 6.6.1 Let {6,(2) : k € Z} be an orthonormal set limited to the frequency
band [-B/2, B/2). Let f. be greater than B/2, and for each k € Z let

Y () =R {20k(t)32ﬁ‘f"} s
- Pr2(1) =3 {—26,(1)e*™ '} .

The set {, ;s k € Z, j € {1,2]}} is an orthogonal set of functions, each with energy 2.
Furthermore, if u(t) = 3", u,0,(t), then the corresponding passband function x(t) =
2R{u(r)e*™ '} is given by

x(t) = ;m{uk} Y1 (0) + 3} 4 2 (8).

This provides a very general way to map any orthonormal set at baseband into a
related orthonormal set at passband, with two real orthonormal functions at passband
corresponding to each orthonormal function at baseband. It is not limited to any
particular type of modulation, and thus will allow us to make general statements about
signal space at baseband and passband. -

6.7 Carrier and phase recovery in QAM systems

Consider a QAM receiver and visualize the passband-to-baseband conversion as multi-
plying the positive frequency passband by the complex sinusoid e~27%*, If the receiver
has a phase error ¢(z) in its estimate of the phase of the transmitted carrier, then it will
instead multiply the incoming waveform by e=2"/c"+i¢()_ We assume in this analysis
that the time reference at the receiver is perfectly known, so that the sampling of
the filtered output is carried out at the correct time. Thus the assumption is that the
oscillator at the receiver is not quite in phase with the oscillator at the transmitter.
Note that the carrier frequency is usually orders of magnitude higher than the baseband
bandwidth, and thus a small error in timing is significant in terms of carrier phase
but not in terms of sampling. The carrier phase error will rotate the correct complex
baseband signal u(f) by ¢(r); i.e. the actual received baseband signal r(z) will be

r(t) = ef“”u(t).
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[ ] ' o e

Figure 69.  Rotation of constellation points by phase error.

If ¢() is slowly time-varying relative to the response g(r) of the receiver filter, then
the samples {r(kT)} of the filter output will be given by :

r(kn ~ ew(kn Uy,

as illustrated in Figure 6.9. The phase error ¢(¢) is said to come through coherently.
This phase coherence makes carrier recovery easy in QAM systems.

As can be seen from Figure 6.9, if the phase error is small enough, and the set
of points in the constellation are well enough separated, then the phase error can be
simply corrected by moving to the closest signal pomt and adjustmg the phase of the
demodulating carrier accordingly.

There are two complicating factors here. The first is that we havc not taken noise
into account yet. When the received signal y(z) is x(r) + n(z), then the output of the
T-spaced sampler is not the original signals {1}, but, rather, a noise-corrupted version
of them. The second problem is that if a large phase error ever occurs, it cannot be
corrected. For example, in Figure 6.9, if ‘¢(t) = /2, then, even in the absence of
noise, the received samples always line up with 51gnals from the constellatlon (but of
course not the transmitted signals).

6.7.1 Tracking phase in the presencje of noise

The problem of deciding on or detecting the signals {1} from the received samples
{r(kT)} in the presence of noise is a major topic of Chapter 8. Here, however, we
have the added complicatibn of both detecting the transmitted signals and tracking and
eliminating the phase error.

Fortunately, the problem of decision making and that of phase tracking are largely
separable. The oscillators used to generate the modulating and demodulating carriers
are relatively stable and have phases which change quite slowly relative to each other.
Thus the phase error with any kind of reasonable tracking will be quite small, and thus
the data signals can be detected from the received samples almost as if the phase error
were zero. The difference between the received sample and the detected data signal
will still be nonzero, mostly due to noise but partly due to phase error. However, the
noise has zero mean (as we understand later) and thus tends to average out over many
sample times. Thus the general approach is to make decisions on the data signals as
if the phase error were zero, and then to make slow changes to the phase based on
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averaging over many sample times. This approach is called decision-directed carrier
recovery. Note that if we track the phase as phase errors occur, we are also tracking
the carrier, in both frequency and phase.

In a decision-directed scheme, assume that the received sample r(k7) is used to
make a decision d, on the transmitted signal point u,. Also assume that d, =, with
very high probability. The apparent phase error for the kth sample is then the difference
between the phase of r(kT) and the phase of d;. Any method for feeding back the
apparent phase error to the generator of the sinusoid e=27//+¢() in such a way as to
reduce the apparent phase error slowly will tend to produce a robust carrier-recovery
system.

In one popular method, the feedback signal is taken as the imaginary part of (kT)dj.
If the phase angle from d, to r(kT) is ¢,, then

r(kT)d; = |r(kT)||d,|e'*,

so the imaginary part is |r(kT)|]d,]| sin ¢, = |r(kT)||dkl¢k, when ¢, is small. Decision-
directed carrier recovery based on such a feedback signal can be extremely robust even
in the presence of substantial distortion and large initial phase errors, With a second-
order phase-locked carrier-recovery loop, it turns out that the carrier frequency f, can
be recovered as well.

6.7.2 Large phase errors

A problem with decision-directed carrier recovery, as with many other approaches, is
that the recovered phase may settle into any value for which the received eye pattern
(i.e. the pattern of a long string of received samples as viewed on a scope) “looks
OK.” With (M x M)-QAM signal sets, as in Figure 6.9, the signal set has four-fold
symmetry, and phase errors of 90°, 180°, or 270° are not detectable. Simple differential
coding methods that transmit the “phase” (quadrantal) part of the signal information as
a change of phase from the previous signal rather than as an absolute phase can easily
overcome this problem. Another approach is to resynchronize the system frequently
by sending some known pattern of signals. This latter approach is frequently used in
wireless systems, where fading sometimes causes a loss of phase synchronization.

6.8 Summary of modulation and demodulation

This chapter has used the signal space developed in Chapters 4 and 5 to study the
mapping of binary input sequences at a modulator into the waveforms to be transmitted
over the channel. Figure 6.1 summarized this process, mapping bits to signals, then
signals to baseband waveforms, and then baseband waveforms to passband waveforms.
The demodulator goes through the inverse process, going from passband waveforms

- to baseband waveforms, to signals, to bits. This breaks the modulation process into
three layers that can be studied more or less independently.
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6.9

The development used PAM and QAM throughout, both as widely used systems
and as convenient ways to bring out the principles that can be applied more widely.

The mapping from binary digits to signals segments the incoming binary sequence
into b-tuples of bits and then maps the set of M = 2% n-tuples into a constellation
of M signal points in R™ or C™ for some convenient m. Since the m components of
these signal points are going to be used as coefficients in an orthogonal expansion
to generate the waveforms, the objectives are to choose a signal constellation with
small average energy but with a large distance between each pair of points. PAM is
an example where the signal space is R!, and QAM is an example where the signal
space is C. For both of these, the standard mapping is the same as the representation
points of a uniform quantizer. These are not quite optimal in terms of minimizing the
average energy for a given minimum point spacing, but they are almost universally
used because of the near optimality and the simplicity.

The mapping of signals into baseband waveforms for PAM chooses a fixed wave-
form p(rf) and modulates the sequence of signals u;,u,,... into the baseband
waveform }°;u;p(t — jT). One of the objectives in choosing p(t) is to be able to
retrieve the sequence u;, u,,... from the received waveform. This involves an out-
put filter g(¢) which is sampled each T seconds to retrieve u,, u,, ... The Nyquist
criterion was derived, specifying the properties that the product 2(f) = p()3(f) must
satisfy to avoid intersymbol interference. The objective in choosing g(f) is a trade-off
between the closeness of g(f) to Trect(fT) and the time duration of g(t), subject
to satisfying the Nyquist criterion. The raised cosine functions are widely used as a
good compromise between these dual objectives: For a given real 2(f), the choice of
P(f) usually satisfies 2(f) = |p(H)}?, and in this case {p(t —kT); k € Z} is a set of
orthonormal functions.

Most of the remainder of the chapter discussed modulation from baseband to pass-
band. This is an elementary topic in manipulating Fourier transforms, and need not be
summarized here.

Exercises

6.1 (PAM) Consider standard M-PAM and assume that the signals are used with
equal probability. Show that the average energy per signal E, = U? is equal to
the average energy U? = d2M?/12 of a uniform continuous distribution over
the interval [~dM/2, dM/2], minus the average energy (U — U,)2 =d*/12 of a
uniform continuous distribution over the interval [-d/2, d/2]:

. dz(Mz_l)
- Es = T

This establishes (6.4). Verify the formula for M =4 and M =38.
6.2 (PAM) A discrete memoryless source emits binary equiprobable symbols at a
rate of 1000 symbols/s. The symbols from a 1s interval are grouped into pairs
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and sent over a bandlimited channel using a standard 4-PAM signal set. The
modulation uses a signal interval 0.002 and a pulse p(f) = sinc(¢/T).)

(a) Suppose that a sample sequence uy, . . . , Usg of transmitted signals includes
115 appearances of 3d/2, 130 appearances of d/2, 120 appearances of
—d/2, and 135 appearances of —3d/2. Find the energy in the corresponding
transmitted waveform u(r) = Y3, u; sinc(t/T — k) as a function of d.

(b) What is the bandwidth of the waveform u(z) in part (a)?

(c) Find E[fU?(f)dt], where U(f) is the random waveform given by

20 Uy sinc(t/T —k).

(d) Now suppose that the binary source is not memoryless, but is instead

generated by a Markov chain, where

Assume the Markov chain starts in steady state with Pr(X; =1) =1/2,
Using the mapping (00 — a;), (01 = a,), (10 = a,), (11 — a,), find E[U?]
for 1 <k <500.

(¢) Find E[f U?(#) dt] for this new source.

(f) For the above Markov chain, explain how the above mapping could be
changed to reduce the expected energy without changing the separation
between signal points.

6.3 (a) Assume that the received signal in a 4-PAM system is V, = U, +Z,, where -
U, is the transmitted 4-PAM signal at time k. Let Z, be independent of
U, and Gaussian with density f,(z) = +/T/27 exp(—z?/2). Assume that the
receiver chooses the signal U, closest to V,. (It is shown in Chapter 8 that this
detection rule minimizes P, for equiprobable signals.) Find the probability
P, (in terms of Gaussian integrals) that U, # U,.

(b) Evaluate the partial derivitive of P, with respect to the third signal point a,
(i.e. the positive inner signal point) at the point where a; is equal to its value
d/2 in standard 4-PAM and all other signal points are kept at their 4-PAM
values. [Hint. This does not require any calculation.]

(c) Evaluate the partial derivitive of the signal energy E, with respect to a,.

(d) Argue from this that the signal constellation with minimum-error probability
for four equiprobable signal points is not 4-PAM, but rather a constellation,
where the distance between the inner points is smaller than the distance from
inner point to outer point on either side. (This is quite surprising intuitively
to the author.) '

6.4 (Nyquist) Suppose that the PAM modulated baseband waveform u(f) =
Y ot ¥y p(t — kT) is received. That is, u(z) is known, T is known, and p(¢) is
known. We want to determine the signals {u,} from u(f). Assume only linear
operations can be used. That is, we wish to find some waveform d,(¢) for each
integer k such that [* u(f)d,(f)dt = u,.
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(2) What properites must be satisfied by d,(¢) such that the above equation is sat-
isfied no matter what values are taken by the other signals, ..., u_,, u;_;,
Ugi1s Ugyas - - - 7 These properties should take the form of constraints on
the inner products {p(t—kT), d;(r)). Do not worry about convergence,
interchange of limits, etc.

(b) Suppose you find a function d,(¢) that satisfies these constraints for k = 0.
Show that, for each k, a function d,(z) satisfying these constraints can be
found simply in terms of dy(¢).

(c) What is the relationship between d;(r) and a function ¢(#) that avoids inter-
symbol interference in the approach taken in Section 6.3 (i.e. a function g(t)
such that p(f) x ¢(z) is ideal Nyquist)?

You have shown that the filter/sample approach in Section 6.3 is no less general
than the arbitrary linear operation approach here. Note that, in the absence of
noise and with a known signal constellation, it might be possible to retrieve the
signals from the waveform using nonlinear operations even in the presence of
intersymbol interference.

6.5 (Nyquist) Let v(r) be a continuous £, waveform with v(0) =1 and define
g(1t) = v(s) sinc(¢/T).
. (a) Show that g(¢) is ideal Nyquist with interval T.
(b) Find g(f) as a function of B(J).
(c) Give a direct demonstration that () satisfies the Nyquist criterion.
(d) If v(?) is baseband-limited to B,, what is g(¢) baseband-limited to?

Note: the usual form of the Nyquist criterion helps in choosing waveforms that
avoid intersymbol interference with prescribed rolloff properties in frequency.
The approach above show how to avoid intersymbol interference with prescribed
attenuation in time and in frequency. '

6.6 (Nyquist) Consider a PAM baseband system in which the modulator is defined
by a signal interval T and a waveform p(r), the channel is defined by a filter
h(t), and the receiver is defined by a filter g(f) which is sampled at T-spaced
intervals. The received waveform, after the receiver filter g(t), is then given by
() = X, u,8(t — kT), where g(1) = p(t) x h(f) xq(£).

(a) What property must g(z) have so that r(kT) == u, for all k and for all choices
of input {u,}? What is the Nyquist criterion for (f)?
(b) Now assume that T = 1/2 and that p(t), h(t), g(t) and all their Fourier
transforms are restricted to be real. Assume further that p(f) and A(f) are
specified by Figure 6.10, i.e. by

1 Ifisos;. A (1) Lfisffﬁ;q’
p(N=4{15-: 0S5 <]|fl<Ls; h(f) = ’ =
0 Al > 15 1 1<|f] =125

S ! 0 |f] > 1.25.
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Figure 6.10.

Is it possible to choose a receiver filter transform g(f) so that there is no
intersymbol interference? If so, give such a §(f) and indicate the regions in
which your solution is nonunique.

(c) Redo part (b) with the modification that now h(f) =1 for |f] <0.75 and

() =0 for |f] > 0.75.

(d) Explain the conditions on i)(f)ix(f) under which intersymbol interference
can be avoided by proper choice of (f). (You may assume, as above, that
p(, (), p(r), and h(z) are all real.)

6.7 (Nyquist) Recall that the rect(¢/7) function has the very special property that
it, plus its time and frequency shifts by kT and j/T, respectively, form an
orthogonal set of functions. The function sinc(#/T) has this same property. This
problem is about some other functions that are generalizations of rect(s/7) and
which, as you will show in parts (a)-(d), have this same interesting property. For
simplicity, choose T = 1. ‘

These functions take only the values 0 and 1 and are allowed to be nonzero
only over [~1, 1] rather than [~1/2, 1/2] as with rect(z). Explicitly, the functions
considered here satisfy the following constraints:

p(t) = pX(2) for all ¢ (0/1 property); (6.30)
p(r) =0 for |t > 1; (6.31)
p() = p(—1) for all ¢+ (symmetry); (6.32)
p(t) =1—-p(-1) for0<tr<1/2. . (6.33)

Two examples of functions P(f) satisfying (6.30)~(6.33) are illustrated in
Figure 6.11. Note: because of property (6.32), condition (6.33) also holds for
1/2 <t < 1. Note also that p(¢) at the single points ¢ = £1/2 does not affect any
orthogonality properties, so you are free to ignore these points in your arguments.
(a) Show that p(z) is orthogonal to p(¢ —1). [Hint. Evaluate p(r)p(¢—1) for
each ¢ € [0, 1] other than ¢t = 1/2.]
|

' 1
rect(t) ﬂ
£ ! 1 1 ]

-172 12 -1 =12 0 12 1

Figure 6.11. Two simple functions p(r) that satisfy (6.30)-(6.33).

Constellation Exhibit 2004, Page 112 of 229



6.9 Exercises 213

(b) Show that p(t) is orthogonal to p(t—k) for all integer k # 0.

(c) Show that p(¢) is orthogonal to p(¢t—k)e?*™" for integer m %0 and k # 0.

(d) Show that p(?) is orthogonal to p(f)e?™™ for integer m # 0. [Hint. Evaluate
p(t)e—21riml +p(t— l)e—2ﬂ'im(l—l).]

(e) Let h(t) = p(t), where p(f) is the Fourier transform of p(z). If p(¢) satisfies
properties (6.30) to (6.33), does it follow that k() has the property that it is
orthogonal to h(t —k)e*™™ whenever either the integer k or m is nonzero?

Note: almost no calculation is required in this exercise.
6.8 (Nyquist)

(a) For the special case a@ =1, T = 1, verify the formula in (6.18) for g,(s)
given 2,(f) in (6.17). [Hint. As an intermediate step, verify that g () =
sinc(2¢) 4 (1/2) sinc(2¢ + 1) 4 (1/2) sinc(2t — 1).] Sketch g, (¢), in particular
showing its value at mT/2 for each m > 0.

(b) For the general case 0 < @ < 1, T =1, show that g,() is the convolution of
rect (f) with a half cycle of Bcos(wf/a) and find B.

(c) Verify (6.18) for 0 < @ < 1, T =1, and then verify for arbitrary 7> 0.

6.9 (Approximate Nyquist) This exercise shows that approximations to the Nyquist
criterion must be treated with great care. Define g,(f), for integer k> 0 as in
Figure 6.12 for k = 2. For arbitrary k, there are k& small pulses on each side of
the main pulse, each of height 1/k.

(a) Show that g,(f) satisfies the Nyquist criterion for T =1 and for each k > 1.

(b) Show that Lim.,__ £,(f) is simply the central pulse above. That is, this £,
limit satisfies the Nyquist criterion for T = 1/2. To put it another way, g,(f),
for large k, satisfies the Nyquist criterion for T = 1 using “approximately”
the bandwidth 1/4 rather than the necessary bandwidth 1/2. The problem is”
that the £, notion of approximation (done carefully here as a limit in the
mean of a sequence of approximations) is not always appropriate, and it is
often inappropriate with sampling issues.
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Figure 6.12.

6.10 (Nyquist)

(2) Assume that p(f) = ¢*(f) and g(f) = p(Nq(f). Show that if p(s) is real,
then g(f) = g(—f) for all f. ,

(b) Under the samet;as‘sumptions, find an example where p(f) is not real but
8(f) # g(—f) and g(f) satisifes the Nyquist criterion. [Hint. Show that
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214 Channels, modulation, and demodulation

2(f) =1for0 < f <1 and g(f) = 0 elsewhere satisfies the Nyquist criterion
for T =1 and find the comresponding p(?).]

6.11 (Passband)

(a) Let u,(r) =exp(2mif,t) for k = 1,2 and let x,(r) = 2R{u, (¢) exp(27if, 1)}.
Assume f, > —f,. and find the f, # f; such that x,(#) = x,(2).

(b) Explain that what you have done is to show that, without the assumption that
the bandwidth of u(r) is less than £, it is impossible to always retrieve u(r)
from x(t), even in the absence of noise.

(c) Let y(¢) be areal £, function. Show that the result in part (a) remains valid
if u, (€) = y(t) exp(2mif,t) (i.e. show that the result in part (a) is valid with
a restriction to .G, functions).

(d) Show that if u(?) is restricted to be real, then u(t) can be retrieved a.e. from
x(8) = 2R{u(t) exp(2wif.t)}. [Hint. Express x(¢) in terms of cos(27f,1).]

(e) Show that if the bandwidth of u(r) exceeds f,, then neither Figure 6.6 nor
Figure 6.8 work correctly, even when u(z) is real.

6.12 (QAM)

(a) Let 6,(r) and 6,(r) be orthonormal complex waveforms. Let ¢;(f) =
0;(t)e*™%' for j=1,2. Show that ¢,(f) and ¢,(r) are orthonormal for
any f.

(b) Suppose that 8,(t) =6, (t—T). Show that ¢,(t) = ¢, (¢t —T) if £, is an integer
multiple of 1/T. o '

6.13 (QAM)

(a) Assume B/2 < f_. Let u(f) be a real function and let v(¢) be an imagi-
nary function, both baseband-limited to B/2. Show that the corresponding
passband functions, R{u(f)e?"/'} and R{v(r)e?/<’}, are orthogonal.

(b) Give an example where the functions in part (a) are not orthogonal if B/2> f..

6.14 (a) Derive (6.28) and (6.29) using trigonometric identities.
(b) View the left side of (6.28) and (6.29) as the real and imaginary part, respec-
tively, of x(f)e~2"/!, Rederive (6.28) and (6.29) using complex exponentials.
(Note how much easier this is than part (a).)
6.15 (Passband expansions) Assume that {p(¢t - kT) : k€Z} is a set of orthonormal
functions. Assume that p(f) =0 for |f] = f.).

(a) Show that {~/2p(t — kT) cos(27f,t); keZ} is an orthonormal set.
(b) Show that {~/2p(t — kT)sin(27f.t); keZ)} is an orthonormal set and that
each function in it is orthonormal to the cosine set in part (a).

6.16 (Passband expansions) Prove Theorem 6.6.1. [Hint. First show that the set of
functions {121,‘_, (N} and {tll}k‘z(f)} are orthogonal with energy 2 by comparing the
integral over negative frequencies with that over positive frequencies.] Indicate
explicitly why you need f, > B/2.
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6.17 (Phase and envelope modulation) This exercise shows that any real passband
waveform can be viewed as a combination of phase and amplitude modulation.
Let x(r) be an £, real passband waveform of bandwidth B around a carrier
frequency f, > B/2. Let x*(t) be the positive frequency part of x(¢) and let
u(t) = x*(f) exp{—2mif.t}.

(a) Express x(t) in terms of R{u(r)}, I{u(9)}, cos[27f,1], and sin[27f,1].

(b) Define ¢(7) implicitly by e® = u(z) /|u(z)|. Show that x(¢) can be expressed
as x(f) = 2|u(r)] cos[27f .t + ¢(1)]. Draw a sketch illustrating that 2|u(t)| is
a baseband waveform upperbounding x(¢) and touching x(t) roughly once
per cycle. Either by sketch or words illustrate that ¢(¢) is a phase modulation
on the carrier.

(c) Define the envelope of a passband waveform x(f) as twice the magnitude of
its positive frequency part, i.e. as 2|x*(r)|. Without changing the waveform
x(1) (or x*(2)) from that before, change the carrier frequency from f, to some
other frequency f. Thus u'(f) = x*(¢) exp{—2if!t}. Show that |x*(7)] =
|u(?)] = [/ (2)|. Note that you have shown that the envelope does not depend
on the assumed carrier frequency, but has the interpretation of part (b).

(d) Show the relationship of the phase ¢'(t) for the carrier f! to that for the
carrier f.

(e) Let p(r) = |x(9)|? be the power in x(#). Show that if p(¢) is lowpass filtered
to bandwidth B, the result is 2|u(¢)|?. Interpret this filtering as a short term
average over |x(f)}? to interpret why the envelope squared is twice the short
term average power (and thus why the envelope is «/- 2 times the short term
root-mean-squared amplitude). '

6.18 (Carrierless amplitude-phase modulation (CAP)) We have seen how to modulate
a baseband QAM waveform up to passband and then demodulate it by shifting
down to baseband, followed by filtering and sampling. This exercise explores
the interesting concept of eliminating the baseband operations by modulating and
demodulating directly at passband. This approach is used in one of the North
American standards for asymmetrical digital subscriber loop (ADSL).

(a) Let {4} be a complex data sequence and let u(f) = Y, u,p(t — kT) be
the corresponding modulated output. Let p(f) be equal to VT over fe€
[3/2T, 5/27] and be equal to O elsewhere. At the receiver, u(f) is filtered
using p(r) and the output y(z) is then T-space sampled at time instants k7.
Show that y(kT) = u, for all k € Z. Don’t worry about the fact that the
transmitted waveform u(t) is complex.

(b) Now suppose that p(f) = /T rect(T(f — £.)] for some arbitrary f, rather
than f, =2/T as in part (a). For what values of f, does the scheme still
work? , '

(c) Suppose that R{u(r)} is now sent over a communication channel. Suppose
that the received wavéform is filtered by a Hilbert filter before going through
the demodulation procedure above. Does the scheme still work?
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71 Introduction

Chapter 6 discussed modulation and demodulation, but replaced any detailed discussion
of the noise by the assumption that a minimal separation is required between each pair
of signal points. This chapter develops the underlying principles needed to understand
noise, and Chapter 8 shows how to use these principles in detecting signals in the
presence of noise.

Noise is usually the fundamental limitation for communication over physical chan-
nels. This can be seen intuitively by accepting for the moment that different possible
transmitted waveforms must have a difference of some minimum energy to overcome
the noise. This difference reflects back to a required distance between signal points,
which, along with a transmitted power constraint, limits the number of bits per signal
that can be transmitted.

The transmission rate in bits per second is then limited by the product of the number
of bits per signal times the number of signals per second, i.e. the number of degrees
of freedom per second that signals can occupy. This intuitive view is substantially
correct, but must be understood at a deeper level, which will come from a probabilistic
model of the noise.

This chapter and the next will adopt the assumption that the channel output waveform
has the form y(#) = x(¢) + z(t), where x(t) is the channel input and z(¢) is the noise.
The channel input x(¢) depends on the random choice of binary source digits, and thus
x(2) has to be viewed as a particular selection out of an ensemble of possible channel
inputs. Similarly, z(#) is a particular selection out of an ensemble of possible noise
waveforms.

The assumption that y(7) = x(t) + z(¢) implies that the channel attenuation is known
and removed by scaling the received signal and noise. It also implies that the input
is not filtered or distorted by the channel. Finally it implies that the delay and carrier
phase between input and output are known and removed at the receiver.

The noise should be modeled probabilistically. This is partly because the noise is
a priori unknown, but can be expected to behave in statistically predictable ways. It is
also because encoders and decoders are designed to operate successfully on a variety
of different channels, all of which are subject to different noise waveforms. The noise
is usually modeled as zero mean, since a mean can be trivially removed.
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7.2 Random processes 217

7.2

Modeling the waveforms x(7) and z(t) probabilistically will take considerable care.
If x(r) and z(r) were defined only at discrete values of time, such as {t =kT; k € Z},
then they could be modeled as sample values of sequences of random variables
(rvs). These sequences of rvs could then be denoted by X(f) = {X(kT); k € Z} and
Z(f) = {Z(kT); k € Z}. The case of interest here, however, is where x(z) and z(¢) are
defined over the continuum of values of ¢, and thus a continuum of rvs is required. Such
a probabilistic model is known as a random process or, synonymously, a stochastic
process. These models behave somewhat similarly to random sequences, but they
behave differently in a myriad of small but important ways.

Random processes

A random process {Z(t); t € R} is a collection' of rvs, one for each ¢t € R. The
parameter ¢ usually models time, and any given instant in time is often referred to as
an epoch. Thus there is one rv for each epoch. Sometimes the range of ¢ is restricted
to some finite interval, [a, b], and then the process is denoted by {Z(¢); t € [a, b]}.

There must be an underlying sample space {} over which these rvs are defined.
That is, for each epoch ¢t € R (or ¢ € [a, b]), the rv Z(?) is a function {Z(t, w); we}
mapping sample points w € { to real numbers.

A given sample point @ € () within the underlying sample space determines the

- sample values of Z(¢) for each epoch . The collection of all these sample values for a

given sample point w, i.e. {Z(¢t, ®); t € R}, is called a sample function {z(f): R — R}
of the process. )

Thus Z(t, w) can be viewed as a function of w for fixed ¢, in which case it is the rv
Z(1), or it can be viewed as a function of ¢ for fixed w, in which case it is the sample
function {z(¢): R > R} = {Z(r, ); t € R} corresponding to the given w. Viewed as

‘a function of both ¢ and w, {Z(t, w); t € R, w € 1} is the random process itself; the

sample point  is usually suppressed, leading to the notation {Z(t); ¢ € R}

Suppose a random process {Z(#); t € R} models the channel noise and
{z(¥) : R ~> R} is a sample function of this process. At first this seems inconsistent
with the traditional elementary view that a random process or set of random variables
models an experimental situation a priori (before performing the experiment) and the
sample function models the result a posteriori (after performing the experiment). The
trouble here is that the experiment might run from ¢ = —oo to ¢t = o0, 50 there can be
no “before” for the experiment and “after” for the result.

There are two ways out of this perceived inconsistency. First, the notion of “before
and after” in the elementaxy view is inessential; the only important thing is the view

! Since a random variable is a2 mapping from © to R, the sample values of a rv are real and thus the
sample functions of a random process are real. It is often important to define objects called complex random
variables that map ) to C. One can then define a complex random process as a process that maps each
t € R into a complex rv. These complex random processes will be important in studymg noise waveforms
at baseband.

Constellation Exhibit 2004, Page 117 of 229



218 Random processes and noise

that a multiplicity of sample functions might occur, but only one actually does. This
point of view is appropriate in designing a cellular telephone for manufacture. Each
individual phone that is sold experiences its own noise waveform, but the device must
be manufactured to work over the multiplicity of such waveforms.

Second, whether we view a function of time as going from —oo to +oo or going from
some large negative to large positive time is a matter of mathematical convenience.
We often model waveforms as persisting from —oo to o0, but this simply indicates
a situation in which the starting time and ending time are sufficiently distant to be
irrelevant. - ,

In order to specify a random process {Z(z); t € R}, some kind of rule is required
from which joint distribution functions can, at least in principle, be calculated. That is,
for all positive integers n, and all choices of n epochs #, 1;, . . . , 1, it must be possible
(in principle) to find the joint distribution function,

Fzennz)@1s oo+ 524) = Pr{Z(t) <zp,...,2(t,) < 2,) _(7-1)

for all choices of the réal numbers z;,. .., Z,. Equivalently, if densities exist, it must
be possible (in principle) to find the joint density,

a"FZ(I.) ..... Z(r,,)(ZJ. versZp)
9z, +-- 0z,

[ Z(t)e--s Z(:,,)(le ceesZ,) = ’ (7.2)
for all real z,,. .., z,. Since n can be arbitrarily large in (7.1) and (7.2), it might seem
difficult for a simple rule to specify all these quantities, but a number of simple rules
are given in the following examples that specify all these quantities.

7.2.1 Examples of random processes

The following generic example will turn out to be both useful and quite general. We saw
earlier that we could specify waveforms by the sequence of coefficients in an orthonor-
mal expansion. In the following example, a random process is similarly specified by
a sequence of random variables used as coefficients in an orthonormal expansion.

Example 7.2.1 Let Z,,Z,,... be a sequence of random variables (rvs) defined on
some sample space ) and let {¢,(1)}, {$,(},... be a sequence of orthogonal (or
orthonormal) real functions. For each 7 € R, let the rv Z(f) be defined as Z(t) =
Y1 Z;$,(1). The corresponding random process is then {Z(t); r € R}. For each ¢,
Z(t) is simply a sum of rvs, so we could, in principle, find its distribution function.
Similarly, for each n-tuple #,...,1, of epochs, Z(t,), ..., Z(t,) is an n-tuple of rvs
whose joint distribution could be found in principle. Since Z(¢) is a countably infinite
sum of rvs, 377, Z, ¢, (1), there might be some mathematical intricacies in finding, or
even defining, its distribution function. Fortunately, as will be seen, such intricacies
do not arise in the processes of most interest here.

It is clear that random processes can be defined as in the above example, but it is
less clear that this will provide a mechanism for constructing reasonable models of
actual physical noise processes. For the case of Gaussian processes, which will be
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defined shortly, this class of models will be shown to be broad enough to provide a
flexible set of noise models.
The following few examples specialize the above example in various ways.

Example 7.2.2 Consider binary PAM, but view the input signals as independent
identically distributed (iid) rvs Uy, U,, . . . which take on the values %1 with probability
1/2 each. Assume that the modulation pulse is sinc(#/T) so the baseband random
process is given by -

uin=> U, sinc(t —;T) .
k

At each sampling epoch kT, the rv U(kT) is simply the binary rv U,. At epochs
between the sampling epochs, however, U(?) is a countably infinite sum of binary rvs
whose variance will later be shown to be 1, but whose distribution function is quite
ugly and not of great interest. '

Example 7.2.3 A random variable is said to be zero-mean Gaussian if it has the
probability density

1 —n?
f2(2) = Worr em(%) , (7.3)

where o2 is the variance of Z. A common model for a noise process {Z(t); t € R}
arises by letting

t—kT
Z() =) Z,si . 74
0] Zk: ksmc( T ) » (74)

where ...,Z_,,Zy,Z;,... is a sequence of iid zero-mean Gaussian rvs of vari-
ance 0. At each sampling epoch kT, the rv Z(kT) is the zero-mean Gaussian rv Z;.
At epochs between the sampling epochs, Z(1) is a countably infinite sum of inde-
pendent zero-mean Gaussian rvs, which turns out to be itself zero-mean Gaussian of
variance o2, Section 7.3 considers sums of Gaussian rvs and their interrelations in
detail. The sample functions of this random process are simply sinc expansions and
are limited to the baseband [—1/2T, 1/2T]. This example, as well as Example 7.2.2,
brings out the following mathematical issue: the expected energy in {Z(1); t € R}
turns out to be infinite. As discussed later, this energy can be made finite either by
truncating Z(f) to some finite interval much larger than any time of interest or by
similarly truncating the sequence {Z;; k € Z}.

Another slightly disturbing aspect of this example is that this process cannot be
“generated” by a sequence of Gaussian rvs entering a generating device that multiplies
them by T-spaced sinc functions and adds them. The problem is the same as the
problem with sinc functions in Chapter 6: they extend forever, and thus the process
cannot be generated with finite delay. This is not of concern here, since we are not
trying to generate random processes, only to show that interesting processes can be
defined. The approach here will be to define and analyze a wide variety of random
processes, and then to see which are useful in modeling physical noise processes.

Example 7.2.4 Let {Z(r); te[—1, 1]} be defined by Z(f) = ¢Z for all ¢ € [-1, 1],
where Z is a zero-mean Gaussian rv of variance 1. This example shows that random
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processes can be very degenerate; a sample function of this process is fully specified
by the sample value z(r) at t = 1. The sample functions are simply straight lines
through the origin with random slope. This illustrates that the sample functions of a
random process do not necessarily “look™ random.

722 The mean and covariance of a random process

Often the first thing of interest about a random process is the mean at each epoch
t and the covariance between any two epochs ¢ and 7. The mean, E[Z(1)] = Z(¥), is
simply a real-valued function of ¢, and can be found directly from the distribution
function Fy)(z) or density fz,(z). It can be verified that Z(f) is O for all ¢ for
Examples 7.2.2, 7.2.3, and 7.2.4. For Example 7.2.1, the mean cannot be specified
without specifying more about the random sequence and the orthogonal functions.

The covariance? is a real-valued function of the epochs ¢ and 7. It is denoted by
Kz(t, 7) and defined by

Kz(t, ) =E[(2() —Z(0)) (2(7) = Z(D))]. - (1.5)

This can be calculated (in principle) from the joint distribution function Fy) 5,2y, 2)
or from the density f7) 7(r(21s 22)- To make the covariance function look a little
simpler, we usually split each random variable Z(¢) into its mean, Z(f), and its
fluctuation, Z(f) = Z(t) — Z(f). The covariance function is then given by

K,(t, 7) =E [E(:)Z(T)] : (7.6)

The random processes of most interest to us are used to model noise waveforms
and usually have zero mean, in which case Z(f) = Z(¢). In other cases, it often aids
intuition to separate the process into its mean (which is simply an ordinary function)
and its fluctuation, which by definition has zero mean.

The covariance function for the generic random process in Example 7.2.1 can be
written as follows: '

Kz(r,7)=E [Zk: Ze (DX Znbm (T)] - (1.7)

If we assume that the rvs Z;,Z,, ... are iid with variance o2, then E[Z,Z,,] =0 for
all k # m and E[Z,Z,] = 0? for k = m. Thus, ignoring convergence questions, (7.7)
simplifies to

Kz(t, 1) = 02 3 i ()b (7)- (78
k

2 This is often called the autocovariance to distinguish it from the covariance between two processes; we
will not need to refer to this latter type of covariance.
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For the sampling expansion, where ¢, (f) = sinc(¢/T — k), it can be shown (see (7.48))
that the sum in (7.8) is simply sinc[(¢ — 7)/T]. Thus for Examples 7.2.2 and 7.2.3, the
covariance is given by

Kz(t,7) = azsinc(t;T)

where o2 =1 for the binary PAM case of Example 7.2.2. Note that this covariance
depends only on ¢ — 7 and not on the relationship between ¢ or 7 and the sampling
points kT. These sampling processes are considered in more detail later.

7.2.3 Additive noise channels

The communication channels of greatest interest to us are known as additive noise
channels. Both the channel input and the noise are modeled as random processes,
{X(0); t € R} and {Z(r); t € R}, both on the same underlying sample space . The
channel output is another random process, {¥(¢); ¢ € R} and Y(¢) = X(¢) + Z(¢). This
means that, for each epoch ¢, the random variable ¥{z) is equal to X(7) -+ Z (7).

