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Preface 

The study and implementation of microphone arrays originated over 20 years 
ago. Thanks to the research and experimental developments pursued to the 
present day, the field has matured to the point that array-based technology 
now has immediate applicability to a number of current systems and a vast 
potential for the improvement of existing products and the creation of future 
devices. 

In putting this book together, our goal was to provide, for the firs t time, 
a single complete reference on microphone arrays. We invited the top re­
searchers in the field to contribute articles addressing their specific topic(s) 
of st.udy. The reception we received from our colleagues was quite enthusi­
astic and very encouraging. There was the general consensus that a work 
of this kind was well overdue. The results provided in this collection cover 
the current state of the art in microphone array research, development, and 
technological application. 

'l'his text is organized into four sections which roughly follow the major 
areas of microphone array research today. Parts I and II are primarily the­
oretical in nature and emphasize the use of microphone arrays for speech 
enhancement and source localization, respectively. Part III presents a num­
ber of specific applications of array-based technology. Part IV addresses some 
open questions and explores the future of the field. 

Part I concerns the problem of enhancing the speech signal acquired by 
an array of microphones. For a variety of applications, including human­
computer interaction and hands-free telephony, the goal is to allow users to 
roam unfettered in diverse environments while still providing a high quality 
speech signal and robustness against background noise, interfering sources, 
and reverberation effects. The use of microphone arrays gives one the oppor­
tunity to exploit the fact that the source of the desired speech signal and the 
noise sources are physically separated in space. Conventional array process­
ing techniques, typically developed for applications such as radar and sonar, 
were initially applied to the hands-free speech acquisition problem. However, 
the environment in which microphone arrays is used is significantly different 
from that of conventional array applications. Firstly, the desired speech signal 
has an extremely wide b~ndwidth relative to its center frequency, meaning 
that conventional narrowband techniques are not suitable. Secondly, there 
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is significant multipath interference caused by room reverberation. Finally, 
the speech source and noise signals may located close to the array, meaning 
that the conventional far-field assumption is typically not valid. These dif­
ferences ( amongst others) have meant that new array techniques have had 
to be formulated for microphone array applications. Chapter 1 describes the 
design of an array whose spatial response does not change appreciably over 
a wide bandwidth. Such a design ensures that the spatial filtering performed 
by the array is uniform across the entire bandwidth of the speech signal. The 
main problem with many array designs is that a very large physical array is 
required to obtain reasonable spatial resolution, especially at low frequencies. 
This problem is addressed in Chapter 2, which reviews so-called superdirec­
tive arrays. These arrays are designed to achieve spatial directivity that is 
significantly higher than a standard delay-and-sum beamformer . Chapter 3 
describes the use of a single-channel noise suppression filter on the output 
of a microphone array. The design of such a post-filter typically requires in­
formation about the correlation of the noise between different microphones. 
The spatial correlation functions for various directional microphones are in­
vestigated in Chapter 4, which also describes the use of these functions in 
adaptive noise cancellation applications. Chapter 5 reviews adaptive tech­
niques for microphone arrays, focusing on algorithms that are robust and 
perform well in real environments. Chapter 6 presents optimal spatial filter­
ing algorithms based on the generalized singular-value decomposition. These 
techniques require a large number of computations, so the chapter presents 
techniques to reduce the computational complexity and thereby permit real­
t ime implementation. Chapter 7 advocates a new approach that combines 
explicit modeling of the speech signal (a technique which is well-known in 
single-channel speech enhancement applications) with the spatial filtering af­
forded by multi-channel array processing. 

Part II is devoted to the source localization problem. The ability to locate 
and track one or more speech sources is an essential requirement of micro­
phone array systems. For speech enhancement applications, an accurate fix 
on the primary talker, as well as knowledge of any interfering talkers or coher­
ent noise sources, is necessary to effectively steer the array, enhancing a given 
source while simultaneously attenuating those deemed undesirable. Location 
data- may be used as a guide for discriminating individual speakers in a multi­
source scenario: With this information available, it would then be possible to 
automatically focus upon and follow a given source on an extended basis. Of 
particular interest lately, is the application of the speaker location estimates 
for aiming a camera or series of ca1neras in a video-conferencing system. In 
this regard, the automated localization information eliminates the need for a 
human or number of human camera operators. Several existing commercial 
products apply microphone-array technology in small-room environments to 
steer a robotic camera and frame active talkers. Chapter 8 summarizes the 
various approaches which have been explored to accurately locate an individ-

\ 
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ual in a practical acoustic environment. The emphasis is on precision in the 
face of adverse conditions, with an appropriate method presented in detail. 
Chapter 9 extends the problem to the case of multiple active sources. While 
again considering realistic environments, the issue is complicated by the pres­
ence of several talkers. Chapter 10 further generalizes the source localization 
scenario to include knowledge derived from non-acoustic sensor modalities. 
In this case both audio and video signals are effectively combined to track 
the motion of a talker. 

Part III of this text details some specific applications of microphone array 
technology available today. Microphone arrays have been deployed for a vari­
ety of practical applications thus far and their utility and presence in our daily 
lives is increasing rapidly. At one extreme are large aperture arrays with tens 
to hundreds of elements designed for large rooms, distant talkers, and adverse 
acoustic conditions. Examples include the two-dimensional, harmonic array 
installed in the main auditorium of Bell Laboratories, Murray Hill and the 
512-element Huge Microphone Array (HMA) developed at Drown University. 
While these systems provide t remendous functionality in the environments 
for which they are intended, small arrays consisting of just a handful (usu­
ally 2 to 8) of microphones and encompassing only a few centimeters of space 
have become far more common and affordable. These systems arc intended 
for sound capture in close-talking, low to moderate noise conditions (such 
as an individual dictating at a workstation or using a hands-free telephone 
in an automobile) and have exhibited a degree of effectiveness, especially 
when compared to their single microphone counterparts. The technology has 
developed to the point that microphone arrays are now available in off-the­
shelf consumer electronic devices available for under $150. Because of their 
growing popularity and feasibility we have· chosen to focus primarily on the 
issues associated with small-aperture devices. Chapter 11 addresses the in­
corporation of multiple microphones into hearing aid devices. The ability of 
beamforming methods to reduce background noise and interference has been 
shown to dramatically improve the speech understanding of the hearing im­
paired and to increase their overall satisfaction with the device. Chapter 12 
focuses on t he case of a simple two-element array combined with postfiltering 
to achieve noise and echo reduction. The performance of this configuration 
is analyzed under realistic acoustic conditions and its utility is demonstrated 
for desktop conferencing and intercom applications. Chapter 13 is concerned 
with the problem of acoustic feedback inherent in full-duplex communica­
tions involving loudspeakers and microphones. Existing single-channel echo 
cancellation methods are integrated within a beamforming context to achieve 
enhanced echo suppression. These results are applied to single- and multi­
channel conferencing scenarios. Chapter 14 explores the use of microphone 
arrays for sound capture in automobiles. The issues of noise, interference, and 
echo cancellation specifically within the car environment are addressed and a 
particularly effective approach is detailed. Chapter 15 discusses the applica-

,I 
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tion of microphone arrays to improve the performance of speech recognition 
systems in adverse conditions. Strategies for effectively coupling the acous­
tic signal enhancements afforded through beamforming with existing speech 
recognition techniques are presented. A specific adaptation of a recognizer to 
function with an array is presented. Finally, Chapter 16 presents an overview 
of the problem of separating blind mixtures of acoustic signals recorded at a 
microphone array. This represents a very new application for microphone ar­
rays, and is a technique that is fundamentally different to the spatial filtering 
approaches detailed in earlier chapters. 

In the final section of the book, Part IV presents expert-summaries of 
current open problems in the field, as well as personal views of what the future 
of microphone array processing might hold. These summaries, presented in 
Chapters 17 and 18, describe both academically-oriented research problems, 
as well as industry-focused areas where microphone array research may be 
headed. 

The individual chapters that we selected for the book were designed to 
be tutorial in nature with a specific emphasis on recent important results. 
We hope the result is a text that will be of utility to a large audience, from 
the student or practicing engineer just approaching the field to the advanced 
researcher with multi-channel signal processing experience. 

Cambridge MA, USA 
London, UK 
January 2001 

Michael Brandstein 
Darren Ward 
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1 Constant Directivity Beamforming 

Darren B. Ward1
, Rodney A. Kcnnedy2, and Robert C. Williamson2 

1 Imperial College of Science, Technology and Medicine, London, UK 
2 The Australian National University, Canberra, Australia 

A bstract. Beamforming, or spatial filtering, is one of the simplest methods for dis­
criminating between different signals based on the physical location of the sources. 
Because speech is a very wideband signal, covering some four octaves, traditional 
narrowband beamforming techniques are inappropriate for hands-free speech ac­
quisition. One class of broadband beamformers, called constant directivity beam­
formers, aim to produce a constant spatial response over a broad frequency range. 
In this chapter we review such bcamformers, and discuss implementation issues 
related to their use in microphone arrays. 

1.1 Introduction 

Beamforming is one of the simplest and most robust means of spatial filtering, 
i.e. , discriminating between signals based on the physical locations of the 
signal sources (1 J. In a typical microphone array environment, the desired 
speech signal originates from a talker's mouth , and is corrupted by interfering 
signals such as other talkers and room reverberation. Spatial filtering can be 
useful in such an environment-, since the interfering sources generally originate 
from points in space separate from the desired talker's mouth. By exploiting 
the spatial dimension of the problem, microphone arrays attempt to obtain a 
high-quality speech signal without requiring the talker to speak directly into 
a close-talking microphone. 

In most beamforming applications two assumptions simplify the analysis: 
(i) the signals incident on the array are narrowband (the narrowband as­
sumption); and (ii) the signal sources are located far enough away from the 
array that the wavefronts impinging on the array can be modeled as plane 
waves (the far.field assumption). For many microphone array applications, the 
farfield assumption is valid. However, the narrowband assumption is never 
valid, and it is this aspect of the beamforming problem that we focus on in 
this chapter (sec [2) for techniques that also lift the nearficld assumption). 

To understand the inherent problem in using a narrowband array for 
broadband signals, consider a linear array with a fixed number of elements 
separated by a fixed inter-element distance. The important dimension in mea­
suring array performance is its size in terms of operating wavelength. Thus 
for high frequency signals (having a small wavelength) a fixed array will ap­
pear large and the main beam will be narrow. However , for low frequencies 
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Fig. 1.1. Response of a narrowband array operated over a wide bandwidth. 

(large wavelength) the same physical array appears small and the main beam 
will widen. 

This is illustrated in Fig. 1.1 which shows the beampattern of an array 
designed for 1.5 kHz, but operated over a frequency range of 300 Hz to 
3 kHz. If an interfering signal is present at, say, 60°, then ideally it should be 
att_enuated completely by the array. However, because the beam is wider at 
low frequencies than at high frequencies, the interfering signal will be low-pass 
filtered rather than uniformly attenuated over its entire band. This "spectral 
tilt" results in a disturbing speech output if used for speech acquisition, 
and thus, such a narrowband array is unacceptable for speech applications. 
Another drawback of this narrowband design is that spatial aliasing is evident 
at high frequencies.1 

To overcome this problem, one must use a beamformer that is designed 
specifically for broadband applications. In this chapter we focus on a spe­
cific class of broadband beamformers, called constant directivity beamformers 
(CDB), designed such that the spatial response is the same over a wide fre­
quency band. The response of a typical CDB is shown in Fig. 1.6 on page 15. 

There have been several techniques proposed to design a CDB. Most tech­
niques are based on the idea that at different frequencies, a different array 
should be used that has total size and inter-sensor spacing appropriate for 
that particular frequency. An example of this idea is the use of harmonically-

1 Spatial aliasing comes about if a sensor spacing wider than half a wavelength is 
used. It is analogous to temporal aliasing in discrete-time signal processing. 
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1 Constant Directivity Beamforming 5 

nested subarrays, e.g., [3-5). In this case, the array is composed of a set of 
nested equally-spaced arrays, with each subarray being designed as a nar­
rowband array. The outputs of the various subarrays are then combined by 
appropriate bandpass filtering. The idea of harmonic nesting is to reduce the 
beampattern variation to that which occurs within a single octave. This ap­
proach can be improved by using a set of subarray filters to interpolate to 
frequencies between the subarray design frequencies (6). 

A novel approach to COB design was proposed by Smith in [7]. Noting 
that, for a given array, the beamwidth narrows at high frequencies, Smith's 
idea was to form several beams and to steer each individual beam in such 
a way that the width of the overall multi-beam was kept constant. Thus, 
as the individual beams narrow at higher frequencies, they are progressively 
"fanned" outwards in an attempt to keep the overall beamwidth constant. 
Unless a very large number of beams are formed, at high frequencies this 
fanning will result in notches in the main beam where the progressively nar­
rower beams no longer overlap. This approach was applied to the design of 
microphone arrays in (8). 

The first approach to COB design that attempted to keep a constant 
beampattern over the entire spatial region (not just for the main beam) 
was presented by Doles and Benedict [9]. Using the asymptotic theory of 
unequally-spaced arrays [10,11), they derived relationships between bearn­
pattern characteristics and functional requirements on sensor spacings and 
weightings. This results in a filter-and-sum array, with the sensor filters creat­
ing a space-tapered array: at each frequency the non-zero filter responses iden­
tify a subarray having total length and spacing appropriate for that frequency. 
Although this design technique results in a beampattern that is frequency­
invariant over a specified frequency band, it is not a general design technique, 
since it is based on a. specific array geometry and bearopattern shape. Other 
recent techniques for CDB design include [12) (based on a two-dimensional 
Fourier transform property [13) which exists for equally-spaced arrays) and 
[14] (based on a beam space implementation). 

Prompted by the work of Doles and Benedict, we derived in [15) a very 
general design method for CDB's, suitable for three-dimensional array geome­
tries. In this chapter we outline this technique, and discuss implementation 
issues specific to microphone array applications. 

Time-domain versus frequency-domain beamform.ing 

There are two general methods of bcamfonning for broadband signals: time­
domain beamforming and frequency-domain beamforming. In time-domain 
beam.forming an Fffi filter is used on each sensor, and the filter outputs 
summed to form the beamformer output. For an array with M sensors, each 
feeding a L tap filter, there are ML free parameters. In frequency-domain 
beamforming the signal received by each sensor is separated into narrow­
band frequency bins ( either thr ough bandpass filtering or data segmentation 
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and discrete Fourier transform), and the data in each frequency bin is pro­
cessed separately using narrowband techniques. For an array with M sen­
sors, with L frequency bins within the band of interest, there are again ML 
free parameters. As with most beamformers, the method that we describe in 
this chapter can be formulated iLn either domain. A time-domain formulation 
has previously been given in [16] , and hence, we restrict our att ention to 
frequency-domain processing here. 

1.2 Problem Formulation 

Consider a linear array of M = 2N + I sensors located at Pn, n = - N, . . . , N. 
Assume that the data received at the nth sensor is separated into narrowband 
frequency bins, each of width L:Jj. Let the center frequency of the ith bin be 
Ji, and denote the frequencies within the bin as 

Fi = [Ji..,.. l1f /2, Ji+ l1f /2). 

The array data received in the ith bin at time k , is given by the M-vector: 

The.desired source signal is represented by si(k), and the M -vector v i(k) rep­
resents the interfering noise ( consisting of reverberation and other unwanted 
noise sources). The array vector a (0, f) represents the propagation of the 
signal source to the array, and its nth element is given by 

an(0,f) = e-j21rfc-
1

pncos/J, 

where c is the speed of wave. propagation, and 0 is the direction to the desired 
source (measured relative to the array axis). To simplify notation we will drop 
the explicit dependence on k in the sequel. 

The beamformer output is formed by applying a weight vector to the 
received array data, giving 

(1.1) 

where H denotes Hermitian transpose, and W i is the M-vector of array 
weights to apply to the ith frequency bin.2 

The spatial response of the beamformer is given by 

b(0,f) = w[1a(0,f), f EFL (1.2) 

which defines the t ransfer function between a source at location 0 E [-1r, 1r) 
and the beamformer output. Also of interest is the beampattern, defined as 
the squared magnitude of the ~patial response. 
2 Note that it is a notational convention to use w B rather than w T (1). 
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1 Constant Directivity Beamforming 7 

The problem of designing a CDB ran now be formulated as finding the 
array weights in each frequency bin such that the resulting spatial response 
remains constant over all frequency bins of interest. 

One simple (but not very illuminating) approach to solving this problem 
is to perform a least-squares optimization in each frequency bin, i.e. , 

min1 lbFr(0)-wfla(0,fi) l2 d0, 
Wi 2,r 

(1.3) 

where bF
1
(0) is the desired frequency-inva.riant response. Thus, in each fre­

quency bin there are M free parameters to optimize. Although this is a stan­
dard least-squares optimization problem and the required array weights are 
easily found, the solution provides very little insight into the problem. Specif­
ically, there is no suggestion of any inherent structure in the CDB, and many 
important questions are left unanswered, such as how many sensors are re­
quired, and what range of frequencies can be used. 

In an attempt to provide some insight into the problem of designing a 
CDB, we take an alternative theoretical approach in the following section, 
and then relate these theoretical results back to the problem of finding the 
required filter coefficienl:s. As we will see, there is in fa.ct a very strong implicit 
structure in the CDB, and exploiting this structure enables us to reduce the 
number of design parameters and find efficient implementations. 

1.3 Theoretical Solution 

It is well known that the important dimension in determining the array re­
sponse is the physical array size, measured in wavelengths. Thus, to obtain 
the same beampattern a.t different frequencies requires that the array size 
remajns constant in terms of wavelength. Specifically, consider a linear ar­
ray with N elements located at Pn, n = 1, ... , N, and assume the array· 
weights are chosen to produce a desired beampattern b(0) at a frequency 
fi. Then, at a frequency fz, the same beampattern b(0) will be produced 
if the same array weights are used in an array with elements located at 
PnUi/ h), n = 1, ... , N. In other words, the size of the array must scale di­
rectly with frequency to obtain the same bea.mpattern.3 To obtain the same 
beampattern over a continuous range of frequencies would theoretically re­
quire a continuum of sensors. 

1.3.1 Continuous sensor 

Motivated by this interpretation, we consider the response of a theoretical 
continuous sensor. Assume that a signal x(p, f) is received at a point p on 
3 This is precisely the idea used in the harmonically-nested subarray technique. 

- 24 -



8 Ward et al. 

the sensor at frequency f, and a weight w(p, f) is applied to the sensor at 
this point and frequency. The output of the sensor is 

y(f) = j w(p, f) x(p, f) dp, 

and the spatial response for a source at angle 0 is 

b(0, J) = I w(p, f) e-j21rfc-1pcos (} dp. (1.4) 

We assume that the aperture has finite support in p, and thus, the integration 
has infinite limits. 

Let u = c-1 cos 0. The response of the continuous sensor can now be 
written 

bu.(u, f) = f w(p, f) e-j21rfpu. dp. 

Let the sensor weighting function be given by 

w(p, f) = f B(pf), (1.5) 

where B(·) is an arbitrary, absolutely-integrable, finite-support function. Sub­
stitution gives 

bu.(u,f) = J f B(pf) e-j21rfpu. dp. (1.6) 

With the change of variable ( = pf, and noting that d( = f dp, it is easily 
seen that the resulting spatial response is now independent of frequency, i.e., 

(1. 7) 

This is an important result, since it states that if the weighting function 
is· given by (1.5), then the resulting spatial response will be independent of 
frequency. In other words, (1.5) defines the weighting function for a CDB. It 
was shown in (15], that not only does (1.5) provide a sufficient condition, but 
it is in fact the necessary condition for a frequency-invariant spatial response. 

1.3.2 Beam-shaping function 

Equation (1. 7) defines a Fourier transform relationship between B(-) and 
bF1 ( ·). To achieve some desired spatial response, the required function B ( () 
is thus easily found by taking the inverse Fourier transform of b(u). We will 
refer to B(-) as the beam-shaping (BS) function, since it has a fundamental 
role in determining the spatial response. 
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Because of its symmetry with respect to space and frequency, the BS 
function can be interpreted as either a filter response at a certain point, 
i.e. , Hp(!) = B(pf), or equivalently, as an aperture weighting function at a 
certain frequency, i.e., A1(p) = B(pf). 

We will assume that the BS function is Hermitian symmetric, i.e., B (- () = 
B*(() . This implies that the resulting spatial response is real-valued. 

1.4 Practical Implementation 

Whilst we have shown theoretically that it is possible to produce a beampat­
tern that is exactly frequency-invariant using a continuous sensor, in prac­
tise we must attempt to approximate such a response using a finite array 
of discrete sensors. The problem of approximating a continuous aperture by 
a discrete array has been considered in [17). One simple but effective tech­
nique is to approximate the integral in (1.6) using a Riemann sum- this is 
the appi;oach we take here. In particular, we use t rapezoidal integration to 
approximate the integral (1.6) by a summation of the form: 

N 

bF,(u) = L f B(pnf) e-j21rfpnu Lin (1.8) 
n=-N 

where Pn is the location of the nth discrete sensor, and bF, denotes an approx­
imation of bFr· We assume that the array is Hermitian symmetric about the 
origin, so that B(- pf) = B(pf)*, and P-n = -Pn· Although the technique 
is suitable for an arbitrary array geometry, a symmetric geometry simplifies 
implementation, and ensures that the position of the array phase center does 
not vary with frequency. The length of the nth subinterval is 

,1 _ Pn+l - Pn-1 
n - 2 ' (1.9) 

which we refer to as the spatial weighting term. 
Relating (1.8) to the response of a general array (1.2), we find that for a 

ODD the weight on the nth sensor in the ith frequency bin is 

(1.10) 

where, recall, Pn is the location of the sensor , and h is the center frequency 
of the bin. 

1.4.1 Dimension-reducing parameterizatio n 

Define the reference beam-shaping filter response as 

H(J) = B(p,cd), (1.11 ) 
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where p .. t is some reference location (to be defined later). Also define the 
beam-shaping filter response of the nth sensor as 

Hn(f) = B(pnf), n = -N, ... , N. 

It immediately follows that the BS filters satisfy the following dilation prop­
erty: 

Hn(f) = H C'Ynf), 

where 

Pn 
"fn=­

Pref 

(1.12) 

is the dilation factor for the nth sensor. This is an extremely important proj>­
erty, since it shows that the filter responses on all sensors can be derived from 
the single filter response, H (f), and enables the following efficient implemen­
tation of the CDB. 

Let the reference BS filter response be given by its standard FIR filter 
representation: 

H(f) = Lh[l] e- J2r.flf. t, 

l 

where ls is the sampling frequency, and h[l] is a £-vector of beam-shaping 
coefficients. From (1.12), the nth BS filter response is given by 

Hn(f) = L h[l] e-j2r.f/t,,,y,.l 

l 

= hH dn(J), (1.13) 

where dn(f) is the £-dimensional dilation vector for the nth sensor. From 
(1.10), we.see that the weight to use on the nth sensor in the ith bin is 

(1.14) 

where 

(1.15) 

is a £-dimensional trans! ormation vector. 
Equation (1.1.4) demonstrates the efficient parameterization afforded by 

this particular formulation of the CDB problem. Whereas the naive least­
squares approach (1.3) requires an optimization of M parameters W i in each 
frequency bin, we find that it is really only necessary to choose L frequency­
independent BS parameters h. Changing the beampattern shape only re­
quires modification of these BS coefficients, and the implicit structure im­
posed by the transformation ve ctors ensures that the resulting response has 
constant directivity over the desigr1 band. 
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1.4.2 Reference beam-shaping filter 

The underlying principle of the CDB is that the size and shape of the active 
array aperture should scale directly with frequency. This frequency scaling 
operation is performed by the BS filters. In deciding the coefficients of the ref­
erence BS filter; and the location of the reference point Pre,, we must consider 
this scaling property in more detail. 

Let the chosen aperture size be Q wavelengths. Assuming the array is 
symmetric about the origin, this means that at any wavelength >., sensors 
further from the origin than Q>./2 should be inactive. In other words, the 
nth sensor should have a low-pass characteristic with a cutoff frequency of 

Qc 
fn = 2JPnl . (1.16) 

Ftom (1.13), note that ,n > 1 results in compression in the frequency do­
main, whereas 'Yn < 1 results in frequency expansion. Since the discrete-time 
frequency response H (!) is periodic, it follows that frequency compression 
may cause aliasing; this is extremely undesirable. Aliasing can be avoided in 
one of two ways. First, choosing Pref= max IPnl ensures that "fn ::; 1, \:/n, thus 
avoiding aliasing altogether- however, this requires additional constraints on 
the reference BS coefficients to impose the low-pass property (1.16). Alterna­
tively, for sensors having ,n > 1, the weights wi,n are set to zero for frequency 
bins fi > fn- the reference BS weights are now potentially unconstrained. 
Of these two approaches, the second is preferable, since it removes any con­
straints on the BS coefficients. Moreover, the requirement that the sensor 
weights within certain bins are always zero does not complicate implementa­
tion. 

Assume that the frequency response of the reference BS filter is non-zero 
for all frequencies up to fs/2, the Nyquist frequency; this is the most general 
case of H(f). Ftom (1.16), it follows that a sensor with non-zero frequency 
response up to fs/2 would be positioned at IPn l = Qc/ fs- Thus, for the most 
general case of H(f) the reference location is chosen as 

Qc 
P« r = Ts· (1.17) 

The reference BS coefficients can be found by using the Fourier transform 
relationship defined by (1.7) . Specifically, the BS function B(() is found by 
taking the Fourier transform of the desired frequency-invariant spatial re­
sponse bF1(u). Setting f = (/Pre,, B(() now defines the frequency response of 
the reference BS filter. The BS coefficient vector h is found using any stan­
dard FIR filter design technique. In practise, low-order implementations of 
the reference BS filter are generally to be preferred; this point is demonstrated 
in the following section. 
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1.4.3 Sensor placement 

The most common geometry for array processing applications is typically 
an equally-spaced array, usually with a spacing of one half-wavelength at 
the highest frequency of operation. Although such a geometry is valid for a 
CDB, less sensors are required if a logarithmically spaced array is used. In 
choosing an appropriate sensor geometry, the most important consideration 
is to ensure that at any frequency spatial aliasing is avoided. 

The idea is to start with an equally-spaced array that is used at the highest 
frequency, and then progressively add more sensors with wider spacings as 
frequency decreases ( and the wavelength increases). At any frequency f, the 
total active aperture size should be Qc/ f, and the largest spacing within the 
active array.should be c/(2!). These requirements are met (using the least 
number of sensors) with the following symmetric array geometry: 

C . Q 
P -n O<n<-n - 2fu' - - 2 

Q 
Pn+l = Q _ l Pn, 

Q (Q-l)c 
n>-

2
,Pn< 2h 

P-n = -Pn· 

(1.18a) 

(1.18b) 

(1.18c) 

Note that a harmonically-nested subarray geometry is only produced if Q = 2. 

