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Fundamentals of Digital Communication 

This textbook presents the fundamental concepts underlying the design of
modern digital communication systems, which include the wireline, wire-
less, and storage systems that pervade our everyday lives. Using a highly
accessible, lecture style exposition, this rigorous textbookfirst establishes a
firm grounding in classical concepts of modulation and demodulation, and
then builds on these to introduce advanced concepts in synchronization, non-
coherent communication, channel equalization, information theory, channel
coding, and wireless communication. This up-to-date textbook covers turbo
and LDPC codesin sufficient detail and clarity to enable hands-on imple-
mentationand performance evaluation, as well as “just enough” information
theory to enable computation of performance benchmarks to compare them
against. Other unique features include the.use of complex baseband represen-

. tation as a unifying framework for transceiver design and implementation;
wireless link design for a number of modulation formats, including space—
time communication; geometric insights into noncoherent communication;

- and equalization. Thepresentationis self-contained, and the topics are selected
so as to bring the readerto the cutting edge of digital communications research
and development.

Numerous examplesare usedto illustrate the key principles, with a view to
allowing the reader to perform detailed computations and simulations based
on the ideas presented in the text.

With homework problems and numerous examples for each chapter, this
textbook is suitable for advanced undergraduate and graduate students of
electrical and computer engineering, and can be used as the basis for a one
or two semester course in digital communication. It will also be a valuable
resource for practitioners in the communications industry.

Additional resources for this title, including instructor-only solutions, are
available online at www.cambridge.org/9780521874144.

Upamanyu Madhowis Professor of Electrical and Computer Engineering at the
University of California, Santa Barbara. He received his Ph.D. in Electrical
Engineering from the University of Ilinois, Urbana-Champaign, in 1990,
where he later served on the faculty. A Fellow of the IEEE, he worked for
several years at Telcordia before moving to academia.
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Preface

The field of digital communication has evolved rapidly in the past few
decades, with commercial applications proliferating in wireline communi-
cation networks (e.g., digital subscriber loop, cable, fiber optics), wireless
communication (e.g., cell phones and wireless local area networks), and stor-
age media(e.g., compact discs, hard drives). The typical undergraduate and
graduate student is drawn to the field because of these applications, but is
often intimidated by the mathematical background necessary to understand
communication theory. A good lecturer in digital communication alleviates
this fear by means of examples, and covers only the concepts that directly
impactthe applications being studied. The purposeof this text is to provide
such a lecture style exposition to provide an accessible, yet rigorous, intro-
duction to the subject of digital communication. This bookis also suitable for
self-study by practitioners who wish to brush up on fundamental concepts.

The book can be used as a basis for one course, or a two course sequence,in

digital communication. The following topics are covered: complex baseband
representation of signals and noise (and its relation to modern transceiver
implementation); modulation (emphasizing linear modulation); demodulation
(starting from detection theory basics); communication over dispersive chan-
nels, including equalization and multicarrier modulation, computation of per-
formance benchmarks using information theory; basics of modern coding
strategies (including convolutional codes and turbo-like codes); and introduc-
tion to wireless communication. The choice of material reflects my personal

bias, but the concepts covered represent a large subset of the tricks of the
trade. A student who masters the material here, therefore, should be well

equipped for research or cutting edge development in communication sys-
tems, and should have the fundamental grounding and sophistication needed
to explore topics in further detail using the resources that any researcher or
designer uses, such as research papers and standards documents.

Organization

Chapter 1 provides a quick perspective on digital communication. Chapters 2
and 3 introduce modulation and demodulation, respectively, and contain

xiii
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xiv Preface

material that I view as basic to an understanding of modern digital communi-
cation systems. In addition, a review of “just enough” backgroundin signals
and systems is woven into Chapter 2, with a special focus on the complex
baseband representation of passband signals and systems. The emphasis is
placed on complex baseband becauseit is key to algorithm design and imple-
mentation in modern digital transceivers. In a graduate course, many students
will have had a first exposure to digital communication, hence the instructor
may choose to discuss only a few key concepts in class, and ask students to

read the chapter as a review. Chapter 3 focuses on the application of detection
and estimation theory to the derivation of optimal receivers for the additive
white Gaussian noise (AWGN) channel, and the evaluation of performance
as a function of £,/No for various modulation strategies. It also includes a
glimpse of soft decisions and link budget analysis.

Once students are firmly grounded in the material of Chapters 2 and 3,
the remaining chapters more or less stand on their own. Chapter 4 contains
a framework for estimation of parameters such as delay and phase, starting
from the derivation of the likelihood ratio of a signal in AWGN. Optimal non-
coherent receivers are derived based on this framework. Chapter 5 describes
the key ideas used in channel equalization, including maximum likelihood
sequence estimation (MLSE) using the Viterbi algorithm, linear equaliza-
tion, and decision feedback equalization. Chapter 6 containsa brief treatment
of information theory, focused on the computation of performance bench-
marks. This is increasingly important for the communication system designer,
now that turbo-like codes provide a framework for approaching information-
theoretic limits for virtually any channel model. Chapter 7 introduces channel
coding, focusing on the shortest route to conveying a working understanding
of basic turbo-like constructions and iterative decoding. It includes convolu-
tional codes,serial and parallel concatenated turbo codes, and low density
parity check (LDPC) codes. Finally, Chapter 8 contains an introduction to
wireless communication, and includes discussion of channel models, fading,
diversity, common modulation formats used in wireless systems, such as
orthogonal frequency division multiplexing, spread spectrum, and continuous
phase modulation, as well as multiple antenna, or space-time, communica-
tion, Wireless communication is a richly diverse field to which entire books
are devoted, hence my goal in this chapter is limited to conveying a subset
of the concepts underlying link design for existing and emerging wireless
systems. I hopethat this exposition stimulates the reader to explore further.

How to use this book

My view of the dependencies among the material covered in the different

chapters is illustrated in Figure 1, as a rough guideline for course design
or self-study based on this text. Of course, an instructor using this text
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xv Preface

  
   

 Chapter 2 (modulation)
Chapter 3 (demodulation)

Chapter6 (information-theoretic
limits and their computation)

Chapter 8 (wireless communication)

Figure 1 Dependencies among may be able to short-circuit some of these dependencies, especially the
various chapters. Dashed lines=weak ones indicated by dashed lines. For example, much of the material
denote weak dependencies. in Chapter 7 (coding) and Chapter 8 (wireless communication) is accessible

without detailed coverage of Chapter 6 (information theory).
In terms of my personal experience with teaching the material at the Uni-

versity of California, Santa Barbara (UCSB), in the introductory graduate
course on digital communication, I cover the material in Chapters 2, 3, 4,

and 5 in one quarter, typically spendinglittle time on the material in Chapter 2
in class, since most students have seen some version of this material. Some-

times, depending on the pace of the class, I am also able to provide a glimpse
of Chapters 6 and 7. In a follow-up graduate course, I cover the material in
Chapters 6, 7, and 8. The pace is usually quite rapid in a quarter system, and
the same material could easily take up two semesters when taught in more

depth, and at a more measured pace.
An alternative course structure that is quite appealing, especially in terms

of systematic coverage of fundamentals, is to cover Chapters 2, 3, 6, and part
of 7 in an introductory graduate course, and to cover the remaining topics in

a follow-up course.

 
  
 

Chapter 4 (synchronization and Chapter7 (channe! coding)noncoherent communication) 
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Introduction

We define communication as information transfer between different points
in space or time, where the term information is loosely employed to cover
standard formats that we are all familiar with, such as voice, audio, video,

data files, web pages, etc. Examples of communication between two points
in space include a telephone conversation, accessing an Internet website from
our homeor office computer, or tuning in to a TV orradio station. Examples
of communication between two points in time include accessing a storage
device, such as a record, CD, DVD, or hard drive. In the preceding exam-

ples, the information transferred is directly available for human consumption.
However, there are many other communication systems, which we do not
directly experience, but which form a crucial part of the infrastructure that

_ we rely upon in our daily lives. Examples include high-speed packet trans-

fer between routers on the Internet, inter- and intra-chip communication in
integrated circuits, the connections between computers and computer periph-
erals (such as keyboards and printers), and control signals in communication
networks. .

In digital communication, the informationbeing transferred is represented
in digital form, most commonly as binary digits, or bits. This is in contrast to

analog information, which takes on a continuum of values, Most communica-
tion systems used for transferring information today are either digital, or are
being converted from analog to digital. Examples of some recent conversions
that directly impact consumers include cellular telephony (from analog FM
to several competing digital standards), music storage (from vinyl records to
CDs), and video storage (from VHS orbeta tapes to DVDs). However, we
typically consume information in analog form; for example, reading a book
or a computer screen, listening to a conversation or to music. Why, then,
is the world going digital? We considerthis issue after first discussing the
components of a typical digital communication system.
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2 Introduction

1.1 Components of a digital communication system

Consider the block diagram of a digital communication link depicted in
Figure 1.1. Let us now briefly discuss the roles of the blocks shown in the
figure.

Sourceencoder Informationtheory tells us that any information can beeffi-
ciently represented in digital form up to arbitrary precision, with the number
of bits required for the representation depending on the required fidelity. The
task of the source encoderis to accomplish this in a practical setting, reducing
the redundancyin the original information in a mannerthat takes into account
the end user’s requirements. For example, voice can beintelligibly encoded
into a 4 kbit/s bitstream for severely bandwidth constrained settings, or sent at
64 kbit/s for conventional wireline telephony. Similarly, audio encoding rates
have a wide range - MP3 players for consumer applications may employ
typical bit rates of 128 kbit/s, while high-end digital audio studio equipment
may require around ten times higherbit rates. While the preceding examples
refer to lossy source coding (in which a controlled amount of information
is discarded), lossless compression of data files can also lead to substantial
reductions in the amountof data to be transmitted.

Channel encoder and modulator While the source encoder eliminates

unwanted redundancy in the information to be sent, the channel encoder
introduces redundancy in a controlled fashion in order to combat errors that
may arise from channel imperfections and noise. The output of the channel
encoder is a codeword from a channel code, which is designed specifically
for the anticipated channel characteristics and the requirements dictated by
higher network layers. For example, for applicationsthat are delay insensitive,
the channel code may be optimized for error detection, followed by a request
for retransmission. On the other hand, for real-time applications for which
retransmissions are not possible, the channel code may be optimized for
error correction. Often, a combination of error correction and detection may
be employed. The modulator translates the discrete symbols output by the

Figure 1.1 Block diagram of a channel code into an analog waveform that can be transmitted over the
digital communication link.

 

   
 
 

 

1

From Source
information encoder I
generator . ''
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1.1 Components of a digital communication system

physical channel. The physical channel for an 802.11b based wireless local
area network link is, for example, a band of 20 MHz width at a frequency of
approximately 2.4 GHz.For this example, the modulatortranslates a bitstream
of rate 1, 2, 5.5, or 11 Mbit/s (the rate varies, depending on the channel
conditions) into a waveform that fits within the specified 20 MHz frequency
band. .

Channel Thephysical characteristics of communication channels can vary
widely, and good channel modelsare critical to the design of efficient commu-
nication systems. While receiver thermal noise is an impairment common to
most communication systems, the channel distorts the transmitted waveform
in a manner that may differ significantly in different settings. For wireline
communication, the channel is well modeled as a linear time-invariant sys-

tem, and the transfer function in the band used by the modulator can often
be assumed to be known at the transmitter, based on feedback obtained

from the receiver at the link set-up phase. For example, in high-speed digital
subscriber line (DSL) systems over twisted pairs, such channel feedback is
exploited to send more information at frequencies at which the channel gain
is larger. On the other hand, for wireless mobile communication, the channel

may vary because of relative mobility between the transmitter and receiver,
which affects both transmitter design (accurate channel feedbackis typically
not available) and receiver design (the channel musteither be estimated, or
methods that do not require accurate channel estimates must be used). Fur-
ther, since wireless is a broadcast medium, multiple-access interference due
to simultaneous transmissions must be avoided either by appropriate resource
sharing mechanisms, or by designing signaling waveforms and receivers to
provide robust performancein the presence ofinterference.

Demodulator and channel decoder The demodulator processes the analog
received waveform, which is a distorted and noisy version of the transmitted
waveform. One of its key tasks is synchronization: the demodulator must.
account for the fact that the channel can produce phase, frequency, and
time shifts, and that the clocks and oscillators at the transmitter and receiver

are not synchronized a priori. Another task may be channel equalization, or
compensation of the intersymbol interference induced by a dispersive channel.
Theultimate goal of the demodulator is to produce tentative decisions on the
transmitted symbols to be fed to the channel decoder. These decisions may be
“hard”(e.g., the demodulator guessesthata particular bit is 0 or 1), or “soft”
(e.g., the demodulator estimatesthe likelihood of a particular bit being 0 or 1).
The channel decoder then exploits the redundancy in the channel to code to
improve upon the estimates from the demodulator, with its final goal being
to produce an estimate of the sequence of information symbols that were the
input to the channel encoder. While the demodulator and decoder operate
independently in traditional receiver designs, recent advances in coding and
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Introduction

communication theory show thatiterative information exchange between the
demodulator and the decoder can dramatically improve performance.

Source decoder The source decoder converts the estimated information

bits produced by the channel decoder into a format that can be used by the
end user. This may or may not be the sameas the original format that was
the input to the source encoder. For example, the original source encoder
could have translated speech into text, and then encodedit into bits, and the
source decoder may then display the text to the end user, rather than trying
to reproduce the original speech.

Weare now ready to consider why the world is going digital. The two key
advantages of the digital communication approach to the design of transmis-
sion and storage media are as follows:

Source-independent design. Once information is transformed into bits by
the source encoder, it can be stored or transmitted without interpretation: as
long as the bits are recovered, the information they represent can be recon-
structed with the same degree of precision as originally encoded. This means
that the storage or communication medium can be independentof the source
characteristics, so that a variety of information sources can share the same
communication medium. This leads to significant economies of scale in the
design of individual communication links as well as communication networks
comprising manylinks, such as the Internet. Indeed, when information has to
traverse multiple communication links in a network, the source encoding and
decoding in Figure 1.1 would typically be done at the end points alone, with
the network transporting the information bits put out by the source encoder .
without interpretation.

Channel-optimized design For each communication link, the channel
encoder or decoder and modulator or demodulator can be optimized for the
specific channel characteristics. Since the bits being transported are regener-
ated at each link, there is no “noise accumulation.”

The preceding framework is based on a separation of source coding and
channel coding. Not only does this separation principleyield practical advan-
tages as mentioned above, but weare also reassured by the source—channel
separation theorem of information theory thatit is theoretically optimal for
point-to-point links (under mild conditions), While the separation approach
is critical to obtaining the economies of scale driving the growth ofdigital
communication systems, we note in passing that joint source and channel
coding can yield superior performance, both in theory and practice, in certain
settings (e.g., multiple-access and broadcast channels, or applications with
delay or complexity constraints).

The scope ofthis textbook is indicated in Figure 1.1: we consider modula-

tion and demodulation, channel encoding and decoding, and channel modeling.

Constellation Exhibit 2003

Page 20 of 395



Constellation Exhibit 2003
Page 21 of 395

5 1.2 Text outline

Source encoding and decoding are not covered. Thus, we implicitly restrict
attention to communication systems based on the separation principle.

1.2 Text outline 

The objective of this text is to convey an understanding of the principles
underlying the design of a modern digital communication link. An introduc-
tion to modulation techniques (i-e., how to convert bits into a form that can
be sent over a channel) is provided in Chapter 2, We emphasize the impor-
tant role played by the complex baseband representation for passband signals
in both transmitter and receiver design, describe some common modulation
formats, and discuss how to determine how much bandwidth is required to
support a given modulation format. An introduction to demodulation(i.e., how
to estimate the transmitted bits from a noisy received signal) for the classical
additive white Gaussian noise (AWGN) channelis provided in Chapter 3. Our
starting point is the theory of hypothesis testing. We emphasize the geometric
view of demodulation first popularized by the classic text of Wozencraft and
Jacobs, introduce the concept of soft decisions, and provide a brief exposure
to link budget analysis (which is used by system designers for determining
parameters such as antenna gains and transmit powers). Mastery of Chap-
ters 2 and 3 is a prerequisite for the remainder of this book. The remaining
chaptersessentially stand on their own. Chapter 4 contains a framework for
estimation of parameters such as delay and phase,starting from the derivation
of the likelihood ratio of a signal in AWGN. Optimal noncoherent receivers
are derived based on this framework. Chapter 5 describes the key ideas used
in channel equalization, including maximum likelihood sequence estimation
(MLSE) using the Viterbi algorithm, linear equalization, and decision feed-
back equalization. Chapter 6 containsa brief treatment of information theory,
focused on the computation of performance benchmarks. This is increas-
ingly important for the communication system designer, now that turbo-like
codes provide a framework for approaching information-theoretic limits for
virtually any channel model. Chapter 7 introduces error-correction coding.
It includes convolutional codes, serial and parallel concatenated turbo codes,
and low density parity check (LDPC) codes. It also provides a very brief
discussion of how algebraic codes (which are covered in depth in coding
theory texts) fit within modern communication link design, with an emphasis
on Reed-Solomon codes. Finally, Chapter 8 contains an introduction to wire-
less communication, including channel modeling, the effect of fading, and
a discussion of some modulation formats commonly used over the wireless
channelthat are not covered in the introductory treatment in Chapter 2. The

latter include orthogonal frequency division multiplexing (OFDM), spread
spectrum communication, continuous phase modulation, and space-time (or
multiple antenna) communication. —
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1.3 Further reading

Useful resources for getting a quick exposure to many topics on commu-
nication systems are The Communications Handbook [1] and The Mobile
Communications Handbook [2], both edited by Gibson. Standards for com-
munication systems are typically available online from organizations such as
the Institute for Electrical and Electronics Engineers (IEEE). Recently pub-
lished graduate-level textbooks on digital communication include Proakis [3],
Benedetto and Biglieri [4], and Barry, Lee, and Messerschmitt [5]. Under-
graduate texts on communications include Haykin[6], Proakis and Salehi [7],
Pursley [8], and Ziemer and Tranter [9]. Classical texts of enduring value
include Wozencraft and Jacobs [10], which was perhapsthe first textbook
to introduce signal space design techniques, Viterbi [11], which provides
detailed performance analysis of demodulation and synchronization tech-
niques, Viterbi and Omura [12], which providesa rigorous treatment of mod-
ulation and coding, and Blahut [13], which provides an excellent perspective
on the concepts underlying digital communication systems.

We do not cover source coding in this text. An information-theoretic treat-
ment of source coding is provided in Cover and Thomas [14], while a more
detailed description of compression algorithms is found in Sayood [15].

Finally, while this text deals with the design of individual communication
links, the true value of these links comes from connecting them together
to form communication networks, such as the Internet, the wireline phone
network, and the wireless cellular communication network. Twousefultexts

on communication networks are Bertsekas and Gallager [16] and Walrand and
Varaiya [17]. On a less technical note, Friedman [18] provides an interesting
discussion on the immense impact of advances in communication networking
on the global economy.

Constellation Exhibit 2003

Page 22 of 395



Constellation Exhibit 2003
Page 23 of 395

Modulation 

Modulation refers to the representation of digital information in terms of
analog waveforms that can be transmitted over physical channels. A simple
example is depicted in Figure 2.1, where a sequenceofbits is translated into
a waveform. The original information may be in the form ofbits taking the
values 0 and 1. These bits are translated into symbols using a bit-to-symbol
map, which in this case could be as simple as mapping the bit 0 to the symbol
+1, and the bit 1 to the symbol —1. These symbols are then mapped to

an analog waveform by multiplying with translates of a transmit waveform
(a rectangular pulse in the example shown): this is an example of linear
modulation, to be discussed in detail in Section 2.5. For the bit-to-symbol
map just described, the bitstream encoded into the analog waveform shown
in Figure 2.1 is 01100010100.

While a rectangular timelimited transmit waveform is shownin the example
of Figure 2.1, in practice, the analog waveforms employed for modulation
are often constrained in the frequency domain. Such constraints arise either
from the physical characteristics of the communication medium, or from
external factors such as government regulation of spectrum usage. Thus, we
typically classify channels, and the signals transmitted over them, in terms of
the frequency bands they occupy. In this chapter, we discuss some important
modulation techniques, after first reviewing some basic concepts regarding
frequency domain characterization of signals and systems. The material in this
chapteris often covered in detail in introductory digital communicationtexts,

Figure 2.1 A simple example +1 ed td 41 +1 +100 41
of binary modulation.

1-1 -1 =1
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but we emphasize some specific points in somewhat more detail than usual.
One of these is the complex baseband representation of passband signals,
which is a crucial tool both for understanding and implementing modern
communication systems. Thus, the reader who is familiar with this material
is still encouraged to skim through this chapter.

Mapof this chapter In Section 2.1, we review basic notions such as the
frequency domain representation of signals, inner products between signals,
and the concept of baseband and passband signals. While currents and volt-
ages in a circuit are always real-valued, both baseband and passband signals
can be treated under a unified framework by allowing baseband signals to
take on complex values, This complex baseband representation of passband
signals is developed in Section 2.2, where we point out that manipulation of
complex baseband signals is an essential component of modern transceivers.
While the preceding development is for deterministic, finite energy signals,
modeling ofsignals and noise in digital communicationrelies heavily onfinite
power, random processes. Wetherefore discuss frequency domain description
of random processes in Section 2.3. This completes the background needed
to discuss the main theme of this chapter: modulation. Section 2.4 briefly
discusses the degrees of freedom available for modulation, and introduces

the concept of bandwidth efficiency. Section 2.5 covers linear modulation
using two-dimensional constellations, which,in principle, can utilize all avail-
able degrees of freedom in a bandlimited channel. The Nyquist criterion for
avoidance of intersymbol interference (ISI) is discussed, in order to establish
guidelinesrelating bandwidth to bit rate. Section 2.6 discusses orthogonal and
biorthogonal modulation, which are nonlinear modulation formats optimized
for powerefficiency. Finally, Section 2.7 discusses differential modulation
as a means of combating phase uncertainty. This concludes our introduction
to modulation. Several other modulation formats are discussed in Chapter8,
where we describe some modulation techniques commonly employed in wire-
less communication.

2.1 Preliminaries

This section contains a description of just enough material on signals and
systemsfor our purposein this text, including the definitionsof inner product,
norm and energy for signals, convolution, Fourier transform, and baseband
and passbandsignals.

Complex numbers A complex number z can be written as z= x+jy,
where x and y are real numbers, and j = /—I. We say that x = Re(z) is
the real part of z and y = Im(z) is the imaginary part of z. As depicted in
Figure 2.2, it is often advantageous to interpret the complex number z as
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Figure 2.2 A complex number
z represented in the
two-dimensionalreal plane. (xy)

Re(z) 
a two-dimensional real vector, which can be represented in rectangular form
as (x, y) = (Re(z), Im(z)), or in polar form as

r=|j=J/e+y,
— = tan=

@ = arg(z) = tan x

Euler’s identity We routinely employ this to decompose a complex expo-
nential into real-valued sinusoids as follows:

el = cos @+jsind. (2.1)

A key building block of communication theory is the relative geometry
of the signals used, which is governed by the inner products between sig-
nals. Inner products for continuous-time signals can be defined in a manner
exactly analogous to the corresponding definitions in finite-dimensional vec-
tor space. ,

Inner product The inner product for two mx 1 complex vectors s =
(s[1],..., s[m])? and r=(7{1],..., 7{m))’is given by

” (s,r) = Ystir’ =ris, (2.2)
i=] .

Similarly, we define the inner product of two (possibly complex-valued)
signals s(t) and r(t) as follows:

(s,r) = / s(t)r*(1) dt. (2.3)
The inner product obeys the following linearity properties:

(4,5, +45), 7) = ay (sy, 7) +428, 7),
(8, 4,7 +427) = aj (s, 11) +.03(5, 72),

where a,, a, are complex-valued constants, and s, 5), 52, 7, %, are signals
(or vectors). The complex conjugation when we pull out constants from the’
second argumentof the inner product is something that we need toremain
aware of when computing inner products for complex signals.
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Energy andnorm The energy E,of asignal s is defined as its inner product
with itself:

E,=lls\? = (s,s) =f s@Pat, 2.4)
where|]s|] denotes the norm of s. If the energy of s is zero, then s must be
zero “almost everywhere”(e.g., s(t) cannot be nonzero over any interval, no
matter how small its length). For continuous-time signals, we take this to be
equivalent to being zero everywhere. With this understanding,||s|| = 0 implies
that s is zero, whichis a property that is true for normsin finite-dimensional
vector spaces.

Cauchy-Schwartz inequality The inner product obeys the Cauchy-
Schwartz inequality, stated as follows:

IXs,r)1 < IIsit flrll, (2.5)

with equality if and only if, for some complex constant a, s(t) = ar(t) or
r(t) = as(t) almost everywhere. That is, equality occurs if and only if one
signal is a scalar multiple of the other. The proof of this inequality is given
in Problem 2.4.

Convolution The convolution of two signals s and r givesthe signal

at) = (se) = f” s(u)r(t—u)du.
Here, the convolutionis evaluatedat time f, while u is a “dummy”variable that
is integrated out. However, it is sometimes convenient to abuse notation and
use q(t) = s(t) *r(t) to denote the convolution between s and r. For example,
this enables us to state compactly the following linear time invariance (LTT)
property:

(4,5, (t —t,) + a,5,(t — 2) #r(t) = a, (5, #7) (¢-4)) +a, (s, *)(C—f),

for any complex gains a, and a, and any time offsets f, and fy.

Delta function The delta function 6(2) is defined via the following “sifting”

property: for any finite energy signal s(#), we have

f” 8(t—15)s(t)dt = s(t). (2.6)
In particular, this implies that convolution of a signal with a shifted version
of the delta function gives a shifted version of the signal:

8(t — to) * s(t) = s(t — fo). (2.7)

Equation (2.6) can be shown to imply that 6(0) = co and 6(t) =0 fort 40.
Thus, thinking of the delta function as a signal is a convenient abstraction,
since it is not physically realizable.

Constellation Exhibit 2003

Page 26 of 395



Constellation Exhibit 2003
Page 27 of 395

  

11 2.1 Preliminaries

s(t)

1 (s#h)(t}

t 05 15 2.25
0 1 NN

=1 , ; 0.75
Channelinput Multipath channel 1.5 . :

Figure 2.3 A signal going
through a multipath channel.
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Multipath components

Channel output

Convolution plays a fundamental role in both modeling and transceiver
implementation in communication systems, as illustrated by the following
examples,

 

Example 2.1.1 (Modeling a multipath channel) The channel between
the transmitter and the receiver is often modeled as an LTI system, with
the received signal y given by

y() = (S¥A)@) +0),

where s is the transmitted waveform, / is the channel impulse response, and
n(t) is receiver thermal noise and interference. Suppose that the channel
impulse response is given by

M

A(t) = )0a,8(t-t,).
i=!

Ignoring the noise, a signal s(#) passing through such a channel produces
an output

M .

y(t) = (s#h)(t) = D0 a,s(t ~t)).i=1

This could correspond, for example, to a wireless multipath channel in
which the transmitted signal is reflected by a numberofscatterers, each
of which gives rise to a copy of the signal with a different delay and
scaling. Typically, the results of propagation studies would be ‘used to
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obtain statistical models for the number of multipath components M, the
delays {t;}, and the gains {a,}.

Example 2.1.2 (Matched filter) For a complex-valued signal s(t), the
matchedfilter is defined as a filter with impulse response 5y_(t) = s*(—1);
see Figure 2.4 for an example. Note that Syp(f) = S*(/). If the inputto
the matched filter is x(), then the output is given by

Re(s(t)) Re(Syp(th) = Re(st-t))

Im(s{t)) Im(Spyp(t)) = -im(s(-4)

1.5

Figure 2.4 Matchedfilter for a complex-valued signal.

y(t) = (X* Syp) (1) =f X(U)Syp(t —u)du =f x(u)s*(u— du. (2.8)
The matched filter, therefore, computes the inner product between the
input x and all possible time translates of the waveform s, which can be
interpreted as “template matching.” In particular, the inner produet (x, s)
equals the output of the matched filter at time 0. Some properties of the
matchedfilter are explored in Problem 2.5. For example,if x(t) = s(t —t)
(i.e., the input is a time translate of 5), then, as shown in Problem 2.5,the
magnitude ofthe matched filter output is maximum at ft = f). We can, then,
intuitively see how the matched filter would be useful, for example, in
delay estimation using “peak picking.” In later chapters, a more systematic
developmentis used to reveal the key role played by the matchedfilter in
digital communication receivers.
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han) Indicator function We use J, to denote the indicator function of a set A,
defined as

1, xeA,1 1a) =| 0, otherwise.
x For example, the indicator function of an interval has a boxcar shape, as

a b
shownin Figure 2.5.

Figure 2.5 The indicator
function of an interval has a

boxcar shape. sinc(x) =

Since function Thesinc function is defined as

sin(7x)
am °

wherethe value at x = 0, defined as the limit as x — 0, is set as sinc(0) = 1.
Thesinc function is shown in Figure 2.19. Since| sin(x)| < 1, we have that
|sinc(x)| < (1/7x). That is, the sinc function exhibits a sinusoidal variation,
with an envelope that decays as 1/x. We plot the sinc function later in this
chapter, in Figure 2.19, when we discuss linear modulation.

Fourier transform Let s(#) denote a signal, and S(f) = ¥(s(t)) denoteits
Fourier transform, defined as

S(= / s(theP™ de, (2.9)
The inverse Fourier transform is given by

s(t) = / S(fe2™af. (2.10)
Both s(t) and S(f) are allowed to take on complex values, We denote the
relationship that s(t) and S(f) are a Fourier transform pair by s(t) < S(f).

Time—frequency duality in Fourier transform From an examination of
the expressions (2.9) and (2.10), we obtain the following duality relation:
if s(t) has Fourier transform S(f), then the signal r(t) = S(t) has Fourier
transform R(f) = s(—f).

Important Fourier transform pairs

(i) The boxcar andthe sinc functions formapair:

s(t) = It,2)(t) < S(f) = Tsinc(f7). (2.11)

(ii) The delta function and the constant function formapair: .

s(t) = 8(1) @ S(f) = 1. (2.12)

Welist only two pairs here, because most of the examples that we use
in our theoretical studies can be derived in terms of these, using time—
frequency duality and the properties of the Fourier transform below. On
the other hand, closed form analytical expressions are not available for

Constellation Exhibit 2003

Page 29 of 395



Constellation Exhibit 2003
Page 30 of 395

14 Modulation

many waveforms encountered in practice, and the Fourier or inverse
Fourier transform is computed numerically using the discrete Fourier
transform (DFT) in the sampled domain.

Basic properties of the Fourier transform Someproperties of the Fourier
transform that we use extensively are as follows (it is instructive to derive
these starting from the definition (2.9)):

(i) Complex conjugation in the time domain corresponds toconjugation and
reflection around the origin in the frequency domain, and vice versa;

Sho S*(-f/),
s*(—1) > S*(f). (2.13)

(ii) A signal s(t) is real-valued (i.e., s(¢) = s*(t)) if and only if its Fourier
transform is conjugate symmetric (i.e., S(f) = S*(—f)). Note that con-
jugate symmetry of S(f) implies that Re(S(/)) = Re(S(—/f)) (real part
is symmetric) and Im(S(f))} = —Im(S(—f)) (imaginary part is antisym-
metric).

(iii) Convolution in the time domain corresponds to multiplication in the
frequency domain, and vice versa;

s(1) = (51 *5)() & SCD = SNS), 0.14)
s(2) =5,(#)59(0) SCA) = (51 *5:)().

(iv) Translation in the time domain corresponds to multiplication by a com-
plex exponential in the frequency domain, and vice versa;

S(t fo) > S(fje?7%,
SCJP« SUFfi) en)

(v) Timescaling leads to reciprocal frequency scaling;

1 ff
—S{=}). 2.1s(at) s(2) (2.16)

(vi) Parseval’s identity The inner product of two signals can be computed in
either the time or frequency domain,as follows:

Gisd=[" iss@de= [" sMSINAf =(S,.5:)- 2.17)
Setting s, = s, =s, we obtain the following expression for the energy E,
of a signal s(2):

E,=lWsIP =f" Is@Par=f" iscpPas. 2.18)
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Energy spectral density The energy spectral density E,(f) of a signal s(t)
can be defined operationally as follows. Pass the signal s(¢) through an ideal
narrowbandfilter with transfer function;

A

Hn={§ fo- $< f<ho+F,0, else.

The energy spectral density. E,(/p) is defined to be the energy at the output
ofthefilter, divided by the width Af (in the limit as Af — 0). That is, the
energy at the output ofthe filter is approximately £,(f)Af. But the Fourier
transform ofthe filter output is

1) = sang = | 5M f-# <f<fot4,0, else.

By Parseval’s identity, the energy at the outputofthefilter is

eo for

[wor ar= Jp SCOP of = ISU)F ay,
assuming that S(f) varies smoothly and Af is small enough. We can now
infer that the energy spectral density is simply the magnitude squared of the
Fourier transform:

E(f) = |s(/. (2.19)

The integral of the energy spectral density equals the signal energy, which is
simply a restatement of Parseval’s identity.

Autocorrelation function -The inverse Fourier transform of the energy
spectral density E,(f) is termed the autocorrelation function R,(7), since it
measures how closely the signal s matches delayed versions ofitself. Since
ISA? =SAS*() = S()Sye(/), where syq:(t) = 5*(—2)is the matchedfilter
for s introduced earlier. We therefore have that

E,(f) = |SQ)|? + B,(7) = (s* 5ye)(7) =[ s(u)s*(u—7) du. (2.20)
Thus, R,(7) is the outcome of passing the signal s through its matched filter,
and sampling the output at time 7, or equivalently, correlating the signal s
with a complex conjugated version ofitself, delayed by 7.

While the preceding definitions are for finite energy deterministic signals,
werevisit these concepts in the context of finite power random processes
later in this chapter.

Baseband and passbandsignals A signal s(t) is said to be baseband if

Sf)~0, |fl>W (2.21)

for some W>0, That is, the signal energy is concentrated in a band around
DC.Similarly, a channel modeled as a linear time-invariant system is said to
be basebandif its transfer function H(/) satisfies (2.21).
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Figure 2.6 Example of the
spectrum S(f) for a real-valued
baseband signal. The
bandwidth of the signal is 8.

Figure 2.7 Example ofthe
spectrum S(A) for a real-valued
passband signal. The
bandwidth ofthe signalis B.
The figure shows an arbitrarily
chosen frequency f, within the
bandin which S(f) is nonzero.
Typically, f, is much larger
than the signal bandwidth 8.

Modulation

A signal s(t) is said to be passband if

SG) +0, |ftf,|>W

where f, > W> 0. A channel modeled as a linear time-invariant system is
said to be passbandif its transfer function H(/) satisfies (2.22).

Examples of baseband and passband signals are shownin Figures 2.6 and
2.7, respectively. We consider real-valued signals, since any signal that has
a physical realization in terms of a current or voltage must be real-valued.
As shown, the Fourier transforms can be complex-valued, but they must
satisfy the conjugate symmetry condition S(/)} = S*(—/f). The bandwidth
B is defined to be the size of the frequency interval occupied by S(/f),
where we consider only the spectral occupancy for the positive frequencies

(2.22)

Re(S(f)

 
 

Re(Sp(f))
«Ff

ZL. _r.f
-f, fe

im(S,(F))
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for a real-valued signal s(t). This makes sense from a physical viewpoint:
after all, when the FCC allocates a frequency band to an application, say,
around 2.4 GHzfor unlicensed usage, it specifies the positive frequencies that
can be occupied. However, in order to be clear about the definition being
used, we occasionally employ the more specific term one-sided bandwidth,
and also define the two-sided bandwidth based on the spectral occupancy for
both positive and negative frequencies. For real-valued signals, the two-sided
bandwidth is simply twice the one-sided bandwidth, because of the conjugate
symmetry condition S(f) = S*(—f). However, when we consider the complex
baseband representation of real-valued passband signals in the next section,
the complex-valued signals which we consider do not, in general, satisfy
the conjugate symmetry condition, and there is no longer a deterministic
relationship between the two-sided and one-sided bandwidths. As we show in
the next section, a real-valued passband signal has an equivalent representation
as a complex-valued baseband signal, and the (one-sided) bandwidth of the
passband signal equals the two-sided bandwidth of its complex baseband
representation.

In Figures 2.6 and 2.7, the spectrum is shown to be exactly nonzero outside
a well defined interval, and the bandwidth B is the size of this interval. In

practice, there may not be such a well defined interval, and the bandwidth
depends on the specific definition employed. For example, the bandwidth
might be defined as the size of an appropriately chosen interval in which a
specified fraction (say 99%)of the signal energylies.

Example 2.1.3 (Fractional energy containment bandwidth) Consider
a rectangular time domain pulse s(t) = Jig. Using (2.11) and (2.15), the
Fourier transform of this signal is given by S(f) = Tsinc(fT)ei", so
that
 

‘|S()? = T’sinc?(fT).

Clearly, there is no finite frequency interval that containsall of the signal
energy. Indeed, it follows from a general uncertainty principle that strictly
timelimited signals cannotbestrictly bandlimited, and vice versa. How-
ever, mostof the energy of the signal is concentrated aroundthe origin, so
that s(t) is a baseband signal. We can now define the (one-sided) fractional
energy containment bandwidth B as follows:

[Uiseneaf =a J” scpaf, (2.23)
where 0 < a <1is the fraction of energy contained in the band [—B,B].
The value of B must be computed numerically, but there are certain
simplifications that are worth pointing out. First, note that T can be set to
any convenientvalue, say T = 1 (equivalently, one unit of time is redefined
to be T). By virtue of the scaling property (2.16), time scaling leads to
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reciprocal frequency scaling. Thus, if the bandwidth for T = 1 is B,, then
the bandwidth for arbitrary T must be B; = B, / T. This holds regardless
of the specific notion of bandwidth used, since the scaling property can be
viewed simply as redefining the unit of frequency in a consistent manner
with the change in our unit for time. The second observation is that the
right-hand side of (2.23) can be evaluated in closed form using Parseval’s
identity (2.18). Putting these observations together,it is left as an exercise
for the reader to show that (2.23) can be rewritten as

B

/ ' sinc?f df =a, (2.24)—B, .

which can be further simplified to

B, a

[ sinef df =<, (2.25)0 2

using the symmetry of the integrand around the origin. We can now
evaluate B, numerically for a given value of a. We obtain B, = 10.2 fora=
0.99, and B, =0.85 for a = 0.9. Thus, while the 90% energy containment
bandwidth is moderate, the 99% energy containment bandwidth is large,
because of the slow decay of the sinc function. For an arbitrary value of
T, the 99% energy containment bandwidth is B = 10.2/T.

A technical note: (2.24) could also beinferred from (2.23) by applying a
changeof variables, replacing fT in (2.23) by f. This changeof variables
is equivalent to the scaling argument that we invoked.  

2.2 Complex baseband representation

We often employ passband channels, which means that we must be able to
transmit and receive passband signals. We now show that all the informa-
tion carried in a real-valued passband signal is contained in a corresponding
complex-valued baseband signal. This baseband signal is called the complex
baseband representation, or complex envelope, of the passband signal. This
equivalence between passband and complex basebandhas profoundpractical
significance. Since the complex envelope can be represented accurately in dis-
crete time using a much smaller sampling rate than the corresponding passband

signal s,(t), modern communicationtransceivers can implement complicated
signal processing algorithms digitally on complex baseband signals, keeping
the analog processing of passband signals to a minimum.Thus,the transmitter
encodes information into the complex baseband waveform using encoding,
modulation and filtering performed using digital signal processing (DSP).
The complex baseband waveform is then upconverted to the corresponding
passband signal to be sent on the channel. Similarly, the passband received
waveform is downconverted to complex baseband by the receiver, followed
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by DSP operations for synchronization, demodulation, and decoding. This
leads to a modular framework for transceiver design, in which sophisticated
algorithms can be developed in complex baseband, independent of the phys-
ical frequency bandthat is ultimately employed for communication.

Wenowdescribe in detail the relation between passband and complex
baseband, and the relevant transceiver operations. Given the importance of
being comfortable with complex baseband,the pace of the developmenthere

_ is somewhatleisurely. For a reader who knowsthis material, quickly browsing
this section to become familiar with the notation should suffice.

Time domain representation of a passband signal Any passband signal

$,(t) can be written as

s(t) = V/25s,(t) cos2af,t ~-V25,(t) sin2af,t, (2.26)

where s,(t) (“c’”for “cosine”) and s,(¢) (“s” for “‘sine”) are real-valued signals,
and f, is a frequency reference typically chosen in or aroundthe band occupied
by S,(/). The factor of /2 is included only for convenience in normalization
(more on this later), and is often omitted in the literature.

In-phase and quadrature components The waveformss,(f) and s,(t) are
also referred to as the in-phase (or I) component and the quadrature (or Q)
componentofthe passbandsignal s,(t), respectively.

Example 2.2.1 (Passband signal) The signal

5,(t) = V2p,(2) cos 300mt — V2(1 ~ [¢)A_1,1)(0) sin 300m
is a passband signal with I components,(t) = Jjo,1,(¢) and Q component
5,(t) = (1— [t1)4-1,1)@. Like Example 2.1.3, this examplealsoillustrates
that we do not require strict bandwidth limitations in our definitions of
passband and baseband: the I and Q components are timelimited, and
hence cannot be bandlimited. However, they are termed basebandsignals

because mostoftheir energy lies in the baseband. Similarly, s,(#) is termed
a passband signal, since mostof its frequency contentlies in a small band
around 150 Hz.

 
Complex envelope The complex envelope, or complex baseband represen-

tation, of s,(¢) is now defined as

s(t) = 5,(t) +js,(0). (2.27)

In the preceding example, the complex envelopeis given by s(t) = Iio1(#)+
jQ. —|¢))7-1.()-

Constellation Exhibit 2003

Page 35 of 395



Constellation Exhibit 2003
Page 36 of 395

Modulation

Time domainrelationship between passband and complex baseband We .
can rewrite (2.26) as

5y(t) = Re(V2s(t)e?™*"'), (2.28)
To check this, plug in (2.27) and Euler’s identity (2.1) on the right-handside
to obtain the expression (2.26).

Envelope and phase of a passband signal The complex envelope s(t) can
also be represented in polar form, defining the envelope e(t) and phase 6(t) as

e(t) =|s()[=/82@)+s2(), (2) =tan™ 3. (2.29)
Plugging s(t) = e(t)einto (2.28), we obtain yet another formula for the
passbandsignal s:

Sp(t) = e(t) cos(27rf,t + 0(2)). (2.30)

The equations (2.26), (2.28) and (2.30) are three different ways of expressing
the samerelationship between passband and complex baseband in the time
domain.

Example 2.2.2 (Modeling frequency or phase offsets in complex base-

band) Consider the passbandsignal s, (2.26), with complex baseband
representation s = s,-+js,. Now, consider a phase-shifted version of the
passband signal

3,(0) = V2s,(1) cos(2af,t + (1) —-V2s,(2) sin(27rf,t + 9(1)),
where (rt) may vary slowly with time. For example, a carrier frequency
offset a and a phase offset b corresponds to 6(t) = 27rat+-b. We wish to

find the complex envelope of 5, with respect to f,. To do this, we write
5, in the standard form (2.28) as follows:

5(1) = Re(/2s(t)ei@nset+00))
Comparing with the desired form

3,(t) = Re(V23(e?™*'),
wecan read off

5(1) =s(. (2.31)

Equation (2.31) relates the complex envelopes before and after a phase
offset. We can expand out this “polar form” representation to obtain the
corresponding relationship between the I and Q components. Suppressing
time dependence from the notation, we can rewrite (2.31) as

5, +)5, = (5, +js,) (cos @+jsin 0)
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using Euler’s formula. Equating real and imaginary parts on both sides,
we obtain

3, = 5,cos 6 — s, sin 8,
5, = 5, sin @ +5, cos 6. (2.32)

This is a typical example of the advantage of working in complex baseband.
Relationships between passband signals can be compactly represented in
complex baseband, as in (2.31). For signal processing using real-valued
arithmetic, these complex baseband relationships can be expanded out to
obtain relationships involving real-valued quantities, as in (2.32).
 

Orthogonality of I and Q channels The passband waveform x,(t) =
/25s,(t) cos 27f,t corresponding to the I component, and the passband wave-
form x,(t) = /2s,(t) sin 27rf,t corresponding to the Q component,are orthog-
onal. Thatis,

(Xoo X,) = 0. (2.33)

Since what we know about s, ands, (i.e., they are baseband) is specified in
the frequency domain, we prove this result by computing the inner product
in the frequency domain,using Parseval’s identity (2.17):

Gem) = (Keo X) =fXOX) af.
We now need expressions for X, and X,. Since cos@ = 4(e +e) and
sin@ = ye” —e7*) we have

1 : : 1
X-(t) = (5, (te?! +5,(t)ePR!)<>Xf) = (SF -f)+S.f +h)0) qe) s¢(t) )X.(/) wa! F-f)+S.F+.))

1 . : 1
x,(t) = ——(s,(the?*! —s,(t)ePe")<>X,(f) = —= (5,(f-f.) -S.¢ +f):(1) VA) () )>X/) 5 -f.)-SSF+F.))
The inner product can now be computed as follows:

Ko) = 5[ISLSHAIGL)- SE + ANAL
(2.34)

We now look more closely at the integrand above. Since f, is assumed
to be larger than the bandwidth of the baseband signals S, and S,, the
translation of S,(f) to the right by f, has zero overlap with a translation
of S*(f) to the left by f,. That is, Sf —fJSIG +f.) = 0. Similarly,
So +f.)S*U — Ff.) = 0. We can therefore rewrite the inner product in
(2.34) as

Ke) = Ef"SE-fs—far["SU eAOSIT+far]
= =|[snsnar-["SSOAS|=0, 5)
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where we have used a changeof variables to show that the integrals involved _
cancel out.

Exercise 2.2.1 Work through the details of an alternative, shorter, proof of
(2.33) as follows. Show that

u(t) =x,()x,(t) = 2s,(t)s,(t) cos2af,tsin 2arf,t

is a passbandsignal (around what frequency?), and thus infer that

f” u(t)dt = U(O) =0.

Passband and complex baseband inner products Forreal passband sig-

nals a, and b, with complex envelopesa and b,respectively, the inner product
satisfies

{Ug Up) = (Ue, Ue) + (Uy, V,) = Re((u,v)). (2.36)

To showthefirst equality, we substitute the standard form (2.26) for u, and v,
and use the orthogonality of the I and Q components.For the second equality, -
we write out the complex inner product (u, v),

(u,v) = f"(ue(0+i.) (0e() -5u4(9)at
= (Cis Ug) + (gs Ug)+5 (— (ites Ug) + (its, Ue))s (2.37)

and note that the real part gives the desired term.

Energy of complex envelope Specializing (2.36) to the inner product of a
signal with itself, we infer that the energy of the complex envelopeis equal to
that of the corresponding passbandsignal (this is a convenient consequence
of the specific scaling we have chosen in our definition of the complex
envelope). Thatis,

IIslI? = IIs,I/?. (2.38)

To showthis, set u=v=s and u, =v, = 5, in (2.36), noting that Re((s, s)) =
Re(|[s]|?) = I[s1I?.

Frequency domain relationship between passband and complex baseband
Wefirst summarizethe results relating S,(f) and S(f). Let ST (/) = S,(Miy20}
denote the segmentofS,(f) occupyingpositive frequencies. Then the complex
envelopeis specified as

S(f) = V2S*(f +f,). ~ (2.39)
Conversely, given the complex envelope S(f) in the frequency domain, the
passbandsignal is specified as

Sf =f) +5"(-f -f.)s(/) = )tS(Hf- fea , (2.40)
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Wenowderive and discuss these relationships. Define

u(t) = V2s(the?*! <> Vif) = V2S8(f — f,). (2.41)

By the time domainrelationship between s, and s, we have

s(t) = Re(v(i)) = noty(#) o5,()= V+Pep
_ Sf —f)4S4(-f—f)
= Fa .

If S(f) has energy concentrated in the baseband, then the energy of V(/f) is
concentrated around f,, and the energy of V*(—/) is concentrated around —f,.
Thus, S,(f) is indeed passband. Wealso see from (2.42) that the symmetry
condition S,(f) = S3(—f) holds, which implies that s,(t) is real-valued. This
is, of course, not surprising, since our starting point was the time domain

expression (2.28) for a real-valued signal s,(?).
Figure 2.8 showsthe relation between the passbandsignal s(/), its scaled

version V(f) restricted to positive frequencies, and the complex baseband
signal S(f). As this example emphasizes,all of these spectra can, in general,
be complex-valued. Equation (2.41) correspondsto starting with an arbitrary

(2.42)

Re(S,(f)) im(S,(#))
B

\ [i-fZA. wef c one ooo f
-f fe fe

Re(Vf)) Im(VF))

2B
2A

oon tT.f LLCHS oe f
f, | fo

Re(S(f)) Im(S(f))

J2B
V2A

f f

Figure 2.8 Frequency domainrelationship betweena real-valued passbandsignal and its complex
envelope. Thefigure shows the spectrum 5,(/) of the passbandsignal, its scaled restriction to positive

“- frequencies V(f), and the spectrum S(f) of the complex envelope.
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baseband signal S(/) as in the bottom of the figure, and constructing V(/f) as
depicted in the middle of the figure. We then use V(f) to construct a conjugate

symmetric passband signal S,(f), proceeding from the middle ofthe figure to
the top. This example also showsthat S(f) does not, in general, obey conjugate
symmetry, so that the baseband signal s(t) is complex-valued. However, by
construction, S,(f) is conjugate symmetric, and hence the passband signal
5,(t) is real-valued.

