Realizing OpenGL: Two Implementations of One Architecture

Mark J. Kilgard
Silicon Graphics, Inc.

Abstract

The OpenGL Graphics System provides a well-specified, widely-
accepted dataflow for 3D graphics and imaging. OpenGL is an ar-
chitecture, an OpenGL-capable computer is a hardware manifesta-
tion or implementation of that architecture, The Onyx2 InfiniteRe-
ality and O2 workstations exemplify two very different implemen-
tations of OpenGL. The two designs respond to different cost, per-
formance, and capability goals.

Common practice is to describe a graphics hardware implemen-
tation based on how the hardware itself operates. However, this
paper discusses two OpenGL hardware implementations based on
how they embody the OpenGL architecture. An important thread
throughout is how OpenGL implementations can be designed not
merely based on graphics price-performance considerations, but
also with consideration of larger system issues such as memory ar-
chitecture, compression, and video processing. Just as OpenGL
is influenced by wider system concerns, OpenGL itself can pro-
vide a clarifying influence on system capabilities not conventionally
thought of as graphics-related.

CR Categories: 1.3.1 [Computer Graphics]: Hardware Architec-
ture; 1.3.6 [Computer Graphics]: Methodology and Techniques—
Standards

Keywords: OpenGL, Graphics Hardware Architecture, Infinite-
Reality, 02

1 Introduction

The OpenGL Graphics System provndes a well-speciﬁed, widely-
accepted dataflow for 3D graphics and imaging. While program-
mers may think of OpenGL as simply a programming interface [7],
we take the view that OpenGL defines an architecture.

We say a set of implementations manifest an architecture when
three conditions are met:

1. The implementations must all have an identical interface and
generate functionally equivalent outputs given the same inputs
and initial state,

2. The determiner of functional equivalence is something other
than a particular implementation,

3. The determiner of functional equivalence does not necessi-
tate thatall implementations be operationally identical, (There
must be multiple ways to implement the architecture.)

Permission to make .!.glmll'lnrd copies of all or part of this material for
personal or classreom use is granted without fee provided that the copies
are not made or distributed for profit or commercial ﬁdvmhge the copy-
right notice, the title of'the publication and its date appear, and notice is
given that copyright is by pennission of the ACM, Inc. To copy otherwise,
to republish, (o post on servers or to redistribute to lists, requires specific
permission andor fee

1997 SIGGRAPH Iurographics Workshop

Copyripht 1997 ACM 0-89791-961-0/97/8..53.50

DOCKET

_ ARM

Implementations that are simply “compatible” do not necessarily
manifest an architecture. Our definition allows for an implemen-
tation to belong to an architecture but have additional capabilities
beyond those defined by the architecture.

By our definition, OpenGL is clearly an architecture. While the
determiner of functional equivalence is not required to be a codified
specification, OpenGL’s architecture is indeed defined by its spec-
ification [11].

Implementations of an architecture typically accrue significant
advantagesnot available to ad hoc implementations or sets of imple-
mentations that are compatible yet do not manifest an architecture.
Architectures gain an advantage from compatibility, butalso tend to
be more adaptable and foster innovative implementations through
the freedom granted designers in how they realize the architecture.
Architectures also tend to be easy to extend because an implemen-
tation’s behavior is typically not specified for situations not defined
by the architecture’s functional equivalence.

The intent of this paper is to explore OpenGL’s adaptability as an
architecture. What we refer to as the adaptability of an architecture
is not measured by units sold or market share. Instead, we contend
that the adaptability of an architecture should be judged by the archi-
tecture’s ability to codify well-understood functionality, its potential
to be cleanly extended to support new capabilities, and its ability to
influence positively issues outside the scope of the architecture it-
self.

Our approach is to consider two manifestations of the OpenGL
architecture: the Onyx2 InfiniteReality graphics supercomputerand
the O2 desktop workstation. Our examples were chosen because
each is the result of quite different cost, performance, and capability
goals, but both concretely demonstrate our primary contention that
OpenGL is technically successful as an architecture because it is ex-
tensible to encompass new capabilities within the scope of interac-
tive graphics and because OpenGL can positively influence system
issues not directly graphics-related. Our approach is novel because,
while we consider concrete implementations, we are fundamentally
evaluating CpenGL as a graphics system architecture, not a partic-
ular hardware implementation.