1.4.4 Summary of implementation 

l. Choose a set of L reference BS coefficients, h. 
2. Position the sensors according to (1.18a)-(1.18c). 
3. In the ith frequency bin, the weight on the nth sensor is 

where 

t· _ {/i,t:'::.ndn(Ji), 
i,n - O 

l 

Qc 
fn = 2IPnl 

4 _ Pn+i -Pn- 1 
n - 2 

Ji< fn 
otherwise, 

dn(fi) = [ej2-rrf/f$'Yn(L- 1)/2, ... , e-j211-J/f,-y,,(L- l)/2] 

IPn l 
1n=­

Pref 

Qc 
Pror = Ts 
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1.5 Examples 

We now show an example of the CDB design technique. The design was for 
a bandwidth of 300-3000 Hz (i.e., the same bandwidth as used in Fig. 1.1), 
with an aperture size of Q == 4 wavelengths. Using an FFT size of 128 resulted 
in 44 bins within the design band, with each bin having a width of 62.5 Hz. 
The sensors were positioned according to (1.18a )- (1.18c), resulting in the 
M == 25 sensor array geometry shown in Fig. 1.2. For frequencies of 1000 Hz 
and 2000 Hz, the active sensors are also indicated in this figure . 

. 

f =2000 Hz 

I I 

I I 

f = 1000Hz 

-2.5 -2 - 1.5 - 1 -0.5 0 0.5 1.5 2 2.5 

POSITION (m) 

Fig. 1.2. Array geometry used for example CDB. 

Assume we wish to design a standard sine-like response (as produced 
by a uniformly weighted array). In this case it is known that the aperture 
function should be uniform. Thus, the BS function B(·) should ideally be a 
brick-wall low-pass filter. Assume we design the BS vector h to approximate 
an ideal low-pass filter using L == 101 filter coefficients. This results in the 
BS frequency responses shown in Fig. 1.3; for each sensor in the array, the 
weight required at each frequency is plotted. Note that these responses are 
all dilations of a single response, and that each has a low-pass characteristic. 

Using these BS coefficients, the resulting spatial response of the CDB is 
shown in Fig. 1.4. Although the variation is not as great as for the narrow­
band design in Fig. 1.1, the spatial response in Fig. 1.4 is far from frequency 
invariant. Why is this? The answer lies in the fact that the BS frequency 
response has a very sharp cutoff. Consider a single sensor. At low frequencies 
the sensor is always on. As frequency increases, there will come a point where 
the sensor will suddenly turn off, and at this frequency the aperture abruptly 
changes size. This abrupt change in the active aperture causes the alp-like 
appearance of the spatial response in Fig. 1.4. 

Now, returning to the problem of designing the BS coefficients for the 
desired uniform spatial response, assume we design the BS vector h to ap-
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Fig. 1.3. Frequency responses of the weights on each sensor. 
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Fig.1.4. Spatial response of example CDB. 

180 

proximate an ideal low-pass filter using only L := 21 filter coefficients. This 
results in the BS frequency responses shown in Fig. 1.5. In comparing this fig­
ure with Fig. 1.4, not ice that the frequency responses exhibit a more gradual 
cutoff. 
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Fig. 1.5. Frequency responses of the weights on each sensor. 
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Fig. 1.6. Spatial response of example CDB. 

Using these 21 BS coefficients, the resulting spatial response of the CDB is 
shown in Fig. 1.6. In this case the spatial response shows very little variation 
with frequency. This demonstrates that one should take careful consideration 
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of how well the underlying function can be approximated by the discrete 
array when choosing the required BS function. 

1.6 Conclusions 

Constant-directivity beamforrning is a useful technique for spatial filtering 
in broadband signal environments in which the desired signal and the inter­
ference signals cover approximately the same bandwidth. In this chapter we 
have developed a technique for designing a CDB, and shown that there is 
an efficient parameterization and underlying structure e..xhibited by a CDB. 
The greatest drawback of a CDB in microphone array applications is that 
the size of the array is related to the lowest frequency of operation. Thus, 
producing an array that has a frequency-invariant spatial response down to, 
say, 300 Hz may require an array that is several meters long. In all but t he 
largest rooms this is impractical. However, a constant spatial response can be 
readily achieved for mid and high frequencies ( above say 1000 Hz) using an 
array with a total size of less than a meter . For the lower frequencies, other 
methods (such as the superdirective techniques described in the following 
chapter) are probably more appropriate. 
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Abstract. This chapter gives an overview of so-called superdirective beamform­
ers, which can be derived by applying the minimum variance distortionless response 
(MVDR) principle to theoretically well-defined noise fields, as for example the dif­
fuse noise field. We show that all relevant performance measures for beamformer 
designs are functions of the coherence matrix of the noise field. Additionally, we 
present unconstrained and constrained MVDR-solutions using modified coherence 
functions. Solu tions for different choices of the optimization criterion are given in­
cluding a new solution to optimize the front-to-back ratio. F inally, we present a 
comparison of superdirective beamformers to gradient microphones and an alter­
native generalized sidelobe canceler (GSC) implementation of the superdirective 
beamformer. 

2.1 Introduction 

What is "super" about a superdircctive microphone array? Compared to 
the standard delay-and-sum beamformer a superdirective array achieves a 
higher directivity. Therefore, "super" -directivity indicates that summing is 
not the optimal choice for combining sensor signals, if optimal directivity is 
desired. The term directivity describes the ability of a beamformer to suppress 
noise corning from all dJrections without affecting a desired signal from one 
principal direction. 

A short historical overview in [6] shows that superdirectivity ( or super­
gain) in connection with array processing was first ment ioned in the first half 
of the last century. The solutions provided at that time were of academic 
interest only, since a lot of practical problems occurred which restricted the 
use of the theoretical work. The main reasons for failure were the self-noise 
and the gain and phase errors of the microphones. In order to overcome these 
problems a first constrained solution was published by Gilbert and Morgan 
in 1955 [15]. Early applications with slight modifications were seismic and 
sonar techniques [5). Jt was not until the 90's that supergain was connected 
to microphone applications. Research in hearing aids highlighted the advan­
tages of fixed bearnformers over adaptive solutions [l 7]. Modern designs of 
superdirectivc bcarnformers include nearfield assumptions and the possibility 
to adapt the constraining to the actual problem. 

This chapter is organized as follows: Section 2.2 introduces the measures 
to judge the different designs. In section 2.3 the optimal design will be derived 

' ,? 

- 35 -



20 Bitzer and Simmer 

with respect to the given problems. Further extensions and special details are 
given in section 2.4. Concluding remarks close this chapter. 

2.2 Evaluation of Beamformers 

In order to get a better understanding of the features of the different designs 
of optimal beamformers, we first need to derive the measures to analyze their 
performance. 

Fig. 2.1. Signal model consisting of noise field and desired source signal 

The signal model is shown in Fig. 2.1. We assume that one sample of 
the discrete input sequence x(k) at each sensor n consists of a delayed and 
attenuated version of the desired signal ais(k - Tn) and a noise component 
vn(k) with arbitrary spatial statistics. 

( 

xo(k) ) ( aos(k - To) ) ( vo(k) ) x1(k) a1s(k- r1) v1(k) 

XN~1(k) aN-1s(k;- TN-1) + VN_,,(k) 

x(k) = as(k - r) + v(k) . (2.1) 

Since all relevant quantities and designs depend on the frequency, the follow­
ing examinations are carried out in the frequency domain without any loss 
of generality. The Fourier-transform leads to 

(2.2) 

where d is the representation of the delays and the attenuation in the fre­
quency domain which depends on the actual geometry of the array and the 
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direction of the source signal. 

Finally, the output signal 

N - 1 

2 Superdirective Microphone Arrays 

Yb (e1n) = L Wn *(e1{2)Xn(dn) = wH X ' 
n=O 

21 

(2.4) 

where Wn(ein) denotes the frequency-domain coefficients of the beamformer 
of sensor n at the frequency D and the operator .H denotes a conjugated 
transposition (Hermitian operator). The inverse Fourier-transform results in 
t he discrete-time output signal Yb(k). 

2.2.1 Array-Gain 

The array-gain (AG) is the measure which shows the improvement of the 
signal-to-noise ratio (SNR) between one sensor and the output of the whole 
array 1 . Therefore, 

G = SNRArray 
SNRSensor · 

(2.5) 

Assuming stationary signals, the SNR of one sensor is given by the ratio of 
the power spectral densities (PSD) of the signal <l>ss and the average noise 
4>v,.Va· 

The SNR at the output can be computed by deriving the PSD of t he 
output signal 

(2.6) 

where 

~xx= 
( 

<PxaXo 'PxoX1 <l>xoXN-1 ) 
{/?X1Xo {/?X1X1 <PX1XN-1 

<PxN:-1Xo if>xN~1X1 .. : : <l>xN-~XN -1 

(2.7) 

is a power spectral density matrix of the array input signals. When the desired 
signal is present only, the output is 

(2.8) 
Signal 

1 The dependence on fl is omitted for the sake of brevity and readability. 

l 
,j 
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and for the noise-only case the output is 

(2.9) 

Noise 

where 4>vv is a normalized cross power spectral density matrix of the noise2
. 

Therefore, 

G= [WHd[2 
WH4>vvW 

(2.10) 

Assuming a homogeneous noise field (2.10) can be expressed in terms of 
the coherence matrix 

I'vv = 
( 

1 I'v0v1 I'voV2 · · · I'voVN-t) 
I'v1 Vo 1 I'Vi V2 · · · I'v1 VN- 1 

I'vN-1 Vo I'vN-1 V1 I'v~-1 V2 ·: • 1 

where 

is the coherence function [4). 
Thus, 

G - -'-I w_H_d--'---j2_ 
- WHI'vvW · 

(2.11) 

(2.12) 

(2.13) 

This representation allows an easier examination of beamformers for different 
noise fields, since many theoretically defined noise fields can be expressed by 
their coherence function. 

2.2.2 Beampattern 

One way to evaluate beamformers is to compute the response of the array to 
a wavefront coming from a specific frequency and a specific angle, depending 
on azimuth cp and elevation 0 in a spherical coordinate system. Computing 
this response over all angles and frequencies leads to the spatial-temporal 
transfer function 

2 ( [wsd[
2 

) IH(cp,0)1 I =-10log10 ] 
dB WHI'vv W 

· Wavefront 

(2.14) 

2 The normalization factor is set to force the trace of the matrix to equal N. 
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called the farfield beampattern, which is usually displayed on a logarithmic 
scale. It can be computed by using (2.13) and the knowledge of the coherence 
function of a single wavefront with frequency fl and an angle of arrival ip, 0. 
Additionally, f.~ denotes the sampling frequency, c = 340 m/s the speed of 
sound, and lnm the distances between the sensors in the Cartesian coordinate 
system 

I'vn Vm I = exp(jflTnm) ' 
Wavefront 

(2.15) 

where 

Tnm = 1; (lx,nm sin(0) cos(ip) + ly,nm sin(0) sin(ip) + lz,nm cos(0)) 

(2.16) 

Since the beampattern depends on three variables, it is not possible to 
display it in a single plot. Fortunately, line arrays aligned to the z-axis have 
a rotational symmetry and, therefore, the beampattern is independent of 'P· 
Examples of bearnpatterns for line arrays will be shown in section 2.3. 

2.2.3 Directivity 

A common quantity to evaluate beamformers is the directivity factor, or its 
logarithmic equivalent the directivity index (DI) which describes the ability 
of the array to suppress a diffuse noise field. Therefore, we can compute the 
directivity factor by using (2.13) and inserting the coherence function of a 
diffuse noise field: 

(2.17) 

where sinc(x) = sin(x)/x. Thus, the DI is 

(2.18) 

Another formal definition uses the transfer function (2.14) and describes 
the ratio of the transfer function of the look-direction 00 , <po of the array to 
the spatial integration over all directions of incoming signals. 

DI(e1n)=1O lo H(e ,c.po,Bo) 

( 

I j[J 1

2 

) 
glO l ~ 2~ 

41r 1 la IH(e1n,'P,0) !
2

sin(0)dipd0 

(2.19) 

11 
: I 
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2.2.4 Front-to-Back Ratio 

In many applications no principal look-direction exists, as for example in 
video-conferences or the recording of orchestras. Therefore, the DI is not the 
best quantity to describe the behavior of the array. In such applications a 
front-to-back ratio (FBR) is a better choice, since in most cases all desired 
sources are in front of the array and all unwanted disturbances are behind 
the array [19], [11]. The formal description utilizes the beampattern again: 

l
·Oo+-;r /2 l'Po+n /2 . 2 

/ H( e3 .n, <p, 0) I sin(0)d<pdB 
FBR(ejJ?) = Oo--;r/2 'Po--;r/2 

10o+3:rr/21'f'o+3-;r/2 . 2 
IH(e3!1,<p,0) I sin(0)d<pd0 

lio+-;r/2 cpo+:rr/2 

(2.20) 

2.2.5 White Noise Gain 

This last quantity shows the ability of the array to suppress spatially uncor­
related noise, which can be caused by self-noise of the sensors. Inserting the 
coherence matrix for this noise field 

I'vv l = I 
uncorr 

(2.21) 

into (2.13) results in the white noise gain: 

(2.22) 

On a logarithmic scale positive values represent an attenuation of uncorre­
lated noise, whereas negative values show an amplification. 

2.3 Design of Superdirective Beamformers 

In order to design optimal beamformers, we have to minimize the power of 
the output signal Yb(k) of the array. The output PSD is given by (2.6) and is 
a function of the input signal and the coefficients we want to determine. In 
order to avoid the trivial solution Wn = 0, the minimization is const rained 
to give an undistorted signal response in the desired look direction, i.e., 

WHd=l. (2.23) 

Therefore; the following constrained minimization problem has to be solved: 

min WH4'xx W subject to WHd = 1. 
w (2.24) 
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Since we are only interested in the optimal suppression of the noise, and we 
assume a perfect correspondence between the direction of the desired signal 
and the look-direction of the array, only the noise PSD-matrix if?vv is used. 

The well-known solution for (2.24) is called the Minimum Variance Dis­
tortionless Response (MVDR) beamformer [6]. It is given by 

if?vv- 1d 
W = dHif?vv - 1d ' 

(2.25) 

and can be derived by using the Lagrange-multiplier [13] or gradient compu­
tation [20], [9]. Assuming a homogeneous noise field the solution is a function 
of the coherence matrix: 

W = I'vv -
1
d . 

dHI'vv - 1d 
(2.26) 

Equations (2.25) or (2.26) can be interpreted as a spatial decorrelation 
process followed by a matched filter for the desired signal. The normalization 
in the denominator leads to unity signal response for the look direction. 

The design procedure reduces to the choice of theoretically well-defined 
noise-fields in order to get optimal designs for different applications. Fur­
thermore, different models for the desired signal can be included, leading to 
farfield and nearfield designs. 

Examples for desired signal models are: 

• . Standard farfield model for linear arrays with equidistant sensors: 

dT = [1 , exp(-jn !sc-11 cos(0o)), exp(-jn fsc- 12[ cos(0o)), (2.27) 

· ·· ,exp(-jnfsc-1 (N -1)lcos(0o))] 

where l is the inter-sensor spacing. 
• Nearfield design, including attenuation of the desired signal (14], [22] 

dT = [ao exp(-jwro),a1 exp(-jwr1), · - · , aN- 1 exp(-jwTN- 1)] , 
(2.28) 

liq - Pref II 
ai = liq - Pi ll ' 

JJq - Prefll - llq - Pill 
'Ti = ---~---~ ' 

C 

(2.29) 

(2.30) 

where llq - Pref II and llq - P,11 denote the distance between the vector 
location of the source q and a reference sensor Pref, or the sensor Pi , 
respectively. 

More elaborate examples for exact nearfield designs can be found in [18], [23] 
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2.3.1 Delay-and-Sum Beamformer 

Although this chapter is called superdirective microphone arrays the well­
known Delay-and-Sum Beamformer (DSB) is included for comparison pur­
poses. It is an 'optimal' beamformer for optimizing the WNG. We can derive 
the coefficients from (2.26) by inserting the coherence matrix for spatial un­
correlated noise I'= I. Thus, 

(2.31) 
, 

The WNG is optimal in this case and reaches N. All other standard shad-
ing schemes like the Dolph-Chebycheff window [10] worsen the performance 
subject to WNG. 

2.3.2 Design for spherical isotropic noise 

In order to optimize the directivity factor, which depends on the noise-field 
of a spherical isotropic noise field (diffuse), we have to solve (2.26) by using 
the coherence matrix of the diffuse noise field, given by (2.17). The resulting 
coefficients represent the classic superdirective bearnformer (SDB)3. 

Figure 2.2 shows the beampattern of a DSD and a superdirective beam­
former, both using five linear equispaced microphones (l = 5 cm) in endfue 
steering direction (00 = 1r). The x-axis represents the incoming spatial angle 
([O · · · 21r]) and the y-axes represents the frequency of the signal in kHz. The 
sampling-frequency was set to 8 kHz to cover the telephone bandwidth. The 
grey-scaled image represents the attenuation of the incoming signals in dB. 

The look-direction is unmodified at all frequencies due to the linear con­
straint. Additionally, an unmodified region at higher frequencies can be seen 
caused by spatial aliasing, since our choice of the parameter does not fulfill 
the spatial sampling theorem, which is given by 

>. 
l < 2' (2.32) 

where >. denotes the wavelength. The upper sampling frequency should there­
fore be restricted to ls = 6.8 kHz, or the distance should not exceed l = 4.25 cm. 
However, in order to show some effects we will keep these parameters in all 
experiments. 

F\Jrthermore, the DSB is unable to suppress low frequency noise sources 
coming from any direction. In contrast, the superdirective beamformer atten­
uates very well sources coming from directions other than the look-direction 

s In this chapter the term superdirective beamformer is used for the beamformer 
which optimizes the directivity factor, independent of the frequency or the ratio 
of the wavelength to the distance between the sensor elements. In the classic 
definition this is often restricted to the case where the wavelength is large with 
respect to the distance between sensors. 
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Fig. 2.2. Left: beampattern of a delay-and-sum beamformer. Right: beampattern 
of an optimal array for isotropic noise (superdirective beamformer) . (l = 5 cm, 
N = 5, endfire steering direction) 

over the whole frequency range. However, at higher frequencies the superdi­
rective beamformer degrades to the DSB, since supergain can only be achieved 
if the signal wavelength is larger than two times the microphone distance. 
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Fig. 2.3. Left: Directivity index (DI) for delay-and-sum beamformer and superdi­
rective beamformer. Right: White noise gain (WNG) for delay-and-sum beamformer 
and superdirective beamformer. (l = 5 cm, N = 5, endfire steering direction) 

Figure 2.3 shows the DI on the left side and the WNG on the right side for 
the same parameters as in the previous figure. The directivity index reaches 
zero at low frequencies for the DSB ( as expected by analyzing the beam­
pattern) and N 2 for the superdirective beamformer. The proof for this limit 
in the endfire steering case can be found in [11]. At higher frequencies the 
directivity for both designs is nearly the same and it is given by N, since the 
sine{·} function tends to zero, and the noise field is uncorrelated in this case. 
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If we now take a closer look at the WN G, we can see why this design is not 
suitable in real-world applications. Whereas the DSB suppresses uncorrelated 
noise equally at all frequencies, the SD B boosts uncorrelated noise at lower 
frequencies. 

In order to give a deeper insight into how supergain works, we will com­
pute the coefficients for an array of only two microphones. The distance is 
again 5 cm, and endfire steering is used. 
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Fig. 2.4. Coefficients of a two channel SDB, left: Magnitude, right: Phase (l = 5 
cm, N = 2, end.fire steering direction) 

In Fig. 2.4 the squared magnitude and the phase of the two coefficient vec­
tors are shown. First of all, the coefficients are conjugate complex. Secondly, 
the filters force the phase between the noise components at each sensor to 
be 1r. Therefore, the correlated part of the noise will be compensated. Hence, 
the desired signal is also correlated, and therefore it is reduced as well. To 
fulfill the constraint of an undisturbed desired signal, the coefficients have 
to boost the input signals to compensate this behavior, which can be seen 
on the left side of Fig. 2.4. Therefore, uncorrelated noise will be amplified. 
At higher frequencies the correlation between the noise components vanishes 
and the beamformer degrades to the DSB. The magnitude of the coefficients 
reaches 1/2. 

In order to overcome the problem of self-noise amplification in superdirec­
tive designs, Gilbert and Morgan have proposed a method for solving (2.24) 
under a WNG constraint [15]. The method uses a small added scalar µ to 
the main diagonal of the normalized PSD or coherence matrix: 

(2.33) 

We prefer a mathematically equivalent form, which preserves the interpreta­
tion as a coherence matrix with elements smaller than one. Instead of adding 
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the scalar to the main diagonal, we divide each non-diagonal element by 1 + µ. 
Therefore, µ can be interpreted as the ratio of the sensor noise o-2 to the am­
bient noise power cI>vv. For the diffuse noise field the non-diagonal elements 
are given by 

. { f2 J sl,n,. } smc 
C 

I'v., v ... = ------a2 
1+-

cI>vv 

(2.34) 

The factor µ can vary from zero to infinity, which results in the unconstrained 
SDB or the DSB respectively. The WNG changes as a monotonic function 
between the two limits [15]. Typical values for µ are in the range between 
-lOdB to -30 dB. Unfortunately, there is no simple relation between µ and 
the resulting Wl\"G. By using a frequency variant µ the WNG can be re­
stricted at all frequencies, but not through direct computation. 

There are two different iterative design schemes. The first one was pub­
lished by Docrbecker [9]. It is a straightforward implementation of a trial­
and-error strategy. Another iterative design method uses the scaled projection 
algorithm developed by Cox et al. for adaptive arrays [6]. Instead of the es­
timated PSD-matrix, the theoretically defined coherence or PSD-matrix is 
inserted in the scaled projection algorithm. This solution was presented in 
[17]. Both algorithms result in similar coefficients and can be implemented 
easily. 
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Fig. 2.5. Left: Directivity index (DI) for different constra.ined designs. llight: White 
noise gain (WNG) for different constrained designs. (l = 5 cm, N = 5, endfue 
steering direction) 

Figure 2.5 depicts the effects for three fixed and one variable µ as con­
straining parameters. For the variable µ, the WNG constraint was set to 
-6 dB. The constrained design facilitates a good compromise between DI 
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and WNG. A careful design can optimize such arrays for a wide range of 
applications. 

2.3.3 Design for Cylindrical Isotropic N oise 

In some applications a spherical isotropic noise field is not the best choice 
or the best approximation of a given noise-field. Another well-defined noise­
field can be used, if we reduce the three dimensions to two dimensions. We 
get a noise-field which is defined by infinite noise sources of a circle with an 
infinite radius. T his kind of noise can arise if a lot of people speak in large 
rooms where the ceiling and the floor are damped well, or in the free-field 
( cocktail-party noise) 4

• The coherence between two sensors is given by [7] 

( ) (Wlnm) I'x,. x,,. w = lo -c- , (2.35) 

where J0 ( ·) is the zeroth-order Bessel function of the first kind. This leads to 
the solution of [8] as an improved design for speech enhancement for a hearing­
aid application. In order to constrain the coefficients , a similar technique as 
in (2.34) has to be carried out. 

In comparison to the design for a diffuse noise-field the differences are not 
large, but at lower frequencies a better suppression of noise sources behind 
the look direction can be observed. Elko [11] has shown that the directivity 
factor is less and its limit is 2N - 1, in contrast to N 2 in the unconstrained 
case (µ = 0). A design example wilJ be given in the next section. 

2.3.4 Design for an Optimal Front-to-Back Ratio 

A last data-independent design t ries to optimize the front-to-back ratio. In 
many applications the look direction of the desired signal cannot be pre­
determined, but in most cases the desired signal is in front of the array and 
all disturbances are at the rear, e.g. when recording an orchestra or in video­
conferences. 

Our suggestion for a different design strategy is not to use an isotropic 
noise field, but to restrict the assumed infinite noise sources to the back half 
of a circle or a sphere. 

The resulting noise-field between two sensors separated by the distance l 
can be described by an integration over an infinite number of uncorrelated 
noise sources. The result ing function in the two-dimensional ca.se is: 

. 1 l0o+31r /2 
f(e3n,0o) = - exp (jDfsc-1lcos(0)) d0. 

7r • 00+1r/2 
(2.36) 

4 The origin of this cylindrical isotropic noise-field is the sonar application in shal-
low water. · 
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Using numerical integration methods, inserting the resulting complex values 
in the coherence matrix and solving (2.26), results in a new design which 
suppresses noise sources from the rear very well. 
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~ 1000 I 1000 0 
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~ ~ 
~2000 ~ 2000 -10 
----(/) -"' 
13000 13000 , -20 

4000 4000 -30 
0 1 2 0 1 2 

0/rc"-7 0/rc"-7 

Fig. 2.6. Left: beampattern of a constrained superdirective beamformer. Right: 
beampattern of a constrained beamformer, designed with (2.36) . (l = 5 cm, N = 5, 
µ = 0.0l, endfue steering direction) 

Figure 2.6 shows beampatterns of two constrained beamformers (µ = 
0.01). The left side is computed with optimized coefficients for a diffuse noise­
field, and the right side uses coefficients designed with the help of (2.36). 
At lower frequencies the constraining parameter is dominant and therefore, 
both designs do not perform well. From 300 Hz to 2800 Hz the new design 
suppresses all signals coming from the rear at the cost of a wider main lobe; 
this is sometimes an advantage, for example if the source is not exactly in 
endfire position. 

At higher frequencies, especially if spatial aliasing occurs, the new design 
boosts signals coming from directions near the look direction, which can cause 
some unnatural coloring of the signal and the remaining noise. Therefore, 
special care has to be taken when choosing the parameters of the new design 
scheme. 

In order to show the advantages of the new schemes, Fig. 2. 7 depicts the 
DI and the FBR measure for the three different designs. At lower frequencies 
the small advantage of the cylindrical optimal design against the spherical 
design for the FBR can be seen, but the differences are very small over the 
whole frequency range. On the other hand, the behavior of the new design is 
completely different. Measuring the DI leads to much smaller values, but the 
FBR is very high, especially in the mid-frequency range. 

Interestingly, we can transform between the optimal design for cylindri­
cal isotropic noise and the new design by introducing a new variable which 

- 47 -



32 Bitzer and Simmer 

10 
i 

co 
5 "O 

-~ 
0 

0 

-5 
0 

- . sph. 
- - cyl. 

· - · back 

\. ; 
.· I 

. . . · ... .. . . \ ,1 .. . 
: \ . · / . . ,, . 
: \ · . / 

1000 2000 3000 4000 
Q f

5 
/(21t) in Hz • 

40 

30 
i 

co 20 "O 

.5 
a: 10 
co 
u.. 

0 

-10 
0 

I \ 

/ - ' . .. . . . ··· .· . ... 
/ 

,. 
--·. :, 

' ... . '. 
\ 

-sph. 
- · - ·cyl.· 
· - · be.ck 

1000 2000 3000 4000 
.Q f /{21t) in Hz • 

s 

Fig. 2. 7. Left: Directivity index (DI) for three optimal designs. Right: Front-to­
back ratio (FBR) for three optimal designs. (l = 5 cm, N = 5, µ = 0.01, endfire 
steering direction) 

adjusts the limits of the integral, i.e., 

. 1 1,·00-0+2,,.. 
J(e3n ,Bo, 6) = 2( _ 6) exp (jnfsc-11 cos(0)) d0 0 S 6 _::; 1r 

rr 00 +0 
(2.37) 

Setting 6 = 0 corresponds to the isotropic noise case, and 6 = 1r /2 results in 
(2.36). 