Generalapplicability of complex baseband representation We have so

far seen that, given a complex basebandsignal (or equivalently, a pair of real
basebandsignals), we can generate a real-valued passband signal using (2.26)
or (2.28). But do these baseband representations apply to any real-valued
passband signal? To show that they indeed do apply, we simply reverse the
frequency domain operations in (2.41) and (2.42). Specifically, suppose that

s,() is an arbitrary real-valued passband waveform. This means that the
conjugate symmetry condition S,(f) = S3(—f) holds, so that knowing the
values of S, for positive frequencies is enough to characterize the values for
all frequencies. Let us therefore consider an appropriately scaled version of

the segmentof S, for positive frequencies, defined as

25,(f), f>0= 2S* = P , !Vf) =257(/) | 0, else, (2.43)
By the definition of V, and using the conjugate symmetry of S,, we see
that (2.42) holds. Note also that, since S, is passband, the energy of V is
concentrated around +/,. Now,let us define the complex envelope of S, by
inverting the relation (2.41), as follows:

s(= Butt. (2.44)
Since V(f) is concentrated around +/f,, S(f), which is obtained bytranslating
it to the left by f,, is baseband. Thus, starting from an arbitrary passband

signal S,(f), we have obtained a basebandsignal S(/f) that satisfies (2.41)
and (2.42), which are equivalent to the time domain relationship (2.28). We

refer again to Figure 2.8 to illustrate the relation between S,(f), V(/) and
S(f). However, we now go from top to bottom:starting from an arbitrary

conjugate symmetric S,(f), we construct V(f), and then S(/).

Upconversion and downconversion Equation (2.26) immediately tells us
how to upconvert from baseband to passband. To downconvert from passband
to baseband, consider

V2s, (t)cos(2af,t)=25,(t) cos” 2af,t —2s,(1) sin2af,tcos2af,t
5(t)+5,(f) cos4af.t ~5,(t) sindfit.

Thefirst term on the extreme right-hand side is the I component, a baseband
signal. The second andthird terms are passbandsignals at 2f,, which we can

il
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s(t)

J2cos 2nf,t 
—J/2sin 2nf,t

s,(t)

Upconversion
(baseband to passband) (passband to baseband)

Figure 2.9 Upconversion from
baseband to passband and
downconversion from passband
to baseband.

 
 

2.2 Complex baseband representation

Lowpass
filter 

 

V2cos 2nf,t

 
 

s,(t) Sp(t)
—VJ2sin 2nf,t

Lowpass
filter

Downconversion

get rid of by lowpassfiltering. Similarly, we can obtain the Q component by
lowpassfiltering —/2s,(2) sin27rf,t. The upconversion and downconversion
operations are depicted in Figure 2.9,

Information resides in complex baseband The complex baseband rep-
resentation corresponds to subtracting out the rapid, but predictable, phase
variation due to the fixed reference frequency f,, and then considering the
much slower amplitude and phase variations induced by baseband modula-
tion. Since the phase variation due to f, is predictable, it cannot convey any
information. Thus,all the information in a passband signal is contained inits
complex envelope.

Example 2.2.3 (Linear modulation) Suppose that information is en-
coded into a complex number b = b, +jb, = re®, where b,, b, are real-
valued numbers corresponding to its rectangular form, and r > 0, @ are
real-valued and correspondto its polar form. Let p(t) denote a baseband
pulse (for simplicity, assume that p is real-valued). Then the linearly modu-
lated complex baseband waveform s(t) = bp(#) can be used to convey the
information in b over a passband channel by upconverting to an arbitrary
carrier frequency f,. The corresponding passbandsignal is given by

sp(t) = Re (v2s(2)2") = v2(b(t) cos 27rf,t — b,p(t) sin 2zrf,t)
= J/2rcos(2af,t+ 0).

Thus, linear modulation in complex baseband by a complex symbol b can
be viewed as separate amplitude modulation (by b,, b,) of the I component
and the Q component, or as amplitude and phase modulation (by r, 8) of the
overall passband waveform.In practice, we encode information in a stream
of complex symbols {b[n]} that linearly modulate time shifts of a basic
waveform, and send the complex baseband waveform >>, b[n]p(t—nT).
Linear modulation is discussed in detail in Section 2.5.
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Figure 2.10 Therelationship
between passbandfiltering and
its complex baseband analog.

Modulation

Complex baseband equivalent ofpassbandfiltering We nowstate another

result that is extremely relevant to transceiver operations; namely, any pass-
band filter can be implemented in complex baseband. This result applies to
filtering operations that we desire to perform at the transmitter (e.g., to con-
form to spectral masks), at the receiver (e.g., to filter out noise), and to a
broad class of channels modeled as linear filters. Suppose that a passband

signal s,(t) is passed through a passbandfilter with impulse response h,(¢).
Denotethefilter output (whichis clearly also passband) by y,(¢) = (s, *A,)(®).
Let y, s and A denote the complex envelopes for y,, s, and A,, respec-
tively, with respect to a common frequency reference f,. Since real-valued
passband signals are completely characterized by their behavior for positive

frequencies, the passbandfiltering equation ¥,(/) = S,(/)H,(/) canbe sep-
arately (and redundantly) written out for positive and negative frequencies,
because the waveformsare conjugate symmetric around the origin, and there

is no energy around f =0. Thus, focusing on the positive frequency seg-

ments ¥,(f) = YDligoy 54) = Sp Miyooy» HA) = Ap(Alipo), we have
Y,(f) =S,()H,(), from which we conclude that the complex envelope of
y is given by

Vf) = VV,+f) =VIS,6+f+h) = SNH).
Figure 2.10 depicts the relationship between the passband and complex

baseband waveformsin the frequency domain, and supplies a pictorial proof
of the precedingrelationship. We nowrestate this important result in the time
domain:

Passband Complex baseband
Hy (f) Hf)

A V2A Filter

f
f f

S,(f) S(f)

B 42B Input

f
f f

Y, (f) YIf)

AB ¥2AB Output

f f
fe
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Figure 2.11 Complex
basebandrealization of

passbandfilter. The constant
scale factors of 1/./2 have Passband ett)

Sp (t) S,(t)
y, (t) 

Real basebandoperations

yO) = 3(s#h)(t). (2.45)
That is, passbandfiltering can be implemented incomplex baseband, using
the complex baseband representation of the desired filter impulse response.
As shownin Figure 2.11, this requires four real basebandfilters: writing out
the real and imaginary parts of (2.45), we obtain

11

Yo = a(S, *h, — 5,*h,), 1 5Fi (s,#h, +5, % h,). (2.46)

Remark 2.2.1 (Complex baseband in transceiver implementations)
Given the equivalence of passband and complex baseband,and the fact that
key operations suchas linear filtering can be performed in complex baseband,
it is understandable why, in typical modern passband transceivers, most of
the intelligence is moved to baseband processing. For moderate bandwidths
at which analog-to-digital and digital-to-analog conversion can be accom-
plished inexpensively, baseband operations can be efficiently performed in
DSP. These digital algorithms are independent of the passband over which
communication eventually occurs, and are amenable to a variety of low-cost
implementations, including very large scale integrated circuits (VLSI), field
programmable gate arrays (FPGA), and general purpose DSP engines. On the
other hand, analog components such as local oscillators, power amplifiers,
and low noise amplifiers must be optimized for the bands ofinterest, and are
often bulky. Thus, the trend in modern transceivers is to accomplish as much
as possible using baseband DSPalgorithms. For example, complicatedfilters
shaping the transmitted waveform to a spectral maskdictated by the FCC can
be achieved with baseband DSP algorithms, allowing the use ofrelatively
sloppy analog filters at passband. Another exampleis the elimination of ana-
log phase locked loops for carrier synchronization in many modern receivers;
the receiver instead employs a fixed analog local oscillator for downcon-
version, followed by a digital phase locked loop implemented in complex
baseband. .
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 cos (2nat+ b)
sin (2nat+ b)

y(t

 
Vicos 2nf,t

—V2sin 2nf,t

 
 

ye(t)yet cos (2nat+ b) vel)
sin (2nat+b

Real baseband operations for undoing frequency and phaseoffset

Figure 2.12 Undoing frequency and phaseoffsets in complex baseband after downconverting using a
focaloscillator at a fixed carrier frequency f,. The complex baseband operations are expandedout into
real arithmetic as shown.

Example 2.2.4 (Handling carrier frequency and phaseoffsets in com-
plex baseband) As shownin Figure 2.12, a communication receiver
uses a local oscillator with a fixed carrier frequency f, to demodulate an
incoming passband signal 

Yp (8) = V2[ye(#) cos(2a(f, +a)t+b) —y,(1) sin(2a(f, +a)t+b)],

where a, b, are carrier frequency and phase offsets, respectively. Denote
the I and Q components at the output of the downconverter as y,, },,
respectively, and the corresponding complex envelope as ) = j, +-jy,. We
wish to recovery,, y,, the I and Q components relative to a reference that
accounts for the offsets a and b. Typically, the receiver would estimate
a and b using the downconverter output j; an example of an algorithm
for such frequency and phase synchronization is discussed in the next
chapter. Assuming that such estimates are available, we wish to specify
baseband operations using real-valued arithmetic for obtaining y,, y, from
the downconverter output. Equivalently, we wish to recover the complex
envelope y= y,+jy, from y. We can relate y and } via (2.31) as in
‘Example 2.2.2, and obtain

HU) = y(nelerer,

This relation can now be inverted to get y from j:

Ye)=Feiner,
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Plugging in I and Q components explicitly and using Euler’s formula, we
obtain

Ye(t) +iys() = Ge(t) +5¥.(2)) (cos(2aat + b) —jsin(2mat+b)).

Equating real and imaginary parts, we obtain equations involving real-
valued quantities alone:

Ye = J, cos(2at + b) + F, sin(2aat + b) (2.47)
y, = —J,sin(2aat + b) +¥, cos(27at +b). ,

These computations are depicted in Figure 2.12.

Example 2.2.5 (Coherent and noncoherent reception) Weseein the
next two chapters that a fundamental receiver operation is to compare
a noisy received signal against noiseless copies of the received signals
corresponding to the different possible transmitted signals. This com-
parison is implemented by a correlation, or inner product. Let y,(¢) =
/2Re(y(s)e?") denote the noisy received passband signal, and s,(t) =
J/2Re(s(t)e27“') denote a noiseless copy that we wish to compareit with,
where y=y, +jy, and s = 5,-+js, are the complex envelopes of y, and |
Sp» Tespectively. A coherent receiver (which is a building block for the
optimal receivers in Chapter 3) for s implements the inner product(y,, 5,).
In terms of complex envelopes, we know from (2.36) that this can be
written as

(Yps om) = Re((y, 5)) = (Yes 5c) + (Ys. 5,)- (2.48)

 
Clearly, when y = As (plus noise), where A > 0 is an arbitrary amplitude
scaling, the coherent receiver gives a large output. However, coherent
reception assumescarrier phase synchronization (in order to separate out
and compute inner products with the I and Q componentsofthe received
passbandsignal), If, on the other hand, the receiver is not synchronized
in phase, then (see Example 2.2.2) the complex envelope of the received
signal is given by y = Aes (plus noise), where A > 0 is the amplitude
scale factor, and @ is an unknowncarrier phase. Now,the coherent receiver
gives the output

(yp: 5p) = Re((Ae*s, s)) (plus noise)
= Acos6||s||? (plus noise).

In this case, the output can be large or small, depending on the value
of 0. Indeed, for @ = 7/2, the signal contribution to the inner prod-
uct becomes zero. The noncoherent receiver deals with this problem by
using the magnitude, rather than the real part, of the complex inner
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product (y, s). The signal contribution to this noncoherent correlation is
given by

|(y, s)| =|(Aes, s) (plus noise)| ~ Al|s||? (ignoring noise),

where we have omitted the terms arising from the nonlinear interac-
tion between noise and signal in the noncoherent correlator output. The
noiseless output from the preceding computation shows that we do get
a large signal contribution regardless of the value of the carrier phase
9. It is convenient to square the magnitude of the complex inner prod-
uct for computation. Substituting the expression (2.37) for the complex
inner product, we obtain that the squared magnitude inner product com-
puted by a noncoherent receiver requires the following real baseband
computations:

IK. 5)? = (Cues Ve) + (itss V4))” + (— (iter 04) + (gs Ve)?» (2.49)

Wesee in Chapter 4 that the preceding computations are a building block
for optimal noncoherent demodulation under carrier phase uncertainty. The
implementations of the coherent and noncoherent receivers in complex
baseband are shownin Figure 2.13,
 

Remark 2.2.2 (Bandwidth) Given the scarcity of spectrum andthepotential
for interference between signals operating in neighboring bands, determining
the spectral occupancy of signals accurately is an important part of commu-
nication system design. As mentioned earlier, the spectral occupancy of a
physical (and hencereal-valued) signal is the smallest band of positive fre-

Figure 2.13 Complex quencies that contains most of the signal content. Negative frequencies are
baseband implementations of not included in the definition, since they contain no information beyond that
coherent and noncoherent : : ae . _ A oo .receivers, The real-valued already contained in the positive frequencies (S(—f) = S*(f) for real-valued
correlations are performed s(t)). For complex baseband signals, however, information resides in both
using matchedfilters sampled  POSitive and negative frequencies, since the complex basebandrepresenta-
attime zero. tion is a translated version of the corresponding passbandsignalrestricted to

t=0

 
 
 

 

Coherentreceiver output

Passband
received

signal

Noncoherent °
receiver
output

~J2 sin 2nf,t
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positive frequencies. We therefore define the spectral occupancy of a complex
baseband signal as the smallest band aroundthe origin, including both posi-
tive and negative frequencies, that contains mostof the signal content. These
definitions of bandwidth are consistent: from Figure 2.8, it is evident that
the bandwidth of a passband signal (defined based on positive frequencies
alone) is equal to the bandwidth of its complex envelope (defined based on
both positive and negative frequencies). Thus, it suffices to work in com-
plex baseband when determining the spectral occupancy and bandwidth of
passbandsignals.

2.3 Spectral description of random processes 

So far, we have considered deterministic signals with finite energy. From the

point of view of communication system design, however,it is useful to be
able to handle random signals, and to allow the signal energy to be infinite.
For example, consider the binary signaling example depicted in Figure 2.1.
We would like to handle bitstreams of arbitrary length within our design
framework, and would like our design to be robust to which particular bit-
stream was sent. Wetherefore model the bitstream as random (and demand
good system performance averaged over these random realizations), which
means that the modulated signal is modeled as a random process. Since
the bitstream can be arbitrarily long, the energy of the modulated signal
is unbounded. On the other hand, when averaged over a long interval, the
powerof the modulated signal in Figure 2.1 is finite, and tends to a constant,
regardlessof the transmitted bitstream. It is evident from this example,there-
fore, that we must extend our discussion of baseband and passbandsignals

to random processes. Random processes serve as a useful model not only
for modulated signals, but also for noise, interference, and for the input—
output response of certain classes of communication channels (e.g., wireless
mobile channels).

For a finite-power signal (with unbounded energy), a time-windowedreal-
ization is a deterministic signal with finite energy, so that we can employ
our existing machinery for finite-energy signals. Our basic strategy is to
define properties of a finite-power signal in terms of quantities that can be
obtained as averages over a time window,in the limit as the time window
gets large. These time averaged properties can be defined for anyfinite-power
signal. However, we are interested mainly in scenarios where the signal is
a realization of a random process, and we wish to ensure that properties we
infer as a time average over onerealization apply to most other realizations
as well. In this case, a time average is meaningful as a broad descriptor
of the random process only under an ergodicity assumption that the time
average along a realization equals a correspondingstatistical average across
realizations, Moreover, while the time average provides a definition that has
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operational significance (in terms of being implementable by measurement or
computer simulation), when a suitable notion of ergodicity holds,it is often
analytically tractable to compute thestatistical average. In the forthcoming .
discussions, we discuss both time averages andstatistical averages for several
random processesofinterest.

Power spectral density As with our definition of energy spectral density,
let us define the power spectral density (PSD) for a finite-power signal s(t)
in operational terms. Pass the signal s(#) through an ideal narrowbandfilter
with transfer function

nn |
The PSD evaluated at fo, S,(fo), can now be defined to be the measured
power at the filter output, divided by the filter width Af (in the limit as
Af — 0).

The preceding definition directly leads to a procedure for computing the
PSD based on empirical measurements or computer simulations. Given a
physical signal or a computer model, we can compute the PSD by time-
windowingthe signal and computing the Fourier transform,as follows. Define
the time-windowedversion of s as

57,() = s()I_-m2, (2.50)
where T, is the length of the observation interval. (The observation interval

need not be symmetric aboutthe origin, in general.) Since T,is finite, s;(#)
has finite energy if s(t) has finite power, and we can compute its Fourier
transform

1, fop-L<f<f+%,
0, else.

Sr (f) = F(Sr).

The energy spectral density of s;, is given by |S;,(f)|?, so that an estimate of.
the PSD ofs is obtained by averaging this over the observation interval. We
thus obtain an estimated PSD ,

SA =

The computations required to implement(2.51) are often referred toas a
periodogram.In practice, the signal s is sampled, and the Fourier transform is
computed using a DFT. The length of the observation interval determines the
frequency resolution, while the sampling rate is chosen to be large enough to
avoid significant aliasing. The multiplication by a rectangular time window
in (2.50) corresponds to convolution in the frequency domain with the sinc
function, which canlead to significant spectral distortion. Itis common,there- -
fore, to employ time windowsthat taper off at the edges of the observation
interval, so as to induce a quicker decay of the frequency domain signalbeing
convolved with. Finally, multiple periodograms can be averaged in order to
get a less noisy estimate of the PSD.

Or (2.51)°o
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Autocorrelation function As with finite-energy signals, the inverse Fourier
transform of (2.51) has the interpretation of autocorrelation. Specifically,
using (2.20), we have that the inverse Fourier transform of(2.51) is given by

a IS,P  . i fr .S.() = Tp + R,(1) = rl. Sp,(u)s7,(u—7) du
Lop Pei) Jd== Sp (u)sp (u—7) duT, J4max(o 7, (4) 57, (

1 7?

x r ls Sp,(u)s7,(u—7) du, (2.52)
wherethe last approximation neglects edge effects as T, gets large (for fixed
7). An alternative method for computing PSD,therefore, is first to compute
the empirical autocorrelation function (again, this is typically done in discrete
time), and then to compute the DFT. While these methods are equivalent in
theory, in practice, the properties of the estimates depend on a numberof
computational choices, discussion of which is beyond the scope of this book.
The interested reader may wishto explore the various methodsfor estimating
PSDavailable in MATLABorsimilar programs.

Formaldefinitions of PSD and autocorrelation function In addition to

providing a procedure for computing the PSD, we can also use (2.51) to
provide a formaldefinition of PSD byletting the observation interval get large:

; . P ;(Sf) = lim IS,
; T,Ty 00

(2.53)

Similarly, we can take limits in (2.52) to obtain a formal definition of the
autocorrelation function as follows:

- 1 /?

R,(7) = jimr / a Sz, (u)s7,(u—7) du, (2.54)o o’-

where the overbar notation denotes time averages alongarealization. As
wesee shortly, we can also define the PSD and autocorrelation function as
Statistical averages acrossrealizations; we drop the overbar notation when we
consider these. More generally, we adopt the shorthand f(t) to denote the
time average of f(t). Thatis,

H)=Jim = [ * rau) au= = u) du.

: To00 Ty -2

Thus, the definition (2.54) can be rewritten as

R,(1) = s(u)s*(u— 7).
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Basebandand passband random processes A randomprocessis baseband
if its PSD is baseband, andit is passbandif its PSD is passband. Since the -
PSD is defined as a time average along a realization, this also means (by —
assumption) that the realizations of baseband and passband random processes
are modeled as deterministic baseband and passbandsignals, respectively. In
the next section, this assumption enables us to use the developmentof the
complex basebandrepresentation for deterministic passband signals in our
discussion of the complex baseband representation of passband random pro-
cesses.

Crosscorrelation function For finite-power signals s, and s,, we define the
crosscorrelation function as the following time average:

Rais (7) = 5 (u)s} (u ~ 7). (2.55)
The cross-spectral density is defined as the Fourier transform ofthecross-
correlation function:

S.A) =F(Rin (A))- (2.56)

Example 2.3.1 (Autocorrelation function and power spectral density
for a complex waveform) Lets(t) = 5,(¢) +js,(¢) be a complex-valued,
finite-power, signal, where s, and s, are real-valued. Then the autocorre-
lation function of s can be computed as

R,(1) =ss"1)= 6.) +s, OMS.—7)—i5,¢—7)).

Simplifying, we obtain

R, (7) = [Ry (7) +8, (7)+I1R,,.5, (7) — Ry, (DI (2.57)
Taking Fourier transforms, we obtain the PSD

5.) =[5,9+5,,01+i15,,.5,.) — 55.5,1. (2.58)
Weusethis result in our discussion of the complex baseband representation
of passband random processesin the next section.

Example 2.3.2 (Power spectral density of a linearly modulated signal)
The modulated waveform shown in Figure 2.1 can be written in the form

s@)= XS Yalpe—n7),an=-0o

 
where the bits b[n] take the values +1, and p(#) is a rectangular pulse.
Let us try to compute the PSD for this signal using the definition (2.53).
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Anticipating the discussion of linear modulation in Section 2.5, let us
consider a generalized version of Figure 2.1 in the derivation, allowing the
symbols b[n] to be complex-valued andp(t) to be an arbitrary pulse in the
derivation. Consider the signal S() restricted to the observation interval
[0, NT], given by

N-1

s7,() = > bn|p(t—n7).
n=O

The Fourier transform of the time-windowed waveform is given by
N=l N=1

S.()=> b[n]P(fyeP"? = Pf) > b[nJeP77,
n=0 : n=0

Theestimate of the power spectral density is therefore given by

IS,QOP _ POOPL Zao b[nJeBarre
T, . NT

Let us now simplify the preceding expression and take the limit as T, —> 00
(i.e., N — oo). Define the term

(2.59)

Nol of Ned N-1 .
= > b[nJePr = > B[nje“?27"T >» b[m]e2aFar

n=0 n=0 m=O

N-1N-I

= YL Plno*[mJePe-m,
n=0 m=0

Setting k =n—m, we can rewrite the preceding as

A= > {o[n]|? +>e2aseT > b[n]b*[n—k]n=0 n=k

N-1+k

+ x PAT YS bnlb*[n—K].
k=-(N-1) n=0

Now,suppose that the symbols are uncorrelated, in that the time average
of b[n]b*[n —k] is zero for k #0. Also, denote the empirical average of
|b[n]|? by 02. Then the limit becomes

Substituting into (2.59), we can now infer that
2 2

PAPA _5.09 = tin, SHOR_yy POOPT.->00 ° = ye“NT
Thus, we have shownthat the PSD of a linearly modulated signal scales
as the magnitude squared of the spectrum of the modulating pulse.
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The time averages discussed thus far interpret a random process s(t) as a
collection of deterministic signals, or realizations, evolving over time t, where
the specific realization is chosen randomly. Next, we discuss methods for
computing the correspondingstatistical averages, which rely on an alternate
view of s(t), for fixed t, as a random variable which takes a range of values
across realizations of the random process, If J is the set of allowable values
for the index t, which is interpreted as time for our purposehere(e.g., T =
(—co, co) when the time index can take any real value), then {s(1), te7}
denotes a collection of random variables over a commonprobability space.
The term common probability space means that we can talk about the joint
distribution of these random variables.

In particular, the statistical averages of interest to us are the autocorrelation
function and PSD for wide sense stationary and wide sense cyclostationary
random processes (defined later). Since most of the signal and noise mod-
els that we encounter fall into one of these two categories, these techniques
form an important part of the communication system designer’s toolkit. The
practical utility of a statistical average in predicting the behavior of a par-
ticular realization of a random process depends, of course, on the ergodicity
assumption (discussed in moredetail later) that time averages equalstatistical
averages for the random processesofinterest.

Mean,autocorrelation, and autocovariance functions For a random pro-
cess s(t), the mean function is defined as

m,(t) = E[s(2)] (2.60)

and the autocorrelation function as

R,(ty, t2) = E[s(t,)s*(t2)]. (2.61)

The autocovariance function of s is the autocorrelation function of the zero

meanversion of s, and is given by

C(t, t2) = El(s(t) — Els(t1))) (s(2) — Els(42)])"] = Ro (41. 2) — 0,(01)(4):
(2.62)

Crosscorrelation and crosscovariance functions For random processes s,
and s, defined on a commonprobability space (i.e., we can talk about the joint
distribution of samples from these random processes), the crosscorrelation
function is defined as

Ry sy (thy 2) = E51 (t1)53(4)] (2.63)

and the crosscovariance function is defined as

Cy, og (tis to) = Els, (¢)) — Elsi (t1))) (242) — Elm(4)])')

= Ryo(ty f2) — ms, (4)mg, (t). (2.64)
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Stationary random process A random process s(t) is said to be stationary
if it is statistically indistinguishable from a delayed version of itself. Thatis,
s(t) and s(t—d) have the samestatistics for any delay d € (—oo, 00).

For a stationary random process s, the mean function satisfies

m,(t) = m,(t 7 d)

for any ¢, regardless of the value of d. Choosing d= t, weinferthat

m,(t) = m,(0).

Thatis, the mean function is a constant. Similarly, the autocorrelation function
satisfies

R,(ty, 2) = R(t, —d, 2, —d)

for any t,, f), regardless of the value of d. Setting 7 = t,, we have

R(t), t2) = R(t; —h, 0).

That is, the autocorrelation function depends only on the difference ofits

arguments.

Stationarity is a stringent requirement that is not always easy to verify.
However, the precedingproperties of the mean and autocorrelation functions
can be usedas the defining characteristics for a weaker property termed wide
sensestationarity. ,

Widesensestationary (WSS) random process A random processs is said
to be WSSif

m,(t) =m,(0) for all t
and oe

R(th) = R(t, —, 0). for all 4, t.

In this case, we change notation and express theautocorrelation function as
a function of 7 = t; —t, alone. Thus, for a WSS process, we can define the
autocorrelation function as

R,(7) = E[s(t)s*(t—7)] for s WSS (2.65)

with the understanding that the expectation is independentoft.

Powerspectral density for a WSS process Wedefine the PSD of a WSS
process s as the Fourier transform ofits autocorrelation function, as follows:

SN=F(RG). (2.66)
We sometimes also need the notion of joint wide sense stationarity of two

random processes.
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Jointly wide sense stationary random processes The random processes
X andYare said to be jointly WSSif (a) X is WSS, (b) Y is WSS,(c) the
crosscorrelation function Ryy(t,,t) = E[X(t,)¥*(t)] depends on the time
difference 7 = t, —t, alone. In this case, we can redefine the crosscorrelation
function as Ryy(7) = E[X(t)¥*(t—7)].

Ergodicity A stationary random process s is ergodic if time averages along
a realization equal statistical averages across realizations. For WSSprocesses,
we are primarily interested in ergodicity for the mean and autocorrelation
functions. For example, for a WSS process s that is ergodic in its autocorre-
lation function, the definitions (2.54) and (2.65) of autocorrelation functions
give the sameresult, which gives us the choice of computing the autocorre-
lation function (and hence the PSD) as either a time average ora statistical
average. Intuitively, ergodicity requires having “enough randomness” in a
given realization so that a time average alongarealization is rich enough
to capturethestatistics across realizations. Specific technical conditions for
ergodicity are beyond our present scope, butit is worth mentioningthe fol-
lowing intuition in the context of the simple binary modulated waveform
depicted in Figure 2.1. If all bits take the same value overa realization, then
the waveform is simply a constant taking value +1 or —1: clearly, a time
average across such a degenerate realization does not yield “typical” results.
Thus, we needthebits in a realization to exhibit enough variation to obtain
ergodicity. In practice, we often use line codes or scramblers specifically
designed to avoid long runs of zeros or ones, in order to induce enough
transitions for proper operation of synchronization circuits. It is fair to say,
therefore, that there is typically enough randomness in the kinds of wave-
forms we encounter (e.g., modulated waveforms, noise and interference) that
ergodicity assumptions hold.

Example 2.3.3 Armed with these definitions, let us revisit the binary
modulated waveform depicted in Figure 2.1, or more generally, a linearly
modulated waveform of the form ‘

s(t)= )° d[n]p(t—n7). (2.67)n=—00

Whenwedelay this waveform by d, we obtain

s(t-d)= )° b[n]p(t—nT—d).n=—00

Let us consider the special case d = kT, where k is an integer. We obtain

stk) = Yo Mnlpt- (H+) = Yo dln—Kpe—aT, (2.68)
n=—00 n=~00

 
where wehavereplaced n-+-k by n in the last summation. Comparing(2.67)
and (2.68), we note that the only difference is that the symbol sequence
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{b[n]} is replaced by a delayed version {b[1 — k]}. If the symbol sequence
is stationary, then it has the samestatistics as its delayed version, which
implies that s(¢) and s(t — kT) arestatistically indistinguishable. However,
this is a property that only holds for delays that are integer multiples of the
symboltime. For example, for the binary signaling waveform in Figure 2.1,
it is immediately evident by inspectionthat s(t) can be distinguished easily
from s(t—T/2) (e.g., from the location of the symbol edges). Slightly more
sophisticated arguments can be used to show similar results for pulses that
are more complicated than the rectangular pulse. We conclude,therefore,
that a linearly modulated waveform of the form (2.67), with a stationary
symbol sequence {b[n]}, is a cyclostationary random process, where the
latter is defined formally below. 

Cyclostationary random process The random process s(t) is cyclostation-
ary with respect to time interval T if it is statistically indistinguishable from
S(t —kT) for any integer k.

As with the conceptof stationarity, we can relax the notion of cyclosta-
tionarity by considering only the first and second orderstatistics.

Widesense cyclostationary random process The random process s(f) is
wide sense cyclostationary with respect to timeinterval T if the mean and
autocorrelation functions satisfy the following:

m,(t)=m,(t—T) for all ¢,

R,(t, t) =R,(t4-T,t—-T) for all t,t.

Wenowstate the following theoremregarding cyclostationary processes; this
is proved iin Problem 2.14.

Theorem 2.3.1 (Stationarizing a cyclostationary process) Let s(t) be a
cyclostationary random process with respectto the time interval T. Suppose
that D is a random variable that is uniformly distributed over [0, T], and
independentofs(t). Then s(t — D) is a stationary random process. Similarly,
if s(t) is wide sense cyclostationary, then s(t — D) is a WSS random process.

The random process s(t — D) is a “stationarized” version of s(t), with the
random delay D transforming theperiodicity in the statistics of s(t) into time
invariance in thestatistics of s(t—_D). We can now define the PSDofs to be
that of its stationarized version, as follows.

Computation of PSD for a (wide sense) cyclostationary process as a
statistical average For s(t) (wide sense) cyclostationary with respect to

timeinterval T, we define the PSD as _

Sf) = F(R,(7)),
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where R, is the “stationarized” autocorrelation function,

R,(7) = E[s(t — D)s*(t -D —7)],

with the random variable D chosen as in Theorem 2.3.1.

In Problem 2.14, we discuss whythis definition of PSD for cyclostationary
processes is appropriate when we wishto relate statistical averages to time
averages. That is, when a cyclostationary process satisfies intuitive notions of
ergodicity, then its time averaged PSD equals thestatistically averaged PSD
of the corresponding stationarized process. We then rederive the PSD for a
linearly modulated signal, obtained as a time average in Example 2.3.2 and
as a statistical average in Problem 2.22.

2.3.1 Complex envelope for passband random processes

For a passband random processs,(+) with PSD 5S.) we knowthatthe time-
windowedrealizations are also approximately passband. We can therefore
define the complex envelope for these time-windowedrealizations, and then
remove the windowing in the limit to obtain a complex baseband random
process s(t). Since we have defined this relationship on the basis of the

deterministic time-windowedrealizations, the random processes s, and s obey
the same upconversion and downconversion relationships (Figure 2.9) as
deterministic signals. It remains to specify the relation between the PSDs

of Sp and s, which we again infer from the relationships between the time-
windowedrealizations. For notational simplicity, denote by $,(t) a realization
of s,(t) windowedby an observation interval of length T7,; thatis, 3,() =
S(t).Ta Jay: Let S,(/) denote the Fourier transform of &, $(#) the complex
envelopeof§,, and S(/) the Fourier transform of 3(). We know that the PSD
of s, and s can be approximated as follows:

~ SAP ~ SAP
S.C) xa 5,4) = Tr (2.69)

Furthermore, we know from the relationship (2.42) between deterministic
passband signals and their complex envelopes that the following spectral
relationships hold:

3, = (60-48-80).
Since the $(f) is (approximately) baseband,the righttranslate $(f — J.) and
the left translate s(-J —fF,) do not overlap, so that

A 1 sa a

IS,OP = 5 (BUF+18(-F-0P).
Combining with (2.69), and letting the observation interval T, get large, we
obtain

8,9 = 5 GF -f)+8,(-F-$0). (2.70
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In a similar fashion, starting from the passband PSD and working backward,
we can infer that

Sf) = 28S+f):
where SA = Shsoo} iS the “right half” of the passband PSD.

Aswith deterministic signals, the definition of bandwidth for real-valued
passband random processes is based on occupancy of positive frequencies
alone, while that for complex baseband random processes is based on occu-
pancyofboth positive and negative frequencies. For a given passband random
process, both definitions lead to the same value of bandwidth.

2.4 Modulation degrees of freedom 

While analog waveforms and channels live in a continuous time space with
uncountably infinite dimensions, digital communication systems employing
such waveforms and channels can be understood in terms of vector spaces
with finite, or countably infinite, dimensions. This is because the dimen-
sion, or degrees of freedom, available for modulation is limited when we
restrict the time and bandwidth of the signaling waveforms to be used. Let
us consider signaling over an ideally bandlimited passband channel spanning
fo-W/2<f <f,+W/2. By choosing f, as a reference, this is equivalent
to an ideally bandlimited complex baseband channel spanning [—W/2, W/2].
That is, modulator design correspondsto design of a set of complex baseband
transmitted waveforms that are bandlimited to [—W/2, W/2]. We can now
invoke Nyquist’s sampling theorem, stated below.

Theorem 2.4.1 (Nyquist’s sampling theorem) Any signal s(t) bandlimited
to [—W/2, W/2] can be described completely by its samples {s(n/W)}at rate
W. Furthermore, s(t) can be recoveredfrom its samples using the following
interpolation formula:

s(t) = s s(=) p(:-=), (2.71)n=—0o

where p(t) = sinc(W2).

By the sampling theorem, the modulator need only specify the samples
{s(n/W)} to specify a signal s(t) bandlimited to [—W/2, W/2]. If the signals
are allowed to span a large time interval 7, (large enough that they arestill
approximately bandlimited), the number of complex-valued samplesthat the
modulator must specify is approximately WT7,. That is, the set of possible
transmitted signals lies in a finite-dimensional complex subspace of dimension
WT,, or equivalently, in a real subspace of dimension 2WT,. To summarize,
the dimension of the complex-valued signal space(i.e., the numberof degrees
of freedom available to the modulator) equals the time—bandwidth product.
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The interpolation formula (2.71) can be interpreted as linear modulation
(which has been introduced informally via several examples, and is consid- .
ered in detail in the next section) at rate W using the samples {s(n/W)}
as the symbols, and the sinc pulse as the modulating pulse g,,(z). Linear
modulation with the sinc pulse has the desirable characteristic, therefore, of —
being able to utilize all of the degrees of freedom available in a bandlim-
ited channel. As we showin the next section, however, the sinc pulse has
its problems, and in practice, it is necessary to back off from utilizing all
available degrees of freedom, using modulating pulses that have less abrupt
transitions in the frequency domain than the brickwall Fouriertransform of the
sinc pulse.

Bandwidth efficiency Bandwidth efficiency for a modulation scheme is
defined to be the numberof bits conveyed per degree of freedom. Thus,
M-ary signaling in a D-dimensional signal space has bandwidth efficiency

"n= aM
The number of degrees of freedom in the preceding definition is taken to
be the maximum available. Thus, for a bandlimited channel with bandwidth

W, we would set D = WT, to obtain the number of complex degrees of
freedom available to a modulator over a large time interval T,. In practice,
the numberofeffective degrees of freedom is smaller owing to a variety of
implementation considerations, as mentioned for the example of linear mod-
ulation in the previous paragraph. We do not include such considerations in
our definition of bandwidth efficiency, in order to get a numberthat funda-
mentally characterizes a modulation scheme, independent of implementation
variations.

To summarize, the set of possible transmitted waveformsin a timelimited
and bandwidth-limited system lies in a finite-dimensional signal space. The
broad implication of this observation is that we can restrict attention to
discrete-time signals, or vectors, for most aspects of digital communication
system design, even though the physical communication mechanism is based
on sending continuous-time waveforms over continuous-time channels. In
particular, we shall see in Chapter 3 that signal space concepts play an
important role in developing a geometric understanding of receiver design.
Signal space concepts are also useful for describing modulation techniques,
as we briefly describe below (postponing a more detailed developmentto
Chapter 3).

(2.72)

Signal space description of modulation formats Consider a modulation
format in which one of M signals, s,(t),..., 54,(2), is transmitted. The signal
Space spanned bythese signals is of dimension n < M, so we can represent
each signal s,(t) by an n-dimensional vector s, = (s,[1],...,s,n])?, with

Constellation Exhibit 2003

Page 58 of 395



Constellation Exhibit 2003
Page 59 of 395

43 2.5 Linear modulation

respect to some orthonormal basis ,(#),..., W,(#) satisfying (yy, ¥,) = d,),
1<k,l <n. That is, we have

sO=slo, sll=(suu=f sQur@de.—2.73)1=1

By virtue of (2.73), we can describe a modulation format by specifying
either the signals s(t), 1<i< M, or the vectors s, 1<i<M. More
importantly, the geometry of the signal set is preserved when we go from
continuous-time to vectors, in the sense that inner products, and Euclidean

distances, are preserved: (5,,5;) = (s,,8,) for 1 <i, j <M. As weshall
see in Chapter 3, it is this geometry that determines performance over the
AWGNchannel, which is the basic model upon which we build when

designing most communication systems. Thus, we can design vectors with
a given geometry, depending on the performance characteristics we desire,
and then map them into continuous-time signals using a suitable orthonor-
mal basis {,}. This implies that the same vector space design can be
reused over very different physical channels, simply by choosing an appro-
priate basis matched to the channel’s time—bandwidth constraints. An exam-
ple of signal space construction based on linear modulation is provided in
Section 2.5.4.

2.5 Linear modulation

We now know that we can encode information to be transmitted over a

passband channel into a complex-valued baseband waveform. For a physical
baseband channel, information must be encodedinto a real-valued baseband

waveform. We focus on more general complex baseband(i.e., passband)
systems, with physical real baseband systems automatically included as a
special case.

Asthe discussion in the previous section indicates, linear modulation is
a technique of fundamental importance for communication over bandlimited
channels. We have already had sneak previewsof this modulation technique
in Figure 2.1 and Examples 2.3.2, 2.2.3, and we now build on these for a
more systematic exposition. The complex basebandtransmitted waveform for
linear modulation can be written as

u() = DPlnlera(t— 20). (2.74)
Here {b[n]} are the transmitted symbols, typically taking valuesin a fixed sym-
bol alphabet, or constellation. The modulating pulse g7,(¢) is a fixed baseband
waveform. The symbol rate, or baud rate is 1/T, and T is termed the symbol
interval.
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2.5.1 Examplesof linear modulation

Wenowdiscuss some commonly used linear modulation formats for baseband
and passband channels.

Basebandline codes Linear modulation over physical baseband channels
is a special case of (2.74), with all quantities constrained to be real-valued,
since u(t) is actually the physical waveform transmitted over the channel. For
such real baseband channels, methods of mapping bits to (real-valued) analog
waveformsare often referred to as line codes. Examples of somebinary line
codes are shown in Figure 2.14 and can be interpreted as linear modulation
with either a {—1,-+-1} or a {0, 1} alphabet.

If a clock is not sent in parallel with the modulated data, thenbit timing
must be extracted from the modulated signal. For the non return to zero
(NRZ) formats shownin Figure 2.14, a long run of zeros or ones canlead to
loss of synchronization, since there are notransitions in voltage to demarcate
bit boundaries. This can be alleviated by precoding the transmitted data so
that it has a high enough rate of transitions from 0 to 1, and vice versa.
Alternatively, transitions can be guaranteed through choice of modulating
pulse: the Manchester code shownin Figure 2.14 has transitionsthat are twice
as fast as the bit rate. The spectral characteristics of baseband line codes are
discussed further in Problem 2.23.

Linear memoryless modulation is not the only option The line codes in

Figure 2.14 can be interpreted as memoryless linear modulation: the waveform
corresponding to a bit depends only on the value of the bit, andis a translate
of a single basic pulse shape. We note at this point that this is certainly not
the only way to construct a line code. Specifically, the Miller code, depicted
in Figure 2.15, is an exampleofa line code employing memory and nonlinear
modulation. The code uses two different basic pulse shapes, +s,(7) to send
1, and +5)(t) to send 0. A sign change is enforced when 0 is followedby 0,

Figure 2.14 Some baseband in order to enforce a transition. For the sequences 01, 10 and 11,a transition
line codesusing memoryless is ensured becauseofthe transition within s,(t). In this case, the sign of the
linear modulation. waveform is chosento delay the transition as muchas possible;itis intuitively

ov 1010 0.11 A>0,B=0 Unipolar NRZA .

YYoit)|!Data(NRZ format) A>0,B=-A Bipolar NRZ
B

Manchester code

Linear modulation with alphabet {+1,-1} and pulse
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Figure 2.15 The Miller codeis 0 1 1 0 ‘ 0 04
a nonlinear modulation format A
with memory. |

Miller code

-A

+A +A

-A

So (t) S; (t)

plausible that this makes the modulated waveform smoother, and reducesits
spectral occupancy.

Passband linear modulation For passband linear modulation, the sym-
bols {b[n]} in (2.74) are allowed to be complex-valued, so that they can
be represented in the two-dimensional real plane. Thus, we often use the
term two-dimensional modulation for this form of modulation. The complex
basebandsignal u(r) = u,(t) +ju,(2) is upconverted to passband as shownin
Figure 2.9,

Twopopular forms of modulation are phase shift keying (PSK) and quadra-
ture amplitude modulation (QAM). Phase shift keying corresponds to choos-
ing arg(b[n]) from a constellation where the modulus {b[n]] is constant.
Quadrature amplitude modulation allows both |b[n]| and arg(b[n]) to vary,
and often consists of varying Re(b[n]) and Im(b[n]) independently. Assum-
ing, for simplicity, that g7,(t) is real-valued, we have

u(t) =)Re(b[n))arx(t —nT), u(t) = YoIm(b[n)grx(t— 27).
The term QAM refers to the variations in the amplitudes of I and Q com-
ponents caused by the modulating symbol sequence {b[n]}. If the sequence
{b[n]} is real-valued, then QAM specializes to pulse amplitude modula-
tion (PAM). Figure 2.16 depicts some well-known constellations, where we
plot Re(b) on the x-axis, and Im(b) on the y-axis, as b ranges overall
possible values for the signaling alphabet. Note that rectangular QAM con-
stellations can be interpreted as modulation of the in-phase and quadrature
components using PAM (e.g., 16-QAM is equivalent to I and Q modulation
using 4-PAM).

Each symbol in a constellation of size M can be uniquely mapped to
log, M bits. For a symbol rate of 1/T symbols per unit time, the bit rate
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Figure 2.16 Some QPSK (4—-PSK or 4-QAM) 8-PSK
constellations for eer se,
two-dimensionallinear oO
modulation. ‘ 

 
“ee-oo"

is therefore (log, M)/T bits per unit time. Since the transmitted bits often

contain redundancy because of a channel code employed for error correction
or detection, the information rate is typically smaller than thebit rate.

Design choices Somebasic choices that a designer of a linearly modulated
system must makeare: the transmitted pulse shape g,,, the symbol rate 1/T,
the signaling constellation, the mapping from bits to symbols, and the channel
code employed, if any. We now show that the symbol rate and pulse shape
are determined largely by the available bandwidth, and by implementation
considerations. The background needed to makethe remaining choicesis built
up as we progress through this book. In particular, it will be seen later that
the constellation size M and the channel code,if any, should be chosen based
on channel quality measures such as the signal-to-noise ratio.

2.5.2 Spectral occupancy of linearly modulated signals

From Example 2.3.3, we know that the linearly modulated signal u in (2.74)
is a cyclostationary random processif the modulating symbol sequence{b[n]}
is a stationary random process. Problem 2.22 discusses computation of the
PSD for u as a statistical average across realizations, while Example 2.3.2
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discusses computation of the PSD as a time average. We now summarize
these results in the following theorem.

Theorem 2.5.1 (Power spectral density of a complex baseband linearly
modulated signal) Consider a linearly modulated signal

ul) = Yo bfnlern(t—n7).

Assume that the symbol stream b[n] is uncorrelated and has zero mean. That
is, E[b[n]b*[m]] = El |b[7]|?]8,,, and E[b[n]] = 0 (the expectation is replaced
by a time average when the PSD is defined as a time average). Then the PSD
of u is given by

n 2s,(p = Blea
Figure 2.17 shows the PSD (as a function of normalized frequency fT) for
linear modulation using a rectangular timelimited pulse, as well as the cosine-
shaped timelimited pulse used for minimum shift keying, which is discussed
in Problem 2.24. The smoother shape of the cosine pulse leads to a faster
decay of the PSD beyond the main lobe.

Theorem 2.5.1 implies that, for uncorrelated symbols, the shape of the PSD
of a linearly modulated signal is determined completely by the spectrum of
the modulating pulse g,,(t). A generalization of this theorem for correlated
symbol sequences is considered in Problem 2.22, which also discusses the
use of such correlations in spectrally shaping the transmitted signal. Another

IG(AP. (2.75)

Figure 2.17 PSD for linear
modulation using rectangular
and cosine timelimited pulses. .
The normalization is such that — _— Cosine pulse
the power(1e., the area under . :
the PSD) is the same in both
cases.  
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generalization of this theorem, discussed in Problem 2.23, is when the symbols
{b[n]} have nonzero mean,as is the case for some baseband line codes. In
this case, the PSD has spectral lines at multiples of the symbol rate 1/T,
which can be exploited for symbol synchronization.

The preceding result, and the generalizations in Problems 2.22 and 2.23,
do not apply to nonlinear modulation formats such as the Miller code shown
in Figure 2.15. However, the basic concepts of analytical characterization of
PSDdeveloped in these problems can be extended to more general modulation
formats with a Markovian structure, such as the Miller code. The details are

straightforward but tedious, hence we do not discuss them further.
Once the PSD is known,the bandwidth of u can be characterized using any

of a numberofdefinitions. One popular concept(analogousto the energy con-
tainment bandwidth fora finite-energy signal) is the 1 — € power containment
bandwidth, where ¢€ is a small number: this is the size of the smallest contigu-

ous bandthat containsa fraction 1 —€ of the signal power. The fraction of the
powercontained is often expressed in terms of a percentage: for example, the
99% power containment bandwidth corresponds to € =0.01. Since the PSD of
the modulated signal u is proportional to |G;,(f)|*, the fractional power con-
tainment bandwidth is equal to the fractional energy containment bandwidth
for G;,(f). Thus, the 1 — € power containment bandwidth B satisfies

[i lenirar= 1-9J" IGnPar. (2.76)
We use the two-sided bandwidth B for the complex baseband signal to
quantify the signaling bandwidth needed, since this corresponds to the
physical (one-sided) bandwidth of the corresponding passband signal. For
real-valued signaling over a physical baseband channel, the one-sided
bandwidth of u would be used to quantify the physical signaling bandwidth.

Normalized bandwidth Time scaling the modulated waveform u(#) pre-
serves its shape, but corresponds to a change of symbolrate. For example,
we can double the symbol rate by using a time compressed version u(2t) of
the modulated waveform in (2.74):

#9() = 02=Dba24-20) = Dole (2 (: _ nz) .
Time compressionleads to frequencydilation by a factor of two, while keep-

ing the signal power the same.It is intuitively clear that the PSD S,,(f) =
1/2S,(f/2), regardless of what definition we use to compute it. Thus, what-
ever our notion of bandwidth, changing the symbolrate in this fashion leads
to a proportional scaling of the required bandwidth. This has the following
important consequence. Once wehavearrived at a design for a given symbol
rate 1/7, we can reuse it without any changefor a different symbol rate a/T,
simply by replacing g7y(t) with g7,(at) (i.e., Gpy(f) with a scaled version
of Gr,(f/a)). If the bandwidth required was B, then the new bandwidth
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required is aB. Thus, it makes sense to consider the normalized bandwidth
BT, which is invariant to the specific symbol rate employed, and depends
only on the shape of the modulating pulse g;,(t). In doing this, it is also
convenient to consider the normalized time t/T and normalized frequency
JT. Equivalently, we can, without loss of generality, set T= 1 to compute
the normalized bandwidth, and then simply scale the result by the desired
symbolrate.