Section 2 reviews the OpenGL architecture’s scope, philosophy,
functionality, and means of extensibility. Section 3 describes how
OpenGL is instantiated by the Silicon Graphics Onyx2 InfiniteRe-
ality. Section4 describeshow OpenGL is instantiated by the Silicon
Graphics O2 workstation. Section 5 contrasts the two implementa-
tions based on how they distinctly manifest the OpenGL architec-
ture. Section 6 discusses how the OpenGL architecture influenced
and even clarified several non-OpenGL design considerations in
both example implementations. Section 7 argues that the OpenGL
architecture is “good” because it provides us a framework for build-
ing innovative, evolvable, well-integrated graphics systems.

1The PC architecture lacks a codified specification but what constitutes
a PC has evolved beyond the point that a PC can be described operationally
by a single implementation as was originally the case.

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Selection

Point, Line,
y piUnpack 1o tVertex = {yland Poly]gto'on =
n

A

b=
Di ! Texture Fragment
“?mgg-’ u;pslay —™{ Memory Opgraﬂons

Y

] Framebutfer

- Unpacks Hm] pyy0) tmaga 1
;fg}s | <] Operations [Ractarization

t

Figure 1: The dataflow within the OpenGL architecture’s concep-
tual state machine.

Plxels

2 OpenGL is a Visualization Architecture

The OpenGL architecture addresses the task of efficiently convert-
ing vertex- and pixel-based data representations into images. While
the “GL” in OpenGL stands for Graphics Library, we consider
OpenGL’s functionality mandate to be larger than that of a tradi-
tional 3D graphics library. OpenGL manipulates vertex and pixel
data with comparable ease. Moreover, texture mapping provides
a “bridge” to effectively combine the rasterization of vertex- and
pixel-based data representations.

We consider SGI’s early IRIS GL implementation to exemplify
the conventional feature set ofa 3D graphics library. Overtime IRIS
GL added texture mapping and image processing operations to its
repertoire. These additions served as the motivation for rethinking
the purpose of a graphics library during the design of OpenGL. Be-
cause OpenGL is well-suited for manipulating both vertex and pixel
data, supports texture mapping, and embodies an architecture, we
refer to OpenGL as a visualization architecture.

2.1 State Machine Philosophy

OpenGL is specified as a state machine. OpenGL commands either
set state variables, retrieve state variables, retrieve framebuffer con-
tents, compile or call display lists, or introduce vertex or pixel data
into the state machine. Vertex and pixel data introduced into the
state machine are processed based on the current OpenGL state set-
tings with the results sent to the framebuffer, texture objects, display
lists, or selection/feedback buffer depending on OpenGL’s current
settings. Figure 1 showsthe high-level dataflow within the OpenGL
architecture’s conceptual state machine.

Beyond OpenGL’s state machine model, several philosophical
choices help make OpenGL both extensible and adaptable to unex-
pected situations. In later discussion, we note how these choices are
manifested in the two example implementations considered.

OpenGL’sstate variables are orthogonal. In general, the enabling
or reconfiguring of OpenGL features does not interfere with other
features. For example, lighting calculations can be enabled or dis-
abled independently from the current depth buffering mode. This
means programmers can combine features with predictable results.
An often unforeseen advantage of feature orthogonality is that mul-
tiple independent features can often be combined in useful butunan-
ticipated ways. Much of OpenGL’s ease of extensibility is predi-
cated on feature independence. Without orthogonality, multiple ar-
chitectural extensions lead to confusing interdependencies or even
create feature conflicts.