Note that one could always define the noise on a channel as the difference Y(r) — X(r)
between output and input. The notion of additive noise inherently also includes
the assumption that the processes {X(1); t € R} and {Z(¢); ¢ € R} are statistically
independent.?

As discussed earlier, the additive noise model ¥(f) = X(#) + Z(7) implicitly assumes
that the channel attenuation, propagation delay, and carrier frequency and phase are
perfectly known and compensated for. It also assumes that the input waveform is not
changed by any disturbances other than the noise Z(r).

Additive noise is most frequently modeled as a Gaussian process, as discussed in
Section 7.3. Even when the noise is not modeled as Gaussian, it is often modeled as
some modification of a Gaussian process. Many rules of thumb in engineering and
statistics about noise are stated without any mention of Gaussian processes, but often
are valid only for Gaussian processes.

7.3 Gaussian random variables, vectors, and processes

This section first defines Gaussian random variables (rvs), then jointly Gaussian ran-
dom vectors (rvs), and finally Gaussian random processes. The covariance function
and joint density function for Gaussian rvs are then derived. Finally, several equivalent
conditions for rvs to be jointly Gaussian are derived.

A v W is a normalized Gaussian v, or more briefly a normal* rv, if it has the

probability density
£ = o= ep( )
w) = —=¢exp| — ).
v V2w 2
3 More specifically, this means that, for all & > 0, all epochs t;,. .., and all epochs 7y,...,7; the rvs

X(1)), ..., X(1;) are statistically independent of Z(7,), ..., Z(7,).
4 Some people use normal v as a synonym for Gaussian rv.
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This density is symmetric around 0, and thus the mean of W is 0. The variance
is 1, which is probably familiar from elementary probability and is demonstrated in
Exercise 7.1. A random variable Z is a Gaussian rv if it is a scaled and shifted version
of a normal rv, i.e. if Z = oW +Z for a normal rv W. It can be seen that Z is the
mean of Z and ¢ is the variance.’ The density of Z (for o2 > 0) is given by

1 —(z—~2)?
= g5 ).

A Gaussian rv Z of mean Z and variance o2 is denoted by Z ~ N(Z, 02). The
Gaussian rvs used to represent noise almost invariably have zero mean. Such rvs have
the density f;(z) = (1/+/2m0?) exp(—z2/20?), and are denoted by Z ~ N (0, o).

Zero-mean Gaussian rvs are important in modeling noise and other random
phenomena for the following reasons:

(1.9)

e they serve as good approximations to the sum of many independent zero-mean rvs
(recall the central limit theorem);

o they have a number of extremal properties — as discussed later, they are, in several
senses, the most random rvs for a given variance;

e they are easy to manipulate analytically, given a few simple properties;

¢ they serve as representative channel noise models, which provide insight about more
complex models.

Definition 7.3.1 A set of n random variables Z,,...,Z, is zero-mean jointly
Gaussian if there is a set of iid normal rvs Wy, ..., W, such that each Z,, 1 <k <n,
can be expressed as

[4
Zi=) ay Wi 1<k<n, (7.10)

where {a,,; 1<k<n,1<m=<{} is an array of real numbers. More generally,
Zi,..., 2, are jointly Gaussian if Z} = Z, + Z;, where the set Z,,...,Z, is
zero-mean jointly Gaussian and Z,. .., Z, is a set of real numbers.

n

It is convenient notationally to refer to a set of n random variables Z;,...,Z, as
a random vector® (v) Z =(Z,,...,Z,)". Letting A be the n by £ real matrix with
elements {a;,,; 1 <k<n,1<m=<¢£}, (7.10) can then be represented more compactly
as

Z=AW, , (7.11)

where W is an £-tuple of iid normal rvs. Sumlarly, the jointly Gaussian random vector
Z’ can be represented as Z' = =AZ+Z, where Z' is an n-vector of real numbers.

3 It is convenient to define Z to be Gaussian even in the deterministic case where o =0, but then (7.9) is
invalid.

§ The class of random vectors for a given n over a given sample space satisfies the axioms of a vector
space, but here the vector notation is used simply as a notational convenience.
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In the remainder of this chapter, all random variables, random vectors, and random
processes are assumed to be zero-mean unless explicitly designated otherwise. In other
words, only the fluctuations are analyzed, with the means added at the end.”

It is shown in Exercise 7.2 that any sum )_,, a;,, W,, of iid normal rvs W;,..., W,
is a Gaussian rv, so that each Z, in (7.10) is Gaussian. Jointly Gaussian means much
more than this, however. The random variables Z,,. .., Z, must also be related as
linear combinations of the same set of iid normal variables. Exercises 7.3 and 7.4
illustrate some examples of pairs of random variables which are individually Gaussian
but not jointly Gaussian, These examples are slightly artificial, but illustrate clearly
that the joint density of jointly Gaussian rvs is much more constrained than the possible
joint densities arising from constraining marginal distributions to be Gaussian.

The definition of jointly Gaussian looks a little contrived at first, but is in fact
very natural. Gaussian rvs often make excellent models for physical noise processes
because noise is often the summation of many small effects. The central limit theorem
is a mathematically precise way of saying that the sum of a very large number of
independent small zero-mean random variables is approximately zero-mean Gaussian.
Even when different sums are statistically dependent on each other, they are different
linear combinations of a common set of independent small random variables. Thhs, the
jointly Gaussian assumption is closely linked to the assumption that the noise is the sum
of a large number of small, essentially independent, random disturbances. Assuming
that the underlying variables are Gaussian simply makes the model analytically clean
and tractable.

An important property of any jointly Gaussian n-dimensional rv Z is the following:
for any real m by n real matrix B, the rv ¥ =BZ is also jointly Gaussian. To see this,
let Z =AW, where W is a normal rv. Then

Y =BZ =B(AW) = (BA)W. (7.12)

Since BA is a real matrix, Y is jointly Gaussian. A useful application of this property
arises when A is diagonal, so Z has arbitrary independent Gaussian components. This
implies that Y = BZ is jointly Gaussian whenever a rv Z has independent Gaussian
components,

Another important application is where B'is a 1 by n matrix and Y is a ran-
dom variable. Thus every linear combination Y ;_, b,Z; of a jointly Gaussian rv
Z=(Z,,...,Z,)" is Gaussian. It will be shown later in this section that this is an if
and only if property; that is, if every linear combination of a rv Z is Gaussian, then Z
is jointly Gaussian.

We now have the machjnery to define zero-mean Gaussian processes.

Definition 7.3.2 {Z(t);“t“é R} is a zero-mean Gaussian process if, for all posi-
tive integers n and all finite sets of epochs t,,...,1,, the set of random variables
Z(t;), ..., Z(t,) is a (zero-mean) jointly Gaussian set of random variables.

7 When studying estimation and conditional probabilities, means become an integral part of many arguments,
but these arguments will not be central here.
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If the covariance, K;(t, 7) = E[Z(t)Z(7)], is known for each pair of epochs ¢, 7,
then, for any finite set of epochs ¢#,,...,1t,, E[Z(t,)Z(z,)] is known for each pair
(t,, t,,) in that set. Sections 7.3.1 and 7.3.2 will show that the joint probability density
for any such set of (zero-mean) jointly Gaussian rvs depends only on the covariances
of those variables. This will show that a zero-mean Gaussian process is specified by
its covariance function. A nonzero-mean Gaussian process is similarly specified by its
covariance function and its mean. '

7.3.1 The covariance matrix of a jointly Gaussian random vector

Let an n-tuple of (zero-mean) rvs Zy, . .., Z, berepresented asarvZ = (Z,,. .., Z,)".
As defined earlier, Z is jointly Gaussian if Z = AW, where W = (W,, W,, ..., W,)7 is
a vector of iid normal rvs and A is an n by £ real matrix. Each rv Z,, and all linear
combinations of Z,, ..., Z,, are Gaussian.

The covariance of two (zero-mean) rvs Z,, Z, is E[Z,Z,]. ForarvZ = (Z,,...Z,)
the covariance between all pairs of random variables is very conveniently represented
by the n by n covariance matrix

K, = E[ZZ"].

Appendix 7.11.1 develops a number of properties of covariance matrices (including
the fact that they are identical to the class of nonnegative definite matrices). For a
vector W = W,,..., W, of independent normalized Gaussian rvs, E[W;W,,] =0 for
Jj# m and 1 for j = m. Thus

Kw = E[WWT] = Il’

where |, is the £ by £ identity matrix. For a zero-mean jointly Gaussian vector Z =AW,
the covariance matrix is thus given by

K, = E[AWW'AT] = AE[WW']A" = AA. (7.13)

7.3.2 The pfobability density of a jointly Gaussian random vector

The probability density, f;(z), of atv Z=(Z,,2Z,,...,2,)" is the joint probability
density of the components Z,, ..., Z,. An important example is the iid rv W, where
the components W,, 1 < k < n, are iid and normal, W, ~ N(0, 1). By taking the
product of the n densities of the individual rvs, the density of W = (W,, W,, ..., W,)'
is given by

fw(w) =

(Pt il

(2;)n/2 2 ")=(27:)",2 exp( 5 ) (1.14)
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This shows that the density of W at a sample value w depends only on the squared
distance ||w||*> of the sample value from the origin. That is, fi(w) is spherically
symmetric around the origin, and points of equal probability density lie on concentric
spheres around the origin.

" Consider the transformation Z = AW, where Z and W each have n components and
Ais n by n. If we let a,,a,,...,a, be the n columns of A, then this means that
Z=3%,a,W,. That is, for any sample values w,,...,w, for W, the corresponding
sample value for Z is z =Y, a,,w,,. Similarly, if we let b,, ... ,b, be the rows of A,
then Z, =5, W. :

. Let B; be a'cube, 8 on a side, of the sample values of W defined by B; = {fw:0<
w, < 8; 1 <k < n) (see Figure 7.1). The set Bj of vectors z=Aw for w € B; is a
parallelepiped whose sides are the vectors da;, . . ., 6a,. The determinant, det(A), of
A has the remarkable geometric property that its magnitude, |det(A), is equal to the
volume of the parallelepiped with sides a;; 1 <k < n. Thus the unit cube B, with
volume 6", is mapped by A into a parallelepiped of volume |detA|".

Assume that the columns a,, . . . , @, of A are linearly independent. This means that
the columns must form a basis for R”, and thus that every vector z is some linear
combination of these columns, i.e. that z = Aw for some vector w. The matrix A must
then be invertible, i.e. there is a matrix A~! such that AA™' =A"'A= l,, where |, is
the n by n identity matrix. The matrix A maps the unit vectors of R" into the vectors
a,,...,a, and the matrix A~' maps a,, ... ,a, back into the unit vectors.

. If the columns of A are not linearly independent, i.e. A is not invertible, then A maps
the unit cube in R” into a subspace of dimension less than n. In terms of Figure 7.1,
the unit cube would be mapped into a straight line segment. The area, in 2D space,
of a straight line segment is 0, and more generally the volume in n-space of any
lower-dimensional set of points is 0. In terms of the determinant, detA =0 for any
noninvertible matrix A. _

Assuming again that A is invertible, let z be a sample value of Z and let w = A™'z
be the corresponding sample value of W. Consider the incremental cube w+ B,
cornered at w. For 6 very small, the probability P;(w) that W lies in this cube is
fw(w)d" plus terms that go to zero faster than 6" as 6 — 0. This cube around w
maps into a parallelepiped of volume 8| det(A)] around z, and no other sample value
of W maps into this parallelepiped. Thus Ps(w) is also equal to f;(z)5"|det(A)]

wy 22

6 6a 1 682
§ w 0 Z;

Figure 7.1, Example illustrating how Z = AW maps cubes into parallelepipeds. Let Z;, = —W, +2W, and
‘ Z, = W, + W,. The figure shows the set of sample pairs z;, 2, corresponding to 0 S w,; <6
and 0 < w, < 8. It also shows a translation of the same cube mapping into a translation of the
same parallelepiped.
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plus negligible terms. Going to the limit § — 0, we have

fe@de@®i=m P2 _ ). 1.19)
Since w = A~'z, we obtain the explicit formula
_ fw(A7'2)
f2() = Tae - (7.16)

This formula is valid for any random vector W with a density, but we are interested in
the vector W of iid Gaussian rvs, N (0, 1). Substituting (7.14) into (7.16), we obtain

- 1 —fA”'z1?)
@)= (2m)"2| det(A))| CXP( > ) ) (7.17)

= G P27 A 19

We can simplify this somewhat by recalling from (7.13) that the covariance matrix
of Z is given by K; = AA". Thus, K;' = (A™')"A~'. Substituting this into (7.18) and
noting that det(K;) = | det(A)|?, we obtain

@=L _ L
: fz(Z)—(ZW)"/2 NI cxp( 7K z). (7.19)

Note that this probability density depends only on the covariance matrix of Z and not
directly on the matrix A. '

The density in (7.19) does rely, however, on A being nonsingular. If A is singular,
then at least one of its rows is a linear combination of the other rows, and thus, for
some m, 1 <m <n, Z, is a linear combination of the other Z,. The random vector
Z is still jointly Gaussian, but the joint probability density does not exist (unless one
wishes to view the density of Z,, as a unit impulse at a point specified by the sample
values of the other variables). It is possible to write out the distribution function for this
case, using step functions for the dependent rvs, but it is not worth the notational mess.
It is more straightforward to face the problem and find the density of a maximal set of
linearly independent rvs, and specify the others as deterministic linear combinations.

It is important to understand that there is a large difference between rvs being
statistically dependent and linearly dependent. If they are linearly dependent, then
one or more are deterministic functions of the others, whereas statistical dependence
simply implies a probabilistic relationship.

These results are summarized in the following theorem.

Theorem 7.3.1 (Density for jointly Gaussian rvs) Let Z be a (zero-mean) jointly
Gaussian rv with a nonsingular covariance matrix K. Then the probability density
f2(2) is given by (7.19). If K is singular, then J2(2) does not exist, but the density in
(7.19) can be applied to any set of linearly independent rvs out of Z,, ..., Z,.
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For a zero-mean Gaussian process Z(#), the covariance function K,(z, 7) specifies
E(Z(1,)Z(t,,)] for arbitrary epochs #, and t,, and thus specifies the covariance matrix
for any finite set of epochs ¢, ..., f,. From Theorem was 7.3.1, this also specifies
the joint probability distribution for that set of epochs. Thus the covariance function
specifies all joint probability distributions for all finite sets of epochs, and thus specifies
the process in the sense® of Section 7.2. In summary, we have the following important
theorem. '

Theorem 7.3.2 (Gaussian process) A zero-mean Gaussian process is specified by
its covariance function K(t, 7).

733 Special case of a 2D zero-mean Gaussian random vector

The probability density in (7.19) is now written out in detail for the 2D case. Let
E[Z}] = o{, E[Z}] = 03, and E[Z,Z,] = k,,. Thus

[ 5],

K2 0y
Let p be the normalized covariance p = k;,/(0y03). Then det(K;) = o?0? ~ k%, =
o703} (1—p?). Note that p must satisfy |p| < 1 with strict inequality if K, is nonsingular:

K1 = 1 [‘722 —Ku]: 1 [ 1/a} —P/(Ula'z)].
1

z = 12 2
010} —kh L=k of -pL—p/(010r) 103 ’

f2(2)= > >

(—2%022'*‘22122"12"230'12)
)

2(0'120'22 - K%z)

_ =(21/91)* +2p(2,/ 0, )(22/03) = (22/ 0)?

1
B 270,05/ 1 —p? exp( 2(1-p?) ) - (0.20)

Curves of equal probability density in the plane correspond to points where the argu-
ment of the exponential function in (7.20) is constant. This argument is quadratic, and
thus points of equal probability density form an ellipse centered on the origin. The
ellipses corresponding to different values of probability density are concentric, with
larger ellipses corresponding to smaller densities.

If the normalized covariance p is 0, the axes of the ellipse are the horizontal and
vertical axes of the plane; if oy = 0, the ellipse reduces to a circle; and otherwise
the ellipse is elongated in the direction of the larger standard deviation. If p > 0,
the density in the first and third quadrants is increased at the expense of the second

8 As will be discussed later, focusing on the pointwise behavior of a random process at all finite sets
of epochs has some of the same problems as specifying a function pointwise rather than in terms of
£L,-equivalence. This can be ignored for the present.
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and fourth, and thus the ellipses are elongated in the first and third quadrants. This is
reversed, of course, for p < 0.

The main point to be leamed from this example, however, is that the detailed
expression for two dimensions in (7.20) is messy. The messiness gets far worse in
higher dimensions. Vector notation is almost essential. One should reason directly
from the vector equations and use standard computer programs for calculations.

734 Z = AW, where A is orthogonal

An n by n real matrix A for which AA" =I,, is called an orthogonal matrix or orthonor-
mal matrix (orthonormal is more appropriate, but orthogonal is more common). For
Z =AW, where W is iid normal and A is orthogonal, K; = AAT =1I,. Thus K;' =1,
also, and (7.19) becomes

_exp(—(1/2)2'z) = exp(—z2/2)
@)= 2mm? T 27 (721

This means that A transforms W into a random vector Z with the same probability
density, and thus the components of Z are still normal and iid. To understand this
better, note that AA" =1, means that A" is the inverse of A and thus that ATA =1,.
Letting a,, be the mth column of A, the equation A'A =, means that al g ; =34, for
each m, j, 1<m, j<n, i.e, that the columns of A are orthonormal. Thus, for the 2D
example, the unit vectors e;, e, are mapped into orthonormal vectors a,,a,, so that
the transformation simply rotates the points in the plane. Although it is difficult to
visualize such a transformation in higher-dimensional space, it is still called a rotation,
and has the property that |[Aw|[? = w'A'Aw, which is just w'w = ||w]|[2. Thus, each
point w maps into a point Aw at the same distance from the origin as itself.

Not only are the columns of an orthogonal matrix orthonormal, but also the rows, say
{by; 1 < k < n} are orthonormal (as is seen directly from AAT =1,). Since Z, =b,W,
this means that, for any set of orthonormal vectors b,,...,b,, the random variables
Z, =b,W are normal and iid for 1 <k <n. :

7.3.5 Probability density for Gaussian vectors in terms of principal axes

This section describes what is often a more convenient representation for the probability
density of an n-dimensional (zero-mean) Gaussian rv Z with a nonsingular covariance
matrix K;. As shown in Appendix 7.11.1, the matrix K; has n real orthonormal eigen-
vectors, ¢, . ..,q, with corresponding nonnegative (but not necessarily distinct®)
real eigenvalues, A, ..., A,. Also, for any vector z, it is shown that zTK;'z can be

9 If an eigenvalue A has multiplicity m, it means that there is an m-dimensional subspace of vectors g
satisfying Kz¢ = Aq; in this case, any orthonormal set of m such vectors can be chosen as the m eigenvectors
corresponding to that eigenvalue.

Constellation Exhibit 2004, Page 128 of 229



7.3 Gaussian rvs, vectors, and processes _ 229

expressed as Y, A;'|(z, g;)}%. Substituting this in (7.19), we have

f20) = —F— (7.22)

1 _y el |z, g)
(27r)"/2\/det(Kz) T 2\
Note that (z,q,) is the projection of z in the direction q,, where q, is the kth of n
orthonormal directions. The determinant of an n by n real matrix can be expressed in
terms of the n eigenvalues (see Appendix 7.11.1) as det(K;) = [T;_, A;. Thus (7.22)

becomes K e
. —1\Z Gk
fZ(Z)_kr:[] \/ZTT)l—k exP( 2)lk ).

This is the product of n Gaussian densities. It can be interpreted as saying that
the Gaussian rvs {(Z,q,); 1 < k < n} are statistically independent with variances
{Ae; 1 <k < n}. In other words, if we represent the rv Z using q,, ..., g, as a basis,
then the components of Z in that coordinate system are independent random variables.
The orthonormal eigenvectors are called principal axes for Z.

This result can be viewed in terms of the contours of equal probability density for
Z (see Figure 7.2). Each such contour satisfies

(7.23)

[(z. ¢:)
=X

where ¢ is proportional to the log probability density for that contour. This is the
equation of an ellipsoid centered on the origin, where g, is the kth axis of the ellipsoid
and /2cA, is the length of that axis.

The probability density formulas in (7.19) and (7.23) suggest that, for every covari-
ance matrix K, there is a jointly Gaussian rv that has that covariance, and thus has
that probability density. This is in fact true, but to verify it we must demonstrate that
for every covariance matrix K there is a matrix A (and thus a rv Z = AW) such that
K =AA". There are many such matrices for any given K, but a particularly convenient
one is given in (7.84). As a function of the eigenvectors and eigenvalues of K, it is
A=Y, JA—quq{. Thus, for every nonsingular covariance matrix K, there is a jointly
Gaussian rv whose density satisfies (7.19) and (7.23).

VX, \//Vm

92 0

e

Figure 7.2, Contours of equal probability density. Points z on the ¢, axis are points for which (z,g,) =0
and points on the g, axis satisfy (z,¢,) =0. Points on the illustrated ellipse satisfy z'K;'z = 1.
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7.3.6 Fourier transforms for joint densities

As suggested in Exercise 7.2, Fourier transforms of probability densities are useful for
finding the probability density of sums of independent random variables. More gen-
erally, for an n-dimensional rv Z, we can define the n-dimensional Fourier transform
of fz(z) as follows:

76) = [+ [ f@ exp(-2misT) 4z, -6z, =Efexp(-2mis'2)]. . (124)

If Z is jointly Gaussian, this is easy to calculate. For any given s #0, let X =s'Z =
> 5:Z,. Thus X is Gaussian with variance E[s'ZZ"s] = s'K,s. From Exercise 7.2,

207
7,(6) = E[exp(—27i65'Z)] = exp (-(ZL;KZS) . (7.25)
Comparing (7.25) for 8 = 1 with (7.24), we see that
. 27)25 K s
f2(5) = CXP(—-———( )2 z ) : (7.26)

The above derivation also demonstrates that f‘z (s) is determined by the Fourier trans-
form of each linear combination of the elements of Z. In other words, if an arbitrary
rv Z has covariance K; and has the property that all linear combinations of Z are
Gaussian, then the Fourier transform of its density is given by (7.26). Thus, assuming
that the Fourier transform of the density uniquely specifies the density, Z must be
jointly Gaussian if all linear combinations of Z are Gaussian.

A number of equivalent conditions have now been derived under which a (zero-
mean) random vector Z is jointly Gaussian. In summary, each of the following are
necessary and sufficient conditions for a rv Z with a nonsingular covariance K to be
jointly Gaussian:

e Z =AW, where the components of W are iid normal and K, = AA;
¢ Z has the joint probability density given in (7.19);

o Z has the joint probability density given in (7.23);

¢ all linear combinations of Z are Gaussian random variables.

For the case where K, is singular, the above conditions are necessary and sufficient
for any linearly independent subset of the components of Z.

This section has considered only zero-mean random variables, vectors, and pro-
cesses. The results here apply directly to the fluctuation of arbitrary random variables,
vectors, and processes. In particular, the probability density for a jointly Gaussian rv
Z with a nonsingular covariance matrix K; and mean vector Z is given by

(@)= —% z~2)K;'(z - Z)) . (7.27)

1
2", /det(Kz) exp(
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74

Linear functionals and filters for random processes

This section defines the important concept of linear functionals of arbitrary random
processes {Z(¢); t € R} and then specializes to Gaussian random processes, where the
results of the Section 7.3 can be used. Assume that the sample functions Z(t, @) of
Z(1) are real £, waveforms. These sample functions can be viewed as vectors in the
L, space of real waveforms. For any given real £, waveform g(¢), there is an inner
product,

(2t 00,800 = [ 22, )30

By the Schwarz inequality, the magnitude of this inner product in the space of real £,
functions is upperbounded by || Z(z, w)|{||g(?)|| and is thus a finite real value for each
w. This then maps sample points w into real numbers and is thus a random variable,'°
denoted by V = [~ Z(t)g(r)dz. This rv V is called a linear functional of the process
{Z(1); 1 e R}.

As an example of the importance of linear functionals, recall that the demodulator
for both PAM and QAM contains a filter ¢(¢) followed by a sampler. The output of
the filter at a sampling time kT for an input u(f) is [ u(f)g(kT — t)dz. If the filter
input also contains additive noise Z(t), then the output at time kT also contains the
linear functional [ Z(f)q(kT —r)dr.

Similarly, for any random process {Z(z); t € R} (again assuming £, sample func-
tions) and any real £, function h(r), consider the result of passing Z(¢) through the
filter with impulse response h(t). For any £, sample function Z(t, w), the filter output
at any given time 7 is the inner product

(2(t, @), hr =) = [ " Z(¢, w)h(r—)dr.

For each real 7, this maps sample points @ into real numbers, and thus (aside from
measure-theoretic issues)

V(7) = / Z()h(r —1)dt (7.28)

is a rv for each 7. This means that {V(7); 7 € R} is a random process. This is called
the filtered process resulting from passing Z(¢) through the filter i(f). Not much can
be said about this general problem without developing a great deal of mathematics,
so instead we restrict ourselves to Gaussian processes and other relatively simple
examples.

For a Gaussian process, we would hope that a linear functional is a Gaussian random
variable. The following examples show that some restrictions are needed even for the
class of Gaussian processes.

19 One should use measure theory over the sample space { to interpret these mappings carefully, but this
is unnecessary for the simple types of situations here and would take us too far afield.
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Example 7.4.1 Let Z(f) =X forall 1 € R, where X ~ N (0, 1). The sample functions
of this Gaussian process have infinite energy with probability 1. The output of the
filter also has infinite energy except for very special choices of h(z).

Example 7.4.2 For each t € [0, 1), let W(¢) be a Gaussian rv, W(£) ~ (0, 1).
Assume also that E[W(t)W(7)] =0 for each ¢ # 7 € [0, 1]. The sample functions of
this process are discontinuous everywhere.!! We do not have the machinery to decide
whether the sample functions are integrable, let alone whether the linear functionals
above exist; we discuss this example further later.

In order to avoid the mathematical issues in Example 7.4.2, along with a host
of other mathematical issues, we start with Gaussian processes defined in terms of
orthonormal expansions. :

744 Gaussian processes defined over orthonormal expansions

Let {¢,(1); k = 1} be a countable set of real orthonormal functions and let {Z;; k>1} -
be a sequence of independent Gaussian random variables, {V (0, g2)}. Consider the
Gaussian process defined by

Z(r>=gzk¢k<r). (1.29)

Essentially all zero-mean Gaussian processes of interest can be defined this way,
although we will not prove this. Clearly a mean can be added if desired, but zero-
mean processes are assumed in what follows. First consider the simple case in which
a? is nonzero for only finitely many values of k, say 1 < k < n. In this case, for each
t R, Z(¢) is a finite sum, given by

2() =Y. Zuhu(0), (1.30)

k=1
of independent Gaussian rvs and thus is Gaussian. It is also clear that Z(t,), Z(1,),. ..,
Z(t,) are jointly Gaussian for all £, t,,..., 1, so {Z(#); t € R} is in fact a Gaussian
random process. The energy in any sample function, z(f) = ¥, z,$, (1), is X5, z3.

This is finite (since the sample values are real and thus finite), so every sample function
is £,. The covariance function is then easily calculated to be

Kz(t, ) = Y E[Z,Z, )b () b (1) = 3 0% D ()i (7). (1.31)
k,m k=1
Next consider the linear functional [ Z(f)g(¢) dt, where g(7) is a real £, function:
v= [ zsdar=Y7, [ $nse (7.32)
—e k=l T
1 Even worse, the sample functions are not measurable. This process would not even be called a random

process in a measure-theoretic formulation, but it provides an interesting example of the occasional need
for a measure-theoretic formulation.

Constellation Exhibit 2004, Page 132 of 229



7.4 Linear functionals and filters 233

Since V is a weighted sum of the zero-mean independent Gaussian rvs Z,,...,Z,,
V is also Gaussian with variance given by

oﬁ=Elv21=§jo:|<¢k.g>lz. (7.33)
=1

Next consider the case where n is infinite but 3, 07 < co. The sample functions
are still £, (at least with probability 1). Equations (7.29) — (7.33) are still valid, and
Z is still a Gaussian rv. We do not have the machinery to prove this easily, although
Exercise 7.7 provides quite a bit of insight into why these results are true.

Finally, consider a finite set of £, waveforms {g,(); 1 <m <¢} and let V,, =
I Z(1)g,(r)dt. By the same argument as above, V,, is a Gaussian rv for each m.
Furthermore, since each linear combination of these variables is also a linear functional,
it is also Gaussian, so {V}, ..., V,} is jointly Gaussian.

74.2 Linear filtering of Gaussian processes

We can use the same argument as in Section 7.4.1 to look at the output of a linear
filter (see Figure 7.3) for which the input is a Gaussian process {Z(1); t € R}. In par-
ticular, assume that Z(1) = 3", Z,¢,(r), where Z,, Z,, . .. is an independent sequence
{Z, ~ N (0, 07} satisfying ¥, 0 < oo and where ¢, (£), §,(f), ... is a sequence of
orthonormal functions.

Assume that the impulse response k(z) of the filter is a real £, and £, waveform.
Then, for any given sample function Z(t, w) =Y, Z,(w)¢, (1) of the input, the filter
output at any epoch 7 is given by

V)= [ Z(tw)h(r =1t = Y7, () / T aOh(r—ndt.  (1.34)
. A -

Each integral on the right side of (7.34) is an £, function of 7 (see Exercise 7.5).
It follows from this (see Exercise 7.7) that [~ Z(t, w)h(7 —)dt is an £, waveform
with probability 1. For any given epoch 7, (7.34) maps sample points o to real values,
and thus V(7, w) is a sample value of a random variable V(7) defined as

v = [ T ZOh(r-)dt=YZ, [ ", (h(r—1)dr. (7.35)
—o0 P -00

{Z(1); teR} h(t} {V1); TeR}

Figure 7.3.  Filtered random process.
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This is a Gaussian rv for each epoch 7. For any set of epochs 7,...,7,, we see
that V(7,),..., V(r,) are jointly Gaussian. Thus {V(7); 7 € R} is a Gaussian random
process.

We summarize Sections 7.4.1 and 7.4.2 in the following theorem.

Theorem 7.4.1 Let {Z(t); t € R} be a Gaussian process Z(t) = Y, Z,$,(1), where
{Z,; k = 1} is a sequence of independent Gaussian rvs N(0, o7), where 3_ 0} < o
and {$,(1); k = 1} is an orthonormal set. Then

® for any set of £, waveforms g,(1), . . ., 8,(2), the linear functionals {Z,; 1 <m < ¢}
given by Z,, = [* Z(£)g,(*) dt are zero-mean jointly Gaussian;

e for any filter with real £, and L, impulse response h(t), the filter output {V(7); 7 €
R} given by (7.35) is a zero-mean Gaussian process.

These are important results. The first, concerning sets of linear functionals, is important
when we represent the input to the channel in terms of an orthonormal expansion; the
noise can then often be expanded in the same orthonormal expansion. The second,
concerning linear filtering, shows that when the received signal and noise are passed
through a linear filter, the noise at the filter output is simply another zero-mean
Gaussian process. This theorem is often summarized by saying that linear operations
preserve Gaussianity.

74.3 Covariance for linear functionals and filters

Assume that {Z(1); t € R} is a random process and that g,(¢), ..., g, (¢) are real £,
waveforms. We have seen that if {Z(f); ¢ € R} is Gaussian, then the linear functionals
Vi,...,V, given by V,, = [ Z(#)g,(£)dt are jointly Gaussian for 1 <m < ¢ We
now want to find the covariance for each pair Vis Vi of these random variables. The
result does not depend on the process Z(f) being Gaussian. The computation is quite
simple, although we omit questions of limits, interchanges of order of expectation and
integration, etc. A more careful derivation could be made by returning to the sampling-
theorem arguments before, but this would somewhat obscure the ideas. Assuming that
the process Z(t) has zero mean,

E[V,V,]=E [ [ : Z(g, (e [ : Z('r)g,,,(f)d'r:l (1.36)
= [ s@rz0Z@snrar 037)
= /:_w /T :_m g (DKz(t, 7) g (T)dedr. (7.38)

Each covariance term (including E[V?2] for each m) then depends only on the covariance
function of the process and the set of waveforms {g,;1 <m < ¢£}.

The convolution V(r) = [ Z(r)h(r — f)d¢ is a linear functional at each time r, so
the covariance for the filtered output of {Z(z); f € R} follows in the same way as the
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75

results above. The output {V(r)} for a filter with a real £, impulse response A is given
by (7.35), so the covariance of the output can be found as follows:

Ky(r, 5) =E[V(N)V(s)]
—E [ [ " Z()h(r — 1t [ " Z()h(s — 'r)dr]

~-00

=/ ” [ " h(r — DK, (s, DA(s — 7)dr d. (7.39)

Stationarity and related concepts

Many of the most useful random processes have the property that the location of the
time origin is irrelevant, ie. they “behave” the same way at one time as at any other
time. This property is called stationarity, and such a process is called a stationary
process.

Since the location of the time origin must be irrelevant for stationarity, random
processes that are defined over any interval other than (—o0, 00} cannot be stationary.
Thus, assume a process that is defined over (—o0, ).

The next requirement for a random process {Z(1); t € R} to be stationary is that Z(r)
must be identically distributed for all epochs ¢ € R. This means that, for any epochs
t and ¢+ 7, and for any real number x, Pr{Z(s) < x} = Pr{Z(t+ 7) < x}. This does
not mean that Z(r) and Z(¢ 4 7) are the same random variables; for a given sample
outcome w of the experiment, Z(z, ) is typically unequal to Z(t 4 7, ). It simply
means that Z(¢) and Z(z+7) have the same distribution function, i.e.

Fz(l) (x) = FZ(H-T) (x) for all X. (7.40)

This is still not enough for stationarity, however. The joint distributions over any set
of epochs must remain the same if all those epochs are shifted to new epochs by an
arbitrary shift 7. This includes the previous requirement as a special case, so we have
the following definition. '

Definition 7.5.1 A random process {Z(?); t € R} is stationary if, for all positive
integers ¢, for all sets of epochs ¢,,...,t, € R, for all amplitudes z,,...,2,, and for
all shifts 7 € R,

Faiy,...z0@1s e+ -+ 20) = Foaa, .. 2049 (s - - - 5 20)- (7.41)

For the typical case where densities exist, this can be rewritten as

Frozog@rree s 02 = Ly (21ae e 22) (7.42)

forall z;,...,z, €R.

For a (zero-mean) Gaussian process, the joint distribution of Z(t,),...,Z2Z(s,)
depends only on the covariance of those variables. Thus, this distribution will be the
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same as that of Z(t; +7), ..., Z(t,+ 1) if K;(¢,, ;) =Kz (t, + 7. 8;+7) for L <m,
Jj < £. This condition will be satisfied for all 7, all ¢, and all #,,...,¢, (verifying
that {Z(#)} is stationary) if K,(¢,, ;) =K;(#; + 7, t, + 7) for all 7 and all #,, ¢,. This
latter condition will be satisfied if K5 (#,, t,) =Kz (¢, —1,, 0) for all 1,, t,. We have thus
shown that a zero-mean Gaussian process is stationary if

Kyt ) =Kg(t; —£,,0)  forall #;,1, €R. (1.43)

Conversely, if (7.43) is not satisfied for some choice of ¢, t,, then the joint distri-
bution of Z(t,), Z(#,) must be different from that of Z(z; —t,), Z(0), and the process
is not stationary. The following theorem summarizes this.

Theorem 7.5.1 A zero-mean Gaussian process {Z(1); teRY} is stationary if and only
if (7.43) is satisfied.

An obvious consequence of this is that a Gaussian process with a nonzero mean is
stationary if and only if its mean is constant and its fluctuation satisfies (7.43).

7.5.1 Wide-sense stationary (WSS) random processes

There are many results in probability theory that depend only on the covariances of
the random variables of interest (and also the mean if nonzero). For random processes,
a number of these classical results are simplified for stationary processes, and these
simplifications depend only on the mean and covariance of the process rather than full
stationarity. This leads to the following definition.

Definition 7.5.2 A random process {Z(f); t€R} is wide-sense stationary (WSS) if
E[Z(tl)] = E[Z(O)] and Kz(tl, tz) = KZ(tl - tz, 0) for all tl' tz € R.

Since the covariance function K;(z+ 7, ) of a WSS process is a function of only one
variable 7, we will often write the covariance function as a function of one variable,
namely K, (7) in place of K, (¢, £). In other words, the single variable in the single-
argument form represents the difference between the two arguments in two-argument
form. Thus, for a WSS process, K, (f, ) =K, (t — 7, 0) =K, (¢ — 7).

The random processes defined as expansions of T-spaced sinc functions have been
discussed several times. In particular, let

t—kT
V()=) V,si , 7.44
® zk: f smc( T ) - (7.44)

where {..., V_;, V;, V, ...} is a sequence of (zero-mean) iid rvs. As shown in (7.8),
the covariance function for this random process is given by

Ky(t, 7) =02 Zsinc(' _TkT) sinc(T"TkT) . (7.45)
k

where o is the variance of each V,. The sum in (7.45), as shown below, is a function
only of ¢t — 7, leading to the following theorem.