Example 2.5.1 (Fractional power containment bandwidth with time-
limited pulse) We wish to determine the 99% powercontainment band-
width when signaling at 100 Mbps using 16-QAM,using a rectangular
transmit pulse shape timelimited over the symbol interval. Since there are
log, 16 =4bit/symbol, the symbolrate is given by

100 Mbps
4 bit/symbol

Let us first compute the normalized bandwidth B, for T = 1. The transmit

pulse is g7y(t) = [io,1)(¢), so that

IGP = |sinc(/)/?.

We can now substitute into (2.76) to compute the power containment
bandwidth B. We have actually already solved this problem in Example
2.1.3, where we computed B, = 10.2 for 99% energy containment. We
therefore find that the bandwidth required is

1/T= = 25 Msymbol/s.

= 7 = 10.2 x 25 MHz = 260 MHz.
This is clearly very wasteful of bandwidth. Thus, if we are concerned about
strict power containmentwithin the allocated band, we should notbe using
rectangular timelimited pulses. On the other hand, if we are allowed to be
sloppier, andcan allow 10% of the powerto spill outside the allocated
band, then the required bandwidth is less than 25 MHz (B, = 0.85 for
a=0.9, from Example 2.1.3).

 
2.5.3 The Nyquistcriterion:relating bandwidth to symbolrate

Typically, a linearly modulated system is designed so as to avoid intersymbol
interference at the receiver, assuming an ideal channel,as illustrated in Figure
2.18, which shows symbols going through a transmitfilter, a channel (also
modeled asafilter), and a receivefilter (noise is ignored for now). Since
symbols are being fed into the transmitfilter at rate 1/T,it is natural to expect
that we can process the received signal such that, in the absence of channel

" distortions and noise, samplesat rate 1/T.equal the transmitted symbols. This
expectation is fulfilled when the cascadeof the transmitfilter, the channel
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Receive
filter

Fpxtt)

Transmit
filter

Orxit)

Symbols
{b[n]}
rate 1/T

 
 z(nT)

Whenis z(nT) = b[n]? 
rate 1/T

" Figure 2.18 Set-up for applying filter, and the receivefilter satisfy the Nyquist criterion for ISI- avoidance,
Nyquist criterion. which we nowstate.

From Figure 2.18, the noiseless signal at the output of the receivefilter is
given by

u z(t) = Do d[n]x(t — 27), (2.77)

where

x(t) = (rx * 8c * Sex) (2)

is the overall system response to a single symbol. The Nyquist criterion
answersthe following question: when is z(n7) = b[n]? Thatis, when is there
no ISI in the symbol-spaced samples? The answeris stated in the following
theorem.

Theorem 2.5.2 (Nyquist criterion for ISI avoidance) Intersymbol inter-
ference can be avoided in the symbol-spaced samples, i.e.,

z(nT) =b[n] for alin (2.78)

if

x(mT) = 8yo = | ° m : (2.79)
Letting X(f) denote the Fourier transform of x(t), the preceding condition
can be equivalently written as

1/T ys x(F+5) =1 forall f (2.80)k=-09

Proof of Theorem 2.5.2 It is immediately obvious that the time domain
condition (2.79) gives the desired ISI avoidance (2.78). It can be shown that
this is equivalent to the frequency domain condition (2.80) by demonstrating
that the sequence {x(—mT)} is the Fourier series for the periodic waveform

= kB(f)=1/T >> x(F+3)k=-co

obtained by summingall the aliased copies X(f+/T) of the Fourier trans-
form of x. Thus, for the sequence {x(mT)} to be a discrete delta, the periodic
function B(f) must be a constant. The details are developed in Problem 2.15.

0
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A pulse x(t) or X(/) is said to be Nyquist at rate 1/T if it satisfies (2.79)
or (2.80), where we permit the right-hand sides to be scaled by arbitrary
constants.

Minimum bandwidth Nyquist pulse The minimum bandwidth Nyquist
pulse is

xn={ fl sx.0, else,

corresponding to the time domain pulse
. t

y= =).x(t)=sinc (=)
The need for excess bandwidth The sinc pulse is not used in practice
because it decays too slowly: the 1/t decay implies that the signal z(#) in
(2.77) can exhibit arbtrarily large fluctuations, depending on the choice of
the sequence {b[n]}. It also implies that the ISI caused by sampling errors
can be unbounded (see Problem 2.21). Both of these phenomenaare related

to the divergence of the series 77, 1/n, which determines the worst-case
contribution from “distant” symbols at a given instantof time. Since the series
y1 1/n* converges for a > 1, these problems can be fixed by employing a
pulse x(t) that decays as 1/t* for a> 1. A faster time decay implies a slower
decay in frequency. Thus, we need excess bandwidth, beyond the minimum
bandwidth dictated by the Nyquist criterion, to fix the problems associated
with the sinc pulse. The (fractional) excess bandwidth for a linear modulation
schemeis defined to be the fraction of bandwidth over the minimum required
for ISI avoidance at a given symbolrate.

Raised cosine pulse An example of a pulse with a fast enough time decay

is the frequency domain raised cosine pulse shown inn Figure 2.20, and spe-cified as

a “ifs= ia ’
S( =4$[1—sin(f]-+)™)], Esinl <5,

0, - Uf| > ite,
where a is the fractional excess bandwidth, typically chosen in the range
where 0 <a < 1. As shown in Problem 2. 16, the time domain pulse s(t) is
given by

cos mat

1 (44)
This pulse inherits the Nyquist property of the sinc pulse, while having

sj) = sine(4iey
an additional multiplicative factor that gives an overall (1/t3) decay with |
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Figure 2.19 Sinc pulse for Xf)
minimum bandwidth ISl-free

signaling at rate 1/7. Both
time and frequency axes
are normalized to be
dimensionless. : fT

-1/2 0 1/2

(a) Frequency domain boxcar

0.8

0.6

0.4

0.2

-~§ -4 -3 -2 -1 0 1 2 3 4 #5

uT

(b) Time domain sinc pulse

time. The faster time decay compared with the sinc pulse is evident from a
comparison of Figures 2.20(b) and 2.19(b).

The Nyquistcriterion applies to the cascade of the transmit, channel, and
receivefilters. How is Nyquist signaling done in practice, since the channelis
typically not within our control? Typically, the transmit and receive filters are
designed sothat the cascade Gry(f)Grx(/) is Nyquist, and the ISI introduced
by the channel, if any, is handled separately. A typical choice is to set Gr
and Gry to be square roots (in the frequency domain) of a Nyquist pulse.
Such a pulse is called a square root Nyquist pulse. For example, the square
root raised cosine (SRRC)pulse is often used in practice. Another common
choice is to set Gzy to be a Nyquist pulse, and Gry to be a widebandfilter
whoseresponseis flat over the band ofinterest.

We had argued in Section 2.4, using Nyquist’s sampling theorem, that
linear modulation using the sinc pulse takes up all of the degrees of freedom
in a bandlimited channel. The Nyquist criterion for ISI avoidance may be
viewed loosely as a converse to the preceding result, saying that if there are
not enough degrees of freedom,then linear modulation incurs ISI. The relation
between these two observations is not accidental: both Nyquist’s sampling
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Figure 2.20 Raised cosine X(f)
pulse for minimum bandwidth
[Si-free signaling at rate 1/T,
with excess bandwidth @. Both
time and frequency axes
are normalized to be
dimensionless.
 

-(1+4a)/2 -1/2 -(1-a/2 {0 (1-a)/2 1/2 (1+2)/2 ‘T

(a) Frequency domain raised cosine

0.8

0.6

0.4
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-0.2
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ut

(b) Time domain pulse (excess bandwidth a=0.5)

theorem and the Nyquistcriterion are based on the Fourierseries relationship
between the samples of a waveform andits aliased Fourier transform.

Bandwidthefficiency We define the bandwidth efficiencyof linear modu-
lation with an M-ary alphabet as

lp = log, M bit/symbol.
This is consistent with the definition (2.72) in Section 2.4, since one symbol
in linear modulation takes up one degree of freedom. Since the Nyquist
criterion states that the minimum bandwidth required equals the symbolrate,
knowingthe bit rate R, and the bandwidth efficiency 7, of the modulation
scheme, we can determine the symbol rate, and hence the minimum required
bandwidth B,,,.

R
Brin = —-

™ Te

This bandwidth would then be expandedby the excess bandwidth used in the
modulating pulse, which (as discussed already in Section 2.4) is not included
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in our definition of bandwidth efficiency, because it is a highly variable
quantity dictated by a variety of implementation considerations. Once we
decide on the fractional excess bandwidth a, the actual bandwidth required is

B=(140)By, = (1-4).
1p

2.5.4 Linear modulation as a building block

Linear modulation can be used as a building block for constructing more
sophisticated waveforms, using a square root Nyquist pulse as the modulating _
waveform. Toseethis, let us first describe the square root Nyquist property in
the time domain. Supposethat (1) is square root Nyquist at rate 1/T,. This
meansthat QO(f) = |P()|* = W)Y"(/) is Nyquist at rate 1/7,. Note that
¥*(f) is simply the frequency domain representation of Yfe(t) = Y*(—2),
the matched filter for s(t). This means that

ON) = VON + 4) =rte=f VQY(6-)ds. (2.81)
That is, q(t) is the autocorrelation function of y(t), obtained by passing
through its matched filter. Thus, ys is square root Nyquistif its autocorrelation
function g is Nyquist. That is, the autocorrelation functionsatisfies g(kT,) =
5,9 for integer k.

We have just shown thatthe translates {y(t -kT,)} are orthonormal. We
can now use these as a basis for signal space constructions. Representing a
signal s,(t) in terms of these basis functions is equivalent to linear modulation
at rate 1/7, as follows:

s(t) = y s{k\Wt—kT,), i=1,...M,
k=0

where s, = (s;[0], ... , 5,[N —1]) is a code vector that is mappedto continuous
time by linear modulation using the waveform ys. Weoftenrefer to y(t) as the
chip waveform, and 1/T, as the chip rate, where N chips constitute a single
symbol. Note that the continuous-time inner product between the signals thus
constructed is determined by the discrete-time inner product between the
corresponding code vectors:

N-1N-1 N-1

(55) =D Y sledsf uG-kTY(e-IT)dt= DV lAlA] = 6,5),k=0 [=0 k=0

where we have used the orthonormality of the translates {y(t -kT,)}.
Examples of square root Nyquist chip waveforms include a rectangular

pulse timelimited to an interval of length T,, as well as bandlimited pulses
such as the square root raised cosine. From Theorem 2.5.1, we see that the
PSD of the modulated waveform is proportional to |‘Y(f)|? (it is typically a
good approximation to assumethat the chips {s,[k]} are uncorrelated), That
is, the bandwidth occupancy is determined by that of the chip waveform w.
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In the next section, we apply the preceding construction to obtain wave-
forms for orthogonal modulation. In Chapter 8, I discuss direct sequence
spread spectrum systems based on this construction.

2.6 Orthogonal and biorthogonal modulation 

The numberofpossible transmitted signals for orthogonal modulation equals
the numberof degrees of freedom M available to the modulator, since we can
fit only M orthogonal vectors in an M-dimensional signal space. However, as
discussed below, whether we need M real degrees of freedom or M complex
degrees of freedom depends on the notion of orthogonality required by the
receiver implementation.

Frequency shift keying A classical example of orthogonal modulation is
frequency shift keying (FSK). The complex baseband signaling waveforms
for M-ary FSK overa signaling interval of length T are given by

s(t) =P™Io, i=1,...,M,

wherethe frequency shifts |f,—f;| are chosen to make the M waveforms
orthogonal. The bit rate for such a system is therefore given by (log, M)/T,
since log, M bits are conveyed over each interval of length T. To determine
the bandwidth needed to implement such an FSK scheme, we must determine
the minimal frequency spacing suchthat the {s,} are orthogonal. Let usfirst
discuss what orthogonality means.

Wehaveintroduced the concepts of coherent and noncoherent reception in
Example 2.2.5, where we correlated the received waveform against copies of
the possible noiseless received waveforms corresponding to different trans-
mitted signals. In practical terms, therefore, orthogonality meansthat, if s,

is sent, and weare correlating the received signal against s,, j 4 i, then the
output of the correlator should be zero (ignoring noise). This criterion leads
to two different notions of orthogonality, depending on the assumptions we
make onthe receiver's capabilities.

Orthogonality for coherent and noncoherent systems Consider two com-
plex baseband waveforms u = u,+ju, and v= v,+ju,, and their passband
equivalents u,(t) = Re(/2u(t)e") and v,(t) = Re(/2v(t)e?™*"), respec-
tively. From (2.36), we know that

(Ups Up) = Re((u, v)) = (ues Ve) + (us, v,). (2.82)

Thus, one concept of orthogonality between complex baseband waveforms
is that their passband equivalents (with respect to a common frequency and
phase reference) are orthogonal. This requires that Re({u, v)) = 0. In the
inner product Re((u, v)), the 1 and Q components are correlated separately
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and then summed up. At a practical level, extracting the I and Q components
from a passband waveform requires a coherent system, in which an accurate
frequency and phasereferenceis available for downconversion.

Now, suppose that we want the passband equivalents of u and v to remain
orthogonal in noncoherent systems in which an accurate phase reference may

not be available. Mathematically, we want u,(t) = Re(/2u(t)e?") and
0,(t) = Re(/2v(t)e!@7/'+9) to remain orthogonal, regardlessofthe value of
6. The complex envelope of #, with respect to f, is 0() = v(t)e, sothat,
applying (2.82), we have

(up, ¥,) = Re({u, d)) = Re((u, vei), . (2.83)
It is easy to see that the preceding inner product is zero for all possible 6 if
and only if {u, v) =0; set @=0 and @ = 7/2 in (2.83)to see this.

Wetherefore have two different notions of orthogonality, depending on
which of the inner products (2.82) and (2.83) is employed:

Re((s;,5;)) =0 Coherent orthogonality criterion
(5), 5;) =0 Noncoherent orthogonality criterion. (2.84)

It is left as an exercise (Problem 2.25) to show that a tone spacing of 1/2T
provides orthogonality in coherent FSK, while a tone spacing of 1/T is
required for noncoherent FSK. The bandwidth for coherent M-ary FSK is
therefore approximately 4/2T, which correspondsto a time-bandwidth prod-
uct of approximately M/2. This corresponds to a complex vector space of
dimension M/2, or a real vector space of dimension M, in which we can
fit M orthogonal signals. On the other hand, M-ary noncoherent signaling
requires M complex dimensions, since the complex baseband signals must
remain orthogonal even under multiplication by complex-valued scalars. This
requirement doubles the bandwidth requirement for noncoherent orthogonal
signaling.

Bandwidth efficiency Wecanconclude from the exampleoforthogonal FSK
that the bandwidth efficiency of orthogonal signaling is 4, = (log, M+ 1)
/M bit/complex dimension for coherent systems, and 7, = (log, M)/M
bit/complex dimension for noncoherent systems. This is a general observation
that holds for any realization of orthogonal signaling. In a signal space of
complex dimension D (and hence real dimension 2D), we can fit 2D signals
satisfying the coherent orthogonality criterion, but only D signals satisfying
the noncoherent orthogonality criterion. As M gets large, the bandwidth effi-
ciency tends to zero. In compensation, as we see in Chapter 3, the power
efficiency of orthogonal signaling for large M is the “best possible.”

Orthogonal Walsh-Hadamard codes Section 2.5.4 shows how to map
vectors to waveforms while preserving inner products, by using linear modu-
lation with a square root Nyquist chip waveform. Applying this construction,
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the problem of designing orthogonal waveforms{s,} now reducesto designing
orthogonal code vectors {s,;}. Walsh-Hadamard codes are a standard con-
struction employed for this purpose, and can be constructed recursively as
follows: at the nth stage, we generate 2” orthogonal vectors, using the 2"~!
vectors constructed in the n—1 stage. Let H,, denote a matrix whose rows
are 2” orthogonal codes obtained after the mth stage, with Hj = (1). Then

— H,-1 H,-1H, = Gi ) .n-1] —**n-1

Wetherefore get

1111

1 1 1-1 1-1m=({ 1): H,= 1 1-1-14° etc.
1-1-1 1

The signals {s,} obtained above can be used for noncoherent orthogonal
signaling, since they satisfy the orthogonality criterion (s,, s;) =0 for i ¢ j.
However, just as for FSK, we can fit twice as many signals into the same
numberof degrees of freedom if we used the weaker notion of orthogonality
required for coherent signaling, namely Re((s;, s;)) =0 for i 4 j. It is easy
to check that for M-ary Walsh-Hadamardsignals {s,;,i=1,...,M}, we can
get 2M orthogonal signals for coherent signaling: {s,,js,,i=1,...,M}. This
construction correspondsto independently modulating the I and Q components
with a Walsh-Hadamard code.

Biorthogonal modulation Given an orthogonal signal set, a biorthogonal
signal set of twice the size can be obtained by including a negated copy of
each signal. Since signals s and —s cannot be distinguished in a noncoherent
system, biorthogonal signaling is applicable to coherent systems. Thus, for
an M-ary Walsh-Hadamardsignal set {s,} with M signals obeying the non-
coherentorthogonality criterion, we can construct a coherentorthogonal signal
set {s,, js,} of size 2M, and hence a biorthogonal signal set of size 4M,e.g.,
{5;, 55). —5;, —isi}-

2.7 Differential modulation

Differential modulation uses standard PSK constellations, but encodes the

information in the phase transitions between successive symbols rather than
in the absolute phase of one symbol. This allows recovery of the information
even whenthere is no absolute phase reference.

_ Differential modulation is useful for channels in which the amplitude and

phase mayvary overtime(e.g., for a wireless mobile channel), orif there is
a residual carrier frequency offset after carrier synchronization. To see why,
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consider linear modulation of a PSK symbol sequence {b[n]}. Under ideal :
Nyquist signaling, the samples at the output of the receive filter obey the -
model

r{n] = A[n]b[n]+ noise

where h[n] is the channel gain. If the phase of A[n] can vary arbitrarily”
fast with n, then there is no hope of conveying any information in the
carrier phase. However,if h[n] varies slowly enough that we can approximate
it as piecewise constant over at least two symbol intervals, then we can
use phase transitions to convey information. Figure 2.21 illustrates this for
two successive noiseless received samples for a QPSK alphabet, comparing
b[n]b*[n — 1] with r[n]r*[n — 1]. We see that, ignoring noise, these two
quantities have the same phase. Thus, even when the channel imposes an
arbitrary phase shift, as long as the phase shift is roughly constant over
two consecutive symbols, the phase difference is unaffected by the channel,
and hence can be used to convey information. On the other hand, we see
from Figure 2.21 that the amplitude of b[n]b*[n—1] differs from that of
r{n]r*[n—1]. Thus, some form of explicit amplitude estimation or tracking is
required in order to generalize differential modulation to QAM constellations.
How best to design differential modulation for QAM alphabets is still a
subject of ongoing research, and we do notdiscuss it further.

Figure 2.22 shows an example of how two information bits can be mapped
to phase transitions for differential QPSK. For example, if the information
bits at time n are i[m] = 00, then b[n] has the same phase as b[n—1]. If

Transmitted symbols

b{n-1] :
e

, Bn}
° binlb*[n-1)

Noiseless received samples

= hint 6
rin=1=hln-1] bln= 1) (tal=Alo} Bt ,x

x Malr*{n-1] :

Figure 2.21 Ignoring noise, the phasetransitions between successive symbols remain unchangedafter
an arbitrary phase offset induced by the channel. This motivates differential modulation as a means of
dealing with unknown orslowly time-varying channels.
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Figure 2.22 Mapping 10 00
information bits to phase
transitions in differential QPSK.

01

i[n] = 10, then b[n] = e"/b[n — 1], and so on, where the symbols b[n] take
values in {ei7/4, ei37/4, eiSt/4, ei?7/4},

Wenowdiscuss the special case of binary differential PSK (DPSK), which
has an interesting interpretation as orthogonal modulation. For a BPSK alpha-
bet, suppose that the informationbits {i[n]} take values in {0, 1}, the trans-
mitted symbols {b[n]} take values in {—1, +1}, and the encoding rule is as
follows:

b[n] =b[n-1] if i{n]=0,

b[n] = —b[n — 1] if i[nJ=1.

If we think of the signal correspondingto i[n] as s[n] = (b[n—1], b[n]), then
s[n] can take the following values:

for i{n] = 0,s[n] = +s), where sp = (+1, +1),

for i[n] = 1,s[n] =-+s,, where s, = (+1, —1).

The signals sy and s, are orthogonal. Note that s[n] = (b[n — 1], b[n]) =
b[n — 1](1, b[n)}/b[m —1]). Since b[n]/b[n —1] depends only on the infor-
mationbit i[n], the direction of s[n] depends only on i{n], while there is a
sign ambiguity due to b[n — 1]. Not knowing the channel A[n] would impose
a further phase ambiguity. Thus, binary DPSK can beinterpreted as binary
noncoherent orthogonal signaling, with the signal duration spanning two sym-
bol intervals. However, there is an important distinction from standard binary
nonccherent orthogonal signaling, which conveys one bit using two complex
degrees of freedom. Binary DPSKusesthe available degrees of freedom more
efficiently by employing overlapping signaling intervals for sending succes-
sive information bits: the signal (b[n], b[n —1]}) used to send i[n] has one
degree of freedom in commonwith the signal (b[n+ 1], b[n]) used to send
i[n +1]. In particular, we need n+ 1 complex degrees of freedom to send n
bits. Thus, for large enough n, binary DPSK needs one complex degree of
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freedom per information bit, so that its bandwidth efficiency is twice that of o
standard binary noncoherent orthogonal signaling.

A moredetailed investigation of noncoherent communication and differen- —

tial modulation is postponed to Chapter 4, after we have developed the tools
for handling noise and noncoherent processing.

2.8Further reading

Additional modulation schemes (and corresponding references for further
reading) are described in Chapter 8, when wediscuss wireless communication.
Analytic computations of PSD for a variety of modulation schemes, including
line codes with memory, can be found in the text by Proakis [3]. Averaging
techniques for simulation-based computation of PSD are discussed in Chapter
8, Problem 8.29.

2.9 Problems

2.9.1 Signals and systems

Problem 2.1 A signal s(#) and its matched filter are shown in Figure 2.4,

(a) Sketch the real and imaginary parts of the output waveform y(r) = (s*
Syp)(t) when s(t) is passed through its matchedfilter.

(b) Draw a rough sketch of the magnitude |y(#)|. When is the output magni-
tude the largest?

Problem 2.2 For s(#) =sinc(t)sinc(22):

(a) Find and sketch the Fourier transform S(/f).
(b) Find and sketch the Fourier transform U(f) of u(t) = s(#)cos(10072)

(sketch real and imaginary parts separately if U(f) is complex-valued).

Problem 2.3 For s(t) = (10~[#I)J,-10,19)(0):
(a) Find and sketch the Fourier transform S(/).
(b) Find and sketch the Fourier transform U(f) of u(t) = s()sin(100071)

(sketch real and imaginary parts separately if U(f) is complex-valued).

Problem 2.4 In this problem, we prove the Cauchy—Schwartz inequality
(2.5), restated here for convenience,

Ks=[f s@r@ at] < Isillr
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for any complex-valued signals s(t) and r(1), with equality if and only if one
signal is a scalar multiple of the other. For simplicity, we assumein the proof
that s(t) and r(t) are real-valued.

(a) Suppose we try to approximate s(t) by ar(#), a scalar multiple of r, where
ais areal number. That is, we are trying to approximate s by an element
in the subspace spanned by r. Then the error in the approximationis the
signal e(1) = s(t) — ar(t). Show that the energy of the error signal, as a
function of the scalar a, is given by

J(a) = \lel|? = |I\s\? +.4"Ir]? -2a(s, 7).

(b) Note that /(a) is a quadratic function of a with a global minimum. Find
the minimizing argumenta,,, by differentiation and evaluate J(a,,,,). The
Cauchy-Schwartz inequality now follows by noting that the minimum
error energy is nonnegative. That is, it is a restatement of the fact that
I(Gmin) = 0.

(c) Infer the condition for equality in the Cauchy-Schwartz inequality.

Note Fora rigorous argument, the case when s(t) =0or r(t) = 0 almost everywhere
should be considered separately. In this case, it can be verified directly that the
Cauchy—Schwartz condition is satisfied with equality.

(d) Interpret the minimizing argument a,,, as follows: the signal a,,,r(t)
correspondsto the projection of s(t) along a unit “vector”in the direction
of r(#). The Cauchy-Schwartz inequality then amounts to saying that the
error incurred in the projection has nonnegative energy, with equality if
s(t) lies in the subspace spanned by r(?).

Problem 2.5 Let us now show whyusing a matchedfilter makes sense for
delay estimation, as asserted in Example 2.1.2. Suppose that x(#) = As(t — tp)
is a scaled and delayed version of s. We wish to designafilter A such that,
when wepass x through A, we get a peak at time %), and we wish to make
this peak as large as possible. Without loss of generality, we scale the filter
impulse responseso as to normalizeit as ||/|| = ||s|].

(a) Using the Cauchy—Schwartz inequality, show that the output y is bounded
at all times as follows:

v1 s IAlllsil?.

(b) Using the condition for equality in Cauchy—Schwartz, show that y(to)
attains the upper bound in (a) if and only if A(t) =s*(—2) (we are
considering complex-valued signals in general, so be careful with the
complex conjugates). This means two things: y(t) must have a peak at
t = %, and this peak is an upper boundfor the outputof any other choice
offilter (subject to the normalization we have adopted)at any time.
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Note Weshowin the next chapter that, under a suitable noise model, the matched|
filter is the optimal form of preprocessing in a broad class of digital communication
systems.

2.9.2 Complex baseband representation

Problem 2.6 Consider a real-valued passband signal x,(¢) whose Fourier
transform for positive frequenciesis given by

V2, 20 <f <22,
Re(X,(f))=40, O< f<20,

0, 2<f<o,

(l—-|f—22)), 21< f $23,
Im(X,(/)) = 0, 0<f<21,

0, 23 < f<o,

(a) Sketch the real and imaginary parts of X,(/) for both positive and negative
frequencies.

(b) Specify the time domain waveform that you get when you pass
V2x,(t) cos(407) through a low passfilter.

Problem 2.7 Let v,(¢) denote a real passbandsignal, with Fourier transform
V,(/) specified as follows for negative frequencies:

Vi(f= f+101, —101 < f < —99,
pve 10, f<-—101 or -99<f <0.

(a) Sketch V,(f) for both positive and negative frequencies.
(b) Without explicitly taking the inverse Fourier transform, can you say

whether v,(#) = v,(—4) or not?
(c) Choosing fp = 100,find real baseband waveformsv,(t) and v,(¢) such

that

v(t) = V2(v,(t) cos 2mfot — v,(#) sin 2afot).
(d) Repeat (c) for fo = 101.

Problem 2.8 Consider the following two passbandsignals:

u,(t) = 2 sinc(2t) cos 1007
and

v,(t) = V2 sinc(t) sin (101a1-+ *) .
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(a) Find the complex envelopes u(t) and v(t) for u, and vp, respectively,
with respect to the frequency reference f, = 50.

(b) Whatis the bandwidth of u,(t)? What is the bandwidth of v,(t)?
(c) Find the inner product (u,, v,), using the resultin (a).
(d) Find the convolution y,(t) = (u, +v,)(#), using the result in (a).

Problem 2.9 Let u(t) denote a real baseband waveform with Fourier trans-
form for f> 0 specified by

_fevt o<f<i,un={5 f>l.

(a) Sketch Re(U(/)) and Im(U(/)) for both positive and negative frequencies.
(b) Find u(2).

Now, consider the bandpass waveform v(t) generated from u(t) as
follows: ,

v(t) = V2u(t) cos 20071.

(c) Sketch Re(V(f)) and Im(V(/f)) for both positive and negative frequencies.
(d) Let y(#) = (v*A,,)(#) denote the result offiltering u(#) using a high pass

filter with transfer function

_ fi [fl 2100=|9 else.
Find real baseband waveformsy,, y, such that

y(t) = V2(y,(£) cos 200zt — y,(t) sin 200772).

(e) Finally, pass y(t) cos 2007¢ through an ideal low passfilter with transfer
function

_f1 Ifls!Hy(D= {4 else.
Howis theresult related to u(r)?

Remark It is a good idea to draw pictures of what is going on in the
frequency domain to get a good handle on this problem.

Problem 2.10 Consider a passbandfilter whose transfer function for f> 0
is specified by

1 fro-25f Sh
Hf) = l-f+f. fesfsf+t1 (>) (2.85)

0 else.

Let y,(t) denote the outputofthe filter when fed by a passband signal u,(?).
Wewould like to generate y,(t) from u,(t) using baseband processing in the
system shown in Figure 2.23. ~
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Figure 2.23 Implementation of pote cctsste 1
a passbandfilter using
downconversion, baseband

operations and upconversion  
 

 
 
 

Real

 Problem 2.10). V2cos 2nht baseband V2 cos 2nft( )
uptt) . operations y(t)

-V2sin 2nht only -V2sin 2nht

(a) For f, = f, =f, sketch the baseband processing required, specifying
completely the transfer function of all basebandfilters used. Be careful
with signs.

(b) Repeat(a) for f; = f, +1/2 and f, = f, —1/2.

Hint The inputs to the black box are the real and imaginary parts of the complex
baseband representation for u(t) centered at f,. Hence, we can use basebandfiltering
to produce the real and imaginary parts for the complex baseband representation for
the output y(t) using f, as center frequency. Then use basebandprocessing to construct
the real and imaginary parts of the complex baseband representation for y(t) centered
at f,. These will be the output of the black box.

Problem 2.11 Consider a pure sinusoid s,(t) = cos27f,t, which is the
simplest possible example of a passband signal with finite power.

(a) Find the time-averaged PSD S,(f) and autocorrelation function R,(7),
proceeding from the definitions. Check that the results conform to your
intuition.

(b) Find the complex envelope s(#), and its time-averaged PSD and autocor-
relation function. Check that the relation (2.70) holds for the passband
and baseband PSDs.

2.9.3 Random processes

Problem 2.12 Consider a passband random process n,(t) = Re(V2n(1)
e?se') with complex envelope n(t) = n,(t) +jn,(1).

(a) Given the time-averaged PSDfor ,, can you find the time-averaged PSD
for n? Specify any additional information you might need.

(b) Given the time-averaged PSD for n,, can you find the time-averaged
PSDsfor n, and n,? Specify any additional information you might need.

(c) Now,considera statistical description of n,. What are the conditions on
n, and n, for n, to be WSS? Underthese conditions, whatare the relations
betweenthestatistically averaged PSDs ofn,, n, n, and n,?

Problem 2.13 We discuss passband white noise, an important noise mode]
used extensively in Chapter 3, in this problem. A passband random process
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-n(t) = Re(V2n(1)e""") with complex envelope n(t) = n,(t) +jn,(4) has
PSD

4, If-fls¥orlftsls¥= 2? cl— 2 ch = 2?Saf) | else,
where n,, m, are independent and identically distributed zero mean random
processes. ,

(a) Find the PSD S,(f) for the complex envelope n.
(b) Find the PSDs S,(f) and S,(/) if possible.If this is not possible from

the given information, say what further information is needed.

Problem 2.14 In this problem, we prove Theorem 2.3.1 regarding (wide
sense) stationarization of a (wide sense) cyclostationary process. Let s(s)
be (wide sense) cyclostationary with respect to the time interval T. Define
v(1) = s(t~ D), where D is uniformly distributed over [0, 7] and independent
of s.

(a) Suppose that s is cyclostationary. Use the following steps to show that v
is stationary; that is, for any delay a, the statistics of u(t) and v(t — a)
are indistinguishable.

(i) Show that a+ D =kT-+D,where k is an integer, and D is a random
variable which is independent of s, and uniformly distributed over
[0, 7].

(ii) Show that the random process 3 defined by 3(#) = s(t — kT) is sta-
tistically indistinguishable from s.

(iit) Show that the random process 0 defined by i(f) = v(t a) ==3(t—D)
is statistically indistinguishable from v.

(b) Now, suppose that s is wide sense cyclostationary. Use the following
steps to show that u is WSS.

(i) Show that m,(t) = 1/T fo m,(v) dy for all t. That is, the mean
function of v is constant.

(ii) Show that
T

R,(t,, tt) = wTf R,(t+t,— t,t) dt.-
This implies that the autocorrelation function of v depends only on
the time difference t, — tf.

(c) Now,let us show that, under an intuitive notion of ergodicity, the auto-
correlation function for s, computed as a time average alonga realization,
equals the autocorrelation function computed asastatistical averageforits
stationarized version u. This means, for example,thatit is the stationarized

version of a cyclostationary process which is relevant for computation of
PSDasastatistical average.
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(i) Showthat s(#)s*(¢— 7) has the samestatistics as s(t+-T)s*(t+T — a)
for any ¢.

(ii) Show that the time-averaged autocorrelation estimate

Ra = ~[: s(t)s*(t — 7)dt
can be rewritten, for T, = KTae a large integer), as

Roa) © 1/T[s x s(t-+kT)s*(t-+-kT —7)dt.
K kp

(iti) Invoke the following intuitive notion of ergodicity: the time
average of the identically distributed random variables
{s(t +kT)s*(t+kT—7)} equals its statistical average
E[s(t)s*(t — 7)]. Infer that

- T

RY) > YT[ R(t, t—7)dt = R,(7)
as K (and T,) becomeslarge.

2.9.4 Modulation

Problem 2.15 In this problem, we derive the Nyquistcriterion for ISI avoid-
ance. Let x(r) denote a pulse satisfying the time domain Nyquist condition
for signaling at rate 1/T: x(mT) = 6,,9 for all integer m. Using the inverse
Fourier transform formula, we have

x(mT) _[XPTaf.
(a) Observe that the integral can be written as an infinite sum ofintegrals

over segments of length 1/T:

x(mT) = > aX(Naf,k=—00

(b) In the integral over the Ath segment, makethe substitution vy = f —k/T.
Simplify to obtain

x(mT) = T[’ B)eP™"? dy,
where B(f) =1/TDy2 X(f-+k/D.

(c) Show that B(/) is periodic in f with period P = 1/T, sothat it can be
written as a Fourier series involving complex exponentials:

BU) = Yo alm]e?*¥/,m=—00

where the Fourierseries coefficients {a[m]} are given by

a[m] = —sli B(f) eB"#af.
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(d) Conclude that x(mT) = a[—m], so that the Nyquist criterion is equivalent
to a[m] =6,,9. This implies that B(f) = 1, whichis the desired frequency
domain Nyquistcriterion.

Problem 2.16 In this problem, we derive the time domain response of

the frequency domain raised cosine pulse. Let R(f) = I_i,i) denote an
ideal boxcar transfer function, and let C(f) = m/2acos(z/aF)I{-3,g) denote
a cosine transfer function.

(a) Sketch R(f) and C(/f), assuming that0<a<1.
(b) Showthatthe frequency domain raised cosine pulse can be written as

S(f) = (R*O)(/).

(c) Find the time domain pulse s(t) = r(t)c(t). Where are the zeros of s(t)?
Conclude that s(t/T) is Nyquist at rate 1/T.

(d) Sketch an argumentthat showsthat, if the pulse s(t/T) is used for BPSK
signaling at rate 1/T, then the magnitude of the transmitted waveform is
always finite.

Problem 2.17 Consider a pulse s(t) = sinc(at)sinc(bt), where a > b.

(a) Sketch the frequency domain response S(f) of the pulse.
(b) Suppose that the pulse is to be used over an ideal real baseband channel

with one-sided bandwidth 400Hz. Choose a and b so that the pulse is
Nyquist for 4-PAM signaling at 1200bit/s and exactly fills the channel
bandwidth.

(c) Now, suppose that the pulse is to be used over a passband channel
spanning the frequencies 2.4-2.42 GHz. Assuming that we use 64-QAM
signaling at 60 Mbit/s, choose a and b so that the pulse is Nyquist and
exactly fills the channel bandwidth. ;

(d) Sketch an argument showing that the magnitude of the transmitted wave-
form in the preceding settings is alwaysfinite.

Problem 2.18 Consider the pulse .

p()=
0, else.

Let P(f) denote the Fourier transform ofp(t).

(a) True or False The pulse p(t) is Nyquist at rate 1/T.
(b) True or False The pulse p(t) is square root Nyquist at rate 1/T (i.e.,

[P(Ais Nyquist at rate 1/7).
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Problem 2.19 Consider the pulse p(t), whose Fouriertransform satisfies:

1, O</fi <A,

P=} S4, A<if|<B,BA?

Q, else,

where A = 250kHz and B = 1.25MHz.

(a) True or False The pulse p(t) can be used for Nyquist signaling at rate
3 Mbps using an 8-PSKconstellation.

(b) True or False The pulse p(t) can be used for Nyquist signaling at rate
4.5 Mbps using an 8-PSK constellation.

Problem 2.20 True or False Any pulse timelimited to duration T is square
root Nyquist (up to scaling) at rate 1/T.

Problem 2.21 (Effect of timing errors) Consider digital modulationat rate
1/T using the sinc pulse s(t) = sinc(2Ws), with transmitted waveform

100

y) = 2a bas(t— (n—1)7),
where 1/T is the symbol rate and {b,} is the bitstream being sent (assume
that each b, takes one of the values +1 with equal probability). The receiver
makes bit decisions based on the samples r, = y((n—1)7), n=1,..., 100.

(a) For what value of T (as a function of W)is r, =b,,n=1,..., 100?

Remark In this case, we simply use the sign of the nth sample r, as an
estimate of b,.

(b) For the choice of T as in (a), suppose that the receiver sampling times
are off by 0.25 T. That is, the nth sample is given by r, = y((n —1)T +
0.257), n=1,..., 100. In this case, we do have ISIof different degrees
of severity, depending on the bit pattern. Consider the following bit
pattern:

b= (-1)""! l<n<49,
"™{(-1)" 50<n<100.

Numerically evaluate the 50th sample rog. Does it have the same sign as
the 50th bit beg?

Remark The preceding bit pattern creates the worst possible ISI for the
50th bit. Since the sine pulse dies off slowly with time, the ISI contribu-
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tions from the 99 bits other than the 50th sample sum up to a number
larger in magnitude, and opposite in sign,relative to the contribution due to
bsg. A decision on bsg based on the sign of ry would therefore be wrong.
This sensitivity to timing error is why the sinc pulse is seldom used in
practice.

(c) Now,consider the digitally modulated signal in (a) with the pulse s(*) =
sinc(2W?)sinc(Ws). For ideal sampling as in (a), what are the two values
of T such that r, = b,?

(d) For the smaller of the two values of T found in (c) (which corresponds
to faster signaling, since the symbolrate is 1/7), repeat the computation
in (b). That is, find 7,9 and compare its sign with bs, for the bit pattern
in (b).

(e) Find and sketch the frequency response of the pulse in (c). Whatis the
excess bandwidth relative to the pulse in (a), assuming Nyquistsignaling
at the same symbol rate? ,

(f) Discuss the impact of the excess bandwidth onthe severity of the ISI due
to timing mismatch.

Problem 2.22 (PSD for linearly modulated signals) Considerthe linearly
modulated signal

s(t)= S° b[njp(t—n7).

(a) Showthat s is cyclostationary with respect to the interval T if {b[n]} is
stationary.

(b) Show that s is wide sense cyclostationary with respect to the interval T
if {b[n]} is WSS.

(c) Assume that {b[n]} is zero mean, WSS with autocorrelation function
R,{k] = E[b[n]b*[n — k]]. The z-transform of R, is denoted by 5,(z) =
wo Rpl[k]z~*. Let v(t) = s(t — D) denote the stationarized version of
s, where D is uniform over [0, 7] and independent of s. Show that the
PSD of v is given by

Sf) = sce)POF (2.86)
For uncorrelated symbols with equal average energy(i.e., R,[k] = 076,9),
we have S,(z) = o?, and the result reduces to Theorem 2.5.1.

(d) Spectrum shapingvia line coding Wecan design the sequence {b[n]}
using a line code so as to shape the PSD of the modulated signal v. For
example, for physical baseband channels, we might want to put a null
at DC. For example, suppose that we wishto send i.i.d. symbols {a[m]}
which take values +1 with equal probability. Instead of sending a[n]
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directly, we can send b[n] = a[n]—a[n—1]. The transformation from -
a{n] to b[n] is called a line code.

(i) Whatis the range of values taken by b[n]?
(ii) Show that there is a spectral null at DC.

(iii) Find a line code of the form b[n] = a[n]+ ka[n—1] which puts a
spectral null at f = 1/2T.

Remark The preceding line code can be viewed as introducing ISI in a
controlled fashion, which must be taken into account in receiver design.
The techniques for dealing with controlled ISI (introduced by a line code)
and uncontrolled ISI (introduced by channel distortion) operate on the same
principles. Methods for handling ISI are discussed in Chapter 5.

Problem 2.23 (Linear modulation using alphabets with nonzero mean)
Consider again the linearly modulated signal

s() = 2 blndpe—nN,I=

where {b[n]} is WSS, but with nonzero mean b = E[b[n]].

(a) Show that we can write s as a sum of a deterministic signal 5 and a zero
mean random signal $ as follows:

s(t) = S(t) +3(2),

where

5(t) =b DU pt—n)
and

30) = Yo Bfnlpe-nn,

where b[n] = b[n]— 6 is zero mean, WSSwith autocorrelation function
R;[k] = C;[k], where C,[k] is the autocovariance function of the symbol
sequence {b[n]}.

(b) Show that the PSD of s is the sum of the PSDs of 5 and 5, by showing
that the two signals are uncorrelated.

(c) Note that the PSD of 5 can be foundusingthe result of Problem 2.22(c).
It remains to find the PSD of5. Note that $ is periodic with period T. It
can therefore be written as a Fourier series

3(t) = y a[k]je?™/",
k

where

Tr *

a{n] =1/T[ F(eP™/Tdp.
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Argue that the PSD of § is given by

k(=Dials(¢- 2).k

(d) Find the PSD for the unipolar NRZ basebandline code in Figure 2.14
(set A= 1 and B=0 in the NRZ codein thefigure).

Problem 2.24 (OQPSK and MSK) Linear modulation with a bandlimited
pulse can perform poorly over nonlinear passband channels. For example, the
output of a passband hardlimiter (which is a good model for power amplifiers
operating in a saturated regime) has constant envelope, but a PSK signal
employing a bandlimited pulse has an envelope that passes through zero
during a 180 degree phase transition, as shownin Figure 2.24. One way to
alleviate this problem is to not allow 180 degree phase transitions. Offset
QPSK (OQPSK) is one example of such a scheme, where the transmitted
signal is given by

0) = ¥ blolere(t—nT)+idmler(e-nt-2), 87)
where {b,[n]}, b,[n] are +1 BPSK symbols modulating the I and Q channels,
with the I and Q signals being staggered by half a symbolinterval. This leads
to phase transitions of at most 90 degrees at integer multiples of the bit time
T, = T/2. Minimum shift keying (MSK)is a special case of OQPSK with
timelimited modulating pulse

grx(t) = sin (=) lon(t)- (2.88)
(a) Sketch the I and Q waveformsfor a typical MSK signal, clearly showing

the timing relationship between the waveforms.
(b) Showthat the MSK waveform hasconstant envelope (an extremely desir-

able property for nonlinear channels).
(c) Find an analytical expression for the PSD of an MSKsignal, assuming

that all bits sent are i.id., taking values +1 with equal probability. Plot
the PSD versus normalized frequency fT.

(d) Find the 99% power containment normalized bandwidth of MSK. Com-
pare with the minimum Nyquist bandwidth, and the 99% powercontain-
ment bandwidth of OQPSK using a rectangular pulse.

Figure 2.24 The envelopeof a Envelopeis zero due to 180 degree phasetransition
PSKsignal passes through zero
during a 180 degree phase
transition, and gets distorted
over a nonlinear channel.
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(e) Recognize that Figure 2.17 gives the PSD for OQPSK and MSK,and
reproducethis figure, normalizing the area under the PSD curveto be the
same for both modulation formats.

Problem 2.25 (FSK tone spacing) Consider two real-valued passband
pulses of the form

So(t) = cos(2afot+ do), O<t <T,
5,(t) =cos(2af,t+9)), O<t ST,

where f; > fo >> 1/T. The pulses are said to be orthogonal if (s9,5,) =
fo 5o(0)5(t)dt = 0.

(a) If d9 = ¢, =0, show that the minimum frequency separation such that
the pulses are orthogonal is f; — fo = 1/2T.

(b) If @g and ¢, are arbitrary phases, show that the minimum separation for
the pulses to be orthogonal regardless of ¢o, @, is f, — fp =1/T.

Remark Theresults of this problem can be usedto determine the bandwidth
requirements for coherent and noncoherent FSK,respectively.

Problem 2.26 (Walsh-Hadamardcodes)

(a) Specify the Walsh-Hadamard codes for 8-ary orthogonal signaling with
noncoherentreception.

(b) Plot the baseband waveformscorresponding to sending these codes using
a square root raised cosine pulse with excess bandwidth of 50%.

(c) What is the fractional increase in bandwidth efficiency if we use these
eight waveformsas building blocks for biorthogonal signaling with coher-
ent reception?

‘Problem 2.27 (Bandwidth occupancyas a function of modulation format)
Wewish to send at a rate of 10 Mbit/s over a passband channel. Assuming
that an excess bandwidth of 50% is used, how much bandwidth is needed

for each of the following schemes: QPSK, 64-QAM,and 64-ary noncoherent
orthogonal modulation using a Walsh-Hadamard code?

Problem 2.28 (Binary DPSK) Consider binary DPSK with encoding as
described in Section 2.7, Assumethat we fix b[0] = —1, and that the stream
of information bits {i[n],1=1,..., 10} to be sent is 0110001011.

(a) Find the transmitted symbol sequence {b[n]} corresponding to the pre-
ceding bit sequence.

(b) Assuming that we use a rectangular timelimited pulse, draw the corre-
sponding complex baseband transmitted waveform. Is the Q component
being used?
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(c) Now, suppose that the channel imposes a phaseshift of —7/6. Draw the
I and Q components ofthe noiseless received complex baseband signal.

(d) Suppose that the complex basebandsignal is sent through a matchedfilter
to the rectangular timelimited pulse, and is sampled at the peaks. What
are the received samples {r[n]} that are obtained corresponding to the
transmitted symbol sequence {b[n]}?

(e) Find 7{2]r*[1]. How do you figure out the information bit i[2] based on
this complex number?

Problem 2.29 (Differential QPSK) Consider differential QPSK as shown
in Figure 2.22. Supposethat b[0] =e7/4, and that b[1], b[2],..., b[10] are
determined by using the mapping shownin the figure, where the information
bit sequence to be sentis given by 00, 11,01, 10, 10, 01, 11, 00, 01, 10.

(a) Specify the phases arg(b[n]), n= 1, an(b) If you received noisy samples r{1] = 2—j and 72) ==1+j, what wouldbe a sensible decision for the pair of bits corresponding to the phase
transition from n= 1 to n = 2? Doesthis match the true value of these

bits? (A systematic treatmentof differential demodulation in the presence
of noise is given in Chapter 4.)
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Demodulation

Wenowknowthat information is conveyed in a digital communication system

by selecting one of a set of signals to transmit. The received signal is a

distorted and noisy version of the transmitted signal. A fundamental problem

in receiver design, therefore, is to decide, based on the received signal, which
of the set of possible signals was actually sent. Thetask of the link designer
is to make the probability of error in this decision as small as possible, given

the system constraints. Here, we examine the problem of receiver design for a
simple channel model, in which the received signal equals one of M possible

deterministic signals, plus white Gaussian noise (WGN). This is called the

additive white Gaussian noise (AWGN) channel model. An understanding
of transceiver design principles for this channel is one of the first steps in
learning digital communication theory. White Gaussian noise is an excellent

model for thermal noise in receivers, whose PSD is typically flat over most
signal bandwidths of interest.

In practice, when a transmitted signal goes through a channel, at the very

least, it gets attenuated and delayed, and (if it is a passband signal) undergoes a

changeofcarrier phase. Thus, the model considered here applies to a receiver

that can estimate the effects of the channel, and produce a noiseless copy of
the received signal corresponding to each possible transmitted signal. Such a

receiver is termed a coherent receiver. Implementation of a coherent receiver

involves synchronization in time, carrier frequency, and phase, which areall
advanced receiver functions discussed in the next chapter. In this chapter,
we assumethat such synchronization functions have already been taken care

of. Despite such idealization, the material in this chapter is perhaps the most
important tool for the communication systems designer. For example,it is the
performance estimates provided here that are used in practice for link budget
analysis, which provides a methodology for quick link designs, allowing for
nonidealities with a link margin.
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3.1 Gaussian basics

Prerequisites for this chapter We assume a familiarity with the mod-
ulation schemes described in Chapter 2. We also assume familiarity with
common terminology and important concepts in probability, random vari-
ables, and random processes. See Appendix A for a quick review, as well as
for recommendations for further reading on thesetopics.

Mapof this chapter In this chapter, we provide the classical derivation of
optimal receivers for the AWGN channel using the framework of hypothesis
testing, and describe techniques for obtaining quick performanceestimates.
Hypothesis testing is the process of deciding which of a fixed number of
hypotheses best explains an observation. In our application, the observation
is the received signal, while the hypotheses are the set of possible signals
that could have been transmitted. We begin with a quick review of Gaussian
random variables, vectors and processes in Section 3.1. The basic ingredients
and concepts of hypothesis testing are developed in Section 3.2. We then
show in Section 3.3 that, for M-ary signaling in AWGN,the receiver can
restrict attention to the M-dimensional signal space spanned by the M signals
without loss of optimality. The optimal receiver is then characterized in
Section 3.4, with performance analysis discussed in Section 3.5. In addition

to the classical discussion of hard decision demodulation, we also provide
a quick introduction to soft decisions, as a preview to their extensive use
in coded systems in Chapter 7. We end with an example of a link budget
in Section 3.7, showing how the results in this chapter can be applied to
get a quick characterization of the combination of system parameters(e.¢.,
signaling scheme,transmit power, range, and antenna gains) required to obtain
an operationallink.