RGBA Indox

¥
glPixelTransfer Scale Shilt
L | andBlas and Add Od%lnal
eorpath
" x0
giPixelMap Plxel Mapplng Plxel Mappin
L |AGBA> F?GBA] [lndox > EG@
IColorTableEXT
glEnab!e/ngisab!o -
Color Table
giConvolutionParameterEXT
glEnable/glDisable
glPixelTranster Convolutlon
b 5 |Scalo&Bias
glCalorTableEXT
glEnable/gIDisable
L » | Color Table Post Convolution
giCalodMatixSGI
glEnable/giDisable
glPixelTransler Color Matrix
Scale & Blas
giColorTableEXT
glEnable/giDisable
Color Tablo Post Color Matrix
glHistogrameXT
g'ResetHistogramEXT
g!Enable/giDisable
[
giMinmaxEXT
glResetMinmaxEXT .
glEnab!Lelngisab!a i

RGBA 1———

Figure 2: The extended OpenGL pixel path including the convolu-
tion, histogram, color matrix, and color table extensions.

not necessarily in a networked sense. Client-server means that the
interface between an OpenGL- application and an OpenGL imple-
mentation is strictly defined and all data passing between the appli-
cation and implementation is explicit. The client-server scparation
defines the boundary between OpenGL implementation state and
that of the application. This clear boundary makes possible network
extensible OpenGL implementations [5] and allows OpenGL to be
used as a direct hardware interface.

The OpenGL architecture is data format rich. Immediate
mode transfer of pixel and vertex data can be accomplished using
OpenGL’s wide variety of data sizes and formats. This allows ap-
plications to easily transfer their vertex and pixel data to OpenGL
by traversing application-dictated data structures. Applications can
supply pixel data using various strides, offsets, and component
packings. Application performance typically benefits from avoid-
ing data reformatting when transferring data to OpenGL. However,
OpenGL implementations must be ready to accept OpenGL’s mul-
titude of possible data formats.

The OpenGL architecture is configurable, but not programmable.
The OpenGL state machine can be thought of as a pipeline with a
fixed topology (though various stages may be switched in or out),
This mimics the layout of high-performance graphics subsystems
where rendering steps are decomposed and instantiated by special-
ized hardware. The OpenGL architecture clearly encourages this
style of implementation. This does create situations where features
such as programmable shaders [8] or generalized image processing
chains [12] are difficult to express as extensions to the OpenGL ar-
chitecture.

2.2 Functional Decomposition

Sections 3 and 4 discuss how OpenGL (as specified in version 1,1)
is instantiated by our example implementations. Therefore, this sec-
tion briefly reviews OpenGL’s functionality from an architectural
standpoint. The operations are explained “bottom up” starting with
the lowest level operations that update the framebuffer and moving
to the highest level operations that accept commands.

4 The OpenGL architecture is client-server in the abstract sense,

DOCKET
A

_ ARM

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

A fragment in OpenGL is the bundle of state required to update
a specific pixel in the framebuffer, Fragments are generated dur-
ing rasterization, The per-fragment operations are pixel ownership,

cmccnrlng leh') tpctmo stencil tpehna rlpnfh fpehng h!pndmg

<nQil

dithering, and logicop. The operatxons are performed in the order
listed though what operations are enabled depends on OpenGL’s
per-fragment state variables,

Rasterization is the process of breaking a primitive up into frag-

ataca Dnan(3T
ments thatare passedto the pe.—*"“*..us...t...t processingstage. CpenGL

supports five types of primitives: pomts lines, polygons,pnel rect-
angles, and bltmaps. The first step in rasterization is determining if
a framebuffer pixel is updated by the primitive. Depending on the

pnmmve being rasterized, the current raster position, face culling,
nnmt c|7r= line width, line ctmnlp nnlvann ctmnlp and antmlmema

state aﬁ‘ect which plxels are updated The next mstenzatxon step de-
termines the fragment depth and color of affected pixels. The alpha
color componentis altered based on the antialiasing state of geomet-
ric primitives, The depth of geometric primitives can be altered de-
pending on the polygon offset state, When enabled, texture mapping
and fog modify the color of both geometric and pixel primitives.

22,2 Texture Mapping and Mangement

Texturing maps a portion of a specified image onto each primitive
for which texturing is enabled, Texture coordinates determine what
portion of the image is mapped to the primitive. OpenGL supports
both 1D and 2D textures in a wide variety of formats. Texture pa-
rameters and the texture environment determine the method of fil-
tering texels and how texels are combined with fragments generated
during rasterization.

