
APPLE 10371

Realizing OpenGL: Two Implementations of One Architecture

MarkJ. Kilgard
Silicon Graphics, Inc.

Abstract

The OpenGL Graphics System provides a well-specified, widely-
accepted dataflow for 3D graphics and imaging. OpenGLis an ar-
chitecture,; an OpenGL-capable computer is a hardware manifesta-
tion or implementation ofthat architecture. The Onyx2 InfiniteRe-
ality and 02 workstations exemplify two very different implemen-
tations ofOpenGL. The two designs respondto differentcost, per-
formance, and capability goals.

Commonpractice is to describe a graphics hardware implemen-
tation based on how the hardwareitself operates. However, this
paper discusses two OpenGL hardware implementations based on
howthey embody the OpenGLarchitecture. An important thread
throughout is how OpenGL implementations can be designed not
merely based on graphics price-performance considerations, but
also with consideration of larger system issues such as memory ar-
chitecture, compression, and video processing. Just as OpenGL
is influenced by wider system concerns, OpenGLitself can pro-
videaclarifying influence on system capabilities not conventionally
thought ofas graphics-related.

CR Categories: 1.3.1 [Computer Graphics]: Hardware Architec-
ture; 1.3.6 [Computer Graphics]: Methodology and Techniques—
Standards

Keywords:
Reality, 02

OpenGL, Graphics Hardware Architecture, Infinite-

1 Introduction

The OpenGL Graphics System provides a well-specified, widely-
accepted dataflow for 3D graphics and imaging. While program-
mers maythink of OpenGLassimply a programming interface [7],
wetake the view that OpenGL definesan architecture,

Wesay a set of implementations manifest an architecture when
three conditions are met:

1, The implementations mustall have an identical interface and
generate functionally equivalent outputs given the sameinputs
andinitial state,

2. The determiner offunctional equivalence is something other
than a particular implementation.

3, The determiner of functional equivalence does not necessi-
tate that all implementations be operationally identical. (There
must be multiple ways to implementthe architecture.)

Permission to make digital/hard copies ofall or part ofthis material for
personal or classroomuseis granted withoutfee provided that the copies
are not made or distributed for profit or commercial advantage,the copy-
right notice, the title ofthe publicationandits date appear, andnotice is
given that copyright is by pennission of the ACM,Inc. To copy otherwise,
to republish, to post on servers orto redistribute tolists, requires specific
pennission and/orfee
1997 SIGGRAPH:Eurographies Workshop
Copyright 1997 ACM0-89791-961-0/97/8,.33,50

45

Implementations that are simply “compatible” do not necessarily
manifest an architecture. Our definition allows for an implemen-
tation to belong to an architecture but have additional capabilities
beyondthose definedbythe architecture.

By our definition, OpenGLis clearly an architecture. While the
determineroffunctional equivalenceis not required to be a codified
specification,’ OpenGL’sarchitecture is indeed defined byits spec-
ification [11].

Implementations of an architecture typically accrue significant
advantagesnotavailable to adhoc implementationsorsets ofimple-
mentations that are compatible yet do not manifest an architecture.
Architectures gain an advantage from compatibility, but also tend to
be more adaptable and foster innovative implementations through
the freedom granted designers in howthey realize the architecture.
Architectures also tend to be easy to extend because an implemen-
tation’s behavioris typically not specified for situations not defined
by the architecture’s functional equivalence.

Theintent ofthis paper is to explore OpenGL’s adaptability as an
architecture. What werefer to as the adaptability ofan architecture
is not measured by units sold or market share. Instead, we contend
that the adaptability ofan architecture should bejudged by the archi-
tecture’s ability to codify well-understoodfunctionality,its potential
to be cleanly extended to support new capabilities, andits ability to
influencepositively issues outside the scope ofthe architectureit-
self.