Notation This is the chapter in which we begin to deal moreextensively with random
variables, hence it is useful to clarify and simplify notation at this point. Given a
random variable X, a commonnotation for probability density function or probability
mass function is py(x), with X denoting the random variable, and x being a dummy
variable which we might integrate out when computing probabilities. However, when
there is no scope for confusion, we use the less cumbersome (albeit incomplete)
notation p(x), using the dummyvariable x not only as the argumentofthe density, but
also to indicate that the density corresponds to the random variable X. (Similarly, we
would use p(y) to denote the density for a random variable Y.) The same convention
is used for joint and conditional densities as well. For random variables X and Y,

we use the notation p(x, y) instead of pyy(x, y), and p(y|x) instead of Py|xQ|2), to
denote the joint and conditional densities, respectively.

The key reason why Gaussian random variables crop up so often in both natu-
ral and manmade systemsis the central limit theorem (CLT). In its elementary
form, the CLTstates that the sum of a numberof independentandidentically
distributed random variables is well approximated as a Gaussian random vari-
able. However, the CLT holds in far more generalsettings: without going into
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Figure 3.1 The shape of an
N(—5, 4) density.

Demodulation

technicaldetail, it holds as long as dependencies or correlations among the ran-
dom variables involved in the sum die off rapidly enough, and no one random
variable contributes too greatly to the sum. The Gaussianity of receiverther-
mal noise can beattributed to its arising from the movementof a large num-
ber of electrons. However, because the CLT kicks in with a relatively small
number of random variables, we shall see the CLT invoked in a number of
other contexts, including performance analysis of equalizers in the presence
of ISI as well as AWGN,and the modeling of multipath wireless channels.

Gaussian random variable The random variable X is said to follow a

Gaussian, or normaldistribution if its density is of the form:

(x) = ! exp{— (=m)my’POO ae? P 2v
where m = E[X] is the mean of X, and v? = var(X)is the variance of X.
The Gaussian density is therefore completely characterized by its mean and
variance. Figure 3.1 shows an N(—5, 4) Gaussian density.

 

): —-w<x<m, (3.1)

Notation for Gaussian distribution We use N(m, v’) to denote a Gaussian
distribution with mean m and variance v?, and use the shorthand X ~ N(m,v”)
to denote that a random variable X follows this distribution.

Standard Gaussian random variable A zero mean, unit variance Gaussian
random variable, X ~ N(0,1), is termed a standard Gaussian random variable.

An extremely important property of Gaussian random variables is that they
remain Gaussian when wescale them or add constants to them (i.e., when we

put them through an affine transformation).

Gaussianity is preserved underaffine transformations If X is Gaussian,
then aX-+ b is Gaussian for any constants a and b.

In particular, probabilities involving Gaussian random variables can be
expressed compactly by normalizing them into standard Gaussian form.

plu)

 
-5 0 a
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Figure 3.2 The © and Q
functions are obtained by

integrating the N(0, 1) density
over appropriate intervals. 

Conversion of a Gaussian random variable into standard form If X ~
N(m, v*), then (X —m)/v ~ N(O,1).

Wesetaside special notation for the cumulative distribution function (CDF)
(x) and complementary cumulative distribution function (CCDF) Q(x) of a
standard Gaussian random variable. By virtue of the standard form conversion,
we can easily express probabilities involving any Gaussian random variable
in terms of the ® or Q functions. The definitions of these functions are
illustrated in Figure 3.2, and the corresponding formulas are specified below.

x 2

(x) = PIN(O, 1) <x] = [.=exp (-5) dr, (3.2)

Q(x) = P[N(O,1) > x] = [* =exp (-5) dt. (3.3)
See Figure 3.3 for a plot of these functions. By definition, (x) + Q(x) = 1.
Furthermore, by the symmetry of the Gaussian density around zero, O(—x) =
(x). Combining these observations, we note that Q(—x) = 1— Q(x),so that

Figure 3.3 The ® and Q
functions.

Q(x) ®(x)
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it suffices to consider only positive arguments for the Q function in order to
compute probabilities of interest.

  
  
  
  
  
  
  

  
  
  
  
  
  

 Example 3.1.1 X is a Gaussian random variable with mean m= —3
and variance v2 = 4. Find expressions in terms of the Q function with
positive arguments for the following probabilities: P[X > 5], P[X < —1],
P[1 <X <4], P[X?+X> 2].

Solution Wesolve this problem by normalizing X to a standard Gaussian
random variable X —mv = X+3/2:

X4+3 543pix > 5)= P|=F5 > 53 2a] = Q(4),

pix <-l=P [=F < “= =1]=00)=1- 00,
 

1+3 X+3 443pil <x <4)=P| => <2 <3 -35]=065)-0@
= Q(2) - Q(3.5).

Computation ofthe last probability needsa little more work to characterize
the event of interest in terms of simpler events:

P[X?+X > 2] = P[X?+X—-2> 0] =P[(X+2)(X -1) > 0}.

The factorization shows that X?+ X > 2 if and only if X¥+2 > 0 and
X—1>0, or X¥+2 <0 and X~1 <0. This simplifies to the disjoint
union (i.e., “or”) of the mutually exclusive events X > 1 and X < —2. We
therefore obtain

P[X?+X > 2] = P[X> 1]+P[X< -3=0(4*)+0(5)
= 0@)+0(3)=0@+1-0(5).

The Q function is ubiquitous in communication systems design, hence it
is worth exploring its properties in some detail. The following bounds on
the Q function are derived in Problem 3.3.

Bounds on Q(x) for large arguments

1 —x2/2 en?/2(1- =)-<< 08) < a, 80. (3.4)
These bounds are tight (the upper and lower bounds converge) for large
values of x.
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Figure 3.4 The Q function
bounds.

and

3,1 Gaussian basics

Upper bound on Q(x) useful for small arguments and for analysis
1

Q(x) < se°" » «20. (3.5)
This bound is tight for small x, and gives the correct exponent of decay for
large x. It is also useful for simplifying expressions involving a large number
of Q functions, as we see when we derive transfer function boundsfor the
performance of optimal channel equalization and decoding in Chapters 5
and 7, respectively.

Figure 3.4 plots Q(x) and its boundsfor positive x. A logarithmic scale is
used for the values of the function to demonstrate the rapid decay with x. The

bounds (3.4) are seen to be tight even at moderate values of x (say x > 2).

Notation for asymptotic equivalence Since we are often concerned with
exponentialrates of decay(e.g., as SNR getslarge),it is useful to introduce the
notation P = Q (as we take somelimit), which meansthat log P/log Q > 1. An
analogous notation p ~ q denotes,on the other hand,thatp/g — 1.Thus,P=Q
and log P ~ log Q are two equivalent ways of expressing the same relationship.

Asymptotics of Q(x) for large arguments Forlarge x > 0, the exponential
decay of the Q function dominates. We denote this by

O(x) = er? x -> ©, (3.6)

 

 
 

  

 
  — a(x)

— ~ Lower bound(3.4)

-— Upper bound (3.4)
- +++ Upper bound 2 (3.5)
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which is shorthand for the following limiting result:

log Q(x) _
lim 3 = 1. (3.7)
 

This can be provedbyapplication of the upper and lower boundsin (3.4). The
asymptotics of the Q function play a key role in design of communication
systems. Events that cause bit errors have probabilities involving terms such
as O(a SNR) = e~* 8®/? as a function of the signal-to-noise ratio (SNR).
When there are several events that can cause bit errors, the ones with the
smallest rates of decay a dominate performance, and we often focus on these
worst-case events in our designs for moderate and high SNR. This simplistic
view does notquite hold in heavily coded systems operating at low SNR,but
is still an excellent perspective for arriving at a coarse link design.

Often, we need to deal with multiple Gaussian random variables defined
on the same probability space. These mightarise, for example, when we sam-
ple filtered WGN. In many situations of interest, not only are such random
variables individually Gaussian, but they satisfy a stronger joint Gaussianity
property. Before discussing joint Gaussianity, however, we review mean and
covariancefor arbitrary random variables defined on the same probability space.

Meanvector and covariance matrix Consider an arbitrary m-dimensional
random vector X = (X;,..-,X,)". The mx 1 mean vector of X is defined
as my = E[X] = (E[X,],..., E[X,,])”. The m x m covariance matrix Cy has
its (i, /)th entry given by

Cy (i, ) = cov(X;, X;) = El(X;— E[X,])(X; — E[X)])]

= E[X,X;]—E[X,JE[X;,].

More compactly,

Cy = E[(X — E[X])(X — E[X])"] = E[XX"] — E[X](E[X})’.

Someproperties of covariance matrices are explored in Problem 3.31.

Variance Variance is the covariance of a random variable with itself.

var(X) = cov(X,X).

Wecan also define a normalized version of covariance, as a scale-independent

measure of the correlation between two random variables.

Correlation coefficient The correlation coefficient p(X,, X,) between ran-

dom variables X, and X, is defined as the following normalized version of
their covariance:

cov(X,, X>)

Jvar(X,)var(X,)
p(X, X2) =
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Using the Cauchy-Schwartz inequality for random variables, it can be shown
that |o(X,, Xo)| <1, with equalityif and only if X, = aX, +b with probability
one, for some constants a, b.

Notes on covariance computation Computations of variance and covari-
ance come up often when we deal with Gaussian random variables, hence it
is useful to note the following properties of covariance.

Property 1 Covariance is unaffected by adding constants.

cov(X +a, Y¥+b) =cov(X, Y) for any constants a,b.

Covariance provides a measure of the correlation between random variables
after subtracting out their means, hence adding constants to the random vari-
ables (which changes their means) does not affect covariance.

Property 2. Covarianceis a bilinear function.

cov(a,X, +.a)Xq, 43X35 +44X4) = a, 4,c0v(X1, X3) + a, a4cov(X,, X4)
+ aya,C0v(X>, X3) + aya4cov(X2, X4).

By Property 1, it is clear that we can always consider zero mean versions of
random variables when computing the covariance. An examplethat frequently
arises in performanceanalysis of communication systemsis a random variable
which is a sum of a deterministic term (e.g., due to a signal), and a zero mean
random term (e.g., due to noise). In this case, dropping the signal term is
often convenient when computing variance or covariance.

Mean andcovariance evolution under affine transformations Consider
an mx 1 random vector X with mean vector my and covariance matrix Cy.
Define Y = AX +b, where A is an m X m matrix, and b is an 2 x 1 vector.
Then the random vector Y has mean vector my = Am, +b and covariance

. matrix Cy = ACxA’. Tosee this, first compute the mean vector of Y using
the linearity of the expectation operator:

m, = E[Y] = E[AX+b] = AE[X]+b = Amy +b. (3.8)

_ This also implies that the “zero mean” version of Y is given by

Y —E[Y] = (AX+b) — (Amy +b) = A(X—my),

so that the covariance matrix of Y is given by

Cy = E[(Y — E[Y])(Y — E[Y])"] = E[A(K — mx)(K — my)"A7] = ACXA’.
(3.9)

Mean and covariance evolve separately under affine transformations
The mean of Y depends only on the mean of X, and the covariance of Y
dependsonly on the covariance of X. Furthermore, the additive constant b in
the transformation does notaffect the covariance,sinceit influences only the
mean of Y.
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Jointly Gaussian random variables, or Gaussian random vectors Ran-

dom variables X,,...,X,, defined on a commonprobability space are said
to be jointly Gaussian, or the m x 1 random vector X = (X;,...,Xm)" is
termed a Gaussian random vector, if any linear combination of these random
variables is a Gaussian random variable. That is, for any scalar constants
@,..++5@,, the random variable a,X,+---+,,X,, is Gaussian.

A Gaussian random vector is completely characterized by its mean vector
and covariance matrix The definition of joint Gaussianity only requires
us to characterize the distribution of an arbitrarily chosen linear combination
of X,,...,X_. For a Gaussian random vector X = (X,,..., X,,)7, consider
Y=a,X,+---+4,X,_, where a,,...,@,, can be any scalar constants. By
definition, Y is a Gaussian random variable, and is completely characterized
by its mean and variance. We can compute these in terms of my and Cy using
(3.8) and (3.9) by noting that Y = a7X, where a= (a,,...,a,,)7. Thus,

my =a’ my,

Cy = var(Y) =a’Cya.

Wehave, therefore, shown that we can characterize the mean and variance,
and hence the density, of an arbitrarily chosen linear combination Y if and only
if we know the mean vector my and covariance matrix Cy. This implies the
desired result that the distribution of Gaussian random vector X is completely
characterized by my and Cy.

Notation for joint Gaussianity Weuse the notation X ~ N(m,C)to denote
a Gaussian random vector X with mean vector m and covariance matrix C.

The precedingdefinitions and observations regardingjoint Gaussianity apply
even whenthe random variables involved do nothave ajoint density. For exam-
ple, it is easy to check that, accordingto this definition, X, and X, = 2X, —
3 are jointly Gaussian. However, the joint density of X, and X, is not well
defined (unless we allow delta functions), since all of the probability mass in
the two-dimensional (x,, x.) plane is collapsed onto the line x, = 2x, — 3.
Ofcourse, since X, is completely determined by X,, any probability involv-
ing X,, X, can be expressed in terms of X, alone. In general, when the m-
dimensionaljoint density does not exist, probabilities involving X,,..., Xm
can be expressed in terms of a smaller number of random variables, and can
be evaluated using a joint density over a lower-dimensional space. A simple
necessary andsufficient condition for the joint density to exist is as follows:

Joint Gaussian density exists if and only if the covariance matrix is
invertible The proof of this result is sketched in Problem 3.32.
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Joint Gaussian density For X = (X,,...,X,,) ~ N(m, C),if C is invert-
ible, the joint density exists and takes the following form:

P(X) +++. Xm) = P(X) =aexp (-36wren).
In Problem 3.32, we derive the joint density above,starting from the definition

that any linear combination ofjointly Gaussian random variables is a Gaussian
random variable.

Uncorrelatedness X, and X, are said to be uncorrelated if cov(X,, X,) =0.

Independent random variables are uncorrelated If X; and X, are inde-
pendent, then

cov(X;, X,) = E[X,X,] — E{X,]E[X,] = E[X, JE[X,] — E[X, ]E[X,] = 0.

The converse is not true in general, but does hold when the random variables

are jointly Gaussian.

Uncorrelated jointly Gaussian random variables are independent This
follows from the form of the joint Gaussian density (3.10). If X,,...,X,, are
pairwise uncorrelated and joint Gaussian, then the covariance matrixCis diag-
onal, and the joint density decomposes into a product of marginal densities.

Example 3.1.2 (Variance of a sum of random variables) For random
variables X,,...,X9 “Ams

var(X; + +++ +X) = CoV(X, +++ Xp, Xp +++ +X)
m

>> cov(X;, X;)
i=1 j=i

= }°var(X;) + }> cov(X;, X;).i=l ijel
ij

Thus, for uncorrelated random variables, the variance of the sum equals
the sum of the variances:

var(X, +---+X,,) = var(X,) +---+var(X,,) for uncorrelated

random variables.

 
We now characterize the distribution of affine transformations of jointly
Gaussian random variables.
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Joint Gaussianity is preserved under affine transformations If X above

is a Gaussian random vector, then Y = AX+b is also Gaussian. To see this,

note that any linear combination of Y,,..., Y, equals a linear combination
of X,,...,X,, (plus a constant), which is a Gaussian random variable by
the Gaussianity of X. Since Y is Gaussian, its distribution is completely
characterized by its mean vector and covariance matrix, which we have just
computed. We can nowstate the following result:

If X ~ Nim, C), then

AX+b~ MAm+b, A’CA). (3.11)

Example 3.1.3 (Computations with jointly Gaussian random variables)

The random variables X, and X, are jointly Gaussian, with E[X,]=1,
E[X,] = —2, var(X,) = 4, var(X,) = 1, and correlation coefficient
p(X), X)) = 1.

(a) Write down the mean vector and covariance matrix for the random
vector X = (X,, X,)°.

(b) Evaluate the probability P[2X, —3X, <6] in terms of the Q function
with positive arguments.

(c) Suppose that Z = X, — aX,. Find the constant a such that Z is inde-
pendentof X,.

Let us solve this problem in detail in order to provide a concreteillustration
of the properties we have discussed.

Solution to (a) The mean vectoris given by

mas (err) ~\2
Weknow the diagonal entries of the covariance matrix, which are simply
the variances of X, and X,. The cross terms

Cy, 2) = C,(2, 1) = p(X), Xo)v var(X,)var(X, = -1/4= —2,

so that

 
Solution to (b) The random variable Y = 2X, — 3X, is Gaussian, by the
joint Gaussianity of X, and X,. To compute the desired probability, we
need to compute
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E[Y] = E[2X, —3X,] =2E[X, | —3E[X,] = 2(1) —3(-2) =8;

var(Y) = cov(Y, Y) = cov(2X, —3X,, 2X, —3X,)

4 cov(X,, X,) —6 cov(X, X>)

—6 cov(X,, X;) +9 cov(X,, Xo)

= 4(4) —6(—2) — 6(—2) +9(1) = 49.

Thus,

P[2X, ~3X, <6] =P[Y<6]= o(2) = o(-7) = (5).
Whenusing software such as MATLAB, which is good at handling vectors

and matrices, it is convenient to use vector-based computations. To do
this, we note that Y = AX, where A = (2, —3) is a row vector, and apply
(3.11) to conclude that

E[Y] =Am, =(2 —3) (;) =8
and

var(Y) = cov(¥, Y) = ATC,A = (5) e 1) (2 -3)=49.
Solution to (c) Since Z = X;— aX, and X, are jointly Gaussian (why?),
they are independentif they are uncorrelated. The covariance is given by

cov(Z, X;) =cov(X, — aX, X;) =cov(X, X;) —a cov(X), X,) =442a,

so that we need a = —2 for Z and X, to be independent.

We are now ready to move on to Gaussian random processes, which are
just generalizations of Gaussian random vectors to an arbitrary number of
components (countable or uncountable).

Gaussian random process A random process X = {X(f), t€ T} is said to be
Gaussian if any linear combination of samples is a Gaussian random variable.

That is, for any number n of samples, any sampling times ¢,,..., ¢,,, and any
scalar constants 4;,..., @,, the linear combination a,X(t,)+---+a,X(t,) is
a Gaussian random variable. Equivalently, the samples X(z,),..., X(t,) are
jointly Gaussian.

A linear combination of samples from a Gaussian random process is com-
pletely characterized by its mean and variance. To compute the latter quanti-
ties for an arbitrary linear combination, we can show, as we did for random
vectors, that all we need to know are the mean function and the autocovariance
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function of the random process. These functions therefore provide a complete
statistical characterization of a Gaussian random process,since the definition
of a Gaussian random process requires only that we be able to characterize
the distribution of an arbitrary linear combination of samples.

Characterizing a Gaussian random process Thestatistics of a Gaus-
sian random process are completely specified by its mean function m,(t) =
E[X(2)] and its autocovariance function Cy(t,, t2) = E[X(t,)X(t,)]. Since the
autocorrelation function Ry(t,, t,) can be computed from Cy(t,, t), and vice
versa, given the mean function my(z), it also follows that a Gaussian random
process is completely specified by its mean and autocorrelation functions.

Wide sense stationary Gaussian random processes are stationary We
know that a stationary random process is WSS. The converse is not true in
general, but Gaussian WSSprocesses are indeed stationary. This is because the
statistics of a Gaussian random processare characterizedbyits first and second
orderstatistics, and if these are shift invariant (as they are for WSS processes),
the random process is statistically indistinguishable under a time shift.

Asin the previous chapter, we use the notation R,(7) and C,(7) to denote
the autocorrelation and autocovariance functions, respectively, for a WSS
process. The PSD S;(f) = ¥(Ry). We are now ready to define WGN.

White Gaussian noise Real-valued WGN n(t) is a zero mean, WSS, Gaus-
sian random processwith S,,(f) = No/2 = 07. Equivalently, R,,(7) = *§(r) =
o”8(r). The quantity Ny/2 = a? is often termed the two-sided PSD of WGN,
since we must integrate over both positive and negative frequencies in order
to compute power using this PSD. The quantity Ng is therefore referred to as
the one-sided PSD, and has the dimension of watt/hertz, or joules. Complex-
valued WGNhasreal and imaginary components modeled asi.i.d. real WGN
processes, and has two-sided PSD N, which is the sum of the two-sided PSDs
of its components. Figure 3.5 shows the role played by WGN in modeling
receiver noise in bandlimited systems.

WGNasmodelfor receiver noise in bandlimited systems White Gaussian
noise has infinite power, whereas receiver noise powerin anypractical system
is always finite. However, since receiver processing always involves some
form of bandlimiting, it is convenient to assumethat the input to the system
is infinite-power WGN,Afterfiltering, the noise statistics obtained with this
simplified description are the same as those obtained by bandlimiting the
noise upfront. Figure 3.5 shows that real-valued WGN can serve as a model

for bandlimited receiver noise in a passband system, as well as for each of
the I and Q noise components after downconversion. It can also model the
receiver noise in a physical baseband system, which is analogous to using
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S,,(F) a s.{f)
Passband WGN Simplified

description Real WGN

No/2

f

| Downconvert S,,(f)
Complex i component
baseband §,{F) P

WGN Nj/2 Simplified
nant) ny No description

Real f
part

f .
Imaginary

part S,{f)
Simplified description

Q component

S,(f)
Complex WGN

No  

Figure 3.5 Since receiver processing always involves some form of bandlimitation,it is not necessary
to impose bandlimitation on the WGN model. Real-valued infinite-power WGN provides a simplified
description for both passband WGN,and for each of the | and Q components for complex baseband
WGN. Complex-valued infinite-power WGN provides a simplified description for bandlimited complex
baseband WGN.

only the I component in a passband system. Complex-valued WGN,on the
other hand, models the complex envelope of passband WGN.Its PSD is
double that of real-valued WGN because the PSDsof the real and imaginary
parts of the noise, modeled as iid. real-valued WGN, add up. The PSD is
also double that of the noise model for passband noise; this is consistent with

the relations developed in Chapter 2 between the PSD of a passband random
process and its complex envelope.

Numerical value of noise PSD For an ideal receiver at room temperature,
we have

No = kT),

where k = 1.38 x 10~% joule/kelvin is Boltzmann’s constant, and Tp is a ref-
erence temperature, usually set to 290 K (“room temperature”) by convention.
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A receiver with a noise figure of F dB has a higher noise PSD, given by

No = kT107°,

Example 3.1.4 (Noise power computation) A 5 GHzwireless local area
network (WLAN) link has a receiver bandwidth B of 20MHz. If the

receiver has a noise figure of 6dB, whatis the receiver noise power P,,?

Solution The noise power

P, = NB =kT)10"/°B = (1.38 x 10-*7)(290)(10°"°) (20 x 10°)

= 3.2 x 107’? watt = 3.2 x 107° milliwatts (mW).

The noise power is often expressed in dBm, which is obtained by convert-
ing the raw numberin milliwatts (mW) into dB. Wetherefore get

P,.apm = 101og,9 P,(mW) = —95 dBm.

 
3.2 Hypothesis testing basics

Hypothesis testing is a framework for deciding which of M possible hypothe-
ses, H,,..., Hy, “best” explains an observation Y. We assumethatthe obser-
vation Y takes values in a finite-dimensional observation space I; thatis, Y is
a scalar or vector.(It is possible to consider a more general observation space
I’, but that is not necessary for our purpose.) The observationis related to the
hypotheses using a statistical model: given the hypothesis H,, the conditional
density of the observation, p(y|i), is known, for i=1,...,M. In Bayesian
hypothesis testing, the prior probabilities for the hypotheses, (i) = P[H;],
i=1,...,M, are known (°%, (i) = 1). Weoften (but not always) consider
the special case of equal priors, which corresponds to m(i) = 1/M forall
i=1,...,M.

Example 3.2.1 (Basic Gaussian example) Consider binary hypothesis
testing, in which Hy corresponds to 0 being sent, H, corresponds to 1
being sent, and Y is a scalar decision statistic (e.g., generated by sampling
the output of a receive filter or an equalizer). The conditional distribu-
tions for the observation given the hypotheses are Hy : Y ~ N(0, v?) and

JQ” POI) = v2av*

H,: Y ~ N(m, v”), so that

p(y|0) = (3.12)
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Decision rule A decision rule 6: — {1,...,M} is a mapping from the
observation space to the set of hypotheses. Alternatively, a decision rule can
be described in terms ofa partition of the observation space I" into disjoint
decision regions {I,,i=1,..., M}, where

T= {yeT: 6() = 3}.

That is, when y Tj, the decision rule says that H,is true.

Example 3.2.2 A “sensible” decision rule for the basic Gaussian example
(assuming that m > 0) is

8(y) = | 0 : (3.13) 
The conditional densities and the “sensible” rule for the basic Gaussian exam-

ple are illustrated in Figure 3.6.

We would like to quantify our intuition that the preceding sensible rule,
which splits the difference between the means underthe two hypotheses,is a
good one. Indeed, this rule need not always be the best choice: for example,
if we knewfor sure that 0 wassent, then clearly a better rule is to say that Hy
is true, regardless of the observation. Thus, a systematic framework is needed
to devise good decision rules, and the first step toward doingthis is to define

Figure 3.6 The conditional t
densities and “sensible”

decision rule for the basic

Gaussian example.

  
0 Im/2 m y

| “ tae
TM r; Sensible” rule

'm/2
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criteria for evaluating the goodness of a decision rule. Central to such criteria
is the notion of conditional error probability, defined as follows.

Conditional error probability For an M-ary hypothesis testing problem,
the conditional error probability, conditioned on H,, for a decision rule 6 is
defined as

Py; = Plsay H; for some j #i|H, is true] =} P[YeT,|H]]
dfi

=1-P[YeD|H], (3.14)

where we have used the equivalent specification of the decision rule in terms

of the decision regions it defines. We denote by P,, = P[Y€I;|H,], the
conditional probability of correct decision, given H,.

If the prior probabilities are known, then we can define the (average) error
probability as

M

PL= >7)Pay. (3.15)i=]

Similarly, the average probability of a correct decision is given by
M

P.= Yai)Py, =1-P,. (3.16)i=]

Example 3.2.3 The conditional error probabilities for the “sensible” deci-
sion rule (3.13) for the basic Gaussian example (Example 3.2.2) are

Pay =P[¥> Mit] =0(2),
since Y ~ N(0, v”) under Ho, and

ry =e[r <3] =0(25%) -0(2),
since Y ~ N(m, v*) under H,. Furthermore, since Pj; = Peo, the average
error probability is also given by

r= 0(5,):
regardiess of the prior probabilities.

Notation Let us denote by “arg max” the argument of the maximum. Thatis, for a
function f(x) with maximum occurring at x), we have

max f(x) = f(%), arg max f(x) = xp.
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Maximum likelihood decision rule The maximum likelihood (ML)deci-
sion rule is defined as

Suc(y) = arg max, p(yli) = arg max log pO). (3.17)

The MLrule chooses the hypothesis for which the conditional density of the
observation is maximized.In rather general settings, it can be proven to be
asymptotically optimal as the quality of the observation improves (e.g., as
the number of samples gets large, or the signal-to-noise ratio gets large). It
can be checked that the sensible rule in Example 3.2.2 is the ML rule for the
basic Gaussian example.

Another popular decision rule is the minimum probability of error (MPE)
rule, which seeks to minimize the average probability of error. It is assumed
that the prior probabilities {a(i)} are known. We now derive the form ofthe
MPEdecision rule.

Derivation of MPE rule Consider the equivalent problem of maximizing
the probability of a correct decision. For a decision rule 6 corresponding
to decision regions {I}, the conditional probabilities of making a correct
decision are given by

Py =| poliay, i=1,...,M
and the average probability of a correct decision is given by

P.= Dm)Pa= La|polday.
Now,pick a point yeT. If we see Y = y and decide H,(ie., yeT,), the
contribution to the integrand in the expression for P, is m(i)p(y|é). Thus,
to maximize the contribution to P, for that potential observation value y,
we should put y¢I; such that w(i)p(y/Z) is the largest. Doing this for each
possible y leads to the MPE decision rule. We summarize andstate this as a
theorem below.

Theorem 3.2.1 (MPE decision rule) For M-ary hypothesis testing, the
MPErule is given by

Oven (y) = arg max m(i)p(yli) = arg max log (i) +log p(yli). (3.18)
A number of important observations related to the characterization of the
MPErule are now stated below.

Remark 3.2.1 (MPE rule maximizes posterior probabilities) By Bayes’
rule, the conditional probability of hypothesis H, given the observation is
Y =y is given by

a)pol)
P(H,|y) = 0)

2

Constellation Exhibit 2003

Page 107 of 395



Constellation Exhibit 2003
Page 108 of 395

92 Demodulation

where p(y) is the unconditional density of Y, given by p(y) = >; 7U)Po,).
The MPErule (3.18) is therefore equivalent to the maximum a posteriori
probability (MAP) rule, as follows:

Suap(y) =arg max P(H|ly). (3.19)

This has a nice intuitive interpretation: the error probability is minimized by
choosing the hypothesis that is most likely, given the observation.

Remark 3.2.2 (ML rule is MPE for equal priors) By setting 7(i) = 1/M
in the MPErule (3.18), we see that it specializes to the ML rule (3.17). For
example, the rule in Example 3.2.2 minimizes the error probability in the
basic Gaussian example, if 0 and 1 are equally likely to be sent. While the
MLrule minimizes the error probability for equal priors, it may also be used
as a matter of convenience when the hypotheses are not equally likely.

Wenowintroduce the notion of a likelihood ratio, a fundamental notion
in hypothesis testing.

Likelihood ratio test for binary hypothesis testing For binary hypothesis
testing, the MPErule specializes to

1, m(1)p(y|1) > 70)p(y10),
Supe (y) =49, m(1)p(y|1) < (0)p(|0), (3.20)

don’t care, m(1)p(y|1) = 7(0)p(y0),

which can be rewritten as

A,
POI) > m0)

LQ) = ——=—, 3.21Pol) < (1) Cay
Hy

where L(y) is called the likelihood ratio (LR). A test that compares the
likelihood ratio with a threshold is called a likelihood ratio test (LRT). We
have just shown that the MPE rule is an LRT with threshold (0)/ w(1).
Similarly, the ML rule is an LRT with threshold one. Often, it is convenient
(and equivalent) to employ the log likelihoodratio test (LLRT), which consists
of comparing log L(y) with a threshold.

 
 
 

 Example 3.2.4 (Likelihood ratio for the basic Gaussian example) Sub-
stituting (3.12) into (3.21), we obtain the likelihood ratio for the basic
Gaussian example as

 

   
 

L(y) = exp (3 (my - )) . (3.22) 
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Weshall encounter likelihood ratios of similar form when considering the
more complicated scenario of a continuous-time signal in WGN. Comparing
log L(y) with zero gives the ML rule, which reduces to the decision rule
(3.13) for m > 0. For m <0, the inequalities in (3.13) are reversed.

Irrelevant statistics In many settings, the observation Y to be used for

hypothesis testing is complicated to process. For example, over the AWGN
channel to be considered in the next section, the observation is a continuous-

time waveform. In such scenarios, it is useful to identify simpler decision
statistics that we can use for hypothesis testing, without any loss in perfor-
mance. To this end, we introduce the concept of irrelevance, which is used
to derive optimal receivers for signaling over the AWGN channelin the next

section. Suppose that we can decompose the observation into two compo-
nents: Y = (Y,, Y,). We say that Y, is irrelevant for the hypothesis testing
problem if we can throw it away (i.e., use only Y, instead of Y) without any
performance degradation.

As an example, consider binary hypothesis testing with observation (Y,, Y>)
as follows:

H,:¥,=m+N,, Y%=Np,
Hyo:%=N,, Yy=Ny, (3.23)

where N, ~ N(O, v?), N, ~ N(O,v”) are jointly Gaussian “noise” random
variables. Note that only Y, contains the “signal” component m. However,
does this automatically imply that the component Y,, which contains only
noise, is irrelevant? Intuitively, we feel that if N, is independent of N,, then
Y, will carry no information relevant to the decision. On the other hand, if

N, is highly correlated with N,, then Y, contains valuable information that
we could exploit. As an extreme example, if N, = N,, then we could obtain
perfect detection by constructing a noiseless observation ¥ = Y, — Y,, which
takes value m under H, and value 0 under Hy. Thus, a systematic criterion
for recognizing irrelevance is useful, and we provide this in the following
theorem.

Theorem 3.2.2 (Characterizing an irrelevantstatistic) For M-ary hypoth-
esis testing using an observation Y = (Y,, ¥,), the statistic Y, is irrelevant
if the conditional distribution of Y,, given Y, and H,, is independentof i. In
terms of densities, we can state the condition forirrelevance as p(y2|y,, i) =
PQ2|y;) for all i.

Proof If p(y.|y,,4) does not depend on i, then it is easy to see that
Poly, 2) = PO»/y)) for alli=1,..., M. Thestatistical relationship between
the observation Y and the hypotheses {H,} is through the conditional densities
{pO}. We have

POL) = PO, lf) = POAPOrI) = POrly)POI).
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From the form of the MPE rule (3.18), we know that terms independentofi
can be discarded, which meansthat we canrestrict attention to the conditional

densities p(y,|i) for the purpose of hypothesis testing. Thatis, ¥, is irrelevant
for hypothesis testing. Q

  Example3.2.5 (Applicationofirrelevance criterion) In (3.23), suppose
that N, is independent of N,. Then Y, = N, is independent of H, and N,,
and hence of H, and Y, and  

 P0212) = Dr),  
 which is a stronger version of the irrelevance condition in Theorem 3.2.2,

In the next section, we use exactly this argument when deriving optimal
receivers over AWGNchannels.

 
 

Wenote in passing that the concept of sufficient statistic, which plays a
key role in detection and estimation theory, is closely related to that of an
irrelevant statistic. Consider a hypothesis testing problem with observation
Y. Consider the augmented observation ¥ = (Y, = f(¥), Y, = Y), where f
is a function. Then f(Y) is a sufficient statistic if Y, = Y is irrelevant for
hypothesis testing using Y. That is, once we know Y, = F(X), we have all the
information we need to make our decision, and no longer need the original
observation Y, = Y.

3.3 Signal space concepts

We are now ready to take the first step in deriving optimal receivers for
M-ary signaling in AWGN.Werestrict attention to real-valued signals and
noise to start with (this model applies to passband and real baseband sys-
tems). Consider a communication system in which one of M continuous-time
signals, s,(t),..., Sy(t) is sent. The received signal equals the transmitted
signal corrupted by AWGN.Ofcourse, when wesay “transmitted signal,” we
actually mean the noiseless copy produced by the coherent receiver of each
possible transmitted signal, accounting for the effects of the channel.

In the languageof hypothesis testing, we have M hypotheses for explaining
the received signal, with

H,:y¥O=s()+n@), i=1,...,M, (3.24)

where n(t) is WGN with PSD o* = N,/2. We show in this section that,
without any loss of detection performance, we can reducethe continuous-time
received signal to a finite-dimensional received vector.
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A note on signal and noise scaling Even before we investigate this model
in detail, we can make the following simple but important observation. If
we scale the signal and the noise by the same factor, the performance of
an optimal receiver remains the same (assuming that the receiver knows the
scaling). Consider a scaled observation j satisfying

H,:3() = As(t)+An(t), i=l,...,M. (3.25)

Wecan now argue, without knowing anything aboutthe structure of the opti-
malreceiver, that the performance of optimal reception for models (3.24) and
(3.25) is identical. An optimal receiver designed for model (3.24) provides
exactly the same performance with model (3.25), by operating on }/A. Sim-
ilarly, an optimal receiver designed for model (3.25) would provide exactly
the same performance with model (3.25) by operating on Ay(t). Hence, the
performance of these two optimal receivers must be the same, otherwise we
could improve the performance of one of the optimal receivers simply by
scaling and using an optimal receiver for the scaled received signal. A con-
sequence of this observation is that system performance is determined by
the ratio of signal and noise strengths (in a sense to be madepreciselater),
rather than individually on the signal and noise strengths. Therefore, when
wediscuss the structure of a given set of signals, our primary concernis with
the relative geometry of the signal set, rather than with scale factors that are
common to the entire signalset.

Next, we derive a fundamental property of WGNrelated to its distribution
when linearly transformed. Any number obtained by linear processing of
WGNcan be expressed as the output of a correlation operation of the form

z=| ” n(du(t)dt = (n, u),
where u(Z) is a deterministic, finite-energy, signal. Since WGN is a Gaussian
random process, we know that Z is a Gaussian random variable. To charac-

terize its distribution, therefore, we need only compute its mean and variance.
Since n has zero mean, the mean of Z is seen to be zero by the following
simple computation:

E[Z]= [ E[n(s)]u()dt =0,
where expectation and integral can be interchanged, both being linear oper-
ations. Instead of computing the variance of Z, however, we state a more
general result below on covariance, from which the result on variance can be

inferred. This result is important enough to state formally as a proposition.

Proposition 3.3.1 (WGNthrough correlators) Let u,(t) and u,(t) denote
finite-energy signals, and let n(t) denote WGN with PSD o? = N)/2. Then
(n, u,) and (n, uy) are jointly Gaussian with covariance

cov(({1, Uy), (n, U2) = 07 (tty, Uy).

Constellation Exhibit 2003

Page 111 of 395



Constellation Exhibit 2003
Page 112 of 395

Demodulation

In particular, setting u, =u, = u, we obtain that

var((n, u)) =cov((n, u), (n, u)) = 07|ful).

Proof of Proposition 3.3.1 The random variables (n,u,) and (n,u,) are
zero mean and jointly Gaussian, since n is zero mean and Gaussian. Their

covariance is computed as

cov( (nt, us), (ny uz)) = Bln, w,)(n, uy)] = ELf n(t)u, (arf n(3)up(s)ds}
= / / u,(t)u,(s)E[n(t)n(s)]dt ds

/ | u, (t)up(s)o26(t—s)dz ds

o/ u,(1)u,(t)dt = o2(u,, up).
This completes the proof. O

ll

il

The preceding result is simple but powerful, leading to the following geo-
metric interpretation for white Gaussian noise.

Remark 3.3.1 (Geometric interpretation of WGN) Proposition 3.3.1
implies that the projection of WGN along any “direction” in the space of
signals (i.e., the result of correlating WGN with a unit energy signal) has
variance 0? = Ny/2. Also, its projections in orthogonaldirections are jointly
Gaussian and uncorrelated, and hence independent.

Armed with this geometric understanding of white Gaussian noise, we plan
to argue as follows:

(1) The signal space spanned by the M possible received signals is finite-
dimensional, of dimension at most M. There is no signal energy outside
this signal space, regardless of which signal is transmitted.

(2) The component of WGNorthogonalto the signal space is independentof
the componentin the signal space, andits distribution does not depend on
which signal wassent.It is therefore irrelevant to our hypothesis testing
problem (it satisfies the condition of Theorem 3.2.2).

(3) We can therefore restrict attention to the signal and noise components
lying in the signal space. These can be represented by finite-dimensional
vectors, thus simplifying the problem immensely relative to our original
problem of detection in continuous time.

Let us now flesh out the details of the preceding chain of reasoning. We
begin by indicating how to construct a vector representation of the signal
space. The signal space § is the finite-dimensional subspace (of dimension
n <M) spanned by s,(t),...,5,,(¢). That is, S consists of all signals of
the form a,5,(t)-+++++dy5y(t), where a,,..., dy, are arbitrary scalars, Let
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Figure 3.7 Four signals
spanning a three-dimensional
signal space.

3.3 Signal space concepts

¥,(t),...,%,() denote an orthonormal basis for S. Such a basis can be
constructed systematically by Gramm~Schmidt orthogonalization (described
below) ofthe set of signals s,(t),..., Sy(t), or may be evident from inspec-
tion in somesettings.

Example 3.3.1 (Developing a signal space representation for a 4-ary
signal set) Consider the example depicted in Figure 3.7, where there are
four possible received signals, s,,..., 54. It is clear from inspection that
these span a three-dimensional signal space, with a convenient choice of
basis signals,

Wh) =i), (1) =Jon@, 0) =Iny(d,

as shown in Figure 3.8. Let s; = (s,[1], s,[2], s,[3])? denote the vector
representation of the signal s; with respect to the basis, fori=1,...4.
That is, the coefficients of the vector s, are such that

3

(=Dsl.
We obtain, again by inspection,

0 1

 
In general, for any signal set with M signals {s,(4),i=1,...,M}, we can
find an orthonormal basis {y,,k =1,...,”}, where the dimension of the
signal space, n, is at most equal to the numberof signals, M. The vector

5,{t) So(t)

$3(t)  
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Figure 3.8 An orthonormal bit) bolt) wait)
basis for the signal set in
Figure 3.7, obtained by
inspection.  

representation of signal s,(t) with respect to the basis is given by s, =
(s[1],...,5,[n])?, where

sk] = (5,0), i=1,...,M, k=1,...,n.

Finding a basis by inspection is not always feasible. A systematic procedure
for finding a basis is Gramm—Schmidt orthogonalization, described next.

Gramm-Schmidt orthogonalization Letting S, denote the subspace
spanned by s,,...,5,, the Gramm-—Schmidt algorithm proceedsiteratively:
given an orthonormalbasis for S,, it finds an orthonormal basis for S,,,. The
procedure stops when k = M. The methodis identical to that used for finite-

dimensional vectors, except that the definition of the inner product involves
an integral, rather than a sum,for the continuous-time signals considered here.

Step 1 (Initialization) Let ¢, =s,. If ¢, 40, then set #, = ¢,/||¢,||. Note
that yf, provides a basis function for 8.

Step k+1 Suppose that we have constructed an orthonormalbasis B, =
{¥,...W,} for the subspace S, spanned by the first k signals (note that
m < k). Define

bil) = Sail) —bseWOO.

The signal ;,,(¢) is the componentofs,,, (£) orthogonalto the subspaceS,. If
Pia FO, define a new basis function W,,41(2) = ea (2)/||Oz41||, and update
the basis as By.) = {Wy,-- +. Wns Vnai}- Lf by, = 0, then s,,, €S,, and itis not
necessary to update the basis; in this case, we set B,,, = B, = {W,,..-, Um}:

The procedure terminates at step M, which yields a basis B= {y,,..., w,}
for the signal space S = Sy. The basis is not unique, and may depend (and
typically does depend) on the order in which we go through thesignals in the
set. We use the Gramm—Schmidtprocedure here mainly as a conceptualtool,
in assuring us that there is indeed a finite-dimensional vector representation
for a finite set of continuous-time signals.

Exercise 3.3.1 (Application of the Gramm-—Schmidt procedure) Apply
the Gramm-Schmidt procedure to the signal set in Figure 3.7. When the
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Figure 3.9 An orthonormal
basis for the signal set in
Figure 3.7, obtained by
applying the Gramm-Schmidt
procedure. The unknowns4, b,

and c are to be determined in t
Exercise 3.3.1. 0 2

oy lt)

 
signals are considered in increasing order of index in the Gramm—Schmidt
procedure, verify that the basis signals are as in Figure 3.9, and fill in the
missing numbers. While the basis thus obtained is not as “nice” as the one

obtained by inspection in Figure 3.8, the Gramm—Schmidt procedurehas the
advantage of general applicability.

Projection onto signal space We now project the received signal y(t)
onto the signal space to obtain an n-dimensional vector Y. Specifically,
set Y = ((y, h),.--» (¥, W,))”. Under hypothesis H, (i = 1,...,M), we
have Y = s,+N, where s, = ((s,,#,),...,(5,,,))?, i= 1,...,M, and
N = ((n, )),...,(n,¥,))” are obtained by projecting the signals and noise
onto the signal space. Note that the vector Y = (y[1],..., y[n])” completely
describes the componentofthe receivedsignal y(z) in the signal space, given by

2) = DO. HO = DAME.j= j=

The componentof y(t) orthogonalto the signal space is given by

V4=D969 =O-Lh(0.=

Wenowexplore the structure of the signal space representation further.

Inner products are preserved We will soon show that performance of
optimal reception of M-ary signaling on an AWGN channel depends only
on the inner products between the signal, once the noise PSD is fixed. It is
therefore important to check that the inner products of the continuous-time
signals and their signal space counterparts remain the same. Specifically,
plugging in the representation of the signals in terms of the basis functions,
weget(s;{k] denotes (s,, i), for 1 <i<M,1<k<n)

(si053) = (Dy Wr Dy, SL) = ON slsLi
= Yeta s{k]s[]bq = et s{k]s,[k] = (s,, S;).

Recall that 6,, denotes the Kronecker delta function, defined as

1 k=l,bu={ kAL
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In the above, we have used the orthonormality of the basis functions {,, k =
1,...,”} in collapsing the two summations into one.

Noise vector is discrete WGN The noise vector N = (M{I],..., N[n])?
corrupting the observation within the signal space is discrete-time WGN. That
is, it is a zero mean Gaussian random vector with covariance matrix oI, so
that its components {N[j]} are iid. N(O, 7?) random variables. This follows
immediately from Proposition 3.3.1 and Remark 3.3.1.

Now that we understand the signal and noise structure within the signal
space, we state and prove the fundamental result that the componentof the
received signal orthogonalto the signal space, y+(#), is irrelevant for detection
in AWGN. Thus, it suffices to restrict attention to the finite-dimensional

vector Y in the signal space for the purpose of optimal reception in AWGN.

Theorem 3.3.1 (Restriction to signal space is optimal) For the model
(3.24), there is no loss in detection performance in ignoring the component
y*(2) of the received signal orthogonalto the signal space. Thus, it suffices
to consider the equivalent hypothesis testing model given by

H;: Y=s,+N i=l,...,M.

Proof of Theorem 3.3.1 Conditioning on hypothesis H,, wefirst note that y+
does not have any signal contribution, since all of the M possible transmitted
signals are in the signal space. Thatis, for y(t) = 5,(f) ++ n(¢), we have

HO = WO LO WO = 5) +0) -Li +m HH
It

nl) — Dn Wb) =O,

where n+ is the noise contribution orthogonal to the signal space. Next, we
show that n+ is independentof N,the noise contribution in the signal space.
Since n+ and N are jointly Gaussian, it suffices to demonstrate that they are
uncorrelated. Specifically, for any t and k, we have

cov(n' (2), Mk]) = E[n*NK] = El{n(2) ~ ie MUO}MAT
= E[n()Nk] — 30, ELNUIMEMY,(0). (3.26)

The first term on the extremeright-hand side can be simplified as

B[n(t)(n, W)] = Elm) f(s), (s)4s]
= [ Eln@n(s)lWy(3)ds = f 076(s~Duy(s)ds = 07, (0).

(3.27)
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Plugging (3.27) into (3.26), and noting that E[N[j]M[k]] = 075,,, we obtain

cov(n*(t), N[/]) = 07h() — 07() = 0.

Thus, conditioned on H,, y* = n+ does not contain any signal contribution, and
is independent of the noise vector N in the signal space.It is therefore irrelevant
to the detection problem; applying Theorem 3.2.2 ina manner exactly analogous
to the observation Y, in Example 3.2.5. (We have not discussed how to define
densities for infinite-dimensional randomprocesses suchas y“, but let us assume
this can be done. Then y+ plays exactly the role of Y, in the example.) 0

Example 3.3.2 (Application to two-dimensional linear modulation)
Consider linear modulation in passband, for which the transmitted signal
corresponding to a given symbol is of the form

5p,,0,() = Abpp(t)(W2 cos 2arf,t) — Ab,p(t)(W2 sin 2arf,,t),

where the information is encodedin the pair of real numbers (b,, b,), and
where p(t) is a baseband pulse whose bandwidth is smaller than the carrier
frequency f,. We assumethat there is no intersymbol interference, hence
it suffices to consider each symbolseparately. In this case,the signal space
is two-dimensional, and a natural choice of basis functions for the signal
space is ,(t) = ap(t)cos2mf.t and w(t) = ap(t)sin2af,t, where a is
a normalization constant. From Chapter 2, we know that y, and w, are
indeed orthogonal. The signal space representation for 5p,,b,(#) is therefore
(a possibly scaled version of) (b,, b,)". The absolute scaling ofthe signal
constellation can be chosen arbitrarily, since, as we have already observed,
it is the signal-to-noise ratio that determines the performance. The two-
dimensional received signal vector(the first dimensionis the I component,
and the second the Q component) can therefore be written as

re)eG)+(n) 0
where N,, N, are iid. N(0,o”) random variables. While the received
vector y is written as a column vector above, we reuse the same nota-

tion (y or y) to denote the corresponding row vector (y,, y,) when conve-
nient. Figure 3.10 shows the signal space representations of some PSK and
QAMconstellations (which we havejust observedis just the symbolalpha-
bet). We have notspecified the scale for the constellations, sinceit is the
constellation geometry, rather than the scaling,that determines performance.