Texture objects provide the capability to switch between multiple
texture images without the overhead of respecifying the texture im-
age each time. Rectangularregions of textures can be incrementally
updated using subtexture loads. When a texture image is specified,
the constituent pixels are passed through the OpenGL pixel pipeline
so the same operations discussed beiow that apply to drawing, copy-
ing, or reading pixel rectangles also transform texture images when
they are specified.

2.2.3 Both Vertex and Pixel Processing

OpenGL transforms application-supplied vertex coordinates to win-
dow coordinates, clipping the primitives as necessary. Per-vertex
lighting is performed if enabled. Texture coordinates are either ex-
piicitly suppilied by the appiication or generaied based on the veriex
coordinates,

OpenGL definesa pixel path to processpixels. The pixel path can
be conﬁgur«.d to pc.rform component scaling, biasing, and remap-
ping via table lookups, Pixels are transformed by the pixel path
when pixels are drawn to the framebuifer, read back from the frame-
buffer, copied within the framebuffer, or downloaded into texture
memory, Each pixel transfer case shares the identical pixel process-
ing machinery,

2.2.4 Other Capabilities

Display lists provide a way to cache repeated command sequences
for potentially faster execution, Evaluators provide a means to effi-
ciently specify Bézier curves and surfaces. Feedback and selection
redirect the results of vertex processing back to the application in-
stead of on to rasterization,

DOCKET

(]
=

One key to an architecture’s adaptability is its extensibility.
OpenGL can be incrementally enhanced through its proven API
extension mechanisms. OpenGL’s rendering functionality can
be extended by adding extensions to OpenGL’s core rendering
model. Extensions also can be made to OpenGL s window system
dependent interface to address issues outside OpenGL’s rendering
model.

Various OpenGL vendors have already implemented dozens of
extensions, and the OpenGL 1.1 update was the result of the
OpenGL Architectural Review Board’s efforts to fold success-
ful, proven extensions back into the core OpenGL architecture.
OpenGL 1.1 added vertex arrays, polygon offset, RGBA Iogic oper-
ations, texture objects, and further texture functionality enabled by
texture objects.

The following extensions are important for later discussion.

23.1 Imaging Extensions

A key set of OpenGL extensions? are the imaging extensions [10]:
color table, convolution, color matrix, histogram and new per—

lldglllclll. uu:uumg IHUUCB. rlgurc A bllU\Vh UIC C?“CIIUCU plxcl pdlﬂ

2.3.2 Hardware Accelerated Off-screen Rendering

Hardware accelerated offscreen r rendenncr is eritical for a multitude
of techniques that must reliably readback or reuse rendering results.
A window system dependent extension for pixel buffers (commonly

calied pbuffers) enables hardware accelerated offscreen rendering.

Onyx2 InfiniteReality implements the bulk of OpenGL’s dataflow
within the InﬁniteReality graphics subsystem. InﬁniteReality is de-
signed to be a “real time” graphics machine meamng that sustained
30 heriz and higher frame raies are achievable even for demanding
applications. InfiniteReality’s intended application domains are vi-
sual simulation, film & video production, real-time image process-
ing, volume rendering, and large-scale CAD.

InfiniteReality is a hardware-intensive design consisting of 13
distinct Application Specific Integrated Circuits (ASICs).® infinite-
Reality is a multiple-board graphics subsystem with the same board-
level architecture as the RealityEngine [1], InfiniteReality’s prede-
cessor. A single Transform Manager board connects to 1, 2, or
4 Raster Manager boards and a single Display Generator board.
Figure 3 shows an ASIC-level block diagram of InfiniteReality.
Figure 4 shows how OpenGL’s conceptual state machine (origi-
nally shown in Figure 1) roughly maps to InfiniteReality’s render-
ing ASICs. Starting at the host interface and working towards the
framebuffer and display back—end the following discussion shows

the Nnan(3T nhitanty ad h nfinitaDa.
how the vpenuL architecture is instantiated oy uuuuud\uaul.y.

2Under consideration for inclusion in OpenGL 1.2.