Our approachis to consider two manifestations of the OpenGL
architecture: the Onyx2 InfiniteReality graphics supercomputerand
the O02 desktop workstation. Our examples were chosen because
eachis the result ofquite different cost, performance, and capability
goals, but both concretely demonstrate our primary contentionthat
OpenGLis technically successfulas an architecture becauseit is ex-
tensible to encompass new capabilities within the scope of interac-
tive graphics and because OpenGLcanpositively influence system
issues not directly graphics-related. Our approachis novel because,
while we considerconcrete implementations, we are fundamentally
evaluating OpenGLas a graphics system architecture, not a partic-
ular hardware implementation.

Section 2 reviews the OpenGLarchitecture’s scope, philosophy,
functionality, and meansofextensibility. Section 3 describes how
OpenGLis instantiated by the Silicon Graphics Onyx2 InfiniteRe-
ality. Section 4 describes how OpenGLisinstantiated by the Silicon
Graphics 02 workstation. Section 5 contrasts the two implementa-
tions based on howthey distinctly manifest the OpenGLarchitec-
ture. Section 6 discusses how the OpenGLarchitecture influenced
and even clarified several non-OpenGL design considerations in
both example implementations. Section 7 argues that the OpenGL
architecture is “good” becauseit provides us a framework forbuild-
ing innovative, evolvable, well-integrated graphics systems.

1 The PC architecture lacks a codified specification but whatconstitutes
a PC has evolved beyondthepointthat a PC can be described operationally
by a single implementationas was originally the case.

1 APPLE 1037f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

2

Feedback/
Selection

Point, Line,
and PolygonRasterization

Di Fragment

Unpack’Pa
Pixels

 Framebuffer

Pixels

ey

Figure 1: The dataflow within the OpenGLarchitecture’s concep-
tual state machine.

2 OpenGLis a Visualization Architecture

The OpenGLarchitecture addressesthe task ofefficiently convert-
ing vertex- and pixel-based data representations into images. While
the “GL” in OpenGL stands for Graphics Library, we consider
OpenGL’s functionality mandate to be larger than that of a tradi-
tional 3D graphics library. OpenGL manipulates vertex and pixel
data with comparable ease. Moreover, texture mapping provides
a “bridge” to effectively combine therasterization of vertex- and
pixel-based data representations.

We consider SGI’s early IRIS GL implementation to exemplify
the conventionalfeature set ofa 3D graphicslibrary. Over time IRIS
GL added texture mapping and imageprocessing operationsto its
repertoire. These additions served as the motivation for rethinking
the purposeofa graphicslibrary during the design ofOpenGL. Be-
cause OpenGLis well-suited for manipulating both vertex andpixel
data, supports texture mapping, and embodies an architecture, we
refer to OpenGLasa visualization architecture.

2.1 State Machine Philosophy

OpenGLisspecified as a state machine. OpenGL commandseither
set state variables,retrieve state variables, retrieve framebuffer con-
tents, compile orcall displaylists, or introduce vertex or pixel data
into the state machine. Vertex and pixel data introduced into the
state machine are processed based on the current OpenGLstate set-
tings with the results sentto the framebuffer, texture objects, display
lists, or selection/feedback buffer depending on OpenGL’s current
settings. Figure 1 showsthe high-level dataflow within the OpenGL
architecture’s conceptual state machine.

Beyond OpenGL’s state machine model, several philosophical
choices help make OpenGLboth extensible and adaptable to unex-
pected situations. In later discussion, we note howthese choices are
manifested in the two example implementations considered.

OpenGL’sstatevariablesare orthogonal. In general, the enabling
or reconfiguring of OpenGLfeatures does notinterfere with other
features. For example,lighting calculations can be enabled ordis-
abled independently from the current depth buffering mode. This
means programmers can combinefeatures with predictable results.
Anoften unforeseen advantage offeature orthogonality is that mul-
tiple independentfeatures can often be combinedin useful but unan-
ticipated ways. Much of OpenGL’sease of extensibility is predi-
cated on feature independence. Without orthogonality, multiple ar-
chitectural extensions lead to confusing interdependencies or even
create feature conflicts.