 
Nowthat we have reduced the detection problem tofinite dimensions, we can
write down the density of the observation Y, conditioned on the hypotheses,
and infer the optimal decision rules using the detection theory basics described
earlier. This is done in the next section.
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Figure 3.10 For linear QPSK (4—-PSK or 4~QAM) 8-PSK
modulation with no

intersymbolinterference, the
complex symbols themselves
provide a two-dimensional
signal space representation.
Three different constellations
are shown here. 
3.4 Optimal reception in AWGN

We begin with a theorem characterizing the optimal receiver when the
received signal is a finite-dimensional vector. Using this, we infer the optimal
receiver for continuous-time received signals.

Theorem 3.4.1 (Optimal detection in discrete-time AWGN) Considerthe
finite-dimensional M-ary hypothesis testing problem where the observation
is a random vector Y modeled as

H,: Y=s,+N i=1,...,M, (3.29)

where N ~ N(0, 071) is discrete-time WGN.

(a) When we observe Y =y, the ML decision rule is a “minimum distance

rule,” given by

= in lly—s)ll2— _ Ils?
Su(¥) = arg min |ly—s)|"=arg max (y,s;)-—>~. (3.30)

(b) Ifhypothesis H; has prior probability w(i), i=1,...,M oy a(i) = 1),
then the MPEdecision rule is given by

Sype(y) =arg_ min ly —s;||’ — 20° log w(i)
2

=arg max (y,s,)— Hs +7 log 7(i). (3.31)1<i<M
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Proof of Theorem 3.4.1 Under hypothesis H,, Y is a Gaussian random
vector with mean s,; and covariance matrix o7I (the translation of the noise
vector N by the deterministic signal vector s, does not change the covariance
matrix), so that

___i lly —s){|?Py(yA) = (moana &*P (AS ; (3.32)
Plugging (3.32) into the ML rule (3.17), we obtain the rule (3.30) upon
simplification. Similarly, we obtain (3.31) by substituting (3.32) in the MPE
rule (3.18). Oo

We now provide the final step in deriving the optimal detector for the ori-
ginal continuous-time model (3.24), by mapping the optimal decision rules in
Theorem 3.4.1 back to continuous time via Theorem 3.3.1.

Theorem 3.4.2 (Optimal coherent demodulation with real-valued signals)
For the continuous-time model (3.24), the optimal detectors are given as
follows:

(a) The ML decision rule is

_ iIsil?
Oui (y) = arg max (y, 5) ———. (3.33)

(b) Ifhypothesis H, has prior probability w(i), i=1,...,M (x4, a(i) = 1),
then the MPE decision rule is given by

2

dye) arg max (0.5) otiogm(). 3.34)

Proof of Theorem 3.4.2 From Theorem 3.3.1, we know that the continuous-

time model (3.24) is equivalent to the discrete-time model (3.29) in Theorem
3.4.1. It remains to map the optimal decision rules (3.30) and (3.31) back
to continuous time. These rules involve correlation between the received and

transmitted signals and the transmitted signal energies. It suffices to show
that these quantities are the same for both the continuous-time model and the

equivalent discrete-time model. We know nowthat signal inner products are
preserved, so that

[Is,1|* = [Ij].

Further, the continuous-time correlator output can be written as

(y5 51) = is ++, 81) = (ss 5;) +7 Si)

= (Vg, 5;) = (Y,8;),
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where the last equality follows because the inner product betweenthe signals
ys and s; (which both lie in the signal space) is the same as the inner product
between their vector representations. O

Remark3.4.1 (A technical remark of the form of optimal rulesin contin-
uous time) Notice that Theorem 3.4.2 does not contain the continuous-time
version of the minimum distance rule in Theorem 3.4.1. This is because of a

technical subtlety. In continuous time, the squares of the distances would be

Ily — sl? = Ilys — si? + Il1P? = Ilys — sl? + Ul“ 1P.

Under the AWGN model, the noise power orthogonal to the signal space
is infinite, hence from a purely mathematical point of view, the preceding
quantities are infinite for each i (so that we cannot minimize over i). Hence,
it only makes sense to talk about the minimum distance rule in a finite-

dimensional space in which the noise power is finite. The correlator-based
form of the optimal detector, on the other hand, automatically achieves the
projection onto the finite-dimensional signal space, and hence does not suffer
from this technical difficulty. Of course, in practice, even the continuous-time
received signal may be limited to a finite-dimensional spaceby filtering and
time-limiting, but correlator-based detection still has the practical advantage
that only components ofthe received signal that are truly useful appear in the
decision statistics.

Correlators and matchedfilters The decision statistics for optimal detec-
tion can be computed using a bank of M correlators or matchedfilters as
follows:

(7.5) = [ vs,Ode = (75,02) 0),
where5;y(t) = 5;(—2) is the impulse response of the matchedfilter for s,(t).

Coherent demodulation in complex baseband Wecan now infer the form
of the optimal receiver for complex baseband signals by applying Theorem
3.4.2 to real-valued passbandsignals, and then expressing the decision rule
in terms of their complex envelopes. Specifically, suppose that Sip), i=
1,...,M, are M possible real passband transmitted signals, y,(t) is the noisy
received signal, and n,(7) is real-valued AWGN with PSD N,/2 (see Figure
3.5). Let s,(t) denote the complex envelope of 5;,)(4), £=1,..., M, and let
y(t) denote the complex envelope of yp(4). Then the passband model

H;: y(t) =5S;,)(Q)+n, (2), i=1,...,M (3.35)

translates to the complex baseband model

A;:yO)=s()+n(), i=1,...,M, (3.36)

where n(t) is complex WGN with PSD Np, as shown in Figure 3.5.
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Applying Theorem 3.4.2, we know that the decision statistics based on the

real passband received signal are given by

IIs:pl?
2

where wehavetranslated passband inner products to ccamplen baseband inner
products as in Chapter 2. We therefore obtain the following theorem.

sir(Yp> Sip) — = Re ((y, s;)) —

Theorem 3.4.3 (Optimal coherent demodulation in complex baseband)
For the passband model (3.35), and its equivalent complex baseband model
(3.36), the optimal coherent demodulator is specified in complex baseband
as follows:

(a) The ML decision rule is

telSui(y) = arg max Re ((y, s;)) — (3.37)

(b) Ifhypothesis H, has prior probability 7()), i=1,...,Mi ai) = 1),
then the MPE decision rule is given by

lisit— +07 log w(i). (3.38)Svpe(y) = arg max Re ((y, s;)) —

Coherent reception can be understood in terms of real-valued vector

spaces In Theorem 3.4.3, even though we are dealing with complex base-
band signals, the decision statistics can be evaluated by interpreting each
complex signal as a pair of real-valued signals. Specifically, the coherent
correlation

Re((y, 5;)) = (Yes Sic) + (Ys Sis)

corresponds to separate correlation of the I and Q components, followed by
addition, and the signal energy

[IsilI? = Ihs,,c1? + Elsiel

is the sum of the energies of the I and Q components. Thus, there is no cross
coupling between the I and Q components in a coherent receiver, because the
receiver can keep the components separate. We can therefore develop signal
space concepts for coherent receivers in real-valued vector spaces, as done
for the example of two-dimensional modulation in Example 3.3.2.

When do wereally needstatistical models for complex-valued signals?
Wehave seen in Example 2.2.5 in Chapter 2 that, for noncoherent receivers
that are not synchronizedin carrier phase to the incoming signal, the I and Q
components cannot be processed separately. We explore this observation in
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far more detail in Chapter 4, which considers estimation of parameters such
as delay, carrier frequency, and phase (which typically occur prior to carrier
phase synchronization), as well as optimal noncoherent reception. At that
point, it becomes advantageous to understand complex WGN on its own
terms, rather than thinking ofit as a pair of real-valued WGNprocesses, and
to develop geometric notions specifically tailored to complex-valued vector
spaces.

3.4.1 Geometry of the ML decision rule

The minimum distance interpretation for the ML decision rule implies that
the decision regions (in signal space) for M-ary signaling in AWGNare
constructed as follows. Interpret the signal vectors {s,}, and the received
vector y, as points in n-dimensional Euclidean space. It is easiest to think
about this in two dimensions (n = 2). For any given i, draw a line between
s, and s, for all j # i. The perpendicular bisector of the line between s, and
s; defines two half planes, one in which we choose s, over s;, the other in
which we choose s, over s;. The intersection of the half planes in which s,
is chosen over s,, for j # i, defines the decision region I;. This procedureis
illustrated for a two-dimensional signal space in Figure 3.11. Theline L,, is
the perpendicular bisector of the line between s, and s,. The intersection of
these lines defines I, as shown. Note that L,, plays no role in determining
I), since signal s¢ is “too far” from s,, in the following sense:if the received
signal is closer to s, than to s,, then it is also closer to s, than to s, for
some i = 2,3,4,5. This kind of observation plays an important role in the
performance analysis of ML reception in Section 3.5.

The preceding procedure can now be applied to the simpler scenario of
the two-dimensional constellations depicted in Figure 2.16. The resulting ML
decision regions are shown in Figure 3.12. For QPSK, the ML regions are
simply the four quadrants. For 8-PSK, the MLregionsare sectorsof a circle.
For 16-QAM,the ML regions take a rectangular form.

Figure 3.11 Maximum
likelihood (ML) decision region
I, forsignal s,.  
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Figure 3.12 Maximum
likelihood (ML) decision

regions for some
two-dimensional constellations.

 
3.4.2 Soft decisions

Maximum likelihood and MPE demodulation correspondto “hard” decisions
regarding which of M signals have been sent. Each such M-ary “symbol”
correspondsto log, M bits. Often, however, we send many such symbols (and
hence many more than log, M bits), and may employanerror-correcting code
over the entire sequence of transmitted symbols or bits. In suchasituation,
the decisions from the demodulator, which performs M-ary hypothesis testing
for each symbol, must be fed to a decoder which accounts for the structure
of the error-correcting code to produce more reliable decisions. It becomes
advantageous in such a situation to feed the decoder more information than

that provided by hard decisions. Consider the model (3.29), where the receiver
is processing a finite-dimensional observation vector Y. Two possible val-
ues of the observation (dark circles) are shown in Figure 3.13 for a QPSK
constellation.

Clearly, we would have more confidence in the decision for the observed

value (1.5, —2), which lies further away from the edge ofthe decision region
in which it falls. “Soft” decisions are a means of quantifying our estimate of
the reliability of our decisions. While there are many mechanismsthat could
be devised for conveying more information than hard decisions, the maximal
amount of information that the demodulator can provide is the posterior
probabilities

amily) = P[s, sently] = PLH,ly],
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Figure 3.13 Two possible
observations (shownin black 2

’ circles) for QPSK signaling,
with signal points denoted by
{S;,i2=1,...,4}. The signal

space is two-dimensional. 20 1 Oo

@ (0.25,0.5)

-2 ~1 1 2

83 oO -1 | O Sq

-2 T @ (1.5,-2)
 

where y is the value taken by the observation Y. These posterior probabilities
can be computed using Bayes’ rule, as follows:

, PY)PLA] P|)PLH,]
m(ily) = PLAjly] ==

Pty) iat PLDPLA; ]

Plugging in the expression (3.32) for the conditional densities p(y|j) and
setting a(Z) = PLH,], we obtain

a(i) exp (- lst)
: —s,||2\°

Tj (exp (— BV")
For the example in Figure 3.13, suppose that we set 0? = 1 and w(i) = 1/4.
Then we can use (3.39) to compute the values shown in Table 3.1 for the
posterior probabilities:

The observation y = (0.25,0.5) falls in the decision region for S,, but
is close to the decision boundary. The posterior probabilities in Table 3.1
reflect the resulting uncertainty, with significant probabilities assigned toall
symbols. On the other hand,the observation y = (1.5, —2), whichfalls within
the decision region for s,, is far away from the decision boundaries, hence
we would expectit to providea reliable decision. The posterior probabilities
reflect this: the posterior probability for s, is significantly larger than that of
the other possible symbol values. In particular, the posterior probability for
S,, which is furthest away from the received signal, is very small (and equals
zero when rounded to three decimal placesasin the table).

Unlike ML hard decisions, which depend only on the distances between
the observation and the signal points, the posterior probabilities also depend

a(ily) = (3.39)
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Table 3.1 Posterior probabilities for the QPSK constellation
in Figure 3.13, assuming equal priors and o? = 1.
 

 wily) y = (0.25, 0.5) y = (1.5, -2)

1 0.455 0.017
2 0.276 0
3 0.102 0.047
4 0.167 0.935
 

Table 3.2 Posterior probabilities for the QPSK constellation
in Figure 3.13, assuming equalpriors and o? = 4.
 

 a(ily) y = (0.25, 0.5) y = (1.5, -2)

1 0,299 0.183

2 0.264 0.086
3 0.205 0.235
4 0,233 0.497
 

on the noise variance. If the noise variance is higher, then the decision
becomes more unreliable. Table 3.2 illustrates what happens whenthe noise
variance is increased to o* = 4 for the scenario depicted in Figure 3.13. The
posteriors for y = (0.25, 0.5), which is close to the decision boundaries, are
close to uniform, which indicates that the observation is highly unreliable.
Even for y = (1.5, —2), the posterior probabilities for symbols other than s,
are significant.

In Chapter 7, I consider the role of posterior probabilities in far greater
detail for systems with error-correction coding,

3.5 Performanceanalysis of ML reception

Wefocus on performance analysis for the ML decision rule, assuming equal
priors (for which the ML rule minimizesthe error probability). The analysis
for MPEreception with unequalpriors is similar, and is sketched in one of
the problems.

Now that we have firmly established the equivalence between continuous-
time signals and signal space vectors, we can become sloppy about the
distinction between them in our notation, using the notation y, Ss, and n to
denote the received signal, the transmitted signal, and the noise, respectively,
in both settings.
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3.5.1 Performance with binary signaling

The basic building block for performance analysis is binary signaling. Specif-
ically, consider on-off signaling with

H, : y(t) = s(t) +n(2),

 

3.40Hy: y(t) = n(t). ( )
Applying Theorem 3.4.2, we find that the ML rule reduces to

iy
> IlsiP .iy, 8) = HI . (3.41)
Hy

Setting Z = (y, 5s), we wish to compute the conditional error probabilities
given by

s s

Pa =P|z</EISI—|i Pag = plz> isi’IFleo (3.42)
To this end, note that, conditioned on either hypothesis, Z is a Gaussian
random variable. The conditional mean and variance of Z under Ho are
given by

E[Z|Hp] = E[(n,s)] =0,
var(Z|Ho) = cov((n, s), (n,s)) = o?||s|/?,

where we have used Proposition 3.3.1, and the fact that n(t) has zero mean.
The corresponding computation under H, is as follows:

E[Z|M,] = E[(s+n, s)] =||s||?

var(Z|H,) = cov((s-+n,s), (s-+n, s)) =cov((n, s), (n, s)) = 07 ||[s||?,

noting that covariances do not change upon adding constants. Thus, Z ~
N(0, v*) under Hy and Z ~ N(m, v”) under H,, where m = ||s||? and v? =
o°||s||?. Substituting in (3.42), it is easy to check that

Pow = Fe = Peio =Q (2) : (3.43)
Tn the language of detection theory, the correlation decision statistic Z is
a sufficient statistic for the decision, in that it contains all the statistical
information relevant to the decision. Thus, the ML or MPE decision rules
based on Z must be equivalent (in form as well as performance) to the
corresponding rules based on the original observation y(t). This is easy to
checkas follows. Thestatistics of Z are exactly as in the basic scalar Gaussian
example in Example 3.2.1, so that the ML rule is given by

A

Zz?<

Hy
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and its performance is given by
m

roa =0(8)e,ML Q oyN
as discussed previously: see Examples 3.2.1, 3.2.2, and 3.2.3. It is easy to see
that these results are identical to (3.41) and (3.43) by plugging in the values
of m and v’.

Next, consider binary signaling in general, with

Hy : y(t) = 5,() +n(2),
Hg : y(t) = S(t) +n(2).

The ML rule for this can be inferred from Theorem 3.4.2 as

Ay

sil? > isl
bn) SE ® &,q) Be,

Hy

Wecan analyze this system by consideringthe joint distribution ofthe correla-
torstatistics Z; = (y, s;), i=0, 1, conditioned on the hypotheses. Alternatively,
we can rewrite the ML decision rule as

  
A,
> Is, |]? Ral

(ys 54 So) 4 2?
A

whichcorrespondsto an implementation using a single correlator. The analysis
now involves the conditional distributions ofthe single decisionstatistic Z =
(y, 51 — Sp). Analyzing the performance of the MLrule using these approaches
is left as an exercise forthe reader.

Yet another alternative is to consider a transformed system, where the
received signal is )(z) = y(t) — so(#). Since this transformation is invertible,
the performanceof an optimalrule is unchanged underit. But the transformed
received signal )(¢) falls under the on-off signaling model (3.40), with s(t) =
5,(4) ~ s(t). The MLerror probability therefore follows from the formula
(3.43), and is given by

- dPom = Po = Peo = Q (A) =Q (=) , (3.44)
where d = ||s; — 5o|| is the distance between the two possible received signals.

Before investigating the performance of some commonlyused binary sig-
naling schemes, let us establish some standard measures of signal and noise
strength.

Energy per bit, E,, This is a measure of the signal strength that is univer-
sally employed to comparedifferent communication system designs. A design
is more powerefficientifit gives the same performancewith a smaller E,, if we
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fix the noise strength. Since binary signaling conveys onebit of information,
E, is given by the formula

1

By = 5 (ilsoll? + Ilsill?),
assuming that 0 and 1 are equally likely to be sent.

Performancescaling with signal and noise strengths If we scale up both
5, and sy by a factor A, #, scales up by a factor A”, while the distance d
scales up by a factor A. We therefore define the scale-invariant parameter

a

= E,

Now,substituting, d= ./np&, and o =./N,/2 into (3.44), we find that the
MLperformanceis given by

_ ME,\_ d? EyPome = Q (a) =Q (/é | i) . (3.46)
Two important observations follow.

Np (3.45)

Performance depends on signal-to-noise ratio We observe from (3.46)
that the performance depends on the ratio E,/No, rather than separately on
the signal and noise strengths.

Concept of powerefficiency For fixed E/N), the performance is better
for a signaling scheme that has a higher value of mp. We therefore use the
term powerefficiency for np = d*/ Ey.

Let us now compute the performance of some commonbinary signaling
schemes in terms of E,/Np, using (3.46). Since inner products (and hence
energies and distances) are preserved in signal space, we can compute np for
each schemeusing the signal space representations depicted in Figure 3.14.
The absolute scale of the signals is irrelevant, since the performance depends
on the signaling scheme only through the scale-invariant parameter np. We
therefore choose a convenient scaling for the signal space representation.

Figure 3.14 Signal space

 
" . 10%

representations with

conveniently chosen scaling for So 5 %
three binary signaling schemes. 0

0 1 0 1

On-off keying Antipodal signaling Equal energy,
orthogonal signaling
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On-off keying Here s,(t) = s(t) and s)(t) = 0. As shown in Figure 3.14,
the signal space is one-dimensional. For the scaling in the figure, we have
d=1and FE, = 1/2(1?+0*) = 1/2, so that np = d?/E, = 2. Substituting into
(3.46), we obtain P.vq = O(/E,/No)-

Antipodal signaling Here s,(t) = —so(), leading again to a one-
dimensional signal space representation. One possible realization of antipodal
signaling is BPSK,discussed in the previous chapter. For the scaling chosen,
d=2 and E, = 1/2(1?+(—1)*) = 1, which gives np = d?/E, = 4. Substi-
tuting into (3.46), we obtain P,vq, = O(,/2F,/No).

Equal-energy orthogonal signaling Here s,; and sg are orthogonal, with
(Is;|/? = ||sol?. This is a two-dimensional signal space. Several possible
realizations of orthogonal signaling were discussed in the previous chapter,
including FSK and Walsh-Hadamard codes. From Figure 3.14, we have
d=/2 and E, = 1, so that np = d?/E, = 2.This gives P,ygq. = O(,/E,/No)-

Thus, on-off keying (which is orthogonal signaling with unequal energies)
and equal-energy orthogonal signaling have the same powerefficiency, while
the powerefficiency of antipodal signaling is a factor of two(i.e., 3 dB) better.

In plots of bit error rate (BER) versus SNR, wetypically express BER on
a log scale (to capture the rapid decay of error probability with SNR) and
express SNR in decibels (to span a large range). Such a plot is provided for
antipodal and orthogonalsignaling in Figure 3.15.

Figure 3.15 Bit error rate
versus £,/Nq (dB) for
antipodal and orthogonal :
signaling. 1071 be:

 

10°

 
 
 

= gNn

(Orthogonal) :
4 9

aw

‘(Antipodal)S; Probabilityoferror(logscale)
 

10 #12 #14 #416 «18©20

E,/N,(dB)
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3.5.2 Performance with M-ary signaling

Weturn now to M-ary signaling. Recall that the ML rulecan be written as

Sv) = arg max Z,,
where, for 1 <i < M,the decisionstatistics

I 2
Z; = (y, $;) — ailsill .

Fora finite-dimensional signal space,it is also convenientto use the minimum
distance form of the decision rule:

Oui) = arg min D,,
where

D; = \ly~s;|].

For convenience, we do not show the dependenceof Z,or D, on the received
signal y in our notation. However, it is worth noting that the ML decision
regions can be written as

YT ={y: 8.0) =i} ={y:Z,>Z, for all j Ai} ={y:D,<D, for all j i}.
(3.47)

In the following, we first note the basic structural property that the per-
formance is completely determined by the signal inner products and noise
variance. Wethen observe that exact performance analysis is difficult in gen-
eral, This leads into a discussion of performance bounds and approximations,
and the kind of design tradeoffs we can infer from them.

Performanceis determined bysignal inner products normalized by noise
strength The correlator decision statistics in the ML rule in Theorem 3.4.2
are jointly Gaussian, conditioned on a given hypothesis. To see this, condition
on H;. The conditional error probability is then given by

Py: = Ply € Vi sent] = P[Z, < Z; for some j # ili sent]. (3.48)

To compute this probability, we need to know the joint distribution of the
decisionstatistics {Zj}, conditioned on H,. Let us now examinethe structure
of this joint distribution. Conditioned on H,, the received signal is given by

y4) = 5,() +n(0).

The decision statistics {Zj11 <j <M} are now given by
1 1

2) = (ys 5;) - giisill? = (5, 5;) +(n, 5;) - alisill?. (3.49)
The random variables {Zj} are jointly Gaussian, since n is a Gaussian ran-
dom process, so that their joint distribution is completely determined by
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means and covariances. Taking expectation in (3.49), we have (suppressing
the conditioning on H; from the notation)

1

E[Z,] = (S;, 5;) _ siisill.
Furthermore, using Proposition 3.3.1,

cov(Z;, Z,) = a (s,, 5;)3

note that only the noise terms in (3.49) contribute to the covariance. Thus,

conditioned on H;, the joint distribution of {Z,} depends only on the noise
variance o” and the signal inner products {(s,, Sj)s 1 <i, j < M}. Indeed,it is
easy to show,replacing Z; by Z,/o, that the joint distribution depends only
on the normalized inner products { (s;,5;)/0?,1<i, j <M}. We can now
infer that P,; for each i, and hence the unconditional error probability P,, is
completely determined by these normalized inner products.

Performance-invariant transformations Since performance depends only
on normalized inner products, any transformation of the signal constellation
that leaves these unchanged does not change the performance. Mappingfinite-
dimensional signal vectors {s,} to continuous-time signals {s,(¢)} using an
orthonormal basis is one example of such a transformation that we have

already seen. Another example is a transformationof the signal vectors {s,} to
another set of signal vectors 8, by using a different orthonormal basis for the
vector space in which they lie. Such a transformation is called a rotation, and

wecan write §, = Qs,, where Q is a rotation matrix containing as rows the new
orthonormal basis vectors we wish to use. For this basis to be orthonormal,

the rows must have unit energy and must be orthogonal, which we can write
as QQ’ =I(thatis, the inverse of a rotation matrix is its transpose). We
can now check explicitly that the inner products between signal vectors are
unchanged by the rotation:

(Qs, Qs;) = s,Q’Qs, = $}8; = (Si, S;).

Figure 3.16 provides a pictorial summary of these performance-invariant
transformations.

Figure 3.16 Transformations Expand using basis functions
of the signal constellation that Sianal oefg, (th) Signal
leave performanceover the Vectors fs)—<_Orthonormalbasis{w,(#)}_—_—'” waveforms
AWGNchannel unchanged. Project onto basis functions

Rotation
matrix @ aT=a"

Rotated {3}
signal

vectors
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Wehavederived the preceding properties without having to explicitly com-
pute any error probabilities. Building further on this, we can make some broad

comments on how the performance depends on scale-invariant properties of
the signal constellation and signal-to-noise ratio measures such as E,/No. Let
us first define the energy per symbolandenergy per bit for M-ary signaling.

Energy per symbol, EZ, For M-ary signaling with equalpriors, the energy
per symbol £,is given by

£,=2 5 IialP
s Mia i .

Energy per bit, E,, Since M-ary signaling conveys log, M bit/symbol, the
energy per bit is given by

— E,
> log, M

If all signals in an M-ary constellation are scaled up by a factor A, then E,
and E, get scaled up by A’, as doall inner products {(s,, s;)}. Thus, we can
define scale-invariant inner products {((s,, 5;))/E,} that depend only on the
shape of the signal constellation. Setting 0? = Ny/2, we can now write the
normalized inner products determining performanceas follows:

(Sis $j) (8; 8;) 2B,
ootTy.

Wecan now infer the following statement.

 

(3.50)

Performance depends only on E,/N, and constellation shape This follows
from (3.50), which showsthat the signal inner products normalized by noise
strength (which we have already observed determine performance) depend
only on E,/No and the scale-invariant inner products { (5;5.5))/ Ey}. The
latter depend only on the shapeofthe signal constellation, and are completely
independentofthe signal and noise strengths.

Specialization to binary signaling Note that the preceding observations
are consistent with our performance analysis of binary signaling in Section
3.5.1, We know from (3.46) that the performance depends only on E,/No and
the power efficiency. As shown below, the power efficiency is a function of
the scale-invariant inner products defined above.

& _ Ils; = 0||? _ (81151) + (S03 80) = (S189) — (Sos $1)
Ey Ey Ey

The preceding scaling arguments yield insight into the factors determining the
performance for M-ary signaling. We now discuss how to estimate the per-
formanceexplicitly for a given M-ary signaling scheme. We have shownthat
there is a compact formula for ML performance with binary signaling. However,
exact performanceanalysis of M-ary signaling for M > 2 requires the compu-
tation of Py; (for each i = 1,..., M) using the joint distribution of the {Z;}
conditioned on H;. This involves,in general, an integral of a multidimensional

Tp =
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Gaussian density over the decision regions defined by the MLrule.In many
cases, computer simulation of the MLrule is a morestraightforward means of
computingerror probabilities than multidimensional Gaussianintegrals. Either
method is computationally intensive for large constellations, but is important
for accurately evaluating performancefor, say, a completed design. However,
during the design process, simple formulas that can be quickly computed, and
can provide analytical insight, are often indispensable. We therefore proceed
to develop bounds and approximations for ML performance, building on the
simple analysis for binary signaling in Section 3.5.1.

We employ performance analysis for QPSK signaling as a running example,
since it is possible to perform an exact analysis of ML performancein this
case, and to compare it with the bounds and approximationsthat we develop.
The MLdecision regions (boundaries coincide with the axes) and the distances
between the signal points for QPSK are depicted in Figure 3.17.

Exact analysis for QPSK Let us find P.,, the conditional error probability
for the ML rule conditioned on s, being sent. For the scaling shown in the
figure, s, = (d/2, d/2), and the two-dimensional observation y is given by

d dy=5, + (N,N) = (x+$.m44) ,
where N,, N, are i.i.d. N(O, 0”) random variables, using the geometric inter-
pretation of WGNafter Proposition 3.3.1. An error occurs if the noise moves

the observation out of the positive quadrant, which is the decision region for
5,. This happens if N,+d/2 <0 or N,+d/2 <0. Wecantherefore write

d d d dPay = pln+$ <Qor Nota <0|=P[%+$ <0]+P[n,+$ <0]
d d-P|n+$ <Oand N+ > <0].

Figure 3.17 Distances

between signal points for
QPSK.
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It is easy to see that

d d d

Using the independence of N,, N,, we obtain

ru =20(£)-[o()} asp
By symmetry, the preceding equals P., for all i, which implies that the
average error probability is also given by the expression above. To expressthe
error probability in terms of E,/No, we compute the scale-invariant parameter
d’/E,, and use therelation

d_ |@ |,
20°~*\EY 2N,’

as we did for binary signaling. The energy per symbolis given by

1 ¥ d\? (d\?> @
E= [2 a 2_f£ —) =—,s Liisi IIs;1| (5) +(5) 5

which implies that the energy perbit is

E, E, @
E&= =o! =,

log,M log,4 4

 

This yields d?/ Ey = 4, and hence d/ 20 = ./2E,/Np. Substituting into
(3.51), we obtain

rata=20([B)-o(J8) om
as the exact error probability for QPSK.

Union bound and variants We now discuss the union boundonthe perform-
ance of M-ary signaling in AWGN. We canrewrite (3.48), the conditional
error probability, conditioned on H;, as a union of M —1events, as follows:

Pa = PLUjziAZ; < Z;}{i sent].

Since the probability of the union of events is upper bounded by the sum of
their probabilities, we obtain

Poi SO PLZ; < Z,|i sent]. (3.53)
SFt

But the jth term on the right-hand side aboveis simply the error probability
of MLreception for binary hypothesis testing between the signals s, and s;.
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From the results of Section 3.5.1, we therefore obtain the following pairwise
error probability:

IIs; — sill
P[Z; < Z,|i sent] =Q(—1—— }.(2<Z| sen]=9(

Substituting into (3.53), we obtain the following union bound.

Union bound The conditional error probabilities for the ML rule are
bounded as

 

Py so(HE)vo(sst), (3.54)fi iH

introducing the notation d,, for the distance between signals s, and 5;. This
can be averaged using the prior probabilities to obtain a bound on the average
error probability as follows:

P==D=Dro Do(Aat)rao Do(S4). assi S#i i S#i

Wecan now rewrite the union bound in terms of E,/Np andthe scale-invariant
squared distances d}if E, as follows:

Po Ssh Q € di;/Eyy/BPM) (3.56)

Po = LmPei < Ti) VO ( 45/B/E/N) . (3.57)i ft

Union bound for QPSK For QPSK,we infer from Figure 3.17 that the
union boundfor Pj, is given by

roto a(s2)-0(32)»0(S)-20(5) -0(2)
Using d?/E, = 4, weobtain the union bound in terms of E,,/Npo to be

P,<2Q ( a) +O ( =) QPSK union bound. (3.58)V No V No

For moderately large E,/No, the dominantterm in terms of the decay of the
error probability is the first one, since Q(x) falls off rapidly as x gets large.
Thus, while the union bound (3.58) is larger than the exact error probability
(3.52), as it must be, it gets the multiplicity and argument of the dominant
term correct.

The union bound can be quite loosefor large signal constellations. However,
if we understandthe geometry ofthe constellation well enough,wecantighten
this bound by pruning a numberof terms from (3.54). Let us first discuss
this in the context of QPSK. Condition again on s, being sent. Let E, denote
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the event that y falls outside the first quadrant, the decision region for s,. We
see from Figure 3.17 that this implies that event E, holds, where E, is the
event that either y is closer to s, than to s, (if y lies in theleft half plane), or
y is closer to s, than to s, (if it lies in the bottom half plane). Since E, implies
E,, it is contained in E,, and its (conditional) probability is bounded by that
of E,. In terms of the decision statistics Z,, we can bound the conditional
error probability (i.e., the conditional probability of E,) as follows:

Py, < PZ, > Z, or Z, > Z,|s, sent] < P[Z, > Z,|s, sent]
d

P[Z. t]}=20[ — }.+P(2_> Z|, sent] =20 (=)
In terms of E,/Np, we obtain the “intelligent” union bound;

|2E,Py = Pay <2Q ( 2B) QPSK intelligent union bound. (3.59)0

This corresponds to dropping the term corresponding to s, from the union
bound for P,,. We term the preceding bound an “intelligent” union bound
because we have used our knowledge of the geometry ofthe signal constel-
lation to prune the terms in the union bound, while still obtaining an upper
bound for the error probability.

Wenowprovide a characterization of the intelligent union bound for M-ary
signaling in general. Denote by Mq (i) the indices of the set of neighbors
of signal s; (we exclude i from Ny(i) by definition) that characterize the
MLdecision region I, That is, the half planes that we intersect to obtain I,
correspond to the perpendicular bisectorsof lines joining s, and Sj, 7 € Ny().
In particular, we can express the decision region in (3.47) as

N=(9:8a0)=9={y:Z,>Z, forall jeMa@}. (3.60)

Wecan now say the following: y falls outside I, if and only if Z, < Z; for
some j € Ny, (i). We can therefore write

Poi = Ply ¢ Ti sent] = P[Z, < Z, for some feNyg_(di sent] (3.61)

and from there, following the same steps as in the union bound, get a tighter
bound, which we express as follows.

Intelligent union bound A better bound on P,; is obtained by considering
only the neighbors of s, that determine its ML decision region, as follows:

Ils; — 5;||P.,; < OQ (A) . (3.62)| lene 20
In terms of E,/No, we get

jd, |B
Pax YQ Ez oN (3.63)

jE Ma b¥“No
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(the bound on the unconditional error probability P, is computed as before
by averaging the bounds on P,,)).

For QPSK, we see from Figure 3.17 that Ny (1) = {2,4}, which means
that we need only consider terms corresponding to s, and s, in the union
boundfor P,., yielding the result (3.59).

As another example, consider the signal constellation depicted in Figure
3.11. The union bound is given by

ra s0(%)+0($2)+0($8) 0%) +0(8)
However, since Ny (1) = {2, 3, 4, 5}, the last term above can be dropped to
get the following intelligent union bound:

Pay < o(s##).0() +0(S4)+0(S).
The gains from employing intelligent pruning of the union boundarelarger
for larger signal constellations. In Chapter 5, for example, we apply more
sophisticated versions of these pruning techniques when discussing the per-
formance of ML demodulation for channels with intersymbolinterference.

Another common approach for getting a better (and quicker to compute)
estimate than the original union bound is the nearest neighbors approxi-
mation. This is a loose term employed to describe a number of different

methods for pruning the terms in the summation (3.54). Most commonly,
it refers to regular signal sets in which each signal point has a number of

nearest neighborsat distance d,,;, from it, where diy, = min I|s; — s,||. Letting
Nani, (4) denote the numberof nearest neighbors of s,, we obtain the following
approximation.

Nearest neighbors approximation

d inPa © Nu,,,OQ (=) . (3.64)
Averaging over i, we obtain

- d..

Pe x Nevin 2 (=*) ° (3.65)
where Navn denotes the average number of nearest neighbors for a signal
point. The rationale for the nearest neighbors approximation is that, since
Q(x) decays rapidly, Q(x) ~ e~*’?, as x gets large, the terms in the union
bound corresponding to the smallest arguments for the Q function dominate
at high SNR.
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The corresponding formulas as a function of scale-invariant quantities and
E,/No are:

eli ™ Yin ! Ey 2No )

It is also worth explicitly writing down an expression for the average error
probability, averaging the preceding overi:

= a 3 Ey
P. © Ng, Q =a ree ’ (3.67“nie ( E, V 2) )

- 1 uM
Ny == DN,nin M 2, din (4)

 

where

is the average number of nearest neighbors for the signal points in the con-
stellation.

For QPSK, we have from Figure 3.17 that

 

Nene (i) = 2 = Nanin
and

aein — @& = 4,
y Ey \ Ey

yielding

P20 Fe).0

In this case, the nearest neighbors approximation coincides with theintelligent
union bound (3.59). This happens because the ML decision region for each
signal point is determinedbyits nearest neighbors for QPSK.Indeed,the latter
property holds for many regular constellations, including all of the PSK and
QAMconstellations whose ML decision regionsare depicted in Figure 3.12.

Powerefficiency While the performance analysis for M-ary signaling is
difficult, we have now obtained simple enough estimates that we can define
concepts such as powerefficiency, analogous to the developmentfor binary
signaling. In particular, comparing the nearest neighbors approximation (3.65)
with the error probability for binary signaling (3.46), we define in analogy
the powerefficiency of an M-ary signaling scheme as

da.
p= —oe (3.68)
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Figure 3.18 ML decision
regions for 16-QAM with
scaling chosen for convenience

in computing powerefficiency.

 

3.5 Performanceanalysis of ML reception

Wecan rewrite the nearest neighbors approximation as

- [npPia,0 me). (3.69)
Since the argument of the Q function in (3.69) plays a bigger role than the
multiplicity Novo for moderately large SNR, np offers a means of quickly
comparing the powerefficiency of different signaling constellations, as well
as for determining the dependence of performance on E,/Np.

Performance analysis for 16-QAM We now apply the preceding perfor-
mance analysis to the 16-QAM constellation depicted in Figure 3.18, where
we have chosen a convenient scale for the constellation. We now compute
the nearest neighbors approximation, which coincides with the intelligent
union bound, since the ML decision regions are determined by the nearest
neighbors. Noting that the number of nearest neighbors is four for the four
innermost signal points, two for the four outermost signal points, and three
for the remaining eight signal points, we obtain upon averaging

= 3. (3.70)ain

It remains to compute the power efficiency mp and apply (3.69). For the
scaling shown, we have d,,,, = 2. The energy per symbol is obtained as
follows:
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E, = average energy of I component + average energy of Q component
= 2(average energy of I component)

by symmetry. Since the I componentis equally likely to take the four values
ct] and 3, we have:

1

average energy of I component = xl +37) =5
and

Wetherefore obtain

ne 10 5
° Jog, M ~ log, 162

 

The powerefficiency is therefore given by

 

=. (3.71)=
| |_@i, 2 8

32

Substituting (3.70) and (3.71) into (3.69), we obtain

P,(16-QAM) © 30 ( | (3.72)
as the nearest neighbors approximation and intelligent union bound for 16-
QAM.The bandwidth efficiency for 16-QAMis 4 bit/2 dimensions, which is
twice that of QPSK, whose bandwidth efficiency is 2 bit/2 dimensions.It is
not surprising, therefore, that the power efficiency of 16-QAM (1p = 1.6)
is smaller than that of QPSK (np = 4). We often encounter such tradeoffs
between power and bandwidth efficiency in the design of communication
systems, including when the signaling waveforms considered are sophisticated
codes that are constructed from multiple symbols drawn from constellations
such as PSK and QAM.

Figure 3.19 shows the symbol error probabilities for QPSK, 16-QAM,and
16PSK, comparing the intelligent union bounds (which coincide with near-
est neighbors approximations) with exact (up to, of course, the numerical
accuracy of the computer programs used) results. The exact computations
for 16-QAM and 16PSK use expressions (3.72) and (3.92), as derived in
the problems. It can be checked that the power efficiencies of the con-
stellations accurately predict the distance between the curves. For example,
Np(QPSK)/yp(16 — QAM) = 4/1.6, which equals about 4dB. From Figure
3.19, we see that the distance between the QPSK and 16-QAM< curves at
small error probabilities is about 4 dB.
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Figure 3.19 Symbol error
TONard 1K[=nigontunionbound
16-QAM, and 16PSK. v7 Intedigent union doun

Probabilityofsymbolerror(logscale) 
Ep/No(dB)

Performanceanalysis for equal-energy /-ary orthogonal signaling This
is a signaling technique that lies at an extreme of the power—bandwidth
tradeoff space. The signal space is M-dimensional, hence it is convenient to
take the M orthogonal signals as unit vectors along the M axes. With this
scaling, we have FE, = 1, so that E, = 1/(log, M). All signals are equidistant
from each other, so that the union bound,theintelligent union bound, and the
nearest neighbors approximation all coincide, with d?,, = 2 for the chosen
scaling. We therefore get the power efficiency

Tp = E, = £108) M.
Note that the powerefficiency gets better as M gets large. On the other hand,
the bandwidth efficiency, or the numberof bits per dimension, is given by

 __ log, M
ta = M

and goes to zero as M — oo. We now examine the behavior of the error

probability as M gets large, using the union bound.
Expressions for the probabilities of correct detection and error are derived

in Problem 3.25. Note here one of these expressions:

Po= (M _- 1) f?[ey]"? O(x—m) jae"? dx
(3.73)

Exact error probability for orthogonalsignaling,

m= 2E,|2E, log, M
VN No

where
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The union boundis given by

s\ _ E, log, Mrs—no(JF) = ar-no( Oh (3.74)
Union boundfor orthogonalsignaling.

Let us now examine the behaviorof this bound as M gets large. Noting that
the Q function goesto zero, and the term M —1 goesto infinity, we employ
L’H6pital’s rule to evaluate the limit of the right-handside above, interpreting
M asa real variable rather than an integer. Specifically, let

E, nM Ij 00 ~0(,|5¢ tora) =o i nt), f,(M) = ——. 

  

  

Since

dQ)_ e®,
dx /27

we have

afi(M) _| 4[[Ein [- WR2)dM | aa ( No nit) Vin
and

qfx(M) a ytaye“iv = (M—1)? & —M~?.
Weobtain upon simplification that

 
 df (M) 8

an, Pe S jim. apag = fim ACM)MI, 3.75)dM

where A is a constant independent of M. The asymptotics as M — oo are
dominated by the power of M on the right-hand side. If E,/No < 21n2, the
right-hand side of (3.75) tends to infinity; that is, the union bound becomes
useless, since P, is bounded above by one. However, if E,/Ny > 21n2,
the right-hand side of (3.75) tends to zero, which implies that P, tends to
zero. The union bound has quickly revealed a remarkable thresholding effect:
M-ary orthogonal signaling can be made arbitrarily reliable by increasing
M,as long as E,/No is above a threshold.

A more detailed analysis shows that the union bound threshold is off by
3 dB. One canactually show the followingresult (see Problem 3.26):

0, # > In2,lim P, = | 1 °Moo (3.76)Eb
; ™ < In2.

Thatis, by letting M get large, we can get arbitrarily reliable performance
as long as E,/No exceeds —1.6dB (In2 expressed in dB). Using the tools of
information theory, we observe in a later chapter that it is not possible to do
any better than this in the limit of communication over AWGN channels, as
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Figure 3.20 Symbol error
probabilities for M-ary
orthogonalsignaling.

Probabilityofsymbolerror(logscaie) 
Ey/No(dB)

the bandwidth efficiency is allowed to go to zero. That is, M-ary orthogonal
signaling is asymptotically optimum in terms of powerefficiency.

Figure 3.20 shows the probability of symbol error as a function of E,/No
for several values of M. Wesee that the performanceis quite far away from
the asymptotic limit of -1.6dB (also marked on the plot) for the moderate
values of M considered. For example, the E/N, required for achieving an
error probability of 10-° for M = 16 is more than 9dB away from the
asymptotic limit.

3.6 Bit-level demodulation

So far, we have discussed how to decide which of M signals have been sent,
and how to estimate the performance of decision rules we employ. In practice,
however, the information to be sent is encoded in terms of binary digits, or
bits, taking value 0 or 1. Sending one of M signals conveys log, M bits of
information. Thus, an ML decision rule that picks one of these M signalsis
actually making a decision on log, M bits. For hard decisions, we wish to
compute the probability of bit error, also termed the bit error rate (BER), as
a function of E/N.

For a given SNR, the symbol error probability is only a function of the
constellation geometry, but the BER depends also on the manner in which
bits are mappedto signals. Let me illustrate this using the example of QPSK.
Figure 3.21 shows two possible bitmaps for QPSK,along with the ML deci-
sion regions demarcated by bold lines. The first is a Gray code, in which
the bit mapping is such that the labels for nearest neighbors differ in exactly
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Figure 3.21 QPSK with Gray
and lexicographic bitmaps.

Demodulation
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one bit. The second corresponds to a lexicographic binary representation of
0, 1, 2, 3, numbering the signals in counterclockwise order. Let us denote the
symbol labels as b[1]b[2] for the transmitted symbol, where b[1] and b[2]
each take values 0 and 1. Letting b[1][2] denotethe label for the ML symbol
decision, the probabilities of bit error are given by p, = P{B[1] # [1] and
Pz = P[b[2] 4 b[2]]. The average probability of bit error, which we wish to
estimate, is given by p, = 1/2 (p, +p).

Bit error probability for QPSK with Gray bitmap Conditioned on 00
being sent, the probability of making an error on b[1] is as follows:

P[{b[1] = 1|00 sent] = P[ML decision is 10 or 11|00 sent]

- »[v, <-$]=0(£) =0(28),
where, as before, we have expressed the result in terms of E,/No using the
powerefficiency d?/E, =4. Also note, by the symmetry ofthe constellation
and the bitmap, that the conditional probability of error of b[1] is the same,
regardless of which symbol we condition on. Moreover, exactly the same
analysis holds for b[2], except that errors are caused by the noise random
variable N,. We therefore obtain

[2E,p=P=r=0( Ry. (3.77)
Thefact that this expression is identical to the bit error probability for binary
antipodal signaling is not a coincidence; QPSK with Gray coding can be
thoughtof as two independent BPSK (or binary antipodalsignaling) systems,
one signaling along the I (or “cosine”) component, andthe other along the Q
(or “‘sine”) component.
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Bit error probability for QPSK with lexicographic bitmap Conditioned
on 00 beingsent,it is easy to see that the error probability for b[1] is as with
the Gray code. Thatis,

However, the conditional error probability for b[2] is different: to make an
error in b[2], the noise must movethe received signal from thefirst quadrant
into the second or fourth quadrants, the probability of which is given as
follows:

P{b[2] # b[2]|00 sent] = P[b[2] = 100 sent]

=P{MLdecision is 01 or 11|00 sent]
d d d d=P|N, < ~5? N, > -5| +N, > 73 N, < -5}.

Wehavea similar situation regardless of which symbol we condition on. An
error in [2] occurs if the noise manages to move the received signal into
either one of the two quadrants adjacent to the one in which the transmitted
signal lies. We obtain, therefore,

n=20(ff)--l R)-<G))--oB)
for moderately large E,/No. Thus, p, is approximately two times larger
than the corresponding quantity for Gray coding, and the average bit error
probability is about 1.5 times larger than for Gray coding.

While we have invoked large SNR to discuss the impact of bitmaps, the
superiority of Gray coding over an arbitrary bitmap, such as a lexicographic
map, plays a bigger role for coded systems operating at low SNR. Gray
codingalso hasthe advantage of simplifying the specification ofthe bit-level
demodulation rules for regular constellations. Gray coding is an important
enough concept to merit a systematic definition, as follows.

Gray coding Consider a 2"-ary constellation in which each point is repre-
sented by a binary string b = (b,,...,D,). The bit assigmentis said to be
Gray codedif, for any two constellation points b and b’ whichare nearest
neighbors, the bit representations b and b’differ in exactly one bit location.

Fortunately, QPSK is a simple enough constellation to allow for an exact
analysis. A similar analysis can be carried out for larger rectangular constel-
lations such as 16-QAM.It is not possible to obtain simple analytical expres-
sions for BER for nonrectangular constellations such as 8-PSK. In general, it
is useful to develop quick estimates for the bit error probability, analogous to
the results derived earlier for symbolerror probability. Finding boundson the
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bit error probability is difficult, hence the discussion here is restricted to the
nearest neighbors approximation.

Nearest neighbors approximation to the bit error probability Consider
a 2"-ary constellation in which each constellation point is represented by a
binary string of length n as above. Define d(b, b’) as the distance between

constellation points labeled by b and b’. Define d,,,(b) = min d(b, b’) as the
distance of b from its nearest neighbors. Let Nz,,,(b. i) denote the number
of nearest neighbors of b that differ in the ith bit location, i.e., Nanin (b, i) =
card{b’ : d(b, b’) = d,,,(b), b; 4 bi}. Given that b is sent, the conditional
probability of error for the ith bit can be approximated by

P(b, wrong|b sent) * N,.(b, iO (og?)
so that, for equiprobable signaling, the unconditional probability of the ith bit
being in erroris

P(b, wrong) © -: Naga (bs DO (aa) .
For an arbitrary constellation or an arbitrary bit mapping, the probability of
error for different bit locations may be different. This may indeed be desirable
for certain applications in which we wish to provide unequal error protection
among the bits. Usually, however, we attempt to protect each bit equally. In
this case, we are interested in the average bit error probability

J n
P(bit error) = ~ )> P(b; wrong).n i=}

BER with Gray coding For a Gray coded constellation, Nunin (b, i) <1 for
all b andall i. It follows that the value of the nearest neighbors approximation

for bit error probability is at most Q(d,,,,/20) = Q (V(ipE,/2N0)), where
Np = di.,,/Ep is the powerefficiency.

EP(bit error) + Q ( i) with Gray coding. (3.78)\ 2No

Figure 3.22 shows the BER of 16-QAM and 16PSK with Gray coding,
comparing the nearest neighbors approximation with exactresults (obtained
analytically for 16-QAM,and by simulation for 16PSK). Theslight pessimism
and ease of computation of the nearest neighbors approximation implies that
it is an excellent tool for link design.

Note that Gray coding may not alwaysbe possible. Indeed, for an arbitrary
set of M = 2" signals, we may not understand the geometry well enough to
assign a Gray code. In general, a necessary (but not sufficient) condition for
an n-bit Gray code to exist is that the number of nearest neighbors for any
signal point should be at most n.
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Figure 3.22 BER for 16-QAM
and 16PSK with Gray coding.