Constellation Exhibit 2004, Page 136 of 229



7.5 Stationarity and related concepts 237

Theorem 7.5.2 (Sinc expansion) The random process in (7.44) is WSS. In addition,
if the rvs {V,; k € Z} are iid Gaussian, the process is stationary. The covariance
function is given by

Ry(t—1) =02 sinc(t_TT) . (7.46)

Proof From the sampling theorem, any ., function u(t), baseband-limited to 1/2T,
can be expanded as

u() = Y u(kT) sinc(’ — T"T) : (7.47)
k
For any given 7, take u(t) to be sinc[(t — 7)/T]. Substituting this in (7.47), we obtain

t—17 kT —7 t—kT T—kT t—kT
sinc ( —— =Zsinc( )sinc( ):Zsinc( )sinc( )
(=) - T T - T T

(7.48)

Substituting this in (7.45) shows that the process is WSS with the stated covariance.
As shown in Section 7.4.1, {V(1); ¢t € R} is Gaussian if the rvs {V,} are Gaussian.
From Theorem 7.5.1, this Gaussian process is stationary since it is WSS. a

Next consider another special case of the sinc expansion in which each V, is binary,
taking values &1 with equal probability. This corresponds to a simple form of a
PAM transmitted waveform. In this case, V(kT) must be %1, whereas, for values of ¢
between the sample points, V(#) can take on a wide range of values. Thus this process
is WSS but cannot be stationary. Similarly, any discrete distribution for each V, creates
a process that is WSS but not stationary.

There are not many important models of noise processes that are WSS but not
stationary,'? despite the above example and the widespread usage of the term WSS.
Rather, the notion of wide-sense stationarity is used to make clear, for some results,
that they depend only on the mean and covariance, thus perhaps making it easier to
understand them.

The Gaussian sinc expansion brings out an. interesting theoretical non sequitur.
Assuming that o2 > 0, i.e. that the process is not the trivial process for which V(r) =0
with probability 1 for all ¢, the expected energy in the process (taken over all time) is
infinite. It is not difficult to convince oneself that the sample functions of this process
have infinite energy with probability 1. Thus, stationary noise models are simple to
work with, but the sample functions of these processes do not fit into the £, theory
of waveforms that has been developed. Even more important than the issue of infinite
energy, stationary noise models make unwarranted assumptions about the very distant

12 An important exception is interference from other users, which, as the above sinc expansion with binary
signals shows, can be WSS but not stationary. Even in this case, if the interference is modeled as just part
of the noise (rather than specifically as interference), the nonstationarity is usually ignored.
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past and future. The extent to which these assumptions affect the results about the
present is an important question that must be asked.

The problem here is not with the peculiarities of the Gaussian sinc expansion.
Rather it is that stationary processes have constant power over all time, and thus have
infinite energy. One practical solution’® to this is simple and familiar. The random
process is simply truncated in any convenient way. Thus, when we say that noise
is stationary, we mean that it is stationary within a much longer time interval than
the interval of interest for communication. This is not very precise, and the notion of
effective stationarity is now developed to formalize this notion of a truncated stationary
process.

7.5.2 Effectively stationary and effectively WSS random processes

Definition 7.5.3 A (zero-mean) random process is effectively stationary within
[~To/2, T,/2] if the joint probability assignment for #;,...,¢, is the same as that
for ty +7,t,+7,...,t,4 7 whenever ¢,...,t,and t;, + 7, t,+7,...,t,+ 7 are all
contained in the interval [—Ty/2, T,/2]. 1t is effectively WSS within [-T,/2, T,/2]
if Kz(t, 7) is a function only of ¢t — 7 for ¢, 7 € [-T,/2, T,/2]. A random process
with nonzero mean is effectively stationary (effectively WSS) if its mean is con-
stant within [—T,/2, T,/2] and its fluctuation is effectively stationary (WSS) within
[=To/2, To/2).

One way to view a stationary (WSS) random process is in the limiting sense
of a process that is effectively stationary (WSS) for all intervals [-Tg/2, T,/2]). For
operations such as linear functionals and filtering, the nature of this limit as 7;, becomes
large is quite simple and natural, whereas, for frequency-domain results, the effect of
finite Ty, is quite subtle.

For an effectively WSS process within [~T/2, Ty/2], the covarance within
[~T,/2, T,/2] is a function of a single parameter, K,(z, 7) = K;(t —7) for 1,7 €
(—T,o/2, Ty/2]. As illustrated by Figure 7.4, however, that ¢t — 7 can range from ~T,
(for t = ~Ty/2, 7=Ty/2) to Ty, (for t = Tp/2, T = ~T,/2).

Since a Gaussian process is determined by its covariance function and mean, it is
effectively stationary within [—T,/2, T,/2] if it is effectively WSS.

Note that the difference between a stationary and effectively stationary random
process for large T is primarily a difference in the model and not in the situation
being modeled. If two models have a significantly different behavior over the time
intervals of interest, or, more concretely, if noise in the distant past or future has a
significant effect, then the entire modeling issue should be rethought.

13 There is another popular solution to this problem. For any £, function g(f), the energy in g(f) outside
of [—Ty/2, To/2) vanishes as T — oo, so intuitively the effect of these tails on the linear functional
[ g(9Z(r)dt vanishes as T, — 0. This provides a nice intuitive basis for ignoring the problem, but it fails,
both intuitively and mathematically, in the frequency domain.
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Figure 7.4.  Relationship of the two-argument covariance function Kz(, 7) and the one-argument function
Kz(¢ — 7) for an effectively WSS process; K,(z, 7) is constant on each dashed line above. Note
that, for example, the line for which 1 — 7 = (3/4)T, applies only for pairs (t, 7) where
t>Ty/2 and 7 £ —T,/2. Thus K,((3/4)T,) is not necessarily equal to K;((3/4)7,, 0). It can
be easily verified, however, that K,(aTp) =K;(aT,,0) for all @ < 1/2.

753 Linear functionals for effectively WSS random processes

The covariance matrix for a set of linear functionals and the covariance function for the
output of a linear filter take on simpler forms for WSS or effectively WSS processes
than the corresponding forms for general processes derived in Section 7.4.3.

Let Z(f) be a zero-mean WSS random process with covariance function K,(t —7) for
t, 7 €[-T,/2, Ty/2], and let g,(1), g,(1), . . ., g,(r) be a set of L, functions nonzero
only within [-Tg/2, Ty/2]. For the conventional WSS case, we can take T, = co. Let
the linear functional V,, be given by f_;ﬁz Z(1)g,,(1)dr for 1 <m < €. The covariance
E[V,,V;] is then given by

Tol2
ElV.a Vil =E [/:r 2

0

20)en (0 | 2(g o)

To/2 Tol2 . :
= [ .ke(t — D)gy(n)drar. (7.49)
=To/27=To/2

Note that this depends only on the covariance where ¢, 7 € [-T,/2, Ty/2)], i.e. where
{Z(#)} is effectively WSS. This is not surprising, since we would not expect V,, to
depend on the behavior of the process outside of where g,,(?) is nonzero.

754 Linear filters for effectively WSS random processes

Next consider passing a random process {Z(t); ¢ € R} through a linear time-invariant
filter whose impulse response h(f) is £,. As pointed out in (7.28), the output of the
filter is a random process {V(7); T € R} given by

vin)= [ :Z(tl)h('r —1)dt,.
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Note that V(7) is a linear functional for each choice of 7. The covariance function
evaluated at ¢, 7 is the covariance of the linear functionals V(¢) and V(7). Ignoring
questions of orders of integration and convergence,

Ky(t7)= [ : [ : h(t = t)Ky (21, 8)R(r — £,)dt, dt,. (1.50)

First assume that {Z(¢); t € R} is WSS in the conventional sense. Thcn-Kz(t,, 1,) can
be replaced by K;(t, — t,). Replacing ¢, — ¢, by s (i.e. t; by 7, +5), we have

Ky(t, ) =/:: [j_: h(t —1, - s)Rz(s)ds] h(T — t;)dt,.

Replacing #, by 7+ u yields

Ky(t7) = [ : [ [ : h(t—7 —p — s)Rz(s)ds] h(—p)du. - (151)

Thus Ky (¢, 7) is a function only of ¢ — 7. This means that {V(¢); ¢ € R} is WSS. This
is not surprising; passing a WSS random process through a linear time-invariant filter
results in another WSS random process.

If {Z(¢); t € R} is a Gaussian process, then, from Theorem 7.4.1, {V(¢); t € R} is
also a Gaussian process. Since a Gaussian process is determined by its covariance
function, it follows that if Z(¢) is a stationary Gaussian process, then V(¢) is also a
stationary Gaussian process.

We do not have the mathematical machinery to carry out the above operations
carefully over the infinite time interval.!* Rather, it is now assumed that {Z(r); t € R}
is effectively WSS within [-T,/2, T,/2]. It will also be assumed that the impulse
response h(t) above is time-limited in the sense that, for some finite A, h(#) =0 for
[t] > A.

Theorem 7.5.3 Let {Z(1); t € R} be effectively WSS within [—T4/2, Ty/2] and have
sample functions that are L, within [~Ty/2, Ty/2] with probability 1. Let Z(t) be
the input to a filter with an £, time-limited impulse response {h(1): [—A, A] > R}.
Then, for To/2 > A, the output random process {V(t); t € R} is WSS within [-Ty/2+
A, T;/2 — A] and its sample functions within [-T,/2+ A, Ty/2 — A] are £, with
probability 1.

Proof Let z(r) be a sample function of Z(t) and assume z(t) is £, within
[~To/2, Ty/2). Let v(7) = [ z(r) k(7 — 1) dt be the corresponding filter output. For each
7€ [=To/2+A, To/2— A, v(7) is determined by z(¢) in the range t € [T, /2, Ty/2].

14 More important, we have no justification for modeling a process over the infinite time interval. Later,
however, after building up some intuition about the relationship of an infinite interval to a very large
interval, we can use the simpler equations corresponding to infinite intervals.
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Thus, if we replace z(f) by zo(f) = z(f) rect[T,], the filter output, say v,(7), will equal
v(7) for 7 € [-Ty/2+ A, Ty/2 — A). The time-limited function z,(¢) is £, as well as
L,. This implies that the Fourier transform Z,(f) is bounded, say by Z,(f) < B, for
each f. Since 3,(f) = 2,(f)h(f), we see that

[ (DPaf = [ lalh)PRE S < B [ h(HPAS <o, B

This means that 7,(f), and thus also vy(?), is £,. Now v,(7), when truncated to
[=To/2+ A, Ty/2— A] is equal to v(¢) truncated to [—Ty/2+ A, Ty/2 — A], so the
truncated version of v(z) is £,. Thus the sample functions of {V(¢)}, truncated to
[-To/2+ A, Ty/2— A), are £, with probability 1.

Finally, since {Z(#); t € R} can be truncated to [—Tg/2, T,/2] with no lack of
generality, it follows that K;(¢;, #,) can be truncated to #,, t, € [—T/2, Ty/2]. Thus,
for t, 7 € [—=Ty/2+ A, T,/2— A], (1.50) becomes )

To/2 -
Ky(t, 7) = j [ To/zh(t — 1)Kyt — (T — )dtyde,.  (1.52)

The argument in (7.50) and (7.51) shows that V(z) is effectively WSS within [—T0/2+
A, Ty/2- Al O

Theorem 7.5.3, along with the effective WSS result about linear functionals, shows us
that results about WSS processes can be used within finite intervals. The result in the
theorem about the interval of effective stationarity being reduced by filtering should
not be too surprising. If we truncate a process and then pass it through a filter, the
filter spreads out the effect of the truncation. For a fimte-durauon filter, however, as
assumed here, this spreading is limited.

The notion of stationarity (or effective stationarity) makes sense as a modeling tool
where Ty, is very much larger than other durations of interest, and in fact where there
is no need for explicit concern about how long the process is going to be stationary.

Theorem 7.5.3 essentially tells us that we can have our cake and eat it too. That is,
transmitted waveforms and noise processes can be truncated, thus making use of both
common sense and £, theory, but at the same time insights about stationarity can still
be relied upon. More specifically, random processes can be modeled as stationary,
without specifying a specific interval [—T,/2, T,/2] of effective stationarity, because
stationary processes can now be viewed as asymptotic versions of finite-duration
processes.

Appendices 7.11.2 and 7. 11 3 provide a deeper analysis of WSS processes trun-
cated to an interval. The truncated process is represented as a Fourier series with
random variables as coefficients. This gives a clean interpretation of what happens
as the interval size is increased without bound, and also gives a clean interpreta-
tion of the effect of time-truncation in the frequency domain. Another approach
to a truncated process is the Karhunen-Loeve expansion, which is discussed in
Appendix 7.11.4.
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7.6 Stationarity in the frequency domain

Stationary and WSS zero-mean processes, and particularly Gaussian processes, are
often viewed more insightfully in the frequency domain than in the time domain. An
effectively WSS process over [—T;/2, T,/2] has a single-variable covariance function
K,(7) defined over [~T,, T,]. A WSS process can be viewed as a process that is
effectively WSS for each T;. The energy in such a process, truncated to [-T,/2, T,/2],
is linearly increasing in Ty, but the covariance simply becomes defined over a larger
and larger interval as Ty — oo. We assume in what follows that this limiting covariance
is £,. This does not appear to rule out any but the most pathological processes.

First we look at linear functionals and linear filters, ignoring limiting questions
and convergence issues and assuming that T, is “large enough.” We will refer to the
random processes as stationary, while still assuming £, sample functions.

For a zero-mean WSS process {Z(1); t € R} and a real £, function g(t), consider
the linear functional V = f g(r)Z(#)ds. From (7.49),

(v = : 2(1) [ [ : Rz(t—T)g('r)dT:ldt (1.53)
=[ : 8(1) [Rzxg] (ar, (7.54)

where K, *g denotes the convolution of the waveforms K (r) and g(z). Let Sz(f) be
the Fourier transform of K, (f). The function S;(f) is called the spectral density of the
stationary process {Z(f); t € R}. Since K;(¢) is £,, real, and symmetric, its Fourier
transform is also £,, real, and symmetric, and, as shown later, S;(f) > 0. It is also
shown later that S;(f) at each frequency f can be interpreted as the power per unit
frequency at f.

Let 6(f) = [Kz *g](1) be the convolution of K, and g. Since g and K, are real, 6(z)
is also real, so 8(r) = 0*(¢). Using Parseval’s theorem for Fourier transforms,

6Vl = [ s (har= [ 3B (NS,
Since 6(r) is the convolution of K, and g, we see that ?)(f) = 82()&(f). Thus,
(V= [ ansrni = [ BOSOHL.  (059)

Note that E[V2] > 0 and that this holds for all real £, functions g(¢). The fact that g(z) is
real constrains the transform g(f) to satisfy g(f) = £*(—f), and thus |g(f)| = {2(— )|
for all f. Subject to this constraint and the constraint that |g(f)| be £L,, |2(f)| can
be chosen as any £, function. Stated another way, g(f) can be chosen arbitrarily for
f = 0 subject to being £,.

Constellation Exhibit 2004, Page 142 of 229



7.6 Stationarity and the frequency domain 243

Since S, (f) = Sz(—f), (71.55) can be rewritten as follows:
BV = [ 21201 S ().

Since E[V?] > 0 and |2(f)] is arbitrary, it follows that S;(f) >0 for all f € R.

The conclusion here is that the spectral density of any WSS random process must
be nonnegative. Since S;(f) is also the Fourier transform of K(f), this means that
a necessary property of any single-variable covariance function is that it have a
nonnegative Fourier transform.

Next, let V,, = [ g,,(£)Z(t) d¢, where the function g,,(7) is real and L2 form=1,2.
From (7.49), we have

etvivil= [ 0| [ Ke-Damara 156
= : 81(0) [Kxg2] (9. (7.57)

Let 2,,(f) be the Fourier transform of g,,(r) for m =1, 2, and let 6(¢) = [Kz(2) *g,1()
be the convolution of K; and g,. Let 8(f) = S;(f)£,(f) be its Fourier transform. As
before, we have

EVival = [ 208 (Naf = [ &(NS(NENGS. (7.58)

There is a remarkable feature in the above expression. If g,(f) and g,(f) have no
overlap in frequency, then E[V, V,] = 0. In other words, for any stationary process, two
linear functionals over different frequency ranges must be uncorrelated. If the process
is Gaussian, then the linear functionals are independent. This means in essence that
Gaussian noise in different frequency bands must be independent. That this is true
simply because of stationarity is surprising. Appendix 7.11.3 helps to explain this
puzzling phenomenon, especially with respect to effective stationarity.

Next, let {¢,,(¢); m € Z} be a set of real orthonormal functions and let {d> )
be the corresponding set of Fourier transforms. Letting V,, = [ Z(1)¢,,(1)dt, (7.58)
becomes

VaVjl= [ $u(5)S2(1)B; (L. (7.59)

If the set of orthonormal functions {¢,,(¢); m € Z} is limited to some frequency band,
and if S,(f) is constant, say with value N,/2 in that band, then

£V, = 2 [ .34 (7.60)

By Parseval’s theorem for Fourier transforms, we have [ &m(f)a);(f)d f =&, and
thus

E[V,V,]= %am,. (7.61)

The rather peculiar-looking constant N,/2 is explained in Section 7.7. For now, how-
ever, it is possible to interpret the meaning of the spectral density of a noise process.

Constellation Exhibit 2004, Page 143 of 229



244

Random processes and noise

1.7

Suppose that S;(f) is continuous and approximately constant with value S;(f.) over
some narrow band of frequencies around f,, and suppose that ¢,(r) is constrained
to that narrow band. Then the variance of the linear functional [ Z(r)¢,(f)dr is
approximately S,(f.). In other words, S;(f.) in some fundamental sense describes the
energy in the noise per degree of freedom at the frequency f;. Section 7.7 interprets
this further.

White Gaussian noise

Physical noise processes are very often reasonably modeled as zero-mean, stationary,
and Gaussian. There is one further simplification that is often reasonable. This is
that the covariance between the noise at two epochs dies out very rapidly as the
interval between those epochs increases. The interval over which this covariance
is significantly nonzero is often very small relative to the intervals over which the
signal varies appreciably. This means that the covariance function Kz (7) looks like a
short-duration pulse around 7 =0.

We know from linear system theory that [ K, (t — 1)g(7)d7 is equal to g(z) if K, (r)
is a unit impulse. Also, this integral is approximately equal to g(z) if K;(¢) has unit
area and is a narrow pulse relative to changes in g(¢). It follows that, under the same
circumstances, (7.56) becomes

Evivil= [ [ a0kt~ Dg)rar~ [ ag@d. (.62

This means that if the covariance function is very narrow relative to the functions of
interest, then its behavior relative to those functions is specified by its area. In other
words, the covariance function can be viewed as an impulse of a given magnitude. We
refer to a zero-mean WSS Gaussian random process with such a narrow covariance
function as white Gaussian noise (WGN). The area under the covariance function is
called the intensity or the spectral density of the WGN and is denoted by the symbol
N,/2. Thus, for £, functions g,(2), g,(¢), ... in the range of interest, and for WGN
(denoted by {W(z); € R}) of intensity Ny/2, the random variable V,, = [ W(#)g,, (+)dt
has variance given by

E[V2] = (/2) [ g2(dr. (7.63)

Similarly, the rvs V; and V,, have covariance given by

ELV; Vi = (Mo/2) [ 8, ()8 (. (7.64)

Also, V1, V,, ... are jointly Gaussian.

The most important special case of (7.63) and (7.64) is to let ¢;(r) be a set
of orthonormal functions and let W(rf) be WGN of intensity Np/2. Let V, =
J ¢,,(OW(r)dt. Then, from (7.63) and (7.64),

E[V]Vm] = (N0/2)8jm' (7'65)
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This is an important equation. It says that if the noise can be modeled as WGN, then
when the noise is represented in terms of any orthonormal expansion, the resulting
rvs are iid. Thus, we can represent signals in terms of an arbitrary orthonormal
expansion, and represent WGN in terms of the same expansion, and the result is iid
Gaussian rvs.

Since the coefficients of a WGN process in any orthonormal expansion are iid
Gaussian, it is common to also refer to a random vector of iid Gaussian rvs as WGN.

If Ky (¢) is approximated by (N,/2)6(¢), then the spectral density is approximated
by Sw(f) = N/2. If we are concerned with a particular band of frequencies, then we
are interested in Sy, (f) being constant within that band, and in this case {W(t); t € R}
can be represented as white noise within that band. If this is the only band of interest,
we can model® Sy, (f) as equal to Np/2 everywhere, in which case the corresponding
model for the covariance function is (N,/2)6(r).

The careful reader will observe that WGN has not really been defined. What has been
said, in essence, is that if a stationary zero-mean Gaussian process has a covariance
function that is very narrow relative to the variation of all functions of interest, or a
spectral density that is constant within the frequency band of interest, then we can
pretend that the covariance function is an impulse times Np/2, where N,/2 is the value
of Sy (f) within the band of interest. Unfortunately, according to the definition of
random process, there cannot be any Gaussian random process W(r) whose covariance
function is K(f) = (N,/2)8(r). The reason for this dilemma is that E[W2(£)] = K (0).
We could interpret Ky, (0) to be either undefined or oo, but either way W(t) cannot be
a random variable (although we could think of it taking on only the values plus or
minus oo). o

Mathematicians view WGN as a generalized random process, in the same sense as
the unit impulse 8(¢) is viewed as a generalized function. That is, the impulse function
8(?) is not viewed as an ordinary function taking the value 0 for ¢ # 0 and the value oo
at ¢t =0. Rather, it is viewed in terms of its effect on other, better behaved, functions
g(t), where [ g()8(f) dr = g(0). In the same way, WGN is not viewed in terms of
rvs at each epoch of time. Rather, it is viewed as a generalized zero-mean random
process for which linear functionals are jointly Gaussian, for which variances and
covariances are given by (7.63) and (7.64), and for which the covariance is formally
taken to be {N,/2)6(z).

Engineers should view WGN within the context of an overall bandwidth and time
interval of interest, where the process is effectively stationary within the time interval
and has a constant spectral density over the band of interest. Within that context,
the spectral density can be viewed as constant, the covariance can be viewed as an
impulse, and (7.63) and (7.64) can be used.

The difference between the engineering view and the mathematical view is that
the engineering view is based on a context of given time interval and bandwidth of

15 This is not as obvious as it sounds, and will be further discussed in terms of the theorem of irrelevance
in Chapter 8.
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interest, whereas the mathematical view is based on a very careful set of definitions and
limiting operations within which theorems can be stated without explicitly defining the
context. Although the ability to prove theorems without stating the context is valuable,
any application must be based on the context.

When we refer to signal space, what is usually meant is this overall bandwidth and
time interval of interest, i.e. the context above. As we have seen, the bandwidth and
the time interval cannot both be perfectly truncated, and because of this signal space
cannot be regarded as strictly finite-dimensional. However, since the time interval and
bandwidth are essentially truncated, visualizing signal space as finite-dimensional with
additive WGN is often a reasonable model.

7.74 The sinc expansion as an approximation to WGN

Theorem 7.5.2 treated the process Z(t) = Y, Z, sinc(t —kT/T), where each rv {Z,;
k € Z} is iid and (0, 0?). We found that the process is zero-mean Gaussian and
stationary with covariance function K, (t — 7) = o2 sinc[(¢ — 7)/T]. The spectral density
for this process is then given by

Sz(f) = 0T rect(fT). (7.66)

This process has a constant spectral density over the baseband bandwidth W,, = 1/2T,
5o, by making T sufficiently small, the spectral density is constant over a band
sufficiently large to include all frequencies of interest. Thus this process can be
viewed as WGN of spectral density Ny/2 = T for any desired range of frequencies
W, = 1/2T by making T sufficiently small. Note, however, that to approximate WGN
of spectral density Ny/2, the noise power, i.e. the variance of Z(f) is o = WN,. In
other words, o2 must increase with increasing W. This also says that N, is the noise
power per unit positive frequency. The spectral density, N,/2, is defined over both
positive and negative frequencies, and so becomes N, when positive and negative
frequencies are combined, as in the standard definition of bandwidth.'s _

If a sinc process is passed through a linear filter with an arbitrary impulse
response h(f), the output is a stationary Gaussian process with spectral density
|R(f)[2a>T rect(fT). Thus, by using a sinc process plus a linear filter, a stationary
Gaussian process with any desired nonnegative spectral density within any desired
finite bandwith can be generated. In other words, stationary Gaussian processes
with arbitrary covariances (subject to S(f) > 0) can be generated from orthonormal
expansions of Gaussian variables.

Since the sinc process is stationary, it has sample waveforms of infinite energy. As
explained in Section 7.5.2, this process may be truncated to achieve an effectively
stationary process with £, sample waveforms. Appendix 7.11.3 provides some insight

16 One would think that this field would have found a way to be consistent about counting only positive
frequencies or positive and negative frequencies. However, the word bandwidth is so widely used among
the mathophobic, and Fourier analysis is so necessary for engineers, that one must simply live with such
minor confusions.

Constellation Exhibit 2004, Page 146 of 229



7.7 White Gaussian noise 247

about how an effectively stationary Gaussian process over an interval Tj, approaches
stationarity as Ty — co.

The sinc process can also be used to understand the strange, everywhere uncorrelated,
process in Example 7.4.2. Holding % =1 in the sinc expansion as T approaches 0, we
get a process whose limiting covariance function is 1 for £ — 7 =0 and 0 elsewhere.
The corresponding limiting spectral density is 0 everywhere. What is happening is that
the power in the process (i.e. RZ(O)) is 1, but that power is being spread over a wider
and wider band as T — 0, so the power per unit frequency goes to 0.

To explain this in another way, note that any measurement of this noise process
must involve filtering over some very small, but nonzero, interval. The output of this
filter will have zero variance. Mathematically, of course, the limiting covariance is
£,-equivalent to 0, so again the mathematics!? corresponds to engineering reality.

772 Poisson process noise

The sinc process of Section 7.7.1 is very convenient for generating noise processes
that approximate WGN in an easily used formulation. On the other hand, this process
is not very believable'® as a physical process. A model that corresponds better to
physical phenomena, particularly for optical channels, is a sequence of very narrow
pulses which arrive according to a Poisson distribution in time.

The Poisson distribution, for our purposes, can be simply viewed as a limit of a
discrete-time process where the time axis is segmented into intervals of duration A
and a pulse of width A arrives in each interval with probability Ap, independent
of every other interval. When such a process is passed through a linear filter, the
fluctuation of the output at each instant of time is approximately Gaussian if the filter
is of sufficiently small bandwidth to integrate over a very large number of pulses. One
can similarly argue that linear combinations of filter outputs tend to be approximately
Gaussian, making the process an approximation of a Gaussian process.

We do not analyze this carefully, since our point of view is that WGN, over limited
bandwidths, is a reasonable and canonical approximation to a large number of physical
noise processes. After understanding how this affects various communication systems,
one can go back and see whether the model is appropriate for the given physical noise
process. When we study wireless communication, we will find that the major problem
is not that the noise is poorly approximated by WGN, but rather that the channel itself
is randomly varying.

17 This process also cannot be satisfactorily defined in a measure-theoretic way.

1% To many people, defining these sinc processes with their easily analyzed properties, but no physical
justification, is more troublesome than our earlier use of discrete memoryless sources in studying source
coding. In fact, the approach to modeling is the same in each case: first understand a class of easy-to-analyze
but perhaps impractical processes, then build on that understanding to understand practical cases. Actually,
sinc processes have an advantage here: the bandlimited stationary Gaussian random processes defined this
way (although not the method of generation) are widely used as practical noise models, whereas there are
virtally no uses of discrete memoryless sources as practical source models.
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7.8

Adding noise to modulated communication

Consider the QAM communication problem again. A complex £, baseband wave-
form u(t) is generated and modulated up to passband as a real waveform x(f) =
20 [u(r)e* ~*]. A sample function w(t) of a random noise process W(z) is then added
to x(f) to produce the output y(¢) = x(z) + w(r), which is then demodulated back to
baseband as the received complex baseband waveform v(z).

Generalizing QAM somewhat, assume that u(¢) is given by u(z) = 3", u,6,(r), where
the functions 6,(¢) are complex orthonormal functions and the sequence of symbols
{u,; k € Z} are complex numbers drawn from the symbol alphabet and carrying the
information to be transmitted. For each symbol u;, #(u,) and J(u,) should be viewed
as sample values of the random variables R(U,) and J(U,.). The joint probability
distributions of these rvs is determined by the incoming random binary digits and how
they are mapped into symbols. The complex random variable'® R(U,) +i3(U,) is then
denoted by U,.

In the same way, R(3", U,0,(¢)) and I(3_, U,0,(?)) are random processes denoted,
respectively, by R(U(r)) and I(U(r)). We then call U(?) = R(U(D)) +iS(U(1)) for
t € R a complex random process. A complex random process U(f) is defined by the
joint distribution of U(t,), U(t,), ..., U(t,) for all choices of n,¢t,,...,t,- This is
equivalent to defining both R(U(r)) and I(U(¥)) as joint processes.

Recall from the discussion of the Nyquist criterion that if the QAM transmit pulse
p(r) is chosen to be square root of Nyquist, then p(f) and its T-spaced shifts are
orthogonal and can be normalized to be orthonormal. Thus a particularly natural
choice here is 6,(f) = p(t —kT) for such a p. Note that this is a generalization of
Chapter 6 in the sense that {U,; k € Z} is a sequence of complex rvs using random
choices from the signal constellation rather than some given sample function of that
random sequence. The transmitted passband (random) waveform is then given by

X(1) = Y. 2R{U,0,(r) exp(2mif,0)} . (1.67)
k

Recall that the transmitted waveform has twice the power of the baseband waveform.
Now define the following:

Yr,1 (1) =R{26,(1) exp(2if.1)} ;
Y2 (1) = I{—26,(1) exp(27if.1)} .
Also, let U, ; =R(U,) and U, ; = I(U,). Then

X(@) = ;[Uk.lwk.l (O + U2t 2 (1))

19 Recall that a rv is a mapping from sample points to real numbers, so that a complex rv is a mapping
from sample points to complex numbers. Sometimes in discussions involving both rvs and complex rvs, it
helps to refer to rvs as real rvs, but the modifier “real” is superfluous.
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As shown in Theorem 6.6.1, the set of bandpass functions {¢, ,; k € Z, £ € {1,2}}
are orthogonal, and each has energy equal to 2. This again assumes that the carrier
frequency f, is greater than all frequencies in each baseband function 6, (z).

In order for u(t) to be £,, assume that the number of orthogonal waveforms 6,(7) is
arbitrarily large but finite, say 6,(¢), . . ., 6,(¢). Thus {¢, ,} is also limitedto 1 <k <n.

Assume that the noise {W(?); ¢ € R} is white over the band of interest and effectively
stationary over the time interval of interest, but has £, sample functions.”® Since
{¢n.1s1 <k <n,£=1,2} is a finite real orthogonal set, the projection theorem can be
used to express each sample noise waveform {w(?); t € R} as

W) = Yleeaia ) + 2]+, 0, (7.68)

k=1

where w, (¢) is the component of the sample noise waveform perpendicular to the
space spanned by {{ ;1 <k <n,£=1,2}. Let Z, , be the rv with sample value z, ,.
Then each 1v Z, , is a linear functional on W(¢). Since {{, ;1 <k <n,f=1,2}is
an orthogonal set, the rvs Z, , are iid Gaussian rvs. Let W, (¢) be the random process
corresponding to the sample function w, (¢) above. Expanding {W,(¢); t € R} in an
orthonormal expansion orthogonal to (¢, ;; 1 <k <n, £ =1, 2}, the coefficients are
assumed to be independent of the Z, ,, at least over the time and frequency band of
interest. What happens to these coefficients outside of the region of interest is of no
concern, other than assuming that W, (¢) is independent of U, , and Z, , for 1 <k <n
and £ = {1, 2}. The received waveform ¥{(¢) = X(7) + W(¢) is then given by

Y(t) = i [(Uk.l + Zi ) () +(Up s + Zk,z)‘/’k.z(‘)] + W, (2).
k=]

When this is demodulated,”! the baseband waveform is represented as the complex
waveform,

V(8) =2 (Ui +Z)0,.() + 2, (), (7.69)
k

where each Z, is a complex rv given by Z, = Z, | +iZ, , and the baseband residual
noise Z, (¢) is independent of {Uy, Z;; 1 <k < n}. The variance of each real rv Z,
and Z, , is taken by convention to be N,;/2. We follow this convention because we
are measuring the input power at baseband; as mentioned many times, the power at
passband is scaled to be twice that at baseband. The point here is that Ny is not a
physical constant; rather, it is the noise power per unit positive frequency in the units
used to represent the signal power.

20 Since the set of orthogonal waveforms 6, () is not necessarily time- or frequency-limited, the assumption
here is that the noise is white over a much larger time and frequency interval than the nominal bandwidth
and time interval used for communication. This assumption is discussed further in Chapter 8.

21 Some filtering is necessary before demodulation to remove the residual noise that is far out of band, but
we do not want to analyze that here.
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7.8.1 Complex Gaussian random variables and vectors

Noise waveforms, after demodulation to baseband, are usually complex and are thus
represented, as in (7.69), by a sequence of complex random variables which is best
regarded as a complex random vector (rv). It is possible to view any such n-dimensional
complex rv Z =Z_+iZ,  as a 2n-dimensional real rv.

[;” ] , where Z_ = R(Z) and Z,;, = J(Z).

1

For many of the same reasons that it is desirable to work directly with a complex
baseband waveform rather than a pair of real passband waveforms, it is often beneficial
to work directly with complex rvs.

A complex rv Z =Z_+iZ;, is Gaussian if Z , and Z,, are jointly Gaussian; Z is
circularly symmetric Gaussian® if it is Gaussian and in addition Z,, and Z,, are iid. In
this case (assuming zero mean as usual), the amplitude of Z is a Rayleigh-distributed
rv and the phase is uniformly distributed; thus the joint density is circularly symmetric.
A circularly symmetric complex Gaussian rv Z is fully described by its mean Z (which
we continue to assume to be 0 unless stated otherwise) and its variance g2 = E[ZZ*].
A circularly symmetric complex Gaussian rv Z of mean Z and variance o2 is denoted
by Z~CN(Z, d?).

A complex random vector Z is a jointly Gaussian rv if the real and imaginary
components of Z collectively are jointly Gaussian; it is also circularly symmetric if
the density of the fluctuation Z (i.e. the joint density of the real and imaginary parts
of the components of Z) is the same? as that of e*Z for all phase angles 6.

An important example of a circularly symmetric Gaussian rv is Z = (Z,, ..., Z,)’,
where the real and imaginary components collectively are iid and N(0, 1). Because
of the circular symmetry of each Z,, multiplying Z by €'® simply rotates each Z, and
the probability density does not change. The probability density is just that of 2n iid -
N(0, 1) rvs, which is

Zhoal) 70

1
f2@) = any exv( 2

where we have used the fact that |z,|* = R(z;)* +3(z,)? for each k to replace a sum
over 2n terms with a sum over n terms. '

Another much more general example is to let A be an arbitrary complex n by n
matrix and let the complex rv Y be defined by

Y =AZ, (1.71)

22 This is sometimes referred to as complex proper Gaussian.

3 For a single complex rv Z with Gaussian real and imaginary parts, this phase-invariance property is
enough to show that the real and imaginary parts are jointly Gaussian, and thus that Z is circularly symmetric
Gaussian, For a random vector with Gaussian real and imaginary parts, phase invariance as defined here is
not sufficient to ensure the jointly Gaussian property. See Exercise 7.14 for an example.
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7.9

where Z has iid real and imaginary normal components as above. The complex rv
defined in this way has jointly Gaussian real and imaginary parts. To see this, represent
(7.71) as the following real linear transformation of 2n real space:

Yre _ Are —Aim Zre
b | o)
where Y, = R(Y), Y;, =3(Y), A, =R(A), and A, =3(A).

The rv Y is also circularly symmetric.2* To see this, note that €Y = el’AZ = Ae¥’Z.
Since Z is circularly symmetric, the density at any given sample value z (i.e. the
density for the real and imaginary parts of z) is the same as that at ez, This in turn
implies?® that the density at y is the same as that at ei®y.

The covariance matrix of a complex rv Y is defined as

Ky =E[¥Y'), (1.13)

where Y! is defined as ¥"". For a random vector Y defined by (7.71), K, = AA".
Finally, for a circularly symmetric complex Gaussian vector as defined in (7.71),
the probability density is given by

1
)= Eryaay) exp(—y'Kyy). (7.74)

It can be seen that complex circularly symmetric Gaussian vectors behave quite simi-
larly to (real) jointly Gaussian vectors. Both are defined by their covariance matrices,
the properties of the covariance matrices are almost identical (see Appendix 7.11.1),
the covariance can be expressed as AA', where A describes a linear transformation from
iid components, and the transformation A preserves the circularly symmetric Gaussian
property in the complex case and the jointly Gaussian property in the real case.