3 Other sources of information about InfiniteReality are likely to refer to
the boardsand ASICs that constitute InfiniteReal ity by “working names™ that
grew out of historical SGI jargon and tradition. In a few cases, the work-
ing names inadequately describe the ASIC or board’s true function in the
context of OpenGL. For example, the Geometry Engine ASIC handles both
vertex and pixel data so we refer to it here as a Transform Engine to bet-
ter suit our purpose of describing how InfiniteReality manifests the OpenGL
architecture.

A R M Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

D
A

Vidoo
] RAMDAC
Readback BUS TransformMRasterlzation \ - P41 g i
{ exiure
Fragment
Pixel
> Generator Processor v
0o
Texture Cutput || RAMDAC [
Fragment Channel £0
Transform Processor
Englre L’ Texture
Generator “ Texture
Fragment
T 1 ‘ Processor
Host Transform Engina Back
Interface =4 ~Engine = End [Texture Display
Processor Distributor FIFO Fragment Funclion
Engine Processor Managor
Traané;om
o -
I{sx&ure -
emory
Manager Requestor
Manager
Manager
\ I Manager l

S e S

Transform Manager board
(2or4)

A sln?:e Raster Manager board set

Display Generator board

,2,0r4 RMs per pipe) {optlon for 8 channels)

Figure 3: ASIC-level diagram showing the InfiniteReality graphics subsystem architecture.

3.1 Host Interface

The client-server structure of OpenGL makes it possible for essen-
tially the entire OpenGL feature set to be implemented within the In-
finiteReality graphics subsystem. The host-based OpenGL library is
largely used to setup efficient data transfers to and from the graphics
subsystem. For example, an immediate mode glVertex3£ call
returns in 7 instructions. This consists of jumping through a redi-
rection table, writing the Vertex3£ token followed by the three
floating point coordinates to the graphics FIFO address, and retum-
ing.

OpenGL commands and data enter InfiniteReality via a high-
bandwidth proprietary IO bus where they are received by the Host
Interface Processor (HIP) that decodes and dispatches OpenGL
command streams. Commands can be sent either by programmed
10 or via Direct Memory Access (DMA).

The HIP’s Input Control and Mapping (ICU) logic arbitrates the
OpenGL command stream from one of three sources: the host-filled
graphics FIFO, the host-activated input DMA stream, or a local
DMA stream used for calling locally cached display lists. The ICU
performs basic OpenGL command stream error checking and di-
rects commands for subsequent processing. Pixel and vertex com-
mands and some mode changes are simply passed along for further
processing. To process OpenGL command streams with data rates
over 300 MBs/second, the ICU must be very fast. More complex
OpenGL commands involving display lists, more complicated state
management, DMA setup, or non-rendering tasks can be redirected
to a microcoded 32-bit RISC core. Most of the RISC core’s mi-
crocode is written in C.

Display lists are cached in 15 of the 16 megabytes of external
memory managed by the RISC core (one megabyte is used for state
and microcode). The HIP’s local DMA facility allows cached dis-
play lists to be passed through the ICU just as if the command se-
quence was generated by the host. Most immediate mode OpenGL
calls result in IO writes to the hardware’s graphics FIFO address.
The graphics FIFO is mapped into the address space of direct ren-
dering OpenGL applications [6]. OpenGL command streams can
also be “pulled into™ the HIP via input DMA. Large textures, pixel
arrays, vertex arrays, and host-resident display lists canall be trans-
ferred this way. Because DMA transfers involve fixing host physical
memory mappings, DMA is initiated with operating system support.

The HIP is also responsible for returning OpenGL data back

OCKET

LARM

48

Tmm{m-g -
Engines exture
fermng Back End Fl;gmrnl
FIFO /\ Processors
= 1
'm
Mdanf:ry
Processors
Progent
Cparaent

Figure 4: How the conceptual OpenGL state machine roughly maps
to InfiniteReality’s rendering ASICs.

to the host. The results of giGet*, feedback, selection, and
glReadPixels are all returned via DMA, The HIP is responsi-
ble for any data reassembly required before returning the data to the
host.