3.6 Bit-level demodulation

Probabilityofbiterror(BER)(logscale)
— Exact

---- Nearest neighbor approximation

 
5 0 5 10 15 20

E,/No(cB)

Bit error rate for orthogonal modulation For M = 2”-ary equal energy,
orthogonal modulation, each of the m bits split the signal set into half. By
the symmetric geometry of the signal set, any of the M—1 wrong symbols
is equally likely to be chosen, given a symbol error, and M/2 of these will
correspond to error in a given bit. We therefore have

M

+_P(symbol error), BER for M-ary orthogonal
—1 .

signaling. (3.79)

P(bit error) =
 

M

Note that Gray coding is out of the question here, since there are only m bits
and 2” — 1 neighbors,all at the same distance.

Alternative bit-to-symbol maps Gray coding tries to minimize the number
of bit errors due to likely symbol error events. It therefore works well for
uncoded systems, or for coded systems in whichthebits sent to the modulator

are all of equal importance. However, there are coded modulationstrategies
that can be built on the philosophyof assigning different levels of importance
to different bits, for which alternatives to the Gray map are more appropriate.
Wediscussthis in the context oftrellis coded modulation in Chapter 7.

3.6.1 Bit-level soft decisions

Bit-level soft decisions can be computed from symbollevel soft decisions.
Consider the posterior probabilities computed for the scenario depicted in
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Figure 3.13 in Section 3.4.2. If we now assume Gray coding as in Figure
3.21, we have

P[b[1]=Oly] = Pls; or s, sent|y] = 7, (y) + 74(y).

Similarly,

P[b[2] = Oly]=Pls, or s, sent|y] = 7,(y) + 7(y).

Wecan now read off the bit-level soft decisions from Table 3.1. For exam-

ple, for y = (0.25, 0.5), we have P[b[1] = Oly] = 0.455 +0.167 = 0.622 and
P[b[2] = Oly] = 0.455 + 0.276 = 0.731. As shall be seen in Chapter 7, it is
often convenient to expressthe bit-level soft decisions as log likelihoodratios
(LLRs), where we define the LLR for a bit b as

P[b =0]

P[b= 1]

Wetherefore obtain the LLR for b[1], conditioned on the observation, as

 
LLR(b) = log

0.622
= 0.498.

For Gray coded QPSK,it is easier to compute the bit-level soft decisions
directly, using the fact that b[1] and b[2] may be interpreted as being trans-
mitted using BPSK on twoparallel channels. We now outline how to compute
soft decisions for BPSK signaling.

Soft decisions for BPSK Supposethat a bit b< {0, 1} is sent by mapping
it to the symbol (~1)? ¢{—1, +1}. Then the decision statistic Y for BPSK
follows the model:

yi[A4tN b=0
~|)-A+N, b=1,

where A > 0 is the amplitude and N ~ N(0,07). Suppose that the prior
probability of 0 being sent is 7p. (While 0 and 1 are usually equally likely,
we shall see the benefit of this general formulation when wediscuss iterative
decoding in Chapter 7: decoding modules exchange information, with the
output of one module in the decoder providing priors to be used for LLR
computation in another.) Using Bayes’ rule, P[b|y] = P[b]p(y|b)/p(y), b =
0, 1, so that the LLR is given by

Plb=LER(b|y) = 10g=OI_ jog TPOIO)
Plb=1y] * pO)’

Plugging in the Gaussian densities p(y|0) and p(y|1) and simplifying, we
obtain

LLR(bly) = LLRyoe(b) +
2Ay
oS” (3.80)
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where LLR,.ico¢ = log 7/7, is the LLR based on the priors. The formula
reveals a key advantage of using LLR (as opposed to, say, the conditional
probability P[O|y]) to express soft decisions: the LLR is simply a sum of
information from the priors and from the observation.

3.7 Elementsof link budget analysis

Communication link design corresponds to making choices regarding transmit
power, antenna gains at transmitter and receiver, quality of receivercircuitry,
and range, which have not been mentionedsofar in either this chapter or the
previous one. We now discuss how these physical parameters are related to
the quantities we have been working with. Before doing this, let us summarize
what we do know:

(a) Given the bit rate R, and the signal constellation, we know the symbol
rate (or more generally, the number of modulation degrees of freedom
required perunit time), and hence the minimum Nyquist bandwidth B,,,,.
Wecan then factor in the excess bandwidth a dictated by implementation
considerations to find the bandwidth B = (1+ a)B,,, required.

(b) Given the constellation and a desiredbit error probability, we can infer the
E,/No we need to operate at. Since the SNR satisfies SNR = E,R,/NoB,
we have

E R

SNReegd = (=) —, 3.81qd No read B ( )
(c) Given the receiver noise figure F (dB), we can infer the noise power

P, = NoB = kTy10*/!°B, and hence the minimum required receivedsignal
poweris given by

Pax (min) = SNRgegg Pa, = (=) Re P,. (3.82)O/ reqd B
This is called the required receiver sensitivity, and is usually quoted in dBm,
as Paxapm(min) = 10 logy Pex (min)(mW).

Now that we know the required received power for “closing” the link, all
we need to dois to figure out link parameters such that the receiver actually
gets at least that much power, plus a link margin (typically expressed in dB).
Let us do this using the example of an idealized line-of-sight wireless link. In
this case, if Pry is the transmitted power, then the received poweris obtained
using Friis’ formula for propagation loss in free space:

2

Pax = Pry Gry Gax T6n2R2’ (3.83)

where

® Gry is the gain of the transmit antenna,
© Gey is the gain of the receive antenna,
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° A=c/f, is the carrier wavelength (c = 3 x 10° m/s,is the speed oflight,
f, the carrier frequency),

e R is the range (line-of-sight distance between transmitter and receiver).

Note that the antenna gains are with respect to an isotropic radiator. As with
most measuresrelated to power in communication systems, antenna gainsare
typically expressed on the logarithmic scale, in dBi, where Gg; = 10logi) G
for an antenna with raw gain G.

It is convenient to express the preceding equation in the logarithmic scale
to convert the multiplicative factors into addition. For example, expressing
the powers in dBm and the gains in dB, we have

Prxapm = Prx,a3m + Grx,api + Grx,ani + 10 logy (3.84)
2

167?R?

where the antenna gains are expressed in dBi (referenced to the OdB gain of
an isotropic antenna). More generally, we have the link budget equation

Pexapm = Prxapm + Grx.an + Gex.ap — Lathap (R) (3.85)

where Lyan,ap(R) is the path loss in dB. For free space propagation, we have
from Friis’ formula (3.84) that

2

Lyath,ap(R) = —10log;, TéontRe path loss in dB for free space propagation.
(3.86)

However, we can substitute any other expression for path loss in (3.85),
depending onthe propagation environmentwe are operating under. For exam-
ple, for wireless communication in a cluttered environment, the signal power
may decay as 1/R* rather than the free space decay of 1/R?. Propagation
measurements, along with statistical analysis, are typically used to charac-
terize the path loss as a function of range for the system being designed.
Once we decide on the path loss formula (Lysthap(R)) to be used in the
design, the transmit power required to attain a given receiver sensitivity can
be determined as a function of range R. Such a path loss formulatypically
characterizes an “average” operating environment, around which there might
be significant statistical variations that are not captured by the model used to
arrive at the receiver sensitivity. For example, the receiver sensitivity for a
wireless link may be calculated based on the AWGNchannel model, whereas
the link may exhibit rapid amplitude variations due to multipath fading, and
slower variations due to shadowing (e.g., due to buildings and other obsta-
cles). Even if fading or shadowingeffects are factored into the channel model
used to compute the BER, and the modelfor path loss, the actual environment
encountered may be worse than that assumed in the model. In general, there-
fore, we add a link margin Liragingn> 284i expressed in dB, in an attempt
to budget for potential performance losses due to unmodeled or unforeseen
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impairments. The size of the link margin depends, of course, on the confi-
dence of the system designer in the models used to arrive at the rest of the
link budget.

Putting this all together, if Pexasm{min) is the desired receiver sensitivity
(i.e., the minimum required received power), then we compute the transmit
powerfor the link to be

Proxapm = Prx,apm (min) — Grx.ag — Gax.ap + Lpathap(R) + Limarginas: (3-87)

Let me nowillustrate these concepts using an example.

Example 3.7.1 Consider again the 5 GHz WLANlink of Example 3.1.4.
Wewish to utilize a 20 MHz channel, using QPSK and an excess band-
width of 33%. The receiver has a noise figure of 6 dB.

(a) What is the bit rate?
(b) What is the receiver sensitivity required to achieve a bit error rate

(BER) of 10-6?
(c) Assuming transmit and receive antenna gains of 2 dBi each, whatis

the range achieved for 100 mW transmit power, using a link margin
of 20 dB? Use link budget analysis based on free space path loss.

Solution to (a) For bandwidth B and fractional excess bandwidth a, the

symbolrate

R= = — = ae = 15 Msymbol/s
and the bit rate for an M-ary constellation is

R, = R, log, M = 15 Msymbol/s x 2 bit/symbol = 30 Mbit/s.

Solution to (b) The BER for QPSK with Gray coding is Q ( /2E,7No)-
For a desired BER of 107°, we obtain that (Z,/No),eqa is about 10.2 dB.
From (3.81), we obtain

30

SNRyegd = 10.2 + 1010849 55 © 12 dB.
We know from Example 3.1.4 that the noise power is —95 dBm. Thus,
the desired receiver sensitivity is

Pexapm (min) = Pi.aBm + SNRyega,aB = —95 + 12 = —83 dBm.

Solution to (c) The transmit power is 100mW, or 20dBm. Rewriting
(3.87), the allowed path loss to attain the desired sensitivity at the desired
link margin is

Lsath,ap(R) = Pryapm — Prx,asm (min) + Grx,4; + Gax,aai — _imargin dB

= 20 ~(—83)-+2+2—20 =87 dB. (3.88)
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3.8 Further reading

3.9 Problems

3.9.1 Gaussian basics

Demodulation

We can now invert the formula for free space loss, (3.86), to get a range R
of 107 meters, which is of the order of the advertised ranges for WLANs
under nominal operating conditions. The range decreases, of course, for
higher bit rates using larger constellations. What happens, for example,
when we use 16-QAM or 64-QAM?
 

Most communication theory texts, including those mentioned in Section 1.3,
cover signal space concepts in some form. These concepts werefirst presented
in a cohesive mannerin the classic text by Wozencraft and Jacobs [10], which
remains recommended reading. The fundamentals of detection and estimation

can be explored further using the text by Poor [19].

Problem 3.1 Two random variables X and Y have joint density

2x2-4y2

Pyy(%, y) = | Ke" xy 20,0 xy <0.

(a) Find K.
(b) Show that X and Y are each Gaussian random variables.
(c) Express the probability P[X? +X > 2] in terms of the Q function.
(d) Are X and Y jointly Gaussian?
(e) Are X and Y independent?
(f) Are X and Y uncorrelated?

(g) Find the conditional density py), (x|y). Is it Gaussian?

Problem 3.2 (Computations for Gaussian random vectors) The random
vector X = (X,X,)" is Gaussian with mean vector m = (2, 1)" and covariance
matrix C given by

1-1C= (_; i):

(a) Let ¥, = X,+2X,, ¥, = —X,+X). Find cov(¥,, ¥,).
(b) Write downthe joint density of Y, and Y,.
(c) Express the probability P[Y, > 2¥,-+1] in terms of the Q function.
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Problem 3.3 (Bounds on the Q function) We derive the bounds (3.5) and
(3.4) for

co J

O(x) = [ eeePa (3.89)

(a) Show that, for x > 0, the following upper bound holds:

I —x?/2
Q(x) < 5° .

Hint Try pulling out a factor of e* from (3.89), and then bounding the resulting
integrand. Observe that t > x > 0 in the integration interval.

(b) For x > 0, derive the following upper and lower boundsfor the Q function:

 1\ e*? eo /2(1-5)= <0w)< ;xe) /2ax J27x

Hint Write the integrand in (3.89) as a product of 1/t and re~”/ and then integrate
by parts to get the upper bound. Integrate by parts once more using a similartrick to

get the lower bound. Note that you can keep integrating by parts to get increasingly
refined upper and lower bounds.

Problem 3.4 (From Gaussian to Rayleigh, Rician, and exponential ran-
dom variables) Let X,, X, be iid. Gaussian random variables, each with
mean zero and variance v’. Define (R, ®) as the polar representation of the
point (X,, X,), ie.,

X,=Rceos®, X,=Rsin®,

where R > 0 and ®e[0, 2a].

(a) Find the joint density of R and ®.
(b) Observe from (a) that R, ® are independent. Show that ® is uniformly

distributed in [0, 27], and find the marginal density of R.
(c) Find the marginal density of R?.
(d) What is the probability that R? is at least 20dB below its mean value?

Does your answer depend on the value of v*?

Remark The random variable R is said to have a Rayleigh distribution.
Further, you should recognize that R? has an exponential distribution. We use
these results when we discuss noncoherent detection and Rayleigh fading in
Chapters 4 and 8.
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(ce) Now, assumethat X; ~ N(m,, v*), Xp ~~ N(mp, v”) are independent, where
m, and m, may be nonzero. Find the joint density of R and ®, and the
marginal density of R. Express the latter in terms of the modified Besse]
function

j 2a

h(x) = xf exp(xcos 6) dé.
Remark The random variable R is said to have a Rician distribution in this

case. This specializes to a Rayleigh distribution when m, = m, = 0.

Problem 3.5 (Geometric derivation of Q function bound) Let X, and X,
denote independent standard Gaussian random variables.

(a) For a > 0, express P[|X,| > a, |X,| > a] in terms of the Q function.
(b) Find P[X? + X? > 2a].

Hint Transform to polar coordinates. Or use the results of Problem 3.4.

(c) Sketch the regions in the (x,, x.) plane correspondingto the events con-
sidered in (a) and (b).

(d) Use (a){c) to obtain an alternative derivation of the bound Q(x) < beR
for x > 0 (i.e., the bound in Problem 3.3(a)).

3.9.2 Hypothesis testing basics

Figure 3.23 Set-up for
Problem 3.6.

Problem 3.6 The received signal in a digital communication system is
given by

s(t) +n(#) 1 sent,
n(t) O sent,w= |

where n is AWGN with PSD o* = N,/2 and s(t) is as shown below. The
received signal is passed throughafilter, and the output is sampled to yield
a decisionstatistic. An ML decision rule is employed based on the decision
statistic. The set-up is shown in Figure 3.23.

s(t)

ML decision
rule 
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(a) For h(t) = s(—2), find the error probability as a function of E,/No if
f=.

(b) Can the error probability in (a) be improved by choosing the sampling
time f differently?

(c) Now find the error probability as a function of E,/No for A(t) = Ijo,2) and
the best possible choice of sampling time.

(d) Finally, comment on whether you can improve the performancein (c) by
using a linear combination of two samples as a decision statistic, rather

than just using one sample.

Problem 3.7 Find and sketch the decision regions for a binary hypothesis
testing problem with observation Z, where the hypotheses are equally likely,
and the conditional distributions are given by
H): Z is uniform over [—2, 2],
H,: Z is Gaussian with mean 0 and variance 1.

Problem 3.8 The receiver in a binary communication system employs a
decision statistic Z which behaves as follows:

Z=N if 0 is sent, -

Z=4+N if | is sent,

where N is modeled as Laplacian with density
1 sy,

Py(x) = x0 00 <x <0.
Note Parts (a) and (b) can be done independently.

(a) Find and sketch, as a function of z, the log likelihood ratio

p(z|1)
K(z) = log L(z) = log

p(z|0)

where p(z|i) denotes the conditional density of Z given that i is sent
(i =0,1).

(b) Find P,,, the conditional error probability given that 1 is sent, for the
decision rule

0, z<1,= {0 EST
(c) Is the rule in (b) the MPErule for any choice ofprior probabilities? If

so, specify the prior probability a7 = P[O sent] for which it is the MPE
rule. If not, say why not.

Problem 3.9 The output of the receiver in an optical on-off keyed system
is a photon count Y, where Y is a Poisson random variable with mean m,if
1 is sent, and mean my if 0 is sent (assume m, > my). Assume that 0 and 1
are equally likely to be sent.
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(a) Find the form of the ML rule. Simplify as muchas possible, and explicitly
specify it for m, = 100, my = 10.

(b) Find expressions for the conditional error probabilities P,,, i= 0, 1 for
the MLrule, and give numerical values for m, = 100, mp = 10.

Problem 3.10 Consider hypothesis testing based on the decisionstatistic Y,
where Y ~ N(1,4) under H, and Y ~ M(—1, 1) under Hp.

(a) Show that the optimal (ML or MPE)decision rule is equivalent to com-
paring a function of the form ay? + by with a threshold.

(b) Specify the rule explicitly (i.c., specify a, b and the threshold) for the
MPErule when 7) = 1/3.

3.9.3 Receiver design and performance analysis for the AWGN channel

Figure 3.24 Signal
constellations for Problem
3.42.

Problem 3.11 Let p, (2) = Jio,1)(¢) denote a rectangular pulseof unit duration.
Consider two 4-ary signal sets as follows:
Signal set A: s,(t) = p,(t—i), i=0,1, 2,3.
Signal set B: s(t) = p,(t)+ p;¢—3), 5) =p:@-1) +p, (¢-2), B() =
P(t) + p(t —2), 83(2) = py (t— 1) +p(t 3).

(a) Find signal space representations for each signal set with respect to the
orthonormal basis {p,(t— i), i=, 1, 2, 3}.

(b) Find union boundson the average error probabilities for both signal sets
as a function of E,/N). At high SNR, whatis the penalty in dB for using
signal set B?

(c) Find an exact expression for the average error probability for signal set
B as a function of E,/Np.

Problem 3.12 Three 8-ary signal constellations are shown in Figure 3.24.

(a) Express R and q@ in terms of do) so that all three constellations have
the same E,.

(b) For a given E,/No, which constellation do you expectto have the smallest
bit error probability over a high SNR AWGN channel?

(c) For each constellation, determine whether you can label signal points
using three bits so that the label for nearest neighbors differs by at most

 
8-PSK
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one bit. If so, find such a labeling. If not, say why not and find some
“good” labeling.

(d) For the labelings foundin part (c), compute nearest neighbors approxima-
tions for the average bit error probability as a function of E,/No for each
constellation. Evaluate these approximations for E,/No = 15 dB.

Problem 3.13 Consider the signal constellation shown in Figure 3.25, which
consists of two QPSK constellations of different radii, offset from each other

by 7/4, The constellation is to be used to communicate over a passband
AWGNchannel.

(a) Carefully redraw the constellation (roughlyto scale, to the extent possible)
for r= 1 and R= J/2. Sketch the ML decision regions.

(b) Forr=1andR= /2, find an intelligent union bound for the conditional
error probability, given that a signal point from the innercircle is sent,
as a function of E,/No.

(c) How would you choose the parameters r and R so as to optimize the
powerefficiency of the constellation (at high SNR)?

Problem 3.14 (Exact symbol error probabilities for rectangular con-
stellations) Assuming each symbol is equally likely, derive the following
expressions for the average error probability for 4-PAM and 16-QAM:

Po= 50 ( | =) , symbol error probability for 4-PAM (3.90)
4B, 9 l4EP, =3Q ( me) - 72 ( a) » symbol error probability

0 ° for 16-QAM. (3.91)

Figure 3.25 Constellation for

Sonn
WY
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Figure 3.26 Figure for
Problem 3.15.

Demodulation

(Assume 4-PAM with equally spaced levels symmetric aboutthe origin, and
rectangular 16-QAM equivalent to two 4-PAM constellations independently
modulating the I and Q components.)

Problem 3.15 (Symbol error probability for PSK) In this problem, we
derive an expression for the symbol error probability for M-ary PSK that
requires numerical evaluation of a single integral over a finite interval. Figure
3.26 showsthe decision boundaries correspondingto a point in a PSK constel-
lation. A two-dimensional noise vector originating from the signal point must
reach beyond the boundaries to causean error. A direct approach to evaluating
error probability requires integration of the two-dimensional Gaussian density
over an infinite region. We avoid this by switching to polar coordinates, with
the noise vector having radius L and angle @ as shown.

(a) Owing to symmetry, the error probability equals twice the probability
of the noise vector crossing the top decision boundary. Argue that this
happens if L > d(@) for some 6 € (0, 7 — 7/M).

(b) Show that the probability of error is given by

P,=2/ ~" PLL > d(6)|6]p(6) a8.0
2

(c) Use Problem 3.4 to show that P[L > d] = e-7, that L is independent of
@, and that 6 is uniform over[0, 27].

(d) Show that d(@) = (Rsin 7/M)/(sin(@ + 7/M)).
(e) Conclude that the error probability is given by

a R2 sin? Z

P.= -f “ e 207 sin”(6+F) dQ,0
€

7

(f) Use the change of variable @ = a — (6+ 7/M)(oralternatively, realize
that 0+ 7/M (mod 27) is also uniform over [0, 27]) to conclude that

1 a-Z _ Resin? B i q—= __ Epptogy Msin®
hagh (omedba sf Ne Meas, 3.92)0 0

symbol error probability for M-ary PSK.

Decision boundary

SS Loo
Qa

Signal point

 
 

Noise vector

(length L)

  
Origin

Decision boundary
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Figure 3.27 Constellation for
. Problem 3.16.

 
Problem 3.16 The signal constellation shown in Figure 3.27 is obtained by
moving the outer corner points in rectangular 16-QAMto the I and Q axes.

(a) Sketch the ML decision regions.

(b) Is the constellation more or less power efficient than rectangular 16-
QAM?

Problem 3.17 A 16-ary signal constellation consists of four signals with
coordinates (+ —1, +— 1), four others with coordinates (+3, +43), and two
each having coordinates (+3, 0), (+5, 0), (0, +3), and (0, -+5), respectively.

(a) Sketch the signal constellation and indicate the ML decision regions.
(b) Find an intelligent union bound on the average symbol error probability

as a function of E,/Np.
(c) Find the nearest neighbors approximation to the average symbol error

probability as a function of E,,/Np.
(d) Find the nearest neighbors approximation to the average symbol error

probability for 16-QAM as a function of £,/Np.
(e) Comparing (c) and (d) (ie., comparing the performance at high SNR),

which signal set is more powerefficient?

Problem 3.18 (adapted from [13]) A QPSK demodulatoris designed to put
out an erasure when the decision is ambivalent. Thus, the decision regions are

modified as shown in Figure 3.28, where the crosshatched region corresponds
to an erasure. Set a = d,/d, whereO <a <1.

(a) Use the intelligent union bound to find approximations to the probability
 
 

<> p of symbol error and the probability g of symbol erasure in terms of
a E,/No and a.
d (b) Find exact expressions for p and q as functions of E,/No and a.

Figure 3.28 QPSK with (c) Using the approximations in (a), find an approximate value for a such
erasures. that g = 2p for E,/N, = 4 dB.
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Figure 3.29 Signal
constellation with unequal

error protection (Problem
3.19).

Demodulation

 
Remark The motivation for (c) is that a typical error-correcting code can
correct twice as many erasuresas errors.

Problem 3.19 Consider the constant modulus constellation shown in

Figure 3.29 where @ < 7/4. Each symbol is labeled by two bits (3,, b,),
as shown. Assume that the constellation is used over a complex base-
band AWGN channel with noise power spectral density (PSD) Nj/2 in
each dimension. Let (6,, b,) denote the maximum likelihood (ML) estimates
of (b,, by).

(a) Find P,, = P[b, #b,] and Py = P[b, # by] as a function of E,/No, where
E, denotes the signal energy.

(b) Assume now thatthe transmitter is being heard by two receivers, R1 and
R2, and that R2 is twice as far away from the transmitter as R1. Assume

that the received signal energy falls off as 1/r*, where r is the distance
from the transmitter, and that the noise PSD for both receivers is identical.

Suppose that R1 can demodulate both bits b1 and b2 with error probability
at least as good as 107%, ie., so that max{P.,(R1), P..(R1)} = 1073.
Design the signal constellation (i.e., specify @) so that R2 can demodulate
at least one of the bits with the same error probability, i.e., such that
min{P,,(R2), P..(R2)} = 1073.

Remark Youhave designed an unequal error protection scheme in which
the receiver that sees a poorer channel can still extract part of the information
sent.

Problem 3.20 (Demodulation with amplitude mismatch) Consider a 4-
PAM system using the constellation points {1,+3}. The receiver has an
accurate estimate of its noise level. An automatic gain control (AGC)circuit
is supposed to scale the decision statistics so that the noiseless constellation

points are in {+1, +3}. The ML decision boundaries are set according to this
nominal scaling.

(a) Suppose that the AGC scaling is faulty, and the actual noiseless signal
points are at {-+0.9, -+-2.7}. Sketch the points and the mismatched decision

Constellation Exhibit 2003

Page 160 of 395



Constellation Exhibit 2003
Page 161 of 395

145 3.9 Problems

regions. Find an intelligent union bound for the symbol error probability
in terms of the Q function and E,/Np.

(b) Repeat (a), assuming that faulty AGC scaling puts the noiseless signal
points at {-£1.1, £3.3}.

(c) The AGCcircuits try to maintain a constant output power as the input
power varies, and can be viewed as imposing a scale factor on the
input inversely proportional to the square root of the input power.
In (a), does the AGC circuit overestimate or underestimate the input
power?

Problem 3.21 (Demodulation with phase mismatch) Consider a BPSK
system in which the receiver’s estimate of the carrier phase is off by 6.

(a) Sketch the I and Q components of the decision statistic, showing the
noiseless signal points and the decision region.

(b) Derive the BER as a function of 6 and E,,/No (assumethat 6 < 7/2).
(c) Assuming now that @ is a random variable taking values uniformly

in |—7/4, 7/4], numerically compute the BER averaged over 6, and
plot it as a function of E,/No. Plot the BER without phase mis-
match as well, and estimate the dB degradation due to the phase
mismatch.

Problem 3.22 (Soft decisions for BPSK) Consider a BPSK system in which
0 and 1 are equally likely to be sent, with 0 mapped to +1 and 1 to —1 as
usual.

(a) Show that the LLR is conditionally Gaussian given the transmitted bit,
and that the conditional distribution is scale-invariant, depending only on
the SNR.

(b) If the BER for hard decisions is 10%, specify the conditional distribution
of the LLR, given that 0 is sent.

Problem 3.23 (Soft decisions for PAM) Consider a 4-PAM constellation in
which the signallevels at the receiver have been scaled to £1, +3. The system
is operating at E,/No of 6dB. Bits b,, b, €{0, 1} are mapped to the symbols
using Gray coding. Assumethat (0,, b,) = (0,0) for symbol —3, and (1, 0)
for symbol +3.

(a) Sketch the constellation, along with the bitmaps. Indicate the ML hard
decision boundaries.

(b) Find the posterior symbol probability P[—3|y] as a function of the noisy
observation y. Plot it as a function of y.

Hint The noise variance can be inferred from the signal levels and SNR.

(c) Find P[b, = 1|y] and P[b, = ly], and plot each as a function ofy.
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Figure 3.30 Gray coded 8-PSK
constellation for Problem 3.24.

 

Demodulation

(d) Display the results of part (c) in terms of LLRs.

Piby = Oly) Plbs = Oly]
LLR,(y) = log ——_—,,_ LLR = log —-——~.10)=198 Fi, = Th] 20) 198 P15, = Ib

Plot the LLRs as a function of y, saturating the values as +50.
(e) Try other values of E,/Np (e.g., 0dB, 10dB). Comment on any trends

you notice. How do the LLRs vary as a function of distance from the
noiseless signal points? How do they vary as you change E,,/No?

(f) Simulate the system over multiple symbols at E/N such that the BERis
about 5%. Plot the histograms of the LLRs for each of the two bits, and
comment on whether they look Gaussian. What happens as you increase
or decrease E,/N,?

Problem 3.24 (Soft decisions for PSK) Consider the Gray coded 8-PSK
constellation shown in Figure 3.30, labeled with bits (b,, b,, b;). The received
samples are IS]-free, with the noise contribution modeled as discrete-time

WGNwith variance 0.1 per dimension. The system operates at an E,/No
of 8 dB.

(a) Use the nearest neighbors approximation to estimate the BER for hard
decisions.

(b) For a received sample y = 2e7/?7/7, find the hard decisionson thebits.
(c) Find the LLRsfor each ofthe three bits for the received samplein (b).
(d) Now, simulate the system over multiple symbols at E/N such that the

BERfor hard decisions is approximately 5%. Plot the histograms of the
LLRs of each of the three bits, and comment on their shapes. What
happens as you increase or decrease E,/No?

Problem 3.25 (Exact performance analysis for M-ary orthogo-
nal signaling) Consider an M-ary orthogonal equal-energy signal set
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{s,i=1,...,M} with (s,,s,) = £,6,, for 1 <i, 7 <M. Condition on s,
being sent, so that the received signal y = s, +n, where n is WGN with PSD
a” = N,/2. The MLdecisionrulein this case is given by

Sv_(y) = arg max Z,,1si<M

where Z; = (y,5;),i=1,...,M. Let Z=(Z,,...,Zy)’.

(a) Show that {Z,} are (conditionally) independent, with Z, ~ N(E,, o7E,)
and Z; ~ N(0, o7E,).

(b) Show that the conditional probability of correct reception (given s, sent)
is given by

Py, = P[Z;=max Z)] = P[Z, > Zp, Z, > Z3,...,Z,>Zy]t

 

2 i

= / [o(x)"7! mee? dx, (3.93)~o ‘T

where

_ 28,
n= No .

Hint Scale the {Z;} so that they have unit variance (this does not change the outcome
of the decision, since they all have the same variance). Condition on the valueof Z,.

(c) Show that the conditional probability of error (given s, sent) is given by

 

Py = PZ; < max Z,)=1-P[Z, = max Z;]

= (M—-1) [wor Om)ae"? dx. (3.94)
Hint One approach is to use (3.93) and integrate by parts. Alternatively, decompose
the event of getting an error {Z, < max Z,} into M—1 disjoint events and evaluatei

their probabilities. Note that events such as Z; = Z, for i 34 j have zero probability.

Remark The probabilities (3.93) and (3.94) sum up to one, but (3.94)is
better for numerical evaluation when the error probability is small.

(d) Compute andplot the probability of error (log scale) versus E,,/No (dB),
for M = 4, 8, 16,32. Comment on what happens with increasing M.

Problem 3.26 (M-ary orthogonalsignaling performance as M — oo) We
wish to derive the result that

lim P path m>in2 3.95jim, P(correct) = 0, fe <In2. (3.95)
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(a) Show that
M-1

* 2E, log, M 1 _p2P t)= ® — ——e™*? dx.(correct) [. (= N, )| Tax’ x
Hint Use Problem 3.25(b).

(b) Show that, for any x,
M-1

. 2E, log, M _ 40 z <In2,Am, [o (++ No ~ |i z > In2.
Hint Use L’H6pital’s rule on the log of the expression whoselimitis to be evaluated.

(c) Substitute (b) into the integral in (a) to infer the desired result.

Problem 3.27 (Preview of Rayleigh fading) Weshall show in Chapter 8
that constructive and destructive interference between multiple paths in wire-
less systems lead to large fluctuations in received amplitude, modeled as a
Rayleigh random variable A (see Problem 3.4). The energy perbit is there-
fore proportional to A*. Thus, using Problem 3.4(c), we can model FE, as an
exponential random variable with mean E,, where E, is the average energy
per bit.

(a) Show that the BER for BPSK over a Rayleigh fading channelis given by
1

1 Ny)\72
P,=-{1i-{1+— .° 5( (+2)

How does the BER decay with E,/Ny at high SNR?

Hint Compute E [o ( /2E,/No) using the distribution of E,,/Npo. Integrate by parts
to evaluate.

(b) Plot BER versus E/N for BPSK over the AWGN and Rayleigh fading
channels (BER on log scale, Z/No in dB). Note that E, = E, for the
AWGNchannel. At BER of 107‘, whatis the degradation in dB due to
Rayleigh fading?

Problem 3.28 (MLdecision rule for multiuser systems) Consider 2-user
BPSKsignaling in AWGN,with received signal

y= b,u, +b,u, +n, (3.96)

where u, = (~1, ~1)", uy = (2, 1)", by, b, take values +1 with equal prob-
ability, and n is AWGNofvariance o? per dimension.
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(a) Draw the decision regions in the (y,, y,) plane for making joint ML
decisions for b,, b,, and specify the decision if y = (2.5, 1)’.

Hint Think of this as M-ary signaling in WGN,with M = 4.

(b) Find an intelligent union bound on the conditional error probability, con-
ditioned on b, = +1, b, = +1, for the joint ML rule (an error occurs if
either of the bits are wrong). Repeat for b} =+1,b, =—1.

(c) Find the average error probability P,, that the joint ML rule makes an
error in b,.

Hint Use the results of part (b).

(d) If the second user were not transmitting (remove the term b,u, from
(3.96)), sketch the ML decision region for b, in the (y,, y.) plane and
evaluate the error probability P, for b,, where the superscript “su”
denotes “single user.”

(e) Find the rates of exponential decay as a? — 0 for the error probabilities
in (c) and (d). Thatis, find a, b > 0 such that P, ; = e@ and P= eve,

Remark Theratio a/b is the asymptotic efficiency (of the joint ML decision
rule) for user 1. It measures the fractional degradation in the exponential rate
of decay (as SNR increases) of error probability for user 1 due to the presence
of user 2.

(f) Redo parts (d) and (e) for user 2.

3.9.4 Link budget analysis

Problem 3.29 You are given an AWGN channel of bandwidth 3 MHz.

Assume that implementation constraints dictate an excess bandwidth of 50%.

Find the achievable bit rate, the E,/No required for a BER of 10-8, and the
receiver sensitivity (assuming a receivernoise figure of 7 dB)for the following

- modulation schemes, assuming that the bit-to-symbol map is optimized to
minimize the BER wheneverpossible:

(a) QPSK;
(b) 8-PSK;
(c) 644QAM;
(d) Coherent 16-ary orthogonal signaling.

Remark Use nearest neighbors approximations for the BER.

Constellation Exhibit 2003

Page 165 of 395



Constellation Exhibit 2003
Page 166 of 395

150 Demodulation

Problem 3.30 Consider the setting of Example 3.7.1.

(a) For all parameters remaining the same, find the range and bit rate when
using a 64QAM constellation.

(b) Suppose now that the channel model is changed from AWGNto Rayleigh
fading (see Problem 3.27). Find the receiver sensitivity required for QPSK
at BER of 10-°. Whatis the range, assuming all other parametersare as
in Example 3.7.1?

3.9.5 Some mathematical derivations

Problem 3.31 (Properties of covariance matrices) Let C denote the
covariance matrix of a random vector X of dimension m. Let {A,,i =
1,...,m} denote its eigenvalues, andlet {v,,i=1,...,m} denote the cor-
responding eigenvectors, chosen to form an orthonormalbasis for R” (let us
take it for granted that this can always be done). That is, we have Cv, = A,v;
and v/v, = 6,.

(a) Show that C is nonnegative definite. That is, for any vector a, we have
a’Ca > 0.

Hint Show that you can write a’Ca = E[Y?] for some random variable Y.

(b) Show that any eigenvalue A; > 0.
(c) Show that C can be written in terms of its eigenvectors as follows:

m

C=>- Avi. (3.97)
i=]

Hint The matrix equality A = B is equivalent to saying that Ax = Bx for any vector

x. We use this to show that the two sides of (3.97) are equal. For any vector x, consider
its expansion x = > x,¥, with respect to the basis {v,;}. Now, show that applying the

matrices on each side of (3.97) gives the sameresult.
The expression (3.97) is called the spectralfactorization of C, with the eigenvalues

{A,} playing the role of a discrete spectrum. The advantage of this view is that, as
shownin the succeeding parts of this problem, algebraic operations on the eigenvalues,
such as taking their inverse or square root, correspond to analogous operations on the
matrix C.

(d) Show that, for C invertible, the inverse is given by

nm j

Cc = >rv (3.98)int “i

Hint Check this by directly multiplying the right-hand sides of (3.97) and (3.98),
and using the orthonormality of the eigenvectors.

(e) Show that the matrix

A=)-JAyvvP (3.99)
i=]
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can be thoughtof as a squarerootof C, in that A? = C. We denote this
as C2.

(f) Suppose nowthat C is not invertible. Show that there is a nonzero vector
a such that the entire probability mass of X lies along the (m-— 1)-
dimensional plane a? (X —m) = 0. Thatis, the m-dimensionaljoint density
of X does not exist.

Hint If C is not invertible, then there is a nonzero a such that Ca = 0. Nowleft

multiply by a’ and write out C as an expectation.

Remark In this case, it is possible to write one of the components of X
as a linear combination of the others, and work in a lower-dimensional space
for computing probabilities involving X. Note that this result does not require
Gaussianity.

Problem 3.32 (Derivation of joint Gaussian density) We wish to derive
the density of a real-valued Gaussian random vector X = (X,,...,X,,)7 ~
N(O, C), starting from the assumption that any linear combination of the
elements of X is a Gaussian random variable. This can then be translated by

m to get any desired mean vector. To this end, we employ the characteristic
function of X, defined as

Gx (Ww) = Blei*] = Blelr%ittentm} = fly(x) dx, (3.100)
as a multidimensional Fourier transform of X. The density py(x) is therefore
given by a multidimensional inverse Fourier transform,

px(x) = ane / ei"b.(w) dw. (3.101)
(a) Show that the characteristic function of a standard Gaussian random

variable Z ~ N(0, 1) is given by #,(w) =e”.
(b) Set Y = w’X. Show that Y ~ N(0, v”), where v? = w’Cw.
(c) Use (a) and (b) to show that

dy (w) = e72", (3.102)

(d) To obtain the density using the integral in (3.101), make the change of
variable u = C2w. Show that you get

1 I Tord Lat
— —ju'C°2x,—5u'uPx(x) (2a)™ IC]? [e e du,

where |A| denotes the determinant of a matrix A.

Hint We have }y(w) =e72"" and du = [C2 |dw.
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(e) Now,set C-2x =z, with py(x) = f(z). Show that
1 I watz. —dut 17/i 2

=— jul ze 7UUdy— —_ —_— “Mizie—~Gl2 qu.f(z) (mr Tor [e e du op (~/e e du)
(f) Using (a) to evaluate f(z) in (e), show that

1 1

19 TeGe -42"z

Nowsubstitute C~2x =z to get the density p(x).
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Synchronization and noncoherent
communication

In Chapter 3, we established a framework for demodulation over AWGN

channels under the assumption that the receiver knows and can reproduce the
noiseless received signal for each possible transmitted signal. These provide
“templates” against which we can compare the noisy received signal (using
correlation), and thereby makeinferences aboutthe likelihoodof each possible
transmitted signal. Before the receiver can arrive at these templates, however,
it must estimate unknown parameters such as the amplitude, frequency and
phase shifts induced by the channel. We discuss synchronization techniques
for obtaining such estimates in this chapter. Alternatively, the receiver might
fold in implicit estimation of these parameters, or average over the possible
values taken by these parameters, in the design of the demodulator. Non-

coherent demodulation, discussed in detail in this chapter, is an example of
such an approach to dealing with unknown channel phase. Noncoherent com-
munication is employed when carrier synchronization is not available (e.g.,
because of considerations of implementation cost or complexity, or because
the channel induces a difficult-to-track time-varying phase, as for wireless
mobile channels). Noncoherent processing is also an important component
of many synchronization algorithms(e.g., for timing synchronization, which
often takes place prior to carrier synchronization).

Since there are many variations in individual (and typically proprietary)
implementations of synchronization and demodulation algorithms, the focus

here is on developing basic principles, and on providing some simple exam-
ples of how these principles might be applied. Good transceiver designs are
often based on a sound understanding of such principles, together with a
willingness to make approximations guided byintuition, driven by implemen-
tation constraints, and verified by simulations.

The framework for demodulation developed in Chapter 3 exploited signal
space techniques to project the continuous-time signalto a finite-dimensional
vector space, and then applied detection theory to characterize optimal

receivers. We now wish to apply a similar strategy for the more general prob-
lem of parameter estimation, where the parameter may be continuous-valued,
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e.g., an unknown delay, phase or amplitude. The resulting framework also
enables us to recover, as a special case, the results derived earlier for optimal
detection for M-ary signaling in AWGN,since this problem can be interpreted
as that of estimating an M-valued parameter. The model for the received
signal is

y(t) = 56) +20), (4.1)

where 6 A indexes the set of possible noiseless received signals, and n(t)
is WGN with PSD o? = Np/2 per dimension. Note that this description cap-
tures both real-valued and complex-valued WGN; forthelatter, the real part
n, and the imaginary part n, each has PSD N)/2, so that the sum n, +jn,
has PSD Np. The parameter @ may be vector-valued (e.g., when we wish
to obtain joint estimates of the amplitude, delay and phase). We develop
a framework for optimal parameter estimation that applies to both real-
valued and complex-valued signals. We then apply this framework to some
canonical problems of synchronization, and to the problem of noncoherent
communication.

Mapof this chapter Webegin by providing a qualitative discussion of the
issues facing the receiver designer in Section 4.1, with a focus on the prob-
lem of synchronization, which involves estimation and tracking of parameters
such as delay, phase, and frequency. We then summarize some basic con-

cepts of parameter estimation in Section 4.2. Estimation of a parameter 6
using an observation Y requires knowledge of the conditional density of Y,
conditioned on each possible value of 6. In the context of receiver design, the
observation is actually a continuous-time analog signal. Thus, an important
result is the establishment of the concept of (conditional) density for such
signals. To this end, we develop the concept of a likelihood function, which
is an appropriately defined likelihood ratio playing the role of density for
a signal corrupted by AWGN. Wethen apply this to receiver design in the
subsequent sections. Section 4.3 discusses application of parameter estima-
tion to some canonical synchronization problems. Section 4.4 derives optimal
noncoherent receivers using the framework of composite hypothesis testing,
where we choose between multiple hypotheses(i.e., the possible transmitted
signals) when there are some unknown “nuisance” parameters in the statis-
tical relationship between the observation and the hypotheses. In the case
of noncoherent communication, the unknown parameter is the carrier phase.
Classical examples of modulation formats amenable to noncoherent demod-

ulation, including orthogonal modulation and differential PSK (DPSK), are
discussed. Finally, Section 4.5 is devoted to techniques for analyzing the
performance of noncoherent systems. An important tool is the concept of
proper complex Gaussianity, discussed in Section 4.5.1. Binary noncoherent
communication is analyzed in Section 4.5.2; in addition to exact analysis
for orthogonal modulation, we also develop geometric insight analogous to
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the signal space concepts developed for coherent communication in Chapter
3. These concepts provide the building block for the rest of Section 4.5,
which discusses M-ary orthogonal signaling, DPSK, and block differential
demodulation. ,

4.1 Receiver design requirements

In this section, we discuss the synchronization tasks underlying a typical
receiver design. For concreteness, the discussion is set in the contextof linear
modulation over a passband channel. Some keytransceiver blocks are shown
in Figure 4.1.

The transmitted complex baseband signal is given by

u(t) = }°d[n]grx(t ~ nT),

and is upconverted to passband using a local oscillator (LO) at carrier fre-
quency f,. Both the local oscillator and the sampling clock are often integer
or rational multiples of the natural frequency fx of a crystal oscillator, and
can be generated using a phase locked loop, as shown in Figure 4.2. Detailed
description of the operation of a PLL does not fall within our agenda (of
developing optimal estimators) in this chapter, but we briefly interpret the
PLL as an ML estimator in Example 4.3.3.

Figure 4.1 Block diagram of
key transceiver blocks for
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only amplitude scaling and delay (dispersive channels are considered in the
next chapter). Thus, the passband received signal is given by

Yp(t) = Au, (t—7) +n, (2),

where A is an unknown amplitude, 7 is an unknowndelay, and n, is passband
noise. Let us consider the effect of the delay + in complex baseband. We can

write the passband signal as

u(t — ) = Re (u(t — Te?) = Re (u(t — TEPmht)

where the phase 6 = —27rf,7 mod 277 is very sensitive to the delay 7, since
the carrier frequency f, is typically very large. We can therefore safely model
6 as uniformly distributed over [0, 27], and read off the complex baseband
representation of Au,(t—7) with respect to f, as Au(t—7)e®, where 7, 6 are
unknown parameters.

Effect of LO offset The passband received signal Yp is downconverted to
complex baseband using a local oscillator, again typically synthesized from
a crystal oscillator using a PLL. Crystal oscillators typically have tolerances
of the order of 10-100 parts per million (ppm), so that the frequency of the
local oscillator at the receiver typically differs from that of the transmitter.
Assuming that the frequency of the receiver’s LO is f,-—A/f, the output
y of the downconverter is the complex baseband representation of yp with
respect to f, Af. We therefore obtain the following complex baseband
model including unknown delay, frequency offset, and phase.

Complex baseband model prior to synchronization

y(t) = Ae*fu(t — re?" + v(t)
(4.2)

= AelOr\i+9 SYbln]ex(t—nT — 7) +n(0),

where n is complex WGN.
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Sampling In many modern receiver architectures, the operations on the
downconverted complex baseband signal are made using DSP, which can,

in principle, implement any desired operation on the original analog signal
with arbitrarily high fidelity, as long as the sampling rate is high enough
and the analog-to-digital converter has high enough precision. The sam-
pling rate is usually chosen to be an integer multiple of the symbol rate;
this is referred to as fractionally spaced sampling. For signaling with mod-
erate excess bandwidth (Jess than 100%), the signal bandwidth is at most
2/T, hence sampling at rate 2/T preserves all the information in the analog
received signal. Recall from Chapter 2, however, that reconstruction of an

analog signal from its sample requires complicated interpolation using sinc
functions, when sampling at the minimum rate required to avoid aliasing.
Such interpolation can be simplified (or even eliminated) by sampling even
faster, so that sampling at four or eight times the symbol rate is not uncom-

mon in modern receiver implementations. For example, consider the problem
of timing synchronization for Nyquist signaling over an ideal communica-
tion channel. When working with the original analog signal, our task is to

choose sampling points spaced by T which have no ISI. If we sample at
rate 8/T, we have eight symbol-spaced substreams, at least one of which
is within at most 7/8 of the best sampling instant. In this case, we may be
willing to live with the performance loss incurred by sampling slightly away
from the optimum point, and simply choose the best among the eight sub-

streams. On the other hand, if we sample at rate 2/7, then there are only two
symbol-spaced substreams, and the worst-case offset of T/2 yields too high a
performance degradation. In this case, we need to interpolate the samples in
order to generate a T-spaced stream of samples that we can use for symbol
decisions.

The two major synchronization blocks shown in Figure 4.1 are timing
synchronization and carrier synchronization.

Timing synchronization ‘The first important task of the timing synchro-
nization block is to estimate the delay 7 in (4.2). If the symbols {b[n]} are
stationary, then the delay 7 can only be estimated modulo T, since shifts in
the symbol stream are undistinguishable from each other. Thus, to estimate
the absolute value of 7, we typically require a subset of the symbols {b[n]} to
be known, so that we can match what we receive against the expected signal
corresponding to these known symbols. These training symbols are usually
provided in a preamble at the beginning of the transmission. This part of
timing synchronization usually occurs before carrier synchronization.

We have already observed in (4.2) the consequencesofthe offset between
the transmitter and receiver LOs. A similar observation also applies to the
nominal symbolrate at the transmitter and receiver. That is, the symbol time T
in the model (4.2) correspondsto the symbol rate clock at the transmitter. The
(fractionally spaced) sampler at the receiver operates at (1+6)m/T, where &
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is of the order of 10-100 ppm (and can be positive or negative), and where m
is a positive integer. Therelative timing of the T-spaced “ticks” generated by
the transmitter and receiver clocks therefore drifts apart significantly over a
period of tens of thousands of symbols.If the numberof transmitted symbolsis
significantly smaller than this, which is the case for some packetized systems,
then this drift can be ignored. However, when a large number of symbols
are sent, the timing synchronization block must track the drift in symbol
timing. Training symbols are no longer available at this point, hence the
algorithms must either operate in decision-directed mode, with the decisions

from the demodulator being fed back to the synchronization block, or they
must be blind, or insensitive to the specific values of the symbols transmitted.
Blind algorithms are generally derived by averaging overall possible values
of the transmitted symbols, but often turn out to have a form similar to

decision-directed algorithms, with hard decisions replaced by soft decisions.
See Example 4.2.2 for a simple instance of this observation.

Carrier synchronization This corresponds to estimation of Af and 6 in
(4.2). These estimates would then be used to undothe rotations induced by
the frequency and phase offsets before coherent demodulation. Initial esti-

mates of the frequency and phase offset are often obtained using a training
sequence, with subsequent tracking in decision-directed mode. Anotherclas-

sical approachis first to remove the data modulation by nonlinear operations
(e.g., squaring for BPSK modulation), and then to use a PLL for carrier
frequency and phase acquisition.

As evident from the preceding discussion, synchronization typically
involves two stages: obtaining an initial estimate of the unknown parameters
(often using a block of known training symbols sent as a preamble at the
beginning of transmission), and then tracking these parameters as they vary
slowly over time (typically after the training phase, so that the {b[n]} are
unknown). For packetized communication systems, which are increasingly
common in both wireless and wireline communication, the variations of the

synchronization parameters over a packet are often negligible, and the track-
ing phase can often be eliminated. The estimation framework developed in
this chapter consists of choosing parameter values that optimize an appropri-
ately chosencost function. Typically, initial estimates from a synchronization
algorithm can be viewedas directly optimizing the cost function, while feed-
back loops for subsequent parameter tracking can be interpreted as using the
derivative of the cost function to drive recursive updates of the estimate.
Manyclassical synchronization algorithms, originally obtained using intuitive
reasoning, can be interpreted as approximationsto optimal estimators derived
in this fashion. More importantly, the optimal estimation framework in this
chapter gives us a systematic method to approach new receiver design sce-
narios, with the understanding that creative approximations may be needed
when computation of optimal estimatorsis too difficult.
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Wediscuss some canonical estimation problems in Section 4.3, after dis-

cussing basic concepts in parameter estimation in Section 4.2.