An arbitrary (zero-mean) complex Gaussian rv is not specified by its variance, since
E[Z2] might be different from E[Z2]. Similarly, an arbitrary (zero-mean) complex
Gaussian vector is not specified by its covariance matrix. In fact, arbitrary Gaussian
complex n-vectors are usually best viewed as 2n-dimensional real vectors; the simplifi-
cations from dealing with complex Gaussian vectors directly are primarily constrained
to the circularly symmetric case.

Signal-to-noise ratio

There are a number of different measures of signal power, noise power, energy per sym-
bol, energy per bit, and so forth, which are defined here. These measures are explained

24 Conversely, as we will see later, all circularly symmetric jointly Gaussian rvs can be defined this way.
25 This is not as simple as it appears, and is shown more carefully in the exercises. It is easy to become
facile at working in R" and C?, but going back and forth between R?* and C” is tricky and inelegant
(witness (7.72) and (7.71)).
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in terms of QAM and PAM, but they also apply more generally. In Section 7.8, a fairly
general set of orthonormal functions was used, and here a specific set is assumed. Con-
sider the orthonormal functions p,(f) = p(t —kT) as used in QAM, and use a nominal
passband bandwidth W = 1/T. Each QAM symbol U, can be assumed to be iid with
energy E, =E[|U,|*]. This is the signal energy per two real dimensions (i.e. real plus
imaginary). The noise energy per two real dimensions is defined to be N,. Thus the
signal-to-noise ratio is defined to be

SNR = E for QAM. (7.75)
Ny

For baseband PAM, using real orthonormal functions satisfying p,(f) = p(t — kT), the
signal energy per signal is E; = E[|U,|?]. Since the signal is 1D, i.e. real, the noise
energy per dimension is defined to be N,/2. Thus, the SNR is defined to be

2E,

0

SNR = for PAM. (7.76)
For QAM there are W complex degrees of freedom per second, so the signal power is
given by P = EW. For PAM at baseband, there are 2W degrees of freedom per second,
so the signal power is P = 2EW. Thus, in each case, the SNR becomes

SNR = LW for QAM and PAM. (1.77)
Ny
We can interpret the denominator here as the overall noise power in the bandwidth W,
so SNR is also viewed as the signal power divided by the noise power in the nominal
band. For those who like to minimize the number of formulas they remember, all of
these equations for SNR follow from a basic definition as the signal energy per degree
of freedom divided by the noise energy per degree of freedom.

PAM and QAM each use the same signal energy for each degree of freedom (or
at least for each complex pair of degrees of freedom), whereas other systems might
use the available degrees of freedom differently. For example, PAM with baseband
bandwidth W occupies bandwidth 2W if modulated to passband, and uses only half
the available degrees of freedom. For these situations, SNR can be defined in several
different ways depending on the context. As another example, frequency-hopping is a
technique used both in wireless and in secure communication. It is the same as QAM,
except that the carrier frequency f, changes pseudo-randomly at intervals long relative
to the symbol interval. Here the bandwidth W might be taken as the bandwidth of the
underlying QAM system, or as the overall bandwidth within which £, hops. The SNR
in (7.77) is quite different in the two cases.

The appearance of W in the denominator of the expression for SNR in (7.77) is
rather surprising and disturbing at first. It says that if more bandwidth is allocated to
a communication system with the same available power, then SNR decreases. This
is because the signal energy per degree of freedom decreases when it is spread over
more degrees of freedom, but the noise is everywhere. We will see later that the net
gain can be made positive.
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Another important parameter is the rate R; this is the number of transmitted bits per
second, which is the number of bits per symbol, log,|.A|, times the number of symbols
per second. Thus

R=WIlog,|4| for QAM;  R=2Wlog,|4| for PAM. (7.78)

An important parameter is the spectral efficiency of the system, which is defined as
p = R/W. This is the transmitted number of bits per second in each unit frequency
interval. For QAM and PAM, p is given by (7.78) to be

p=log,|A| for QAM; p=2log,|A] for PAM. (7.79)

More generally, the spectral efficiency p can be defined as the number of transmitted
bits per degree of freedom. From (7.79), achieving a large value of spectral efficiency
requires making the symbol alphabet large; note that p increases only logarithmically
with |A4].

Yet another parameter is the energy per bit E,. Since each symbol contains log, 4
bits, E, is given for both QAM and PAM by

E,
log,|A] |

= (7.80)
One of the most fundamental quantities in communication is the ratio E, /N,. Since E,
is the signal energy per bit and N, is the noise energy per two degrees of freedom, this
provides an important limit on energy consumption. For QAM, we substitute (7.75)
and (7.79) into (7.80), yielding
E, SNR
Ny P

The same equation is seen to be valid for PAM. This says that achieving a small value
for Ey /N, requires a small ratio of SNR to p. We look at this next in terms of channel
capacity.

One of Shannon’s most famous results was to develop the concept of the capacity C
of an additive WGN communication channel. This is defined as the supremum of the
number of bits per second that can be transmitted and received with arbitrarily small
error probability. For the WGN channel with a constraint W on the bandwidth and a
constraint P on the received signal power, he showed that

(1.81)

P
C—Wlogz(l—i-w—%) . (7.82)
Furthermore, arbitrarily small error probability can be achieved at any rate R < C by
using channel coding of arbitrarily large constraint length. He also showed, and later
results strengthened the fact, that larger rates would lead to large error probabilities.
These results will be demonstrated in Chapter 8; they are widely used as a benchmark
for comparison with particular systems. Figure 7.5 shows a sketch of C as a function
of W. Note that C increases monotonically with W, reaching a limit of (P/N;) log, e as
W — oo. This is known as the ultimate Shannon limit on achievable rate. Note also that
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(P/Ny) logy e

Figure 75.  Capacity as a function of bandwidth W for fixed P/N,.

when W = P/N,), i.e. when the bandwidth is large enough for the SNR to reach 1, then
C is within 1/log, e, 69% of the ultimate Shannon limit. This is usually expressed as
being within 1.6 dB of the ultimate Shannon limit.

Shannon’s result showed that the error probability can be made arbitrarily small for
any rate R <C. Using (7.81) for C, p for R/W, and SNR for PAWN,), the inequality

R < C becomes
p <log,(1+SNR). (7.83)
If we substitute this into (7.81), we obtain
E, SNR

N, logy(1+SNR)’

This is a monotonic increasing function of the single-variable SNR, which in turn is
decreasing in W. Thus (E,/Np), is monotonically decreasing in W. As W — oo it
reaches the limit In2 = 0.693, i.e. —1.59dB. As W decreases, it grows, reaching 0dB
at SNR = 1, and increasing without bound for yet smaller W. The limiting spectral
efficiency, however, is C/W. This is also monotonically decreasing in W, going to 0
as W — oo. In other words, there is a trade-off between the required E,/N,, which
is preferably small, and the required spectral efficiency p, which is preferably large.
This is discussed further in Chapter 8.

7.10 Summary of random processes

The additive noise in physical communication systems is usually best modeled as a
random process, i.e. a collection of random variables, one at each real-valued instant
of time. A random process can be specified by its joint probability distribution over
all finite sets of epochs, but additive noise is most often modeled by the assump-
tion that the rvs are all zero-mean Gaussian and their joint distribution is jointly
Gaussian.

These assumptions were motivated partly by the central limit theorem, partly by
the simplicity of working with Gaussian processes, partly by custom, and partly by
various extremal properties. We found that jointly Gaussian means a great deal more
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than individually Gaussian, and that the resulting joint densities are determined by
the covariance matrix. These densities have ellipsoidal contours of equal probability
density whose axes are the eigenfunctions of the covariance matrix.

A sample function Z(¢, ) of a random process Z(#) can be viewed as a waveform
and interpreted as an ., vector. For any fixed £, function g(z), the inner product
(g(1), Z(t, w)) maps w into a real number and thus can be viewed over {} as a random
variable. This rv is called a linear function of Z(f) and is denoted by [ g(f)Z(¢)dt.

These linear functionals arise when expanding a random process into an orthonormal
expansion and also at each epoch when a random process is passed through a linear
filter. For simplicity, these linear functionals and the underlying random processes
are not viewed in a measure-theoretic perspective, although the £, development in
Chapter 4 provides some insight about the mathematical subtleties involved.

Noise processes are usually viewed as being stationary, which effectively means that
their statistics do not change in time. This generates two problems: first, the sample
functions have infinite energy, and, second, there is no clear way to see whether
results are highly sensitive to time regions far outside the region of interest. Both
of these problems are treated by defining effective stationarity (or effective wide-
sense stationarity) in terms of the behavior of the process over a finite interval. This
analysis shows, for example, that Gaussian linear functionals depend only on effective
stationarity over the signal space of interest. From a practical standpoint, this means
that the simple results arising from the assumption of stationarity can be used without
concern for the process statistics outside the time range of interest.

The spectral density of a stationary process can also be used without concern for
the process outside the time range of interest. If a process is effectively WSS, it has
a single-variable covariance function corresponding to the interval of interest, and
this has a Fourier transform which operates as the spectral density over the region of
interest. How these results change as the region of interest approaches oo is explained
in Appendix 7.11.3.

7.1 Appendix: Supplementary topics

7114 Properties of covariance matrices

This appendix summarizes some properties of covariance matrices that are often useful
but not absolutely critical to our treatment of random processes. Rather than repeat
everything twice, we combine the treatment for real and complex rvs together, On a
first reading, however, one might assume everything to be real. Most of the results are
the same in each case, although the complex-conjugate signs can be removed in the real
case. It is important to realize that the properties developed here apply to non-Gaussian
as well as Gaussian rvs. All rvs and rvs here are assumed to be zero-mean.

A square matrix K is a covariance matrix if a (real or complex) rv Z exists such
that K = E[ZZ""]. The complex conjugate of the transpose, 2", is called the Hermitian
transpose and is denoted by Z'. If Z is real, of course, Z'=7". Similarly, for a matrix K,
the Hermitian conjugate, denoted by K', is K. A matrix is Hermitian if K =K'. Thus a
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real Hermitian matrix (a Hermitian matrix containing all real terms) is a symmetric
matrix. .

An n by n square matrix K with real or complex terms is nonnegative definite if it
is Hermitian and if, for all 5 € C*, b'Kb is real and nonnegative. It is positive definite
if, in addition, b'Kb > 0 for b # 0. We now list some of the important relationships
between nonnegative definite, positive definite, and covariance matrices and state some
other useful properties of covariance matrices. ’

(1) Every covariance matrix K is nonnegative definite. To see this, let Z be a rv such
that K = E[ZZ']; K is Hermitian since E[Z,Z*] = E[Z%Z,] for all k, m. For any
beC", let X =b'Z. Then 0 < E[|X|*] =E[(b'Z)(5'Z)*] =E[b'ZZ"b] = b'Kb.

(2) For any complex n by n matrix A, the matrix K = AA' is a covariance matrix. In fact,
let Z have n independent unit-variance elements so that K, is the identity matrix
|,. Then Y = AZ has the covariance matrix Ky = E[(AZ)(AZ)!] =E[AZZ'AT] =AA'.
Note that if A is real and Z is real, then Y is real and, of course, K, is real. It is
also possible for A to be real and Z complex, and in this case Ky is still real but
Y is complex.

(3) A covariance matrix K is positive definite if and only if K is nonsingular. To see
this, let K = E[ZZ"] and note that, if 5'Kb =0 for some b # 0, then X =5'Z
has zero variance, and therefore is 0 with probability 1. Thus E[XZ'] =0, so
b'E[ZZ'] = 0. Since b #0 and b'K =0, K must be singular. Conversely, if K is
singular, there is some & such that Kb =0, so b'Kb is also 0.

(4) A complex number A is an eigenvalue of a square matrix K if Kg = Ag for some
nonzero vector g; the corresponding g is an eigenvecror of K. The following results
about the eigenvalues and eigenvectors of positive (nonnegative) definite matrices
K are standard linear algebra results (see, for example, Strang (1976), sect 5.5).

All eigenvalues of K are positive (nonnegative). If K is real, the eigenvectors
can be taken to be real. Eigenvectors of different eigenvalues are orthogonal, and
the eigenvectors of any one eigenvalue form a subspace whose dimension is called
the mulriplicity of that eigenvalue. If K is n by n, then n orthonormal eigenvectors
4y, .. .4, can be chosen, The corresponding list of eigenvalues A,,..., A, need
not be distinct; specifically, the number of repetitions of each eigenvalue equals
the multiplicity of that eigenvalue. Finally, det(K) = [T;_, A.

(5) If K is nonnegative definite, let Q be the matrix with the orthonormal columns
di»- -4, defined in item (4) above. Then Q satisfies KQ = QA, where A =
diag(A,, ..., A,). This is simply the vector version of the eigenvector/eigenvalue
relationship above. Since g}g,, = 8,,, Q also satisfies Q'Q =1,. We then also have
0~' = Q' and thus QQ' =1_; this says that the rows of Q are also orthonormal.
Finally, by post-multiplying KQ = QA by Q', we see that K = QAQ". The matrix
Q is called unitary if complex and orthogonal if real.

(6) IfKis positive definite, then Kb 5 0 for b # 0. Thus K can have no zero eigenvalues
and A is nonsingular. It follows that K can be inverted as K™ = QA-'Q". For any
n-vector b,

b'K™'b = 3 A" (B, g
k
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To see this, note that 5'K™'b = b'QA~'Q"b. Letting v = Q"5 and using the fact
that the rows of Q" are the orthonormal vectors g,, we see that (b, g,) is the kth
component of . We then have v'A~lv =¥, A7y, |%, which is equivalent to the
desired result. Note that (b, g,) is the projection of b in the direction of g,.

(7) We have detK = [];_, A;, where A;,..., A, are the eigenvalues of K repeated
according to their multiplicity. Thus, if K is positive definite, detK > 0, and, if K
is nonnegative definite, detK > 0.

(8) If K is a positive definite (semi-definite) matrix, then there is a unique positive
definite (semi-definite) square root matrix R satisfying R* =K. In particular, R is
given by ’

R=QA'2Q", where A'/? = diag (JA—,, Vis,..., \/)t_,,) . (7.84)

(9) If K is nonnegative definite, then K is a covariance matrix. In particular, K is the
covariance matrix of ¥ = RZ, where R is the square root matrix in (7.84) and
Kz =1,,. This shows that zero-mean jointly Gaussian rvs exist with any desired
covariance matrix; the definition of jointly Gaussian here as a linear combination
of normal rvs does not limit the possible set of covariance matrices.

For any given covariance matrix K, there are usually many choices for A satisfying
K = AA!. The square root matrix R is simply a convenient choice. Some of the results
in this section are summarized in the following theorem.

Theorem 7.11.1 An n by n matrix K is a covariance matrix if and only if it is
nonnegative definite. Also K is a covariance matrix if and only if K = AA! for an n by
n matrix A. One choice for A is the square root matrix R in (7.84).

7.11.2 The Fourier series expansion of a truncated random process

Consider a (real zero-mean) random process that is effectively WSS over some interval
[—T,/2, T, /2] where T, is viewed intuitively as being very large. Let {Z(¢); |t| < T,/2}
be this process truncated to the interval [—T,/2, T,/2]. The objective of this and
Section 7.11.3 is to view this truncated process in the frequency domain and discover
its relation to the spectral density of an untruncated WSS process. A second objective
is to interpret the statistical independence between different frequencies for stationary
Gaussian processes in terms of a truncated process.

Initially assume that {Z(?); |¢] < T,/2} is arbitrary; the effective WSS assumption
will be added later. Assume the sample functions of the truncated process are £, real
functions with probability 1. Each £, sample function, say {Z(t, ); |t] < Tp/2} can
then be expanded in a Fourier series, as follows:

Z(tw)= Y Z (0)f M, i< % (7.85)

==—00
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The orthogonal functions here are complex and the coefficients Z,() can be similarly
complex. Since the sample functions {Z(t, w); |t] < T,,/2} are real, Z,(w) = Z*,(w)
for each k. This also implies that Z,(w) is real. The inverse Fourier series is given by

Zy(0) = 1 f o Z(t, w)e~ ™k 4; (7.86)
k - ) . .
To ~Tp/2

For each sample point w, Z,() is a complex number, so Z, is a complex v, i.e.
R(Z,) and I(Z,) are both rvs. Also, R(Z,) = R(Z_,) and I(Z,) = —-I(Z_,) for each
k. It follows that the truncated process {Z(1); |t| < Ty/2} defined by

T, T,

Z(t)= Y. Z,emiT, -5 Sts3, (7.87)

k=—00

is a (real) random process and the complex rvs Z, are complex linear functionals of
Z(1) given by

N 1 r%/2 .
Z=—/ " Z(t)e"rmkiTo gy, (7.88)
Ty J-nn2

Thus (7.87) and (7.88) are a Fourier series pair between a random process and a
sequence of complex rvs. The sample functions satisfy

1 p%n2 .
o BECACIOLES HEAGTS

Ty It/ kez

1
Ff[

The assumption that the sample functions are £, with probability 1 can be seen to be
equivalent to the assumption that

so that

[ o z’(z)dt] =YE [lZJ’]- (7.89)

==To/2 keZ

3 Si<oo,  where S, =E[|Z,[*]. (7.90)

kez

This is summarized in the following theorem.

Theorem 7.11.2  If a zero-mean (real) random process is truncated to [—T,/2, T,/2),
and the truncated sample functions are £, with probability 1, then the truncated
process is specified by the joint distribution of the complex Fourier-coefficient random

variables {Z,). Furthermore, any joint distribution of {Z,; k € Z} that satisfies ( 7.90)
specifies such a truncated process.

The covariance function of a truncated process can be calculated from (7.87) as
follows:

Kz(t, 7) =E[Z(1)Z* (D] =E [Z Z"ezf”i’"/To Z Z;C-Z‘n'imr/rojl
k m

A A . . T:
=Y E[Z,Z |e* M/ Tog=2mimT/To for — % <t T< ?o. (7.91)

k,m
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Note that if the function on the right of (7.91) is extended over all 7, 7 € R, it becomes
periodic in ¢ with period Ty, for each 7, and periodic in 7 with period T, for each ¢.
Theorem 7.11.2 suggests that virtually any truncated process can be represented as a
Fourier series. Such a representation becomes far more insightful and useful, however,
if the Fourier coefficients are uncorrelated. Sections 7.11.3 and 7.11.4 look at this case
and then specialize to Gaussian processes, where uncorrelated implies independent.

7113 Uncorrelated coefficients in a Fourier series

Consider the covariance function in (7.91) under the additional assumption that the
Fourier coefficients {Z,; k € Z} are uncorrelated, i.. that E[Z,2*] =0 for all k,m

- such that k 7 m. This assumption also holds for m = —k # 0, and, since Z, = Z*,
for all k, implies both that E[(R(Z,))?] = E[((Z,))?] and E[R(Z,)I(Z,)] =0 (see
Exercise 7.10). Since E[Z,Z2] = 0 for k # m, (7.91) simplifies to

. T T,
Ko(r, 7) = Y S,e?™ = for ~0 <y, 7< -2, (7.92)
kez 2 2

This says that K;(¢, 7) is a function only of t — 7 over —T/2 <t,7 < T/2, i.e. that
Kz(t, 7) is effectively WSS over [—To/2, To/2]}. Thus Kz(¢, 7) can be denoted by
Kz(t — 7) in this region, and

Kz(r) = S,e*™/, (7.93)
k

This means that the variances S, of the sinusoids making up this process are the
Fourier series coefficients of the covariance function Rz ™.

In summary, the assumption that a truncated (real) random process has uncorrelated
Fourier series coefficients over [—T,/2, Tp/2] implies that the process is WSS over
[—Ty/2, Ty/2] and that the variances of those coefficients are the Fourier coefficients
of the single-variable covariance. This is intuitively plausible since the sine and cosine
components of each of the corresponding sinusoids are uncorrelated and have equal
variance.

Note that K, (¢, 7) in the above example is defined for all ¢, 7 € [-T,/2, Ty/2] and
thus z— 7 ranges from —Tj to T, and K, (r) must satisfy (7.93) for —T,, < r < T,. From
(7.93), K5(r) is also periodic with period T, so the interval [Ty, T,] constitutes
two periods of Rz(r). This means, for example, that E[Z(—£)Z*(g)] = E[Z(Tp/2 —
8)Z*(~T,/2+ €)]. More generally, the periodicity of K, (r) is reflected in K,(z, 7), as
illustrated in Figure 7.6.

We have seen that essentially any random process, when truncated to [—T/2, T,/2],
has a Fourier series representation, and that, if the Fourier series coefficients are uncor-
related, then the truncated process is WSS over [—T,/2, T,/2] and has a covariance
function which is periodic with period T,. This proves the first half of the following
theorem.
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A
2z
r
Kz({t, 7} constant over this pair
of lines ‘
T, = also constant over
2 g, 1, this pair of lines

-2 t =

2

Figure 76.  Constraint on K, (r, 7) imposed by periodicity of Rz(t -1).

Theorem 7.11.3 Let {Z(1); t € [ T,/2, Ty/2]} be a finite-energy zero-mean (real)
random process over [=Ty/2, To/2] and let {Z,; k € Z} be the Fourier series rvs of
(7.87) and (7.88).

o IfE[Z,Z:] = 5,6, for all k,m € Z, then (Z(1); t € [—T,/2, Ty/2]} is effectively
WSS within [-T,/2, Ty/2] and satisfies (7.93).

o If {Z(1); te[-Ty/2, Ty/2]} is effectively WSS within [—To/2, Ty/2] and if
K, (t —7) is periodic with period Ty over [~T,, T,), then E[Z,Z%] = 5,8, , for
some choice of S; = 0 and for all k,m € Z.

Proof To prove the second part of the theorem, note from (7.88) that

n A 1 To/2 To/2 " i
E[Z2.28] = = / K, (t, 7)e~2mk/Tog2mimITo 4y d7. (7.94)
T§ J-ror2/=1o12 :

By assumption, K5 (z, 7) =K, (¢t — 7) for t, T € [=Ty/2, Ty/2] and K,(t — 1) is periodic
with period T;,. Substituting s = ¢ — 7 for ¢ as a variable of integration, (7.94) becomes

1

E[Z.2;) = 7
0

To/2 Tof2-7 . . . .
f ( / K, (s)e™2mT g s) 27kt Ty 2mim/Ty 47 (7.95)
—~To/2 \/-To/2-7

The integration over s does not depend on 7 because the interval of integration is one
period and K is periodic. Thus, this integral is only a function of k, which we denote
by T;S,. Thus ’

o1 L P2 riemy, Sy form=k;
HZZ5] = T, ]:ro/z Sie dr = 0 otherwise. (7.96)
This shows that the Z, are uncorrelated, completing the proof. a

The next issue is to find the relationship between these processes and processes
that are WSS over all time. This can be done most cleanly for the case of Gaussian
processes. Consider a WSS (and therefore stationary) zero-mean Gaussian random
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(a) (b)

Figure 7.7.  (a) K (¢, 7) over the region ~Tp/2 < 1, 7 < T;/2 for a stationary process Z' satisfying
Kz (7) =0 for |7] > T;/2. (b) K,(¢, ) for an approximating process Z comprising independent
sinusoids, spaced by 1/T; and with uniformly distributed phase. Note that the covariance
functions are identical except for the anomalous behavior at the comers where ¢ is close to
T,/2 and 7 is close to —Tp/2 or vice versa.

process?® {Z'(z); t € R} with covariance function K (7) and assume a limited region
of nonzero covariance; i.e.

Ky (1) =0 for |[7]> %
Let Sz (f) = 0 be the spectral density of Z’ and let T satisfy T, > T;. The Fourier
series coefficients of K5 (7) over the interval [—Tp/2, Tp/2] are then given by S, =
Sz (k/Ty)/To. Suppose this process is approximated over the interval [—T,/2, T,/2]
by a truncated Gaussian process {Z(z); t € [—-T,/2, Ty/2]} composed of independent
Fourier coefficients Z,, i.c.

A . T
Z(t) = ZZkCZﬂ'lkI/To’ ___29_ <t<28
k

where
E(Z,2:]1=88m  foralik,meZ.

By Theorem 7.11.3, the covariance function of Z(t) is K;(7) = ¥, S,e*™/T, This
is periodic with period T, and for |7| < Ty/2, K;(7) = K, (7). The original process
Z'(7) and the approximation Z(#) thus have the same covariance for [7| < T,/2. For
I7] > To/2, Kz (7) = 0, whereas K,(7) is periodic over all 7. Also, of course, Z’
is stationary, whereas Z is effectively stationary within its domain [—Ty/2, T,/2].
The difference between Z and Z' becomes more clear in terms of the two-variable
covariance function, illustrated in Figure 7.7.

% Equivalently, one can assume that Z' is effectively WSS over some interval much larger than the intervals
of interest here.
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It is evident from the figure that if Z’' is modeled as a Fourier series over
[=To/2, Ty/2) using independent complex circularly symmetric Gaussian coefficients,
then K. (t, 7) =K;(t, 7) for |t|, | 7] < (T, — T}) /2. Since zero-mean Gaussian processes
are completely specified by their covariance functions, this means that Z’ and Z are
statistically identical over this interval.

In summary, a stationary Gaussian process Z’ cannot be perfectly modeled over an
interval [~T,/2, T,/2] by using a Fourier series over that interval. The anomalous
behavior is avoided, however, by using a Fourier series over an interval large enough
to include the interval of interest plus the interval over which K (7) # 0. If this
latter interval is unbounded, then the Fourier series model can only be used as an
approximation. The following theorem has been established.

Theorem 7.11.4 Let Z'(f) be a zero-mean stationary Gaussian random process with
spectral density S(f) and covariance K;(7) =0 for |7| > T,/2. Then for Ty > T,
the truncated process Z(t) = Y, Z,&*™ T for |t| < T,/2, where the Z, are indepen-
dent and Z, ~ CN(S(k/Ty)/Ty) for all k € Z is statistically identical to Z'(t) over
[—(Ty— T1)/2, (To—T,)/2}

The above theorem is primarily of conceptual use, rather than as a problem-solving
tool. It shows that, aside from the anomalous behavior discussed above, stationarity
can be used over the region of interest without concern for how the process behaves
far outside the interval of interest. Also, since T}, can be arbitrarily large, and thus the
sinusoids arbitrarily closely spaced, we see that the relationship between stationarity
of a Gaussian process and independence of frequency bands is quite robust and more
than something valid only in a limiting sense.

7114 The Karhunen-Loeve expansion

There is another approach, called the Karhunen-Loeve expansion, for representing a
random process that is truncated to some interval [—7;/2, T/2] by an orthonormal
expansion. The objective is to choose a set of orthonormal functions such that the
coefficients in the expansion are uncorrelated.

We start with the covariance function K(t, 7) defined for ¢, 7 € [~ T,/2, Ty/2]. The
basic facts about these time-limited covariance functions are virtually the same as the
facts about covariance matrices in Appendix 7.11.1. That is, K(z, 7) is nonnegative
definite in the sense that for all £, functions g(z),

Tol2 pTo/2
] f g(OKz(t, T)g(n)dedr >0
- —T/2

1 To/2

Note that K also has real-valued orthonormal eigenvectors defined over [~Ty/2, Ty/2]
and nonnegative eigenvalues. That is,

[ KaleDear =i 1€~ 2],
=To/2 )
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where (¢,,, ¢,) = ,, ;. These eigenvectors span the £, space of real functions over
[—To/2, Ty/2]. By using these eigenvectors as the orthonormal functions of Z(f) =
YomZnPn(2), it is easy to show that E[Z,Z,] = A,,6,,,. In other words, given an
arbitrary covariance function over the truncated interval [—T7,/2, T,/2], we can find
a particular set of orthonormal functions so that Z(1) =", Z,,¢,,(t) and E[Z_Z,] =
A0, ;. This is called the Karhunen-Loeve expansion.

These equations for the eigenvectors and eigenvalues are well known integral equa-
tions and can be calculated by computer. Unfortunately, they do not provide a great
deal of insight into the frequency domain.

712 Exercises

7.1 (a) Let X, Y be iid rvs, each with density f, (x) = @ exp(—x?/2). In part (b), we
show that a must be 1/+4/27 in order for £, (x) to integrate to 1, but in this
part we leave a undetermined. Let § = X2+ Y2, Find the probability density
of S in terms of a. [Hint. Sketch the contours of equal probability density in
the X, Y plane.]

(b) Prove from part (a) that & must be 1/+/27 in order for S, and thus X and Y,
to be rvs. Show that E[X] =0 and that E[X?] =1.
(c) Find the probability density of R = /S (R is called a Rayleigh 1v).
72 (a) Let X ~ N (0, 0%) and Y ~ N(0, o) be independent zero-mean Gaussian
) rvs. By convolving their densities, find the density of X+ Y. [Hint. In
performing the integration for the convolution, you should do something
called “completing the square” in the exponent. This involves multiplying and
dividing by e®"/* for some a, and you can be guided in this by knowing what
the answer is. This technique is invaluable in working with Gaussian rvs.]
(b) The Fourier transform of a probability density fy(x) is (6 =
J fx(x)e~2m0 dx = E[e~2"X9], By scaling the basic Gaussian transform in
(4.48), show that, for X ~ N (0, 3),

) 2,2
@ =enp( - 2T ).

(c) Now find the density of X +Y by using Fourier transforms of the densities.
(d) Using the same Fourier transform technique, find the density of V =
Y ta1 W, where Wy, . .., W, are independent normal rvs.

7.3 In this exercise you will construct two rvs that are individually Gaussian but
not jointly Gaussian. Consider the nonnegative random variable X with density
given by

fx(x) = % exp(:ixj) , for x > 0.

Let U be binary, £1, with py(1) = py(~1) =1/2.
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(a) Find the probability density of ¥; = UX. Sketch the density of ¥; and find
its mean and variance.

(b) Describe two normalized Gaussian rvs, say Y; and Y,, such that the
joint density of Y;,Y, is zero in the second and fourth quadrants of the
plane. It is nonzero in the first and third quadrants where it has the density
(1/m)exp(—y3/2 —¥2/2). Are Y, Y, jointly Gaussian? [Hint. Use part (a)
for ¥, and think about how to construct ¥,.]

(c) Find the covariance E[Y,Y,]. [Hint. First find the mean of the rv X above.]

(d) Use a variation of the same idea to construct two normalized Gaussian rvs
V1, V, whose probability is concentrated on the diagonal axes v, = v, and
v, =—1,, i.e. for which Pr(V; # V,and V; # —V,) =0. Are V,, V, jointly
Gaussian?

74 Let W, ~N(0,1) and W, ~ N(0,1) be independent normal rvs. Let X =
max(W;, W;) and ¥ = min(W,;, W,).

(a) Sketch the transformation from sample values of W;, W, to sample values
of X, Y. Which sample pairs w,, w, of W;, W, map into a given sample pair
x,yof X,Y? '

(b) Find the probability density fyy(x,») of X, Y. Explain your argument briefly
but work from your sketch rather than equations.

(c) Find f;(s), where S=X+-7Y.

(d) Find fp(d), where D=X-Y.

(e) Let U be a random variable taking the values 3:1 with probability 1/2 each
and let U be statistically independent of W, W,. Are S and UD jointly
Gaussian?

7.5 Let ¢(¢) be an £; and £, function of energy 1 and let A{t) be £, and £,.
Show that [ @(f)h(7—r)dt is an £, function of 7. [Hint. Consider the Fourier
transform of ¢ () and h(r).]

7.6 (a) Generalize the random process of (7.30) by assuming that the Z, are
arbitrarily correlated. Show that every sample function is still £,.
(b) For this same case, show that [f [K;(¢, 7)[*d¢dr < 0.

1.7 (a) Let Z,, Z,, ... be a sequence of independent Gaussian rvs, Z, ~ N(0, o?),
and let {¢,(¢) : R — R} be a sequence of orthonormal functions. Argue from
fundamental definitions that, for each 1, Z(r) = 3_;_, Z, ¢, (2) is a Gaussian
rv. Find the variance of Z(r) as a function of ¢.

(b) For any set of epochs #;,...,1, let Z(t,) = X1, ZyP(tn) for 1 <m=<e.
Explain carefully from the basic definitions why {Z(t,),...,Z(t,)} are
jointly Gaussian and specify their covariance matrix. Explain why {Z(1);
t € R} is a Gaussian random process.

(c) Now let n = oo in the definition of Z(f) in part (a) and assume that ", 07 < oo.
Also assume that the orthonormal functions are bounded for all k£ and 7 in
the sense that, for some constant A, |¢,(7)|] < A for all k and ¢. Consider the
linear combination of rvs:

Constellation Exhibit 2004, Page 164 of 229



712 Exercises 265

2() = 22 = lim 3" Z, (0.
k k=1

Let ZM(1) = 3°7_, Z, b, (#). For any given ¢, find the variance of ZU(r) —
Z®)(¢) for j > n. Show that, for all j > n, this variance approaches 0 as n —
0. Explain intuitively why this indicates that Z(f) is a Gaussian rv. Note: Z(z)
is, in fact, a Gaussian rv, but proving this rigorously requires considerable
background; Z(¢) is a limit of a sequence of rvs, and each rv is a function of
a sample space — the issue here is the same as that of a sequence of functions
going to a limit function, where we had to invoke the Riesz—Fischer theorem.

(d) For the above Gaussian random process {Z(f); t € R}, let z(#) be a sample
function of Z(z) and find its energy, i.e. [|z]|?, in terms of the sample
values z;,25,... of Z,,Z,,... Find the expected energy in the process,
E[I{Z(z); £ e R}II’].

(¢) Find an upperbound on Pr{||[{Z(?); ¢ € R}||> > a} that goes to zero as
a — co. [Hint. You might find the Markov inequality useful. This says that
for a nonnegative rv Y, Pr{Y > a} < E[Y]/a.] Explain why this shows that
the sample functions of {Z(f)} are £, with probability 1.

7.8 Consider a stochastic process {Z(#); t € R} for which each sample function
is a sequence of rectangular pulses as in Figure 7.8. Analytically, Z(¢) =
Yo Zy rect(t—k), where ...Z_y,Zy, Z,,... is a sequence of iid normal
variables, Z, ~ N (0, 1).

L2 7

Figure 7.8,

(@) Is {Z(r); t € R} a Gaussian random process? Explain why or why not
carefully.

(b) Find the covariance function of {Z(¢); ¢ € R}.

(c) Is {Z(z); t € R} a stationary random process? Explain carefully.

(d) Now suppose the stochastic process is modified by introducing a random
time shift & which is uniformly distributed between 0 and 1. Thus, the new
process {V(z); ¢ € R} is defined by V(1) = 332 _, Z; rect(t—k— &). Find
the conditional distribution of V(0.5) conditional on V(0) = v.

(e) Is {V(s); t € R} a Gaussian random process? Explain why or why not
carefully. . ' '

(f) Find the covariance function of {V(¢); ¢ € R}.

(2) Is {V(r); t € R} a stationary random process? It is easier to explain this than
to write a lot of equations.

7.9 Consider the Gaussian sinc process, V(t) = X4 Vi sinc[(¢ - kT)/T], where
{e... Vo1, Vo, Wiy ..., } is @ sequence of did 1vs, Vi, ~ N (0, a?).
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(a) Find the probability density for the linear functional [ V(r)sinc(t/T)ds.

(b) Find the probability density for the linear functional [ V(f) sinc(at/T)dt for
a>1.

(c) Consider a linear filter with impulse response h(t) = sinc(at/T), where
a > 1. Let {¥(¢)} be the output of this filter when V(¢) is the input. Find
the covariance function of the process {¥(r)}. Explain why the process is
Gaussian and why it is stationary.

(d) Find the probability density for the linear functional ¥(7) =
J V(#) sinc(a(t — 7)/T)dt for a > 1 and arbitrary 7.

(¢) Find the spectral density of {¥(1); t € R}.

(f) Show that {¥(r); t € R} can be represented as Y(1) =3, Y, smc[(t —kT)/T]
and characterize the rvs {Y,; k € Z}.

(2) Repeat parts (c), (d), and (e) for a < 1.

(h) Show that {Y()} in the @ < 1 case can be represented as a Gaussian sinc
process (like {V(#)} but with an appropriately modified value of T).

(i) Show that if any given process {Z(f); t € R} is stationary, then so is the
process {¥(2); t € R}, where Y(£) = Z?(¢) for all e R.

7.10 (Complex random variables)

(a) Suppose the zero-mean complex random variables X, and X_, satisfy X*, =
X, for all k. Show that if E[X, X*,] = 0 then E[(R(X,))?] = E[(3(X,))?] and
- E[R(X)S(X_,)] =0.
(b) Use this to show that if E[X,X:] =0 then E[R(X)R(X,)] =0,
E[R(X,)3(X,,)] =0, and E[I(X,)I(X,,)] = O for all m not equal to either k
or —k.