3.2 Vertex and Pixel Transform Subsystem

The HIP sends the partially decoded OpenGL command stream to
the Transform Engine Distributor (TED). The TED front end is
responsible for converting OpenGL’s data format rich command
stream into a canonical format in preparation for handing the data to
the Transform Engines (TEs) for processing. For example, double
precision floating point or integer coordinates are forced to single
precision floating point. Pixel data is also reformatted as necessary,
Commands to change OpenGL state are mostly passed through un-
altered. Given the high data bandwidths involved and the flexibility
that OpenGL allows, the TED front end must be very fast,

The TED backend distributes bundles of work to 2 or 4 TEs
that perform the actual vertex and pixel transformations requircd,
Managing OpenGL'sg1lBegin/g1lEnd and per-vertex state is done
through a microcoded state machine. The TED also must ensure
that OpenGL transformation state is synchronized among the mul-
tiple TEs to guarantee proper OpenGL command serialization sc-

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

mantics despite multiple active TEs. The TED performs a mapping
of OpenGL command tokens to TE microcode addresses so that the
TE can immediately begin command execution. Work is typically
assigned to the least busy TE.

The TE ASIC is a custom microcoded floating point processor.
Each TE has a peak performance of 540 megaflops achieved using
three SIMD fioating point cores. The TEs use custom support logic
to accelerate graphics-specific operations such as clipping. A care-
fully tuned memory system is essential to keep the floating point
units continually busy. To minimize the amount of microcode re-
quired given the variety of geometry and pixel transformations po-
tentially enabled, microcode modules are “stitched” together based
on the current OpenGL geometry or pixel transformation state. For
example, the lighting microcode module would only be added to the
TE’s geometry microcode sequence if lighting is currently enabled.

The TEs implement the pixel path functionality including the ex-
tended pixel path functionality described in Section 2.3.1. Special
care is taken in the TED and TEs to manage pixel distribution when
pixel convolution is enabled. Another pixel path challenge is mem-
ory management for the various lookup tables, convolution kernels,
histogram bins, and other pixel path state that must be maintained
within each TE, Both pixel rectangles and texture downloads flow
through the TEs and so the identical microcode transforms both
types of pixel data identically as required by OpenGL.

The complete Transform Manager subsystem can sustain geom-
etry transformation rates of over 11 million polygons/second.

3.3 Transformation to Rasterization Crossbar

The transformed vertices and pixels from the TEs flow out in pack-
cts that must be reordered by the Back End FIFO (BEF). The BEF
is a 4 megabyte FIFO intended to minimize stalling the TEs dur-
ing framebuffer clears or the rasterization of very large polygons or
pixel rectangles,

The BEF broadcasts the contents of its FIFO across the Trans-
form/Rasterization Crossbar connecting the BEF to 1, 2, or 4 Raster
Manager boards. Two main types of requests are sent over the
crossbar: texture (or load) requests and rendering (or draw) re-
quests. The crossbar also feeds back to the HIP to implement se-
lection/feedback, state retrieval, and context switching.

The BEF actually maintains two distinct FIFOs: the draw FIFO
for rendering and the load FIFO for texture download. The draw
FIFO takes priority over the load FIFO, but the load FIFO drains
whenever the draw path is stalled. The draw path can stall because
it has gotten backed up with rasterization work or because it is wait-
ing on a texture to download. Waiting for a texture to fully down-
load provides an interlock that ensures textures are always properly
londed before use. The advantage of this scheme is that textures
can be downloaded concurrently with rendering to increase overall
throughput,

3.4 Primitive Rasterization

Geometric and image primitives, texture data, and mode changes
are all broadcast over the Transform/Rasterization Crossbar to the
Raster Managerboards. The crossbarcan sustain a maximum band-
width of 400 MBs/second. The Pixel Generator (PG) and Texel
Generator (TG) ASICs on each Raster Manager listen for the data
flowing from the BEF. Both the PG and TG rasterize image and ge-
ometry primitives sent over the crossbar. The PG almost completely
rasterizes primitives. Depending upon the current OpenGL rasteri-
zation state, the highly pipelined PG scan converts geometric prim-
itives, pixel zooms images, scissors, interpolates color and depth
between vertices, calculates coverage alpha values for antialiasing,
and applies the polygon stipple. The only rasterization steps not

DOCKET

_ ARM

F A

done in the PG are texture and fog application. The PG can sustain
the rasterization of over 12 million polygons a second.