The OpenGLarchitecture is client-server in the abstract sense,

46

RGBA Indox

glPixelTransfer Scale Shit

and Add OriginalBorPath. xo

giPixelMap Pixel Mapping Pixet MappingRGBA-> RGBA]|Indox » RGB.

(ColorTableEXT
Sienablelgicisable 7Color Tabla
giConvolutionParameterEXT
glEnable/giDisabte
g\PixelTranster Convolution
Let|Scale & Blas

giColorTableEXT
glEnable/g!Disable
LO”|Color Tabla Post ConvolutiongiColorMatixSGt

glEnable/giDisable
g!PixelTransfer Color AtatrixScale & Blas

giColorTableEXT
glEnable/g!Disable

Color Tabla Post Color Matrix
glHistogramEXT
g'ResetHistogramEXT
glEnable/g!Disable

Histogram
giMinmaxEXT
glResetMinmaxEXT ¥
glEnable/g!Disable t

RGBA xz

Figure 2: The extended OpenGLpixelpath including the convolu-
tion, histogram, color matrix, and color table extensions.

not necessarily in a networked sense. Client-server means that the
interface between an OpenGLapplication and an OpenGL imple-
mentationis strictly defined andall data passing betweenthe appli-
cation and implementation is explicit. The client-server separation
defines the boundary between OpenGL implementation state and
that ofthe application. This clear boundary makespossible network
extensible OpenGL implementations[5] and allows OpenGLto be
used as a direct hardware interface.

The OpenGL architecture is data format rich. Immediate
modetransfer of pixel and vertex data can be accomplished using
OpenGL’s wide variety of data sizes and formats. This allows ap-
plicationsto easily transfer their vertex and pixel data to OpenGL
by traversing application-dictated data structures. Applications can
supply pixel data using variousstrides, offsets, and component
packings. Application performancetypically benefits from avoid-
ing data reformatting whentransferring data to OpenGL. However,
OpenGL implementations must be ready to accept OpenGL’s mul-
titude ofpossible data formats.

The OpenGLarchitectureis configurable, but notprogrammable.
The OpenGLstate machine can be thought of as a pipeline with a
fixed topology (though various stages may be switchedin or out).
This mimics the layout of high-performance graphics subsystems
where rendering steps are decomposedandinstantiated by special-
ized hardware. The OpenGLarchitecture clearly encourages this
style of implementation. This doescreate situations where features
such as programmable shaders [8] or generalized image processing
chains [12] are difficult to express as extensions to the OpenGLar-
chitecture.

2.2 Functional Decomposition

Sections 3 and 4 discuss how OpenGL{as specified in version 1.1)
is instantiated by our example implementations. Therefore,this sec-
tion briefly reviews OpenGL’s functionality from an architectural
standpoint. The operations are explained “bottom up”starting with
the lowestlevel operations that update the framebuffer and moving
to the highest level operationsthat accept commands.

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

3

2.2.1 Per-Fragment Processing and Rasterization

A fragment in OpenGLis the bundle ofstate required to update
a specific pixel in the framebuffer. Fragments are generated dur-
ing rasterization. The per-fragmentoperationsare pixel ownership,
scissoring, alpha testing, stencil testing, depth testing, blending,
dithering, and logicop. The operations are performedin the order
listed though what operations are enabled depends on OpenGL’s
per-fragmentstate variables.

Rasterization is the process of breaking a primitive up into frag-
ments that are passed to the per-fragmentprocessing stage. OpenGL
supports five types ofprimitives: points, lines, polygons,pixelrect-
angles, and bitmaps. Thefirst step in rasterization is determiningif
a framebuffer pixel is updated by the primitive. Depending on the
primitive being rasterized, the current raster position, face culling,
pointsize, line width, line stipple, polygonstipple, and antialiasing
state affect which pixels are updated. The next rasterization step de-
termines the fragment depth andcolorofaffected pixels. The alpha
color componentisaltered based on the antialiasing state ofgeomet-
ric primitives, The depth ofgeometric primitives can be altered de-
pending onthe polygonoffset state, When enabled, texture mapping
and fog modify the color ofboth geometric andpixelprimitives.