7.11 Explain why the integral in (7.58) must be real for g,(f) and g,(7) real, but the
integrand g, (f)Sz(f)&;(f) need not be real.

7.12 (Fxltered white noise) Let {Z(#)} be a WGN process of spectral density N, /2

(@) LetY = fo Z(r) dr. Find the probability density of Y.

(b) Let Y(¢) be the result of passing Z(¢) through an ideal baseband filter of
bandwidth W whose gam is adjusted so that its impulse response has unit
energy. Find the joint distribution of ¥(0) and Y(1/4W).

(c) Find the probability density of

V= e~'Z(1)ds.
7.13 (POWCI‘ spectral density)

(a) Let {¢,(2)} be any set of real orthonormal £, waveforms whose transforms
are limited to a band B, and let {W(r)} be WGN with respect to B with power
spectral density Sy (f) = N,/2 for f € B. Let the orthonormal expansion
of W(r) with respect to the set {¢,(¢)} be defined by

W(t) = E Wk(#k(t)v
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where W, = (W(1), ¢,(2)). Show that {W,} is an iid Gaussian sequence, and
give the probability distribution of each W,.

(b) Let the band B = [~1/2T,1/2T], and let ¢,(f) = (1//T)
sinc[(t— kT)/T), k € Z. Interpret the result of part (a) in this case.

7.14 (Complex Gaussian vectors)

(a) Give an example of a 2D complex rv Z = (Z,, Z,), where Z, ~ €N (0, 1) for
k=1,2 and where Z has the same joint probability distribution as e'%Z for
all ¢ € [0, 27], but where Z is not jointly Gaussian and thus not circularly
symmetric Gaussian. [Hint. Extend the idea in part (d) of Exercise 7.3.]

(b) Suppose a complex rv Z = Z, +iZ,, has the properties that Z_ and Z,, are
individually Gaussian and that Z has the same probability density as ei¢Z
for all ¢ € [0, 27r). Show that Z is complex circularly symmetric Gaussian.
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,. Detectlon codlng, and decodmg

8.1 Introduction

Chapter 7 showed how to characterize noise as a random process. This chapter uses
that characterization to retrieve the signal from the noise-corrupted received waveform.
As one might guess, this is not possible without occasional errors when the noise is
unusually large. The objective is to retrieve the data while minimizing the effect of
these errors. This process of retrieving data from a noise-corrupted version is known
as detection.

Detection, decision making, hypothesis testing, and decoding are synonyms. The
word detection refers to the effort to detect whether some phenomenon is present or
not on the basis of observations. For example, a radar system uses observations to
detect whether or not a target is present; a quality control system attempts to detect
whether a unit is defective; a medical test defects whether a given disease is present.
The meaning of detection has been extended in the digital communication field from a -
yes/no decision to a decision at the receiver between a finite set of possible transmitted
signals. Such a decision between a set of possible transmitted signals is also called
decoding, but here the possible set is usually regarded as the set of codewords in a code
rather than the set of signals in a signal set.! Decision making is, again, the process of
deciding between a number of mutually exclusive alternatives. Hypothesis testing is
the same, but here the mutually exclusive alternatives are called hypotheses. We use
the word hypotheses for the péssible choices in what follows, since the word conjures
up the appropriate intuitive image of making a choice between a set of alternatives,
where only one alternative is correct and there is a possibility of erroneous choice.

These problems will be studied initially in a purely probabilistic setting, That
is, there is a probability model within which each hypothesis is an event. These
events are mutually exclusive and collectively exhaustive; i.e., the sample outcome of
the experiment lies in one and only one of these events, which means that in each
performance of the experiment, one and only one hypothesis is correct. Assume there
are M hypotheses,? labeled ay, . . . , a,,.,. The sample outcome of the experiment will

! As explained more fully later, there is no fundamental difference between a code and a signal set.

2 The principles here apply essentially without change for a countably infinite set of hypotheses; for an
uncountably infinite set of hypotheses, the process of choosing a hypothesis from an observation is called
estimation. Typically, the probability of choosmg correctly in this case is 0, and the emphasis is on makmg
an estimate that is close in some sense to the correct hypothesis. -
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be one of these M events, and this defines a random symbol U which, for each m, takes
the value a,, when event a,, occurs. The marginal probability p, (a,) of hypothesis a,,
is denoted by p,, and is called the a-priori probability of a,,. There is also a random
variable (rv) V, called the observation. A sample value v of V is observed, and on
the basis of that observation the detector selects one of the possible M hypotheses.
The observation could equally well be a complex random variable, a random vector,
a random process, or a random symbol; these generalizations are discussed in what
follows. _

Before discussing how to make decisions, it is important to understand when and
why decisions must be made. For a binary example, assume that the conditional
probability of hypothesis a, given the observation is 2/3 and that of hypothesis a; is
1/3. Simply deciding on hypothesis a5 and forgetting about the probabilities throws
away the information about the probability that the decision is correct. However, actual
decisions sometimes must be made. In a communication system, the user usually wants
to receive the message (even partly garbled) rather than a set of probabilities. In a
control system, the controls must occasionally take action. Similarly, managers must
occasionally choose between courses of action, between products, and between people
to hire. In a sense, it is by making decisions that we return from the world of
mathematical probability models to the world being modeled.

There are a number of possible criteria to use in making decisions. Initially assume
that the criterion is to maximize the probability of correct choice. That is, when
the experiment is performed, the resulting experimental outcome maps into both a
sample value a,, for U and a sample value v for V. The decision maker observes v
(but not a,,) and maps v into a decision #(v). The decision is correct if #(v) = a,,.
In principle, maximizing the probability of correct choice is almost trivially simple.
Given v, calculate Pyy (a,,|v) for each possible hypothesis a,,. This is the probability
that a,, is the cormrect hypothesis conditional on v. Thus the rule for maximizing the
probability of being correct is to choose #(v) to be that a,, for which p, (a,[v) is
maximized. For each possible observation v, this is denoted by

u(v) =arg m’;ax[puw(a,,,lv)] (MAP rule), (8.1)

where arg max,, means the argument m that maximizes the function. If the maximum
is not unique, the probability of being correct is the same no matter which maximizing
m is chosen, so, to be explicit, the smallest such m will be chosen. Since the rule
(8.1) applies to each possible sample output v of the random variable V, (8.1) also
defines the selected hypothesis as a random symbol U(V). The conditional probability
Py, is called an a-posteriori probability. This is in contrast to the a-priori probability
p, of the hypothesis before the observation of V. The decision rule in (8.1) is thus
called the maximum a-posteriori probability (MAP) rule.

3 As discussed in Appendix 8.10, it is sometimes desirable to choose randomly among the maximum
a-posteriori choices when the maximum in (8.1) is not unique. There are often situations (such as with
discrete coding and decoding) where nonuniqueness occurs with positive probability.
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An important consequence of (8.1) is that the MAP rule depends only on the
conditional probability p,, and thus is completely determined by the joint distribution
of U and V. Everything else in the probability space is irrelevant to making a MAP
decision.

When distinguishing between different decision rules, the MAP decision rule in
(8.1) will be denoted by &, (v). Since the MAP rule maximizes the probability of
correct decision for each sample value v, it also maximizes the probability of correct
decision averaged over all v. To see this analytically, let i (v) be an arbitrary decision
rule. Since #,,, maximizes py, (m|v) over m,

p,(&,,, () ~p, (&, (v)]v) = 0; for each rule D and observation v. (8.2)

Taking the expected value of the first term on the left over the observation V, we
get the probability of correct decision using the MAP decision rule. The expected
value of the second term on the left for any given D is the probability of correct
decision using that rule. Thus, taking the expected value of (8.2) over V shows that the
MAP rule maximizes the probability of correct decision over the observation space.
The above results are very simple, but also important and fundamental. They are
summarized in the following theorem.

Theorem 8.1.1 The MAP rule, given in (8.1), maximizes the probability of a correct
decision, both for each observed sample value v and as an average over V. The MAP
rule is determined solely by the joint distribution of U and V.

Before discussing the implications and use of the MAP rule, the above assumptions
are reviewed. First, a probability model was assumed in which all probabilities are
known, and in which, for each performance of the experiment, one and only one
hypothesis is correct. This conforms very well to the communication model in which
a transmitter sends one of a set of possible signals and the receiver, given signal plus
noise, makes a decision on the signal actually sent. It does not always conform well to
a scientific experiment attempting to verify the existence of some new phenomenon; in
such situations, there is often no sensible way to model a-priori probabilities. Detection
in the absence of known a-priori probabilities is discussed in Appendix 8.10.

The next assumption was that maximizing the probability of correct decision is
an appropriate decision criterion. In many situations, the cost of a wrong decision
is highly asymmetric. For example, when testing for a treatable but deadly disease,
making an error when the disease is present is far more costly than making an error
when the disease is not present. As shown i in Exercise 8.1, it is easy to extend the
theory to account for relative costs of errors..

With the present assumptions, the detection problem can be stated concisely in the
following probabilistic terms. There is an underlying sample space (), a probability
measure, and two rvs U and V of interest. The corresponding experiment is performed,
an observer sees the sample value v of rv V, but does not observe anything else,
particularly not the sample value of U, say a,,. The observer uses a detection rule,
i#(v), which is a function mapping each possible value of v to a possible value of U.
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8.2

If 3(v) = a,,, the detection is correct; otherwise an error has been made. The above
MAP rule maximizes the probability of correct detection conditional on each v and also
maximizes the unconditional probability of correct detection. Obviously, the observer
must know the conditional probability assignment Pyy ﬁn order to use the MAP rule.

Sections 8.2 and 8.3 are restricted to the case of binary hypotheses where M =2,
This allows us to understand most of the important ideas, but simplifies the notation
considerably. This is then generalized to an arbitrary number of hypotheses; fortunately,
this extension is almost trivial.

Binary detection

Assume a probability model in which the correct hypothesis U is a binary random
variable with possible values {ay, a,} and a-priori probabilities p, and p,. In the
communication context, the a-priori probabilities are usually modeled as equiprobable,
but occasionally there are multistage detection processes in which the result of the
first stage can be summarized by a new set of a-priori probabilities. Thus let p, and
Py =1—p, be arbitrary. Let V be arv with a conditional probability density f,, (vla,)
that is finite and nonzero for all v€ R and m € {0, 1}. The modifications for zero
densities, discrete V, complex V, or vector V are relatively straightforward and are
discussed later.

The conditional densities f, | (v|a,), m e {0, 1}, are called likelihoods in the jargon
of hypothesis testing. The marginal density of V is given by f, (v) = p, fow (v]ay) +
p,f,,(via,). The a-posteriori probability of U, for m =0 or 1, is given by

Pnf,,(v]a,)

P,(anlv) = @ (8.3)
Writing out (8.1) explicitly for this case, we obtain
pofvw(vla°) >U=ap pnfvxu(vla') (8.4)

L) <ge,  f,0)

This “equation” indicates that the MAP decision is a if the left side is greater than or
equal to the right, and is g, if the left side is less than the right. Choosing the decision
U= a, when equality holds in (8.4) is an arbitrary choice and does not affect the
probability of being correct. Canceling £, (v) and rearranging, we obtain

_ Fo®10) 50 p,

B fvw(vlal) <l-J=a| Po B

Av) (8.5)
The ratio A(v) = fou(@ lao)/f,,,(v]a,) is called the likelihood ratio, and is a function
only of v. The ratio 5 = p,/p, is called the threshold and depends only on the a-priori
probabilities. The binary MAP rule (or MAP test, as it is usually called) then compares
the likelihood ratio to the threshold, and decides on hypothesis a, if the threshold is
reached, and on hypothesis a, otherwise. Note that if the a-priori probability p, is
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increased, the threshold decreases, and the set of v for which hypothesis a, is chosen
increases; this corresponds to our intuition — the more certain we are initially that U
is 0, the stronger the evidence required to make us change our minds. As shown in
Exercise 8.1, the only effect of minimizing over costs rather than error probability is
to change the threshold 7 in (8.5).

An important special case of (8.5) is that in which p, = p,. In this case 7 =, and
the rule chooses I/ (v) = a, for Fow (vlag) = Fow (va,) and chooses U(v) =1 otherwise.
This is called a maximum likelihood (ML) rule or test. In the communication case, as
mentioned above, the a-priori probabilities are usually equal, so MAP then reduces to
ML. The maximum likelihood test is also often used when p, and p; are unknown.

The probability of error, i.e. one minus the probability of choosing correctly, is
now derived for MAP detection. First we find the probability of error conditional on
each hypothesis, Pr{e[U = a,} and Pr{e|U = a,}. The overall probability of error is
then given by

Pr{e} = po Pr{e|lU = ao} + p, Pr{e|lU = a,}.

In the radar field, Pr{e|U = a,} is called the probability of false alarm, and Pr{e|U =
a,} is called the probability of a miss. Also 1 —Pr{e|U = a,} is called the probability
of detection. In statistics, Pr{e}U = q,} is called the probability of error of the second
kind, and Pr{e|U = a,} is the probability of error of the first kind. These terms are
not used here.

Note that (8.5) partitions the space of observed sample values into two regions:
R, = {v: A(v) = 1} is the region for which U =a, and R, = {v: A(v) < 1} is the
region for which U = a,. For U = a,, an error occurs if and only if v is in Ry, and for
U = a, an error occurs if and only if v is in R,. Thus,

Prle|U = a,} = /R £ (lao)dy; (8.6)

Pr{e|lU = a,} = fR £y lay)dv. (8.7)

Another, often simpler, approach is to work directly with the likelihood ratio. Since
A(v) is a function of the observed sample value v, the random variable, A(V), also
called a likelihood ratio, is defined as follows: for every sample point o, V(a) is the
corresponding sample value v, and A(V) is then shorthand for A(V(s)). In the same
way, U(V) (or more briefly U) is the decision random variable. In these terms, (8.5)
states that

U=a, ifandonlyif A(V)=7. (8.8)

Thus, for MAP detection with a threshold 1,
Pr{e|U = ag} =Pr{U = a,|U = a,} =Pr{A(V) < n|U = q,}; (8.9)
Prie|U = a,} =Pr{U = ap|U = a;} =Pr{A(V) > 0|U = a,}. (8.10)

A sufficient statistic is defined as any function of the observation v from which the
likelihood ratio can be calculated. As examples, v itself, A(v), and any one-to-one
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function of A(v) are sufficient statistics. Note that A(v), and functions of A(v), are
often simpler to work with than v, since A(v) is simply a real number, whereas v could
be a vector or a waveform.

We have seen that the MAP rule (and thus also the ML rule) is a threshold test on
the likelihood ratio. Similarly the min-cost rule (see Exercise 8.1) and the Neyman—
Pearson test (which, as shown in Appendix 8.10, makes no assumptions about a-priori
probabilities) are threshold tests on the likelihood ratio. Not only are all these binary
decision rules based only on threshold tests on the likelihood ratio, but the properties
of these rules, such as the conditional error probabilities in (8.9) and (8.10), are based
only on A(V) and 7. In fact, it is difficult to imagine any sensible binary decision
procedure, especially in the digital communication context, that is not a threshold test
on the likelihood ratio. Thus, once a sufficient statistic has been calculated from the
observed vector, that observed vector has no further value in any decision rule of
interest here.

The log likelihood ratio, LLR(V) = In[A(V)], is an important sufficient statistic
which is often easier to work with than the likelihood ratio itself. As seen in Section 8.3,
the LLR is particularly convenient for use with Gaussian noise statistics.

8.3 Binary signals in white Gaussian noise

This section ﬁrSt treats standard 2-PAM, then 2-PAM with an offset, then binary signals
with vector observations, and finally binary signals with waveform observations.

8.3.1 Detection for PAM antipodal signals

Consider PAM antipodal modulation (i.e. 2-PAM), as illustrated in Figure 8.1. The
correct hypothesis U is either a; = a or a; = —a. Let Z ~ N(0, N,/2) be a Gaussian
noise rv of mean 0 and variance N,/2, independent of U. That is,

f()-—-—l_.ex (.-_Zz)
= N I\, )

input encoder baseband | | basebandto
{0,1} {0,1} > zxa U==+a | modulator passband
WGN
output [ detector P baseband passband to
¢ 0,1} Vs 0-{0,0) | V=U+Z demodulator[ 7| baseband

Figure 8.1.  The source produces a binary digit, which is mapped into U = %a. This is modulated into a
waveform, WGN is added, and the resultant waveform is demodulated and sampled, resulting
in a noisy received value V = U + Z. From Section 7.8, Z ~ N (0, N,/2). This is explained
more fully later. Based on this observation, the receiver makes a decision {J and maps this
back to the binary output, which is the hypothesized version of the binary input.
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Assume that 2-PAM is simplified by sending only a single binary symbol (rather than
a sequence over time) and by observing only the single sample value v corresponding
to that input. As seen later, these simplifications are unnecessary, but they permit the
problem to be viewed in the simplest possible context. The observation V (i.e. the
channel output prior to detection) is a+Z or —a+Z, depending on whether U =a
or —a. Thus, conditional on U = a, V ~ N(a, N;/2) and, conditional on U = —a,
V ~ N(—a, Ny/2): '

D futl-a)=

1 —(v — a)? 1 —(v+ a)?
fula)= NGA exp ( N ) T exp ( Ne ) .

The likelihood ratio is the ratio of these likelihoods, and is given by

—_ —_ 2 2 4
AQw) = exp( (v a)N:- ©+a) ) = exp(Niov) . 8.11)
Substituting this into (8.5), we obtain
4av\ >0=¢  p,
exp(——) - —=1. 8.12
Ny ) <g=-a Do €12)
This is further simplified by taking the logarithm, yielding
4ay >U=a
LLR(U) = Fo- < In s (8.13)
>U=2 Nylnn
v <. 4a (8.14)

Figure 8.2 interprets this decision rule.

The probability of error, given U = —a, is seen to be the probability that the
noise value is greater than a + Nyln7/4a. Since the noise has variance Ny/2, this
is the probability that the normalized Gaussian rv Z/,/N,/2 exceeds a/\/Ny/2 +
V' No/2 In(n)/2a. Thus,

JVNy/21
Pr{e|U=~a} =0 =+ o/2lnn) (8.15)
v No/2 2a
{Ng/4a)Ing
0=-8 -~
+—U=3

fyplvl-a)

-a 0 a
Pr{U=2alU=-3a}

Figure 8.2  Binary hypothesis testing for antipodal signals, 0 — a, 1 — —a. The a-priori probabilities are
Po and py, the threshold is 9 = py/p,, and the noise is N (0, Np/2).
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where Q(x), the complementary distribution function of (0, 1), is given by

) 1 — ZZ )
x)= exp| — }dz.
o) /x V27 p( 2
The probability of error given U = a is calculated the same way, but is the probability
that —Z is greater than or equal to a— NyIn /4a. Since —Z has the same distribution

as Z,
a_ ,/No/zmn>

Pr{elU=a}=Q ( (8.16)

VNo/2 2a
It is more insightful to express a//Ny/2 as \/2a*/N,. As seen before, a® can be
viewed as the energy per bit, E,, so that (8.15) and (8.16) become

Pr{elU:—a}:Q( /%+2\/——]2"_Eﬂ/_7) (8.17)
b 0

Pr{elU:a}:Q( /%-%) (8.18)
b/ 4Y0

Note that these formulas involve only the ratio E, /N, rather than E, or N, separately.
If the signal, observation, and noise had been measured on a different scale, then both
E, and N, would change by the same factor, helping to explain why only the ratio is
relevant. In fact, the scale could be normalized so that either the noise has variance 1
or the signal has variance 1.

The hypotheses in these communication problems are usually modeled as equiprob-
able, p, = p; = 1/2. In this case, In7 =0 and the MAP rule is equivalent to the ML
rule. Equations (8.17) and (8.18) then simplify to the following:

Pr{e} =Pr{e|U = —a} =Pr{e|lU =a} = Q( 25—"— . (8.19)
V 0 )

In terms of Figure 8.2, this is the tail of either Gaussian distribution from the point 0
where they cross. This equation keeps reappearing in different guises, and it will soon
seem like a completely obvious result for a variety of Gaussian detection problems.

8.3.2 Detection for binary nonantipodal signals

Next consider the slightly more complex case illustrated in Figure 8.3. Instead of
mapping 0 to +a and 1 to —a, 0 is mapped to an arbitrary number b, and 1 to
an arbitrary number b,. To analyze this, let ¢ be the midpoint between by and b,
¢ = (by+ b;)/2. Assuming b, < by, let a = by — ¢ = ¢ — b,. Conditional on U = b,
the observation is V = ¢+ a+- Z; conditional on U = b, itis V =c—a+Z. In other
words, this more general case is simply the result of shifting the previous signals by
the constant c.
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c+(Ny/4a) Ing

0= bc

fVlU(VIb1) fv[u(VIbo)

Pr{J=by|U= by}

Figure 8.3.  Binary hypothesis testing for arbitrary signals, 0 — b,, 1 — b, for by > b;. With
¢ = (by+b;)/2 and a = |by — b,|/2, this is the same as Figure 8.2 shifted by ¢. For b, < by, the
picture must be reversed, but the answer is the same.

Define V = V — ¢ as the result of shifting the observation by —c; V is a sufficient
statistic and ¥ = a+ Z. This is the same as the antipodal signal case in Section 8.3.1,
so the error probability is again given by (8.15) and (8.16).

The energy used in achieving this error probability has changed from the antipodal
case. The energy per bit (assuming equal a-priori probabilities) is now (b2 +b,%)/2 =
a*+c2. A center value c is frequently used as a “pilot tone” in communication for
tracking the channel. We see that E, is then the sum of the energy used for the actual
binary transmission (a?) plus the energy used for the pilot tone (c?). The fraction of
energy E, used for the signal is y = a?/(a?+c?), and (8.17) and (8.18) are changed

as follows:
E,
Pr(efUu=b} =g [2XEe 10T ) (8.20)
NO 2 Z‘YEb/No

_ _ 2vE, _ Inn
Pr{e|lU =b,} = Q( ’ N, 2«/2_‘)’51.7170) . 821

For example, a common binary communication technique called on-off keying uses the
binary signals 0 and 2a. In this case, y = 1/2 and there is an energy loss of 3 dB from
the antipodal case. For the ML rule, the probability of error then becomes Q(/E,/N,).

8.3.3 Detection for binary real vectors in WGN

Next consider the vector version of the Gaussian detection problem. Suppose the
observation is a random n-vector V = U +Z. The noise Z is a random n-vector
(Z,,2,,...,2,), independent of U, with iid components given by Z, ~ N (0, Np/2).
The input U is a random n-vector with M possible values (hypotheses). The mth
hypothesis, 0 < m < M ~ 1, is denoted by a,, = (a,,1, Gpzs« - + » Gpmy) '+ A sample value
v of V is observed, and the problem is to make a MAP decision, denoted by U,

about U.
Initially assume the binary antipodal case, where a, = —a,. For notational simplicity,
let a, be denoted by a = (ay,a,,...,a,)". Thus the two hypotheses are U = a
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and U= — q, and the observation is either a+Z or —a+Z. The likelihoods are then

given by
_ 1 & —(vi—ap)? _ 1 ("""“a"2
R T ey A o G T |
_ 1 L—-(ta) 1 —[v+al?
A AT i T - S e &

The log likelihood ratio is thus given by
—lv—al?+lv+al®> _ 4, a)

LLR(»v) = . 8.22
) i N (822)
and the MAP test is
J 4(v, a) >l7=a pl
LILRY) = ———— In—=Inn.
) Ny <g=—a Po K
This can be restated as follows:

lall <g=-a 4lal "

The projection of the observation v onto the signal a is ({v, a)/||a||)(a/|lal|). Thus
the left side of (8.23) is the component of v in the direction of a, showing that the
decision is based solely on that component of v. This result is rather natural; the noise
is independent in different orthogonal directions, and only the noise in the direction
of the signal should be relevant in detecting the signal,

The geometry of the situation is particularly clear in the ML case (see Figure 8.4).
The noise is spherically symmetric around the origin, and the likelihoods depend only

Figure 84. ML decision regions for binary signals in WGN. A vector v on the threshold boundary is
shown. The distance from v to a is d = ||v — af|. Similarly, the distance to —a is d’ = [[v +a].
As shown algebraically in (8.22), any point at which d> — d'* =0 is a point at which
{v, a) =0, and thus at which the LLR is 0. Geometrically, from the Pythagorean theorem,
however, d* —d"* = 3 — 3", where d and 4’ are the distances from a and —a to the
projection of v on the straight line generated by a. This demonstrates geometrically why it is
only the projection of v onto a that is relevant,
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on the distance from the origin. The ML detection rule is then equivalent to choosing
the hypothesis closest to the received point. The set of points equidistant from the two
hypotheses, as illustrated in Figure 8.4, is the perpendicular bisector between them;
this bisector is the set of v satisfying {v, a) = 0. The set of points closer to a is on the
a side of this perpendicular bisector; it is determined by (v, @) > 0 and is mapped into
a by the ML rule. Similarly, the set of points closer to —a is determined by (v, a) <0,
and is mapped into —a. In the general MAP case, the region mapped into a is again
separated from the region mapped into —a by a perpendicular to a, but in this case it
is the perpendicular defined by (v, a) = N, In(n)/4.

Another way of interpreting (8.23) is to view it in a different coordinate system.
That is, choose ¢; = a/||a]| as one element of an orthonormal basis for the n-vectors, -
and choose another n— 1 orthonormal vectors by the Gram—Schmidt procedure. In this
new coordinate system, v can be expressed as (v}, v}, ..., })", where, for ] <k <n,
v, = (v, ¢,). Since (v, a) = ||a|| (v, ¢,) = ||a||v], the left side of (8.23) is simply v},

- i.e. the size of the projection of v onto a. Thus (8.23) becomes

7 Zi]=0 NO 1“"7
'<gor 4la]

This is the same as the scalar MAP test in (8.14). In other words, the vector problem
is the same as the scalar problem when the appropriate coordinate system is chosen.
Actually, the derivation of (8.23) has shown something more, namely that v} is a
sufficient statistic. The components v}, . . . , v}, which contain only noise, cancel out in
(8.22) if (8.22) is expressed in the new coordinate system. The fact that the coordinates
of v in directions orthogonal to the signal do not affect the LLR is sometimes called the
theorem of irrelevance. A generalized form of this theorem is stated later as Theorem
8.4.2.

Some additional insight into (8.23) (in the original coordinate system) can be gained
by writing (v, @) as ), v.a,. This says that the MAP test weights each coordinate
linearly by the amount of signal in that coordinate. This is not surprising, since the
two hypotheses are separated more by the larger components of a than by the smaller.

Next consider the error probability conditional on U = —a. Given U = ~a, V =
—a+Z, and thus
(V,a)
i = —llall+(Z, &)
Tal 4

Conditional on U = —a, the mean and variance of (V, a)/|la| are —|a| and N,/2,
respectively. Thus, {V, a)/| a|| ~ N (—||a]|, Ny/2). From (8.23), the probability of
error, given U = —a, is the probability that V' (—|| a|j, Np/2) exceeds N,In(n)/4 | a].
This is the probability that Z is greater than [|a|| + Ny In(n)/(4 | a||). Normalizing as
in Section 8.3.1, we obtain

(8.24)

Pr{e|U=—a}=Q< 2||al|2+ 0 )

No o 2/2]al?/N,

Constellation Exhibit 2004, Page 178 of 229



8.3 Binary signals in white Gaussian noise 279

By the same argument,

(8.25)

Pr{e|U=a}-=Q( 2lal? Inn )

No  2/2]|a]?/Ny

It can be seen that this is the same answer as given by (8.15) and (8.16) when the
problem is converted to a coordinate system where a is collinear with a coordinate
vector. The energy per bit is E, = ||a]|?, so that (8.17) and (8.18) follow as before.
This is not surprising, of course, since this vector decision problem is identical to the
scalar problem when the appropriate basis is used.

For most communication problems, the a-priori probabilities are assumed to be
equal, so that 7= 1. Thus, as in (8.19),

Pr{e} = Q( /% ) . (8.26)

This gives us a useful sanity check — the probability of error does not depend on the
orthonormal coordinate basis.

Now suppose that the binary hypotheses correspond to nonantipodal vector signals,
say by and b,. We analyze this in the same way as the scalar case. Namely, let
c=(by + b,)/2and a=b; — c. Then the two signals areby=a + cand b, = —a + c.
As before, converting the observation V to V = V —c¢ shifts the midpoint and converts
the problem back to the antipodal case. The error probability depends only on the
distance 2||a|| between the signals, but the energy per bit, assuming equiprobable
inputs, is E, = ||a]|* + ||c||*. Thus the center point ¢ contributes to the energy, but not
to the error probability. In the important special case where b, and b, are orthogonal
and have equal energy, ||a]| = ||¢|| and

Pr(e) = Q(VE,/Ny)- (8.27)

It is often more convenient, especially when dealing with M > 2 hypotheses, to
express the LLR for the nonantipodal case directly in terms of b, and v,. Using (8.22)
for the shifted vector V, the LLR can be expressed as follows:

= v —bol> + lIv — 3|1

LLR(v) = N
0

(8.28)

For ML detection, this is simply the minimum-distance rule, and for MAP the
interpretation is the same as for the antipodal case.

8.34 Detection for binary complex vectors in WGN

Next consider the complex vector version of the same problem. Assume the obser-
vation is a complex random n-vector V = U +Z. The noise, Z = (Z;,...,Z,), is a
complex random vector of n zero-mean complex iid Gaussian rvs with iid real and
imaginary parts, each V' (0, Np/2). Thus each Z, is circularly symmetric and denoted
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by €N (0, N,). The input U is independent of Z and binary, taking on value a with
probability p, and —a with probability p,, where a = (ay,...,a,)" is an arbitrary
complex n-vector.

This problem can be reduced to that of Section 8.3.3 by letting Z’ be the 2n-
dimensional real random vector with components R(Z,) and J(Z,) for 1 < k <n.
Similarly, let a’ be the 2n-dimensional real vector with components R(a,) and 3(aq,)
for 1 <k <n and let U’ be the real random vector that takes on values a’ or —a'.
Finally, let V' =U'+Z'.

Recalling that probability densities for complex random variables or vectors are
equal to the joint probability densities for the real and imaginary parts, we have

—R(v, - a,)* ~ (v, — ak)2

pZ N

Z —ﬁﬁ(vk +ak) —S(vk +ak)

Frp0la)=£,,,0/1d) =

S O1=) = fyy O/|=) = s o T
The LLR is then given by
—lly —all? 2
LLR) = P —alf + 1+ al” (8.29)
Ny
Note that
v~ all® = V> — (v, @) —(a,v) + lla|* = |b|* — 2R((¥, a)) + [la].
Using this and the analagous expression for ||v 4 a|j?, (8.29) becomes
4R((v,
LLR() = 2. 2) (8:30)
N
The MAP test can now be stated as follows:
R((,a)) 20~ Nyl 631)

lal  <o=-q 4llall

Note that the value of the LLR and the form of the MAP test are the same as the
real vector case except for the real part of (v, a). The significance of this real-part
operation is now discussed.

In the n-dimensional complex vector space, (v, a)/|a| is the complex value of
the projection of v in the direction of a. In order to understand this projection better,
consider an orthonormal basis in which a = (1,0,0,...,0)". Then (v, a)/| a] = v,.
Thus R(v;) = 1+ R(z;) and I(v;) = I(z,). Clearly, only R(v,) is relevant to the
binary decision. Using R({v, a)/||al}) in (8.31) is simply the general way of stating
this elementary idea. If the complex plane is viewed as a 2D real space, then taking
the real part of (v, a) is equivalent to taking the further projection of this 2D real
vector in the direction of a (see Exercise 8.12).
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The other results and interpretations of Section 8.3.3 remain unchanged. In particular,
since ||a'|| = ||a|, the error probability results are given by

(8.32)

Pr{e|U=—a}=Q( 2||al|2+ n7 );

N 2y/2]al?/Ny

o {[laE_ mn
Pr{elU-a}—-Q( N 2 2||a||2/No). (8.33)

For the ML case, recognizing that ||a||* = E,, we have the following familiar result:

Pr{e} = Q( ’% , . (8.34)

Finally, for the nonantipodal case with hypotheses b, and b, the LLR is again given
by (8.28). '

8.3.5 Detection of binary antipodal waveforms in WGN

This section extends the vector case of Sections 8.3.3 and 8.3.4 to the waveform
case. It will be instructive to do this simultaneously for both passband real random
processes and baseband complex random processes. Let U(f) be the baseband mod-
ulated waveform. As before, the situation is simplified by transmitting a single bit
rather than a sequence of bits, so, for some arbitrary, perhaps complex, baseband
waveform a(t), the binary input 0 is mapped into U(#) = a(f) and 1 is mapped into
U(f) = —a(1); the a-priori probabilities are denoted by p, and p,. Let {6,(?); k € Z}
be a complex orthonormal expansion covering the baseband region of interest, and let
a(t) = X, 3, 6,(2).

Assume U(f) = %a(t) is modulated onto a carrier f, larger than the baseband
bandwidth. The resulting bandpass waveform is denoted by X(#) = %b(), where,
from Section 7.8, the modulated form of a(?), denoted by b(t), can be represented as

b() =Y by 1Y 1 (1) + by o 2 (2)s
k
where
by, = R(ay)s W1 () = R{20,(1) exp27if.e]};
ba=S(a);  Yra(t) =—{26,(r) exp[27if.1]}.

From Theorem 6.6.1, the set of waveforms {{; ;(1); k € Z, j € {1, 2}} are orthogonal,
each with energy 2. Let {¢,(f); m € Z} be a set of orthogonal functions, each of
energy 2 and each orthogonal to each of the iy, ;(¢). Assume that {¢,,(1); m € Z},
together with the ¢ ;(¢), span £,.
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The noise W(¢), by assumption, is WGN. It can be represented as
LUOEDD (Zk.l e () +Zk.2ll’k.2(‘)) +) W,d,(),
k m

where {Z, ,.; k € Z, m € {1,2}} is the set of scaled linear functionals of the noise in
the £, vector space spanned by the Y (t), and {W,; m € Z} is the set of linear
functionals of the noise in the orthogonal complement of the space. As will be seen
shortly, the joint distribution of the W,, makes no difference in choosing between a(f)
and —a(?), so long as the W, are independent of the Z, ; and the transmitted binary
digit. The observed random process at passband is then Y(r) = X(r) + W(s):

Y1) = Zk: [Yk.l Y1 (D +Y; k.z‘l’k.z(‘)] +) W,é,(0,

where
Y, = (&b, + Zi1)s Yo = (£bo+ Zk.2) .

First assume that a finite number n of orthonormal functions are used to represent a(z).
This is no loss of generality, since the single function a(t)/]la(#)]] would be sufficient.
Suppose also, initially, that only a finite number, say W, ..., W,, of the orthogonal
noise functionals are observed. Assume also that the noise variables, Z, ; and W,,, are
independent and are each* (0, N,/2). Then the likelihoods are given by

Oy —bey)* | <
. fu018) = (@N, CXP(ZZ L +2 No)

k=1 j=1 0 m=1
1 t & =yt h)? G —uw?
£, 0|-b)= exp : — =].
w01=) (mNp)" Eg Ny ,,.Z=:1 Ny

The log likelihood ratio is thus given by

LLR()’) = i Zz: —(yk-] - bk.])z + (yk,j +'bk'})2

k=1j=1 Nq
1y —Rl2 2
ly=bIP +ly+2] 639
Ny
4y b 4()’, b)
—ZZ 2 , (8.36)
k=1 j=1 No NO .

and the MAP test is .
(. b)>*=  Nylng
6} <g--»  4l6)

4 Recall that Np/2 is the noise variance using the same scale as used for the input, and the use of orthogonal
functions of energy 2 at passband corresponds to orthonormal functions at baseband. Thus, since the input
energy is measured at baseband, the noise is also; at passband, then, both the signal energy and the spectral
density of the noise are multiplied by 2.
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This is the same as the real vector case analyzed in Section 8.3.3. In fact, the only
difference is that the observation here includes noise in the degrees of freedom orthog-
onal to the range of interest, and the derivation of the LLR shows clearly why these
noise variables do not appear in the LLR. In fact, the number £ of rvs W, can be
taken to be arbitrarily large, and they can have any joint density. So long as they are
independent of the Z, ; (and of X(7)), they cancel out in the LLR. In other words,
WGN should be viewed as noise that is iid Gaussian over a large enough space to
represent the signal, and is independent of the signal and noise elsewhere.

The preceding argument leading to (8.35) and (8.36) is not entirely satisfying
mathematically, since it is based on the slightly vague notion of the signal space of
interest, but in fact it is just this feature that makes it useful in practice, since physical
noise characteristics do change over large changes in time and frequency.