3.5 Texturing

InfiniteReality is balanced to render just as fast with its highest qual-
ity (linear mipmap linear) texturing enabled as when rendering with
texturing disabled. This requires a very fast and sophisticated tex-
ture subsystem.

Using data received over the Transform/Rasterization Crossbar
and rasterization results passed to it from the PG, the TG needs to
initiate texel fetches for textured primitives in parallel with the ras-
terization work done by the PG. The TG needs to rasterize only tex-
tured primitives to the point that the TG can generate the necessary
per-fragment texture coordinates interpolated across the primitive,

Texture coordinate information is broadcast to 8 Texture Memory
(TM) ASICs. Each Raster Manager board is configured with either
16 or 64 megabytes of texture memory split evenly among the TMs.
Texture accessestend be highly redundantas nearby texels are often
needed multiple times in the course of filtering the texels for a given
textured primitive. The TMs act as specialized memory controllers
that are optimized for texel access patterns.

InfiniteReality includes numerous texture extensions introduced
by RealityEngine including sharpen texture, detail texture, 3D tex-
ture for volume rendering, and post-filtering texture lookup tables.
InfinjteReality also includes new texture features such as clipmap-
ping for rendering continuous terrain and various modes for better
video texture mapping.

3.6 Fragment Processing

Texels from the TMs and texture coordinate information from the
TG are combined in one of 4 Texture Fragment (TF) ASICs. The
TFs also receive the actual fragments generated by the PG. The in-
formation from the TMs and TG are used to perform OpenGL’s tex-
ture filtering modes such as linear mipmap linear filtering. A post-
filtering stage can optionally scale, bias, and perform a table look
up on the filtered texels. These extra steps are OpenGL extensions
that are useful for image processing and volume rendering effects.
Fully filtered texels are then combined with the fragments from the
PG based on the current OpenGL texture environment. If enabled,
fog is applied. The last operation done by the TF is the per-fragment
alpha test.

Each TF is connected to 5 Image Memory Processor (IMP)
ASICs. Each IMP ASIC contains 4 instances of the IMP core. Each
IMP core manages 1 megabyte of external memory containing the
framebuffer. The IMPs manage 80 megabytes total per Raster Man-
ager. Each IMP core manages a scattered distribution of pixels and
receives fragments from its TF. The IMP core performs all OpenGL
per-fragment operations except alpha testing which is done in the
TF and scissoring which is done in the PG.

The IMPs maintain multiple depth and color samples per pixel
to realize order-independent antialiasing. The IMPs also perform
OpenGL’s accumulation buffer [4] operations.

A single Raster Manager board can sustaintextured pixel fill rates
of 200 megapixels per second. The combined textured fill rate with
four Raster Managers is therefore 800 megapixels per second.

3.7 Display Generator Subsystem

The Display Generator board is responsible for generating analog
video streams based on the current contents of the framebuffer main-
tained by the IMPs in the Raster Manager. InfiniteReality supports
2 or 8 analog video output channels. Each Video Output Channel
(VOC) ASIC generates video requests sent over a serial interface to
the IMPs. The IMPs respond with the requested framebuffer color

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Nsights

Real-Time Litigation Alerts

g Keep your litigation team up-to-date with real-time
alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research

With over 230 million records, Docket Alarm’s cloud-native
O docket research platform finds what other services can't.
‘ Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips

° Learn what happened the last time a particular judge,

/ . o
Py ,0‘ opposing counsel or company faced cases similar to yours.

o ®
Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

-xplore Litigation

Docket Alarm provides insights to develop a more
informed litigation strategy and the peace of mind of

knowing you're on top of things.

API

Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS

Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND

LEGAL VENDORS

Sync your system to PACER to
automate legal marketing.

WHAT WILL YOU BUILD? @ sales@docketalarm.com 1-866-77-FASTCASE