2.3.5 Design for Measured Noise Fields 

So far , only data-independent designs have been considered. If a priori knowl­
edge is available, however, it should be used to improve the performance. For 
example, this information could be a prescribed direction (0 = angle) of an 
incoming noise source. Assuming the noise source is in the far field of the mi­
crophone array, the complex coherence function between two sensors is given 
by 

R {r ( )} (
nfscos(0)lnm) 

e XX,.. W = COS 
• C 

I {r . ( )} _ . (nfs cos(O)lnm) m xx w - -sm 
• m C 

(2.38) 

(2.39) 

Inserting the complete coherence matrix in (2.26) forms a null in that direc­
tion over the whole frequency range. In order to restrict the WNG a con­
strained design is necessary. 

Furthermore, if we assume stationarity we can measure the actual noise­
field and solve the design · equation which results in the MVDR solution. 
Adaptive algorithms like the constrained projection by Cox [6], or the original 
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algorithm by Frost (13], will converge exactly to the same solution under the 
assumption of stationary noise and an infinitely small step-size. 

2 .4 Extensions and Details 

After describing the main form of the MVDR bcamformer and typical data­
independent designs, we will compare them to their analogue counterparts, 
the gTadient microphones. Furthermore, an alternative implementation struc­
ture will be given which can reduce the computational complexity and open 
superdircctive designs for future extensions. 

2.4.1 Alternative Form 

Assuming a t ime-aligned input signal, the optimal weights are defined differ­
ently, since the look-direction vector dis replaced by the column-vector 

1 = ['LL··· . l]T 
~ 

N 

containing only ones, and the PSD-matrix or the coherence matrix contain 
the statistical informat ion after time alignment (see Fig. 2.8). This gives 

x~(k) = s(k)+ v0(k) 

Time New 
delay coherence 

estimation or PSD 
and / or mcasurc-

compen- mcnl 
sation point 

~ k-~1)+vN_1(k) ~--~ x'N_,(k) = s(k)+ vNjk) ~ - - ~ 

Fig. 2.8. Signal model after time delay compensation 

(2.40) 

This solution of the constrained minimization problem can be decomposed 
into two orthogonal parts, following the ideas of Griffith and Jim [16]. One 
part represents the constraints only and the other part represents the uncon­
strained coefficients to minimize the output power of the noise. 
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z 

Fig. 2 .9. Schematic description of the decomposition of the optimal weight vector 
into two orthogonal parts 

The decomposed structure is depicted in Fig. 2.9. The multi-channel t ime­
aligned input signal X is multiplied by we to fulfill the constraints. Fur­
thermore, the input signal is projected onto the noise-only subspace5 by a 
blocking matrix B . The result ing vector xB is multiplied by the optimal 
vector H and then subtracted from the output of the upper part of the struc­
ture to get the noise-reduced output signal Z. Several authors have shown 
the equivalence between this structure and the standard beamformer [16], 
[3], [12], if 

1 w 0 =-l 
N' 

which represents a delay-and-sum beamformer. Additionally, B has to fulfill 
the following properties : 

• The size of the matrix is (JV - 1) x JV 
• The sum of all values in one row is zero 
• The matrix has to be of rank N-1. 

An example for JV= 4 is given by 

[

1 1 -1 -li 
B = 1 -1 - 1 1 

1 - 1 1 -1 
(2.41) 

Another well-known example i.s the original Griffith-Jim matrix which sub­
tracts two adjacent channels only: 

B = (~ ~1 ~1 ~ : ~) . 

0 · · · 0 0 I - 1 

The last step to achieve a solution equivalent to (2.25) is the computation 
of the optimal filter H. A closer look at Fig. 2.9 shows that Y1 , X B and Z 
describe exactly the problem of a multiple input noise canceler, described by 
5 

Which means that the desired signal is spat ially filtered out (blocked). 
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Widrow and Stearns [24]. Therefore, this structure is called the generalized 
sidelobe canceler (GSC), if an adaptive implementation is used. The non­
adaptive multi-channel Wiener solution of this problem can be found in [21] 

(2.42) 

where Pxsxa denotes the PSD-matrix of all signals after the matrix B , and 
q,xDy1 is the cross-PSD vector between the fixed beamformer output and 
the output signals X B . Additionally, the coefficient vector can be computed 
as a function of the input PSD-matrix: 

(2.43) 

If we now assume a homogeneous noise field, the PSD-matrix can be replaced 
by the coherence matrix of the delay-compensated noise field to compute the 
optimal coefficients: 

(2.44) 

Therefore, all designs presented in section 2.3 can be implemented by using 
the GSC-structure. However , why should we do that? First of all, the µew 
structure needs one filter less than the direct implementation. Using the first 
blocking matrix (2.41) further reduces the number of filters [1]. Secondly, a 
DSB output is available which can be used for future extensions. Thirdly, the 
new structure allows us to combine superdirective beamformers with adap­
tive post-filters for further noise reduction [2), and the new structure gives a 
deeper insight into MVDR-beamforming. For example, we can see t hat opti­
mal beamforrning is an averaging process combined with noise compensation. 

2.4.2 Comparison with Gradient Microphones 

Other devices with supcrdircctional characteristics arc optimized gradient 
microphones [ll]. In Fig. 2.10 a typical structure of a first order gradient 
microphone and its technical equivalent ( composed of two omni-directional 
microphones) is shown. 

The acoustic delay between the two open parts of the microphone can be 
realized by placing the diaphragm not exactly in the middle, or by using a 
material with a slower speed of sound. 

The output of such systems is given by 

E(w, 8) = Po (1 - exp(-jw[r + c- 1 l cos(0)])) , (2.45) 

where r is the acoustic delay and Po denotes the amplitude of the source 
signal. If we now assume a small spacing with respect to the wavelength, an 
approximate solution can be derived: 

E(w, 0) ~ P0w(r + c- 11 cos(0)) . (2.46) 
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diaphragm 

acoustic 
delay 

Fig. 2.10. Schematic description of a first order gradient microphone 

A proper choice of r leads to the different superdirective designs, called car­
dioid, supercardioid and hypercardioid. For example, the beampattern for a 
hypercardioid first order gradient microphone shows its zeros at ~ ± 109°. 
This type of microphone is designed to optimize the directivity factor and 
therefore, it represents the analogue equivalent of a two-sensor superdirective 
array. For a deeper insight and a complete review of higher order gradient 
microphones see [11]. 

At lower frequencies the two systems react more or less equally. The ad­
vantages of the analogue system are the smaller size of the device, and that 
no analogue-to-digital conversion is necessary. The advantages of the digital 
array technique are its flexibility, the easy scaling for many microphones, and 
the possible extensions with post-filters or other adaptive techniques. 

At higher frequencies, if the assumption of small spacing is not valid any­
more, the differences become visible. Through careful manufacturing these 
frequencies are much higher than the covered bandwidth. However, at some 
high frequencies the analogue microphone cancels the desired signal com­
pletely. On the other hand t he array system reacts like a DSB at these fre­
quencies, and no cancellation occurs. 

2.5 Conclusion 

Designing a so-called superdirective array or an optimal array for theoret­
ically well-defined noise fields can be reduced to solving a single equation. 
Even nearfield assumptions and measured noise fields can be easily included. 
We have shown that the spatial characteristic, described by the coherence 
function, plays a key role in designing arrays. Most of the evaluation tools 
like the beampattern or the directivity index are directly connected to the 
coherence function. Beamformer designs with optimized directivity or higher 
front-to-back ratio also use the coherence. 

One of the new aspects included in this chapter was a new noise model 
to improve the front-to-back ratio. Furthermore, we emphasized the close 
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relationship between superdirective arrays and adaptive beamformers and 
their well-known implementation as a generalized sidelobe canceler. 
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Abstract. In the context of microphone arrays, the term post-filtering denotes the 
post-processing of the array output by a single-channel noise suppression filter . A 
theoretical analysis shows that Wiener post-filtering of t he output of an optimum 
distortionless beamformer provides a minimum mean squared error solution. We 
examine published methods for post;-filter estimation and develop a new algorithm. 
A simulation system is presented to compare the performance of the discussed 
algorithms. 

3.1 Introduction 

What can be gained by additional post-filtering if the Minimum Variance 
Distortionless Response (MYHR} beamformcr already provides the optimum 
solution for a given sound field? 

Assuming that signal and noise are mutually uncorrelated the MVDR 
beamformer minimizes the noise power (or variance) subject to the constraint 
of a distortionless look direction response. The solution can be shown to be 
optimum in the Maximum Likelihood (ML) sense and produces the best pos­
sible Signal to Noise Ratio (SNH.) for a narrowband input [l]. However, it 
does not max:i.m.ize the SNR for a broadband input such as speech. Further­
more, the MVDR beamformer does not provide a broadband Minimum Mean 
Squared Error (Mt\lISE) solution. The best possible linear filter in the MMSE 
i;ensc is the multi-channel Wiener filter. As show;1 below the broadband multi­
channel MMSE solution can be factorized into a MVDR beamformer followed 
by a single-channel Wiener post-filter. The multi-channel Wiener filter gen­
erally produces a higher output SNR than the MVDR filter. Therefore, addi­
tional post -filtering can significantly improve the SNR, which motivates th.is 
chapter. 

The squared error minimized. by the single-channel Wiener filter is the 
s11rn of residual noise a.nd sie;nal dist()rt,ion compon~nt$ ;:i.t. the m1tp11t oft.hf! 
filter. As a result , linear distortion of the desired signal cannot be avoided en­
tirely if Wiener filtering is used. Additional Wiener filtering is advantageous 
in practice, however, because signal distortions can be masked by residual 
noise and a compromise between signal distortion and noise suppression can 
be found. Using MVDR beamform.ing alone often does not provide sufficient 
noise reduction due to its limited ability to reduce diffuse noise and rever­
beration. 
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The first con pt of an electronic multi-microphone devic to suppres 
diffuse revetberat.ion was proposed by Danil,nko in 1968 [2] . His r search 
was motivated by Beke s [3] ob ervation that human listener are able to 
suppress reverberation if sounds ar presented binaurally. In Danileuko's re­
verberation uppressor a main microphone ignal is multiplied by a broad­
band gain factor that is equal to the ratio of short-time cross-correlation and 
energy mea urem nts. Two auxiliar microphones were used to measw·e cor­
relation and ener:gy. Da11ilenko a1Teady noted that such a system woul<l a.Isa 
suppre s incoherent acoustic nois . However, the proposed analog, electronic 
tube version of this system was not realiz d at that time. Another proposal 
in [2) was to evaluate squared um and differen es of two microphone signals, 
an idea that later was developed independently by Gier! and others in th 
conte.xt of digit al multi-channel sp tral subtraction algorithms [4] [5], [6] 
[7], [8]. 

According to Danilcnko, his correlation-based concept was first realized 
dUI'ing Blauert's stay at Bell Labs. In [91, Allen et al. presented a digital , 
two-microphone algorithm for dereverberation based on short-term Fourier­
Transform and th overlap-add method. In 1984, Kaneda and Tohyama e.x­
tended he application of the orrelation based post-filters to noise reduction 
[10]. The fir t multi-mi rophone solution was publi h d by Zelinski [11], [12]. 
Simm r and Wasiljcff showed that Zelinski's approach does not provide an op­
timum solution in the Wiener sense if the noise is spatially w1correlated, and 
developed a lightly modified version [13] . A deeper analysis of the Zelinski 
and the Simmer post-filter can be found in [14), [15]. 

In the last dEicade, several new combinations and extensions of the post­
filter approach w re published. Le-Bouquin a.nd Faucon used the coh&enc 
function as a po.st-filter [16), [17] and extended their system by a coherence 
subtraction method to overcome the problem of insufficient noise reduction at 
low frequencies [18], [19). The problem of t ime delay estimation and further 
improvement of the estimation of the trans£ r function waB independently 
addrel:!sed by Kuc7.ynski et al. [20], [21] and Drews et al. [22], [23]. Fischer 
and irnmP.r gav,3 a first olution b associating a po t-filter and a generaJiz d 
sidelobe can eler (GSC) to improve then ise reduction in case the noise field 
i dominated by coherent sources [24], [25]. Another sys em for the same task 
was introduced by Hussain et al. [26] au<l was based on switching between al­
gorithms. The a.me strategy of switching betwe u different algorithms, w her 
the decision is based on the coherence between the sensors, can be found in 
[27) , [28]. Furthermore, Mamhoudi and Drygajlo used the wavelet-transform 
in combination with different post-filters to improve the performanc [29) , 
[30]. Bitzer et al. l31], [:!~] proposed a solution with a super-diPctive array 
and McGowan et al. used a near-fi ld super-directive approach [33]. 

Reading thes pap r we find that a. theoretical basis for post-filtering 
seems to be mis,sing. Therefore, an analysis bas d on optimUD1 rnE mult i-
channel filt ring is pres nted in the following section. 
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3-2 Multi~channel w·iener Filtering in Subbands 

We use matrix notation for a i::ompact derivation. Signal vector x and weight 
v ctor w denote the multi-channel signal at the output of the N microphone 
and the multi-channel bcamformer coefficients, rcspe tively. We assume tha 
th input signal vect r x(k) is de omposed into M complex ubband signals 
x(k, i) by means of an analysis filter-bank, where k is the disc.r te time in­
dex and i is the subba.nd index. The optimum weight vector WQpt{k, i) fir 
transfon ning the input ignal vector x (k, i) = s(k, i) + v (k, i) corrupted by 
additive noise v(k , i) into the best possible YIMSE approximation of the d -
sired scalar signal s(k, i) is referred to as multi-channel Wiener filter (34.]. 
We assume that the relation between the desired scalar signal s(k, i) and the 
signal vector s(k, i) i linear and that the elemen of the column vectors 
s k , i) and v(k, i) are random processes. In th following, T denotes trans­
position, • denotes complex conjugation, 11 denotes Rerruit.ian ttansposition, 
and E (·] denotes the tatistical expectation operator. 

3.2.1 Derivation of the Optimum Solution 

The error in subbaod i for an arbitrary weight vector w(k i) i defined as 
the differen e of the filter out.pu 

y(k, i) = wH (k, i)x(k, i) == wH (k, i) (s(k, i) + v(k, i)] 

and the scalar desired signal s(k, i), that i 

e(k, i) = s(k, i) - wH (k, i)x(k i). 

Using the definitions for the power of a complex signal 

</Ju;a:(k,i) = E[x(k,i)x(k 1i) ], 

th cross-correlation ve 'tor 

</>a:y(k,i) = E(x(k,i)y*(k ,i)] 

and the correlation matrix 

(3.1) 

(3.2) 

(3.3) 

(3.4) 

i.Pxx(k i) = E [x(k,i)x1T(k,i)], {3.5) 

the squared error at time k may be written as 

<Pee{i) = E [{s(i) - WH (i)x(i)}{s*(i) - ~(i)w(i)}) 

= <Pss(i) - ~ (i)</>x~(i) - ¢;.1:(i)w(i) + WU (i)cJi:i:x(i)w{i) (3.6) 

where the time inde k has been omitted without loss of generality. The 
optimum solution minimizes the sum of all error powers </Je._(i): 

M 

L [<Pss(i) - wll(i)<Pxs(i) - q>~5 (i)w(i) + WH (i)i.Pa:a:(i)w(i)]. (3.7) 
;=o 
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Since he error power is n essarily real-valued and nonnegative for all sub­
bands, the sum can be minimized for the waight vector w (i) by minimizing 
the error pow r <l>e, (i) for ach sub band. Therefore, th fr •quency index i 
may also bE~ omitted without loss of generality. 

The power 'Pee is a quadratic function of w and therefore has a single 
global minimum. The optimum wei ht vector minimizing the squared error 
is obtained bys tting the gradient of ,Pee with respect tow equal to t.he null 
ve -tor [35]: 

( ,1., ) 8</Jee 'ilw </'ee = 2-8 = - 2</)"' 6 + 24ia,'1JW = 0. w• 

The r ult ing expression is the subband version of the multi-chann 1 
Hopf quation in its most general form 

(3.8) 

iener-

(3.9) 

where 'P"'"' is th correlation matrLx of the noisy input vector and tf>u is the 
cross- orrelatiou vector b tween the noisy input vector and the desir d scalar 
signal . Assuming P"'"' to b nonsingular, we ma solve (3.9) for the optimum 
weight vector: 

(3.10) 

3.2.2 Factorization of the Wiener Solution 

In our application, the rec ived sigpal is assum d to consist of a singl desi.red 
scalar ignal that is trans£ rmed by b acous i pa.th d and additiv noise: 

x = sd+ v. 

The noise vector v is given by 

V = [vo, 'V1 · • · , VN_ i]T 

(3.11) 

(3.12) 

where Vn is a. complex noise signal in su bband i at microphone n. Th complex 
propagation vector is 

d = [do,,d1 ,··· dN- 1f (3.13) 

wher cl,. describ th , acow t ic path from the desired source to the micro­
phone n for subband i. TJ, propagation vect.or n may include time delays , 
near-field effects, and the transfer function of nclosur' and microphones. 
With the definitions (3.3) (3.4), (3.5) and assuming that signal and nois are 
uncorrelated, th cross-correlation v tor may b reduced t,o 

(~.14) 
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and the correlation matrix may be expressed as 

Pxx = <PssddH + d>'IJlJ· 

Consequently, the optimum weight vector may be written as 

(3.15) 

(3.16) 

The multi-channel Wiener filter can now be factorized into an array processor 

and a single channel post~filter by applying the Sherman-Morrison-Woodbury 

formula 

which is also !mown as the matrix inversion lemma [35]. Substitut ing 

A = <Pvv - i , B = ../¢>;;d, and C = 1 

(3.17) 

(3.18) 

into (3.17) , and taking into account that the Hermitian form d HPvv - ld is 

scala.r and real valued, the MMSE solution (3.16) can be transformed into 

w _ [(/j - 1 _ c/Jss<Pi~v - ldd H P vv - 1 ] ,1. d 
opt - vv 1 + <PssdH <f>vv - ld '!'ss 

_ [ <Pss ] (/j - ld 
- 1 + </>ssdll P vv - ld vv 

[ 
</>ss ] P vv - ld 

- <Pss +(dHp'UV-ldfl dH<Pv,,-1d· 
(3.19) 

Equation (3.19) shows that the multi-channel Wiener filter (3.10) can be 

written as the pw<lud, uf Ll11!:! weight vector of the MVDR beamformer, (see 

Chapt<"..r 2) and a real-valued scalar factor. A similar r sult is used in [36] and 

[1] to show that the multi-channel Wiener and the MVDR solution yield the 

same SNR if the input is narrowband. In this case the MVDR beamformer is 

preferable since it is data independent (i.e. completely defined by the spatial 

configuration of signal and noise source:,), whClreas Lhe Wiener soluLion is 

data dependent (<l>ss must be known or estimated) and is therefore much 

more difficult t.n handle. However, MVDR and Wiener solution::; yiPJd the 

same SNR only if the input consists of a single frequency. For the broadband 

case (which has already bee1• discussed in [37]), the scalar factor becomes a 

subband or frequency domailn post-filter that may sig1lificant1y i.mptove the 

SNR. 
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To show that the optimum post-filter is also a Wiener filter that operates 
on the single-channel output data we evaluate the power of the desired signal 
at the output 1of the MVDR processor as 

(3.20) 

This demonstrates the distortionless magnitude response. Furthermore, we 
determine the power of the output noise as 

d /I"' -ld 1 
,1.. J'f ip 'l'vv 
'l'Vo'vo = Wrnvdr vvWmvdr = (dlltf>,,v - ld)2 dll4ivv - 1d · (3.2'1) 

Substituting (:l.20) and (3.21) into (3.19), we can finally factorize the opti­
mum NIMSE s,olution into the folJowing expression: 

[ 
</>s0 s0 ] Pvv -ld 

Wopt = ,/.. + ,/.. dH "'vv-1 d . 
</'S o S o 'f'Vo V o . 'l' --------- ----------

(3.22) 

Wi,aner post- filter MVDR array 

Equation (3.22) includes the complex weight vector of the MVDR beam­
former 

(k .) tl>;.}(k,i) d(k,i) 
Wmvdr , i = d"(k,i) P;;v1(k , i) d(k,i) 1 

(3.23) 

and the scalar, single channel Wiener post-filter that depends on the SNR at 
the output of the bea.mformer: 

H (k ') _ r/Js 0 s.(k, i) 
post , i - , 1, (k ") ,1. (k ') 

~'So S o l i + '1'1> 0 Vo > t 

SNRout(k,i) 
1 + SNRout(k,i)" 

(3 .24) 

Th output signal z( k, i) of the factorized MMSE filter is the product of the 
output signal ~1(k , i) of the MVDR array: 

y(k,i) = w;;.vdr(k, i) x(k,i) , 

and the transfer function H post ( k , i) of a single-channel post-filter: 

z(k,i) = y(k, i) Hpost(k,i). 

(3.25) 

(3.26) 

The MVDR solution (3.23) maximizes the directivity index if Pvv equals 
t,hP. c:orrnl:i.t.ion m3,trix of the diffuse sound lield. The resulting system may 
therefore be called 'superdirective array with Wiener post-filter' (although 
t,he term super-directivity originated in the context of analog microphones) . 
Since the definition (3.13) of the propagation vector docs not include any far­
field assumptions, (3.23) may also be used to design a near-field superdirective 
array. 
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3.2.3 Interpretation 

Al hough the above results a.ire clearly related to Wiener's work on optimum 
filtering [38], some basic asswtnptions were different. First. of all, Wiener con­
sidered continuous time signals which leads to the Wiener-Hopf integral equa­
tion- The corresponding equation in matrLx form (3-10) usually determines 
the filter coefficients for an optimum discrete time FIR filter of order N_ In 
our case, the delay line is de:faned by the spatial arrangement of the acoustic 
sensor and the taps are reali:ied by the N m.icrophones. The array and the 
weight vector form a spatial filter. Wiener assumed that signal and noise are 
ergodic and stationary random processes and he used the Fourier-trnnsform 
to find a solution for the optimum. filtel'. This leads to a linear, time invariant 
filter. Such a filter is not appropriate for speech signals that may be modeled 
as short-time stationary pr0<;esses only. The derivation used here is based 
on ensemble averages (e:>..l)ectation.s) a.nd does not assume stationarity. In 
practice, however, only an approximate realization of such a filter is possible. 

There are two main sources of errors: the analysis and synthesis filter­
bank, and the procedures to estimate the time-varying signal and noise powers 
in the individual subbauds- For the design of the filter-banks, a compromise 
between frequency and time resolution has to be made. High resolution in the 
frequency domain leads to poor resolution in the time domain and vice versa. 
Therefore, the highest, possible frequency resolution that does not violate 
the hort-term stationarity of speech should be chosen. Furthermore., the 
minimum error 111 the time-dlornain is only reached if the filters have non­
overlapping frequency regions (see the discussion of subband methods in [39]). 
Since such filters are physically unrealizable1 overlapping of subbandi, cannot 
be avoided. As a result, the suppression of a nolso-only subband may affect 
adjacent subbands containing desired signal components. In the following, 
we will use windowing, Fast Fourier Transform (FFT) and the overlap-add 
method to implement the filter-bank. However, (3.22) is general enough to 
allow any complex or real valued filter-bank method. If overlap-add is used, 
circu1a.r convolution should be avoided by zero padding and by constraints 
imposed on the estimated transfer function. 

In the de.rivatiou of the optimum filte.r, exp ctations a.re used to estimate 
the parameters_ This is a theoretical construction since the ensemble averages 
cannot be computed in pradice. An approximation proposed in [9] is the 
recursive Welsh periodogram: 

ef>x 11 (k, i) = a ef>xv(k -1, i) + (1 - a)x(k, i)y (k, i) (3.27) 

where a = ex-p(-D/ [r0 d.~]) is defined by the decimation factor D 0£ the 
filter-bank, thei.ime-collStant Ta (tns), and the sampling frequency fs (kHz). 
The time constant is a.gain a compromise- If Tc,. is low, artifacts may occur 
due to the variation of the transfer function estimate. On the other hand, if 
a high time constant r,. is chosen, the assumption of shor t time stationarity 
is violated and the output speech signal may sound reverberant. 
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UnfortunatHly, the factorized result (3.22) does not give any indication of 
how the Wieneir post-filter could be estimated . A possible solution, which we 
discuss in the next, section, is ba,sed on the observation that the correlation 
between two microphone signals is low if the sound field is diffuse and the 
microphone distance is large enough. 

3.3 Algorithms for Post-Filter Estimation 

Figure 3.1 shows the block diagram of the studied algorithms. The micro­
phone signals are time aligned and decomposed by a frequency subband 
transform (FT). The coefficients w,. represent the weight vector w of the 
bea.mformer and H represents the post-filter. The inverse sub band transform 
(IFT) synthesizes the output signal. The coefficients f n for post-filter estima­
tion form a vector f . ljnJess otherwise noted we assume that f = w . We begin 

Post­
filter 

estimation 

Fig. 3 .1. General block diagram of the examined post-filters. 

our analysis on multi-microphone post-filters by recalling some Tesults on the 
performance of arrays from Chapter 2 since these resnlts a.re needed later. We 
generally assume that the coefficients a.re normalized so that wll 11H w = 1 
and fH11Hf ,e= 1, where 1 is the N-vector of ones. Therefore, the array gain 
equals the noise reduction of the array. For convenience, we define a noise 
power attenuation factor that equals the inverse of the array gain: 

A ffy-, a-1 r= W 1 m,W= i 
(3.28) 
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1 where the coherence matrix I'11v is the normalized noise correlation matrix 
I'vv = ~1111N/trace[~1,,,] and all quantiti are assum d to be frequency de­
pendent. 

An examination of (3.28) shows that the noise attenuation of the array 
is the weight d sum of the complex coherenc functions of all sensor pairs. 
Thus, all products appear in conjugate pairs I'mn + I',1m = 2Re{I'nm}- As 
a result, the noise reduction of the array is actually a function of the real 
part of the complex coher nee 1 etween the sensors. The knowledge of the 
magnitude quared cohC'.rencc is not sufficient. 

Th white noise gain is the array gain for spatially uncorrelated noise, 
where I'11v = I. Thus, the a tenuation factor for spatially white noise is 

A1 = w;rw = WNG- 1 . 

The additional noise attenuation of the post-filter is given by 

Apost = IHpostl2 • 

(3 .29) 

(3.30) 

The total noise attenuation of th' combined system is the product of the at­
tenuation of the array and the attenuation ofth post-filter, or the respective 
sum in dB: 

AtotatjdB = 10log10 (Ar)+ l0log1o (Apost). (3.31) 

3.3.1 Analy is of Post-Filter Algorithms 

The first method for post-filter eistimation we study is a generalized version of 
Zelinski's algorithm that was dis ussed by Marro et al. [15]. It cov rs several 
other algorithms as a special case. 