4.2 Parameter estimation basics

Webegin by outlining a basic framework for parameter estimation. Given an
observation Y, we wish to estimate a parameter 0. The relation between Y

and @ is statistical: we know p(y|@), the conditional density of Y given @.
The maximum likelihood estimate (MLE) of @ is given by

Ova. (y) = arg max p(y|6) = arg max log p(y/é); (4.3)
where it is sometimes more convenient to maximize a monotonic increasing
function, such as the logarithm, of p(y|@).

If prior information about the parameter is available, that is, if the den-
sity p(@) is known,then it is possible to apply Bayesian estimation, wherein
we optimize the value of an appropriate cost function, averaged using the
joint distribution of Y and ©. It turns out that the key to such minimiza-
tion is the a posteriori density of @ (i.e., the conditional density of @
given Y)

POI)p@)

PY)

For our purpose, we only define the maximumaposteriori probability (MAP)
estimator, which maximizes the posterior density (4.4) over 0. The denomina-
tor of (4.4) does not depend on 6, and can therefore be dropped. Furthermore,
we can maximize any monotonic increasing function, such as the logarithm,

of the cost function. We therefore obtain several equivalent forms of the MAP
rule, as follows:

ply) = (4.4)

@uap(y) = arg max p(Oly) = arg max p(y|@)p(6)6 6
(4.5)

= arg max log p(y|@) + log p(@).@

Example 4.2.1 (Density conditioned on amplitude) As an example
of the kinds of conditional densities used in parameter estimation, con-

sider a single received sample in a linearly modulated BPSK system, of
the form: 

Y=Ab4+4N, (4.6)

where A is an amplitude, b is a BPSK symbol taking values +1 with
equal probability, and N ~ N(0, a7) is noise. If b is known(e.g., because
it is part of a training sequence), then, conditioned on A = a, the received
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sample Y is Gaussian: Y ~ Ma, 0?) for b=+1, and ¥Y ~ N(—a, o”) for
b= -—1. Thatis,

_ Gra? _ (+a)?
ee: e€ 202
ss: pla, b= -1) = =.V 27102 | ) 2707

However,if b is not known, then we must average overthe possible values
it can take in order to compute the conditional density p(y|a). For b= +1
with equal probability, we obtain

pQyla) = Pb = +1]pQla, b= +1)4+ P[b = +-— 1]pla, b = —-1)

pQla,b=+1)= (4.7)

ya)? v-+a)? y?

1 en 1 le 2 2, h (2) €20%=ef 2=e 20 COS ——

2/2002 2/270? a)J270?

We can now maximize (4.6) or (4.8) over a to obtain an ML estimate,
depending on whether the transmitted symbol is knownornot. Of course,

amplitude estimation based on a single symbol is unreliable at typical

SNRs, hence we use the results of this example as a building block for
developing an amplitude estimator for a block of symbols.

Example 4.2.2 (ML amplitude estimation using multiple symbols)
Consider a linearly modulated system in which the samples at the receive
filter output are given by

Yk] =A B[KJ+ MA], k=1,...,K, (4.9)

where A is an unknown amplitude, b[k] are transmitted symbols tak-
ing values +41, and N{k] are iid. N(O,07) noise samples. We wish
to find an ML estimate for the amplitude A, using the vector observa-
tion Y = (¥{[1],..., Y[K])7. The vector of K symbols is denoted by b =
(b[1],..., b[K])”. We consider two cases separately: first, when the sym-
bols {b[k]} are part of a known training sequence, and second, when the
symbols {b[k]} are unknown, and modeled asi.i.d., taking values +1 with
equal probability.

 

Case 1 (Training-based estimation) The MLestimate is given by
K

Ave = arg max log p(y|A, b) =arg max>“log p(¥{k]/A, b[k]),
A A kel

where the logarithm of the joint density decomposes into a sum of the
logarithms of the marginals because of the conditional independence of
the ¥[k], given A and b. Substituting from (4.6), we can show that (see
Problem 4.1)
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(4.10)

That is, the ML estimate is obtained by correlating the received samples
against the training sequence, which is an intuitively pleasing result. The
generalization to complex-valued symbols is straightforward, and is left
as an exercise.

Case 2 (Blind estimation) “Blind” estimation refers to estimation with-
out the use of a training sequence. In this case, we model the {b[k]}
as ii.d., taking values +1 with equal probability. Conditioned on A, the

{¥{k]} are independent, with marginals given by (4.7). The ML estimate
is therefore given by

K

Ama = arg maxlogp(y|A) = arg max) log p(¥ [k]|A).
4 A kel

Substituting from (4.8) and setting the derivative of the cost function with
respect to A to zero, we can show that (see Problem 4.1) the ML estimate
Ay = @ satisfies the transcendental equation

K K

a= I S~ Y[k] tanh (<=) =i >- Y[kbIK, (4.11)Kia Kia

where the analogy with correlation in the training-based estimator (4.10)
is evident, interpreting B[k] = tanh((aY[k])/o”) as a “soft” estimate of the
symbol b[k], k = 1,...,K. How would the preceding estimators need to
be modified if we wished to implement the MAPrule, assuming that the
prior distribution of A is N(0, 07)?

 
Wesee that the key ingredient of parameter estimation is the conditional

density of the observation, given the parameter. To apply this framework
to a continuous-time observation as in (4.1), therefore, we must be able to
define a conditional “density” for the infinite-dimensional observation y(t),
conditioned on @. To dothis, let us first reexamine the notion of density for
scalar random variables more closely.

Example 4.2.3 (There are many ways to define a density) Consider
the Gaussian random variable Y ~ N(@, 07), where @ is an unknown
parameter. The conditional density of Y, given 6, is given by

1 (y-6)
A= _ .p(y|6) a00( Foi

The conditional probability that Y takes values in a subset A of real
numbers is given by
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P(Y €Alé) = | pola) dy. (4.12)
For any arbitrary function g(y) satisfying the property that g(y) > 0 wher-
ever p(y) > 0, we may rewrite the above probability as

Pvea)=[ POM? ayay =f £08) ao)». 4.13)
An example of such a function g(y) is a Gaussian N(O, a?) density,
given by

(y) = d ex _¥qQ\y) = argh p ao? |"
In this case, we obtain

Lo) = PO) < ex(5 (0-5).
Comparing (4.12) and (4.13), we observe the following. The probability of
an infinitesimal interval (y, y-+dy) is given by the product of the density
and the size of the interval. Thus, p(y|@) is the (conditional) probability
density of Y when the measure of the size of an infinitesimal interval
(y, y+dy) is its length dy. However, if we redefine the measure of the
interval size as g(y)dy (this measure now depends on the location of the
interval as well as its length), then the (conditional) density of Y with
respect to this new measure of length is L(y|0). The two notions of density
are equivalent, since the probability of the infinitesimal interval is the same

in both cases. In this particular example, the new density L(y|@) can be
interpreted as a likelihoodratio, since p(y!) and g(y) are both probability
densities.
 

Suppose, now, that we wish to estimate the parameter @ based on Y. Noting
that g(y) does not depend on 6, dividing p(y|@) by g(y) does not affect the
MLEfor @ based on Y: check that By. () = y in both cases. In general,
we can choose to define the density p(y|9) with respect to any convenient
measure, to get a form that is easy to manipulate. This is the idea we use
to define the notion of a density for a continuous-time signal in WGN: we
define the density as the likelihood function of a hypothesis corresponding to
the model (4.1), with respect to a dummy hypothesis that is independent of
the signal s,(t).

4.2.1 Likelihood function of a signal in AWGN

Let H, be the hypothesis corresponding to the signal modelof (4.1), dropping
the subscript @ for convenience:

H,: y(t) = s() +n(2), (4.14)
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where n(t) is WGN and s(t) has finite energy. Define a noise-only dummy
hypothesis as follows:

H,,: y(t) = n(2). (4.15)

We now use signal space concepts in order to compute the likelihood ratio
for the hypothesis testing problem H, versus H,,. Define

as the componentof the received signal along the signal s. Let

rO=0-0.8
(Isl

denote the componentof y orthogonalto the signal space spanned by s. Since
Z and y* provide a complete description ofthe receivedsignaly,it suffices to
compute the likelihoodratio for the pair (Z, y*(2)). We can now argue asin
Chapter 3. First, note that y+ = n*, where n+(1) = n(t) — (n, s)s(#)/||s||? is
the noise componentorthogonalto the signal space. Thus, y" is unaffected by
s. Second, n+ is independent of the noise componentin Z, since components
of WGNin orthogonal directions are uncorrelated and jointly Gaussian, and
hence independent. This implies that Z and y+ are conditionally independent,
conditioned on each hypothesis, and that y+ is identically distributed under
each hypothesis. Thus, it is irrelevant to the decision and does not appear in
the likelihood ratio. We can interpret this informally as follows: when taking
the ratio of the conditional densities of (Z, y+ (r)) under the two hypotheses,
the conditional density of y-(#) cancels out. We therefore obtain L(y) = L(z).
The random variable Z is conditionally Gaussian under each hypothesis, and
its mean and variance can be computedin the usual fashion. The problem has
now reduced to computing the likelihood ratio for the scalar random variable
Z under the following two hypotheses:

H,:Z~ N(\Is|f?, o7|[s||),
H,:Z~ NO, o?||s\[?).

Taking the ratio of the densities yields

l 2 2)2 11) = exp (Sarr (Is? <—(sIP7/2)) = exp (35 @ Is /2)).
Expressing the result in terms of y, using (4.16), we obtain the following
result.

Likelihood function for a signal in real AWGN

LOls) =ex (%(.5)=IbIF/2)), (4.17
where we have made the dependence on s explicit in the notation for the
likelihood function. If s(t) = sg(t), the likelihood function may be denoted
by LQ/8).
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We can now immediately extend this result to complex baseband signals,
by applying (4.17) to a real passband signal, and thentranslating the results
to complex baseband. To this end, consider the hypotheses

H, : yp(t) = 5,(0) +n,(0),
H, :Yol(t) = Np(t),

where y, is the passband receivedsignal, s, is the noiseless passbandsignal,
and n, is passband WGN.The equivalent model in complex baseband is

A, : y= s(t) + n(t),
A, : y) = n(t),

where s is the complex envelope ofs,, and n is complex WGN.Thelikelihood
functions computed in passband and complex baseband must be the same,
since the information in the two domainsis identical. Thus,

LO'8) ex ((05) “ligIF/2))
We can now replace the passband inner products by the equivalent com-
putations in complex baseband, noting that (y,,5,) = Re((y,s)) and that
{[s,||? = ||s|?. We therefore obtain the following generalization of (4.17) to
complex-valued signals in complex AWGN,which wecanstate as a theorem.

Theorem 4.2.1 (Likelihood function for a signal in complex AWGN) For
a signal s(t) corrupted by complex AWGN n(t), modeled as

y) = s+n),

the likelihood function(i.e., the likelihood ratio with respect to a noise-only
dummy hypothesis) is given by

Lots) =exp((Rey. ))=IlsIP/2)). (4.18)
Wecan use (4.18) for both complex-valued andreal-valued received signals
from now on,since the prior formula (4.17) for real-valued received signals
reduces to a special case of (4.18).

Discrete-time likelihood functions The preceding formulas also hold for
the analogousscenario of discrete-time signals in AWGN.Considerthe signal
model

y[k] = s[k] + n[k], (4.19)

where Re(n[k]), Im(n[k]) are iid. N(O, 07) random variables for all k. We
say that n[k] is complex WGN with variance ao? = No/2 per dimension,
and discuss this model in more detail in Section 4.5.1 in the context of

performance analysis. For now, however,it is easy to show that a formula
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entirely analogous to (4.18) holds for this model (taking the likelihood ratio
with respect to a noise-only hypothesis) as follows:

Liyls) =exp(7 (Re((ys))~IIP/2)). 4.20
where y = (y[1],..., y[K])” ands=(s[1], ... , s[K])? are the received vector
and the signal vector, respectively.

In the next two sections, we apply the results of this section to derive
receiver design principles for synchronization and noncoherent communica-

tion. Before doing that, however, let us use the framework of parameter
estimation to quickly rederive the optimal receiver structures in Chapter 3 as
follows.

Example 4.2.4 (M-ary signaling in AWGNrevisited) The problem of
testing among M hypotheses of the form

Hy: y¥o=s()+n@), i=i,...,M

is a special case of parameter estimation, where the parameter takes one
of M possible values. For a complex baseband received signal y, the
conditional density, or likelihood function, of y follows from setting s(t) =
5(t) in (4.18):

Lott) =exp (5 (Re5))=IlsIP/2)
The ML decision rule can now be interpreted as the MLE of an M-valued
parameter, and is given by

ive) = arg max L(y|H,) = arg max Re((y,s;))— |lsi|?/2,

thus recovering ourearlier result on the optimality of a bankof correlators.

 
4.3 Parameter estimation for synchronization

We now discuss several canonical examples of parameter estimation in
AWGN,beginning with phase estimation. The model(4.2) includes the effect
of frequency offset between the local oscillators at the transmitter and receiver.

Such a phase offset is of the order of 10-100 ppm,relative to the carrier
frequency. In addition, certain channels, such as the wireless mobile channel,
can induce a Dopplershift in the signal of the order of vf,/c , where v is the
relative velocity between the transmitter and receiver, and c is the speed of
light. For a velocity of 200 km/hr, the ratio v/c of the Doppler shift to the
carrier frequency is about 0.2 ppm. Onthe other hand, typical basebandsignal
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bandwidths are about 1-10% of the carrier frequency. Thus, the time vari-
ations of the modulated signal are typically much faster than those induced
by the frequency offsets due to LO mismatch and Doppler. Consider, for
example, a linearly modulated system, in which the signal bandwidth is of

the order of the symbol rate 1/T. Thus, for a frequency shift Af which is
smali compared with the signal bandwidth, the change in phase 27Af T over

a symbol interval T is small. Thus, the phase can often be taken to be con-

stant over multiple symbol intervals. This can be exploited for both explicit
phase estimation, as in the following example, and for implicit phase esti-
mation in noncoherent and differentially coherent reception, as discussed in
Section 4.4.

Example 4.3.1 (ML phase estimation) Consider a noisy signal with
unknown phase, modeled in complex baseband as

y(t) = s(te® + n(2), (4.21)

where @ is an unknown phase, s is a known complex-valued signal, and n
is complex WGN with PSD N,. To find the ML estimate of 0, we write
downthe likelihood function of y conditioned on @, replacing s with se®
in (4.18)to get

L(y|@) = exp & (Re ((y, se!®)) — le*1F/2)) . (4.22)
Setting (y, s) = |Zlei* = Z,+jZ,, we have

(y, sel?) = eZ = |Z|lF-® ,

so that

Re ((y, se”) = [Z| cos(p — 6).

Further, ||se!®||? = ||s||?. The conditional likelihood function, therefore,
can be rewritten as

LOI) =exp (5 ((Zleos(#—6)—lisIP/2))- (423)
The ML estimate of @ is obtained by maximizing the exponentin (4.23),
which corresponds to

A Z

Oye = & = arg((y, s)) = tan! z

 
Note that this is also the MAP estimate if the prior distribution of 6 is
uniform over [0, 27]. The ML phaseestimate, therefore, equals the phase of
the complex inner product between the received signal y and the template
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ML phase
Passband estimate
received A
signal ML

Yp(8) 
Figure 4.3 Maximum likelihood signal s. The implementationof the phase estimate, starting from the passband

phaseestimation: the complex received signal y, is shown in Figure 4.3. The four real-valued correlations
baseband operations in involved in computing the complex inner product (y,s) are implemented
Example 4.3.1 are implemented . .
after downconverting the using matchedfilters.
passband received signal.

Example 4.3.2 (ML delay estimation) Let us now consider the problem
of estimating delay in the presence of an unknownphase(recall that timing
synchronization is typically done prior to carrier synchronization). The
received signal is given by

y(t) = As(t — T)e* + n(z), (4.24)

where n is complex WGN with PSD N, with unknown vector
parameter IT = (7, A, 6). We can now apply (4.18), replacing s(t). by
Sp (t) = As(t — r)el®, to obtain

1 2
L(y|I) = exp =z (Re (<y, sr)) — IIsr11?/2) }-

Defining the filter matched to s as Sy_p(t) = s*(—2), we obtain

(y, 5-) = Ae? / y(1)s*(t —7)dt =Ae / y(t)Sye(7 — t)dt
=Ae(y 545)(1).

 
Note also that, assuming a large enough observation interval, the signal

energy does not depend onthe delay,so that||s;-||? = A?||s||?. Thus, we obtain
1 .

LON) = exp (F (Re(Ae*(> Syn) (0) — AllsP/2))
The MLEof the vector parameter I" is now given by

Dve(y) = arg max LOL).
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This is equivalent to maximizing the cost function

I(t, A, 0) = Re (Ae(y * Sue) (7) — A*||5|1?/2 (4.25)

over T, A, and @. Since our primary objective is to maximize over7, let
us first eliminate the dependence on A and @. Wefirst maximize over

6 for 7, A fixed, proceeding exactly as in Example 4.3.1. We can write
(y * Sy) (7) = Z(7) = [Z(7) |e?, and realize that

Re (Ae(y « 5ye)(1)) = AlZ(2) cos (6(1) — 6).

Thus, the maximizing value of 6 = #(7). Substituting into (4.25), we get
a cost function which is now a function of only two arguments:

Jr, A) = max Mr, A, 6) = A|(y * Sve)(7)| — A?||s||?/2.
For any fixed value of A, the preceding is maximized by maximizing
|(y * Sv)(7)|. We can conclude, therefore, that the ML estimate of the
delay is

Fy = arg max [(¥* Syn) (7) I. (4.26)
That is, the ML delay estimate corresponds to the intuitively pleasing
strategy of picking the peak of the magnitude of the matchedfilter output
in complex baseband. As shown in Figure 4.4, this requires noncoherent
processing, with building blocks similar to those used for phase estimation.
 

We have implicitly assumed in Examples 4.3.1 and 4.3.2 that the data
sequence {b[n]} is known. This data-aided approach can berealized either
by using a training sequence, or in decision-directed mode, assuming that the
symbol decisions fed to the synchronization algorithms are reliable enough.
Analternative nondata-aided (NDA) approach, illustrated in the blind ampli-
tude estimator in Example 4.2.2 is to average over the unknown symbols,

Figure 4.4 Maximum typically assuming that they are i.i.d., drawn equiprobably from a fixed con-
likelihood delay estimation, stellation. The resulting receiver structure in Case 2 of Example 4.2.2 is

 
MLdelay

Passband estimate
received

signal

A
™ML

Yp(t)  
 — J2 sin nf, t
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Figure 4.5 Passband
implementation of PLL
approximating ML phase
tracking.

4.3 Parameter estimation for synchronization

Passbandreceived signal

y,(t)

 Loopfilter
————_>

cos (2x f, t+ @)+ noise
 
 

 
 

—sin (2n f, t+8)

 Voltage
controlled
oscillator
 
 
 

actually quite typical of NDA estimators, which havea structure similar to the

data-aided, or decision-directed setting, except that “soft” rather than “hard”
decisions are fed back.

Finally, we consider tracking time variationsin a synchronization parameter
once we are close enough to the true value. For example, we may wish to
update a delay estimate to track the offset between the clocks of the transmitter

and the receiver, or to update the carrier frequency or phaseto track a wireless
mobile channel. Most tracking loops are based on the following basic idea.
Consider a cost function J(6), typically proportional to the log likelihood
function, to be maximized over a parameter 6. The tracking algorithm consists
of a feedback loop that performs “steepest ascent,” perturbing the parameter
so as to go in the direction in which the cost function is increasing:

ao _ a0)
aa dg 6=8° (4.27)

The success of this strategy of following the derivative depends on our being
close enough to the global maximum so that the cost function is locally
concave.

Wenowillustrate this ML tracking framework by deriving the classical PLL
structure for tracking carrier phase. Similar interpretations can also be given to
commonly used feedback structures such as the Costas loop for phase tracking,
andthe delay locked loop for delay tracking, and are explored in the problems.

 

Example 4.3.3 (ML interpretation of phase locked loop) Consider a
noisy unmodulated sinusoid with complex envelope

y(t) =e? + n(2), (4.28)

where @ is the phase to be tracked (its dependence on f has been suppressed
from the notation), and (7) is complex‘ WGN.Writing down the likelihood
function over an observation interval of length T,, we have

L(y|6) = exp (= (Reyne) - 2)) .
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so that the cost function to be maximized is

: To

J(6) = Re(y, 6) = [ (y(t) cos 0(t) + y,(2) sin 0(2)) dt.0

Applying the steepest ascent (4.27), we obtain

dé

= =4[. (-». sin (2) + y,(t) cos (1) dt. (4.29)
Since 1/27 d@/dt equals the frequency, we can implementsteepest ascent
by applying the right-hand side of (4.29) to a voltage controlled oscillator.
Furthermore, this expression can be recognized to be the real part of the
complex inner product between y(z) and u(t) = — sin 6 +jcos 6 = je”. The
corresponding passband signals are y,(¢) and v,(f) = —sin(27f,t + 6).
Recognizing that Re(y, v) = (yp, 5,), we can rewrite the right-hand side
of (4.29) as a passband inner producttoget:

dé Ty . A
—=-a[ yp(t) sin(2arft + 6) dt. (4.30)

In both (4.29) and (4.30), the integral can be replaced by a low passfilter
for continuous tracking. Doing this for (4.30) gives us the well-known
structure of a passband PLL, as shown in Figure 4.5. 

Further examples of amplitude, phase, and delay estimation, including block-
based estimators, as well as classical structures such as the Costas loop for
phase tracking in linearly modulated systems, are explored in the problems.

4.4 Noncoherent communication

We have shownthat the frequency offsets due to LO mismatch at the trans-
mitter and receiver, and the Doppler induced by relative mobility between the
transmitter and receiver, are typically small compared with the bandwidth of
the transmitted signal. Noncoherent communication exploits this observation
to eliminate the necessity for carrier synchronization, modeling the phase
over the duration of a demodulation interval as unknown, but constant. The
mathematical model for a noncoherent system is as follows.

Model for M-ary noncoherent communication The complex baseband
received signal under the ith hypothesis is as follows:

H,: y(t) =s()e%+n(t), i=1,...,M, (4.31)

where @ is an unknownphase, and n is complex AWGNwith PSD o? = No/2
per dimension.
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Before deriving the receiver structure in this setting, we need some back-
ground on composite hypothesis testing, or hypothesis testing with one or
more unknown parameters.

4.4.1 Composite hypothesis testing

Asin a standard detection theory framework, we have an observation Y taking
values in 1’, and M hypotheses H,,..., H,,. However, the conditional density
of the observation given the hypothesis is not known, but is parameterized
by an unknown parameter. That is, we know the conditional density p(y|i, 4)
of the observation Y given H, and an unknown parameter 6 taking values in
A. The unknown parameter 9 may not have the sameinterpretation underall
hypotheses, in which case the set A may actually depend on i. However, we
do not introduce this complication into the notation, since it is not required
for our intended application of these concepts to noncoherent demodulation
(where the unknown parameter for each hypothesis is the carrier phase).

Generalized likelihood ratio test (GLRT) approach This corresponds to
joint ML estimation of the hypothesis (treated as an M-valued parameter) and
é, so that

G,6)() =arg —max___p(i, 8).1<i<M,OEGA

This can be interpreted as maximizing first with respect to 6, for each i,
getting

6,(y) = i, 8i(y)=arg max Pi, 8)
then plugging into the conditional density p(y|i, @) to get the “generalized
density,”

9) = POI, 8,9)= max pili, 4)eA

(note that g; is not a true density, in that it does not integrate to one). The
GLRT decision rule can be then expressed as

Serer ()) = arg max g;(y).
This is of similar form to the ML decision rule for simple hypothesistesting,
hence the term GLRT.

Bayesian approach If p(6|i), the conditional density of @ given H,, is
known, then the unknown parameter @ can be integrated out, yielding a
simple hypothesis testing problem that we know how to solve. That is, we
can compute the conditional density of Y given H;, as follows:

pol) = f poli, pCa) 48.
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4.4.2 Optimal noncoherent demodulation

Figure 4.6 Computation of the
noncoherent decision statistic

for a complex baseband signal
s. The optimal noncoherent
receiver employs a bank of
such processors, one for each
of M signals, and picks the
maximum of M noncoherent
decision statistics.

 
 

Passband
received
signal

~2 sin anf, t 

Wenow apply the GLRT and Bayesian approaches to derive receiver struc-
tures for noncoherent communication. For simplicity, we consider equal-
energy signaling.

Equal energy M-ary noncoherent communication: receiver structure

The model is as in (4.31) with equal signal energies under all hypotheses,
i|s,||? =: E,. From (4.22), we find that

LOlE,@) =exp (Zllzs]e0s(0-6,)—IIsIF/21). (432)
where Z; = (y,s;) is the result of complex correlation with s,, and ¢; =
arg(Z;).

Applying the GLRT approach, we note that the preceding is maximized at
9 = ¢; to get the generalized density

a)(9) = exp (sali ~£,/2) .
where we have used the equal energy assumption. Maximizing over i, we get
the GLRTrule

Serer (y) = arg max |Z;|= arg max Z?,+2Z?,,I<igM I<ism

where Z,,, = Re(Z,) and Z;, = Im(Z,).
Figure 4.6 shows the computation of the noncoherent decision statistic

|Z|* =|(y, s)|? for a signal s. The noncoherentreceiver chooses the maximum
among the outputs of a bank of such processors, fors=s,,i=1,...,M.

Now,let us apply the Bayesian approach, modeling the unknown phase
under each hypothesis as a random variable uniformly distributed over [0, 277].
Wecan now average out @ in (4.32) as follows:

LOli) = = [ Loli, 8) a6. (4.33)

 
 

Noncoherent
decision
statistic
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It is now useful to introduce the following modified Bessel function of the
first kind, of order zero:

h(x) =—- [ ™ gxo0s8 gg (4.34)° 2a Jo , ‘
Noting that the integrand is a periodic function of 6, we note that

1 Qa

In(x) = — [ erors(8-#) dg,277 Jo

for any fixed phase offset @. Using (4.32) and (4.33), we obtain

. tsa |Z,Li) =e" 2? Ip (42). (4.35)
For equal-energy signaling, the first term above is independent of i. Noting
that J,(x) is increasing in |x|, we obtain the following ML decision rule
(which is also MPE for equal priors) by maximizing (4.35) overi:

Ova. (y) = arg max, |Z,|,
whichis the samereceiver structure that we derived using the GLRTrule. The

equivalence of the GLRT and Bayesian rules is a consequence of the specific
models that we use; in general, the two approaches can lead to different
receivers.

4.4.3 Differential modulation and demodulation

A drawback of noncoherent communication is the inability to encode infor-
mation in the signal phase, since the channel produces an unknown phase
shift that would destroy such information. However, if this unknown phase
can be modeled as approximately constant over more than one symbol, then
we can get around this problem by encoding information in the phase dif-
ferences between successive symbols. This enables recovery of the encoded
information even if the absolute phase is unknown. This method is known as
differential phase shift keying (DPSK), and is robust against unknown channel
amplitude as well as phase. We have already introducedthis conceptin Section
2.7, and are now ableto discussit in greater depth as an instance of noncoher-
ent communication, where the signal of interest now spans several symbols.

In principle, differential modulation can also be employed with QAM
alphabets, by encoding information in amplitude andphasetransitions, assum-
ing that the channel is roughly constant over several symbols, but there are
technical issues with both encoding (unrestricted amplitude transitions may
lead to poor performance) and decoding (handling an unknown amplitude is
trickier) that are still a subject of research. We therefore restrict attention to
DPSKhere.

We explain the ideas in the context of the following discrete-time model,
in which the nth sample at the receiver is given by

y[n] = h[n]b[n] + wn], (4.36)
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where {b[n]} is the sequence of complex-valued transmitted symbols, {h[n]}
is the effective channel gain seen by the nth symbol, and {w[n]} is discrete-
time complex AWGNwith variance 0? = No/2 per dimension. The sequence
{y[n]} would typically be generated by downconversion of a continuous-time
passbandsignal, followed by basebandfiltering, and sampling at the symbol
rate. We have assumed that there is no ISI.

Suppose that the complex-valued channel gains A[n] = A[n]e!") are
unknown. This could occur, for example, as a result of inherent channel time
variations (e.g., in a wireless mobile environment), or of imperfect carrier
phase recovery (e.g., due to free running local oscillators at the receiver). If the
{A[n]} can vary arbitrarily, then there is no hope of recoveringthe information
encoded in {b[n]}. However, now supposethat A[n] + h[n — 1] (i.e., the rate
of variation of the channel gain is slower than the symbolrate). Consider the
vector of two successive received samples, given by y[n] = (y[n— 1], y[n])’.
Setting A[n] = A[n — 1] =A, we have

Sar)a)+ (Sa)
wlan== 11( enim ay) * ad) 43

The point of the above manipulations is that we can now think of h =
hb[n—1] as an unknowngain,and treat (1, b[n]/b[n —1])? as a signal to be
demodulated noncoherently. The problem now reduces to one of noncoherent

demodulation for M-ary signaling: the set of signals is given by Sain] =
(1, a[n])”, where M is the numberofpossible values of a[n] = b[n]/b[n — 1].
That is, we can rewrite (4.37) as

yin] = ASgtnj + w[n], (4.38)
where y[n] = (y[n— 1], y[n])? and w[n] = (w[n — 1], w[n])’. In DPSK, we
choose a[n] <A from a standard PSK alphabet, and set b[n] = b[n — 1]a[n]
(the initial condition can be set arbitrarily, say, as b[0] = 1). Thus, the trans-
mitted symbols {b[n]} are also drawn from a PSK constellation. The infor-
mation bits are mapped to a[n] in standard fashion, and then are recovered
via noncoherent demodulation based on the model (4.38).

 

Example 4.4.1 (Binary DPSK) Suppose that we wish to transmit a
sequence {a[n]} of +1 bits. Instead of sending these directly over the
channel, we send the +1 sequence b[n], defined by b[n] = a[n]b[n— 1].
Thus, we are encoding information in the phasetransitions of successive
symbols drawn from a BPSK constellation: b[n] = b[n — 1] (no phase
transition) if a[n] = 1, and b[n] = —b[n — 1] (phasetransition of 7) if
a[n] = —1. Thesignaling set s,,,), a[] = £1 is (1, 1)? and (1, —1), which
corresponds to equal-energy, binary, orthogonal signaling.
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For the DPSK model (4.38), the noncoherent decision rule for equal-
energy signaling becomes

an] = arg max|(y[],s,)/?. (4.39)
For binary DPSK,this reduces to taking the sign of

ys Sui)? — dy, 8)? = [yl] tyln— 1? - [y[n] — y[n ~ 1]?

= 2Re(y[n]y*[n— 1]).

That is, we have

Gpinaryln| = sign[Re(y[n]y*[n — 1])]. (4.40)

That is, we take the phase difference between the two samples, and check
whetherit falls into the right half plane or the left half plane.

For M-ary DPSK,a similar rule is easily derived by examining the
decision statistics in (4.39) in more detail:

I(yLn], 8_)/? =|y[n— 1} + ylnja*[n]/?

=|y{n— 1]? + |yfn]P lala}? + 2Re(y[n]y*[n — 1]a"[n])

=|y[n— 1]? + |y[n]P +2Re(y[nly*[n — 1a*[n]),

where we haveused |a[n]| = 1 for PSK signaling. Since only the last term
depends on a,the decision rule can be simplified to

Ay-ayl"] = arg max Re(y[n]y*[n — 1]Ja*). (4.41)aGa

This corresponds to taking the phase difference between two successive
received samples, and mapping it to the closest constellation point in the
PSK alphabet from which a[n] is drawn.

 
4.5 Performance of noncoherent communication

Performance analysis for noncoherentreceivers is typically more complicated
than for coherent receivers, since we need to handle complex-valued decision
statistics going through nonlinear operations. As a motivating example, con-
sider noncoherentdetection for equal-energy, binary signaling, with complex
baseband received signal under hypothesis H,, i= 0, 1, given by

H,: y(t) = s,(e? +n(0),

where @ is an unknown phaseshift induced by the channel. For equalpriors,
and assuming that @ is uniformly distributed over [0, 277], the MPE rule has
been shownto be

Syre(y) = arg max |(y, 5))].
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Weare interested in evaluating the error probability for this decision rule. As
usual, we condition on one of the hypotheses, say Hp, so that y = spel’ +n.
The conditional error probability is then given by

Peo = P(Z;| > |Zol|Hol),

where Z; = (y, s;), i=0, 1. Conditioned on Ho, we obtain

Zo = (500? +1, 59) = ||50| |e?+ (x, 59),
Z, = (Soe! +7,51) = (59, 5;)e” + (n, 51).

Eachofthe preceding statistics contains a complex-valued noise contribution
obtained by correlating complex WGNwith a (possibly complex) signal. Since
our prior experience has been with real random variables, before proceeding
further, we devote the next section to developing a machinery for handling
complex-valued random variables generated in this fashion.

4.5.1 Proper complex Gaussianity

For real-valued signals, performance analysis in a Gaussian setting is made
particularly easy by the fact that (joint) Gaussianity is preserved underlin-
ear transformations, and that probabilities are completely characterized by
means and covariances. For complex AWGN models, joint Gaussianity is
preserved for the real and imaginary parts under operationssuchasfiltering,
sampling, and correlation, and probabilities can be computed by keeping track
of the covariance of the real part, the covariance of the imaginary part, and
the crosscovariance of the real and imaginary parts. However, we describe
below a simpler and more elegant approach based purely on complex-valued
covariances. This approach works when the complex-valued random pro-
cesses involved are proper complex Gaussian (to be defined shortly), as is
the case for the random processesof interest to us, which are obtained from
complex WGNthrough linear transformations.

Definition 4.5.1 (Covariance and pseudocovariance for complex-valued
random vectors) LetU denoteanmx1 complex-valued random vector, and
V an nx 1 complex-valued random vector, defined on a common probability
space. The m x n covariance matrix is defined as

Cyuy = EU —- E[U))(V — E[V])7] = E[UV"]—E[U](E[v])#.

The m x n pseudocovariance matrix is defined as

Coy = E[(U-E[U])(V —E[V])"] = E[UV"] — E[U](E[V])’.

Note that covariance and pseudocovariance are the same for real random
vectors.
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Definition 4.5.2 (Complex Gaussian random vector) The nx 1 complex
random vector X = X,+JX, is Gaussian if the real random vectors X, and
X, are Gaussian, and X,, X, are jointly Gaussian.

To characterize probabilities involving an n x 1 complex Gaussian random
vector X, one general approach is to use thestatistics of a real random vector

formed by concatenating the real and imaginary parts of X into a single 2n x 1
random vector

X,*, ~ (5 ) ,
Since X, is a Gaussian random vector, it can be described completely in terms
of its 2” x 1 mean vector, and its 2n x 2n covariance matrix, given by

Cc, C.,o- (EC):
where C,, = cov(X,, X,), C,, = cov(X,, X,) and C,, = cov(X,, X,) = CZ.

The preceding approach is cumbersome,requiring us to keep trackof three
n Xn covariance matrices, and can be simplified if X satisfies some special
properties.

Definition 4.5.3 (Proper complex random vector) The complex random
vector X = X,+jX, is proper if its pseudocovariance matrix, given by

¢, = E[(X — E[X])(X — E[X])"] =0. (4.42)

In terms of the real covariance matrices defined above, X is proper if

C,.=C,, and C,=-C,=—Ci. (4.43)

We nowstate a very important result: a proper complex Gaussian random
vector is characterized completely by its mean vector and covariance matrix.

Characterizing a proper complex Gaussian random vector Supposethat
the complex random vector X = X,-+jX,is proper(i.e., it has zero pseudoco-
variance) and Gaussian(i.e., X,, X, are jointly Gaussian real random vectors).
In this case, X is completely characterized by its mean vector my = E[X] and
its complex covariance matrix

 Cy = E[(X — E[X])(X — E[X])”] = 2€,, +. 2jC,,. (4.44)

The probability density function of X is given by

1 _

p(x) = FadenG,) exp (—(x—my)"Cy'(x—my)). (4.45)
Wedenotethe distribution of X as CNGmy, Cy).
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Remark 4.5.1 (Loss of generality due to insisting on properness) In
general,

Cy = C,, + C,, +j(C,. _ C.,).

Thus, knowledge of Cy is not enough to infer knowledge of C,,, C,,, and
C,,, which are needed, in general, to characterize an n-dimensional complex
Gaussian random vector in terms of a 2n-dimensional real Gaussian random
vector X,. However, under the properness condition (4.43), Cy containsall
the information needed to infer C,,, C,,, and C,,, which is why Cy (together
with the mean) provides a complete statistical characterization of X.

Remark 4.5.2 (Proper complex Gaussian density) The form ofthe density
(4.45) is similar to that of a real Gaussian random vector, but the constants
are a little different, because the density integrates to one over complex
n-dimensional space. As with real Gaussian random vectors, we can infer
from the form of the density (4.45) that two jointly proper complex Gaussian
random variables are independentif their complex covariance vanishes.

Proposition 4.5.1 (Scalar proper complex Gaussian random variable) If
X = X,+jX, is a scalar complex Gaussian random variable, then its covari-

ance Cy must be real and nonnegative, andits real and imaginary parts, X,
and X,, are i.i.d. N(O, Cy/2).

Proof of Proposition 4.5.1 The covariance matrices C,,, C,,, and C,, are
now scalars. Using (4.44), the condition C,, = —C! implies that C,, =0. Since
X,, X, are jointly Gaussian, their uncorrelatedness implies their independence.
It remains to note that Cy = 2C,, =2C,, to complete the proof. O

Remark 4.5.3 (Functions of a scalar proper complex Gaussian random
variable) Proposition 4.5.1 and Problem 3.4 imply that for scalar proper
complex Gaussian X, the magnitude |X| is Rayleigh, the phase arg(X) is
uniform over [0,27] (and independent of the magnitude), the magnitude
squared |X|? is exponential with mean Cy, and the magnitude |m+X|, where
m is a complex constant, is Rician.

Proposition 4.5.2 (Preservation of properness and Gaussianity underlin-
ear transformations) If X is proper, so is Y = AX+b, where A, b are
arbitrary complex matrices. If X is proper Gaussian, so is Y = AX +b. The
mean and covariance of X and Y are related as follows:

my = Amy +b, Cy = AC,A®, (4.46)

Proof of Proposition 4.5.2 To check the properness of Y, we compute

E [((AX+b~E[AX +b])(AX+b—E[AX+b])”]

= AE[(X — E[X])(X — E[X])"]A7 =0
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by the properness of X. The expressions for mean and covariancefollow from

similar computations. To check the Gaussianity of Y, note that any linear
combination of real and imaginary components of Y can be expressed as a
linear combination of real and imaginary components of X, which is Gaussian
by the Gaussianity of X. O

We can now extend the definition of properness to random processes.

Definition 4.5.4 (Proper complex random process) A random process
X(t) = X,(2) +jX,(is proper if any set of samples forms a proper complex
random vector. Since the sampling times and numberofsamples are arbitrary,
X is properif

E[(X(t,) — E[X(4)) (X(Q) — E[X(4))] = 0

forall times, t,, t,. Equivalently, X is proper if

Cy.x, (th, th) = Cyx (t,t) and Cyy(t,4)= —Cyx. (t2,t;) (4.47)

for all t,, to.

Definition 4.5.5 (Proper complex Gaussian random processes) A random
process X is proper complex Gaussian if any set of samples is a proper
complex Gaussian random vector. Since a proper complex Gaussian random
vector is completely characterized by its mean vector and covariance matrix, a

proper complex Gaussian random process X is completely characterizedby its
meanfunction my(t) = E[X(@)] and its autocovariance function Cy(t,, t.) =
E[X(t,)X*(t,)] (which can be used to compute mean and covariance for an
arbitrary set of samples).

Proposition 4.5.3 (Complex WGNis proper) Complex WGN n(t) is a zero
mean, proper complex Gaussian random process with autocorrelation and
autocovariance functions given by

Ci(ty, 2) = Ry ty, 2) = E[n(t,)n*(4)]

= 2078(t, — ty).

Proof of Proposition 4.5.3 We have n(t) =n,(t)+jn,(), where n,, n, are
iid. zero mean real WGN,so that

Cy, (tr to) = Cy, (ts te) = 08(t;—t)) and Crane (t1» £2) = 0,
whichsatisfies the definition of properness in (4.47). Since n is zero mean,all
that remainsto specify its statistics completely is its autocovariance function.
We compute this as

C(t, to) = Ry (ty, 2) = Eln(ty)n*(t2)] = E[(1,(t)) +5, (t)))te (t2) —jng(t))]

= Ry (tht) + Ra(tis to) = 2078(t, — ty),
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where cross terms such as E[n,(t,)n,(t,)] = 0 becauseof the independence,
and hence uncorrelatedness, of n, and n,. O

Notation Since the autocovariance and autocorrelation functions for complex WGN
dependonly on the time difference + = t,; —t, it is often convenient to denote them
as functions of one variable, as follows:

C,(7) = R,(7) = E[n(t + 7)n*(t)] = 2076(7).

Proposition 4.5.4 (Complex WGN through a correlator) Let n(t) =
n.(t)+jn,(2) denote complex WGN, andlet s(t) = 5.(t) +js,(0) denote a
Jinite-energy complex-valued signal. Let

Z=(n,s) = / n(t)s*(t)dt
denote the result of correlating n against s. Denoting Z = Z,+jZ, (Z,, Z,
real), we havethe following equivalent statements:

(a) Z is zero mean, proper complex Gaussian with variance 207|Is||2.
(b) Z,, Z, are i.i.d. N(O, 07||s||*) real random variables.

Proofof Proposition 4.5.4 (The “proper” way) The proof is now simple,
since the hard work has already been done in developing the machinery
of proper Gaussianity. Since n is zero mean, proper complex Gaussian, so
is Z, since it is obtained via a linear transformation from n. It remains to
characterize the covariance of Z, given by

Cz =E[(n, s)(n, s)*]=E [/ n(t)s*(t)dt | n*(u)s(u)du]
= / / E[n(2)n"(u)]s*(t)s(u)dtdu

= | / 20°8(t — u)s*(t)s(u)dtdu

=2¢? / [s(t) Pde = 20?||s|[2.
The equivalence of(a) and (b) follows from Proposition 4.5.1, since Z is a
scalar proper complex Gaussian random variable. DO

Proof of Proposition 4.5.4 (Without invoking properness) Wecan also
infer these results, using only what we know aboutreal WGN.Weprovide
this alternative proofto illustrate that the computations get somewhat messy
(and do not scale well when we would like to consider the outputs of multiple
complex correlators), compared with the prior proof exploiting properness.
First, recall that for real WGN (n, for example), if wu, and u, are two finite-
energy real-valued signals, then (n,,u,) and (n,, Uy) are jointly Gaussian
with covariance

COV({71,, Uy), (Me, Ua)) = O7 (ty, Up). (4.48)
Setting u, = uy = u, specialize to the result that Var((,, 4)) = o*||u||?. The
precedingresults also hold if n, is replaced by n,. Now,note that
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Z,= (Ne, Sc) + (ns, 5) Z,= (ns, i) ~ (Ne, Sg)
Since n,, n, are independent Gaussian random processes, the two terms in
the equation for Z, above are independent Gaussian random variables. Using
(4.48) to compute the variancesofthese terms, and then adding these variances
up, we obtain

var(Z,) = var((M., $.)) + var((ns, 5,)) = 07||8,||? +0 ||5,||? = o7||s||2.
A similar computation yields the same result for Var(Z,). Finally, the covari-
ance of Z, and Z, is given by

cov(Z,, Z,) = cov((n,, oe) + ing, 56) (Ns, ) ~ (Ne, 55))

= Cov({n, 5¢)s (M5, 5) + Cov((ns, 55), (115s 5,))

~~ COV({7te, Sc)s (Ne, 55) —cov((ns, Ss) (Nes 5)

= 0+07(s,, 5.) —o7(s,.5,) -0 =0,

where we have used (4.48), and the fact that the contribution of cross terms
involving n, and n, is zero because oftheir independence. im

Remark 4.5.4 (Complex WGN through multiple correlators) Using the
same arguments as in the proof of Proposition 4.5.4, we can characterize the
joint distribution of complex WGN through multiple correlators. Specifically,
for finite-energy signals s,(t) and s(t),it is left as an exercise to show that
(n, 8,) and (n, 59) are jointly proper complex Gaussian with covariance

cov((n,51), (n, S9)) = 207 (59, 51). (4.49)

4.5.2 Performance of binary noncoherent communication

We now return to noncoherent detection for equal-energy, equiprobable,
binary signaling, with the complex baseband received signal under hypothesis
H,,i=0, 1, given by

H,: y(t) = 5,(de* +n(2).

We assumethat the phase shift @ induced by the channelis uniformly dis-
tributed over [0, 27]. Under these conditions, the MPE mule has been shown
to be as follows:

Oypp(y) = arg max Cy, s;)].
Wedenotethe signal energies by E, = ||s,||? = ||s9||?, and define the complex
correlation coefficient p = ((s9, s,))/({|sol{||s,||), so that (Sq, 8,) = pE, =
(515 50)",

Conditioned on Hp, the received signal y = soe!’ +n. The conditional error
probability is then given by

Pao = P(\Z,| > IZol|Hol),
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where Z, = (y, s;), i= 0, 1 are given by

Zo = (spel? +n, 59) = E,e% + (n, 59),
Z, = (soe! tn, 5) = pE,e% + (n, s,).

Conditioned on H, and @ (we soon showthatthe conditional error probability
does not depend on @), Z = (Zo, Z,)? is proper complex Gaussian, because n
is proper complex Gaussian. Using Proposition 4.5.4 and Remark 4.5.4, we
find that the covariance matrix for Z is

1 *

C, =20°E, C f ) (4.50)
and the mean vectoris

if 1

In general, developing an expression for the exact error probability involves
the painful process of integration over contours in the complex plane, and
does not give insight into how, for example, the error probability varies with
SNR. Wetherefore restrict ourselves here to broader observations on the

dependence of the error probability on system parameters, including high
SNR asymptotics. We do, however, derive the exact error probability for
the special case of orthogonal signaling (9 = 0). Westate these results as
propositions, discuss their implications, and then provide proofs (in the case
of Proposition 4.5.5 below, we only sketch the proof, providing a reference
for the details).

Proposition 4.5.5 (Dependence on |p| and SNR) The error probability
depends only on |p| and E,/No, and its high SNR asymptotics are given by

  E, EP,(noncoh) ~ exp (- ON, (_- i) ; aN, > 00, (4.52)
Remark4.5.5 (Contrast with coherent demodulation) For coherent detec-
tion, we know thatthe error probability is given by Q(||s, — so||/2c). Noting
that ||s; — so? = 2E,(1 — Re(p)) for equal-energy signals, and setting o? =
No/2, we have P,(coh) = Q(./E,(1 — Re(p))/No). Using Q(x) ~ e-*’? for
large x, the high SNR asymptotics for coherent detection of equal-energy
signaling are given by

E.

P,(coh) ~ exp (- ON,
  

(1 -Re(p))) , at —> 0. (4.53)
Proposition 4.5.6 (Error probability for orthogonal signaling) For non-
coherent demodulationof equal-energy orthogonalsignals (p = 0), the error
probability is given by

 1 E.

Po= 5 exp (- oN ) Binary equal-energy, noncoherentsignaling.0

(4.54)
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Remark 4.5.6 (Orthogonal signaling with coherent and noncoherent
detection) Comparing (4.52) and (4.53), we see that the high SNR
asymptotics with orthogonal signaling are the same for both coherent and
noncoherent demodulation. However, there are hidden costs associated with
noncoherent demodulation. First, if coherent detection were possible, then
we could design the signals such that Re(p) <0 (e.g., p =—1 for antipodal
signaling) in order to obtain better performance than with orthogonalsignal-
ing. Second, orthogonal signaling with coherent demodulation requires only
that Re(p) = 0, while orthogonal signaling with noncoherent demodulation
requires that |p| = 0. As shown in Chapter 2, this implies that noncoherent
orthogonalsignaling requires twice as many degrees of freedom than coherent
signaling. For example, orthogonal FSK requires a tone spacing of 1 /T for
noncoherent demodulation, and only 1/2T for coherent demodulation, where
T is the symbolinterval.

We now proceed with the proofs.

Proof of Proposition 4.5.5 We condition on Hy and 6, and our Starting
points are (4.50) and (4.51).

First, we show that the performance depends only on |p|. Suppose that
p = |ple*. We can nowrotate oneofthe signals suchthat the correlation coef-
ficient becomespositive. Specifically, set $)(t) = s(t)e*, and replace Zy by
Zo = (y, 89). The decision rule depends only on [Z;|, i=0,1, and |Zo| = |Z],
so that the outcome, and hence performance, of the decision rule is unchanged.
Conditioned on Hy and6,thestatistics of Z = (Zp, Z,)" are as in (4.50) and
(4.51), except that p is now replaced by 6 = ((3y, 51))/ (Sol IIIs; 1) = lel.