2.2.2 Texture Mapping and Mangement

Texturing mapsa portion of a specified image onto each primitive
for which texturing is enabled, Texture coordinates determine what
portion of the image is mappedto the primitive. OpenGL supports
both 1D and 2D textures in a wide variety of formats. Texture pa-
rameters and the texture environment determine the methodoffil-

tering texels and howtexels are combinedwith fragments generated
during rasterization.

Texture objects provide the capability to switch between multiple
texture images without the overhead ofrespecifying the texture im-
age each time, Rectangular regionsoftextures can be incrementally
updated using subtexture loads, When a texture imageis specified,
the constituentpixels are passed through the OpenGLpixelpipeline
so the same operationsdiscussedbelowthat apply to drawing, copy-
ing, or readingpixel rectangles also transform texture images when
they are specified.

2.2.3 Both Vertex and Pixel Processing

OpenGLtransformsapplication-supplied vertex coordinates to win-
dow coordinates, clipping the primitives as necessary. Per-vertex
lighting is performed if enabled. Texture coordinatesare either ex-
plicitly supplied by the application or generated based onthe vertex
coordinates,

OpenGLdefinesapixelpath to process pixels. The pixel path can
be configured to perform componentscaling, biasing, and remap-
ping via table lookups, Pixels are transformed by the pixel path
whenpixels are drawnto the framebuffer, read back from the frame-
buffer, copied within the framebuffer, or downloadedinto texture
memory, Each pixeltransfer case sharesthe identical pixel process-
ing machinery,

2.2.4 Other Capabilities

Displaylists provide a way to cache repeated command sequences
for potentially faster execution, Evaluators provide a meansto effi-
ciently specify Bézier curves and surfaces, Feedback and selection
redirect the results of vertex processing back to the application in-
stead ofon to rasterization.

47

2.3 Extensibility

One key to an architecture’s adaptability is its extensibility.
OpenGLcanbe incrementally enhanced through its proven API
extension mechanisms. OpenGL’s rendering functionality can
be extended by adding extensions to OpenGL’s core rendering
model. Extensions also can be made to OpenGL’s windowsystem
dependentinterface to address issues outside OpenGL’s rendering
model.

Various OpenGL vendors have already implemented dozens of
extensions, and the OpenGL 1.1 update was the result of the
OpenGL Architectural Review Board’s efforts to fold success-
ful, proven extensions back into the core OpenGLarchitecture.
OpenGL1.1 added vertex arrays, polygon offset, RGBAlogic oper-
ations, texture objects, and further texture functionality enabled by
texture objects.

The following extensions are importantfor later discussion.

2.3.1 Imaging Extensions

A keyset ofOpenGL extensions? are the imaging extensions[10]:
color table, convolution, color matrix, histogram, and new per-
fragment blending modes. Figure 2 showsthe extendedpixelpath.

2.3.2 Hardware Accelerated Off-screen Rendering

Hardwareacceleratedoffscreen renderingis critical for a multitude
oftechniques that mustreliably readback or reuserenderingresults.
A windowsystem dependentextensionforpixel buffers (commonly
calledpbuffers) enables hardware accelerated offscreen rendering.

3 OpenGLas Instantiated by
InfiniteReality

Onyx2 InfiniteReality implements the bulk of OpenGL’s dataflow
within the InfiniteReality graphics subsystem.InfiniteReality is de-
signedto be a “real time” graphics machine meaningthatsustained
30 hertz and higher frame rates are achievable even for demanding
applications. InfiniteReality’s intended application domainsare vi-
sual simulation,film & video production,real-time image process-
ing, volume rendering, and large-scale CAD.

InfiniteReality is a hardware-intensive design consisting of 13
distinct Application Specific Integrated Circuits (ASICs).° Infinite-
Reality is a multiple-board graphics subsystem with the sameboard-
level architecture as the RealityEngine [1], InfiniteReality’s prede-
cessor. A single Transform Managerboard connects to 1, 2, or
4 Raster Managerboards and a single Display Generator board.
Figure 3 shows an ASIC-level block diagram of InfiniteReality.
Figure 4 shows how OpenGL’s conceptual state machine(origi-
nally shown in Figure 1) roughly mapsto InfiniteReality’s render-
ing ASICs. Starting at the host interface and working towards the
framebuffer and display back-end, the following discussion shows
howthe OpenGLarchitectureis instantiated by InfiniteReality.