(3.32) 

Equation (3.32) includes Dartilenko's [2] idea to u e th ratio of cross-correlation 
rl>:c,.a:m and power Pz,.z.,. for suppr sing incoherent uuise Lhc complex uh­
band approach of All n et al. ['9], Zelinsld's proposal to average over all mi­
crophon pairs m > n [11 ), and larro's [40] extension to omple.x shading 
coefficients Wn. To write this algorithm in matrix notation, we note Lhat 
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This is a Hermitian form of the shading coefficients Wn and the correla:tion 
matrix q5;i;.,, minus the weighted sum of diagonal elements of <P:i;a;• The algo­
rithm (3.3:2) requires that the relative time-delay differences and gain ratios 
between the microphone signals have been compensated in advance so that 
d = I. This leads to a modified noise correlation matrix !Pxx (see Chapter 
2). The transfer function of the post-filter (3.32) may now conveniently be 
written in matrix form as 

(wH<P,,,xw-)w8<Jifxw) wHw 
Hzm. == (w1'11H.w -:::__ wH w) WH rPfx W 1 

(3.33) 

where <P~, is a diagonal matrix of the diagonal elements of P;r,x. lf the sound 
field is homogeneous, we have the same input power at each microphone i.e. 
Pfz = r/>x,J, and may write 

(3.34) 

If signal a,nd noise are uncorrelated we have Pa;a; = Pss + Pvv· Therefore, 

( H ,r, H ) ( 11,-.. • H ) 
W ~ 88W- !p95 W W + W ~vvW- <!'vvW W 

H,,,m == ) ( B H H ) (r/J.,s +<Pv11 W 11 W- W W 
(3.35) 

Assuming that the coefficients are normalized such that wH 11 n w = 1, the 
desired signal is coherent, i.e., 'P85 = <Psslln. Wit.h the noise correlation 
matrix being Pvv = ¢vvI'v1,, where ¢1111 = trace [Pvv] / N 1 we £.nally obtain 

<P.,s r/>-vv (~ I'u·vW - w 11w) 
Hzm == + ( H ) · 

<Pss + r/>vv (c/Jss + c/Jvv) 1 -W W 
(3.36) 

Although the designs of the MVDR ai-ray and the post-filter estimation 
algorithm do not seem to have much in common, the transfer function of the 
post-filt,er may be expressed as a function of the attenuation factors of the 
array by Embstituting (3.28) and (3.29) into (3.36): 

Hzm == c/Jss + ¢vv (Ar - A1) _ 
</>ss + c/Jvv ( </>ss + </>vv) (1 - Ai) 

(3.37) 

This is a lso true for the slightly modified version of Zelinski's algorithm [13]: 

{
N 2 N 1 } 

Re L L Wn(i)w;,(i)Px,.:>:,,, (i) 
H (:) _ n=O m = n+l 

srrt i - {N-2 N-1. } ' 

Re ~ m~+l Wn(i)w;,(i) </>yy(i) 

(3.38) 
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\_ 

where </>yy = <Pss + 'PvvAr is the output power of the array. The modified 
post-filter can be expressed as 

llsm = r/>s.s + <Pvv Ar (Ar - Ai) _ 
</>.,s + </>vvAr (¢ss + </iv,,Ar) (l -A1) 

(3.39) 

These rather surprising results were fast derived in (15). They are used in 
the following section to discus8 the properties of a large class of post-filtering 
algorithms . 

3.3.2 Properties Qf Post-Filter Algorithms 

Fiist of all , we note that the shading coefficients Wn form a weight vector 
w that generally can be computed by using the design rule of the MVDR 
array. It is not necessary, however, to use the same design for array processor 
and post-filter (see Fig. 3.1). Both the MVDR weight vecto1· and the array 
gain are functions of the noise correlation matrix. It should be noted that the 
correlation matrix that is used for the design may differ from the conelatjon 
matrix of the enviromuent in -which th~ array operates. Therefore, three dif­
ferent correlation matrices may be involved: a first one for the design of the 
array processor, a second one for the design of the post-filter, and a third one 
to determine the performance in the actual environment. 

Analyzing (3.37) and (3.39) leads to the followi,ng conclusions: 

• Optimum performance is only reached if Ar = A,: 
The difference of the two attenuation factors is zero only if the noise is 
spatially uncorrelated which wrui Do.nilcnko's initial assumption in the 
design of his suppression system. In this case, (3.37) becomes a Wiener 
filt er for the input signal of the be,amfOl'mer. On the other hand, (3.39) 
becomes a Wiener filter for the beam.former output and therefore rep­
resents the MMSE solution for uncorrelated noise if the delay and sum. 
beamforrner is used. All other coefficient sets, including superdirectivc so­
lutions, yield suboptimal performance. In a diffuse sound field, the noise 
is correlated at low frequencies which leads to poor performance for low 
frequency noise. 

• Negative post-filter if Ar < A, : 
In a diffuse noise field, or if coherent sources arc present, the difference of 
the attenuation factors (Ar-A1) may cause a negative transfer-function. 
If negative parts of the transfer functions are set to zero, which is a 
common strategy, signal cancellation may occur. 

• Infinite post-filter if A1 = 1: 
This is usually the case with superdirective designs which amplify uncor­
related noise at low frequencies . 

To demonstrate the preceding results, we computed the theoretical perfor­
mance of a four microphone end-fire array with 8 cm inter-microphone dis­
tance in a diffuse noise field (<Pss = 0) . Figure 3.2 shows the attenuation 
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Fig. 3.2. Theoretical noise a:ttenuation of an eDd-.firo ;i;rray for a diffuse noi~e field. 
Left: delay and sum beamformer coefficien lught: superclirectiv coefficient . 

fa tors r a111d A1 of the beamformer and the noi e attenuation Apost of 
the post-filter (3.37) . The left part depict th attenuation for delay and 
sum beamformer coefficients (f = w = 1/N) and the righ part depict the 
attenuation for superdirective co fficients (f = WMvnn)-

The performance of h delay and sum beamformer and he respe tive 
post-filter is Jpoor at low freque11cles. At high_ frequencies the coherence of a 
diffuse n ise field is approaching zero. Therefore, Ar is close t o ,4.1 and both 
po 't-filt rs perform nearly optimally. 

The supcrdirectiv beam.former p rforrns particuJarl · well at Jow frequen­
cies. The respective post-filter, however , does not benefit from using superdi­
rective coefficients. The performance gets even worse at low frcquenci and 
tho transfer function is infinite at the frequency where A1 crosses O dB. 

3.3.3 A New Post-Fi)ter Algorithm 

To derive an improved algorithm we note t,hat in all cases the subtraction of 
he white noise attenuation A1 in (3.37) is causing t.he trouble. It r due the 

performance for superdircctive oefficicnts and is responsible for negative or 
infinite post-filters. Our straightforward approach for solving these problems 
is tn rnpl:-tc:e the difference Ar - A1 with ,4.r , since Ar is the parameter that 
is actually minimized by he design of the MVDR beamformer. Substituting 
A1 = 0 in (3 .37) results in 

H _ <PSB + ¢.,,,Ar _ </11111 
apab - ,i_ ,i_ ,i_ - • 

'llss + '/' 1JV 'l'ss + </>,rv </Jxx 
(3.40) 

This new algorithm can be implemented easily by estimating the ratio of 
the output power ¢v, and the input power ¢xx of the b amformer for all sub­
bands, whor,3 <Pxx is the power of the microphone closest to the desired source 
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or alternatively the average input power of the beamformcr (see Fig. 3.3). 
This design is compatible with superdire tive coeffi ients, is always positive, 
and provides good performance for low frequency noise. How vcr, the new 
transfer function still approxim:ates a Wiener filter for the input signal. It 
does not take into ac oun that the noise has ah'eady been reduced by the 
MVDR beamformcr. In order to correct thl behavior, we may apply the 
following function to (3.40) 

H 
g (H,A ) = H + (l - H) A" (3.41) 

This transforms the Wiener filt r for the input to a Wi ner filter for the 
output of the bearnforme.r: 

(3.42) 

Since Ar i usually unknown, we may implement {3.40) directly and call this 
algorithm Adaptive P st-Filter for an Arbitrary Beamformcr (APAB). 

,/O(k,....:....c..i)l--l--1----- • r --,,_ 
;. x 1 (k,i) 

~ -l(ki --- ----

Channel­
switch 

l 
I P~-fiJ~er-
~mati on 

y(k,i) _ _ ....J.__.....-.--':'"--, z(k,i 

=j *p~Qc,i) =-~ 

Fig. 3.8. Block diagram of the adaptive post-filter for an arbitrary bea.mformer 
(APAB). 

3.4 Performance EvaJluation 

It is difficult to obtain reliable speech quality measures for the performance 
cval.ua ion of noi ·e reduction u-nits. Subjective listening tests reach statistical 
significance only for a large number of trained listeners and arc expcn ive 
and time-consuming. On the o ther hand, obje tiv measures are ofteo less 
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sensitive than the human auditory system to artifacts such as musical tones. 
Therefore, we did not :rely exclusively on objective measures to optimize 
the noise reduction algorithms. Accompanying informal listening tests were 
conducted to validate the objective results. 

3.4.1 Simulation System 

Our simulatilon system consists of three parts: A signal generation module, 
the device or algorithm under test (DUT) and the evaluation unit. In a first 
step, clean SJpeech s(k) and a pure noise signal v(k) are convolved with room 
impulse responses (RIR.) that are computed llsing the image method of Allen 
and Berkley (41]. In Fig. 3.1, we show the room con£guration used. Noise is 
added to thi~ computed multi-channel signals to produce a given signal--to­
noise ratio (SNR). The resulting noisy signal is fed into the DUT. 

y Broadside y Enctfire 
Noise Noise 

V (1.99 m l2.4J m l 1 m) V(1.99m l 2.41 m l Im) ., 
.'ir, Source 

Source 

45• • I • 
45• I 

2m ~ 5 0 cm 2m y ~ 50= 
4m 4m 

3.4m 3.4m ~roo Scml~ 
lm 

Im 

~4.5m 7.4 m 7.4m X 
4.5m 

z z 

Fig. 3.4. Configuration of the simulated room. 

The adaptive coefficients of the algorithm are copied to two slave algo­
rithms which process speech or noise only. Thus, we have access to the pro­
cessed speech signal Ys(k), the processed noise signal Yv(k)i and a processed 
sum Ys+v(k) . Finally, these three output signals and the input signals arc 
used in the evaluation unit to compute several speech quality measures. See 
Fig. 3.5 for a graphical description of the complete system. 

3.4.2 Objective Measures 

We are using three different quantities to obtain objective information about 
the tested algorithm. The fust one is the segmental signal-to-noise ratio en-
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Y5(k) ~ • 
~ Clean Evaluation unit 

eech s(k) 

Segmental SNR-
Enhancement 

Speech quality 
(LAR) 

Speech 

Y/k) degradation (SD) 

Fig. 3.5. Gra.phlcal description of the complete simulation system. 

ha.ncement (S rRE): 

S RE(l) = S Rin(l) - SNR-out(l). (3.43) 

The segmen al SNR is computed from consecutive samples with block-length 
B = 256 at a sampling frequency of 8 kHz: 

(l+l)B 

L s2(k) 

SN ° - (l) = 10 - lo k=tB+i 
LLin glO (l+l)B 

L li(k) 
k=W+I 

(I 1)B 

I: y;(k) 
SN () _ k=W+l 

Rout l = 10 · loglO ( ) 
l+l B 

L y~(k) 
k= IB+l 

(3.44) 

(3.45) 

The second objective measure is the log-ar a-rat,io distance (LAR) which 
has been tested with good result in [42] . This quantity can be computed in 
three sLeps: 

1. Estimate the PARtial CORrclation coefficient (PARCOR) of a block of 
samples. T he block-size should be small enough to hole! t.he assumption of 
stationarity bu large enough to reduce bias and variance of the estimated 
values. A good choice is a block-sizeof256 for a model order of P = 12. An 
algorithm for estimating PARCOR coefficients is the well-known Burg­
algorithm [35] . 

2. Determine the a.rear-coefficients by 

1 + k(p, l) 
g(p,l) = l - k(p,l) 'v 1 $p $12 (3.46) 
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where k(p, l) is the ptb PARCOR coefficient of block l. 
3. Conrpute the LAR of block l 

LAR(l) = I: 20logl0 I gs(p~\) I · 
p=l 911•+• , 

(3.47) 

The final quantity we use is a speech degTadation measure, which can be 
defined by the LAR of the input and the output speech signals only 

SD(l) = ~ 20 log10 I ::.t,ll) I· (3.48) 

It includes the room reverberation, the signal distortion caused by the tested 
algorithm, and the dercverberation features of the tested algorithm only. 
Finally, the average of all blocks containing speech is computed . 

3.4.3 Simulation Results 

The described simulation system was used to evaluate the performance of 
four different post-filter algorithms: 

1. Zel88: The algorithm by Zelinski in the frequency-domain implementation 
[21]. 

2. Sim92: The algorithm by Simmer described in (13]. 
3. J\PAJB: The adaptive post-filter for an arbitrary beamformer, described 

in section 3.3 with a constrained MVDR-beamformer designed for an 
isotropic noise field in three dimensions (superdirective beamformer). The 
const raining parameter is set tot~= 0.01 (sec Chapter 2). 

4. APES: The adaptive post-filter extension for superdirective beam.formers 
(32]. 

For comparison, we include the results of the case in which no algorithm is 
used (No NR). 

The speech sample we used is the sentence "I am now speaking to you 
from a dilstance of 50 cm from the microphone" spoken by an adult male. 
The length of thifl Ale leads Lo 98 blocks coutailling speech. The .n:oise file 
was whit.e Gaussian noise used in order to give technical results which can 
be reproduced by other researchers. The input SNR was computed only for 
blocks containing speech by using the segmental S.:\'-a. 

In the first experiment,, the broadside array shown on the left side of 
Fig. 3.4 ts examined. Figure 3.6 depicts the results for the SNRE. The left 
side shows the dependence on the input-SNR if tbe reverberation t.ime is 
set to Tl;io = 300 ms. The right figure shows the rnsult,s for SNR=5 dB as a 
function of the reverberation time. This provides information on the behavior 
of the alg;orithms for different spatial conditions. The no.ise-ficld is coherent 
for low rc·vcrberation time and approximately diffuse for high values. 

1· 
l 
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SNR = 5 dB 

z 
w B •· ·• ·Sim92· · ··•-O ·APAB 

G- El Zel88 ~ APES 6,..._ ________ ___, 

0 500 1000 
't60 in ms ~ 

Fig. 3.6. Left: S:-ra.E v . input-SNR Right: S)IB.E v . r verbcration time -roo 
(Broadside) . 

]though not optima] the Zel88 algorithm performs quite well , especially 
for high reverberation times where it provides the best re •ults of all tested al­
gorithms (if only the SNRE is considered) . . t low reverberation times APAB 
a.nd APES ca.n b nefit from the bett r suppression at low frequencies by us­
ing a uperdirective beamformer in ·tead of a. standard delay and sum beam­
former. 

t 60 = 300 ms 

4 . :-:- ."a ,' ' .; .. "·.· . 
' . 

' 3 . . 19 .' ·-· ...... . 
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0 +-+No N . -... · -
CJ} 1 .. " . . . . . .... ". . 

• · .. $im92: 0~APAa 
o G- .EJ,Zel88 -.. ,~APES 

-5 0 5 10 15 
SNR in dB • 

SNR = 5 dB 

20 0 500 1000 
, 60 In ms • 

Fig. 3. 7. Lett: SD v . input-SNR. Right: SD vs. rl:lvcrberation time T60 (Broo.daide). 

If we take into account the next two measures shown in Fig. 3.7 and 3.8, 
which describe the performance in terms of speech quality, the results are 
cii.fl rent. All algorithms enba.nce the speech quality in comparison to the 
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Fig. 3.9. Left: ST-IRE vs. input-SNR. Right: SNRE vs. reverberation time roo (End­
fire). 

unprocessed input sign.al 1 . However, the algorithm with the highest SNRE 
does not produce the best LAR. A closer look at Fig. 3.7 explains this behav­
ior. Since thE~e figures show the speech degradation only, the non-processed 
signal is constant versus t he S~R and reduces to zero if no reverberation 
is added to the speech signal. The algoritluru; cam;e sigual <lis t.urLion at low 
SNR and the algorithm with the highest performance in SNRE induces the 
largest distortion, whereas APAB and APES provide the best speech quality 
(LAR). At very good conditions (SNR > 15 dB) , these algorithms are able 
to suppress reverberation without introducing speech degradation. The lar,k 
of artifacts was corroborated through informal listening tests. 

1 Smaller valiues indicate better quality. 
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In a second experiment (right side of Fig. 3.4)) we changed the orientat.ion 
of the array and the inter-microphone distance. Additionally, only four mi­
crophones were used to reduced the array size. In Fig. 3.9 the SNRE results 
of the simulation are shown. The performance of the Sim92 and Zel88 al­
gorithms degrades drastically, sin.ce the inherent delay and sum beamformer 
does not perform well at low fr,zquencies due to the small array size. On 
the other hand, APAB and APES perform well under all conditions. The 
SNRE for APES at high reverberation time is close to the result for the 
broadside-experiment although the number of microphones is reduced. Thus, 
we conclude that end-fire steering is preferable for this algorithm. 

3.5 Conclusion 

Wiener post-filtering of the out]put signal of an :NIVDR beamforrner pro­
vides an optimum MMSE solution for signal enhancement. A large number 
of published algorithms for post-filter estimation are based on the assumption 
of spatially uncorrelated noise. This assumption leads to post-filtering algo­
rithms with suboptimal performance in coherent and diffuse noise fields. In 
this chapter we presented a new algorithm which performs considerably bet­
ter in correlated noise fields by using the gain of an arbitrary array. Small size 
end-fire arrays comprising an MVDR beamformer and optimized post-filters 
showed the best performance in our simulations. 
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Abst ract. This chapter presents robust adaptive beam forming techniques designed 
specifically for microphone array applications. The basics of adaptive beamform­
ers are first reviewed with the Griffiths-Jim beamformer (GJBF). Its robustness 
problems caused by steering vector errors a.re then discussed with some convention­
ally proposed robust beamformers. As better solutions to the conventional robust 
beamformers, GJBFs with an adaptive blocking matrix are presented in the form of 
a microphone array. Simulation results and real-time evaluation data show that a 
new robust adaptive microphone array achieves improved robustness against steer­
ing vector errors. Good sound quality of the output signal is also confirmed by a 
subjective evaluation. 

5.1 Introduction 

Beamforming is a technique which extracts the desired signal contaminated 
by interference based on directivity, i.e. spat ial signal selectivity [l ]- [5]. This 
extraction is performed by processing the si.gnals obtained by multiple sensors 
such as microphones, antennas, and sonar transducers located at different 
positions in the space. The principle of beam.forming has been known for a 
long time. Because of the vast amount of necessary signal processing, most 
research and development effort has been focused on geological investigations 
and sonar, which can afford a higher cost. With the advent of LSI technology, 
the required amount of signal processing has become relat ively small. As a 
result, a variety of research projects where acoustic beamforming is applied 
to consumer-oriented applications, have been carried out [6]. 

Applications of beamforming include microphone arrays for speech en­
hancement. The goal of speech enhancement is to remove undesirable sig­
nals such as noise and reverberation. Among research areas in the field of 
speech enhancement are teleconferencing [7]- [8], hands-free telephones [9]­
[11], hearing aids [12]-[21], speech recognition [22]- [23], intelligibility improve­
ment [24]- [25], and acoustic measurement (26]. 

Beamforming can be considered as multidimensional signal processing 
in space and time. Ideal conditions assumed in most theoretical discussions 
are not always maintained. The target DOA (direction of arrival), which is 
assumed to be stable, docs change with the movement of the speaker. The 
sensor gains, which are assumed uniform, exhibit significant distribution. As 
a result, the performance obtained by beamforming may not be as good as 
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is expected. Therefore, robustness against steering-vector errors caused by 
these array imperfections are becoming more and more important. 

This chapter presents robust adaptive beam.forming with the emphasis 
on microphone arrays as its application. In Section 2, the basics of adap­
tive beamformers are reviewed with the Griffiths-Jim bearnformer (GJBF). 
Section 3 discusses robustness problems in the GJBF. Robust adaptive micro­
phone arrays as solutions to the robustness problem are presented in Section 
4. Finally in Section 5 evaluations of a robust adaptive microphone array are 
presented with simulation results and real-time evaluation data. 

5.2 Adaptive Beamformers 

A bea.rnformer which adaptively forms its directivity pattern is called an 
adaptive beamformer. It simultaneously performs beam steering and null 
steering. In most acoustic beam.formers, however, only null steering is per­
formed with an assumption that the target DOA is known a priori. Due 
to adaptive processing, deep nulls can be developed even when errors in the 
propagation model exist. As a result, adaptive beamformers naturally exhibit 
higher interference suppression capability than its fixed counterpart. Among 
various adaptive beam.formers, the Griffiths-Jim beamformer (GJBF) [27], or 
the generalized sidelobe canceler, is most widely known. 

Figure 5.1 depicts the structure of the GJBF. It comprises a fixed beam­
former (FBF), a multiple-input canceler (MC), and a blocking matrix (BM). 
The FBF is designed to form a beam in the look direction so that the target 
signal is passed and all other signals are attenuated. On the contrary, the BM 
forms a null in the look direction so that the target signal is suppressed and 
all other signals are passed through. 

The simplest structure for the BM is a delay-and-subtract beamformer 
which was described in the previous section. Assuming a look direction per­
pendicular to the array surface, no delay element is necessary. Thus, a set 
of subtracters which take the difference between the signals at the adjacent 
microphones can be used as a BM. This structure is actually the one shown 
in Fig. 5.1. The BM was named after its function, which is to block the target 
signal. 

The MC is composed of multiple adaptive filters each of which is driven 
by a BM output, zn(k) (n=O, 1, · · ·, N - 2). The BM outputs, Zn(k), contain 
all the signal components except that in the look direction. Based on these 
signals, the adaptive filters generate replicas of components correlated with 
the interferences. All the replicas are subtracted from a delayed output signal, 
b(k - L1 ),1 of the fixed beamformer which has an enhanced target signal 
component. As a result, in the subtracter output y(k), the target signal is 

1 The L 1 -sample delay is introduced to compensate for the signal processing delay 
in the BM and the MC. 
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Fig. 5.1. Griffiths-Jim beamformer. It comprises a fixed beamformer (FBF), a 
multiple-input canceler (MC), and a blocking matrix (BM). 
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Fig. 5.2. Example directivity pattern of the Griffiths-Jim beamformer. 

enhanced and undesirable signals such as ambient noise and interferences are 
suppressed. 

The GJBF can be considered as an adaptive noise canceler with multiple 
reference signals, each of which is preprocessed by the BM. In an adaptive 
noise canceler, the auxiliary microphone is located close to the noise source 
to obtain a best possible noise reference. On the other hand, the BM in the 
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Fig. 5.3. Directivity pattern of a. :fixed beamformer (FBF) and a blocking matrix 
(BM). 

GJDF extracts, with its directivity, the signal components correlated with 
the noise. 

Figure 5.2 depicts an example directivity pattern obtained by the GJBF. 
In the direction of the target signal, almost constant gains close to O dB are 
obtained over a wide range of frequencies. On the contrary, in the direction 
of the interference, a deep null is formed. Although the directivity has fre­
quency dependency, target signal extraction and interference suppression are 
simultaneously achieved. 

With the same microphone array, adaptive bearnforrners generally achieve 
better interference suppression than fixed beamformers. This is because nulls 
arc sharper than beams. The effect is demonstrated in Fig. 5.3, where direc­
tivity patterns of the FBF and the BM are illustrated. T he null of the BM 
and the main lobe (beam) of the FDF are located in the target direction. It 
is also clear from the figure that they are orthogonal to each other. The BM 
in Fig. 5.1 has a simple delay-and-sum structure, however, a filter-and-sum 
beamfonner [28,29] may also be employed. 

5.3 Robustness Problem in the GJBF 

The GJBF suffers from target-signal cancellation due to steering-vector er­
rors, which is caused by an undesirable phase difference between xn(k) and 
Xn+i (k) for the target. A phase error leads to target signal leakage into the 
BM output signal. As a result, blocking of the target becomes incomplete, 
which results in target signal cancellation at the microphone array output. 

Steering-vector errors are inevitable because the propagation model does 
not always reflect the nonstationary physical environment. The steering vec­
tor is sensitive to errors in the -microphone positions, those in the microphone 
characteristics, and those in the assumed target DOA (which is also known 
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as the look direction). For teleconferencing and hands-free communication in 
the car, the error in the assumed target DOA is the dominant factor. 

A variety of techniques to reduce target-signal cancellation have been pro­
posed mainly in the field of antennas and radars. The beamformers with these 
techniques are called robust beamformers. Typical approaches are reduction 
of the target-signal leakage in the BM outputs and restraint of coefficient 
growth in the MC. The former can be considered as a direct approach which 
reduces the target leakage in the BM output. The latter takes the form of an 
indirect approach. Even if there is target leakage in the BM output used as 
the MC input, the MC tries to minimize its influence. · 

Techniques to reduce target-signal leakage include: 

• Target Tracking: The look direction is steered to the continuously esti­
mated DOA [30]- [32]. Mistracking to interference may occur in the ab­
sence of a target signal. 

• Mult iple Constraints in BM: Multiple constraints are imposed on the BM 
so that signals from multiple DOAs are eliminated [33]. To compensate 
for the loss of the degrees of freedom for interference reduction with a 
large DOA error, additional microphones are needed. 

• Constrained Gradient for Look-Direction Sensitivity: Gradient of the sen­
sitivity at the look direction is constrained for a smaller variance of the 
sensitivity [34,35]. For a large error, loss in the degrees of freedom is 
inevitable. 

• Improved Spatial Filter: A carefully designed spatial filter is used to elim­
inate the target signal (28]. Such a spatial filter also loses degrees of free­
dom. 

Techniques that attempt to restraint excess coefficient growth include: 

• Noise Injection: Artificially-generated noise is added to the error signal 
used to update the adaptive filters in the MC. This noise causes errors in 
the adaptive filter coefficients, preventing tap coefficients from growing 
excessively [36]. A higher noise level is n eeded to allow a larger look­
direction error, resulting in less interference suppression. 

• Norm Constraint: The coefficient norm of the adaptive filters in the MC is 
constrained by an inequality to suppress the growth of the tap coefficients 
[37]. In spite of its simplicity, interference reduction is degraded when the 
constraint is designed to allow a large error. 

• L€aky Adaptive Algorithm: A leaky coefficient adaptation algorithm such 
as leaky LMS is used for the adaptive filters in the MC [28] . A large 
leakage is needed to allow a large look-direction error, leading to degraded 
interference-reduction. 

• Adaptation Mode Control: Coefficient adaptation in the MC is controlled 
so that adaptation is carried out only when there is no target signal [38]. 
If there is no target signal when coefficients are adapted in the MC, 
the target leakage, if any, will have no effect on the performance of the 
beamformer . 
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Fig. 5.4. GJBF with a LAF-LAF Structure. 

These methods have been developed for a small look-direction error, typ­
ically less than 10 degrees. In the case of microphone arrays, the variance 
of the target DOA is typically much larger than in antennas and radar ap­
plications. No single conventional technique for robustness is sufficient for 
microphone arrays with a larger phase errors. 

5.4 Robust Adaptive Microphone Arrays - Solutions 
to Steering-Vector Errors 

5.4.1 LAF-LAF Structure 

A target-tracking method with leaky adaptive filters (LAF) in the BM was 
proposed as a solution to target signal cancellation in [39). It is combined 
with leaky adaptive filters in the MC [28], thereby called a LAF-LAF struc­
ture. Figure 5.4 depicts its block diagram. The leaky adaptive filters in the 
BM alleviate the influence of phase error, which results in the robustness. 
This structure can pick up a target signal with little distortion when the 
error between the actual and the assumed DOAs is not small. It does not 
need matrix products, and provides easy implementation. The nth output 
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Zn(k)(n = 0, 1, ... ,N - 1) of the BM can be obtained as follows: 

Zn(k) = Xn(k - L2) - h~ (k)b(k), 

hn(k) ~ [hn,o(k),hn,1(k), ... ,hn,M,-1(k)f, 

b(k) ~ [b(k),b(k- 1), ... ,b(k - M1 + l)Y, 

(5.1) 

(5.2) 

(5.3) 

where [·JT denotes vector transpose and xn(k) is the nth microphone signal. 
L 2 is the number of delay samples for causality, hn(k) is the coefficient vector 
of the nth LAF, a.nd b( k) is the signal vector consisting of delayed signals 
of b(k) (which is the FBF output). Each LAF is assumed to have M 1 taps. 
The adaptation by the normalized LMS (NLMS) algorithm [40] is described 
as follows: 

(5.4) 

where a is the step size for the adaptation algorithm, and o, 0 :S o :S 1, is the 
leakage constant. 