The inner product in (8.36) is the inner product over the £, space of real sequences.
Since these sequences are coefficients in an orthogonal (rather than orthonormal)
expansion, the conversion to an inner product over the corresponding functions (see
Exercise 8.5) is given by

1
b, =~ b(e)ds. 8.37
Sonsb =3 [>® @ar (8:37)

This shows that the LLR is independent of the basis, and that this waveform problem
reduces to the single-dimensional problem if b(¢) is a multiple of one of the basis
functions. Also, if a countably infinite basis for the signal space of interest is used,
(8.37) is still valid.

Next consider what happens when Y(£) = 3:b(t) 4- W(t) is demodulated to the base-
band waveform V(¢). The component }_,, W,,(¢) of ¥(z) extends to frequencies outside
the passband, and thus Y(¢) is filtered before demodulation, preventing an aliasing-like
effect between Y., W, (1) and the signal part of ¥(r) (see Exercise 6.11). Assuming
that this filtering does not affect b(t), b(¢) maps back into a(f) = " a,0,(¢), where
a, = by | +ib, 5. Similarly, W() maps into

Z(n = Zk:Zkb‘k(t) +Z,(1),

where Z, =Z, | +iZ, , and Z, (1) is the result of filtering and frequency demodulation
on Y, W, o,(r). The received baseband complex process is then given by

V() =) Vib (D +Z,(s), where V, =*a, +2Z,. (8.38)
%

By the filtering assumption above, the sample functions of Z, (¢) are orthogonal to the
space spanned by the 8, (¢), and thus the sequence {V,; k € Z} is determined from V(1).
Since V =Y, ; +iY} 5, the sample value LLR(y) in (8.36) is determined as follows by
the sample values of {v,; k € Z}:

40y, b) _ 4R((v, a))
= )

LLR(y) =
o) A N,

(8.39)
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Thus {v; k € Z} is a sufficient statistic for y(z), and thus the MAP test based on
y(#) can be performed using v(¢). Now an implementation that first finds the sample
function v(t) from y(f) and then does a MAP test on v(¢) is simply a particular kind
of test on y(r), and thus cannot achieve a smaller error probability than the MAP test
on y. Finally, since {v,; k € Z} is a sufficient statistic for y(z), it is also a sufficient
statistic for v(¢) and thus the orthogonal noise Z, (7) is irrelevant.

Note that the LLR in (8.39) is the same as the complex vector result in (8.30). One
could repeat the argument there, adding in an orthogonal expansion for Z, (¢) to verify
the argument that Z, (¢) is irrelevant. Since Z, (f) could take on virtually any form,
the argument above, based on the fact that Z, (1) is a function of 3_,, W, ¢, (), which
is independent of the signal and noise in the signal space, is more insightful.

To summarize this subsection, the detection of a single bit, sent by generating
antipodal signals at baseband and modulating to passband, has been analyzed. After
adding WGN, the received waveform is demodulated to baseband and then the single
bit is detected. The MAP detector at passband is a threshold test on [ y(£)b(r)dt. This
is equivalent to a threshold test at baseband on R(f v(f)a*(¢)ds). This shows that no
loss of optimality occurs by demodulating to baseband and also shows that detection
can be done either at passband or at baseband. In the passband case, the result is
an immediate extension of binary detection for real vectors, and at baseband it is an
immediate extension of binary detection of complex vectors.

The results of this section can now be interpreted in terms of PAM and QAM,
while still assuming a *“one-shot” system in which only one binary digit is actually
sent. Recall that for both PAM and QAM modulation, the modulation pulse p(t) is
orthogonal to its T-spaced time shifts if |p(f)|* satisfies the Nyquist criterion. Thus,
if the corresponding received baseband waveform is passed through a matched filter
(a filter with impulse response p*(f)) and sampled at times kT, the received samples
will have no intersymbol interference. For a single bit transmitted at discrete time 0,
u(t) = £a(r) = xap(r). The output of the matched filter at receiver time O is then
given by

[ vopyar= L2,

which is a scaled version of the LLR. Thus the receiver from Chapter 6 that avoids
intersymbol interference also calculates the LLR, from which a threshold test yields
the MAP detection.

Section 8.4 shows that this continues to provide MAP tests on successive signals.
It should be noted also that sampling the output of the matched filter at time 0 yields
the MAP test whether or not p(f) has been chosen to avoid intersymbol interference.

It is important to note that the performance of binary antipodal communication in
WGN depends only on the energy of the transmitted waveform. With ML detection,
the error probability is the familiar expression Q(/2E,/N,), where E, = [ |a(f)]* dt
and the variance of the noise in each real degree of freedom in the region of interest
is Ny/2.
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This completes the analysis of binary detection in WGN, including the relationship
between the vector case and waveform case and that between complex waveforms or
vectors at baseband and real waveforms or vectors at passband.

The following sections analyze M-ary detection. The relationships between vector
and waveform and between real and complex is the same as above, so the following
sections each assume whichever of these cases is most instructive without further
discussion of these relationships.

84 Me-ary detection and sequence detection

The analysis in Section 8.3 was limited in several ways. First, only binary signal sets
were considered, and second only the “one-shot” problem where a single bit rather than
a sequence of bits was considered. In this section, M-ary signal sets for arbitrary M
will be considered, and this will then be used to study the transmission of a sequence
of signals and to study arbitrary modulation schemes.

8.4.1 M-ary detection

Going from binary to M-ary hypothesis testing is a simple extension. To be specific,
this will be analyzed for the complex random vector case. Let the observation be a
complex random n-vector V and let the complex random n-vector U to be detected
take on a value from the set {a,,...,a)_;} with a-priori probabilities py, . . . , Dy-1-
Denote the a-posteriori probabilities by p,, (a,|v). The MAP rule (see Section 8.1) then
chooses U/(v) = arg max,, Pyy (a,|v). Assuming that the likelihoods can be represented
as probability densities fvw, the MAP rule can be expressed as

O(v) = arg max,, p,, £, , *Vla,).

Usually, the simplest approach to this M-ary rule is to consider muitiple binary
hypothesis testing problems. That is, U(v) is that a,, for which

v|a ,
Am,m’(v) = fVW( l M) = EL""
Fon®a) = P
for all m'. In the case of ties, it makes no difference which of the maximizing hypotheses
are chosen.
For the complex vector additive WGN case, the observation is V = U +Z, where
Z is complex Gaussian noise with iid real and imaginary components. As derived in
(8.29), the log likelihood ratio (LLR) between each pair of hypotheses a,, and a,, is
given by
I

LLRm,m’ (v) = No

(8.40)
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Figure 85.  Decision regions for a 3-ary alphabet of vector signals in iid Gaussian noise. For ML
detection, the decision regions are Voronoi regions, i.e. regions separated by perpendicular
bisectors between the signal points.

Thus, each binary test separates the observation space® into two regions separated by
the perpendicular bisector between the two points. With M hypotheses, the space is
separated into the Voronoi regions of points closest to each of the signals (hypotheses)
(see Figure 8.5). If the a-priori probabilities are unequal, then these perpendicular
bisectors are shifted, remaining perpendicular to the axis joining the two signals, but
no longer being bisectors.

The probability that noise carries the observation across one of these perpendicular
bisectors is given in (8.31). The only new problem that arises with M-ary hypothesis
testing is that the error probability, given U = m, is the union of M —1 events, namely
crossing the corresponding perpendicular to each other point. This can be found exactly
by integrating over the n-dimensional vector space, but is usually upperbounded and
approximated by the union bound, where the probability of crossing each perpendicular
is summed over the M — 1 incorrect hypotheses. This is usually a good approximation
(if M is not too large), because the Gaussian density decreases so rapidly with distance;
thus, in the ML case, most errors are made when observations occur roughly halfway
between the transmitted and the detected signal points.

8.4.2 Successive transmissions of QAM signals in WGN

This subsection extends the “one-shot” analysis of detection for QAM and PAM in the
presence of WGN to the case in which an n-tuple of successive independent symbols
are transmitted. We shall find that, under many conditions, both the detection rule
and the corresponding probability of symbol error can be analyzed by looking at one
symbol at a time.

- First consider a QAM modulation system using a modulation pulse p(t). Assume
that p(r) has unit energy and is orthonormal to its T-spaced shifts {p(¢t —kT); k € Z},

3 For an n-dimensional complex vector space, it is simplest to view the observation space as the
corresponding 2n-dimensional real vector space.
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i.e. that {p(t —kT); k € Z} is a set of orthonormal functions. Let A= {a ,...,qa,_}
be the alphabet of complex input signals and denote the input waveform over an
arbitrary n-thple of successive input signals by

u() = 3 up(t—kT),
k=1

where each u, is a selection from the input alphabet A.

Let {¢,(¢); k = 1} be an orthonormal basis of complex £, waveforms such that
the first n waveforms in that basis are given by ¢,(f) = p(t —kT), 1 <k <n. The
received baseband waveform is then given by

V() = Z Vidi (1) = Z(uk +Z,)p(t—kT) +k§: Z, (1) (8.41)
>n

We now compare two different detection schemes. In the first, a single ML decision
between the M" hypotheses for all possible joint values of U}, ..., U, is made based
on V(z). In the second scheme, for each k,1 < k < n, an ML decision between the
M possible hypotheses a, ..., a, _, is made for input Uy based on the observation
V(¢). Thus in this scheme, n scparate M-ary decisions are made, one for each of the
n successive inputs,

For the first alternative, each hypothesis corresponds to an n-dimensional vector of
inputs, # = (4, ..., u,)". As in Section 8.3.5, the sample value v(f) = Y, v, (1) of
the received waveform can be taken as an £-tuple v = (v;, v3,...,,)" with £>n.
The likelihood of v conditional on u is then given by

fvw(vlu)—'l—[f(vk u) H f(vk)
k=n+1

For any two hypotheses, say u = (u;, ..., u,)" and &’ = (u},...,u,), the likelthood
ratio and LLR are given by '

f (v —u)
M) = :[[1 F o (8.42)
LLR, , (v) = """“""?f I—wi (8.43)
0

Note that for each k > n, v, does not appear in this likelihood ratio. Thus this likelihood
ratio is still valid® in the limit £ — oo, but the only relevant terms in the decision
are vy, ..., v, Therefore, let v= (v,,...,v,)" in what follows. From (8.43), this
likelihood ratio is positive if and only if ||[v —u]} < |[[v—u’'||. The conclusion is that,
for M™-ary detection, done jointly on u,, ..., u,, the ML decision is the vector u that
minimizes the distance ||v —z||.

6 In fact, these final £— 7 components do not have to be independent or equally distributed, they must
simply be independent of the signals and noise for 1 <k <a.
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Consider how to minimize ||v —u||. Note that
v —ul? =3 (0 —u). (8.44)
k=1

Suppose that & = (i,, ..., i,)" minimizes this sum. Then for each k, i, minimizes
(v — u;)? over the M choices for u, (otherwise some a,, # i, could be substituted for
it, to reduce (v, —u,)? and therefore reduce the sum in (8.44)). Thus the ML sequence
detector with M" hypotheses detects each U, by minimizing (v, —u;)* over the M
hypotheses for that U,.

Next consider the second altermative above. For a given sample observation v =
(vyy...,v,)" and a given k, 1 < k < n, the likelihood of v conditional on U, = i, is
given by

L .
Frn @) =f,e=w) T1 £, ) TI £,
J#k1zjzn Jj=n+1
where fv] () =X, Pn fV;I y (vjla,) is the marginal probability of V;. The likelihood
ratio of v between the hypotheses U, = a,, and U, = a,, is then

A® o) = fz(vk —-a,)

mm fz(vk _am’).
This is the familiar 1D nonantipodal Gaussian detection problem, and the ML decision
is to choose i, as the a,, closest to u,. Thus, given the sample observation v(t), the
vector (ity, .. ., #,)" of individual M-ary ML detectors for each U, is the same as the
Mr-ary ML sequence detector for the sequence U = (U,, ..., U,). Moreover, each
such detector is equivalent to a vector of ML decisions on each U, based solely on
the observation V,.
Summarizing, we have proved the following theorem.

Theorem 8.4.1 Let U(t) =) ;_, U,p(t—kT) be a QAM (or PAM) baseband input to
a WGN channel and assume that {p(t —kT); 1 < k < n} is an orthonormal sequence.
Then the M"-ary ML decision on U= (U,,..., U,)! is equivalent to making separate
M-ary ML decisions on each U,, 1 <k < n, where the decision on each U, can be
based either on the observation v(t) or the observation of v,.

Note that the theorem states that the same decision is made for both sequence detection
and separate detection for each signal. It does not say that the probability of an error
within the sequence is the same as the error for a single signal. Letting P be the
probability of error for a single signal, the probability of error for the sequence is
1—-(1-P)".

Theorem 8.4.1 makes no assumptions about the probabilities of the successive
inputs, although the use of ML detection would not minimize the probability of error
if the inputs were not independent and equally likely. If coding is used between the n
input signals, then not all of these M" n-tuples are possible. In this case, ML detection
on the possible encoded sequences (as opposed to all M" sequences) is different from
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separate detection on each signal. As an example, if the transmitter always repeats
each signal, with u; = u,, u; = u,, etc., then the detection of u, should be based on
both v; and v,. Similarly, the detection of u; should be based on v; and v,, etc.

When coding is used, it is possible to make ML decisions on each signal separately,
and then to use the coding constraints to correct errors in the detected sequence.
These individual signal decisions are then called hard decisions. It is also possible,
for each k, to save a sufficient statistic (such as v,) for the decision on U,. This
is called a soft decision since it saves all the relevant information needed for an
ML decision between the set of possible codewords. Since the ML decision between
possible encoded sequences minimizes the error probability (assuming equiprobable
codewords), soft decisions yield smaller error probabilities than hard decisions.

Theorem 8.4.1 can be extended to MAP detection if the input signals are statistically
independent of each other (see Exercise 8.15). One can see this intuitively by drawing
the decision boundaries for the 2D real case; these decision boundaries are then
horizontal and vertical lines.

A nice way to interpret Theorem 8.4.1 is to observe that the detection of each signal
U, depends only on the corresponding received signal V,; all other components of the
received vector are irrelevant to the decision on U,. Section 8.4.3 generalizes from
QAM to arbitrary modulation schemes and also generalizes this notion of irrelevance.

8.4.3 Detection with arbitrary modulation schemes

The previous sections have concentrated on detection of PAM and QAM systems,
using real hypotheses A = {ay, ..., ay_;} for PAM and complex hypotheses A =
{ag,...,ay_;} for QAM. In each case, a sequence {u,; k € Z} of signals from A is
modulated into a baseband waveform u(t) = 3", u, p(t - kT). The PAM waveform is
then either transmitted or first modulated to passband. The complex QAM waveform
is necessarily modulated to a real passband waveform.

This is now generalized by considering a signal set A to be an M-ary alphabet,
{ag, . . ., ap_1}, of real n-tuples. Thus each a,, is an element of R”. The n components
of the mth signal vector are denoted by a,, = (@,,1,...,a,,,)"- The selected signal
vector a,, is then modulated into a signal waveform b,,(f) = 3_;_, a,, ;. (#), where
{d1(D), ..., d,(r)} is a set of n orthonormal waveforms. '

The above prbvides a general scenario for mapping the symbols 0 to M —1 into a set
of signal waveforms b,(¢) to b,,_;(¢). A provision must also be made for transmitting
a sequence of such M-ary symbols. If these symbols are to be transmitted at T-
spaced intervals, the most straightforward way of accomplishing this is to choose the
orthonormal waveforms ¢, (f), . . . , $,,(¢) in such a way that ¢, (¢t — £T) and ¢;(1—¢'T)
are orthonormal for all j, k, 1 < j, k < n, and all integers £, £'. In this case, a sequence
of symbols, say s, $;, ..., each drawn from the alphabet {0, ...,M—1}, could be
mapped into a sequence of waveforms b, (1), b,z(t— T), ... The transmitted waveform
would then be 3, b, (¢ —£T).

Note that PAM is a special case of this scenario where the dimension # is 1. The
function ¢, (2) in this case is the real modulation pulse p(t) for baseband transmission
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and /2 p(t) cos(27rf,t) for passband transmission; QAM is another special case where
n is 2 at passband. In this case, the complex signals a,, are viewed as 2D real signals.
The orthonormal waveforms (assuming real p(?)) are ¢,(r) = +/2 p(t) cos(27f,t) and
$2(0) = V2 p(s) sin(2f, ).

More generally; it is not necessary to start at baseband and shift to passband,’ and
it is not necessary for successive signals to be transmitted as time shifts of a basic
waveform set. For example, in frequency-hopping systems, successive n-dimensional
signals can be modulated to different carrier frequencies. What is important is that the
successive transmitted signal waveforms are all orthogonal to each other.

Let X(r) be the first signal waveform in such a sequence of successive waveforms.
Then X(¢) is a choice from the set of M waveforms, by(2), ..., by (1). We can
represent X(2) as Y_;_, X;$,(¢), where, under hypothesis m, X, =a,, , for1 <k <n.
Let ¢,41(2), ¢,42(2), . .. be an additional set of orthonormal functions such that the
entire set {¢,(1); k > 1} spans the space of real £, waveforms. The subsequence
Dusi (D D,02(0), . .. might include the successive time shifts of ¢, (¢), . . ., b,(1) for
the example above, but in general can be arbitrary. We do assume, however, that
successive signal waveforms are orthogonal to ¢, (1), ..., ¢,(f), and thus that they
can be expanded in terms of ¢, ,,(¢), ¢,,2(t),... The received random waveform
Y(¢) is assumed to be the sum of X(r), the WGN Z(r), and contributions of signal
waveforms other than X. These other waveforms could include successive signals from
the given channel input and also signals from other users. This sum can be expanded
over an arbitrarily large number, say £, of these orthonormal functions:

[4 n [4
Y(O) =Y Y9 () =2 (Xe +Z) (D + Y. Y (). (8.45)
k=1 k=1

k=n+1

Note that in (8.45) the random process {¥(#); ¢ € R} specifies the random variables
Y,,..., Y, Assuming that the sample waveforms of ¥(¢) are £,, it also follows that
the limit as £ — oo of ¥;,..., ¥, specifies Y(¢) in the £, sense. Thus we consider
Y,..., Y, to be the observation at the channel output. It is convenient to separate
these terms into two vectors, ¥ = (¥;,..., Y, ) and ¥ = (¥,;;,. .., ¥)".

Similarly, the WGN Z(t) = 3, Z,$,(f) can be represented by Z = (Z;,...,Z,)’
and Z' = (Z,,,, - - . » Z,)", and X(r) can be represented as X = (X, ..., X,)". Finally,
let V(1) = 3";., Vi (¢) be the contributions from other users and successive signals
from the given user. Since these terms are orthogonal to ¢, (1), ..., ¢,(1), V() can
be represented by V' = (V,,, . .., V,)". With these changes, (8.45) becomes

Y=X+2Z; Y =Z+V. (8.46)

7 It seems strange at first that the real vector and real waveform case here is more general than the complex
case, but the complex case is used for notational and conceptual simplifications at baseband, where the
baseband waveform will be modulated to passsband and converted to a real waveform.
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The observation is a sz;.mple value of (Y, Y'), and the detector must choose the MAP
value of X. Assuming that X, Z, Z’, and V"’ are statistically independent, the likelihoods
can be expressed as follows: ’

Jrrix 0y'la,) = 200 —a,) fr ().
The likelihood ratio between hypotheses a,, and a,, is then given by

20 —an)
fZ(y_am') '

The important thing here is that all the likelihood ratios (for 0 < m, m’ < M—1) depend
only on Y, and thus Y is a sufficient statistic for a MAP decision on X. Note that
Y’ is irrelevant to the decision, and thus its probability density is irrelevant (other
than the need to assume that ¥’ is statistically independent of (Z, X)). This also shows
that the size of £ is irrelevant. This is summarized (and slightly generalized by dropping
the Gaussian noise assumption) in the following theorem.

Am.m’ (_)') = (847)

Theorem 8.4.2 (Theorem of irrelevance) Let {¢.(1);k = 1} be a set of real
orthonormal functions. Let X(£) =Y ;_; Xy (1) and Z(t) = 3_;_, Z, . (t) be the input
to a channel and the corresponding noise, respectively, where X = (X,,...,X,)" and
Z=(2,,...,Z,) are random vectors. Let Y'(t) = ¥, Y, . (2), where, for each
L>n Y =,,:..,Y,)" is a random vector that is statistically independent of
the pair X, Z. Let Y = X+Z. Then the LLR and the MAP detection of X from the
observation of Y,Y' depends only on Y. That is, the observed sample value of Y' is
irrelevant,

The orthonormal set {¢,(2), ..., $,(£)} chosen above appears to have a more central
importance than it really has. What is important is the existence of an n-dimensional
subspace of real £, that includes the signal set and has the property that the noise and
signals orthogonal to this subspace are independent of the noise and signal within the
subspace. In the usual case, we choose this subspace to be the space spanned by the
signal set, but there are also cases where the subspace must be somewhat larger to
provide for the independence between the subspace and its complement.

The irrelevance theorem does not specify how to do MAP detection based on
the observed waveform, but rather shows how to reduce the problem to a finite-
dimensional problem. Since the likelihood ratios specify both the decision regions and
the error probability for MAP detection, it is clear that the choice of orthonormal set
cannot influence either the error probability or the mapping of received waveforms to
hypotheses.

One important constraint in the above analysis is that both the noise and the inter-
ference (from successive transmissions and from other users) are additive. The other
important constraint is that the interference is both orthogonal to the signal X(r) and
also statistically independent of X(¢). The orthogonality is why ¥ =X +Z, with no
contribution from the interference. The statistical independence is what makes Y’
irrelevant. -
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If the interference is orthogonal but not independent, then a MAP decision could
still be made based on Y alone; the error probability would be the same as if ¥, Y’
were independent, but using the dependence at the decoder could lead to a smaller
error probability.

On the other hand, if the interference is nonorthogonal but independent, then ¥ would
include both noise and a contribution from the interference, and the error probability
would typically be larger, but never smaller, than in the orthogonal case. As a rule of
thumb, then, nonorthogonal interference tends to increase error probability, whereas
dependence (if the receiver makes use of it) tends to reduce error probability.

If successive statistically independent signals, X;, X,, ..., are modulated onto dis-
tinct sets of orthonormal waveforms (i.e. if X, is modulated onto the orthonormal
waveforms ¢, (t) to ¢,(1), X, is modulated onto ¢,,,(¢) to ¢,,(2), etc.), then it also
follows, as in Section 8.4.2, that ML detection on a sequence X, . .., X, is equivalent
to separate ML decisions on each input signal X;, 1 < j < £. The details are omitted
since the only new feature in this extension is the more complicated notation.

The higher-dimensional mappings ailowed in this subsection are sometimes called
channel codes, and are sometimes simply viewed as more complex forms of mod-
ulation. The coding field is very large, but the following sections provide an
introduction. ‘

Orthogonal signal sets and simple channel coding

An orthogonal signal set is a set a, . . ., a,,..; of M real orthogonal M-vectors, each
with the same energy E. Without loss of generality we choose a basis for R¥ in
which the mth basis vector is a,,/+E. In this basis, a, = (VE,0,0,...,0),a, =
(0, vE,0,...,0), etc. Modulation onto an orthonormal set {¢,, (1)} of waveforms
then maps hypothesis a,, (0 < m < M~1) into the waveform ~/E@,,(¢). After addition
of WGN, the sufficient statistic for detection is a sample value y of Y =A 4 Z, where
A takes on the values a, ..., a)_; with equal probability and Z = (Z,,.. ., Zy_,)
has iid components N (0, Ny/2). It can be seen that the ML decision is to decide on
that m for which y,, is largest.

The major case of interest for orthogonal signals is where M is a power of 2, say
M =25, Thus the signal set can be used to transmit b binary digits, so the energy per bit
is E, = E/b. The number of required degrees of freedom for the signal set, however, is
M =2b, s0 the spectral efficiency p (the number of bits per pair of degrees of freedom)
is then p = b/2571, As b gets large, p gets small at almost an exponential rate, It will
be shown, however, that for large enough E,, as b gets large holding E, constant,
the ML error probabiliity goes to 0. In particular, for any E,/N, < In2 = 0.693, the
error probability goes to 0 exponentially as b — oo. Recall that In2 = 0.693, i.c.
—1.59dB, is the Shannon limit for reliable communication on a WGN channel with
unlimited bandwidth. Thus the derivation to follow will establish the Shannon theorem
for WGN and unlimited bandwidth. Before doing that, however, two closely related
types of signal sets are discussed.
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8.5.1 Simplex signal sets

Consider the random vector A with orthogonal equiprobable sample values
ay, . . ., ay_,; as described above. The mean value of A is then given by

T («/“ «/— VE )
M MM
We have seen that if a signal set is shifted by a constant vector, the Voronoi detection
regions are also shifted and the error probability remains the same. However, such a
shift can change the expected energy of the random signal vector. In particular, if the
signals are shifted to remove the mean, then the signal energy is reduced by the energy
(squared norm) of the mean. In this case, the energy of the mean is E/M. A simplex
signal set is an orthogonal signal set with the mean removed. That is,

S=A-A4; s,,,=a,,,—K; 0<m<M-1.

In other words, the mth component of s,, is +/E (M—1)/M and each other component
is —+/E /M. Each simplex signal has energy E(M~1)/M, so the simplex set has the
same error probability as the related orthogonal set, but requires less energy by a factor
of (M—1)/M. The simplex set of size M has dimensionality M — 1, as can be seen
from the fact that the sum of all the signals is O, so the signals are linearly dependent.
Figure 8.6 illustrates the orthogonal and simplex sets for M =2 and 3.

For small M, the simplex set is a substantial improvement over the orthogonal set.
For example, for M =2, it has a 3dB energy advantage (it is simply the antipodal
1D set). Also, it uses one fewer dimension than the orthogonal set. For large M,
however, the improvement becomes almost negligible.

onhogonal simplex biorthogonal

-\lez V272

0,0, (1)' v V23 _ P

Figure 86.  Orthogonal, simplex, and biorthogonal signal constellations.

Constellation Exhibit 2004, Page 193 of 229



294 Detection, coding, and decoding

8.5.2 Biorthogonal signal sets

Ifa,...,a,_ isasetof orthogonal signals, we call the set of 2M signals consisting
of xa,...,%a,  abiorthogonal signal set; 2D and 3D examples of biorthogonal
signals sets are given in Figure 8.6.

It can be seen by the same argument used for orthogonal signal sets that the ML
detection rule for such a set is to first choose the dimension m for which Jy,} is
largest, and then choose a,, or —a,, depending on whether y,, is positive or negative.
Orthogonal signal sets and simplex signal sets each have the property that each signal
is equidistant from every other signal. For biorthogonal sets, each signal is equidistant
from all but one of the other signals. The exception, for the signal a,,,, is the signal ~a,,.

The biorthogonal signal set of M dimensions contains twice as many signals as
the orthogonal set (thus sending one extra bit per signal), but has the same minimum
distance between signals. It is hard to imagine® a situation where we would prefer an
orthogonal signal set to a biorthogonal set, since one extra bit per signal is achieved
at essentially no cost. However, for the limiting argument to follow, an orthogonal
set is used in order to simplify the notation. As M gets very large, the advantage
of biorthogonal signals becomes smaller, which is why, asymptotically, the two are
equivalent.

8.5.3 Error probability for orthogonal signal sets

Since the signals differ only by the ordering of the coordinates, the probability of error
does not depend on which signal is sent; thus Pr(e) = Pr(e|A = a;). Conditional on
A =ay, Y, is N(VE,N,/2) and Y, is N (0, N,/2) for 1 <m < M—1. Note that if
A = a, and Y, = y,, then an error is made if Y,, > y, for any m, 1 <m < M—1. Thus

m=1

i~ -1
Pr(e) = /:m fyom()’ol a,) Pr (U Y.zylA =ao)) dy- (8.48)

The rest of the derivation of Pr(e), and its asymptotic behavior as M gets large,
is simplified if we normalize the outputs to W,, =Y, ./2/N,. Then, conditional on
signal a, being sent, W, is N(,/2E/N,, 1) = N (a, 1), where a is an abbreviation for
V2E/N,. Also, conditional on A = ay, W,, is N(0, 1) for 1 <m < M—1. It follows

that
-1

Pr(e) = /°° Swgu(wol ao) Pr (U (Wazwe|A =ao)> dwy. | (8.49)
—oo m=1

Using the union bound on the union above,

Pr (ﬁ(wm zwo|A=ao)) < (M~ 1)Q(w). (8.50)
m=]

% One possibility is that at passband a phase error of 7 can tum g, into —a,,. Thus with biorthogonal
signals it is necessary to track phase or use differential phase.
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The union bound is quite tight when applied to independent quantitities that have small
aggregate probability. Thus, this bound will be quite tight when w, is large and M
is not too large. When wy, is small, however, the bound becomes loose. For example,
for wy =0, O(w,) = 1/2 and the bound in (8.50) is (M — 1)/2, much larger than the
obvious bound of 1 for any probability. Thus, in the analysis to follow, the left side
of (8.50) will be upperbounded by 1 for small w, and by (M — 1)Q(w,) for large w,.
Since both 1 and (M — 1)Q(w,) are valid upperbounds for all w,, the dividing point
v between small and large can be chosen arbitrarily. It is chosen in what follows to
satisfy

exp(—7%/2) = 1/M; y=+2InM. (8.51)

It might seem more natural in light of (8.50) to replace y above by the 7, that satisfies
(M~-1)0(7y,) =1, and that turns out to be the natural choice in the lowerbound to
Pr(e) developed in Exercise 8.10. It is not hard to see, however, that y/%, goes to 1 as
M — oo, so the difference is not of major importance, Splitting the integral in (8.49)
into w, < y and w, > 7y, we obtain

Pr(e) < [ fuga(un ao)dvo-+ [ Fuga(o | ) M-D)Qu)duy  (852)
<00+ [ fantool a)01-D0Derp (L~ 2oy (859
< 0=+ [ S op( =LAV g, (850
= 0(a—7)+ j7 " «/;—7;' <=,xp(_2(“’0 —a/ 2;2 +yi - 2) du,  (8:55)
=Qa-n+ 71_2-Q (v2(v-3)) exp(%2 - “72) - (8.56)

The first term on the right side of (8.52) is the lower tail of the distribution of W,
and is the probability that the negative of the fluctuation of W, exceeds a— 1, i.e.
Q(a— 7). In the second term, Q(wj) is upperbounded using Exercise 8.7(c), thus
resulting in (8.53). This is simplified by (M — 1)Q(y) < M exp(—v?/2) = 1, resulting
in (8.54). The exponent is then manipulated to “complete the square” in (8.55), leading
to an integral of a Gaussian density, as given in (8.56).

The analysis now breaks into three special cases: the first where a < v; the second
where a/2 < v < «; and the third where y < a/2. We explain the significance of these
cases after completing the bounds.

Case (1) (@ <) The argument of the first Q function in (8.55) is less than or equal
to 0, so its value lies between 1/2 and 1. This means that Pr(e) < 1, which
is a useless result. As seen later, this is the case where the rate is greater
than or equal to capacity. It is also shown in Exercise 8.10 that the error
probability must be large in this case.
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Case (2) (/2 < y < a) Each Q function in (8.56) has a non-negative argument, so
the bound Q(x) < (1/2) exp(—x%/2) applies (see Exercise 8.7(b)):

2 2

ey — 2
Pr(e)s%cxp( (a2 Y )+2L§exp( : +77—-('y—a/2)2) (8.57)

< (% + 2%/5) exp (.—L;_y_)i) <exp (:—_(a_z—'y_)z) . (8.58)

Note that (8.58) follows (8.57) from combining the terms in the exponent of
the second term. The fact that the exponents are equal is not too surprising,
since y was chosen to equalize approximately the integrands in (8.52) at
Wy =Y.

Case (3) (y < a/2) The argument of the second Q function in (8.56) is less than or
equal to 0, so its value lies between 1/2 and 1 and is upperbounded by 1,
yielding

2

—(a — V)2 - 2
Pr(e)sé-exp( (a2 i >+2\I/§exp( : +77) (8.59)

) 2
<exp (—:— + 12-) . (8.60)

Since the two exponents in (8.57) are equal, the first exponent in (8.59) must
be smaller than the second, leading to (8.60). This is essentially the union
bound derived in Exercise 8.8.

The lowerbound in Exercise 8.10 shows that these bounds are quite tight, but the sense
in which they are tight will be explained later.

We now explore what « and 7y are in terms of the number of codewords M and the
energy per bit E;. Recall that & = /2E/N,. Also log, M = b, where b is the number
of bits per signal. Thus a = \/2bE, /N,. From (8.51), ¥ =21n M =2bIn2. Thus,

a-y=~/§3[\/M—«/ﬁ].

Substituting these values into (8.58) and (8.60), we obtain

2
Pr(e) _<_exp[—b (,/Eb/No—x/an) ] for be <In2< f}—b; (8.61)
0 0

E, E,
Pr(e) _<_exp[ b (2No an)] for In2 < 4—N—o. (8.62)

We see from this that for fixed E,/N, > In2, Pr(e) — 0 as b — .
" Recall that in (7.82) we stated that the capacity (in bits per second) of a WGN
channel of bandwidth W, noise spectral density No /2, and power P is given by

P
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With no bandwidth constraint, i.e. in the limit W — oo, the ultimate capacity is C =
P/(N, In2). This means that, according to Shannon’s theorem, for any rate R < C =
P/(N; In2), there are codes of rate R bits per second for which the error probability is
arbitrarily close to 0. Now P/R = E,, so Shannon says that if E,/(N, In2) > 1, then
codes exist with arbitrarily small probability of error.

The orthogonal codes provide a concrete proof of this ultimate capacity result, since
(8.61) shows that Pr(e) can be made arbitrarily small (by increasing b) so long as
E, /(N In2) > 1. Shannon’s theorem also says that the error probability cannot be
made small if E,/(N, In2) < 1. We have not quite proven that here, although Exercise
8.10 shows that the error probability cannot be made arbitrarily small for an orthogonal
code® if E,/(N, In2) < 1. .

The limiting operation here is slightly unconventional. As b increases, E, is held
constant. This means that the energy E in the signal increases linearly with b, but the
size of the constellation increases exponentially with b. Thus the bandwidth required
for this scheme is infinite in the limit, and going to infinity very rapidly. This means
that this is not a practical scheme for approaching capacity, although sets of 64 or
even 256 biorthogonal waveforms are used in practice.

The point of the analysis, then, is first to show that this infinite bandwidth capacity
can be approached, but second to show also that using large but finite sets of orthogonal
(or biorthogonal or simplex) waveforms does decrease error probability for fixed
signal-to-noise ratio, and decreases it as much as desired (for rates below capacity) if
enough bandwidth is used. '

The different forms of solution in (8.61) and (8.62) are interesting, and not simply
consequences of the upperbounds used. For case (2), which leads to (8.61), the typical
way that errors occur is when w, = . In this situation, the union bound is on the
order of 1, which indicates that, conditional on y, = v, it is quite likely that an error
will occur. In other words, the typical error event involves an unusually large negative
value for w, rather than any unusual values for the other noise terms. In case (3),
which leads to (8.62), the typical way for errors to occur is when wy & a/2 and when
some other noise term is also at about a/2. In this case, an unusual event is needed
both in the signal direction and in some other direction.

A more intuitive way to look at this distinction is to visualize what happens when
E/N, is held fixed and M is varied. Case 3 corresponds to small M, case 2 to larger
M, and case 1 to very large M. For small M, one can visualize the Voronoi region
around the transmitted signal point. Errors occur when the noise carries the signal
point outside the Voronoi region, and that is most likely to occur at the points in the
Voronoi surface closest to the transmitted signal, i.e. at points halfway between the
transmitted point and some other signal point. As M increases, the number of these

9 Since a simplex code has the same error probability as the corresponding orthogonal code, but differs in
energy from the orthogonal code by a vanishingly small amount as M — 0, the error probability for simplex
codes also cannot be made arbitrarily small for any given E,/(N; In2) < 1. It is widely believed, but never
proven, that simplex codes are optimal in terms of ML error probability whenever the error probability is
small. There is a known example (Steiner, 1994), for all M > 7, where the simplex is nonoptimal, but in
this example the signal-to-noise ratio is very small and the error probability is very large.
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midway points increases until one of them is almost certain to cause an error when
the noise in the signal direction becomes too large.

8.6 Block coding

This section provides a brief introduction to the subject of coding for error correction
on noisy channels. Coding is a major topic in modern digital communication, certainly
far more important than suggested by the length of this introduction. In fact, coding
is a topic that deserves its own text and its own academic subject in any serious
communication curriculum. Suggested texts are Forney (2005) and Lin and Costello
(2004). Our purpose here is to provide enough background and examples to understand
the role of coding in digital communication, rather than to prepare the student for coding
research. We start by viewing orthogonal codes as block codes using a binary alphabet.
This is followed by the Reed-Muller codes, which provide considerable insight into
coding for the WGN channel. This then leads into Shannon’s celebrated noisy-channel
coding theorem.