2 Underconsiderationfor inclusion in OpenGL 1.2.
3 Other sourcesofinformation aboutInfiniteReality are likelyto refer to

the boardsand ASICsthat constitute InfiniteReality by “workingnames”that
grew out ofhistorical SGI jargon andtradition. In a few cases, the work-
ing names inadequately describe the ASIC or board’s true functionin the
context ofOpenGL.For example, the Geometry Engine ASIC handles both
vertex and pixel data so wereferto it here as a Transform Engineto bet-
ter suit ourpurpose ofdescribing how InfiniteReality manifests the OpenGL
architecture.

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

4

,
Readback BUS TransformvRasterizationCrossbar

Transform Manager board
(2or4)

 Processor

Texture
FragmentProcessor

A singe Raster Manager board set

Video
oeee, RAMDACChannol #1

Texture
FragmentProcessor

Vidco
Texture Output RAMDAGFragment Channel #0Processor

Texture

 Vid

<-> Requestor
Requostor

Fragment

Video Olspla'
Roquostor Function—

Requestor
Olsplay Generator board

, 2,074 RMs perpipe) {option for & channels)

Figure 3: ASIC-level diagram showing the InfiniteReality graphics subsystem architecture.

3.1 Host Interface

The client-serverstructure of OpenGL makesit possible for essen-
tially the entire OpenGLfeature set to be implemented within the In-
finiteReality graphics subsystem. The host-based OpenGLlibrary is
largely usedto setup efficient datatransfers to and from the graphics
subsystem. For example, an immediate mode giVertex3£ call
returns in 7 instructions. This consists ofjumping through a redi-
rection table, writing the Vertex3£ token followed by the three
floating point coordinates to the graphics FIFO address,and retumn-
ing.

OpenGL commandsanddata enter InfiniteReality via a high-
bandwidth proprietary IO bus where they are received by the Host
Interface Processor (HIP) that decodes and dispatches OpenGL
command streams. Commandscanbesenteither by programmed
IO or via Direct Memory Access (DMA).

The HIP’s Input Control and Mapping (ICU)logic arbitrates the
OpenGL commandstream from oneofthree sources:the host-filled
graphics FIFO, the host-activated input DMA stream, or a local
DMAstream usedforcalling locally cached displaylists. The ICU
performs basic OpenGL commandstream error checking and di-
rects commandsfor subsequent processing. Pixel and vertex com-
mands and some mode changesare simply passed along for further
processing. To process OpenGL commandstreamswith data rates
over 300 MBs/second, the ICU mustbe very fast. More complex
OpenGL commandsinvolving displaylists, more complicated state
management, DMAsetup,or non-renderingtasks can be redirected
to a microcoded 32-bit RISC core. Most of the RISC core’s mi-
crocodeis written in C.

Display lists are cached in 15 of the 16 megabytes of external
memory managedby the RISC core (one megabyteis usedforstate
and microcode). The HIP’s local DMAfacility allows cacheddis-
playlists to be passed through the ICU justas if the command se-
quence wasgeneratedby the host. Most immediate mode OpenGL
calls result in IO writes to the hardware’s graphics FIFO address.
The graphics FIFO is mapped into the address space ofdirect ren-
dering OpenGLapplications [6]. OpenGL commandstreams can
also be “pulled into” the HIP via input DMA.Largetextures, pixel
arrays, vertex arrays, and host-residentdisplaylists can all be trans-
ferred this way. Because DMAtransfers involvefixinghost physical
memory mappings, DMAisinitiated with operating system support.