LAFs are also used in the MC for enhancing the robustness obtained 
in the BM. The LAFs prevent undesirable target-signal cancellation caused 
by the remaining correlation with the target signal in Zn(k). Tap coefficient 
vectors wn(k) of the MC have M2 taps and are updated by an equation 
similar to (5.4), where hn, b , and Zn(k) are replaced with Wn, Zn, and y(k), 
respectively. The leakage constant o and the step size a are replaced with 1 
and /3 respectively, and may take different values from those in (5.4). 

With the LAFs in the BM, the LAF-LAF structure adaptively controls the 
look direction, which is fixed in the GJBF. Due to robustness by the adaptive 
control of the look direction, the LAF-LAF structure does not lose degrees 
of freedom for interference reduction. Thus, no additional microphones arc 
required compared to the conventional robust beamformers. Target signal 
leakage in the BM is sufficiently small to use a minimum leakage constant , 
in the MC even for a large look-direction error. Such a value of , leads to 
a higher interference-reduction performance in the MC. The output of the 
LAFs are summed and subtracted from an LJ sample delayed version of the 
FBF output to generate the microphone array output y(k). 

The width of the allowable DOA for the target is determined by the 
leaky constants and the step sizes in both the BM and the MC. Generally, 
smaller values of these parameters make the allowable target DOA wider. The 
allowable DOA width for the target is not a simple function of the parameters, 
however, and is not easy to prescribe. It is reported [39] that the interference 
is attenuated by more than 18 dB when it is designed, through simulations, 
to allow 20 degree directional error. Tracking may not be sufficiently precise 
for a large tracking range. Thus, there is a trade-off between the degree of 
target-signal cancellation and the amount of interference suppression. 
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Fig. 5.5. GJBF with a CCAF-LAF Structure. 

5.4.2 CCAF-LAF Structure 

A more effective solution is to use coefficient-constrained adaptive filters 
(CCAFs) in the BM [41,42]. When combined with leaky adaptive filters in 
the MC as depicted in Fig. 5.5, the result is called a CCAF-LAF structure. 
CCAFs behave like adaptive noise cancelers. The input signal to each CCAF 
is the output of the FBF, and the output of the CCAF is subtracted from the 
delayed microphone signal. The CCAF coefficient vectors h,. ( k) are adapted 
with constraints. Adaptation by the NLMS algorithm is described as follows: 

{ 

</>n, 
hn(k+ 1) ::::: 1Pn, 

h' n(k+ 1), 

for h1n(k+ l) > <Pn 
for h 1n(k+l) < 1Pn 
otherwise. 

<Pn ~ [<Pn,O, <Pn,1, · · · , <Pn,M1 -lf, 
1Pn ~ [1Pn,O, 't/Jn,1, · · · , 1/Jn,M1-1f, 

(5.5) 

(5.6) 

(5.7) 

(5.8) 

where each CCAF is assumed to have M1 taps and h 1n(k+l) is a temporal 
coefficient vector for limiting functions. <l>n and 1/Jn are the upper and lower 
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bounds for coefficients. In the output signal Zn ( k), the components correlated 
with b(k) are cancelled by the CCAFs. 

Each coefficient of the CCAFs is constrained based on the fact that filter 
coefficients for target-signal minimization vary significantly with the target 
DOA. An example of filter-coefficient variation is illustrated in Fig. 5.6. By 
the design of the constrained regions of the CCAF coefficients, the maximum 
allowable look-direction error can be specified. For example, when the CCAF 
coefficients are constrained in the hatched region in Fig. 5.6, up to 20° error 
in look direction could be allowed. Only the signal that arrives from a DOA in 
the limited DOA region is minimized at t he outputs of the BM and remains 
at the output of the MC. If no interference exists in the region, which is 
common with microphone arrays, no mistracking occurs. For details on the 
design of upper and lower bounds, refer to [42]. 

Figure 5. 7 illustrates a qualitative comparison between the LAF and the 
CCAF with respect to look-direction error and coefficient error from the 
optimum for signal blocking. Both the CCAF and the LAF give error char­
acteristics approximating the ideal nonlinearity for target tracking. However, 
the coefficient error of the CCAF is a better approximation to the ideal non­
linearity than that of the LAF as shown by Fig. 5. 7. The coefficient error 
of the CCAF becomes effective only when the look-direction error exceeds 
the threshold, otherwise it has no effect. On the other hand, the coefficient 
error of the LAF varies continuously with the look-direction error. Therefore, 
the CCAF leads to precise target t racking, which results in sharper spatial 
selectivity and less target-signal cancellation. 

5.4.3 CCAF-NCAF Structure 

It is possible to combine the BM with CCAFs [42] and the MC with norm­
constrained adaptive filters (NCAFs) (37]. This is a CCAF-NCAF struc­
ture (43]. NCAFs subtract from b(k - L1 ) the components correlated with 
Zn(k) (n = 0, ... , N - I ). Let M2 be the number of taps in each NCAF, and 
let w n ( k) and Zn ( k) be the coefficient vector and the signal vector of the nth 
NCAF, respectively. The signal processing in the MC is described by 

N-l 

y(k) = b(k -Li) - L w~(k)zn(k), 
n=O 

where 

Wn(k) ,g, [wn,o(k), Wn,l (k), .. . , Wn,M2 -1 (k)f, 

Zn(k) ,g, [zn(k),zn(k- 1), ... ,zn(k-M2 + l)f. 

(5.9) 

(5.10) 

(5.11) 
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Coefficients of the NCAFs are updated by an adaptive algorithm with a norm 
constraint. Adaptation with the NLMS algorithm is described as follows: 

Wn(k+I) = {fYi w~ 
w' n 

for D > K 
otherwise, 

(5.12) 

(5.13) 

(5.14) 
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where /3 and w~ are a step size and a temporal vector for the constraint, 
respectively. ft and Kare the total squared-norm of wn(k) and a threshold. 
If ft exceeds K, w n ( k + 1) are restrained by scaling. The norm constraint by 
scaling restrains excess growth of tap coefficients. The restraint inhibits the 
undesirable target cancellation when the target signal leaks into t he :'f CAF 
inputs. If the outputs of the BM have no target signal, the MC cancels only 
the interference signals. In this ideal case, a norm constraint in the MC is not 
needed. However, complete rejection of the target signal is almost impossible 
in the BM, because actual environments have reflection and reverberation. 
To completely cancel the target Sibrnal in a reverberant environment, more 
than 1,000 taps are needed for each CCAF in the BM. Such a large number of 
taps leads to slow convergence, large rnisadjustment, and increased compu­
tation. Even with a high-speed processor and a fast convergence algorithm, 
misadjustment with the adapt ive filters is inevitable. Adaptation with a low 
signal-to-interference ratio (SIR) causes additional misadjustment by the in­
terference, which leads to leakage of the target signal at the BM outputs. 
Therefore, to avoid the target signal cancellation by leakage, a restraint with 
the MC such as the NCAF is essential. Because the CCAF-NCAF structure 
loses no degrees of freedom for interference reduction in the BM, it is robust 
to large look-direction errors with a small number of microphones. 

5.4.4 CCAF-NCAF Structure with an AMC 

Adaptations in the BM and in the MC should be performed alternately. 
This is because the relationship between the desired signal and the noise for 
the adaptation algorithm in the BM is contrary to that in the MC. For the 
adaptation algorithm in the BM, the target signal is the desired signal and 
the noise is the undesired signal. In the MC, however, the noise is the desired 
signal and the target signal is the undesired signal. 

In the robust adaptive beamformers discussed so far, it was implicitly 
assumed that adaptive filters in the BM are adapted only when the target is 
active and those in the MC are adapted only when the target is inactive. In 
a real environment, however, the situation is not so simple, since incorrect 
adaptation of the B:M may cause incomplete target blocking. As a result, 
the MC directivity may have a null in the direction of the target signal, 
resulting in target-signal cancellation. Combined with target tracking by the 
BM, adapting coefficients only when the target signal is absent is an effective 
strategy for adding robustness to adaptive beamforming (38]-[45]. In order 
to discriminate active and inactive periods of the target, an adaptation mode 
controller (AMC) is necessary. 

The CCAF-NCAF structure with an AMC [46] depicted in Fig. 5.8 uses 
a mixed approach of the B:M with CCAFs, the MC with NCAFs (37], and an 
AMC. A BM consisting of CCAFs provides a wider null for the target with 
sharper edges than leaky adaptive filters. An MC comprising NCAFs reduces 
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undesirable target-signal cancellation when the MC inputs have some leakage 
from the target signal. 
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Fig. 5.8. CCAF-NCAF structure with an AMC. 
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The AMC controls adaptation of the BM and the MC by target-signal 
detection based on an estimate of the SIR [46]. The SIR is estimated as a 
power ratio of the output signal b(k) of the FBF, to the output signal zn(k) 
of the BM. The main component in the FBF output is the target signal and 
that in the BM output is the noise. Therefore, the power ratio s(k) can be 
considered as a direct estimate of the SIR. When the ratio is larger than a 
threshold 77, the adaptation of the BM is performed. Otherwise, the MC is 
adapted. 

5.5 Software Evaluation of a Robust Adaptive 
Microphone Array 

The GJBF with CCAF-NCAF structure combined with an AMC (GJBF­
CNA) was evaluated in a computer-simulated anechoic environment and in 
a real environment with reverberation. In the former environment, it was 
compared with conventional beamformers in terms of sensitivity pattern. In 
the latter environment, it was ev-a-luated objectively by SIR and subjectively 
by mean opinion score (MOS). 
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Fig. 5.9 . Normalized output power after convergence as a function of DOA. 

5.5.1 Simulated Anechoic Environment 

A four-channel equi-spaced broadside array was used for these simulations. 
The spacing between microphones was 4.1 cm.The sampling rate was 8 kHz. 
The FBF used was a simple beamformer whose output is given by 

l N--1 

b(k) = N L Xn(k). 
n=O 

(5.15) 
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The first simulation investigated sensitivity (after convergence) as a func­
tion of the single-sided DOA. Band-limited (0.3- 3.7 kHz) Gaussian signals 
were used, and the assumed target direction was 0°. The maximum allowable 
target-direction error was 20°, unless otherwise stated. The number of coef­
ficients for all the CCAFs and all the NCAFs was 16. The parameters were 
Lt = 10, L2 =5, K =10.0, a=0.l, and /3=0.2. The constraints of the CCAF were 
set based on the arrangement of the simulated array and maximum allowable 
target-direction errors. Total output powers after convergence, normalized by 
the power of the assumed target direction, are plotted in Fig. 5.9. 

The plots are of the FBF (FBF), simple GJBF [27] (GJBF), norm con­
strained method [37] (Norm Constrained), and the GJBF-CNA (Proposed). 
The solid line D shows that the GJBF-CNA achieves both robustness against 
20° target-direction error and high interference-reduction performance (which 
is 30 dB at 0 = ±30°). Similar results for a colored signal instead of the band­
limited Gaussian signal have been obtained [43]. The directivity pattern of 
the GJBF-CNA is slightly degraded for a colored signal. However, the degra­
dation by the norm-constrained method is more serious. This fact shows that 
the GJBF-CN A exhibits robustness to the power spectrum of input signal. 

20 .--,-----,-- --.-- ,----,--,-----.--,----,--, 
A: 500Hz 
B: 1000Hz 
C: 2000Hz 

D: 3000Hz 
E:3500Hz 

Direction of Arrival 0 (degrees] 

D 

Fig. 5.10. Sensit ivities after convergence as a function of DOA at different frequen­
cies. 

Frequency dependency of the directivity pattern is shown in Fig. 5.10. 
In this figure, sensitivities to the frequency component of the target signal 
are plotted. Frequency dependency of the GJBF-CNA is small, and thus, 
the GJBF-CN A is suitable for broadband applications such as microphone 
arrays. The widths of the high-sensitivity regions are almost the same as the 
allowable target-direction error (-20° < 0 < 20°) and the sensitivity in the 
region is constant. 
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5 Robust Adaptive Beamforming 101 

In the second simulation, sensit ivities for different SIR.s were investigated. 
The simulation was performed with amplitude control that was similar to a 
realistic scenario. A target signal source generated a band-limited white Gaus­
sian signal for the first 50,000 iterations and then stopped. This is a simple 
simulation of burst characteristics like speech. Another bandlimited white 
Gaussian signal, which imitates an interference like airconditioner noise, ex­
isted throughout the simulation. The SIR is defined as a power ratio of the 
two signals. The target signal source was placed about 10° off the assumed 
target DOA and the DOA of the interfering signal source was scanned. 

Figure 5.11 shows normalized output power after convergence as a func­
tion of interference DOA. Lines G and H have a sharp peak at 0 = 10°, which 
indicates that the target-signal at the output of the BM is sufficiently mini­
mized for the overall robustness. Therefore, when SIR. is higher than about 
IOdB (which is lower than a typical SIR value expected in teleconference) the 
interference is suppressed even if it arrives from a direction in the allowable 
target DOA region. When the interference comes from outside the allowable 
ta.rget DOA region, even an SIR of O dB causes almost no problem in the 
GJBF-CNA. 

Finally, Fig. 5.12 shows the total output powers for various coefficient 
constraints with the CCAFs. The signal was bandlimited white Gaussian 
noise. The allowable target-direction errors are approximately 4, 6, 9, 12, 16, 
and 20 degrees. These lines demonstrate that the allowable target-direction 
error can be specified by the user. 

5.5.2 Reverberant Environment 

Simulations with real sound data captured in a reverberant environment were 
also performed. The data were recorded with a broad-side linear array. Four 
omni-directional microphones without calibration were mounted on a univer­
sal printed circuit board with an equal spacing of 4.1 cm. The signal of each 
microphone was bandlimited between 0.3 and 3.4 kHz and sampled at 8 kHz. 
The number of taps was 16 for both the CCAFs and NCAFs. 

Figure 5.13 illustrates the arrangement for sound-data acquisition. The 
target source was located in front of the array at a distance of 2.0 m. A white 
noise source was placed about 0 = 45° off the target DOA at a distance of 
2.0 m. The reverberation time of the room was about 0.3 second, which is 
common· with actual small offices. All the parameters except the step-sizes 
were the same as those in the previous subsection. The target source was an 
English male speech signal. 

Objective Evaluation 

Output powers for the FBF, the GJBF [27] (GJBF), and the norm-const rained 
method [37] (Norm Constrained) after convergence are shown in Fig. 5.14. 
The step-size a for the CCAFs was 0.02 and /J for the NCAFs was 0.004. 
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Fig. 5.12. Normalized output power after convergence for different allowable target 
directions. 

These step-sizes were selected so that breathing noise and cancellation of the 
target signal arc sufficiently small subjectively. All other parameters were 
selected based on the microphone arrangement. If there is any difference be­
tween trajectory A and any of B, C, D, E, or F when the voice is active 
(sample index from 1,720,000 to 1,740,000), the target signal corresponding 
to the trajectory is part ially cancelled. The FBF (B) causes almost no target­
signal cancellation. With the GJBF (C), cancellation of the target signal is 
serious. With the the norm-constrained method (D), and the GJBF-CNA 
(E), the cancellation of target signal was 2dB, which is subjectively small. 

The output powers during voice absence (after sample index 1,760,000) 
indicate the interference-reduction ratio (IRR). The IRR of the FBF is 3dB, 
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Fig. 5.14. Output Powers for a male speech signal and white noise. 

and that of the norm-constrained method is 9dB. On the other hand, with 
the GJBF-CNA (F), the IRR is as much as 19dB. 

Subjective Evaluat.ion 

MOS evaluation by 10 nonprofessional subjects was performed based on [47]. 
As anchors, the signal recorded by a single microphone was used for grade 1 
and the original male speech without interference for grade 5. Subjects were 
instructed that target-signal cancellation should obtain a low score. 

Evaluation results are shown in Fig. 5.15. The thick horizontal line on 
each bar and the number on it represent the score obtained by the corre­
sponding method. The vertical hatched box on each bar indicates ± one 
standard deviation. The FBF obtained 1. 7 ·points because the number of 
microphones is so small that its IRR is low. The GJBF reduced the interfer-
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Fig. 5.15 . Mean opinion score results. 

ence considerably with serious target signal cancellation, thus, it was scored 
2.8 points. The norm-constrained method was scored 2.6 points for its 9dB 
interference-reduction capability. The GJBF-CNA obtained 3.8 points, which 
is the highest of all the beamformers. 

5.6 Hardware Evaluation of a Robust Adaptive 
Microphone Array 

5. 6.1 Implementation 

The GJBF-CNA was implemented on a portable and flexible DSP system 
shown in Fig. 5.16 [48,49]. The system comprises a microphone array and 
a compact touch-panel personal computer which includes a floating point 
DSP, the ADSP-21062 [50]. The DSP contains a dual on-chip 2-Mbit SRAM 
and allows 32-bit IEEE floating-point computation. The sampling rate was 
software-programmed at 8 kHz. 

The DSP board has a PCI (Peripheral Component Interconnect) interface, 
therefore, it can be connected to the PCI bus of any personal computer. A 
graphical interface has been developed to faciUtate ease-of-use and monitoring 
of the implemented GJBF-CNA. It provides interactive parameter selection 
and displays the input and the output signals powers as well as the filter 
coefficients. This graphical display is useful for demonstrating the behavior 
of the GJBF-CNA and its performance. The system is shown in Fig. 5.16 

5.6.2 Evaluation in a Real Environment 

The GJBF-CNA in Fig. 5.16 was evaluated using the same linear microphone 
array as in the previous section. The selected step sizes were 0.02 for the ABM 
and 0.005 for the MC. The threshold 1/ = 0.65 was used for the AMC. All 
other parameters were the same as those in the previous section. 
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Fig. 5.16. Real-time DSP system. 
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Fig. 5.17. Directivity patterns (i.e., the output powers normalized by the power at 
the center) measured in 5-degree intervals. 
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Directivity 

Directivity for a single signal-source was measured. A white-noise source was 
scanned in two directions from 0° to 50° at a distance of 2.0 m from the 
array. Output powers of the system were measured in 5-degree intervals, and 
compared with those of a single microphone and an FBF (delay-and-sum 
beamformer). Figure 5.17 shows the output powers normalized by the power 
a.t the center. The figure indicates that t he GJBF-CNA can suppress the 
interference at 0 == 30° by as much as 15 dB when the allowable target DOA 
is set to ±20 degrees. 

Noise Reduction 

Noise reduction capability was evaluated in the same room as that for direc­
tivity evaluation. There were several computers with noisy fans. In addition, 
two noise-generating loudspeakers were located on both sides of t he array. 
Stereo music or white noise was used as the noise signal. 

In the beginning, breathing noise due to adaptation was observed at al­
most every utterance. It disappeared in a second and caused almost no prob­
lem for conversation. Although the degree of noise reduction depends on the 
loudspeaker positions, it was typically 8 to 1 dB. These results confirm that 
the GJBF-CNA is a promising technique for voice communications. 

5. 7 Conclusion 

An overview of robust adaptive beamforming techniques have been presented 
in this chapter, with an emphasis on systems that are robust to steering-vector 
errors. It has been shown that the GJBF with the CCAF-NCAF structure 
and an AMC (GJBF-CNA) is effective in a real environment. Integrated 
systems with a microphone array, a noise canceler, and an echo canceler will 
play a key role in future acoustic noise and echo control devices. 
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Abstract. Talker localization with microphone arrays has received significant at­
tention lately as a means for the automated tracking of h1dividuals in an enclo­
sure and as a necessary component of any general purpose speech capture system. 
Several algorithmic approaches arc available for speech source localization with 
multi-channel data. T his chapter summarizes the current field and comments on 
the general merits and shortcomings of each genre. A new localization method is 
then presented in detail. By utilizing key features of existing methods, this new 
algorithm is shown to be significantly more robust to acoustical conditions, par­
ticularly reverberation effects, than the traditional localization techniques in use 
today. 

8.1 Introduction 

The primary goal of a speech localization system is accuracy. In general, es­
timate precision is dependent upon a number of factors. Major issues include 
(1) the quantity and quality of microphones employed, (2) microphone place­
ment relative to each other and the speech sources to be analyzed, (3) the 
ambient noise and reverberat ion levels, and (4) the number of active sources 
and their spectral content. The performance of localization techniques gen­
erally improves with the number of microphones in the array, particularly 
when adverse acoustic effects are present. This has spawned the research 
and construction of large array systems (e.g. 512 elements) [l]. However, 
when acoustic conditions are favorable and the microphones are positioned 
judiciously, source localization can be performed adequately using a modest 
number (e.g. 4 elements) of microphones. Performance is clearly affec..ted by 
the array geometry. The optimal design of the array based on localization cri­
teria is typically dependent on the room layout, speaking scenarios, and the 
acoustic conditions [2]. In practice, many of these design considerations arc 
very dependent on the specific application conditions, the hardware avail­
able, and non-scientific cost criteria. In an effort to make its applicability 
as general as possible, this chapter will focus primarily on speech localiza­
tion effectiveness as a function of the acoustic degradations present, namely 
background noise and reverberations, rather than attempt to address more 
specific environmental scenarios. 

In addition to high accuracy, t hese location estimates must be updated 
frequently in order to be useful in practical tracking and beamforming appli-
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cations. Consider the problem of beamforming to a moving speech source. It 
has been shown that for sources in close proximity to the microphones, the 
array aiming location must be accurate to within a few centimeters to pre­
vent high-frequency rolloff in the received signal [3] and to allow for effective 
channel equalization [4]. A practical beamformer must therefore be capable of 
~eluding a continuous and accurate location procedure within its algorithm. 
This requirement necessitates the use of a location estimator capable of fine 
resolution at a high update rate. Additionally, any such estimator would have 
to be computationally non-demanding and possess a short processing latency 
to make it practical for real-time systems. 

These factors place tight constraints on the microphone data require­
ments. While the computation time required by the algorithm largely de­
termines the latency of the locator, it is the data requirements that define 
theoretical limits. The work in [5], for example, focuses on reducing the size 
of the data segments necessary for accurate source localization in realistic 
room environments. 

The goal of this chapter is to detail the issues associated with the problem 
of speech source localization in reverberant and noisy rooms and to present 
an effective methodology for its solution. While the focus will be the single­
source scenario, the techniques described, in many cases, are applicable to 
situations where several individuals are conversing. The more general prob­
lem of simultaneous, multi-talker localization is addressed further in Chap­
ter 9. The following section contains a summary of the existing gemes for 
speech source localization using microphone arrays and highlights their rel­
ative merits. It is followed in Section 8.3 by the development of a speech 
source localization algorithm designed specifically for reverberant enclosures 
which combines two of these general approaches. Section 8.4 then offers some 
experime~tal results and conclusions. 

8.2 Source Localization Strategies 

Existing source localization procedures may be loosely divided into three 
general categories: those based upon maximizing the steered response 
power (SRP) of a beamformer, techniques adopting high-resolution spec­
tral estimation concepts, and approaches employing time-difference of arrival 
(TDOA) information. These broad classifications are delineated by their ap­
plication environment and method of estimation. The first refers to any situ­
ation where the location estimate is derived directly from a filtered, weighted, 
and summed version of the signal data received at the sensors. The second 
will be used to term any localization scheme relying upon an application of 
the signal correlation matrix. The last category includes procedures which 
calculate source locations from a set of delay estimates measured across var­
ious combinations of microphm;es. 
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8.2.1 Steered-Beamformer-Based Locators 

The first categorization applies to passive arrays for which the system in­
put is an acoustic signal produced by the source. The optimal Maximum 
Likelihood (ML) location estimator in this situation amounts to a focused 
beamformer which steers the array to various locations and searches for a 
peak in output power. Termed focalization, derivations of the optimality of 
the procedure and variations thereof are presented in [6-8]. Theoretical and 
practical variance bounds obtained via focalization are detailed in [6,7,9] and 
the steered-beamformer approach has been extended to the case of multiple­
signal sources in [10]. 

The simplest type of steered response is obtained using the output of a 
delay-and-sum beamformer. This is what is most often referred to as a con­
ventional beamformer. Delay-and-sum beamformers apply time shifts to the 
array signals to compensate for the propagation delays in the arrival of the 
source signal at each microphone. These signals are time-aligned and summed 
together t o form a single output signal. More sophisticated beamformers ap­
ply filters to the array signals as well as this time alignment. The derivation 
of the filters in these filter-and-sum beamformers is what distinguishes one 
method from another. 

Beamforming has been used extensively in speech-array applications for 
voice capture. However, due to the efficiency and satisfactory performance 
of other methods, it has rarely been applied to the talker localization prob­
lem. The physical realization of the ML estimator requires the solution of 
a nonlinear optimization problem. The use of standard iterative optimiza­
tion methods, such as steepest descent, and Newton-Raphson, for this pro­
cess was addressed by [10]. A shortcoming of each of these approaches is 
that the objective function to be minimized does not have a strong global 
peak and frequently contains several local maxima. As a result, this genre 
of efficient search methods is often inaccurate and extremely sensitive to the 
initial search location. In [I I] an optimizat ion method appropriate for a multi­
modal objective function, Stochastic Region Contraction (SRC), was applied 
specifically to the talker localization problem. While improving the robust­
ness of the location estimate, the resulting search method involved an order 
of magnitude more evaluations of the objective function in comparison to 
the less robust search techniques. Overall, the computational requirements of 
the focaliza.Uon-based ML estimator, namely the complexity of the objective 
funct,ion itself as well as the relative inefficiency of an appropriate optimiza­
tion procedure, prohibit its use in the majority of practical, real-time source 
locators. 

Furthermore, the steered response of a conventional beamformer is highly 
dependent on the spectral content of the source signal. Many optimal deriva­
tions are based on a priori knowledge of the spectral content of the back­
ground noise, as well as the source signal [7,8]. In the presence of significant 
reverberation, the noise and source signals are highly correlated, making ac-
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curate estimation of the noise infeasible. Furthermore, in nearly all array­
applications, little or nothing is known about the source signal. Hence, such 
optimal estimators are not very practical in realistic speech-array environ­
ments. 

The practical shortcomings of applying correlation-based localization es­
t imation techniques without a great deal of intelligent pruning is typified by 
the system produced in [12]. In this work a sub-optimal version of the ML 
steered-beamformcr estimator was adapted for the talker-location problem. 
A source localization algorithm based on multi-rate interpolation of the sum 
of cross-correlations of many microphone pairs was implemented in conjunc­
tion with a real-time bcamformer. However, because of the computational 
requirements of the procedure, it was not possible to obtain the accuracy 
and update rate required for effective beamforming in real-time given the 
hardware available. 

8.2.2 High-Resolution Spectral-Estimation-Based Locators 

This second categorization of location estimation techniques includes the 
modern beamforming methods adapted from the field of high-resolution spec­
tral analysis: autoregressive (AR) modeling, minimum variance (MV) spec­
tral estimation, and the variety of eigenanalysis-based techniques ( of which 
the popular MUSIC algorithm is an example). Detailed summaries of these 
approaches may be found in [13,14]. While these approaches have success­
fully found their way into a variety of array processing applicat ions, they all 
possess certain restrictions that have been found to limit their effectiveness 
with the speech-source localization problem addressed here. 