A block code is a code for which the incoming sequence of binary digits is segmented
into blocks of some given length m and then these binary m-tuples are mapped into
codewords. There are thus 2™ codewords in the code; these codewords might be binary
n-tuples of some block length n > m, or they might be vectors of signals, or waveforms.
Successive codewords then pass through the remaining stages of modulation before
transmission. There is no fundamental difference between coding and modulation; for
example, the orthogonal code above with M =2™ codewords can be viewed either as
modulation with a large signal set or coding using binary m-tuples as input.

8.6.1 Binary orthogonal codes and Hadamard matrices

When orthogonal codewords are used on a WGN channel, any orthogonal set is equally
good from the standpoint of error probability. One possibility, for example, is the use
of orthogonal sine waves. From an implementation standpoint, however, there are
simpler choices than orthogonal sine waves. Conceptually, also, it is helpful to see
‘that orthogonal codewords can be constructed from binary codewords. This digital
approach will turn out to be conceptually important in the study of fading channels
and diversity in Chapter 9. It also helps in implementation, since it postpones the point
at which digital hardware gives way to analog waveforms.

One digital approach to generating a large set of orthogonal waveforms comes from
first generating a set of M binary codewords, each of length M and each distinct
pair differing in exactly M/2 places. Each binary digit can then be mapped into
an antipodal signal, 0 - +a and 1 — —a. This yields an M-tuple of real-valued
antipodal signals, sy, ..., Sy, which is then mapped into the waveform };s;¢;(1),
where {¢;(f); 1 < j < M} is an orthonormal set (such as sinc functions or Nyquist
pulses). Since each pair of binary codewords differs in M/2 places, the corresponding
pair of waveforms are orthogonal and each waveform has equal energy. A binary code
with the above properties is called a binary orthogonal code.
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There are many ways to generate binary orthogonal codes. Probably the simplest is
from a Hadamard matrix, For each integer m > 1, there is a 2™ by 2" Hadamard matrix
H,,. Each distinct pair of rows in the Hadamard matrix H,, differs in exactly 2!
places, so the 2™ rows of H,, constitute a binary orthogonal code with 2™ codewords.

It turns out that there is a simple algorithm for generating the Hadamard matrices.
The Hadamard matrix H, is defined to have the rows 00 and 01, which trivially satisfy
the condition that each pair of distinct rows differ in half the positions. For any integer
m > 1, the Hadamard matrix H,,,, of order 2™*! can be expressed as four 2™ by 2™
submatrices. Each of the upper two submatrices is H,, and the lower two submatrices
are H, and H,,, where H,, is the complement of H,,. This is illustrated in Figure 8.7.

Note that each row of each matrix in Figure 8.7, other than the all-zero row, contains
half Os and half 1s. To see that this remains true for all larger values of m, we can
use induction. Thus assume, for given m, that H,, contains a single row of all Os and
2™ — 1 rows, each with exactly half 1s. To prove the same for H,,,,, first consider the
first 2™ rows of H,, ;. Each row has twice the length and twice the number of 1s as
the corresponding row in H,,. Next consider the final 2™ rows. Note that H,, has all
1s in the first row and 2™~! 1s in each other row. Thus the first row in the second
set of 2™ rows of H,,,; has no 1s in the first 2" positions and 2™ 1s in the final 2"
positions, yielding 2™ 1s in 2™*! positions. Each remaining row has 2™! 1s in the
first 2™ positions and 2™~! 1s in the final 2™ positions, totaling 2™ 1s as required.

By a similar inductive argument (see Exercise 8.18), the mod-2 sum'® of any two
rows of H,, is another row of H,,. Since the mod-2 sum of two rows gives the positions
in which the rows differ, and only the mod-2 sum of a codeword with itself gives the
all-zero codeword, this means that the set of rows is a binary orthogonal set.

The fact that the mod-2 sum of any two rows is another row makes the corresponding
code a special kind of binary code called a linear code, parity-check code, or group
code (these are all synonyms). Binary M-tuples can be regarded as vectors in a vector
space over the binary scalar field. It is not necessary here to be precise about what a
field is; so far it has been sufficient to consider vector spaces defined over the real
or complex fields. However, the binary numbers, using mod-2 addition and ordinary

0000 0000
0101 0101
0011 0011
0110 0110
0000 1111
0101 1010
0011 1100
0110 1001

m=1 ‘ m=2 m=3

—=lOj=]0C
=|lallo]lOo
O|l=|=|O

o
-
(=2 =2 K=2 k=]

Figure 8.7. Hadamard matrices.

19 The mod-2 sum of two binary numbers is defined by 090=0,0®1=1, 160=1,and 1®1=0. The
mod-2 sum of two rows (or vectors) or binary numbers is the component-wise row (or vector) of mod-2
sums,
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multiplication, also form the field called F,, and the familiar properties of vector
spaces, using {0, 1} as scalars, apply here also.

Since the set of codewords in a linear code is closed under mod-2 sums (and
also closed under scalar multiplication by 1 or 0), a linear code is a binary vector
subspace of the binary vector space of binary M-tuples. An important property of
such a subspace, and thus of a linear code, is that the set of positions in which two
codewords differ is the set of positions in which the mod-2 sum of those codewords
contains the binary digit 1. This means that the distance between two codewords (i.e.
the number of positions in which they differ) is equal to the weight (the number
of positions containing the binary digit 1) of their mod-2 sum. This means, in turn,
that, for a linear code, the minimum distance d;, taken between all distinct pairs of
codewords is equal to the minimum weight (minimum number of 1s) of any nonzero

codeword.
Another important property of a linear code (other than the trivial code consisting of
all binary M-tuples) is that some components x, of each codeword x = (x, . . ., X3)"

can be represented as mod-2 sums of other components. For example, in the m =3 case
of Figure 8.7, x, = x, ® x5, Xg = X, ® X5, X7 = X3 D X5, X3 = X, ® x5, and x; = 0. Thus
only three of the components can be independently chosen, leading to a 3D binary
subspace. Since each component is binary, such a 3D subspace contains 23 = 8 vectors.
The components that are mod-2 combinations of previous components are called
“parity checks” and often play an important role in decoding. The first component, x;,
can be viewed as a parity check since it cannot be chosen independently, but its only
role in the code is to help achieve the orthogonality property. It is irrelevant in decoding.

It is easy to modify a binary orthogonal code generated by a Hadamard matrix
to generate a binary simplex code, i.e. a binary code which, after the mapping 0 —
a,1 — —a, forms a simplex in Euclidean space. The first component of each binary
codeword is dropped, turning the code into M codewords over M — 1 dimensions. Note
that in terms of the antipodal signals generated by the binary digits, dropping the first
component converts the signal +a (corresponding to the first binary component 0) into
the signal 0 (which corresponds neither to the binary 0 or 1). The generation of the
binary biorthogonal code is equally simple; the rows of H,, yield half of the codewords
and the rows of H,, yield the other half. Both the simplex and the biorthogonal code,
as expressed in binary form here, are linear binary block codes.

Two things have been accomplished with this representation of orthogonal codes.
First, orthogonal codes can be generated from a binary sequence mapped into an
antipodal sequence; second, an example has been given where modulation over a large
alphabet can be viewed as a binary block code followed by modulation over a binary
or very small alphabet.

8.6.2 Reed-Muifler codes

Orthogonal codes (and the corresponding s'implex and biorthgonal codes) use enormous
bandwidth for large M. The Reed-Muller codes constitute a class of binary linear block
codes that include large bandwidth codes (in fact, they include the binary biorthogonal
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codes), but also allow for much smaller bandwidth expansion, i.e. they allow for binary
codes with M codewords, where log M is much closer to the number of dimensions
used by the code. '

The Reed-Muller codes are specified by two integer parameters, m>land0<r <
m; a binary linear block code, denoted by RM(r, m), exists for each such choice. The
parameter m specifies the block length to be n =2™. The minimum distance d_, (r, m)
of the code and the number of binary information digits k(r, m) required to specify a
codeword are given by

i (r, m) =2"7"; k(r,m) = Z (m) (8.64)

j=o0\J

where (’J") = J,#lm Thus these codes, like the binary orthogonal codes, exist only for
block lengths equal to a power of 2. While there is only one binary orthogonal code
(as defined through H,,) for each m, there is a range of RM codes for each m, ranging
from large d,;, and small k to small d_;, and large k as r increases.

For each m, these codes are trivial for r =0 and r = m. For r =0 the code consists
of two codewords selected by a single bit, so k(0, m) = 1; one codeword is all Os
and the other is all 1s, leading to d;;(0, m) =2™. For r = m, the code is the set of
all binary 2™-tuples, leading to d_;,(m, m) =1 and k(m, m) =2™. For m =1, then,
there are two RM codes: RM(0, 1) consists of the two codewords (0,0) and (1,1), and
RM(1, 1) consists of the four codewords (0,0), (0,1), (1,0), and (1,1).

For m > 1 and intermediate values of r, there is a simple algorithm, much like that
for Hadamard matrices, that specifies the set of codewords. The algorithm is recursive,
and, for each m > 1 and 0 < r < m, specifies RM(r, m) in terms of RM(r, m—1) and
RM(r—1,m—1). Specifically, x € RM(r, m) if x is the concatenation of u and u @,
denoted by x = (u, u ®v), for some u € RM(r, m—1,) and v € RM(r—1, m—1). More
formally, for0 < r<m,

RM(r, m) = {(u, u®v)|ue RM(r,m — 1),y e RM(r — 1,m — 1)}. (8.65)

The analogy with Hadamard matrices is that x is a row of H,, if u is a row of H,,_;
and v is either all 1s or all Os.

The first thing to observe about this definition is that if RM(r,m — 1) and
RM(r — 1, m — 1) are linear codes, then RM(r, m) is also. To see this, letx = (u, u®v)
and x' = (w’, &' ®Vv'). Then

x®x =o', udu' dvey) =", u" ev"),

where u’ =u®u’ e RM(r,m — 1) and v =v ®v € RM(r — 1, m — 1). This shows
that x ®x’ € RM(r, m), and it follows that RM(r, m) is a linear code if RM(r,m — 1)
and RM(r — 1,m~—1) are. Since both RM(0, m) and RM(m, m) are linear for all
m > 1, it follows by induction on m that all the Reed-Muller codes are linear.
Another observation is that different choices of the pair # and v cannot lead to the
same value of x = (u, u ®v). To see this, let x’ = (u',v'). Then, if u £ o', it follows
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that the first half of x differs from that of x'. Similarly, if # =«' and v # v/, then
the second half of x differs from that of x’. Thus, x =x’ only if both u =’ and
v =v'. As a consequence of this, the number of information bits required to specify a
codeword in RM(r, m), denoted by k(r, m), is equal to the number required to specify
a codeword in RM(r, m — 1) plus that to specify a codeword in RM(r — 1, m — 1),
ie,forO<r<m,

k(rrm)=k(r,m — 1)+k(r — 1,m — 1).

Exercise 8.19 shows that this relationship implies the explicit form for k(r, m) given
in (8.64). Finally, Exercise 8.20 verifies the explicit form for d,;,(r, m) in (8.64).

The RM(1, m) codes are the binary biorthogonal codes, and one can view the con-
struction in (8.65) as being equivalent to the Hadamard matrix algorithm by replacing
the M by M matrix H,, in the Hadamard algorithm by the 2M by M matrix [z:],
where G,, = H,,.

Another interesting case is the RM(m — 2, m) codes. These have d;,(m — 2,m) =4
and k(m — 2, m) =2" —m—1 information bits. In other words, they have m -1 parity
checks. As explained below, these codes are called extended Hamming codes.

A property of all RM codes is that all codewords have an even number!! of 1s and
thus the last component in each codeword can be viewed as an overall parity check
which is chosen to ensure that the codeword contains an even number of 1s. If this
final parity check is omitted from RM(m —2, m) for any given m, the resulting code is
still linear and must have a minimum distance of at least 3, since only one component
has been omitted. This code is called the Hamming code of block length 2™ —1 with
m parity checks. It has the remarkable property that every binary (27 — 1)-tuple is
either a codeword in this code or distance 1 from a codeword.'?

The Hamming codes are not particularly useful in practice for the following reasons.
If one uses a Hamming code at the input to a modulator and then makes hard decisions
on the individual bits before decoding, then a block decoding error is made whenever
two or more bit errors occur. This is a small improvement in reliability at a very
substantial cost in transmission rate. On the other hand, if soft decisions are made, the
use of the extended Hamming code (i.e. RM(m — 2, m)) extends d,;, from 3 to 4,
significantly decreasing the error probability with a marginal cost in added redundant
bits.

8.7 Noisy-channel coding thebrem

Sections 8.5 and 8.6 provided a brief introduction to coding. Several examples were
discussed showing that the use of binary codes could accomplish the same thing, for

1 This property can be easily verified by induction.

12 To see this, note that there are 22™~1-" codewords, and each codeword has 2 — 1 neighbors; these
are distinct from the neighbors of other codewords since d;, is at least 3. Adding the codewords and the
neighbors, we get the entire set of 22”~! vectors. This also shows that the minimum distance is exactly 3.
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example as the use of large sets of orthogonal, simplex, or biorthogonal waveforms,
There was an ad hoc nature to the development, however, illustrating a number of
schemes with various interesting properties, but little in the way of general results.

The earlier results on Pr(e) for orthogonal codes were more fundamental, showing
that Pr(e) could be made arbitrarily small for a WGN channel with no bandwidth
constraint if E,/N, is greater than In 2. This constituted a special case of the noisy-
channel coding theorem, saying that arbitrarily small Pr(e) can be achieved for that
very special channel and set of constraints.

8.7.1 Discrete memoryless channels

This section states and proves the noisy-channel coding theorem for another special
case, that of discrete memoryless channels (DMCs). This may seem a little peculiar
after all the emphasis in this and the preceding chapter on WGN. There are two major
reasons for this choice. The first is that the argument is particularly clear in the DMC
case, particularly after studying the AEP for discrete memoryless sources. The second
is that the argument can be generalized easily, as will be discussed later. A DMC has a
discrete input sequence X = X, ..., X,,... Ateach discrete time %, the input to the
channel belongs to a finite alphabet X' of symbols. For example, in Section 8.6, the
input alphabet could be viewed as the signals #4a. The question of interest would then
be whether it is possible to communicate reliably over a channel when the decision
to use the alphabet X' = {a, —a} has already been made. The channel would then be
regarded as the part of the channel from signal selection to an output sequence from
which detection would be done. In a more general case, the signal set could be an
arbitrary QAM set.

A DMC is also defined to have a discrete output sequence ¥ =1Y,...,Y,,...,
where each output Y, in the output sequence is a selection from a finite alphabet ¥ and
is a probabilistic function of the input and noise in a way to be described shortly. In the
example above, the output alphabet could be chosen as ¥ = {a, —a}, corresponding to
the case in which hard decisions are made on each signal at the receiver. The channel
would then include the modulation and detection as an internal part, and the question
of interest would be whether coding at the input and decoding from the single-letter
hard decisions at the output could yield reliable communication.

Another choice would be to use the pre-decision outputs, first quantized to satisfy
the finite alphabet constraint. Another almost identical choice would be a detector that
produced a quantized LLR as opposed to a decision.

In summary, the choice of discrete memoryless channel alphabets depends on what
part of the overall communication problem is being addressed.

In general, a channel is described not only by the input and output alphabets, but also
by the probabilistic description of the outputs conditional on the inputs (the probabilistic
description of the inputs is selected by the channel user). Let X" = (X,, X,,... X,)’
be the channel input, here viewed either over the lifetime of the channel or any time
greater than or equal to the duration of interest. Similarly, the output is denoted by
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Y= (Y,...,Y,)". For a DMC, the probébility of the output n-tuple, conditional on
the input n-tuple, is defined to satisfy

pynlxn(yl’ cevsYn l‘xl’ bl "xll) = I_Ipy‘[x‘(yklxk)7 (8’66)
k=1

where Py, (yy =Jjlx, =1i), for each j€ Y and i € X, is a function only of i and j
and not of the time k. Thus, conditional on the inputs, the outputs are independent
and have the same conditional distribution at all times. This conditional distribution
is denoted by P;; forall ie X and j€ ¥, i.e. Py, O = jlx =) = P; ;. Thus the
channel is completely described by the input alphabet, the output alphabet, and the
conditional distribution function P, ;. The conditional distribution function is usually
called the transition function or transmon matrix.

The most intensely studied DMC over the past 60 years has been the binary sym-
metric channel (BSC), which has X = {0, 1}, ¥ = {0, 1}, and satisfies Py, = P, 4. The
single number P, thus specifies the BSC. The WGN channel with antipodal inputs
and ML hard decisions at the output is an example of the BSC. Despite the intense
study of the BSC and its inherent simplicity, the question of optimal codes of long
block length (optimal in the sense of minimum error probability) is largely unan-
swered. Thus, the noisy-channel coding theorem, which describes various properties
of the achievable error probability through coding plays a particularly important role
in coding.

8.7.2 Capacity

This section defines the capacity C of a DMC. Section 8.7.3, after defining the rate
R at which information enters the modulator, shows that reliable communication is
impossible on a channel if R > C. This is known as the converse to the noisy-channel
coding theorem, and is in contrast to Section 8.7.4, which shows that arbitrarily
reliable communication is possible for any R < C. As in the analysis of orthogonal
codes, communication at rates below capacity can be made increasingly reliable with
increasing block length, while this is not possible for R > C.

The capacity is defined in terms of various entropies. For a given DMC and given
sequence length n, let p,, ., (»"[x") be given by (8.66) and let p,,(x") denote an
arbitrary probability mass function chosen by the user on the input X, ..., X,. This
leads to a joint entropy H[X"Y"]. From (2.37), this can be broken up as follows:

H[X"Y"] =H[X"]+H[Y"|X"], (8.67)
where H[Y"|X"] = E[-log p,, ... (Y"]X")]. Note that because H[Y"|X"] is defined as an
expectation over both X" and ¥", H[¥"|X"] depends on the distribution of X" as well

as the conditional distribution of ¥” given X". The joint entropy H[X"Y"] can also be
broken up the opposite way as follows:

H[X"Y"] = H[¥"] 4 H[X"|¥"]. (8.68)
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Combining (8.67) and (8.68), it is seen that H[X"] —H[X"|Y"] = H[Y"] — H[Y"|X"].
This difference of entropies is called the mutual information between X" and Y* and
is denoted by I[X"; Y"], so

I[X"; ¥"] = H[X"] — H[X"{¥"] =H[¥"] — H[¥"|X"]. (8.69)

The first expression for I[X"; Y"] has a nice intuitive interpretation. From source
coding, H[X"] represents the number of bits required to represent the channel input. If
we look at a particular sample value y” of the output, H{X"|Y”" = y"] can be interpreted
as the number of bits required to represent X” after observing the output sample value
y". Note that H[X"|Y"] is the expected value of this over ¥", Thus I[X"; Y"] can be
interpreted as the reduction in uncertainty, or number of required bits for specification,
after passing through the channel. This intuition will lead to the converse to the
noisy-channel coding theorem in Section 8.7.3.

The second expression for I[X"; ¥"] is the one most easily manipulated. Taking the
log of the expression in (8.66), we obtain

HLY"|X"] = Y HKIX,) (8.10)
k=1 .

Since the entropy of a sequence of random symbols is upperbounded by the sum of
the corresponding terms (see Exercise 2.19),

HLY™) < 3 HIK) 371)

k=1

Substituting this and (8.70) in (8.69) yields
X" ¥ < Y I[X,; Y. (8.72)
k=1

If the inputs are independent, then the outputs are also, and (8.71) and (8.72) are satis-
fied with equality. The mutual information I[X,; ¥,] at each time k is a function only of
the pmf for X,, since the output probabilities conditional on the input are determined
by the channel. Thus, each mutual information term in (8.72) is upperbounded by the
maximum of the mutual information over the input distribution. This maximum is
defined as the capacity of the DMC, given by

Pl]
C=max)_ )Y pP;;log =—"—, (8.73)
iex jey M Y ex PeP, J

where p = {py, py, . - - » Px)-y} is the set (over the alphabet X) of input probabilities.
The maximum is over this set of input probabilities, subject to p; >0 foreachie X
and 3, » p; = 1. The above function is concave in p, and thus the maximization is
straightforward. For the BSC, for example, the maximum is at p, = p; = 1/2 and
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C=1+Py,logP,y, +PyglogPy,. Since C upperbounds I[X,; Y;] for each k, with
equality if the distribution for X is the maximizing distribution,

I[X™; Y] < nC - (8.74)

with equality if all inputs are independent and chosen with the maximizing probabilities
in (8.73).

8.7.3 Converse to the noisy-channel coding theorem

Define the rate R for the DMC above as the number of iid equiprobable binary source
digits that enter the channel per channel use. More specifically, assume that nR bits
enter the source and are transmitted over the n channel uses under discussion. Assume
also that these bits are mapped into the channel input X” in a one-to-one way. Thus
H[X"] = nR and X" can take on M = 2"k equiprobable values. The following theorem
now bounds Pr(e) away from 0 if R > C.

Theorem 8.7.1 Consider a DMC with capacity C. Assume that the rate R sat-
isfies R > C. Then, for any block length n, the ML probability of error, ie. the
probability that the decoded n-tuple X" is unequal to the transmitted n-tuple X", is
lowerbounded by

R~ C < Hy(Pr(e)) + RPx(e), (8.75)

where Hy(a) is the binary entropy, —aloga— (1 —a)log(l — ).

Remark Note that the right side of (8.75) is 0 at Pr(e) =0 and is increasing for
Pr(e) < 1/2, so (8.75) provides a lowerbound to Pr(e) that depends only on C and R.

Proof Note that H[X"} = nR and, from (8.72) and (8.69), H(X") —H(X"|¥") < nC.
Thus

H(X"|Y") = nR—nC. (8.76)
For each sample value y” of Y, H(X" | Y™ =y") is an ordinary entropy. The received y"
is decoded into some X", and the corresonding probability of error is Pr(X" #%"|Y" =
¥y"). The Fano inequality (see Exercise 2.20) states that the entropy H(X"|¥" =y") can

be upperbounded as the sum of two terms: first the binary entropy of whether or not
X" =x", and second the entropy of all M — 1 possible errors in the case X" #%", i.e.

H(X"[Y" =y") < Hy(Pr(ely")) +Pr(ely”) log(M —1).
Upperbounding log(M — 1) by log M = nR and averaging over Y" yields

HEX Y™ < H,(Pr(e)) +nRPx(e). (8.77)
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Combining (8.76) and (8.77), we obtain

Hy(Pr(e))
n

R-C< +RPr(e),

and upperbounding 1/n by 1 yields (8.75). O

Theorem 8.7.1 is not entirely satisfactory, since it shows that the probability of block
error cannot be made negligible at rates above capacity, but it does not rule out the
possibility that each block error causes only one bit error, say, and thus the probability
of bit error might go to 0 as n — o. As shown in Gallager (1968, theorem 4.3.4), this
cannot happen, but the proof does not add much insight and will be omitted here.

8.74 Noisy-channel coding theorem, forward part

There are two critical ideas in the forward part of the coding theorem. The first is to
use the AEP on the joint ensemble X"Y". The second, however, is what shows the
true genius of Shannon. His approach, rather than an effort to find and analyze good
codes, was simply to choose each codeword of a code randomly, choosing each letter
in each codeword to be iid with the capacity yielding input distribution.

One would think initially that the codewords should be chosen to be maximally
different in some sense, but Shannon’s intuition said that independence would be
enough. Some initial sense of why this might be true comes from looking at the binary
orthogonal codes. Here each codeword of length n differs from each other codeword
in n/2 positions, which is equal to the average number of differences with random
choice. Another initial intuition comes from the fact that mutual information between
input and output n-tuples is maximized by iid inputs. Truly independent inputs do not
allow for coding constraints, but choosing a limited number of codewords using an iid
distribution is at least a plausible approach. In any case, the following theorem proves
that this approach works.

It clearly makes no sense for the encoder to choose codewords randomly if the
decoder does not know what those codewords are, so we visualize the designer of
the modem as choosing these codewords and building them into both transmitter and
receiver. Presumably the designer is smart enough to test a code before shipping a
million copies around the world, but we won’t worry about that. We simply average
the performance over all random choices. Thus the probability space consists of M
independent iid codewords of block length n, followed by a randomly chosen message
m, 0 <m < M ~1, that enters the encoder. The corresponding sample value x}, of
the mth randomly chosen codeword is transmitted and combined with noise to yield
a received sample sequence y". The decoder then compares y" with the M possible
randomly chosen messages (the decoder knows x, . . ., x,_,;, but not m) and chooses
the most likely of them. It appears that a simple problem has been replaced by a
complex problem, but since there is so much independence between all the random
symbols, the new problem is surprisingly simple.

These randomly chosen codewords and channel outputs are now analyzed with the
help of the AEP. For this particular problem, however, it is simpler to use a slightly
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different form of AEP, called the strong AEP, than that of Chapter 2. The strong
AEP was analyzed in Exercise 2.28 and is reviewed here. Let U" =U,, ..., U, be an
n-tuple of iid discrete random symbols with alphabet U and letter probabilities p; for
each j € U. Then, for any & > 0, the strongly typical set S,(U") of sample n-tuples is
defined as follows:

S.(U") = [u" :pi(l—eg) < N’Ei‘ )

<pj(1+¢); forallje U], (8.78)

where N;(u") is the number of appearances of letter j in the n-tuple u". The double
inequality in (8.78) will be abbreviated as N;(u") € np;(1+ &), so (8.78) becomes

S;(U") = {u": N;(w") e np(l L£¢); foralljelU}. (8.79)

Thus, the strongly typical set is the set of n-tuples for which each letter appears with
approximately the right relative frequency. For any given ¢, the law of large numbers
says that lim,_, , Pr(N;(U") € p;(1 £ ¢€)) =1 for each j. Thus (see Exercise 2.28),

lim Pr(U" € S,(U")) = 1. (8.80)
Next consider the probability of n-tuples in S,(U"). Note that p,, (u") =[T; pjh.” “)
Taking the log of this, we see that

log p,.(u") =) N;(u")logp;
J
€Y pi(1xe)logp;;
j

log p,.(#") € —nH(U)(1£¢), for u" € S, (U"). (8.81)

Thus the strongly typical set has the same basic properties as the typical set defined
in Chapter 2. Because of the requirement that each letter has a typical number of
appearances, however, it has additional properties that are useful in the coding theorem
that follows.

Consider an n-tuple of channel input/output pairs, X"Y" = (X, 1), (X;13), ...,
(X, Y,), where successive pairs are iid. For each pair XY, let X have the pmf {p;; i € X},
which achieves capacity in (8.73). Let the pair XY have the pmf {p;P, ;i€ X, j € Y},
where P;; is the channel transition probability from input i to output j. This is the
joint pmf for the randomly chosen codeword that is transmitted and the corresponding
received sequence. _

The strongly typical set S,(X"Y") is then given by (8.79) as follows:

S.(X"Y") = {x"y" : Ny(x"y") e np,P, (1 £ e); forallieX,jey)}, (882)

where N;;(x"y") is the number of xy pairs in ((x, 1), (x23)s - - -, (%,¥,)) for which
x=iand y= . Using the same argument as in (8.80), the transmitted codeword X"
and the received n-tuple Y" jointly satisfy ' '

lim Pr[(X"Y") € S,(X"¥")] = 1. (8.83)
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Applying the same argument as in (8.81) to the pair x"y", we obtain
logp,,,.(x"y") € —nH(XY)(1£¢), for (x"y") € S,(X"Y"). (8.84)

The nice feature about strong typicality is that if x"y" is in the set S_(X"Y") for a given
pair x"y", then the given x" must be in S,(X") and the given ¥ must be in S,(¥"). To
see this, assume that (x"y") € S,(X"Y"). Then, by definition, N;;(x"y") € np;P;;(1%¢)
for all {, j. Thus,

NG = TN,
J

€Y npP(l+e)=np(lxe), foralli.
J

Thus x” € S_(X"). By the same argument, y” € S,(Y").

Theorem 8.7.2 Consider a DMC with capacity C and let R be any fixed rate R < C.
Then, for any 6 > 0 and all sufficiently large block lengths n, there exist block codes

with M > 2"® equiprobable codewords such that the ML error probability satisfies
Pr(e) <4.

Proof As suggested in the preceding discussion, we consider the error probability
averaged over the random selection of codes defined above, where, for given block
length n and rate R, the number of codewords will be M = [2"R]. Since at least one
code must be as good as the average, the theorem can be proved by showing that
Pr(e) <.

The decoding rule to be used will be different from maximum likelihood, but since
the ML rule is optimum for equiprobable messages, proving that Pr(e) < & for any
decoding rule will prove the theorem. The rule to be used is strong typicality. That
is, the decoder, after observing the received sequence y”, chooses a codeword x,
for which x7 y* is jointly typical, i.e. for which x] y" € S, (X" Y") for some & to be
determined later. An error is said to be made if either x? ¢ S,(X"Y") for the message m
actually transmitted or if x7, y* € §,(X" Y") for some m' 7% m. The probability of error
given message m is then upperbounded by two terms: Pr{X"Y" ¢ S, (X" Y")], where
X"Y" is the transmitted/received pair, and the probability that some other codeword
is jointly typical with Y", The other codewords are independent of ¥ and each are
chosen with iid symbols using the same pmf as the transmitted codeword. Let X be
any one of these codewords. Using the union bound,

Pr(e) < Pr[(X"Y") ¢ S,(X"Y™)] + (M — 1) Pr [()_("Y") e SC(X"Y")] . (8.85)

For any large enough n, (8.83) shows that the first term is at most 6/2. Also M —1 <
2"R, Thus '

Pr(e) < g +2"RPr [(Y"Y") € SG(X"Y")] . (8:86)
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To analyze (8.86), define F(y") as the set of input sequences x” that are jointly typical
with any given y”. This set is empty if y* € S,(¥"). Note that, for y" € S,(Y"),

n —nH(XY)(1+¢)
PO X Py 2 30 2 9,
M eFy") xMeF")

where the final inequality comes from (8.84). Since p,, (y") < 27"H0-9) for y» €
S.(Y™), the conclusion is that the number of n-tuples in F(y") for any typical y"
satisfies

IF(yn)l < 2n[H(XY)(l+e)-H(Y)(l-e)]. (887)

This means that the probability that X" lies in F(y") is at most the size |F(y™)| times
the maximum probability of a typical X (recall that X" is independent of ¥" but has
the same marginal distribution as X*). Thus,

Pr [(’f"y") c S,,.(X"Y")] < 2~ M) =) (1-€)-H(XY)(1+£)]

— 9~n{C—e[HX)HI(Y)H(XD)])

where we have used the fact that C = H(X) — H(X|Y) = H(X) + H(Y) — H(XY).
Substituting this into (8.86) yields

Pr(e) < g_+2n(R-C+ea),
where @ = H(X) +H(Y) +H(XY). Finally, choosing £ = (C —- R)/(2a),
Pr(e) < §+2"'(C‘R)/ <8

_ for sufficiently large n. O

The above proof is essentially the original proof given by Shannon, with a little added
explanation of details. It will be instructive to explain the essence of the proof without
any of the epsilons or deltas. The transmitted and received n-tuple pair (X"Y") is
typical with high probability and the typical pairs essentially have probability 2-"H(X")
(including both the random choice of X" and the random noise). Each typical output y"
essentially has a marginal probability 2-"#(¥), For each typical y”, there are essentially
28I input n-tuples that are jointly typical with y" (this is the nub of the proof).
An error occurs if any of these are selected to be codewords (other than the actual
transmitted codeword). Since there are about 2" typical input n-tuples altogether, a
fraction 2-"1%:¥] = 2-"C of them are jointly typical with the given received y".

More recent proofs of the noisy-channel coding theorem also provide much better
upperbounds on error probability. These bounds are exponentially decreasing with »,
with a rate of decrease that typically becomes vanishingly small as R — C.

The error probability in the theorem is the block error probability averaged over

" the codewords. This clearly upperbounds the error probability per transmitted binary
digit. The theorem can also be easily modified to apply uniformly to each codeword in
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the code. One simply starts with twice as many codewords as required and eliminates
the ones with greatest error probability. The &£ and & in the theorem can still be made
arbitrarily small. Usually encoders contain a scrambling operation between input and
output to provide privacy for the user, so a uniform bound on error probability is
usually unimportant.

8.75 The noisy-channel coding theorem for WGN

The coding theorem for DMCs can be easily extended to discrete-time channels with
arbitrary real or complex input and output alphabets, but doing this with mathematical
generality and precision is difficult with our present tools.

This extension is carried out for the discrete-time Gaussian channel, which will
make clear the conditions under which this generalization is easy. Let X, and Y, be
the input and output to the channel at time k, and assume that Y, = X, + Z,, where
Z, ~ N(0, N,/2) is independent of X, and independent of the signal and noise at
all other times. Assume the input is constrained in second moment to E[X?] < E, so
E[Y?] < E+Ny/2.

From Exercise 3.8, the differential entropy of Y is then upperbounded by

h(¥) < %log[ZTre(E+No/2)]. (8.88)

This is satisfied with equality if ¥ is (0, E + N,/2), and thus if X is (0, E). For
any given input x, h(Y|X = x) = (1/2) log(27eN,/2), so averaging over the input
space yields

hY|X) = Zl)‘-log(ZﬂeNo/2). (8.89)

By analogy with the DMC case, let the capacity C (in bits per channel use) be defined
as the maximum of h(Y) —h(Y|X) subject to the second moment constraint E. Thus,
combining (8.88) and (8.89), we have

1 2E
==1 — ). .
5 log <1+ No) (8.90)

Theorem 8.7.2 applies quite simply to this case. For any given rate R in bits per
channel use such that R < C, one can quantize the channel input and output space
finely enough such that the corresponding discrete capacity is arbitrarily close to C
and in particular larger than R. Then Theorem 8.7.2 applies, so rates arbitrarily close
to C can be transmitted with arbitrarily high reliability. The converse to the coding
theorem can be extended in a similar way.

For a discrete-time WGN channel using 2W degrees of freedom per second and
a power constraint P, the second moment constraint on each degree of freedom'3

13 We were careless in not specifying whether the constraint must be satisfied for each degree of freedom
or overall as a time average. It is not hard to show, however, that the mutual information is maximized
when the same energy is used in each degree of freedom.
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becomes E = P/2W and the capacity C, in bits per second becomes Shannon’s famous
formula:

P
C,=Wlog (1 + W) . (8.91)

This is then the capacity of a WGN channel with input power constrained to P and
degrees of freedom per second constrained to 2W.

With some careful interpretation, this is also the capacity of a continuous-time
channel constrained in bandwidth to W and in power to P. The problem here is that if
the input is strictly constrained in bandwidth, no information at all can be transmitted.
That is, if a single bit is introduced into the channel at time 0, the difference in
the waveform generated by symbol 1 and that generated by symbol 0 must be zero
before time 0, and thus, by the Paley-Wiener theorem, cannot be nonzero and strictly
bandlimited. From an engineering perspective, this does not seem to make sense, but
the waveforms used in all engineering systems have negligible but nonzero energy
outside the nominal bandwidth.

Thus, to use (8.91) for a bandlimited input, it is necessary to start with the constraint
that, for any given 7 > 0, at least a fraction (1 —n) of the energy must lie within
a bandwidth W. Then reliable communication is possible at all rates R, in bits per
second less than C, as given in (8.91). Since this is true for all 7 > 0, no matter how
small, it makes sense to call this the capacity of the bandlimited WGN channel. This
is not an issue in the design of a communication system, since filters must be used,
and it is widely recognized that they cannot be entirely bandlimited.

8.8 Convolutional codes

The theory of coding, and particularly of coding theorems, concentrates on block
codes, but convolutional codes are also widely used and have essentially no block
structure. These codes can be used whether bandwidth is highly constrained or not.
We give an example below where there are two output bits for each input bit. Such a
code is said to have rate 1/2 (in input bits per channel bit). More generally, such codes
produce an m-tuple of output bits for each b-tuple of input bits for arbitrary integers
0 < b < m. These codes are said to have rate b/m.

A convolutional code looks very much like a discrete filter. Instead of having a single
input and output stream, however, we have b input streams and m output streams.
For the example of a convolutional code in Figure 8.8, the number of input streams
is b =1 and the number of output streams is m = 2, thus producing two output bits
per input bit. There is another difference between a convolutional code and a discrete
filter; the inputs and outputs for a convolutional code are binary and the addition is
modulo 2.

As indicated in Figure 8.8, the outputs for this convolutional code are given by

U =D®D;,®D,,,
Ui =Dy ®Dy_,.
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information bits
Dy D2
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&

Figure 88.  Example of a convolutional code.