The HIP is also responsible for returning OpenGL data back

Figure 4: How the conceptual OpenGLstate machine roughly maps
to InfiniteReality’s rendering ASICs.

to the host. The results of glGet*, feedback, selection, and
glReadPixels are all returned via DMA.The HIP is responsi-
ble for any data reassembly required before returning the data to the
host.

3.2 Vertex and Pixel Transform Subsystem

The HIP sendsthe partially decoded OpenGL command stream to
the Transform EngineDistributor (TED). The TED front endis
responsible for converting OpenGL’s data format rich command
stream into a canonicalformatin preparation for handingthe data to
the Transform Engines(TEs) for processing. For example, double
precision floating point or integer coordinates are forced to single
precisionfloating point. Pixeldatais also reformatted as necessary.
Commandsto change OpenGLstate are mostly passed through un-
altered. Given the high data bandwidths involved andtheflexibility
that OpenGLallows,the TED front end mustbe very fast,

The TED backenddistributes bundles of work to 2 or 4 TEs
that perform the actual vertex and pixel transformations required,
Managing OpenGL’sg1Begin/g1lEnd and per-vertexstate is done
through a microcodedstate machine. The TED also must ensure
that OpenGLtransformationstate is synchronized amongthe mul-
tiple TEs to guarantee proper OpenGL commandserialization sc-

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

5

mantics despite multiple active TEs. The TED performs a mapping
ofOpenGL commandtokens to TE microcode addressessothat the
TE can immediately begin command execution. Work is typically
assigned to the least busy TE.

The TE ASIC is a custom microcoded floating point processor.
Each TE has a peak performance of 540 megaflopsachieved using
three SIMDfloating point cores, The TEs use custom support logic
to accelerate graphics-specific operations such as clipping. A care-
fully tuned memory system is essential to keep the floating point
units continually busy. To minimize the amount of microcodere-
quired given the variety ofgeometry andpixeltransformations po-
tentially enabled, microcode modulesare “stitched” together based
on the current OpenGL geometry or pixel transformation state. For
example,the lighting microcode module would only be addedto the
TE’s geometry microcode sequenceiflighting is currently enabled.

The TEs implementthe pixel path functionality including the ex-
tendedpixel path functionality described in Section 2.3.1. Special
care is taken in the TED and TEsto managepixeldistribution when
pixel convolution is enabled. Anotherpixel path challenge is mem-
ory managementfor the various lookup tables, convolution kernels,
histogram bins, and otherpixel path state that must be maintained
within each TE, Bothpixel rectangles and texture downloads flow
through the TEs and so the identical microcode transforms both
typesofpixel data identically as required by OpenGL.

The complete Transform Managersubsystem can sustain geom-
etry transformationrates ofover 11 million polygons/second.

3.3 Transformation to Rasterization Crossbar

The transformedvertices andpixels from the TEsflowoutin pack-
ets that mustbe reordered by the Back End FIFO (BEF). The BEF
is a 4 megabyte FIFO intended to minimizestalling the TEs dur-
ing framebuffer clears or the rasterization ofvery large polygons or
pixel rectangles,

The BEFbroadcasts the contents ofits FIFO across the Trans-
form/Rasterization Crossbar connecting the BEFto 1, 2, or 4 Raster
Manager boards. Two main types of requests are sent over the
crossbar: texture (or /Joad) requests and rendering (or draw)re-
quests. The crossbaralso feeds back to the HIP to implement se-
lection/feedback,state retrieval, and context switching.

The BEFactually maintainstwodistinct FIFOs: the draw FIFO
for rendering and the load FIFO for texture download. The draw
FIFO takes priority over the load FIFO, but the load FIFO drains
wheneverthe drawpath is stalled. The draw path canstall because
it has gotten backed up with rasterization work or becauseit is wait-
ing on a texture to download, Waiting for a texture to fully down-
load provides an interlock that ensures textures are always properly
loaded before use. The advantage ofthis schemeis that textures
can be downloaded concurrently with rendering to increase overall
throughput.