Each of these high-resolution processes is based upon the spatiospectral 
correlation matrix derived from the signals received at the sensors. When ex­
act knowledge of this matrix is unknown (which is most always the case), it 
must be estimated from the observed data. This is done via ensemble averag­
ing of the signals over an interval in which the sources and noise arc assumed 
to be statistically stationary and their estimation parameters (location in this 
case) are assumed to be fixed. For speech sources, fulfilling these conditions 
while allowing sufficient averaging can be very problematic in practice. 

With regard to the localization problem at hand, these methods were 
developed in the context of far-field plane waves projecting onto a linear array. 
While the MV and MUSIC algorithms have been shown to be extendible to 
the case of general array geometries and near-field sources [15], the AR model 
and certain eigenanalysis approaches are limited to the far-field; uniform 
linear array situation. 

With regard to the issue of computational expense, a search of the lo­
cation space is required in each of these scenarios. While the computational 
complexity at each iteration is not as demanding as the case of the steered­
beamformer, the objective space typically consists of sharp peaks. This prop­
erty precludes the use of iteratively efficient optimization methods. The sit-
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uation is compounded if a more complex source model is adopted (incorpo­
rating source orientation or head radiator effects, for instance) in an effort to 
improve algorithm performance. Additionally, it should be noted that these 
high-resolution methods are all designed for narrowband signals. They can 
be extended to wideband signals, including speech, either through simple 
serial application of the narrowband methods or more sophisticated general­
izations of these approaches, such as [16- 18]. Either of these routes extends 
t he computational requirements considerably. 

These algorithms tend to be significant ly less robust to source and sen­
sor modeling errors than conventional beamforrning methods [19,20). T he 
incorporated models typically assume ideal source radiators, uniform sensor 
channel characteristics, and exact knowledge of t he sensor positions. Such 
conditions are impossible to obtain in real-world environments. While the sen­
sitivity of these high-resolution methods to the modeling assumptions may be 
reduced, it is at the cost of performance. Addit ionally, signal coherence, such 
as that created by the reverberation conditions of primary concern here, is 
detrimental to algorithmic performance, particularly that of the eigenanalysis 
approaches. This situation may be improved via signal processing resources, 
but again at the cost of decreased resolution[21]. Primarily for these reasons, 
localization methods based upon these high-resolution strategies will not con­
sidered further in this work. However, this should not exclude their judicious 
use in other speech localization contexts, particulad y mult i-source scenarios. 

8.2.3 TDOA-Based Locators 

With this third localization strategy, a two-step procedure is adopted. Time 
delay estimation (TDE) of the speech signals relat ive to pairs of spatially 
separated microphones is performed. This data along with knowledge of the 
microphone posit ions are then used to generate hyperbolic curves which are 
then intersected in some optimal sense to arrive at a source location estimate. 
A number of variations on this principle have been developed, [22-28] are 
examples. They differ considerably in the method of derivation, the extent 
of their applicability (2-D vs. 3-D, near source vs. distant source, etc.), and 
their means of solution. Primarily because of their computational practicality 
and reasonable performance under amicable conditions, the bulk of passive 
talker localization systems in use today are TDOA-based. 

Accurate and robust TDE, is the key to the effectiveness of localizers 
within this genre. The two major sources of signal degradation which com­
plicate this estimation problem are background noise and channel multi-path 
due to room reverberations. The noise-alone case has been addressed at length 
and is well understood. Assuming uncorrelated, stationary Gaussian signal 
and noise sources with known statistics and no multi-path, the ML time-delay 
estimate is derived from a SNR-weighted version of the Generalized Cross­
Correlation (GCC) function [29). An ML-type weighting appropriate for non­
stationary speech sources was· presented in [30] and applied successfully to 
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speech source localization in low-multipath environments [31]. However, once 
room reverberations rise above minimal levels, these methods begin to ex­
hibit dramatic performance degradations and become unreliable [32,33]. A 
basic approach to dealing with multi-path channel distortions in this con­
text has been to make the GCC function more robust by deemphasizing the 
frequency-dependent weightings. The Pha.5e Transform (PRAT) [29] is one 
extreme of this procedure which has received considerable attention recently 
as t he basis of speech source localization systems [34-36]. By placing equal 
emphasis on each component of the cross-spectrum phase, the resulting peak 
in the GCC-PHAT function corresponds to the dominant delay in the rever­
berated signal. While effective at reducing some of the degradations due to 
multi-path, the Phase Transform accentuates components of the spectrum 
with poor SNR and has the potential to provide poor results, particularly 
under low reverberation, high noise conditions. 

Other approaches for TOE of talkers in adverse environments arc avail­
able. A procedure which utilizes a speech specific criterion in the design of 
the GCC weighting function is presented in [37]. Cepstral pref-iltering (38] has 
been used to deconvolve the effects of reverberation prior to applying GCC. 
However, deconvolution requires long data segments since the duration of 
a typical small-room impulse response is 200-400 ms. It is also very sensi­
tive to the high variability and non-stationarity of speech signals. In fact, 
the experiments performed in [38] avoided the use of speech as input alto­
gether. Instead, colored Gaussian noise was used as the source signal. While 
identification of room impulse responses is extremely problematic when the 
source signal is unknown, the method proposed in [24], which is based on 
eigenvalue decomposition, efficiently detects the direct paths of the two im­
pulse responses. This method is effective with speech as input, but requires 
250 ms of microphone data to converge. A short-time TOE method, which 
is more complex than GCC, is presented in [33). It involves the minimiza­
tion of a weighted least-squares function of the phase data. It was shown 
to outperform both GCC-ML and GCC-PHAT in reverberant conditions. 
However, t his improvement comes at the cost of a complicated searching al­
gorithm. The marginal improvement over GCC-PHAT may not just ify this 
added cost in computational complexity. Reverberation effects can also be 
overcome to some degree by classifying TOE's acquired over time and as­
sociating them with the direct ion of arrival (DOA) of the sound waves (39]. 
This approach, however , is not suitable for short-time TDE. Under extreme 
acoustic conditions,· a large percentage of the TDE's are anomalous, and it 
takes a considerable period (1-2 s in [39]) to acquire enough estimates for a 
statistically meaningful classification. 

Among the methods summarized above, those that rely on long data seg­
ments generally outperform those that do not. This result may be attributed 
to the ensemble averaging performed under these conditions to improve the 
quality of the underlying signal statistics. However, the dynamic environ-
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ments of many speech array applications require high update rates, which 
limit, the duration of the data segments used for analysis. For example, Lhe 
automatic camera steering video-conferencing system detailed in [34] utilizes 
a TDOA-based method with GCC-PHAT TDE applied at, update rates of 
200-300 ms. With such long data segments, reliable estimates are produced, 
even in moderately adverse acoustic conditions. However, applications such 
as adaptive beamforming and the tracking of multiple talkers using a TDOA­
based localizer require an appreciably higher estimate ral,e; source positions 
must be acquired from independent, data segments as short, as 20-30 ms. Over 
such limited durations, the lack of ensemble averaging has a severe impact 
on the performance of the TDE. 

Given a set of TDOA figures with known error statistics, the second step 
of obtaining the :ML location estimate necessitates solving a set of nonlinear 
equations. The calculation of this result is considerably less computationally 
expensive than that required for estimators belonging to the two previously 
discussed genres. There is an extensive class of sub-optimal, closed-form loca­
tion estimators. designed to approximate the exact, solution to the nonlinear 
problem. These techniques arc computationally undemanding and, in many 
cases, suffer little det riment in performance relative to their more compute­
intensive counterparts. [22,25- 28,40,41 ] are typical of these methods. Re­
gardless of the solution method employed, this third class of location esti­
mation techniques possesses a significant computational advantage over the 
steercd-beamformer or high-resolution spectral-estimation based approaches. 

TDOA-based locators do present several disadvantages when used as the 
basis of a general localization scheme. Their primary limitation is the inability 
to accommodate multi-source scenarios. These algorithms assume a single­
source model. While TDOA-based methods with short analysis intervals may 
be used to track several individuals in a conversational situation [31,42), 
the presence of multiple simultaneous talkers, excessive ambient, noise, or 
moderate to high reverberation levels in the acoustic field Lypically results 
in poor TDOA figures and subsequently, unreliable location fixes. A TDOA­
based locator operating in such an environment would require a means for 
evaluating the validity and accuracy of the delay and location estimates. 
These shortcomings may be overcome to some degree through judicious use 
of appropriate detection methods at each stage in the process [31]. 

While practical, the application of TDOA-based localization procedures 
is of limited utility in realistic, acoustic environments. Steered-Beamformer 
strategies arc computationally more intensive, but tend to possess a robust­
ness advantage and require a shorter analysis interval. The two-stage pro­
cess requiring time-delay estimation prior to the actual location evaluation is 
suboptimal. The intermediate signal parameterization accomplished by the 
TDOA estimation procedure represents a significant data reduction at the 
expense of a decrease in theoretical localization performance. However, in 
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real situations the performance advantage inherent in the optimal stcered­
bearnforruer estimator is lessened because of incomplete knowledge of the 
signal and noise spectral content as well as unrealistic stationarity assump­
tions. 

With these relative advantages and shortcomings in mind, a new local­
ization method, which combines the best features of the steered-beamformer 
with those of the Phase 'Tuansform weighting of the GCC, was introduced 
in [5]. The goal was to exploit the inherent robustness and short-time anal­
ysis characteristics of the steered response power approach with the insen­
sit ivity to signal conditions afforded by the Phase 'Tuansform. This new al­
gorithm, termed SRP-PHAT, will be detailed in t he following section and 
will be shown to produce highly reliable location estimates in rooms with 
reverberation times up to 200 ms, using independent 25 ms data segments. 

8.3 A Robust Localization Algorithm 

Before describing the SRP-PHAT algorithm, it will be necessary to develop 
further a number of topics addressed in the prior section. Specifically, the 
following subsections will provide details of the impulse response model, the 
GCC and its PHAT implementation, ML TDOA-based localization, and the 
computation of the SRP. These items will then be tied together in the final 
subsection to motivate and define the SRP-PHAT algorithm. 

8.3.1 The Impulse Response Model 

It will be assumed that sound waves propagate as predicted by the linear 
wave equation (43]. With this assumption, the a.coustic paths between sound 
sources and microphones can be modeled as linear systems [44] . This is clearly 
advantageous to the analysis and modeling of the signals produced by the mi­
crophones of an array. Such linear models are valid wider the realistic condi­
tions encountered in small-room speech-array environments and are regularly 
exploited by array-processing techniques (13]. 

In the presence of sound-reflecting surfaces, the sound waves produced 
by a single source propagate along multiple acoustic paths. This gives rise 
to the familiar effects of reverberation; sounds reflect off objects and pro­
duce echoes. The walls of most rooms are reflective enough to create sig­
nificant reverberation. While it is not always noticeable to the occupants, 
even mild reverberation can severely impact the performance of speech-array 
systems. Hence, multi-path propagation must be incorporated into the signal­
processing model. 

The wave field at a particular location inside a reverberant room may be 
considered to be linearly related to the source signal, s(t). Let the 3-elcment 
vectors, Pn and q8 , define the Cartesian coordinates of the nth microphone 

I, 
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and the source, respectively. The received signal at the n th microphone may 
now be expressed as 

Xn(t) = s(t) * hn(Qs, t) + Vn{t) (8.1) 

The overall impulse response, hn(Qs, t), is the result of cascading two fil­
ters: the room impulse response and the microphone channel response. The 
former characterizes all acoustic paths between the source and microphone 
locations, including the direct path. It is a function of Pn as well as the 
source location, Q8 , and is highly dependent on these parameters. In general, 
the room impulse response is affected by environmental. condit ions, such as 
temperature and humidity. It also varies with the movement of furniture and 
individuals inside the room. While such variations are significant, it is reason­
able to assume t hat these factors remain constant over short periods. Hence, 
a room impulse response may be considered time-invariant for short periods 
when the source and microphone arc spatially fixed. The microphone chan­
nel response accounts for the electrical, mechanical and acoustical properties 
of the microphone system. In general, the microphone's directivity pattern 
makes its response a function of its orientation as well as its spatial place­
ment relative to the source. The additive term, vn(t), is the result of channel 
noise in the microphone system and any propagating ambient noise such as 
that due to fans or other mechanical equipment. The propagating noise is 
usually more significant than the channel noise and tends to dominate this 
term. Generally, vn(t) is assumed to be uncorrelated with s('t). 

Figure 8.1 illustrates a close-up view of the response that was measured in 
a typical conference room. The direct-path component and some of the strong 
reflected components arc highlighted in this plot. The peaks corresponding 
to t he reflected sound waves arc comparable in size to the direct-path peak. 
These peaks, which occur within 20 ms of the direct-path, are responsible for 
many of the erroneous results produced by short-time TDE's, which operate 
on data blocks as small as 25 ms. The large secondary peaks in the room 
response are highly correlated with the false peaks in the GCC function [5]. 

The purpose of TDE is to evaluate the temporal disparity between the 
direct-path components in the two received microphone signals. To this end, 
it will be useful to rewrite the impulse response specifically in terms of its 
direct-path component. Equation 8.1 is modified to: 

1 
Xn{'t) = -s(t - 'Tn) * 9n(qs, t) + Vn(t) 

Tn 
(8.2) 

where rn is the source-microphone separation distance, Tn is the direct path 
time delay, and 9n(q6 , t) is the modified impulse response which encompasses 
t he original response minus the direct path component. The microphone sig­
nal model is now expressed explicitly in terms of the parameter of interest, 
namely the time delay, Tn. 
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. Fig. 8.1. A close-up of a IO-millisecond segment of a room impulse response mea­
sured in a typical conference room. The direct-path component and some strong 
reflected components are highlighted. 

8.3.2 The GCC and PHAT Weighting Function 

For a pair of microphones, n = 1, 2, their associated TDOA, T12 , is defined 
as 

(8.3) 

Applying this definition to their associated received microphone signal 
models yields 

1 
X1(t) = -s(t-Ti)*g1(qs ,t)+v1(t) 

r1 

1 
X2(t) = -s(t - T1 - T12) * gz(q8 , t) + vz(t). (8.4) 

Tz 
If the modified impulse responses for the microphone pair are similar, 

then (8.4) shows that a scaled version of s(t - T1) is present in the signal 
from microphone 1 and a time-shifted (and scaled) version of s(t - T1 ) is 
present in the signal from microphone 2. T he cross-correlation of the two 
signals should show a peak at the time lag where the shifted versions of s(t) 
align, corresponding to the TDOA, T 12 • T he cross correlation of signals and 
is defined as: 

c12(T) = 1:= x1(t)x2(t + T)dt (8.5) 

l 
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8 Robust Localization in Reverberant Rooms 167 

The GCC function, R12(r) , is de.fined as the cross correlation of two fil­
tered versions of x1 (t) and x2 (t) (29). With the Fourier transforms of these 
filters denoted by G1(w) and G2(w), respectively, the GCC function can be 
expressed in terms of the Fourier transforms of the microphone signals 

(8.6) 

Rearranging the order of the signals and filters and defining the frequency 
dependent weighting function, lJi12 = G1 (w)G2 (w)*, the GCC function can 
be expressed as 

(8.7) 

Ideally, R 12(r) will exhibit an explicit global maximum at the lag value 
which corresponds to the relative delay. The TDOA estimate is calculated 
from 

f-12 = argmax R12(r). 
rED 

(8.8) 

The range of potential TDOA values is restricted to a finite interval, D, which 
is determined by the physical separation between the microphones. In general, 
R12(r) will have multiple local maxima which may obscure the true TDOA 
peak and subsequently, produce an incorrect estimate. The amplitudes and 
corresponding time lags of these erroneous maxima depend on a number of 
factors, typically ambient noise levels and reverberation conditions. 

The goal of the weighting function, lJi12 , is to emphasize the GCC value 
at the true TDOA value over the undesired local extrema. A number of such 
functions have been investigated. As previously stated, for realsitic acoustical 
conditions the PRAT weighting (29) defined by 

1 
ip-12 (w) = IX1(w)Xi(w)I (8.9) 

has been found to perform considerably better than its counterparts designed 
to be statistically optimal under specific non-reverberant, noise conditions. 
The PHAT weighting whitens the microphone signals to equally emphasize 
all frequencies. The utility of this strategy and its extension to steered­
beamform.ing form the basis of the SRP-PHAT algorithm that follows. 

8.3.3 ML TDOA-Based Source Localization 

Consider the i th pair of microphones with spatial coordinates denoted by the 
3-element vectors, Pil and Pi2 , respectively. For a signal source with known 
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spatial location, q8 , the true TDOA relative to the ith sensor pair will be 
denoted by T ( {Pil, Pi2}, q 8 ), and is calculated from the expression 

(8.10) 

where c is the speed of sound in air. The estimate of this true TDOA, t he 
result of a T DE procedure involving the signals received at the two micro­
phones, will be given by f i . In practice, the TDOA estimate is a corrupted 
version of the true TDOA and in general, f i 'I- T({Pil,Pi2},qs)-

For a single microphone pair and its T DOA estimate, t he locus of potential 
source locations in 3-space which satisfy (8.10) corresponds to one-half of a 
hyperboloid of two sheets. This hyperboloid is centered about the midpoint 
of the microphones and has Pi2 - Pil as its axis of symmetry. 

For sources with a large source-range to microphone-separation ratio, the 
hyperboloid may be well-approximated by a cone with a constant. direction 
angle relative to the axis of symmetry. The corresponding estimated direction 
angle, 0i, for the microphone pair is given by: 

(8.11) 

In this manner ea.ch microphone pair and TDOA estimate combination may 
be associated with a single parameter which specifies the angle of the cone 
relative to the sensor pair axis. For a given source and TDOA estimate, Oi is 
referred to as the DOA relative to the ith pair of microphones. 

Given a set of M TDOA estimates derived from the signals received at 
multiple pairs of microphones, the problem remains as how to best estimate 
the true source location, q 8 • Ideally, the estimate will be an element of the 
intersection of all the potential source loci. In practice, however, for more 
than two pairs of sensors this intersection is, in general, the empty set. This 
disparity is due in part to imprecision in the knowledge of system parame­
ters (TDOA estimate and sensor location measurement errors) and in part to 
unrealistic modeling assumptions (point source radiator, ideal medium, ideal 
sensor characteristics, etc.). With no ideal solution available, the source loca­
tion must be estimated as the point in space which best fits the sensor-TDOA 
data or more specifically, minimizes an error criterion that is a function of the 
given data and a hypothesized source location. If the time-delay estimates at 
each microphone pair are assumed to be independently corrupted by zero­
mean additive white Gaussian noise of equal variance then the ML location 
estimate can be shown to be the 'position which minimizes the least squares 
error criterion 

M 

E(q) = L(fi -T({Pi1,Pi2} , q))2. (8.12) 
i=l 
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The location estimate is then found from 

q8 = argmin E(q). 
q 

(8.13) 

The criterion in (8.12) will be referred to as the LS-TDOA error. As stated 
earlier, the evaluation of fJ .• in this manner involves the optimization of a 
non-linear function and necessitates the use of search methods. Closed-form 
approximations to this method were given earlier. 

8.3.4 SRP-Based Source Localization 

The microphone signal model in (8.2) shows that for an array of N mi­
crophones in the reception region of a source, a delayed, filtered, and noise 
corrupted version of the source signal, s(t), is present in each of the received 
microphone signals. The delay-and-sum beamformer time aligns and sums to­
gether the Xn(t), in an effort to preserve unmodified the signal from a given 
spatial location while attenuating to some degree the noise and convolutional 
components. It is defined as simply as 

N 

y(t,qs) = L Xn(t + L\n) (8.14) 
n=l 

where L\n are the steering delays appropriate for focusing the array to the 
source spatial location, q s, and compensating for the direct path propagation 
delay associated with the desired signal at each microphone. In practice, the 
delays relative to a reference microphone are used instead of the absolute 
delays. This makes all shifting operations causal, which is a requirement of 
any practical system, and implies that y(t, Qs) will contain an overall delayed 
version of the desired signal which in practice is not detrimental. The use 
of a single reference microphone means that the steering delays may be de­
termined directly from the TDOA's (estimated or theoretical) between each 
microphone and the reference. This implies that knowledge of the TDOA's 
alone is sufficient for steering the beamformer without an explicit source lo­
cation. 

In the most ideal case with no additive noise and channel effects, the 
output of the deal-and-sum beamformer represents a scaled and potentially 
delayed version of the desired signal. For the limited case of additive, uncor­
related, and uniform variance noise and equal source-microphone distances 
this simple beamformer is optimal. These are certainly very restrictive condi­
tions. In practice, convolutional channel effects are nontrivial and the additive 
noise is more complicated. The degree to which these noise and reverberation 
components of the microphone signals are suppressed by the delay-and-sum 
beamformer is frequently minimal and difficult to analyze. Other methods 
have been developed to extend the delay-and-sum concept to the more general 
filter-and-sum approach, which applies adaptive filtering to the microphone 
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signals before they are time-aligned and summed. Again, these methods tend 
to not be robust to non-theoretical conditions, particularly with regard to 
the channel effects. 

The output of an N-element, filter-and-sum beamformer can be defined 
in the frequency domain as 

N 

Y(w, q) = L Gn(w)Xn(w)ejw.a., {8.15) 
n=l 

where Xn(w) and Gn(w) are the Fourier Transforms of t he nth microphone 
signal and its associated filter, respectively. The microphone signals arc phase­
aligned by the steering delays appropriate for the source location, q. This is 
equivalent to the time-domain beamformer version. The addition of micro­
phone and frequency-dependent filtering allows for some means to compen­
sate for the environmental and channel effects. Choosing the appropriate 
filters depends on a number of factors, including the nature of the source 
signal and the type of noise and reverberations present. As will be seen, the 
strategy used by the PHAT of weighing each frequency component equally 
will prove advantageous for practical situations where the ideal filters arc 
unobtainable. 

The beamformer may be used as a means for source localization by steer­
ing t he array to specific spatial points of interest in some fashion and evalu­
ating the output signal, typically its power. When the focus corresponds to 
the locat ion of the sound source, the SRP should reach a global maximum. In 
practice, peaks arc produced at a number of incorrect locations as well. These 
may be due to strong reflective sources or merely a byproduct of the array 
geometry and signal conditions. In some cases, these extraneous maxima in 
the SRP space may obscure the true location and in any case, complicate t he 
search for the global peak. The SRP for a potential source location can be 
expressed as the output power of a filter-and-sum beamformer by 

r+oo 
P(q) = }_

00 

IY(w)l2dw 

and location estimate is found from 

q
5 

= argmax P(q). 
q 

8.3.5 The SRP-PHAT Algorithm 

(8.16) 

(8.17) 

Given this background, the SRP-PHAT algorithm may now be defined. With 
respect to GCC-based TDE, the PIIAT weighting has been found to provide 
an enhanced robustness in low to moderate reverberation conditions. While 
improving the quality of the underlying delay estimates, it is still not sufficient 
to render TDOA-based localization effective under more adverse conditions. 

t' 
i 
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The delay-and-sum SRP approach requires shorter analysis intervals and ex­
hibits an elevated insensitivity to environmental conditions, though again, 
not to a degree that allows for their use under excessive multi-path. The 
filter-and-sum version of the SRP adds flexibility but the design of the filters 
is typically geared towards optimizing SNR in noise-only conditions and is 
excessively dependent on knowledge of the signal and channel content. Orig­
inally introduced in [5], the goal of the SRP-PHAT algorithm is to combine 
the advantages of the steered bearnformer for source localization with the 
signal and condition independent robustness offered by the PRAT weighting. 

The SRP of the filter-and-sum beamformer can be expressed as 

(8.18) 

where llitk(w) = G1(w)G:(w) is analogous to the two-channel GCC weighting 
term in (8.7). The corresponding multi-channel version of the PHAT weight­
ing is given by 

1 
llitk(w) = IX,(w)XZ(w)I (8.19) 

which in the context of the filter-and-sum beamforrncr {8.15) is equivalent to 
the use of the individual channel filters 

1 
Gn(w) = IX .. (w)I . (8.20) 

These are the desired SRP-PHAT filters. They may be implemented from 
the frequency-domain expression above. Alternatively, it may be shown that 
(8.18) is equivalent to the sum of the GCC's of a.11 possible N-choose-2 micro­
phone pairings. This means that the SRP of a 2-clement array is equivalent 
to the GCC of those two microphones. Hence, as the number of microphones 
is increased, SRP naturally extends the GCC method from a pairwise to a 
multi-microphone technique. Denoting Rtk(T) as the PRAT-weighted GCC 
of the l th and k th microphone signals, a time-domain version of SRP-PHAT 
functional can now be expressed as 

N N 

P(q) = 21r LLR1k(L1k - Ll1). (8.21) 
l==l k=l 

This is the sum of all possible pairwise GCC permutations which are time­
shifted by the differences in the steering delays. Included in this summation 
is the sum of the N autocorrelations, which is the GCC evaluated at a lag of 
zero. These terms contribute only a DC offset to the steered response power 
since they a.re independent of the steering delays. 

Given either method of co.mputation, SRP-PHAT localization is per­
formed in a manner similar to the standard SRP-based approaches. Namely, 
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P(q) is maximized over a region of potential source locations. As will be 
shown in the next section, relative to t.he search space indicative of the stan­
dard SRP approach, the SRP-PHAT functional significantly deemphasizes 
extraneous peaks and dramatically sharpens the resolution of t he true peak. 
T hese desirable features result in a decreased sensitivity to noise and rever­
berations and more precise location estimates than the existing localization 
methods offer. Additionally, this is achieved using a very short analysis in­
terval. 

8.4 Experimental Comparison 

While more extensive results are available in [5], an experiment is offered 
here to evaluate and compare the relative characteristics and performance 
of three different source locators: SRP, SRP-PHAT and ML-TDOA. Five 
second recordings were made for three source locations in a 7 by 4 by 3 m 
conference room at Brown University using a 15-element microphone array. 
Figure 8.2 illustrates the room layout. Pre-recorded speech, which was ac­
quired using a d ose-talking microphone, was played t hrough a loudspeaker 
while simultaneously recording the signals from the array. The use of the 
loudspeaker was preferable to an actual talker since the loudspeaker could 
be precisely located and would be fixed over the duration of t he recordings. 
The talkers were males uttering a unique string of alpha-digits. Source 1 was 
most distant from the array and was positioned at standing height in front 
of a white-board. The other two sources were positioned at a seated level 
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around a conference table, which was located approximately in the center of 
the room. 

The microphone array was composed of eight omni-directional electret 
condenser microphones, which were randomly distributed on a plane within 
a .33 by 0.36 m rectangle. The microphones were attached to a. rectangular 
sheet of acoustic foam, which was supported by an aluminum frame. This 
frame was mounted on a tripod that was placed parallel to the back wall at a 
distance of 0.9 m. The acoustic foam damps some of the multi-path reflections 
from this wall and isolates the microphones from vibrations traveling along 
the mountings. 

The loudspeaker faced the array and the volume level was adjusted at each 
location to maximize SNR conditions. SNR levels at each microphone aver­
aged about 25 dil for the three source locations. Source 3, with its location 
the closest to the microphone array, had SNR.s as high as 36 dB. With such 
high SNRs, all microphones signals in the conference room dataset have min­
imal contributions from the background noise, which was primarily produced 
by the fans inside the computer equipment. 