Thus, each of the two output streams are linear modulo 2 convolutions of the input
stream. This encoded pair of binary streams can now be mapped into a pair of signal
streams such as antipodal signals +a. This pair of signal streams can then be interleaved
and modulated by a single stream of Nyquist pulses at twice the rate. This baseband
waveform can then be modulated to passband and transmitted.

The structure of this code can be most easily visualized by a “trellis” diagram as
illustrated in Figure 8.9.

To understand this trellis diagram, note from Figure 8.8 that the encoder is character-
ized at any epoch k by the previous binary digits, D,_, and D,_,. Thus the encoder has
four possible states, corresponding to the four possible values of the pair D,_;, D,_,.
Given any of these four states, the encoder output and the next state depend only on the
current binary input. Figure 8.9 shows these four states arranged vertically and shows
time horizontally. We assume the encoder starts at epoch 0 with D_; =D_, =0.

In the convolutional code of Figure 8.8 and 8.9, the output at epoch k depends on
the current input and the previous two inputs. In this case, the constraint length of the
code is 2. In general, the output could depend on the input and the previous n inputs,
and the constraint length is then defined to be n. If the constraint length is n (and
a single binary digit enters the encoder at each epoch k), then there are 2" possible
states,.and the trellis diagram contains 2" rather than 4 nodes at each time instant.

00 &

10
state

01

1

Figure 89.  Trellis diagram; each transition is labeled with the input and corresponding output.

Constellation Exhibit 2004, Page 213 of 229



314 Detection, coding, and decoding

k0_1 k0 ko+1 k°+2
00 :
10
state :
01
1 °

Figure 8.10. Trellis termination.

As we have described convolutional codes above, the encoding starts at time 1 and
then continues forever. In practice, because of packetization of data and various other
reasons, the encoding usually comes to an end after some large number, say kg, of
binary digits have been encoded. After D, enters the encoder, two final Os enter the
encoder, at epochs kg +1 and ky+2, and four final encoded digits come out of the
encoder. This restores the state of the encoder to state 0, which, as we see later, is
very useful for decoding. For the more general case with a constraint length of n,
we need n final Os to restore the encoder to state 0. Altogether, k, inputs lead to
2(k, + n) outputs, for a code rate of k;/[2(kg 4 n)]. This is referred to as a terminated
rate 1/2 code. Figure 8.10 shows the part of the trellis diagram corresponding to this
termination.

8.8.1 Decoding of convolutional codes

Decoding a convolutional code is essentially the same as using detection the-
ory to choose between each pair of codewords, and then choosing the best
overall (the same as done for the orthogonal code). There is one slight concep-
tual difference in that, in principle, the encoding continues forever. When the
code is terminated, however, this problem does not exist, and in principle one
takes the maximum likelihood (ML) choice of all the (finite length) possible
codewords.

As usual, assume that the incoming binary digits are iid and equiprobable. This is
reasonable if the incoming bit stream has been source encoded. This means that the
codewords of any given length are equally likely, which then justifies ML decoding.

Maximum likelihood detection is also used so that codes for error correction can be
designed independently of the source data to be transmitted.

Another issue, given iid inputs, is determining what is meant by probability of
error. In all of the examples discussed so far, given a received sequence of symbols,
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we have attempted to choose the codeword that minimizes the probability of error
for the entire codeword. An alternative would have been to minimize the probability
of error individually for each binary information digit. It turns out to be easier to
minimize the sequence error probability than the bit error probability. This, in fact, is
what happens when we use ML detection between codewords, as suggested above.

In decoding for error correction, the objective is almost invariably to minimize the
sequence probability of error. Along with the convenience suggested here, a major
reason is that a binary input is usually a source-coded version of some other source
sequence or waveform, and thus a single output error is often as serious as multiple
errors within a codeword. Note that ML detection on sequences is assumed in what
follows.

8.8.2 The Viterbi algorithm

The Viterbi algorithm is an algorithm for performing ML detection for convolutional
codes. Assume for the time being that the code is terminated as in Figure 8.10. It will
soon be seen that whether or not the code is terminated is irrelevant. The algorithm
will now be explained for the convolutional code in Figure 8.8 and for the assumption
of WGN; the extension to arbitrary convolutional codes will be obvious except for
the notational complexity of the general case. For any given input dy, . .., d; , let the
encoded sequence be uy,y, U 5, Uy 15 Uz2, « - + » Upy42,2> and let the channel output, after
modulation, addition of WGN, and demodulation, be vy 1, Vg2, Up,1s Uz 25 « « + s Ugg42,2¢

There are 2% possible codewords, corresponding to the 2% possible binary k,-tuples
dy,...,d,, so a naive approach to decoding would be to compare the likelihood of
each of these codewords. For large k,, even with today’s technology, such an approach
would be prohibitive. It turns out, however, that by using the trellis structure of Figure
8.9, this decoding effort can be greatly simplified.

Eachinputd,, ..., d,, (ie.each codeword) corresponds to a particular path through
the trellis from epoch 1 to k,+2, and each path, at each epoch k, corresponds to a
particular trellis state.

Consider two paths dy, .. ., d; and d}, ..., d through the trellis that pass through
the same state at time k* (i.e. at the time immediately after the input and state change
at epoch k) and remain together thereafter. Thus, dyy, ..., dy, = djyy, ..., dj . For
example, from Figure 8.8, we see that both (0, ...,0) and (1,0,.. ., 0) are in state 00
at 3* and both remain in the same state thereafter. Since the two paths are in the same
state at k* and have the same inputs after this time, they both have the same encoder

outputs after this time. Thus uyyy ;o oy Upy2,0 = Uppppo e+ o s Wppp, FOr i=1,2.
Since each channel output rv V, ; is given by V, ; = U, ;+ Z, ; and the Gaussian noise
variables Z, ; are independent, this means that, for any channel output v, . .. , U 42,2,

S - Vaaaldys - -2 dy) _ S - vealdyy 0 dy)
JOs e e Vggaaldle e oo idi)  fO1gs 0oy Ukaldys e el 0 dy)

In plain English, this says that if two paths merge at time k* and then stay together,
the likelihood ratio depends on only the first k output pairs. Thus if the right side
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exceeds 1, then the path 4,,..., dko is more likely than the path di,..., dio. This
conclusion holds no matter how the final inputs d,,;, . .., d;, are chosen.

We then see that when two paths merge at a node, no matter what the remainder
of the path is, the most likely of the paths is the one that is most likely at the point
of the merger. Thus, whenever two paths merge, the least likely of the paths can be
eliminated at that point. Doing this elimination successively from the smallest k for
which paths merge (3 in our example), there is only one survivor for each state at each
epoch.

To be specific, let h(d,, ..., d,) be the state at time k* with input d,,. .., d,. For
our example, a(d,,...,d;) =(d,_;,d,). Let

Jrax (ks 8) = h(dx?%n)ﬂ S vealdys oo dy).

These quantities can then be calculated iteratively for each state and each time k by
the following iteration:

fralk 1,9 = MK fra(l D) [l (> (yaliar>5)) (892)

where the maximization is over the set of states r that have a transition to state s in the
trellis and u; (r—s) and u,(r— s) are the two outputs from the encoder corresponding
to a transition from r to s.

This expression is simplified (for WGN) by taking the log, which is proportional
to the negative squared distance between v and u. For the antipodal signal case in the
example, this may be further simplified by simply taking the dot product between v
and u. Letting L(k, s) be this dot product,

Lk+1,5)= max L(k, r) + vy yu, (r—>5) + v yuy (r—). (8.93)

What this means is that at each epoch (k+1), it is necessary to calculate the inner
product in (8.93) for each link in the trellis going from & to k+-1. These must be
maximized over r for each state s at epoch (k +1). The maximum must then be saved
as L(k+1, 5) for each 5. One must, of course, also save the paths taken in arriving at
each merging point.

Those familiar with dynamic programming will recognize this recursive algoriothm
as an example of the dynamic programming principle. '

The complexity of the entire computation for decoding a block of %, information
bits is proportional to 4(ky+-2). In the more general case, where the constraint length
of the convolutional coder is n rather than 2, there are 2" states and the computational
complexity is proportional to 27(k, -+ n). The Viterbi algorithm is usually used in
cases where the constraint length is moderate, say 6-12, and in these situations the
computation is quite moderate, especially compared with 2%,

Usually one does not wait until the end of the block to start decoding. When the
above computation is performed at epoch k, all the paths up to k' have merged for X’
a few constraint lengths less than k. In this case, one can decode without any bound
on k,, and the error probability is viewed in terms of “error events” rather than block
error.
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8.9 Summary of detection, coding, and decoding

This chapter analyzed the last major segment of a general point-to-point communication
system in the presence of noise, namely how to detect the input signals from the noisy
version presented at the output. Initially the emphasis was on detection alone; i.e., the
assumption was that the rest of the system had been designed and the only question
remaining was how to extract the signals.

At a very general level, the problem of detection in this context is trivial. That
is, under the assumption that the statistics of the input and the noise are known,
the sensible rule is maximum a-posteriori probability decoding: find the a-posteriori
probability of all the hypotheses and choose the largest. This is somewhat complicated
by questions of whether to carry out sequence detection or bit detection, but these
questions are details in a sense.

At a more specific level, however, the detection problem led to many interesting
insights and simplifications, particularly for WGN channels. A particularly impor-
tant simplification is the principle of irrelevance, which says that components of the
received waveform in degrees of freedom not occupied by the signal of interest (or
statistically related signals) can be ignored in detection of those signals. Looked at
in another way, this says that matched filters could be used to extract the degrees of
freedom of interest.

The last part of the chapter discussed coding and decoding. The focus changed
here to the question of how coding can change the input waveforms so as to make
the decoding more effective. In other words, a MAP detector can be designed for
any signal structure, but the real problem is to design both the signal structure and
detection for effective performance. ’

At this point, the noisy-channel coding theorem comes into the picture. If R < C,
then the probability of error can be reduced arbitrarily, meaning that finding the
optimal code at a given constraint length is slightly artificial. What is needed is a
good trade-off between error probability and the delay and complexity caused by
longer constraint lengths.

Thus the problem is not only to overcome the noise, but also to do this with
reasonable delay and complexity. Chapter 9 considers some of these problems in the
context of wireless communication.

8.10 Appendix: Neyman-Pearson threshold tests

We have seen in the preceding sections that any binary MAP test can be formulated
as a comparison of a likelihood ratio with a threshold. It turns out that many other
detection rules can also be viewed as threshold tests on likelihood ratios. One of the
most important binary detection problems for which a threshold test turns out to be
essentially optimum is the Neyman—Pearson test. This is often used in those situations
in which there is no sensible way to choose a-priori probabilities. In the Neyman~
Pearson test, an acceptable value a is established for Pr{e|U = 1}, and, subject to
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Figure 8.11. The error curve; g,(7) and g,(n) are plotted as parametric functions of 7.

the constraint Pr{e|U = 1} < a, the Neyman-Pearson test minimizes Pr{e|U = 0}.
We shall show in what follows that such a test is essentially a threshold test. Before
demonstrating this, we need some terminology and definitions.

Define gy(7) to be Pr{ejU = 0} for a threshold test with threshold 7, 0 < 7 < o0,
and similarly define g,(n) as Pr{e|U = 1}. Thus, for 0 < 7 < oo,

() =Pr{A(V)<nlU=0};  q/(n) =Pr{A(V)z9|U =1}. (8.94)

Define ¢,(0) as lim,_,,go(7) and ¢;(0) as lim,_,qq,(n). Clearly, g,(0) =0, and in
typical situations g,(0) = 1. More generally, ¢,(0) = Pr{A(V)>0|U = 1}. In other
words, ¢,(0) < 1 if there is some set of observations that are impossible under U =0
but have positive probability under U = 1. Similarly, define go(c0) as lim,_, ., g4(n)
and gy(c0) as lim,_,, ¢,(n). We have g,(c0) =Pr{A(V) < oo} and g,(c0) =0.

Finally, for an arbitrary test A, threshold or not, denote Pr{e| U = 0} as g,(A) and
Pr{e|U = 1} as ¢,(A).

Using (8.94), we can plot g,(7) and g,(n) as parametric functions of 7; we call this
the error curve.'* Figure 8.11 illustrates this error curve for a typical detection problem
such as (8.17) and (8.18) for antipodal binary signalling. We have already observed
that, as the threshold 7 is increased, the set of v mapped into IJ = 0 decreases. Thus
go(m) is an increasing function of 7 and g¢,(7) is decreasing. Thus, as 7 increases
from O to oo, the curve in Figure 8.11 moves from the lower right to the upper left.

Figure 8.11 also shows a straight line of slope —n through the point (q,(n), g,(7))
on the error curve. The following lemma shows why this line is important.

Lemma 8.10.1 For each 7, 0 < 1 < oo, the line of slope —m through the point
(q1(m), 95(m)) lies on or beneath all other points (q,(n'), go(7')) on the error curve,
and also lies beneath (q,(A), go(4)) for all tests A.

Before proving this lemma, we give an example of the error curve for a discrete
observation space.

Example 8.10.1 (Discrete observations) Figure 8.12 shows the error curve for an
example in which the hypotheses 0 and 1 are again mapped 0 — +a and 1 — —a.

4 In the radar field, one often plots 1 — go(n) as a function of g; (n). This is called the receiver operating
characteristic (ROC). If one flips the error curve vertically around the point 1/2, the ROC results.
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¢ U=1forall v
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v P(v|0) P(v]|1) Alv}
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1 03 02 32
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0.6}-8 U=1forv=1,-1,-3

e U=0forall v

0.1 03 0.6
q:(n)

Figure 8.12.  Error curve for a discrete observation space. There are only five points making up the “curve,”
one corresponding to each of the five distinct threshold rules. For example, the threshold rule
U =1 only for v=—3 yields (g;(n), go(n)) = (0.6, 0.1) for all 7 in the range 1/4 to 2/3. A
straight line of slope —n through that point is also shown for 7 = 1/2. Lemma 8.10.1 asserts
that this line lies on or beneath each point of the error curve and each point (g,(A), go(A) for
any other test. Note that as 7 increases or decreases, this line will rotate around the point
(0.6, 0.1) until 7 becomes larger than 2/3 or smaller than 1/4; it then starts to rotate around the
next point in the error curve.

Assume that the observation V can take on only four discrete values +3, +1, —1, —3.
The probabilities of each of these values, conditional on U =0 and U =1, are given
in Figure 8.12. As indicated, the likelihood ratio A(v) then takes the values 4, 3/2,
2/3, and 1/4, corresponding, respectively, to v=3, 1, ~1, and —3.

A threshold test at 7 decides U = 0 if and only if A(V) = 7. Thus, for example, for
any 1 < 1/4, all possible values of v are mapped into I = 0. In this range, ¢,(7) =1
since U = 1 always causes an error. Also ¢;(17) = 0 since U = 0 never causes an error.
In the range 1/4 < 5 < 2/3, since A(—3) = 1/4, the value —3 is mapped into I/ =1
and all other values into I/ = 0. In this range, g,(n) = 0.6, since, when U = 1, an error
occurs unless V= —3.

In the same way, all threshold tests with 2/3 < 1 < 3/2 give rise to the decision
rule that maps —1 and —3 into U =1 and 1 and 3 into U =0. In this range,
¢1(m) = go(n) = 0.3. As shown, there is another decision rule for 3/2 < <4 and a
final decision rule for 77 > 4.

The point of this example is that a finite observation space leads to an error curve
that is simply a finite set of points. It is also possible for a continuously varying set of
outputs to give rise to such an error curve when there are only finitely many possible
likelihood ratios. Figure 8.12 illustrates what Lemma 8.10.1 means for error curves
consisting only of a finite set of points.

Proof of Lemma 8.10.1 Consider the line of slope —n through the point (g, (%),
qo(n)). From plane geometry, as illustrated in Figure 8.11, we see that the vertical
axis intercept of this line is go(n) + ng,(n). To interpret this line, define p, and p,
as a-priori probabilities such that n = p,/p,. The overall error probability for the
corresponding MAP test is then given by
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q(n) =pogo(M) + P11 (M)
=polgo(M +na:(M; 1= p1/Po- (8.95)

Similarly, the overall error probability for an arbitrary test A with the same a-priori
probabilities is given by

9(A) = pol40(A) + g, (4)]. (8.96)

From Theorem 8.1.1, g(n) < g(A), so, from (8.95) and (8.96), we have

2o(m) +ng:(n) < 90(4) +n4g,(4). (8.97)

We have seen that the left side of (8.97) is the vertical axis intercept of the line of
slope —n through (g, (%), 45(7))- Similarly, the right side is the vertical axis intercept
of the line of slope ~7 through (g, (A), go(A)). This says that the point (¢,(4), g,(4))
lies on or above the line of slope —n through (q;(7), go(7))- This applies to every
test A, which includes every threshold test. O

Lemma 8.10.1 shows that if the error curve gives g,(n) as a differentiable function of
() (as in the case of Figure 8.11), then the line of slope — through (g;(7), go(7))
is a tangent, at point (g;(7), go(7)), to the error curve. Thus in what follows we call
this line the 7)-tangent to the error curve. Note that the error curve of Figure 8.12
is not really a curve, but rather a discrete set of points. Each 7)-tangent, as defined -
above and illustrated in the figure for 1 = 2/3, still lies on or beneath all of these
discrete points. Each 7-tangent has also been shown to lie below all achievable points
(q,(A), g5(A)), for each arbitrary test A.

Since for each test A the point (gq,(A), go(A)) lies on or above each 7)-tangent, it also
lies on or above the supremum of these 7-tangents over 0 < 7 < oo. It also follows,
then, that, for each 77, 0 < ' < o0, (g,(7'), ¢o(%')) lies on or above this supremum.
Since (g;(7"), g,(37)) also lies on the 7'-tangent, it lies on or beneath the supremum,
and thus must lie on the supremum. We conclude that each point of the error curve
lies on the supremum of the 7-tangents.

Although all points of the error curve lie on the supremum of the 7-tangents, all
points of the supremum are not necessarily points of the error curve, as seen from
Figure 8.12. We shall see shortly, however, that all points on the supremum are
achievable by a simple extension of threshold tests. Thus we call this supremum the
extended error curve.

For the example in Figure 8.11, the extended error curve is the same as the error
curve itself. For the discrete example in Figure 8.12, the extended error curve is shown
in Figure 8.13.

To understand the discrete case better, assume that the extended error function has
a straight line portion of slope —%* and horizontal extent <. This implies that the
distribution function of A(V) given U =1 has a discontinuity of magnitude vy at n*.
Thus there is a set ¥* of one or more v with A(v) = n*, Pr{V*|U =1} =+, and
Pr{V*|U =0} = n*y. For a MAP test with threshold n*, the overall error probability
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Gi(n) 1

Figure 8.13.  Extended error curve for the discrete observation example of Figure 8.12. From Lemma
8.10.1, for each slope —7, the 7-tangent touches the error curve. Thus, the line joining two
adjacent points on the error curve must be an 7)-tangent for its particular slope, and therefore
must lie on the extended error curve.

is not affected by whether v € ¥* is detected as & =0 or I/ = 1. Our convention is
to detect v € V* as U = 0, which corresponds to the lower right point on the straight
line portion of the extended error curve. The opposite convention, detecting v € V*
as U =1 reduces the error probability given U =1 by v and increases the error
probability given U =0 by 7*y, i.e. it corresponds to the upper left point on the
straight line portion of the extended error curve.

Note that when we were interested in MAP detection, it made no difference how
v € V* was detected for the threshold 7*. For the Neyman-Pearson test, however, it
makes a great deal of difference since gy(n*) and ¢,(%*) are changed. In fact, we
can achieve any point on the straight line in question by detecting v € V* randomly,
increasing the probability of choosing U =0 to approach the lower right endpoint. In
other words, the extended error curve is the curve relating g, to g, using a randomized
threshold test. For a given 5, of course, only those v € V* are detected randomly.

To summarize, the Neyman-Pearson test is a randomized threshold test. For a
constraint & on Pr{e|U = 1}, we choose the point « on the abscissa of the extended
error curve and achieve the corresponding ordinate as the minimum Pr{e[U = 1}. If
that point on the extended error curve lies within a straight line segment of slope 7*,
a randomized test is used for those observations with likelihood ratio n*.

Since the extended error curve is a supremum of straight lines, it is a convex function.
Since these straight lines all have negative slope, it is a monotonic decreasing'
function. Thus, Figures 8.11 and 8.13 represent the general behavior of extended error

- curves, with the slight possible exception mentioned above that the endpoints need not
have one of the error probabilities equal to 1.
The following theorem summarizes the results obtained for Neyman-Pearson tests.

13 To be more precise, it is strictly decreasing between the endpoints (g;(c0), g5(c0)) and (g,(0), ,(0)).
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Theorem 8.10.1 The extended error curve is convex and strictly decreasing between
(g1(00), go(o0)) and (g,(0), go(0)). For a constraint a on Pr{e|U = 1}, the minimum
value of Pr{e|U =0} is given by the ordinate of the extended error curve corresponding
to the abscissa « and is achieved by a randomized threshold test.

There is one- more interesting variation on the theme of threshold tests. If the a-
priori probabilities are unknown, we might want to minimize the maximum probability
of error. That is, we visualize choosing a test followed by nature choosing a-priori
probabilities to maximize the probability of error. Our objective is to minimize the
probability of error under this worst case assumption. The resulting test is called a
minmax test. It can be seen geometrically from Figures 8.11 or 8.13 that the minmax
test is the randomized threshold test at the intersection of the extended error curve
with a 45° line from the origin.

If there is symmetry between U =0 and U =1 (as in the Gaussian case), then the
extended error curve will be symmetric around the 45° degree line, and the threshold
will be at 7 =1 (i.e. the ML test is also the minmax test). This is an important result
for Gaussian communication problems, since it says that ML detection, i.e. minimum
distance detection, is robust in the sense of not depending on the input probabilities.
If we know the a-priori probabilities, we can do better than the ML test, but we can
do no worse.

8.11 Exercises

8.1 (Binary minimum cost detection)

(2) Consider abinary hypothesis testing problem with a-priori probabilities p,, p;
and likelihoods £, (v]i), i=0, 1. Let C;; be the cost of deciding on hypothe-
sis j when i is correct. Conditional on an observation V = v, find the expected
cost (over U =0, 1) of making the decision I = j for j =0, 1. Show that
the decision of minimum expected cost is given by

Unincost = arg min, [COjP,,,V Olv)+ CleUW(l IU)] .

(b) Show that the min cost decision above can be expressed as the following
threshold test:

— fwu(vlo) Zfl:o Pn(Cm—C,,) _
f"l"(vll) <g=1 Po(Co1 — Coo) =

Av)

(c) Interpret the result above as saying that the only difference between a MAP
test and a minimum cost test is an adjustment of the threshold to take account
of the costs; i.e., a large cost of an error of one type is equivalent to having
a large a-priori probability for that hypothesis.
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8.2 Consider the following two equiprobable hypotheses:
U=0:Vy=acos®+2Z,, V,=asin®42Z,;
U=1:V,=—acos®42Z,, V,=—asin®+7Z,.

Assume that Z, and Z, are iid (0, 0?) and that ©® takes on the values
{—/4,0, /4}, each with probability 1/3. Find the ML decision rule when
Vi, V, are observed. [Hint. Sketch the possible values of V;, V, for Z = 0 given
each hypothesis. Then, without doing any calculations, try to come up with a
good intuitive decision rule. Then try to verify that it is optimal.]
8.3 Let .
V,=8X;+2Z;, forl <j<4,

where {X;; 1 < j <4} are iid N(0,1) and {Z;; 1 < j <4} are iid N(0, 02) and
independent of {X;;1 < j <4). Assume that {V;;1 < j <4} are observed at
the output of a communication system and the input is a single binary random
variable U which is independent of {Z pl<js 4} and {X ;3 1< j<4}. Assume
that S,,..., S, are functions of U, with S, =S, =U®landS; =S5, =U.

(2) Find the log likelihood ratio

LLR(y) =1In ( Frw ¢10) ) .

Frp@&"|1)

(b) Let &, = |V, [>+|V,|* and &, = |V3]? + |V,|2. Explain why {&,, &,} form a
sufficient statistic for this problem and express the log likelihood ratio in
terms of the sample values of {&,, &,}.

(c) Find the threshold for ML detection.

(d) Find the probability of error. [Hint. Review Exercise 6.1.] Note: we will later
see that this corresponds to binary detection in Rayleigh fading.

8.4 Consider binary antipodal MAP detection for the real vector case. Modify the
picture and argument in Figure 8.4 to verify the algebraic relation between the
squared energy difference and the inner product in (8.22).

8.5 Derive (8.37), i.e. that Y, ; 3, ;b, ; = (1/2) [ y(2)b(t)dt. Explain the factor of
172

8.6 In this problem, you will derive the inequalities

1 1 1 -z
l——= | —— e < Q(x) € —— e~ * 17, for x> 0, 8.98
( xz) x2m =0 = x2m (898)

where Q(x) = (27) /2 [ exp(—z?/2)dz is the “tail” of the Normal distribution.
The purpose of this is to show that, when x is large, the right side of this
inequality is a very tight upperbound on Q(x).

(a) By using a simple change of variable, show that

1 o
0(x) = 72:7;"”1’2 /o exp (—y2/2— xy)dy.
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(b) Show that
1-y*/2 <exp(~y*/2) 1.
(c) Use parts (a) and (b) to establish (8.98).
8.7 (Other bounds on O(x))

(a) Show that the following bound holds for any <y and 7 such that 0 <y and
O<n:
O(y+m) < Q() exp[-ny —n*/2].
[Hint. Start with Q(y+n) = (1/v/2m) f, ,, exp[—x?/2]dx and use the change
of variable y=x—1.]
(b) Use part (a) to show that, for all n >0,

1
o) < 5 exp(—7/2].
(c) Use part (a) to show that, forall 0 <y <w,

o) __ 0k
expl—w/2] ~ expl-v/2]’

Note: equation (8.98) shows that Q(w) goes to 0 with increasing w as a
slowly varying coefficient times exp[—w?/2]. This demonstrates that the
coefficient is decreasing for w > 0.

8.8 (Orthogonal signal sets) An orthogonal signal set is a set A= {a,,, 0<m <
M —1} of M orthogonal vectors in R¥ with equal energy E; .., (a,, a;) =ES .

(a) Compute the spectral efficiency p of A in bits per two dimensions. Compute
the average energy E,, per information bit.

(b) Compute the minimum squared distance d2, (4) between these signal points.
Show that every signal has M — 1 nearest neighbors.

(c) Letthe noise variance be N, /2 per dimension. Describe a ML detector on this
set of M signals. [Hint. Represent the signal set in an orthonormal expansion
where each vector is collinear with one coordinate. Then visualize making
binary decisions between each pair of possible signals.]

8.9 (Orthogonal signal sets; continuation of Exercise 8.8) Considera set A ={a,,,0 <
m < M —1} of M orthogonal vectors in R¥ with equal energy E.

(a) Use the union bound to show that Pr(e), using ML detection, is bounded by

Pr(e) < (M —1)Q(VE/Ny).

(b) Let M — oo with E, = EflogM held constant. Using the upperbound for
Q(x) in Exercise 8.7(b), show that if E, /N, > 2In2, then lim,,, , Pr(e) =0.
How close is this to the ultimate Shannon limit on E,/N,? What is the limit
of the spectral efficiency p?

Constellation Exhibit 2004, Page 224 of 229



8.11 Exercises 325

8.10 (Lowerbound to Pr(e) for orthogonal signals)

(a) Recall the exact expression for error probability for orthogonal signals in
WGN from (8.49):

oo M-1
Pr(e) =/ Swga (Wolao) Pl'( U W, =wla = ao))dwo-
—o0 m=1

Explain why the events W,, > w, for 1 <m <M —1 are iid conditional on
A=a0 aﬂd W0=w0.
(b) Demonstrate the following two relations for any w,:

M-1
Pl'( U W, zwld= ao)) =1-[1- Q(wo)]M_rl

m=1
- 2
2 (M~ 1)Q(uy) - =W

(c) Define y, by (M —1)Q(7,;) = 1. Demonstrate the following:

M=1 . W;)Q(U)O). for wo > ‘yl;
Prl UWazwld=a) ) =1, 2
m=1 . 3 , for wy<y,.

(d) Show that
Pr(e) 2 50(a—).

(e) Show that lim,, . v;/¥ = 1, where y = +/2In M. Use this to compare the
lowerbound in part (d) to the upperbounds for cases (1) and (2) in Section
8.5.3. In particular, show that Pr(e) > 1/4 for y, > a (the case where capacity
is exceeded).

(f) Derive a tighter lowerbound on Pr(e) than part (d) for the case where
9, < a. Show that the ratio of the log of your lowerbound and the log of the
upperbound in Section 8.5.3 approaches 1 as M — co. Note: this is much
messier than the bounds above.

8.11 Section 8.3.4 discusses detection for binary complex vectors in WGN by
viewing complex n-dimensional vectors as 2n-dimensional real vectors. Here
you will treat the vectors directly as n-dimensional complex vectors. Let
Z=(Z,,...,Z,) be a vector of complex iid Gaussian rvs with iid real and
imaginary parts, each N (0, Ny/2). The input U is binary antipodal, taking on
values a or —a. The observation V is U 4-Z.

(a) The probability density of Z is given by

1 2~z 1 —|lzl?
[,(@)=———ex = ex .
A TR M i = TA T

Explain what this probability density represents (i.e. probability per unit
what?) :
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(b) Give expressions for Fow (v|a) and fou(1—a).
(c) Show that the log likelihood ratio for the observation v is given by

—lv—al®+|v+a|?
No )

LLR(¥) =

(d) Explain why this implies that ML detection is minimum distance detection
(defining the distance between two complex vectors as the norm of their
difference).

(e) Show that LLR(v) can also be written as 4R({v, a))/N,.

(f) The appearance of the real part, R((v, @)), in part (¢) is surprising. Point out
why log likelihood ratios must be real. Also explain why replacing R({v, a))
by [{v, a)| in the above expression would give a nonsensical result in the
ML test.

(g) Does the set of points {v: LLR(v) =0} form a complex vector space?

8.12 Let D be the function that maps vectors in €" into vectors in 82" by the mapping
a=(a,ay...,a,) > Ra,,Ra,, ..., Na,,Jq,,%q,,...,3a,) = D(a). |

(a) Explain why a € €” and ia (i = +/—1) are contained in the 1D complex
subspace of €" spanned by a.

(b) Show that D(a) and D(ia) are orthogonal vectors in R?".

(c) Forv, aeC", the projection of v on a is given by v, = ({v, a)/||al]) (a/|a])).
Show that D(v,,) is the projection of D(v) onto the subspace of X2* spanned
by D(a) and D(ia).

(d) Show that D((R((v, a))/l|all) (a/l|all}) is the further projection of D(v) onto
D(a).

8.13 Consider 4-QAM with the four signal points u = *a=+ia. Assume Gaussian
noise with spectral density Ny/2 per dimension.

(a) Sketch the signal set and the ML decision regions for the received complex
sample value y. Find the exact probability of error (in terms of the Q function)
for this signal set using ML detection.

(b) Consider 4-QAM as two 2-PAM systems in parallel. That is, a ML decision
is made on R(u) from R(v) and a decision is made on JI(u) from I(v). Find
the error probability (in terms of the Q function) for the ML decision on
R(u) and similarly for the decision on J(i).

(c) Explain the difference between what has been called an error in part (a) and
what has been called an error in part (b).

(d) Derive the QAM error probability directly from the PAM error probability.

8.14 Consider two 4-QAM systems with the same 4-QAM constellation:

So=1+i, Sl=_1+i, ‘SZ=—1—'i, S3=l—i.
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For each system, a pair of bits is mapped into a signal, but the two mappings are
different:

mapping 1: 0—>s5, O0l—s, 105, I11-s5;

mapping 2: 0—>s, 0l—ys, ll—os, 10-—s,.

The bits are independent, and Os and 1s are equiprobable, so the constellation
points are equally likely in both systems. Suppose the signals are decoded by
the minimum distance decoding rule and the signal is then mapped back into the
two binary digits. Find the error probability (in terms of the Q function) for each
bit in each of the two systems.

8.15 Re-state Theorem 8.4.1 for the case of MAP detection. Assume that the inputs
Ui, ..., U, are independent and each have the a-priori distribution py, . . ., Ppy_;.
[Hint. Start with (8.43) and (8.44), which are still valid here.]

8.16 The following problem relates to a digital modulation scheme called minimum
shift keying (MSK). Let

2E . .
() = JEcos@ufy) €0st<T;
0 otherwise,

and

2E ; :
5,(6) = ‘/:cos(Z'n'f,t) if0<t<T;
0

otherwise.

(a) Compute the energy of the signals s,(2), 5,(¢). You may assume that f,T > 1
and fiT > 1.

(b) Find conditions on the frequencies f,, f; and the duration T to ensure both
that the signals s4(¢) and s, (¢) are orthogonal and that s54(0) = 5,(T) = 5,(0) =
5,(T). Why do you think a system with these parameters is called minimum
shift keying?

(c) Assume that the parameters are chosen as in part (b). Suppose that, under
U =0, the signal sy(¢) is transmitted and, under U = 1, the signal s,(¢) is
transmitted. Assume that the hypotheses are equally likely. Let the observed
signal be equal to the sum of the transmitted signal and a white Gaussian
process with spectral density N,/2. Find the optimal detector to minimize
the probability of error. Draw a block diagram of a possible implementation.

(d) Compute the probability of error of the detector you have found in part (c).

8.17 Consider binary communication to a receiver containing k, antennas. The trans-
mitted signal is +a. Each antenna has its own demodulator, and the received
signal after demodulation at antenna k, 1 <k < k,, is given by

Vk = ng+Zk,
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where U is +a for U =0 and —a for U = 1. Also, g, is the gain of antenna k and
Z, ~ N (0, o%) is the noise at antenna k; everything is real and U, Z,, Z,, ..., Z,,
are independent. In vector notation, V = Ug+Z, where V= (v, ..., vkc)r, etc.

(a) Suppose that the signal at each receiving antenna k is weighted by an arbitrary
real number g, and the signals are combined as ¥ =Y, V,q, =(V, ¢). What
is the ML detector for U given the observation Y?

(b) What is the probability of error, Pr(e), for this detector?

(c) Let B={g,q)/llgllllqll- Express Pr(e) in a form where q does not appear
except for its effect on 8.

(d) Give an intuitive explanation why changing g to cq for some nonzero scalar
¢ does not change Pr(e).

(e) Minimize Pr(e) over all choices of ¢. [Hint. Use part (c).]

(f) Is it possible to reduce Pr(e) further by doing ML detection on V;, ...,V
rather than restricting ourselves to a linear combination of those variables?

(g) Redo part (b) under the assumption that the noise variables have different
variances, i.e. Z, ~ N(0, a7). As before, U, Z,,. . ., Z, are independent.

(b) Minimize Pr(e) in part (g) over all choices of g.

8.18 (a) The Hadamard matrix H, has the rows 00 and 01. Viewed as binary code-
words, this is rather foolish since the first binary digit is always O and thus
carries no information at all. Map the symbols 0 and 1 into the signals
a and —a, respectively, a > 0, and plot these two signals on a 2D plane.
Explain the purpose of the first bit in terms of generating orthogonal signals.

(b) Assume that the mod-2 sum of each pair of rows of H, is another row of
H, for any given integer b > 1. Use this to prove the same result for H,,.
[Hint. Look separately at the mod-2 sum of two rows in the first half of the
rows, two rows in the second half, and two rows in different halves.]

8.19 (RM codes)

(a) Verify the following combinatorial identity for 0 < r < m:

T m\ Zm-1\ L [(m-1

> (M =2 ("2 (™).

=0\J/ =\ =0\ J
[Hint. Note that the first term above is the number of binary m-tuples with r
or fewer 1s. Consider separately the number of these that end in 1 and end
in0.] v

(b) Use induction on m to show that k(r,m) = 3"7_, (’}’) Be careful how you

handle r=0and r=m.

8.20 (RM codes) This exercise first shows that RM(r, m) CRM(r+1,m) for0<r<
m. It then shows that d_; (r, m) =2""",

(a) Show that if RM(r—1,m—1) CRM(r,h—l) for all , 0 < r < m, then
RM(r—1, m) CRM(r, m) forallr, 0<r<m.

Note: be careful about r=1 and r =m.
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(b) Letx = (u, u®v), whereu e RM(r, m—1) andv e RM(r—1, m—1). Assume
that d_; (r,m—1) <2 1" and d_;,(r— 1, m—1) <2™". Show that if x is
nonzero, it has at least 2"~ 1s. [Hint (1). For a linear code, d;, is equal
to the weight (number of 1s) in the minimum-weight nonzero codeword.]
[Hint (2). First consider the case v =0, then the case u = 0. Finally use part
(a) in considering the case u # 0, v 5% 0, under the subcases u =v and u #v.]

(c) Use induction on m to show that d_;, =2™" for0 <r <m.
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