3.4 Primitive Rasterization

Geometric and image primitives, texture data, and mode changes
are all broadcast over the Transform/Rasterization Crossbar to the
Raster Managerboards. The crossbarcan sustain a maximum band-
width of 400 MBs/second, The Pixel Generator (PG) and Texel
Generator (TG) ASICs on each Raster Managerlisten for the data
flowing from the BEF, Both the PG and TGrasterize image and ge-
ometry primitives sent over the crossbar. The PG almost completely
rasterizes primitives. Depending upon the current OpenGLrasteri-
zationstate, the highly pipelined PG scan converts geometric prim-
itives, pixel zooms images, scissors, interpolates color and depth
between vertices, calculates coverage alpha valuesforantialiasing,
and applies the polygon stipple. The only rasterization steps not

49

donein the PG are texture and fog application. The PG cansustain
the rasterization ofover 12 million polygonsasecond.

3.5 Texturing

InfiniteReality is balancedto renderjustasfast with its highest qual-
ity (linear mipmaplinear) texturing enabled as whenrendering with
texturing disabled. This requires a very fast and sophisticated tex-
ture subsystem.

Using data received over the Transform/Rasterization Crossbar
and rasterization results passedto it from the PG, the TG needsto
initiate texel fetches for textured primitives in parallel with the ras-
terization work done by the PG. The TG needsto rasterize only tex-
tured primitives to the point that the TG can generate the necessary
per-fragmenttexture coordinatesinterpolatedacrossthe primitive.

Texture coordinate informationisbroadcast to 8 Texture Memory
(TM) ASICs. Each Raster Managerboard is configured with either
16 or 64 megabytesoftexture memory split evenly among the TMs.
Texture accessestend be highly redundantasnearbytexels are often
needed multiple times in the courseoffiltering the texels for a given
textured primitive. The TMsactas specialized memory controllers
that are optimized for texel access patterns.

InfiniteReality includes numeroustexture extensionsintroduced
by RealityEngine including sharpentexture, detail texture, 3D tex-
ture for volume rendering, and post-filtering texture lookuptables.
InfiniteReality also includes new texture features such as clipmap-
ping for rendering continuous terrain and various modesforbetter
video texture mapping.

3.6 Fragment Processing

Texels from the TMsand texture coordinate information from the

TG are combined in one of 4 Texture Fragment (TF) ASICs. The
TFs also receive the actual fragments generated by the PG. Thein-
formation from the TMsand TGare usedto perform OpenGL’s tex-
ture filtering modessuch as linear mipmaplinearfiltering. A post-
filtering stage can optionally scale, bias, and perform a table look
up on the filtered texels. These extra steps are OpenGL extensions
that are useful for image processing and volumerenderingeffects.
Fully filtered texels are then combined with the fragments from the
PG based on the current OpenGLtexture environment. If enabled,
fog is applied. The last operation donebythe TFis the per-fragment
alphatest.

Each TF is connected to 5 Image Memory Processor (IMP)
ASICs. Each IMP ASICcontains4 instances ofthe IMP core. Each

IMPcore manages 1 megabyte of external memory containing the
framebuffer. The IMPs manage 80 megabytestotal per Raster Man-
ager. Each IMP core managesa scattereddistribution ofpixels and
receivesfragments from its TF. The IMP coreperformsall OpenGL
per-fragment operations exceptalphatesting which is donein the
TFandscissoring whichis done in the PG.

The IMPs maintain multiple depth and color samples per pixel
to realize order-independentantialiasing. The IMPs also perform
OpenGL’s accumulation buffer [4] operations.

A single RasterManagerboard cansustaintexturedpixelfill rates
of200 megapixels per second. The combinedtexturedfill rate with
four Raster Managers is therefore 800 megapixels per second.

3.7 Display Generator Subsystem

The Display Generator board is responsible for generating analog
video streams based on the current contents ofthe framebuffer main-

tained by the IMPsin the Raster Manager. InfiniteReality supports
2 or 8 analog video output channels . Each Video Output Channel
(VOC) ASICgenerates video requests sent overa serial interface to
the IMPs. The IMPsrespond with the requested framebuffer color

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
 Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

 Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
 With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

 Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
 Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

 Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