The measured reverberation time of the room was determined to be 
200 ms. This qualifies as a mildly reverberant room. However, the near-end 
peaks in the impulse responses (as in Figure 8.1) combined with a 200 ms 
reverberation time do, in fact, have a significant impact on localization. This 
will be demonstrated by the following performance comparisons. 

Given the size of the array aperture relative to the source ranges, all three 
talkers can be considered to lie in the far field of array. Under such conditions, 
range ~stimates are ambiguous, and only the azimuth and elevation angles 
can be estimated reliably. Accordingly, this experiment will focus on DOA 
measures as opposed to 3-D Cartesian coordinates. Results obtained with 
more extensive arrays and near-field sources are available in [5]. 

The recorded data was segmented into 25 ms frames using a half­
overlapping Hanning window. SNR-based speech detection was performed 
for each frame. All frames where any of the eight microphone channels had 
SNR within 12dB of the background noise were eliminated. Out of the 399 
frames per recording, 313, 340, and 297 were retained for sources 1,2, and 
3, respectively. The DOA's of the sources were estimated by minimization 
of the LS-TDOA error and maximizat ion of SRP and SRP-PHAT evaluated 
over azimuth and elevation relative to the array's origin. The frequency range 
used to compute both the steered responses and the GCC's was 300 Hz to 
8 kHz. These functions were computed over a range of -60° to +60° for both 
azimuth and elevation with a 0.1 ° resolution. 

By taking all possible combinations, 28 microphone pairs were formed us­
ing the 8-element array. Hence, for each data frame, 28 TDOA estimates were 
made for each of the three speech recordings using GCC-PHAT. Figure 8.3 
illustrates the LS-TDOA error as a function of azimuth and elevation for a 
segment of nine successive fram~s recorded for source 1. The white point in 
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Fig. 8.3. Speech segment (top) with nine frames of the LS-TDOA error surfaces. 

each contour plot marks the true DOA. The dark area in the center of t he 
images represents the minima of the LS-TDOA error. At t he top of this fig­
ure is a plot of the amplitude of the corresponding speech segment, which 
is the letter "R", spoken as in "Are we there yet?" Superimposed on this 
speech signal is a curve representing the average power of the signals from 
the array, with the scale of its vertical axis labeled on the right side of the 
graph. Each point along this power curve corresponds to the average frame 
SNR. The three frames at the beginning and end of this speech segment 

i 

J 
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Fig. 8.4. Delay-and-sum beam.former SRP over nine, 25 ms frames. 

lacked sufficient SNR to included in the analysis. These plots show that the 
LS-TDOA error is generally a smooth surface with a global minimum over 
the angular range of ±60°. However, from frame to frame the minima vary 
from the true source location. This inaccuracy is caused by erroneous TDOA 
estimates. Note also that because of the smooth nature of the error space, 
the resolution of the DOA estimates is considerably limited. 

Figures 8.4 and 8.5 illustrate the error spaces of the SRP and SRP-PHAT 
as evaluated for the same nine 25 ms frames of speech. Relative to the prior 
figure the contour images are now inverted in darkness to emphasize the max­
ima. The plots of the delay-and-sum beamformer SRP in Figure 8.4 bear a 
noticeable similarity in general shape to their LS-TDOA counterparts. The 
maximum value in each SRP image, marked by an X, occurs at points dis­
tant from the actual DOA, indicated by a white dot. The main beam of the 
delay-and-sum beamformer is broad and fluctuates considerably over the du­
ration of the speech segment. As a result, many inaccurate location estimates 
are produced by this method. In contrast to the LS-TDOA and SRP cases, 
the peaks of SRP-PHAT plots in Figure 8.5 match the actual DOA almost 
exactly. The main beam of the PRAT beamformer is sharp and consistent 
over each frame. This produces contour images which appear quite different 
from the LS-TDOA and SRP versions. The PRAT filters, when applied to 
the filter-and-sum beamformer, yield an error space that is superior to that of 
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Fig. 8.5. SRP-PHAT response over nine, 25 ms frames. 

the delay-and-sum bearnformer or the TDOA-based criterion. This qualita­
tive observation will now be corroborated through a numerical performance 
comparison. 

For the DOA estimates produced for each of the three source locations, 
an RMS DOA error was computed from 

(8.22) 

where ¢ and 0 are the true azimuth and elevation angles and ¢ and {j are their 
estimated counterparts. Figure 8.6 illustrates the results . These plots show 
the fraction of DOA estimates in each case which exceed a given RMS error 
threshold. Using this metric, the SRP-PHAT consistently outperforms the 
other two methods for each of the source locations. The ML-TDOA exhibits 
definite advantages over the SRP. While the SRP-PHAT's results are nearly 
identical for all the source locations, including t he most distant source 1, the 
ML-TDOA locator is highly dependent on source location. For example, 60% 
percent of the estimates from source 1 had error greater than 10° while 50% 
percent from source 2 and 15% percent from source 3 had error greater 10°. 
In contrast, nearly all the estimates produced by SRP-PHAT had error less 
than 10°. About 90% of the estimates from sources 2 and 3, and 80% from 
source 1 had errors less than 4 °. 
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Fig. 8.6. Localizer DOA error rates for three different sources. 

The results of this limited experiment illustrate the performance advan­
tages of the SRP-PHAT localizer relative to more traditional approaches for 
talker localzation with microphone arrays. Other experiments conducted un­
der more general and adverse conditions are consistent with the results here 
and serve to confirm the utility of combining steered-bea.mforming and a 
uniform-magnitude spectral weighting for this purpose. 

While the TDOA-based localization method performed satisfactorily for 
a talker relatively close to the array, it was severely impacted by even the 
mild reverberation levels encountered when the source was more distant. This 
result is due to the fact that signal-to-reverberation ratios decrease with in­
creasing source-to-microphone distance. As the reverberation component of 
the received signal increases relative to the direct path component, the valid­
ity of the single-source model inherent in the TDE development is no longer 
valid. As a result TDOA-based schemes rapidly exhibit poor performance 
as the talker moves away from the microphones. The SRP-PHAT algorithm 
is relatively insensitive to this effect. As the results here suggest the pro­
posed algorithm exhibits no marked performance degradation from the near 
to distant source conditions tested. 

The SRP-PHAT algorithm is computationally more demanding than the 
TDOA-bascd localization methods. However, its significantly superior perfor­
mance may easily warrant the additional processing expense. Additionally, 
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while not discussed here, it is possible to alter the algorithm to dramatically 
reduce its computational load while maintaining much of its benefit. 
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13 Acoustic Echo Cancellation for 
Beamforming Microphone Arrays 

Walter L. Kellermann 

University Erlangen - Niirnberg, Germany 

Abstract. Acoustic feedback from loudspeakers to microphones constitutes a ma­
jor challenge for digital signal processing in interfaces for natural, full-duplex 
human- machine speech interaction. Two techniques, each one successful on its 
own, are combined here to jointly achieve maximum echo cancellation in real en­
vironments: For one, acoustic echo cancellation (AEC), which has matured for 
single-microphone signal acquisition, and, S()Condly, beamforming microphone ar­
rays, which aim at dereverberation of desired local signals a.nd suppression of local 
interferers, including acoustic echoes. Structural analysis shows that st raightfor­
ward combinations of the two techniques either multiply the considerable compu­
tational cost of AEC by the number of array microphones or sacrifice algorithmic 
performance if the beamforming is time-varying. Striving for increased computa­
tional efficiency without performance Joss, the integration of AEC into time-varying 
beamforming is examined for two broad classes of beamforming structures. Finally, 
the combination of AEC and beamforming is discussed for multi-channel recording 
and multi-channel reproduction schemes. 

13.1 Introduction 

For natural human-machine interaction, acoustic interfaces a.re desirable that 
support seamless full-duplex communication without requiring the user to 
wear or hold special devices. For that, ihe general scenario of Figure 13.1 
foresees several loudspeakers for multi-channel sound reproduction and a mi­
crophone array for acquisition of desired signals in the local acoustic en­
vironment. Acoustic signal processing is employed to support services such 
as speech transmission, speech recognition, or sound field synthesis offered 
by communication networks or autonomous interactive systems. Such hands­
free acoustic interfaces may be tailored for incorporation into a wide variety 
of communication terminals, including teleconferencing equipment, mobile 
phones and computers, car information systems, and home entertainment 
equipment. 

For signal acquisition, microphone arrays allow spatial filtering of arriving 
signals and, thus, desired signals can be enhanced and interferers can be sup­
pressed. With full-duplex communication, echoes of the loudspeaker signals 
will join local interferers to corrupt the desired source signals. Beamforming, 
however, does not exploit t he available loudspeaker signals as reference infor­
mation for suppressing the acoustic echoes. This is accomplished by acoustic 
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Fig. 13.1. Acoustic interface for natural human- machine communication. 

echo cancellation (AEC) algorithms [1- 3]. For discussing the combination of 
AEC with microphone arrays, the concept of AEC is first reviewed in Sec­
tion 13.2 and beamforming methods are categorized in Section 13.3 with re­
spect to the properties determining the interaction with AEC. Then, generic 
concepts for the combination of AEC and bearnforming are discussed in Sec­
tion 13.4. Structures for integrating AEC into beamforming are investigated 
in Section 13.5. Finally, the extension from single-channel reproduction to 
the case of multiple reproduction channels is outlined. 

13.2 Acoustic Echo Cancellation 

The concept of AEC is first considered for the case of a single loudspeaker 
and a single microphone according to Figure 13.2. To remove the echo from 
the microphone signal x(n) (with n denoting discrete time), AEC aims at 
generating a replica v(n) for the signal v(n), which is an echoed version of the 
loudspeaker signal u(n). Aside from the echo v(n), x(n) contains components 
originating from local desired sources and local interferers, s(n) and r(n), 
respectively. Introducing the residual echo 

e(n) = v(n) - v(n), 

the estimate for the desired signal s(n) can be written as: 

s(n) = x(n) - v(n) = s(n) + e(n) + r(n). 

(13.1) 

(13.2) 

j 
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Human-Machine Interface AEC 
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~ 

u(n) 

s(n) = s(n) + e(n) + r(n) 

Fig. 13.2. Basic structure for single-channel AEC. 

The amount of echo attenuation achieved by AEC is expressed by the echo 
return loss enhancement (ERLE)1: 

£ {v2 (n)} 
ERLE109 (n) = 10 - log£ {e2 (n)} (dB], (13.3) 

with £ { ·} denoting the expectation operator. As long as potential nonlineari­
ties of the loudspeaker system can be neglected [ 4], the loudspeaker-enclosure­
microphone(LEM) system is completely characterized by its generally time­
varying impulse response h(k, n). Indeed, the impulse response may vary 
drastically and unpredictably over t ime, as a slight change in position of any 
object can alter many coefficients significantly [2]. The number of impulse 
response samples that must be modeled for an ERLE1og value of x dB is 
estimated by [2,5] 

(13.4) 

where ls denotes the sampling frequency, and T6o is the reverberation time2
. 

Based on this estimate, more than LA EC = 1000 impulse response coefficients 
must be perfectly matched to assure 20 dB of ERLEtog for a typical office 
with T6o = 400 ms and an echo canceller operating at f.9 = 8 kHz. 

As a model for the LEM s_ystem, a digital FIR filter structure with a 
time-varying impulse response h(k,n) of length LAEc is employed, so that 
the estimated echo v(n) is given by 

v(n) = hT(n) · u(n) (13.5) 

1 As v(n) and e(n) are not accessible in practical situations, ERLE must be esti­
mated from s(n) and x(n) [2]. 

2 As characteristic parameter of an enclosure, the reverberation t ime T6o is the 
time until the sound energy decays by 60dB after switching off the source. 
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where '1' denotes transposition and 

h(n) = [h(O,n),h( l ,n), ... ,h(LAEc -1,n)r>, 

u(n) = [u(n) , u(n - 1), .. . , u(n - LAEC + l)f. 

(13.6) 

(13.7) 

The misalignment between the FIR model h( n) and the LEM system h( n) 
is described by the logarithmic system error norm D1o9 (n):· 

llh(n) - h(n)II~ 
D109 (n) = IO - log llh(n)II~ , (13.8) 

with 11 · 112 denoting the l2 norm3 • 

13.2.1 Adaptation algorithms 

For identifying the time-varying impulse response h(k, n), adaptive filtering 
algorithms derive an optimum vector hopt(n) by minimizing a mean square 
error criterion based on the input u(n) and the estimation error e(n) (assum­
ing here, for simplicity, s(n) = r(n) = 0). Three fundamental algorithms are 
introduced below for the general case of complex signals (for a comprehen­
sive t reatment of adaptive FIR filtering see, e.g., [6, 7]). Adaptation control 
in t he context of AEC is addressed and frequency domain implementations 
are outlined briefly. 

Fundamental algorithms. Minimizing the mean squared error E { le(n)l2} 
for (at least) wide-sense stationary signals and a time-invariant echo path 
h(k,n) = h(k) leads to the Wiener-Hopf equation for the optimum echo 
canceller hopt [7] 

,-.. -1 
hopt = ~u · ruv (13.9) 

with the time-invariant correlation matrix Ruu and the crosscorrelation vec­
tor ruv given by 

Ruu = E { u(n)uH (n)} , 

ruv = E{u(n)v*(n)}, 
(13.10) 

(13.11) 

respectively. (* denotes complex conjugation and H conjugate complex trans­
position.) For nonstationary environments, iterat ive or recursive algorithms 
are required to approach the Wiener solution in (13.9). As the most popu­
lar adaptation algorithm, the NLMS(Normalized Least Mean Square) algo­
rithm [6,7] updates the filter according to 

,.., _,... u(n) * 
h(n + 1) - h(n) + a uH (n)u(n) e (n) (13.12) 

3 If the length of h(n) is greater than LAEO , then h(n) must be complemented 
with zeros accordingly. 
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and may be understood as a stochastic approximation of the steepest descent 
algorithm, with u(n) approximating the negative gradient vector, and a step­
size parameter a, 0 < a < 2. Obviously, for correlated signals such as speech, 
u (n) will not cover uniformly the LAEc-dimensional vector space, which im­
plies that the convergence to minimum system. error D10 ,g(n) in (13.8) is 
slow [7). The popularity of the NLMS is based on its robust convergence 
behavior [2] and its low computational complexity (about 2LAE C multipli­
cations per sampling interval T (MUL's per T) are needed for implementing 
(13.1), (13.5), and (13.12)). 

To improve the convergence for speech signals, the Affine Projection Al­
gorithm (APA) uses P previous input vectors 

U(n) = [u(n), u (n - 1), ... , u(n - P+ 1)] 

to compute an error vector 

e(n) = v(n) - ur(n) • h"(n), 

where 

e(n) = [e(n), e(n -1), ... , e(n - P+ 1)], 
v(n) = [v(n), v(n - 1), ... , v(n - P + 1)]. 

The filter coefficients are then updated according to 

h(n + 1) = h(n) + aU(n) [UH (n)U(n) - ol] -
1 

e"(n) , 

(13.13) 

(13.14) 

(13.15) 

(13.16) 

(13.17) 

with the regularization parameter J (o 2". 0) and I denoting the identity ma­
trix. Thus, the APA can be interpreted as a generalization of the NLMS 
algorithm, which in turn corresponds to an APA with P = 1, o = 0. T he 
gradient estimate for the APA is equal to the projection of the system mis­
alignment vector h(n) - h(n) onto the P-dirnensional subspace spanned by 
U(n). Thus, the complementary orthogonal component of the misalignment 
vector becomes smaller with increasing P. The computational complexity of 
the APA amounts to approximately (P + 1) · LAEC + O(P3

) MUL's per T, 
where, typically, P = 2, ... , 32, and LAE C is given by {13.4). Fast versions 
of the APA reduce the computational load to 2LAEC + 20P, but require 
addit ional measures to assure numerical stability [2,6]. 

As the most powerful and computationally demanding adaptation 
method, the RLS(Recursive Least Squares) algorithm directly minimizes a 
weighted sum of previous error samples 

n 

J(h,n) = Lfi(k)le(k)l2, with O < /3 ~ 1. (13.18) 
k= l 
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The solution has the form of (13.9), however with time-dependent estimates 
for Ruu(n), ruv(n) given by 

n 

Ruu(n) = L /3(k)u(k)uH (k), 
k= l 

n 

ruv(n) = Lf3(k)u(k)v*(k). 
k=l 

The update equation reads here 

h(n + 1) = h(n) + ~~(n)u(n)e*(n). 

(13.19) 

(13.20) 

(13.21) 

If an exponential window /3(k) = >,n- k with the forgetting factor O <). < 1 
is used, the inversion of Ruu ( n) is avoided by exploiting the matrix inversion 
lemma that allows recursive update of the inverse [7]. Then, the complexity 
of the RLS algorithm is on the order of L1Ec MUL's per T [6]. Similarly 
to the APA, fast versions for the RLS algorithm have been proposed which 
reduce computational complexity to 7 L AEC MUL's per T. However, the large 
filter order LAEC and the nonpersistent excitation u(n) require extra efforts 
to assure stable convergence [6]. A simplified version of fast RLS algorithms 
is the Fast Newton Algorithm [6], which reduces the complexity to LAEC · P 
MUL's per T, with P being a predictor order that should be matched to 
the correlation properties of the input u(n). (For speech signals, P ~ 10 is a 
typical value at ls = 8kHz.) 

Adaptation control. Adaptation control has to satisfy two contradict­
ing requirements. On one hand, changes in the echo path h(k,n) should be 
tracked as fast as possible. This requires a large stepsize, a, for the NLMS 
and APA algorithms in (13.12) and (13.17)), and a rapidly decaying j3 for the 
RLS algorithm in (13.21) , respectively. On the other hand, the adaptation 
must be robust to interfering local sources s(n) and noise r(n) , which requires 
a small stepsize, a, and a slowly decaying (:J, respectively [2,7]. When a local 
talker is active, adaptation should be stalled immediately to avoid diver­
gence of h(n). Therefore, a fast and reliable detection of local source activity 
and estimation-of background noise levels is decisive for efficient AEC op­
eration. Correspondingly, a significant amount of computational complexity 
is invested in monitoring parameters and signals which support adaptation 
control [2]. With properly tuned adaptation control, acoustic echoes are at­
tenuated by, typically, about 25 dB of ERLE109 during steady state using 
the above adaptation algorithms. 

Frequency subband and transform domain structures. To reduce 
computational load and to speed up convergence of adaptation algorithms 

1 
l 
l 
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which do not inherently decorrelate u(n) (e.g., the NLMS algorithm), fre­
quency subband and transform domain structures have been developed [1,8). 
Subband structures decompose the fullband signals u(n) and x(n) into M 
subbands which are usually downsampled by R < M [3,9]. The adaptive 
subband filters operate at a reduced sampling rate and require fewer coef­
ficients which leads to overall computational savings by a factor of close to 
R2 / M compared to full band adaptive filtering. After subtraction, the sub­
band signals are synthesized to yield again a fullband signal s(n). While the 
additional complexity for the analysis/synthesis filter banks is relatively small 
for large LAEC, the introduced signal delay for s(n) is objectionable in some 
applications [2,31]. 

Transform-domain structures draw their computational advantage over 
direct time-domain implementations from the fast Fourier transform (FFT) 
and its use for fast convolution [1,6,8]. Block-exact adaptation algorithms, 
which behave exactly like their time-domain counterparts, have been pro­
posed for all the fundamental algorithms above. For the long impulse re­
sponses at issue, the system model h(k, n) is often partitioned into shorter 
subsystems to reduce the signal delay [2]. 

13.2.2 AEC for multi-channel sound reproduction 

Considering a multi-channel reproduction unit (see Figure 13.1) broadcasting 
K different sound channels u,.(n) (1>: = 0, ... , K - 1) with usually time­
varying mutual correlation, any microphone records the sum of K echo signals 
produced by different echo paths h,.(k,n), 

K-1 

v(n) = L h,.(nf · u,.(n), (13.22) 
1<=0 

with h,.(n), u,.(n) being defined according to (13.6) and {13.7). Correspond­
ingly, K echo cancellers, hi,;(n), are needed to model the respective echo 
paths. As only one error signal, e(n), is available, the K inputs, ui,;(n), must 
be mutually decorrelated without perceptible distortion to allow identifica­
tion of the individual hi,; ( n). This difference to single-channel AEC defines 
an even more challenging system identification problem, whkll has been con­
sidered only for the stereo case (K = 2) so far [1,10-12]. Current adaptation 
schemes still exhibit slower convergence and multiply computational load by 
more than K compared to their single-channel AEC counterparts. 

13.2.3 AEC for multi-channel acquisition 

A straightforward extension of the single-loudspeaker/ single-microphone sce­
nario to an N-microphone acquisition system essentially multiplies the num­
ber of adaptive filters by N. The N-channel echo cancellation is captured by 
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extending the signals in (13.2) to N-dimensional column vectors, 

s(n) = x(n) - v(n) = s(n) + r(n) + e(n) 

= s(n) + r(n) + v(n) - H:T (n)u(n) 

(13.23) 

(13.24) 

with u(n) according to (13.7), with e(n),r(n),s(n),s(n), v(n) , v(n),x(n) as 
column vectors of the form 

x(n) = [xo(n), . . . ,XN-1(n)f, (13.25) 

and with H(n) as a matrix containing the impulse responses hv(n) as columns 
according to 

H(n) = [bci(n), ... ,hv(n), ... ,hN-1(n)] . (13.26) 

While this implies a corresponding multiplication of the computational cost 
for filtering, the cost for adaptation and its control is not necessarily multi­
plied by N. All operations depending only on the input data, u(n), have to be 
carried out only once for all N channels, which would include the matrix in­
version in the APA or RLS algorithms, (13.17) and (13.21), respectively. How­
ever, some fast versions draw their efficiency from interweaving matrix inver­
sion and update equations [6) and, therefore, do not completely support this 
separation. Frequency subband and transform domain algorithms [1,6,8,9] 
support this separation at least by requiring the analysis transform of u(n) 
only once for all channels. 

13.3 Beamforming 

This section only aims at categorizing beamforming algorithms with respect 
to their interaction with AEC. For a comprehensive treatment of fundamental 
techniques see, e.g., [13,14] , while the current state of beamforming technol­
ogy with microphone arrays is covered in several other chapters of this book. 

13.3.1 General structure 

Consider a microphone array capturing N real-valued sensor signals, xv(n), 
which are filtered by linear time-varying systems with impulse responses 
9v(k, n) and then summed up (Figure 13.3). The resulting beamformer out­
put, y(n), can be written as 

y(n) = Gr(n) · X(n) = Gr(n) · [S(n) + R(n) + V(n)], (13.27) 

with the column vector G( n) representing the concatenated impulse response 
vectors gv ( n) 

(13.28) 
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x 0(n) 
g 0(k,n) 

y0(n) 

L 
y(n) 

XN_1(n) 
gN-l(k,n) 

YN-l(n) 

Fig.13.3. General structure for a beamforming microphone array 

where all g,,(n) are of length LBF: 

g,,(n) = [g,,(O,n), ... ,g,,(LBF -1,n)f . (13.29) 

The column vector X (n) (and, equally, R (n), S(n), V(n)) contains the latest 
LBF signal samples of each microphone signal 

X(n) = [xZ' (n), ... , x'.£._1 (n)t 

with 

x,,(n) = [x.,(n), ... ,x.,(n - LBF + I )f. 

(13.30) 

(13.31) 

In the scenario of Figure 13.1, beamforming aims at spatial filtering to dere­
verberate the components s(n) originating from the desired source(s) and to 
suppress interfering signals r( n) and echoes v( n) . 

For ideal dereverberation of a single source, the desired signal as it is 
emitted by the source, s<0)(n), should be retrieved except for some delay 
no> O: 

(13.32) 

Assuming that delayed versions of s<0>(n) are contained in s,,(n) defined by 
(13.31), the filters g.,(k, n) have to equalize the corresponding delays and 
the sum of the filters has to provide a flat frequency response for all sig­
nals arriving from the source direction. Obviously, delay equalization requires 
knowledge about the location of the desired source(s). For the following, it is 
assumed that the source location is given by a priori knowledge or separately 
determined by some source localization algorithm (see, e.g., Chapters 8-10). 
For an anechoic environment and with the desired signal components being 
delay-equalized by the array geometry, the total impulse response, g(k, n), of 
the beamformer to the desired source s<0>(n) should ideally fulfill 

N 

g(k,n) = Lg.,(k,n) J: 8(k - ko) (13.33) 
11=1 
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to assure a constant frequency response with unity gain and constant group 
delay ko-

For interference suppression, the beamformer should minimize its response 
to all undesired signal components, which include here local interferers and 
loudspeaker echoes. Using, the mean squared error (MSE) as optimization 
criterion, this reads: 

(13.34) 

Based on this general concept and with AEC in mind, basic methods for 
time-invariant or time-varying bcamforming are outlined below. 

13.3.2 Time-invariant beamforming 

Time-invariant beamforming) i.e., G(n) = G, g., (n) = g.,, is used for applica­
tions where the beamformer does not have to change the 'look direction' and 
where the potential nonstationarity of the involved signals, s(n))r(n), v (n), 
is not accounted for. 

As the most basic beamforming method, the delay-and-sum beam­
former (DSB) realizes in its simplest form a tapped delay line with a single 
non-zero coefficient for each filter g.,(n) (13,14). If the required delays for the 
desired 'look direction' do not coincide with integer multiples of the sampling 
period, interpolation filters are required for realizing fractional delays [15-17). 
Accounting for the wideband nature of speech ;md audio signals, nested ar­
rays arc often employed using different sets of sensors for different frequency 
bands to approximate a constant ratio between aperture width and signal 
wavelength (17 19). As a generalization of DSB, filter-and-sum bcamform­
ing (FSB) aims for a frequency-independent spatial selectivity within each 
frequency band as detailed in Chapter 1 and (20). Both beamforming con­
cepts, DSB and FSB, were first developed on the basis of the far-field assump­
tion (18), but may also be extended to near-field beamforming as described 
in Chapter I. Time-invariant DSB and FSB are mostly signal-independent, 
i.e., no attention is paid to the power spectral densities of the signals s(n), 
r(n), v (n) and the direction of arrival (DOA) of interferers. 

Such 'beamsteering' techniques arc obviously appropriate for human­
machine interfaces in reverberant environments with a restricted range of 
movement for a. single desired source and where, due to reverberation, un­
wanted signal components of comparable level must be expected from all 
directions. 

Nevertheless, time-invariant bcamforming can incorporate additional spa­
tial information to suppress dominant interferers [21 )22]. Moreover, know­
ledge about long-term statistics of the noise field can be accounted for [23] 
and may lead to statistically optimum beamformers with superdirective be­
haviour for low frequencies as described in Chapter 2 and [24]. 
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Fixed 
y(n) Beamforming ,__ ______ _ 

GF 

Blocking 

Matrix 

GBM(n) 

Interference w(n) 
Canceller 

G1c(n) 

Fig. 13.4. Generalized sidclobe canceller structure for adaptive bcamforming. 

13.3.3 Time-varying beamforming 

For nonstationary environments with both nonstationary signal characteris­
tics and potentially moving sources, the beam.former should be able to t rack 
the time-variance of the signal characteristics and the spatial arrangement 
of the interfering sources. For that purpose, adaptive beamforming methods 
design filters Bv(k, n) which minimize a statistical error criterion based on 
the array output, y(n), with constraints for the DOA of a desired source (or 
'target') such as formulated in (13.33) and (13.34) [13,14,25-27]. See also 
Chapter 5. 

Generalized Sidelobe Canceller (GSC). As an example for an efficient 
implementation of adaptive beamformers that minimize a mean square er­
ror {MSE) criterion subject to a linear constraint, the generalized sidelobe 
canceller structure [13,25] is considered (Figure 13.4). Here, the adaptive 
beamforming is separated into two parallel paths: The upper path is a time­
invariant, signal-independent beamformer , GF, steered toward the desired 
source. 1n the lower path, the first stage implements a blocking-matrix, 
GnM(n), which, ideally, completely suppresses the components of the de­
sired source, s{n), by a linear combination of the microphone channels [13] 
or filtering [28]. This topic is also detailed in Chapter 5. The P::; N outputs, 
wi(n) , i = 0, ... , P- l, are then used by the adaptive interference canceller, 
Grc(n), to form an estimate for t he int erference component in :y(n) . Op­
timization of Grc(n) becomes an unconstrained Wiener filtering problem 
when the MSE criterion of (13.9) is used, and ideally leads to removal of all 
components in y(n) which are correlated to w,(n). For identifying the opti­
mum Gw(n), the same adaptation algorithms as for echo cancellation can 
be used, i.e., (13.12) ,(l 3.17),(13.21), with gradient-type algorithms like the 
NLMS algorithm being most common. 
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13.3.4 Computational complexity 

For both time-invariant and time-varying beamforming, the computational 
load is essentially proportional to the number of sensors N. The FIR fil­
ter lengths typically do not exceed L BF = 128 [17,20,29,30]. With increasing 
filter length, computational savings are obtained by frequency-domain imple­
mentations of the filtering [20,29]. As with AEC, for adaptive beamforming 
implementations a significant share of computational complexity is dedicated 
to fast and reliable source activity detection which forms the basis of adap­
tation control. 

13.4 Generic structures for combining AEC with 
beamforming 

First, the combination of AEC with beamforming is motivated by comparing 
practical requirements with typical performance of AEC and beamforming. 
Then, the main properties of two generic options for a combination are dis­
cussed in some detail. 

13.4.1 Motivation 

Although AEC and beamforming are two distinct signal processing concepts, 
their goals meet with regard to acoustic echoes. While AEC subtracts from 
x(n) an echo estimate, v(n), based on u(n) as reference information, beam­
forming suppresses echoes within x(n) as undesired interference by its spatial 
filtering capability. With beamforming being undisputed for its effectiveness 
in suppressing local noise and reverberance of local desired sources, the need 
for a complementary AEC unit for acoustic echo suppression is discussed in 
the following. 

As a guideline for desired echo suppression for telecommunication, [31] 
requires ERLE109 2:: 45 dB during single-talk and at least 30 dB during 
double-talk, assuming a 'natural' echo attenuation of up to 6 dB between the 
loudspeaker signal, u(n), and the microphone signal, x(n). Echo suppression 
methods other than AEC, e.g., noise reduction, loss insertion, or nonlinear 
devices, impair full-duplex communication and> thus, are only acceptable as 
supplementary measures [2]. For full-duplex speech dialogue systems employ­
ing automatic speech recognition, the echo attenuation requirements are not 
as well-defined and will depend on the desired recognition rate as well as 
on the robustness of the speech recognizer with respect to speech-like in­
terference. In view of t hese requirements, the echo attenuation provided by 
microphone arrays and the echo path gain for a microphone array are exam­
ined below . 
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Array gain. The echo attenuation provided by a microphone array is usu­
ally identified with the array gain for the 'desired sources relative to echoes 
as interference. For signal-independent time-invariant beamforming, the di­
rectivity index quantifying the array gain of the desired direction over the 
average of all other directions [26] does typically not exceed 20 dB over a 
wide frequency range, and is much smaller at low frequencies ( < 500 Hz) 
due to usual geometrical aperture constraints [19,26]. This contrasts with 
the fact that acoustic echoes usually exhibit their maximum energy at low 
frequencies [2J. As a remedy, differential beamforming realizes superdirective 
array gains at low frequencies and allows for a directivity index of up to 
12 dB in practical implementations [1,27]. On the other hand, for adaptive 
beamforming, interference suppression is usually also limited to about 20 dB 
for reverberant environments if distortion of the desired source signal s<0)(n) 
should be precluded. See Chapters 2 and 5 as well as [19,32]. 

Echo path gain. For microphone array applications, the echo path gain 
between u(n) and the beamformer output, y(n), will often be higher than 
for single-microphone systems (-6 dB), because the sum of the distances 
from the loudspeaker to the listener, and from the desired source to the 
microphone array, will usually be greater ( e.g. in teleconferencing). The user 
will typically increase the gains for the loudspeaker signal and the microphone 
array correspondingly to compensate for the decay of the sound level (i::::: 
6 dB per doubling of distance in the far-field). If the microphone array and 
loudspeaker are relatively close, then the required echo attenuation will be 
increased accordingly. 

13.4.2 Basic options 

Restricting the scenario to a single reproduction channel, u(n), and a sin­
gle acquisition channel, s(n), a combination of AEC and beamforming is 
obviously conceivable in two fundamentally different ways as shown in Fig­
ure 13.5. Here, 'AEC first' realizes one adaptive filter for each microphone in 
ft(I)(n) of (13.26), whereas 'Bearnforrning first' uses a single-channel AEC, 
ii(II) ( n), which obviously has to include the beam former, G( n), into its echo 
path model. 

13.4.3 'AEC first' 

This structure suggests that ft(I)(n) may operate without any repercussions 
from the beamforming so that the AEC problem corresponds to that de­
scribed by (13.23). On the other hand, with perfect echo cancellation, the 
beamforming will be undisturbed by acoustic echoes and will concentrate on 
suppressing local interferers and reverberation. 
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~i-,------------------u_(n_) 

'AEC first' J; 'Beamtormin first' 

b (Jl)(n) 

~(II)(n) 

y(n) 
G(n) 1----1

1
.--- ....i 

I 

\_ ___ J 

Fig. 13.5. Generic structures for combining AEC with beamforming. 

AEC properties. Although AEC could operate independently from the 
beamforming, synergies with beamforming should be exploited with regard 
to detection of local source activity and computational complexity. 

Local source activity detection. As noted above, the adaptation of ft(J) ( n), re­
quires a fas t and reliable detection of local source activity to avoid divergence. 
With single-channel AEC, the detection is based on comparing estimates for 

E { v~(n)} 
Q 11 (n) = E { (r11(n) + s.,(n))2} 

(13.35) 

to a given threshold. With subsequent beamforming, this decision can be 
derived from estimates of 

E { (GT(n)V(n))
2
} 

Q(n) = ---='----.::....__­
E { (GT(n) [R(n) + S(n)])2

} 

(13.36) 

which reflect local source activity much clearer than Q11(n) as r11 (n) , v11(n) are 
suppressed relative to s(n) by beamforming. Thus, Q(n) reduces uncertainty 
in local source activity detection and allows adaptation during time intervals 
where adaptation might have been stalled if its control was based on Q11(n). 

Computational complexity. At least the filtering and the filter coefficient up­
date of the AEC adaptation will require N-fold computational cost compared 
to a single-channel AEC. Even with continuing growth of the performance­
cost ratio of signal processing hardware, this computational load will remain 
prohibitive in the near future for many cost-sensitive or very large systems 
employing N = 5, .. . , 512 sensors [17,19,26,30,33,34]. One option to alleviate 
the computational burden is to reduce the length LAEC in (13.4) of the FIR 
filter models, b.11 , and to rely on the bearnformer for suppressing the residual 
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Fig. 13.6. Example for convergence of ERLE1og components and local interference 
suppres.sion(IR) for 'AEC first' structure (N = 8, Tao :=::: 300 ms, fa = 12 kHz, 
LAEC = 2500, LBM = 16, L10 = 50). 

echoes, e(n). Shortening h., implies however, that the adaptation of the AEC 
is disturbed by an increased noise component, which is due to the unmodeled 
tail of the true echo path impulse response, h.,(n) [2]. 

B eamforming performance. For a signal-independent beamformer, the 
presence and performance of the AEC has no impact on the beamforming. 
The signal-independent spatial filtering will increase echo suppression accord­
ing to its directivity while suppression of local interferers remains unaffected. 

Signal-dependent beamformers use w (n) = x(n) - vU>(n) for optimizing 
t he beamforming filters G(n). Thereby, at the cost of local interference sup­
pression, t he beamformer will concentrate on suppressing echo components, 
e(n), if their levels exceed that of local interferers, r(n), and it will further 
suppress residual echoes as long as they are not negligibly small compared to 
the local interferers. For illustration, the typical convergence behaviour for 
'AEC first' using a GSC beamformer is shown in Figure 13.6 for r (n), s(n) , 
u(n) being whit,e noise signals, and for alternating adaptation of Gw(n) , and 
:fi:U>(n) (see also [32]). Due to its short filters, the beamformer converges al­
most instantaneously to about ERLEGso = 18 dB, and thereby provides a 
significant amount of ERLElog long before ft(I)(n) has oonverged. AL Lhe 
same time, suppression of local interference, I Rcso, remains essentially con-
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stant over time, as it converges very rapidly to almost 20 dB and is not 
allowed to converge much further to preclude distortion of t he desired signal. 

13.4.4 'Beamforming first' 

In this structure, the beamformer is essentially independent from the AEC 
so that the beamforming performance agrees with Section 13.3 for acous­
tic echoes being perceived as another source of interference. AEC is realized 
by a single adaptive filter h(H)(n) as in Figure 13.5 which is attractive with 
regard to computational complexity. However, the system identification prob­
lem faced by h (.T J) ( n) requires closer examination. 

Echo path for AEC. Incorporating the beamformer, G(n), into the echo 
path model means that, ideally, the adaptive filter, h(II)(n), models the sum 
of N echo paths from the loudspeaker input, u(n), to the beamformer output, 
y(n), (see Figure 13.3) 

N 

hi~~)(n) = f(n) = L f11(n), (13.37) 
v= l 

with t he impulse responses, f(n), given by (*denotes linear convolution): 

fv(n) = [Jv(O,n), ... ,fu(LAEC+BF-1,n)f, 

fv(k,n) = hv(k,n)*9v(k,n). 
(13.38) 

(13.39) 

Thus, the impulse response length of h(.r I) ( n) depends on the beamforming, 
and, if any 9v(k,n) is time-varying, h(.TJ)(n) has to track this t ime-variance 
as wel14

. The required length, LAEC+BF, for h(II)(n) is essentially the sum 
of the length LBF and the necessary length for the acoustic path (including 
loudspeaker and microphone), LAsc: 

(13.40) 

Note that for a given desired ERLE10_g, LAEC can be chosen smaller than 
given by (13.4) depending on the expected contribution of beamforming to 
ERLEto_q (see also [35]). 

Signal-independent, time-invariant beamforrners. Due to the time-invariance 
of 9v(k,n), the adaptation of h(JJ)(n) only has to track the time-variance of 
hv ( n) and, thus, the adaptation of h(II) ( n) is identical to the adaptation of 
one of the N filters b.[1 ) ( n) in the 'AEC first' structure except for the different 
filter length LAEC+BF· 
4 Note that the time-varying components h11 (k, n) cannot be identified separately, 

although gv(k,n) is known ('knapsack problem'). 

:-· __ ... 4 
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Signal-dependent, time-varying beamformers. Here, the main problem is that 
the adaptation of b_(H)(n) has to track the t ime-variance of G (n) . As for the 
adaptation algorithms discussed in Section 13.2.1 an increasin,S filter order in­
volves a reduced tracking capability [7], the high-order filter, h (JJ) (n), cannot 
follow the time-variance of the low-order filters of G (n) (LAEC+BF » LBF)­
Therefore, b_(TI)(n) can find a useful echo path model only when G(n) re­
mains time-invariant for a sufficiently long t ime. In Figure 13.7, the adapta­
tion behaviour of the 'beamforming first' structure is analyzed for a speech 
conversation with a GSC as adaptive beamformer [28,32]. Inspecting the time 
domain signals u(n) and s(n) in Figures 13.7aand 13.7b shows that a 'double­
talk' period occurs for time n = 3.5 ... 4.0 • 106 . Figure 13.7c illustrates which 
component is adapted at a given time. To track slight movements of the de­
sired local source, the blocking matrix, GBM(n), is adapted if only the local 
source and noise are present [28,32}. The system error of (13.8) depicted in 
Figure 13.7d converges monotonically when ii.(JJ) (n) is adapted. When the 
interference canceller, Gic(n), or the blocking matrix, G8 M(n) , are adapted 
the system error rises instantaneously (n = 2 ... 3.5 -105 ). This is not critical 
as long as u(n) = 0, however, during double-talk (n = 3.5 ... 4.0 • 105 ) , a 
large residual error, e(n) , arises (Figure 13.7e,f) as h (JJ)(n) cannot recon­
verge. Consequently, with the 'beamforming first' structure, the benefits of 
AEC are missing when they are desired most , i.e., during double-talk and 
during transitions from far-end activity to local activity and vice-versa (at 
other times primitive echo suppression methods, such as loss insertion [2], are 
less objectionable). 

13.5 Integration of AEC into time-varying 
beamforming 

As time-varying beamforming, G(n), cannot be tracked satisfactorily by the 
adaptation of h (H)(n), a compromise is desirable for AEC which avoids the 
computational burden of ft(l>(n) for large N and provides improved echo 
cancellation compared to h(II)(n) . For this, the beamformer is decomposed 
into a time-invariant and a time-varying part in the sequel, with A.EC acting 
only on the output of the time-invariant pa.rt. Two options for arranging 
the time-invariant and the time-varying stage are examined: First, a cascade 
with the time-invariant stage followed by the time-varying stage, and second, 
a parallel arrangement of the two stages. 

13.5.1 Cascading time-invariant and time-varying beamforming 

As illustrated in Figure 13.8, instead of a single beamformer output, y(n), 
(see Figure 13.3), M < . . . « N beamformer output signals y(n) = 
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Fig. 13. 7. Adaptation of h(II) (n) in 'beamforming first' structure (N = 8, T50 ~ 
50 ms, fs = 12 kHz, LAEO+BF = _300, LEM = 16, Lw = 50, adaptation by NLMS 
algorithm) 
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AEC 

I\ 
v(n) 

Beam design 

Voting 
gv(n) 

and ________ __, 

Control 

F ig. 13.8. AEC integrated into cascaded beamforming. 

u(n) 

~(n) 

[Yo(n) , ... YM-1(n)t are produced by M sets of fixed beamforming filters 
G (M) according to F 

y(n) = Gf>T · X(n), (13.41) 

where X{n) is given by {13.30) and 

G ~M) = [GJ,0 , ... ,GJ,1-<, .. . , G~,M- 1] (13.42) 

with G F ,µ according to (13.28). For AEC, ft (III) (n) realizes M adaptive echo 
cancellers hl-'(n), µ = 0, . . . , M - 1, which exhibit the same performance as 
b.<11>(n) with time-invariant G(n) (see Section 13.4.4). Thus, if M < N and 
L AEO+BF ~ L AEo, AEC operates at a reduced computational cost compared 
to ft (I)(n) (see Section 13.4.3). The time-varying part of the beamforroing 
implements a weighted sum ('voting') using time-varying weights, 9v,µ(n): 

s(n) = g;'(n) • z(n) 

·with 

gv(n) = [gv,o(n), ... ,9v,µ.(n), .. • ,9v,M-1(n)f, 
T z(n) = [zo(n), ... ,zµ(n), ... ,ZM- 1(n)J . 

{13.43) 

{13.14) 

{13.45) 

Fixed beamformer design. The fixed beamformers of G ~M) may be de­
signed to account for various situations, for instance, different beamformers 
could be employed for the presence or absence of echo, v(n) , and of certain 
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local interferers, r(n). This concept is easily extended to cover several desired 
sources or moving desired sources, which is especially attractive for telecon­
ferencing [5,17,18,22,26]. For the actual design of GF,µ, techniques based on 
both time-invariant or time-varying beamforming can be applied. Updating 
may be attractive to allow for long-term flexibility. 

G}M) based on time-invariant beamforming. As a straightforward approach, 
Mo > M signal-independent fixed beams may be formed to cover several 
possible interference scenarios and/or all possible desired source positions. 
The output of these Mo beamformers is monitored and a subset of M beam­
formers is used for G~M\n) to produce potentially desired signals y(n). As 
an example, in a teleconferencing studio with Mo = 7 seats and three local 
participants being present, only M = 3 beams should produce desired signals 
(for examples see [17,18,22,26]). 

G}M) based on adaptive beamforming. Signal-dependent adaptive beamform­
ing can be used to identify fixed beamformers for typical interference scenar­
ios. To this end, an adaptive beamformer operates at a normal adaptation 
rate with its filter coefficients acting as a training sequence for finding M 
representative fixed beamformers. A priori knowledge of the desired source 
location(s) for incorporating constraints is necessary as well as initial train­
ing [5]. 

Initializing and updating G ~M) . The monitoring of Mo fixed beams, or the 

learning of optimum beamformers for deciding upon G ~) can be carried out 
during an initial training phase only, or continuously. Continuous monitoring 
is recommended when changes are expected that demand the updating of 
G ~M). Monitoring of M0 beams helps also to establish reliable estimates for 
background noise levels and supports detection of local talker activity so 
that convergence speed and robustness of AEC adaptation can be improved. 
Generally, as long as updating of G 1,Ml occurs less frequently than significant 
changes in the acoustic path, the model of time-invariant beamforming is 
justified with respect to AEC behavior. Aiming at minimum computational 
complexity for AEC, more frequent updates of G}M) may be accepted for 
reduced M. The update should preferably occur at the beginning.of 'far-end 
speech only' periods, as then, the AEC H(III)(n) can immediately adapt to 
the new echo path. 

Voting. The time-varying weights, .9v,1., (n), in (13.44) must be chosen to 
allow for a fast reaction (:::; 20 ms) to newly active local sources or chang­
ing interference scenarios, while at the same time avoiding the perception of 
switching, e.g., by applying a sigmoi:d-like gain increase over time. For maxi­
mum spatial selectivity, only one beam signal should have a nonzero weight, 

·1 
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u(n) 

hCIV\n) 

GF 
y(n) z(n) ;(n) 

w(n) 

w(n) 
GnM(n) G1c(n) 

Fig.13.9. GSC with embedded AEC. 

9v,µ,(n), in the stationary case. Frequent toggling between beams is subjec­
t ively objectionable and should be prevented by hysteresis mechanisms (see 
also [17,26]). 

13.5.2 AEC with GSC-type beamforming structures 

As a popular representative of adaptive beamformers, the GSC (see Sec­
tion 13.3.3) is also an example for a parallel arrangement of time-varying 
and time-invariant beamforming. If an integrated AEC should only see time­
invariant beamforming in the echo path, it has to act on the output of the 
fixed beamformer, y(n), as depicted in Figure 13.9 [32]. Obviously, only a sin­
gle adaptive filter, h(JV)(n), is necessary which faces the same system identi­
fication task as h_(H) (n) for t ime-invariant beamforming (see Section 13.4.4) , 
which in turn is essentially identical to the plain single-microphone AEC 
problem. However, residuals of acoustic echoes, v(n), will also be contained 
in w(n) unless they are eliminated by GBM(n) or G.rc(n). Here, leaving echo 
suppression to the interference canceller, Gw(n), seems to be the obvious 
solution. Recall that Gw(n) minimizes the quadratic norm of s(n) to remove 
all components from z(n) that are correlated with w(n). If h(.TV)(n) is per­
fectly adjusted, no echo components remain in z(n) and the echo estimate 
within w(n) should be zero. On the other hand, local interference components 
in w(n) should be linearly combined using nonzero filter coefficients, so that 
w(n) can remove interference residuals from z(n). Clearly, a conflict in the 
design of Gw(n) ru·ises [32]. 

For illustration, consider a stationary situation for a given frequency, wo , 
in a 2-D plane containing a linear beamforming array with time-invariant GF, 
GEM, and Gw. A local interferer, r(n), arrives as a planar wave from 0o and 
passes the blocking matrix which is transparent for r(n) (G~M -r(n) = r(n)). 
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Then, for perfect interference cancellation, Grc(n) has to model the re­
sponse of the fixed beamformer, F {Grc }(0o,wo) = F {GF }(0o,wo), with 
F { Ge,)} (0,w) denoting the frequency response for a plane wave of frequency 
w arriving from 0. If, on the other hand, an acoustic echo arrives from the 
same direction, 00 , with nonzero spectral support at wo, this should be per­
fectly suppressed if z(n) contains no echo, which means F {Grc} (0o,wo) = 0. 
Obviously, this conflict requires a compromise at the cost of either local in­
terference suppression or echo attenuation. Herc, adaptation algorithms will 
automatically favor the dominant signal component in w(n). Even if echo and 
local interference do not arrive from the same direction, the finite number of 
degrees of freedom limits the ability of Grc to suppress echo and local inter­
ference simultaneously. This is especially true for reverberant environments 
which possess a very large (if not infinite) number of DOAs for both echoes 
and local interference. 

To avoid the conflict of interests within Gro, a suppression of the acoustic 
echoes, v(n) , using GBM(n) seems attractive. Considering the opt ions, it is 
obvious that the output, w( n), should be freed from v( n) without suppressing 
r(n) or impairing the suppression of s(n). This means that no additional 
filtering on x(n) is allowed. As an alternative, estimates for the echoes, v(n), 
could be subtracted from w(n), which requires one adaptive filter for each of 
the P :s; N channels and is similar to the generic concept of Section 13.4.3. 

13.6 Combined AEC and beamforming for 
multi-channel recording and mult i-channel 
reproduction 

Multi-channel recording means that the out put of the acquisition part of the 
acoustic interface in Figure 13.1 consists of several (L > 1) channels which, 
e.g., are necessary to convey spatial information for remote multi-channel 
sound reproduction, but may also support local signal processing. In Fig­
ures 13.5, 13.6, and 13. 7 this translates to an L-dimensional output vector 
s(n). With respect to the beamforming, it means a duplication of the filtering 
and adaptation for each channel using the techniques outlined in Section 13.3. 
Both, time-invariant and adaptive beamforrning will typically use L differ­
ent 'look directions.' Regarding the generic met hods to combine AEC with 
beamforming (Section 13.4), this means that for the 'AEC first' structure, 
the AEC part, ii<1>(n), remains unchanged while only the beamforming has 
to be duplicated. For the 'beamforrning first' structure, the AEC realized by 
h(">(n) has to be duplicated as well . 

When AEC is integrated into cascaded beamforming (see Section 13.5.1) 
the extension to the multi-channel recording case is included in the concept. 
The number of parallel fixed beams simply must equate or exceed the number 
of recorded chan!!_els, M ~ L, and the voting must be chosen accordingly. The 
AEC structure, H(" '>(n), remains unchanged. If the AEC is embedded into 
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a GSC-like structure, both the beamforming, G(n), and the AEC structure, 
ii_(IV)(n) , have to be implemented L times. However, removal of the acoustic 
echoes in the blocking matrix is necessary only once if performed directly on 
the microphone signals, x(n). 

Multi-channel reproduction introduces a K-channel AEC problem (as de­
scribed in Section 13.2.2), wherever a single echo cancellation filter is em­
ployed for single-channel reproduction, regardless of whether echo is to be re­
moved from a microphone output or from a beamformer output. Essentially, 
this deteriorates convergence behavior and increases computational complex­
ity for all structures discussed in Sections 13.4 and 13.5, accordingly. 

Finally, for a system with both multi-channel reproduction and multi­
channel recording as suggested in Figure 13.1, the complexity for combined 
AEC and beamforming obeys the superposition principle with respect to 
filtering and filter adaptation. Synergies are obtained by the common use 
of control information for several channels. The nature of the problems, 
however, does not change compared to the basic scenarios studied in Sec­
tions 13.2.2, 13.4, and 13.5 so that the corresponding results remain mean­
ingful. 

13. 7 Conclusions 

Beamforming and acoustic echo cancellation have been shown to jointly con­
tribute to the suppression of acoustic feedback occurring in hands-free acous­
tic man-machine interfaces. While for time-invariant beamforming a single 
adaptive AEC filter suffices in the case of single-channel reproduction and 
single-channel recording, t ime-varying beamformers demand multiple adap­
tive filters if echo cancellation performance is not to degrade severely. How­
ever, realizing a time-varying beamformer as a cascade of time-invariant 
beamforming and time-varying voting requires only a few adaptive echo can­
cellers even for microphone arrays with many sensors. Implementing a combi­
nation of AEC and beamforming for a multi-channel reproduction and multi­
channel recording system involves a corresponding increase in computational 
complexity. Signal processing performance, however, is still determined by 
the solutions for the elementary problems. 
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narrowband assumption, 3 
natural gradient adaptation, 368 
nearfield, 25, 290, 385 
nearfield supcrdirective array, 44 
nested array, 290 
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noise canceler, 34, 89 
noise cancellation, 61, 256, 308 
noise subspace, 182, 309 
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nonlinear optimization, 367 
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normalized noise suppression, 322 
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phase transform, 162, 167 
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power spectral density matrix, 21 
pseudo-inversion, 368 
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recursive state estimation, 205 
reverberation distance, 258 
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robust estimation, 195 
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Sabine's equation, 258 
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scoring problem, 335 
segmental SNR, 269 
sensor calibration, 309 
sensor fusion, 205 
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short-time modified coherence, 341 
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signal subspace, 182 
signal-to-interference ratio, 37 4 
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single-channel speech enhancement, 
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singular value decomposition, 189, 193 
source activity detection, 267, 294 
spatial aliasing, 4, 26 
spatial clustering, 183 
spatial correlation function, 61 
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spectral subtraction, 40, 242, 308 
speech corpora, 333, 341 
speech intelligibility, 230 . 
speech quality measures, 51 
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speech-to-interference ratio, 230 
spherically isotropic noise field, 26, 65 
state error information vector, 214 
statistical pattern recognition, 333 
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subband decomposition, 314 
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super-resolution, 310 
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superdirectivity, 19, 234, 290, 338 
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time delay estimation, 40, 161, 267, 338 
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training data contamination, 337 
training problem, 335 
transform-domain structure, 287 
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uncorrelated noise field, 24 
universal noise subspace, 186 
universal signal subspace, 186 
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unvoiced speech, 137, 140 
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Viterbi algorithm, 335 
voice activity detector, 312, 343, 347 
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wavelet transform, 141 
white noise gain, 24, 47 
whitening filter, 190, 266 
wideband weighted subspace fitting, 

186 
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Wiener-Hopf equation, 42, 284 
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The study and implementation of microphone arrays originated 

over 20 years ago. Thanks to the research and experimental 

developments pursued to the present day, the field has matured to 

the point that array-based technology now has immediate 

applicability to a number of current systems and a vast potential 

for the improvement of existing products and the creation of futu­

re devices. This text is organized into four sections which roughly 

follow the major areas of microphone array research today. 

Parts I and II are primarily theoretical in nature and emphasize 

the use of microphone arrays for speech enhancement and source 

localization, respectively. Part III presents a number of specific 

applications of array-based technology. Part IV addresses some 

open questions and explores the future of the field. The result is a 

text that will be of utility to a large audience, from the student 

or practicing engineer just approaching the field to the advanced 

researcher with multi-channel signal processing experience. 
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