A related point worth noting is that the performanceis independentof 6;
that is, from the point of performance analysis, we may set 6 = 0. To see this,
replace Z; by Z,e~”; this does not change|Z,|, and henceit does not change
the decision. Now, write

Ze" = (59, 5;) + (ne, S;)

and note that the statistics of the proper Gaussian random process ne? are
the same as those of n (check that the mean and autocovariance functions are
unchanged).

Thus, we can replace p by |p| and 6 = 0 in (4.50) and (4.51). Furthermore,
let us normalize Z, and Z, to obtain the scale-invariant U; = Z;/ o./E,,
i= 0, 1. The conditional mean and covariance matrix (conditioned on 0 being
sent) for the proper complex Gaussian vector U = (Up, U,)? is now given by

m=(5) Com2(, ), (455)
Since the decision based on comparing |Up| and |U;| is identical to those
providedby theoriginal decision rule, and the conditionaldistribution of these
decision statistics depends on |p| and E,/No alone, so does the conditional
error probability (and hence also the unconditional error probability),

Constellation Exhibit 2003

Page 199 of 395



Constellation Exhibit 2003
Page 200 of 395

184

Figure 4.7 Geometric view of
noncoherent demodulation.

 

Synchronization and noncoherent communication

Wenowsketch a plausibility argumentfor the high SNR asymptotics given
in (4.52). The noncoherent rule may be viewed as comparing the magnitudes
of the projections of the received signal onto the one-dimensional complex
subspaces Sy and S, spanned by sp and s,, respectively (each subspace has
two real dimensions). High SNR asymptotics are determined by the most
likely way to make anerror. If sy is sent, then the most likely way for the
noise to induce a wrong decision is to movethe signal a distance d along the
two-dimensional plane defined by the minimum angle between the subspaces
Sp and S,, as shown in Figure 4.7.

The angle between two complexsignals is given by

Re((u, v))
(lmiillol]

To determine the minimum angle between Sy and S,, we need to maximize
cos @ for u(t) = asp(t) and v(t) = Bs,(t), where a, B are scalars. It is easy
to see that the answer is cos 6,,;, = |p|: this corresponds to rotating one of
the signals so that the inner product becomes nonnegative (u(t) = so(t) and
v(t) = s,(e* works, where ¢ = arg(p)). Wethereforefind that the minimum
angle is given by

cos @ =

COS Onin = |p|. (4.56)

The minimum distance that the noise needs to move the signal is seen from
Figure 4.7 to be

6.
d= i —).bolls(“2 )

sin? Benin — 1-008 Frmin 1= lel
2 2 2

 

Since

 

weobtain

2 E,
d= > (1—|pl). (4.57)

This yields the high SNR asymptotics

d adn~0(5) wom (-s2):
which yields the desired result (4.52) upon substituting from (4.57). 0

S, Subspace spannedby s,

Minimum angle between the subspaces:
COS Opin =| e|

Sy subspace spanned by sp
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Proof of Proposition 4.5.6 We now considerthe special case of orthogonal
signaling, for which p = 0. Let us use the equivalent scaled decisionstatistics

Uy and U, as defined in the proof of Proposition 4.5.5, conditioning on Hy
andsetting @ = 0 withoutloss of generality, as before. Setting p =0in (4.55),
we obtain my = m(1,0)", and Cy = 21, where m = /E,/o?. Since Up and U,
are uncorrelated, they are independent. Since Up is a scalar proper complex
Gaussian random variable, its real and imaginary parts are independent, with
Uy, ~ N(m, 1) and Up, ~ N(0,1). Similarly, U,, ~~ N(O, 1) and U,, ~ N(O, 1)
are independent Gaussian random variables. This implies that Rp = |Up| is
Rician (see Problem 3.4) with pdf

m? + r? Pa, (7) = rexp ( ) (mr) r>0
and R, = |U,| is Rayleigh with pdf

r-Pr, () = rexp (-5) r>0,
where we have dropped the conditioning on Hp in the notation. The conditional
error probability is given by

Pag = PIR, > RolHo] =f PIR: > rlRo = r]pp,(r)dr.
Noting that P[R, > r|Rp =r] = P[R, > r] =e", we obtain

oo r m+ r2Pug = exp (-5) rexp (- 5 ) Iy(mr) dr. (4.58)
We can now massage the integrand above into the form of a new Rician
density, multiplied by a constant factor. Since the density must integrate to
one, the constant factor is our final answer. The general form of the Rician

 

density is r/veat Io(%). Comparing this with the terms involving r in
(4.58), we obtain r? = r?/2v? and mr = ar/v*, which gives v? = 1/2 and
a=m/2. It is left as an exercise to complete the proof by showing that the
integral evaluates to 1/2exp(—m’*/4). Substituting m = ./E,/o*, we obtain
the desired formula (4.54), O

4.5.3 Performance of //-ary noncoherentorthogonal signaling

An important class of noncoherent systems is M-ary orthogonal signaling.
Wehave shownin Chapter3 that coherentorthogonalsignaling attains funda-
mental limits of powerefficiency as M — oo. We now showthatthis property
holds for noncoherentorthogonal signaling as well. We consider equal-energy
M-ary orthogonal signaling with symbol energy E, = E, log, M.
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Figure 4.8 Symbol error
probabilities for M-ary
orthogonalsignaling with
nonccherent demodulation.

Synchronization and noncoherent communication

Exact error probability As shown in Problem 4.8, this is given by the
expression

M-1 k+1
M—-1\(-)) k OE,

P= —-——-— }. 4.59: > ( k ) e+] exp( rin) (4:59)
 

Union bound For equal-energy orthogonal signaling with symbol energy
E,, Proposition 4.5.6 provides a formula for the pairwise error probability.
Wetherefore obtain the following union bound:

  

PL< “ ! exp (-# ) . (4.60)
Note that the union bound coincides with the first term in the summation

(4.59) for the exacterror probability.
As for coherent orthogonal signaling in Chapter 2, we can take the limit

of the union bound as M — oo to infer that P, > 0 if E,/Npis larger than a
threshold. However, as before, the threshold obtained from the union bound

is off by 3dB. As we show in Problem 4.9, the thresholdforreliable commu-

nication for M-ary noncoherent orthogonal signaling is actually E,/No > In2
(—1.6 dB). That is, coherent and noncoherent M-ary orthogonal signaling
achieve the same asymptotically optimal powerefficiency as M gets large.

Figure 4.8 shows the probability of symbol error as a function of E,/No
for several values of M. As for coherent demodulation (see Figure 3.20), we
see that the performance for the values of M consideredis quite far from the
asymptotic limit of ~1.6 dB.

10-4Probabilityofsymbolerror(logscale) 3
= 2o 

Ey/ Ng (dB)
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4.5.4 Performance of DPSK

Exact analysis of the performance of M-ary DPSK suffers from the same
complication as the exact analysis of noncoherent demodulation of correlated

signals. However, an exact result is available for the special case of binary
DPSK,as follows.

Proposition 4.5.7 (Performance of binary DPSK) For an AWGNchannel
with unknown phase, the error probability for demodulation of binary DPSK
over a two-symbol window is given by

EPi.= 1 xp 2) Binary DPSK. (4.61)
2 No

Proof of Proposition 4.5.7 Demodulation of binary DPSK over two sym-
bols corresponds to noncoherent demodulation of binary, equal-energy,
orthogonal signaling using the signals s,, = (1,1)? and s_,=(1,—1)" in
(4.38), so that the error probability is given by the formula 1/2 exp(—E,/2N).
The result follows upon noting that E, = 2E,, since the signal s, spans two
bit intervals, a = +1. D

Remark 4.5.7 (Comparison of binary DPSK and coherent BPSK) The
error probability for coherent BPSK, which is given by Q./(2E,/No) ~
exp(—E,/No). Comparing with (4.61), note that the high SNR asymptotics
are not degraded due to differential demodulation in this case.

For M-ary DPSK,Proposition 4.5.5 implies that the high SNR asymptotics for
the pairwise error probabilities are given by exp(—E,/2No(1—|p|)), where
p is the pairwise correlation coefficient between signals drawn from the
set {s,,a@¢A}, and E, = 2E, log, M. The worst-case value of p dominates
the high SNR asymptotics. For example, if a[n] are drawn from a QPSK
constellation {+1, +j}, the largest value of |p| can be obtained bycorrelating
the signals (1, 1)” and (1, /)’, which yields |p| = 1/./2. We therefore find
that the high SNR asymptotics for DQPSK, demodulated over two successive
symbols, are given by

P,(DQPSK) ~ exp (-2Q- v3) ;0

Comparing with the error probability for coherent QPSK, which is given by
Q./(2E,/No) = exp(—E,/No), we note that there is a degradation of 2.3 dB
(10og,9(2 — /2) = —2.3). It can be checked using similar methods that the
degradationrelative to coherent demodulation gets worse with the size of the
constelation.
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4.5.5 Block noncoherent demodulation

Now that we have developed some insight into the performance of non-
coherent communication, we can introduce some more advanced techniques
in noncoherentand differential demodulation. If the channelis well approxi-
mated as constant over more than two symbols, the performance degra-
dation of M-ary DPSKrelative to coherent M-PSK can bealleviated by
demodulating over a larger block of symbols. Specifically, suppose that
A[n] = h[n—1] =---=h[n~L+1] =h, where L > 2. Then we can group L
received samples together, constructing a vector y = (y[n—L+1],... ,y[n]),
and obtain

y =hs,+w,

where w is the vector of noise samples, h = hb[n — L +1] is unknown,
a=(a[n—L+2],...,a[n])? is the set of information symbols affecting the
block of received samples, and, for DPSK,

s, = (l,a[n—L+2], aln~L+2]a[n—L+3],...,a[n])’.

We can now makeajoint decision on a by maximizing the noncoherent
decision statistics |(y,s,)|* over all possible values of a.

Remark 4.5.8 (Approaching coherent performance with large block
lengths) It can be shown that, for an M-ary PSK constellation, as L >
oo, the high SNR asymptotics for the error probability of block differential
demodulation approach that of coherent demodulation. For binary DPSK,
however, there is no point in increasing the block size beyond L = 2,
since the high SNR asymptotics are already as good as those for coherent
demodulation.

Remark 4.5.9 (Complexity considerations) For block demodulation of
M-ary DPSK,the number of candidate vectors a is M*~', so that the com-
plexity of direct block differential demodulation grows exponentially with
the block length. Contrast this with coherent, symbol-by-symbol, demodu-
lation, for which the complexity of demodulating a block of symbols is
linear. However, near-optimal, linear-complexity, techniques for block dif-
ferential demodulation are available. The idea is to quantize the unknown
phase corresponding to the effective channel gain h into Q hypothe-
ses, to perform symbol-by-symbol coherent demodulation over the block

for each hypothesized phase, and to choose the best of the Q candi-
date sequences a,,...,@ thus generated by picking the maximum among
the noncoherent decisionstatistics |(y, s,,)|, = 1,...,Q. The complex-
ity is larger than that of coherent demodulation by a fixed factor Q,
rather than the exponential complexity of brute force block differential
demodulation.
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Figure 4.9 Symbol error
probabilities for block
noncoherent demodulation of

differential QPSK, compared
with the performance of
“absolute” modulation (or
coherent QPSK).

4.6 Further reading

4.6 Further reading

Symbolerrorrate
10-4 F:

——— Differential, T=2
10-5fy. — - - Differential, T=5

—o- Differential, T= 10
1i1tt Absolute modulation

0 2 4 6 8 10 12 14

E,/ No (dB)

 
10-6

Figure 4.9 showsthe effect of block length on block noncoherent demodula-
tion of differential QPSK. Note the large performance improvementin going
from a block length of T = 2 (standard differential demodulation) to T = 5; as
we increase the block length further, the performance improves more slowly,
and eventually approaches that of coherent QPSKor “absolute” modulation.

For further reading on synchronization, we suggest the books by Mengali and
D’Andrea [20], Meyr and Ascheid [21], and Meyr, Moenclaey, and Fechtel
[22], and the references therein. We recommend the book by Poor[19] for
a systematic treatment of estimation theory, including bounds on achievable
performance such as the Cramer-Rao lower bound. An important classical
reference, which includes a detailed analysis of the nonlinear dynamics of
the PLL,is the text by Viterbi [11]. References related to synchronization for
spread spectrum modulation formats are given in Chapter 8. The material on
signal space concepts for noncoherent communication is drawn from the paper
by Warrier and Madhow [23]. An earlier paper by Divsalar and Simon [24]
wasthe first to point out that block noncoherent demodulation could approach
the performance of coherent systems. For detailed analysis of noncoherent
communicationwith correlated signals, we refer to Appendix B of the book by
Proakis [3]. Finally, extensive tabulation of the properties of special functions
such as Bessel functions can be found in Abramowitz and Stegun [25] and
Gradshteyn et al. [26].
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4.7 Problems

Synchronization and noncoherent communication

Problem 4.1 (Amplitude estimation) Fill in the details for the amplitude
estimates in Example 4.2.2 by deriving (4.10) and (4.11).

Problem 4.2 (NDA amplitude and phase estimation for sampled QPSK
system) The matched filter outputs in a linearly modulated system are mod-
eled as

z[k] = Ae®b[k] + Mk], k=1,...,K,

where A > 0, 6 ¢[0, 277] are unknown, b[k] are i.id. QPSK symbols taking
values equiprobably in +1, +j, and N[k] are i.i.d. complex WGN samples
with variance a? per dimension.

(a) Find the likelihood function of z[k] given A and6, using the discrete-time
likelihood function (4.20). Show that it can be written as a sum of two
hyperbolic cosines.

(b) Use the result of (a) to write down the log likelihood function for
z[1],...,z[K], given A and 8.

(c) Show that the likelihood function is unchanged when @ is replaced by
6+ 7/2. Conclude that the phase @ can only be estimated modulo 7/2 in
NDA mode,so that we can restrict attention to 0 €[0, 2/2), without loss
of generality.

(d) Show that

E[|z[k]|?] = A? +207.

Use this to motivate an ad hoc estimator for A based on averaging|z[k]|*.
(e¢) Maximize the likelihood function in (c) numerically over A and @ for

K =4,with

z[1] =—0.1+0.9j, z[2] =1.2+0.2j, z[3]=0.3-1.1j, 2/4] =—0.8+40.4j

and o7 = 0.1.

Hint Use(c) to restrict attention to @ € [0, #/2). You cantry aniterative approach in
which you fix the value of one parameter, and maximize numerically over the other,
and continueuntil the estimates “settle.” The amplitude estimator in (d) can provide
a goodstarting point.

Problem 4.3 (Costas loop for phase tracking in linearly modulated
systems) Consider the complex baseband received signal

y(t) = ¥° blk]p(t -—kT)e® + n(2),
k=1

where {b[k]} are drawn from a complex-valued constellation and @ is an
unknown phase.For data-aided systems, we assumethat the symbol sequence
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b = {b[k]} is known. For nondata-aided systems, we assumethat the symbols
{b[k]} are iid., selected equiprobably from the constellation. Let z(t) =
(y* Py)(¢) denote the output, at time ¢, of the matchedfilter with impulse
response Pye (t) = p*(—2).

(a) Show that the likelihood function conditioned on 6 and b depends onthe
received signal only through the sampled matched filter outputs {z(kT7)}.

(b) For known symbol sequence b,find the ML estimateof 6. It should depend
on y only through the sampled matched filter outputs {z[k] = z(kT)}.

(c) Fortracking slowly varying 6 in data-aided mode, assumethat b is known,
and define the log likelihood function cost function

J,(9) = log L(z[k]|6, b),

where L(z[k]|@,b) is proportional to the conditional density of z[k] =
2(kT), given 6 (and the known symbol sequence b). Showthat

AF,(8) _
5p) a im (b*[k]z[kJje*)) ,

where a is a constant.

(d) Suppose, now, that we wish to operate in decision-directed mode. Spe-
cialize to BPSKsignaling (i.e., b[k] ¢ {—1, +1}). Show that the optimum
coherent decision on b[k], assume ideal phase tracking, is

bik] = sign (Re(z[kJe~*)) .

Assumingthat this bit estimate is correct, substitute b[k] in place of b[k]
into the result of (c). Show that a discrete-time ascent algorithm of the
form

4 8J,(9)

O=6[k]

reduces to

6[k+1] = O[k] +o sign (Re(z[k]Je“"[k])) Im(z[kJe“"[&]),

where a > 0 is a parameter that governsthe reaction timeofthe tracking
algorithm. The block diagram for the algorithm is shown in Figure 4.10.

(e) Now, consider nondata-aided estimation for i.id. BPSK symbols taking
values +1 equiprobably. Find the log likelihood function averaged overb:

log L(y|@) = log E[L(y@, b)],

where the expectation is over the symbol sequence b. Assumethat p is
square root Nyquist at rate 1/T if needed.
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Figure 4.10 Discrete-time
decision-directed Costas loop
for BPSK modulation.

Symbol matchedfilter

Synchronization and noncoherent communication
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exp(-jé[kl)

Hint Use techniques similar to those used to derive the NDA amplitude estimate in
Example 4.2.2.

(f) Find an expression for a block-based MLestimate of 6 using the NDA
likelihood function in (d). Again, this should depend on y only through
{z[k]}.

(g) Derive a tracking algorithm as in part (d), but this time within NDA
mode. Thatis, use the cost function

J,(8) = log L(z[k]|6)

where L(z[k]|@) is obtained by averaging overall possible values of the
BPSK symbols. Showthat the tracker can be implemented as in the block
diagram in Figure 4.10 by replacing the hard decision by a hyperbolic
tangent with appropriately scaled argument.

(h) Show that the tracker in (g) is approximated by the decision-directed
tracker in (d) by using the high SNR approximation tanh x * sign(x). Can
you think of a low SNR approximation?

Remark The low SNR approximation mentioned in (h) corresponds to what
is generally known as a Costas loop. In this problem, we use the term for a
broad class of phase trackers with similar structure.

Problem 4.4 (Frequency offset estimation using training sequence)
Consider a linear modulated system with no ISI andperfect timing recovery,
but with unknownfrequency offset Af and phase offset @. The symbolrate
samples are modeled as

y[k] = b[kJ") 4 NIK], =k=1,...,K,

where T is the symbol time, and N[k] is discrete-time complex WGN with
variance a” = No/2 per dimension. Define T = 27AfT as the normalized
frequency offset. We wish to obtain ML estimates of I° and 6, based on the
observation y = (y[1],..., y[K])”. Assume that the complex symbols {b[k]}
are part of a knowntraining sequence.
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(a) Find the log likelihood function conditioned on I and 6, simplifying as
much as possible.

(b) Fixing I’, maximize the log likelihood function over 6. Substitute the
maximizing value of @ to derive a cost function J(I) to be maximized
over T.

(c) Discuss approximate computation of the ML estimate for I using a
discrete Fourier transform (DFT).

Problem 4.5 (Exampleof one-shot timing estimation) The received signal
in a real baseband system is given by

yf) = p(t— 7) +n),

where p(t) = Iig,4(4), 7 is an unknown delay taking valuesin [0, 1], and x is
real-valued WGNwith PSD o? = N)/2. The receivedsignal is passed through
a filter matched to p to obtain z(t) = (y * Pyg)(1), where Pye (t) = p(—2), but
the MLestimation algorithm only has access to the samples at times 0, 1/2, 1.

(a) Specify the distribution of the sample vector z = (z(0), z(1/2), z(1))’,
conditioned on 7 € [0,1].

Hint Consider the cases + < 1/2 and 7 > 1/2 separately.

(b) Compute the ML estimate of 7 if z = (0.7, 0.8, —0.1)’, assuming that
o” = 0.1. How does your answer change if 0? = 0.01?

Problem 4.6 (Block-based timing estimation for a linearly modulated
signal) Consider the timing estimation problem in Example 4.3.2 for a
linearly modulated signal. Thatis, the received signal y is given by

y(t) = As(t— Te? + n(d),

for

s(t) = 0 blklp(e— kN),
k=1

where7is to be estimated, A, 6 are “nuisance” parameters which weeliminate
by estimating (for fixed 7) and substituting into the cost function, as in
Example 4,3.2, and n is complex WGN. Assumethat {b[k],k=1,..., K}
are part of a knowntraining sequence.

(a) Specializing the result in Example 4.3.2, show that the ML estimate of
the delay 7 can be implemented using the output z(¢) = (y* pyp)(t) of a
filter with impulse response pPye(f) = p*(—f) matchedto the modulating
pulse p. .

(b) Now, suppose that we only have access to the matchedfilter outputs
sampled at twice the symbolrate, at sample times 27/2. Discuss how you
might try to approximate the delay estimate in (a), which has access to
the matchedfilter outputs at all times.
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Problem 4.7 Consider an on-off keyed system in which the receiver
makesits decision based on a single complex numbery,as follows:

y=hA-+n, 1 sent,

y=n, 0 sent,

where A > 0, A is a random channel gain modeled as a zero mean, proper
complex Gaussian random variable with E[|h|?] = 1, and n is zero mean,
proper complex Gaussian noise with variance 0? = N)/2 per dimension.

(a) Assume that # is unknownto the receiver, but that the receiver knows
its distribution (given above). Show that the ML decision rule based on
y is equivalent to comparing |y|* with a threshold. Find the value of the
threshold in terms of the system parameters.

(b) Find the conditional probability of error, as a function of the average
E,/No (averaged over all possible realizations of h), given that 0 is sent.

(c) Assume now that the channel gain is known to the receiver. What is the
MLdecision if y=1+j, h=j, A= 3/2, and 0? =0.01 for the coherent
receiver?

Problem 4.8 (Exact performance analysis for M-ary, equal-energy, non-
coherent orthogonal signaling) Consider an M-ary orthogonal equal-
energy signal set {s,,i=1,...,M} with (s,,s,) = E,6,, for1<i,j<M.
Condition on s, being sent, so that the received signal y = s,e!-++n, where
n is complex WGN with variance o? = N)/2 per dimension, and @ is an
arbitrary unknown phaseshift. The noncoherentdecision rule is given by

Snc(y) = arg max, |Z;|,
where we consider the normalized, scale-invariant decision statistics Z, =
((y, 8;))/(@/E,), i= 1,...,M. Let Z= (Z,,...,Zy)", and denote the
magnitudes by R; =[Z,],i=1,...,M.

(a) Show that the normalized decision statistics {Z,} are (condition-
ally) independent, with Z, ~ CN(me*®,2) and Z, ~ CN(0,2), where
m = 4/(2E,/Ny).

(b) Conclude that, conditioned on s, sent, the magnitudes R,;, i#1, obey a
Rayleigh distribution (see Problem 3.4) satisfying

re
PIR; <r] =1-e77? , r>0.

(c) Show that, conditioned on s, sent, R, = |Z;| is Rician (see Problem 3.4)
with conditional density

m? + 72 Pru (r{l) = rexp (- ) In(mr), r>0.
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(d) Show that the conditional probability of correct reception (given s; sent),
which also equals the unconditional probability of correct reception by
symmetry, is given by

 

P, =P,1 = PLR, ==mlax RjH,]=P[R, < Ry, R3<R;,...,Ry <R,|Ay]

=" (1-e"zy Pr(rl1) dr (4.62)
2\M-1 re=[~ (1-e*) rexp (- ) ftom dr0

2E,
(m =\/5A).

(e) Show thatthe error probability is given by
2

P,=1-P,=-[- [1~(1 -#)] rexp(—” FY sm dr,
Using a binomial expansion within the integrand, conclude that

M-l

-E("Ca
* ke

A, = (-1)"! | re? exp (-0

(f) Now, massagethe integrandinto the form ofaRician density as we did when
computing the error probability for binary orthogonal signaling. Use this to
evaluate A, andobtain the following final expressionfor error probability

Mal - —1)! k Er= (™ ‘ys ) oe (Se):il k k+1 kK+1Np

Check that this specializes to the expression for binary orthogonal
signaling by setting M = 2.

 

where

 

“) Iy(mr) dr. (4.63)

 

Problem 4.9 (Asymptotic performance of /M-ary noncoherent orthogonal
signaling) In the setting of Problem 4.8, we wish to derivethe result that

1, *®>1n2,
lim P, = : (4.64)
M- co 0, Ne <In2.

Set

2E, 2E, log, M
m= fF = j———_,

No No

as in Problem 4.8,
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(a) In (4.8), use a change of variables U = R, — m to showthatthe probability
of correct reception is given by

°° (utm)? M-l
Pi,= [ 1-—e7 p(ujl) du.0

(b) Show that, for any u > 0,

tem?\MO! 0, ze <In2,lim (i —e 2 ) = n
Moo 1, ra > In2.

Hint Use L’H6pital’s rule on the log of the expression whose limit is to be evaluated.

(c) Show that, by a suitable change of coordinates, we can write

R, =7 (m+ V,)?+ V2,

where V,, V, are iid. N(O, 1) random variables. Use this to show that, as
m-—> oo, U = R, —m converges to a random variable whosedistribution

does not depend on M (anintuitive argument rather than a rigorous proof
is expected), What is the limiting distribution? (The specific form of
the density is actually not required in the subsequent proof, which only
uses the fact that there is some limiting distribution that does not depend
on M.)

(d) Assume nowthat we caninterchange limit and integral as we let M — co,
so that

M-1
. sad . (utem)2 .= —-eJinrea[ Bin (i-e SF") imptuitau

Now use (b) and (c) to infer the desired result,

Problem 4.10 (Noncoherent orthogonalsignaling over a Rayleigh fading
channel) Binary orthogonal signaling over a Rayleigh fading channel can
be modeled using the following hypothesis testing problem:

H,: WON =As,(eP +n), O<t<T,
Hy: yt) =Aso(e®t+ni), O<t<T,

where (8), 5) =0, ||s;||? = ||sol|? = Z,, 2 is complex AWGN with PSD
a” = No/2 per dimension. Conditioned on either hypothesis, the amplitude
A > 0 is Rayleigh with E[A’] = 1, 6 is uniformly distributed over [0, 277],
and A, 6 are independent of each other and of the noise n. Equivalently,
h = Ae? ~ CN(O,1) is a proper complex Gaussian random variable. Define
the complex-valued correlation decision statistics Z; = (y, s;), i= 0, 1.

(a) Show that the MPE decision rule is the noncoherentdetector given by

i= arg max{|Z,|, [Zol}-
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(b) Find the error probability as a function of E,/Np by first conditioning on
A and using Proposition 4.5.6, and then removingthe conditioning.

(c) Now,find the error probability directly using the following reasoning.
Condition throughout on Hy. Show that Z, and Zp are independent com-
plex Gaussian random variables with i.i.d. real and imaginaryparts. Infer
that |Z,|? and |Z,|? are independent exponential random variables (see
Problem 3.4), and use this fact to derive directly the error probability
conditioned on Hy (without conditioning on A or 6).

(d) Plot the error probability on a log scale as a function of E,/No in dB for
the range 0-20 dB. Compare with the results for the AWGN channel (ie.,
for A = 1), and note the heavy penalty due to Rayleigh fading.

Problem 4.11 (Soft decisions with noncoherent demodulation) Consider
noncoherent binary on-off keying over a Rayleigh fading channel, where the
receiver decision statistic is modeled as:

Y=hA+N, 1 sent,

Y=N, 0 sent,

where h is zero mean complex Gaussian with E[|h|?] =3, N is zero mean
complex Gaussian with E[|N|*] = 1, and h, N are independent. The receiver
does not know the actual value of h, although it knows the distributions
above. Find the posterior probability P[1 sent|¥ = 1—2,], assumingtheprior
probability P[1 sent] = 1/3.

Problem 4.12 (A toy modelillustrating channel uncertainty and diversity)
Consider binary, equiprobable signaling over a scalar channel in which the
(real-valued) received sampleis given by

where b ¢ {—1, +1} is the transmitted symbol, n ~ N(0, 1), and the channel
gain h is a random variable taking one of two values, as follows:

1 3

P[k =1] = 7 P[h = 2] = a (4.66)

(a) Find the probability of error, in terms of the Q function with positive
arguments,for the decision rule § = sign(y). Express your answerin terms
of E,,/No, where E,, denotes the average received energyperbit (averaged
over channelrealizations).

(b) True or False The decision rule in (a) is the minimum probability of
error (MPE) rule. Justify your answer.

Now, suppose that we have two-channel diversity, with two received
samples given by
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y= hyb+ Ny, y= hyb+ny, (4.67)

where b is equally likely to be +1, n, and n, are independent and
identically distributed (i.i.d.) N(O, 07), and h, and h, are i.id., each with

a distribution given by (4.66).
(c) Find the probability of error, in terms of the Q function with positive

arguments, for the decision rule b = sign(y, + y,).
(d) True or False The decision rule in (b) is the MPE rule for the model

(4.67), assuming that the receiver does not know hy, hy, but knowstheir
joint distribution. Justify your answer.

Problem 4.13 (Preview of diversity for wireless channels) The perform-
ance degradation due to Rayleigh fading encountered in Problem 4.10 can be
alleviated by the use of diversity, in which we see multiple Rayleigh fading
channels (ideally independent), so that the probability of all channels having
small amplitudes is small. We explore diversity in greater depth in Chapter
8, but this problem provides a quick preview. Consider, as in Problem 4.10,
binary orthogonalsignaling, except that we now have access to two copies of
the noisy transmitted signal over independent Rayleigh fading channels. The
resulting hypothesis testing problem can be written as follows:

Ai yOQ=hsO+n4@0, »wO=ms(+n), OK<tK<T,
Ay: WYO=hHO+tu®, wO=myH+nm(), OS<t<T,

where (s;, So) =, |[5,||? =|[5o]|? = Ey, 21, Ag are iid. CN(O, 1/2) (normal-
izing so that the net average received energy perbit is still &,), and n is
complex AWGN with PSD o? = N,/2 per dimension.

(a) Assuming that h, and h, are known (i.e., coherent reception) to the
receiver, find the ML decision rule based on y, and yy.

(b) Find an expressionfor the error probability (averaged overthe distribution
of h, and h,) for the decision rule in (a). Evaluate this expression for
E,/No = 15 dB,either analytically or by simulation.

(c) Assuming now that the channel gains are unknown (i.e., noncoherent
reception), find the ML decision rule based on y, and y,.

(d) Find an expression for the error probability (averaged overthe distribution
of h, and h,) for the decision rule in (c). Evaluate this expression for
E,/No = 15 dB,either analytically or by simulation.
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Channel equalization

In this chapter, we develop channel equalization techniques for handling the
intersymbol interference (ISI) incurred by a linearly modulated signal that
goes through a dispersive channel. The principles behind these techniques
also apply to dealing with interference from other users, which, depending on
the application, may be referred to as co-channelinterference, multiple-access
interference, multiuser interference, or crosstalk. Indeed, we revisit some of

these techniques in Chapter 8 when webriefly discuss multiuser detection.
More generally, there is great commonality between receiver techniques for
efficiently accounting for memory, whether it is introduced by nature, as
considered in this chapter, or by design, as in the channel coding schemes
considered in Chapter 7. Thus, the optimum receiver for ISI channels (in
which the received signal is a convolution ofthe transmitted signal with the
channel impulse response) uses the same Viterbi algorithm as the optimum
receiver for convolutional codes (in which the encoded data are a convolution
of the information stream with the code “impulse response”) in Chapter 7.

The techniques developed in this chapter apply to single-carrier systems
in which data are sent using linear modulation. An alternative technique for
handling dispersive channels, discussed in Chapter 8, is the use of multi-
carrier modulation, or orthogonal frequency division multiplexing (OFDM).
Roughly speaking, OFDM,or multicarrier modulation, transforms a system
with memory into a memoryless system in the frequency domain, by decom-
posing the channelinto parallel narrowband subchannels, each of which sees
a scalar channel gain.

Mapof this chapter After introducing the channel model in Section 5.1,
we discuss the choice of receiver front end in Section 5.2. We then briefly
discuss the visualization ofthe effect of ISI using eye diagrams in Section 5.3.
This is followed by a derivation of maximum likelihood sequence estimation
(MLSE) for optimum equalization in Section 5.4. We introduce the Viterbi
algorithm for efficient implementation of MLSE. Since the complexity of
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MLSE is exponential in the channel memory, suboptimal equalizers with
lower complexity are often used in practice. Section 5.5 describes a geometric
model for design of such equalizers. The model is then used to design linear
equalizers in Section 5.6, and decision feedback equalizers in Section 5.7.
Techniques for evaluating the performance of these suboptimum equalizers
are also discussed. Finally, Section 5.8 discusses the more complicated prob-
lem of estimating the performance of MLSE.The idea is to use the union

bounds introduced in Chapter 3 for estimating the performance of M-ary
signaling in AWGN,except that / can now be very large, since it equals the
number of possible symbol sequences that could be sent. We therefore dis-
cuss “intelligent” union bounds to prune out unnecessary terms, as well as a
transfer function bound for summing such boundsoverinfinitely many terms.
Similar arguments are also used in performance analysis of ML decoding of
coded systems (see Chapter 7).

5.1 The channel model

Figure 5.1 Linear modulation
over a dispersive channel.

Considerthe complex baseband modelfor linear modulation over a dispersive
channel, as depicted in Figure 5.1.

The signal sent over the channel is given by

u(t)= )? bln]grx(t—nT),

where grx(t) is the impulse response of the transmit filter, and {b[n]} is the
symbol sequence, transmitted at rate 1/T. The channel is modeled asafilter

with impulse response g,(1), followed by AWGN. Thus, the received signal
is given by

y(t) = s bin]p(t-—nT) +n(d, (6.1)
n=—0o

where

P(t) = (81x * 8c) (2)

is the impulse response of the cascade ofthe transmit and channelfilters, and
n(t) is complex WGN with PSD o? = N,/2 per dimension. The task of the
channel equalizer is to extract the transmitted sequence b = {b[n]} from the
received signal y(t).

Transmitted symbols
by}

Rate 1/T

 
 

 
 
 
 

  
Channelfilter

gclt)

Transmit filter

grit) 
 

n{t)
White Gaussian noise
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Running example Asa running example through this chapter, we con-
sider the setting shown in Figure 5.2. The symbol rate is 1/2 (ie., one
symbol every two time units). The transmit pulse g7x(¢) = Jjo.2)(t) is an
ideal rectangular pulse in the time domain, while the channel response
&c(t) = 6(t — 1) — 1/26(t — 2) corresponds to two discrete paths.

 

  
  
 
 
 
 
 

p(t)
9rx\t) gclt)  

 1
1/2

t f yolo 1 2 3 t0 2 0 1 2
 
  
 -1/2 

 
 
 Figure 5.2 Transmit pulse g7,(t), channel impulse response g-(f), and overall pulse p(t) for the

running example. The symbol rate is 1/2 symbol per unit time. 

5.2 Receiver front end

Most modern digital communication receivers are DSP-intensive. For example,
for RF communication,relatively sloppy analog filters are used in the passband
and at intermediate frequencies (for superheterodyne reception). The complex
baseband version of these passband filtering operations correspondsto passing
the complex envelope of the received signal through a sloppy analog complex
baseband filter, which is a cascade of the complex baseband versions of the
analog filters used in the receive chain. We would typically design this equiv-
alent analog basebandfilter to have a roughly flat transfer function over the
band, say [—W/2, W/2], occupied by the transmitted signal. Thus, there is no
loss of information in the signal contribution to the output of the equivalent
complex basebandreceivefilter if it is sampled at a rate faster than W. Typi-
cally, the sampling rate is chosen to be an integer multiple of 1/T, the symbol
rate. This provides an information-lossless front end which yields a discrete-
time signal which we can now process in DSP. For example, we can imple-
mentthe equivalent of a specific passband filtering operation on the passband
received signal using DSP operations on the discrete-time complex baseband
signal that implement the corresponding complex basebandfiltering operations.

Now that we have assured ourselves that we can implement any analog
operation in DSP using samples at the output of a sloppy widebandfilter,
let us now return to the analog complex baseband signal y(r) and ask how
to process it optimally if we did not have to worry about implementation
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details. The answer is given by the following theorem, which characterizes
the optimal receiver front end.

Theorem 5.2.1 (Optimality of the matched filter) The optimal receive
filter is matched to the equivalent pulse p(t), and is specified in the time and
Frequency domains as follows:

Sropt(t) = Pur(t) = p*(—2), (5.2)
Grropf) = Pur(f) = P*(f).

In terms of a decision on the symbol sequence b, there is no loss of relevant
information by restricting attention to symbol rate samples of the matched
filter output, given by

ain] = (y*Pe)(n7) = | ¥OPye(nT - 2) dt = f y(p"(—AT) de. (6.3)

Proof of Theorem 5.2.1 We can prove this result using either the hypoth-
esis testing framework of Chapter 3, or the broader parameter estimation
framework of Chapter 4. Deciding on the sequence b is equivalentto test-
ing betweenall possible hypothesized sequences b, with the hypothesis A,
corresponding to sequence b given by

Ay yt) = 5,+20),

where

y(t) = ob[n|p(e— nT)

is the noiseless received signal corresponding to transmitted sequence b. We
know from Theorem 3.4.3 that the MLrule is given by

Sya.(0) = are max Re((y, 5,)) — Mell
b 2

The MPEruleis similar, except for an additive correction term accounting
for the priors. In both cases, the decision rule depends on thereceived signal
only through the term (y, s,). The optimal front end, therefore, should capture
enough information to be able to compute this inner productfor all possible
sequences b,

Wecan also use the more general framework of the likelihood function

derived in Theorem 4.2.1 to infer the same result. For y = 5, +n,the likelihood
function (conditioned on b) is given by

2

LOIB) = exp (Z1Re(, 55) — ely),
Wehavesufficient information for deciding on b if we can compute the pre-
ceding likelihood function for any sequence b, and the observation-dependent
part of this computation is the inner product(y, s,).
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Figure 5.3. Typical
implementation of optimal
front end.

5.3 Eye diagrams

5.3 Eye diagrams

Equivalent to analog matchedfilter with symbol rate samplinga

 
 

 Discrete-time
matchedfilter

Synchronization
channel estimation

Let us now consider the structure of this inner product in more detail.

(Y8) = (9, 2 b[n}p(t—nT)) =D) b*[n] / yO)p*(t—nT) dt =) /b*[n]z[n],

received signal
y(t) 
 

 
 

where {z[n]} are as in (5.3). Generation of {z[n]} by sampling the outputs
of the matchedfilter (5.2) at the symbol rate follows immediately from the
definition of the matchedfilter. O

While the matched filter is an analog filter, as discussed earlier, it can be

implemented in discrete time using samples at the output of a wideband
analog filter. A typical implementation is shown in Figure 5.3. The matched
filter is implemented in discrete time after estimating the effective discrete-
time channel (typically using a sequence of known training symbols) from
the input to the transmit filter to the output of the sampler after the analog
filter.

For the suboptimal equalization techniques that we discuss, it is not nec-

essary to implement the matched filter. Rather, the sampled outputs of the
analog filter can be processed directly by an adaptive digital filter that is
determined by the specific equalization algorithm employed.

Anintuitive sense of the effect of ISI can be obtained using eye diagrams.
Consider the noiseless signal r(t) = >>, b[n]x(t—nT), where {b[n]} is the
transmitted symbol sequence. The waveform x(t) is the effective symbol
waveform: for an eye diagram at the input to the receive filter, it is the

cascade of the transmit and channel filters; for an eye diagram at the output
of the receivefilter, it is the cascade of the transmit, channel, and receive
filters. The effect of ISI seen by different symbols is different, depending on
how the contributions due to neighboring symbols add up. The eye diagram
superimposes the ISI patterns seen by different symbols into one plot, thus
enabling us to see the variation between the best-case and worst-case effects

of ISI. One way to generate such a plot is to generate {b[n]} randomly, and
then superimpose the waveforms {r(t—kT),k =0, +1, +2,...}, plotting the
superposition over a basic interval of length chosen to be an integer multiple

Constellation Exhibit 2003

Page 219 of 395



Constellation Exhibit 2003
Page 220 of 395

204 Channelequalization

Eye diagram Eye diagram

Amplitude

Figure 5.4 Eye diagrams for
raised cosine pulse with 50%
excess bandwidth for (a) an

ideal channel and (b) a highly
dispersive channel.

 ~WP TS 7
TIEeR,

WAS

Amplitude 
t/T

(a) Open eye (b) Closed eye

of T. The eye diagram for BPSK using a raised cosine pulse with 50% excess
bandwidth is shown in Figure 5.4(a), where the interval chosen is of length
3T. Note that, in every symbolinterval, there is a sampling time at which we
can clearly distinguish between symbol value of +1 and —1, for all possible
ISI realizations. This desirable situation is termed an “open” eye. In contrast,
Figure 5.4(b) shows the eye diagram whenthe raised cosine pulse is passed
through a channel 6(1) — 0.68(¢ — 0.57) + 0.78(t — 1.57). Now there is no
longer a sampling point where wecanclearly distinguish the value +1 from
the value —1 for all possible ISI realizations. Thatis, the eye is “closed,” and
simple symbol-by-symbol decisions based on samples at appropriately chosen
times do not provide reliable performance. However, sophisticated channel
equalization schemessuch as the ones wediscuss in this chapter can provide
reliable performance even whenthe eye is closed.

5.4 Maximumlikelihood sequence estimation

We develop a method for ML estimation of the entire sequence b = {b[{n]}
based on the received signal model (5.1). Theorem 5.2.1 tells us that the opti-
mal front endis the filter matched to the cascadeof the transmit and channel

filters. We use the notation in Theorem 5.2.1 andits proof in the following.
Wewish to maximize L(y|b) over all possible sequences b. Equivalently,

we wish to maximize

A(b) = Rey, 5,) — IF (5.4)
where the dependence on the MFoutputs {z[7]} has been suppressed from the
notation. To see the computational infeasibility of a brute force approach to
this problem, suppose that N symbols, each drawn from an M-ary alphabet,
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are sent. Then there are M™ possible sequences b that must be considered
in the maximization, a number that quickly blows up for any reasonable
sequence length (e.g., direct ML estimation for 1000 QPSK symbols incurs
a complexity of 4°). We must therefore understand the structure of the
preceding cost function in moredetail, in order to developefficient algorithms
to maximizeit. In particular, we would like to develop a form for the cost
function that we can compute simply by adding terms as we increment the
symbol time index n. Weshall soon see that such a form is key to developing
an efficient maximization algorithm.

It is easy to show that the first term in (5.4) has the desired additive form.
From the proof of Theorem 5.2.1, we know that

Re(y, 4) =)Re(b"[n]z[n]). (5.5)

To simplify the term involving ||s,||*, it is convenient to introduce the
sampled autocorrelation sequence of the pulse p as follows:

nm] = f p()p*(¢~mT) dt =(p+Pye)(mT). (5.6)
The sequence {h[m]} is conjugate symmetric:

hAl—m] = h*[m]. (5.7)

This is proved as follows:

n[—m] = f p(dp*(-+ m7) ae

= [ plu-mT)p*(u)du

= (f p'u=mT)pw) du)= ifm),
where we have used the change of variables u = t+ mT.

Running example Forour running example,it is easy to see from Figure
5.1 that p(t) only has nontrivial overlap with p(t—nT) for n =0, +1. In
particular, we can compute that h[0] = 3/2, h[1] = A[-1] = —1/2, and
h{n] = 0 for |n| > 1. 
Wecan now write

IIsplI? = (bln]p(t — nT), 97 blm]p(t — mT))

= LL oln]ortm]f p(t—nT)p*(t—mT) dt (5.8)
=¥-d[n]b*[m] Alm —n].
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This does not have the desired additive form, since, for each value of n, we

must consider all possible values of m in the inner summation. To remedy
this, rewrite the preceding as

lis,|/? = Dalle] + Do DL bln[n]b*[m]h[m — n]
$Y Uno" fm]hm— nl.

Interchanging the roles of m and n in the last summation, we obtain

[Is,|? = A[O[}d |b[n][? + 2 Yo [bla]b*[Jan — n] + b*[n]b[m]h[n — ml].n men

Using (5.7), we can rewrite the above as follows:

[IsslI? = ALO]12ulel*) P+ 22 Do 2Re(b*[n]b[m]h[n — m]). (5.9)no om<n

Substituting (5.5) and (5.9) into (5.4), the cost function to be maximized
becomes

Aw)= | Re(6*{nletm) — Ohpnp
~Re Ge > bimA[n — ni | . (5.10)

Notice that the preceding cost function is additive in n, and that the term to

be added at the nth step is a function of the “current” symbol b[n] and the
“past” symbols {b[m], m <n}.

In practice, the memory needed to compute the term that needs to be added
at step n is truncated using the following finite memory condition:

h{n]=0, |n| > L. (5.11)

(For our running example, we have shownthat L = 1.)
Under the condition (5.11), we can rewrite (5.10) as

At) = DiRe("Eeatm) — Oliotme—Relorin) Solin — mp.m=n—-L

(5.12)

Thus, to compute the term at time n for a candidate sequence b, we need to
keep track of the current symbol b[n] and a state consisting of the past L
symbols: s[n] = (b[n — L],..., b[n — 1]). This term is written as

A,(b[n], stn]) = A,(s[n] > s[nt 1]) = Re(6*[n]z[n]) — ON one

—Re Go > b[mJh[n- ni , (5.13)
where the twoalternative notations reflect two useful interpretations for the
metric: it is a function of the current symbol b[n] and the currentstate s[n],
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or it is a function ofthe transition between the currentstate s[n] and the next
state s[n +1] = (b[n+1—L],..., b[n]). The cost function can therefore be
written in the following additive form:

A(b) = 0A, (o[n], s[n]) = >°A,(s[n] > s{n+1)). (5.14)

If b[n] are drawn from an M-ary alphabet, the numberofpossiblestates at any
time n is M’. We can nowdefineatrellis which consists of the set of states

as we step through n: the set of states at n and n+ are connected by edges.
The label for an edge, or branch, between s[n] = a and s[n+-1] =bis simply
the “branch metric” A,,(a > b). Note that, even whenthestates at either end

of a branch are specified, the metric value depends on n through the matched
filter output z[n]. A particular candidate sequence b = {b[n],n =1,2,...}
corresponds to a unique path throughthetrellis. The running sum up to time
k of the metrics is defined as

k k

A,(b) = 7A,(ln), s[n]) = DOA, (s[n] > s[n+ 1). (5.15)
n=l n=l

Wecan update the running sum for any given sequence as we proceed through
thetrellis, since the metric at time n dependsonlyonthestates s[n] and s[n + 1].

 Branch metric for running example Forour running example in Figure
5.1, suppose that we employ BPSK modulation, with b[n]<{—-1,+1}.
The number of states is given by M' = 2! = 2. The state at time a is
s[n] = b[n — 1]. The branch metric in going from state s[n] = b[n — 1] to
state s[n+ 1] = b[n] is given by specializing (5.13), to obtain

An (O[n], s[n]) = A,(s[n] > s[n + 1])

A[O]
= Re(b"[n]z[n]) — — lenll —Re[b*[n]b[n — 1]A[1]].-

Since {b[k]} are real-valued, we see that only y[n] = Re(z[n]) (ie. the I
componentof the samples)affects the preceding metric. Furthermore,since
|b[n]|? = 1, the second term in the preceding equation does not depend
on b[n] (since |b[n]|? = 1), and can be dropped from the branch metric.
(This simplification applies more generally to PSK alphabets, but not to
constellations with amplitude variations, such as 16-QAM.) Wetherefore
obtain the modified metric

 
  
  

  
  
  
  

  
  
  

m,(b[n], s[n]) = m,(s[n] > s[n+1]) 
= b[n]y[n] + solnlotn —1j  

 = bf{n] (om + soln - 1) . (5.16) 
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Figure 5.5 First few trellis
branchesfor the running
example.

Channel equalization

Suppose now that we know that b[0] = +1, andthat the first few samples
at the output of the matched filter are given by y[0] = —1, y[1] =2,
y[2] = —2, and y[3] = 1.5. We can now use (5.16) to compute the branch
metrics for thetrellis. Figure 5.4 shows the correspondingtrellis, with the
brancheslabeled by the corresponding metrics. Note that, since we know
that s[1] = b[0] =+1, we do not need the value of y[0]. The first branch
metric we need is

mm, (s{1] > sf2)) = UtDy{1]+ 5 o00)001
We compute this for b[0] = +1 and for b[1] =+1. After this, we compute
the branch metrics

ma(sin} — sin-+ 1]) = bfalyfn] ~ 5b{nlofn~ 1]
= binl(ofnl — 5 bla — 1)

for b[n] =+1 and b[n +1] =+£1 for n= 1,2,3.
 
Consider now a bit sequence 5[0] = +1, b[1] = +1, b[2] = +1. From Figure
5.5, this has an accumulated metric of 1.5—2.5 = —1. Compare it with the
sequence b[0] = +1, b[1] = —1, b[2] =+1. This has an accumulated metric of
—1.5—1.5 = —3. Both sequencesstart from the samestate s[1] = b[0] = +1
and end in the samestate s[3] = b[2] = +1. Thus, for each possible value of
b[3], we add the same branch metric m,(s[3] —> s[4]) to the accumulated met-
ric. Since the first sequence had a better accumulated metric coming into state
s[3], it continues to have a better accumulated metric for each possible value of
state s[4]. This means that the second sequence cannot bepart of the ML solu-
tion, since we can construct another sequence that has a better accumulated
metric. Hence we can discard the second sequence from further consideration.

The preceding logic can be applied at any state. Two sequences meeting
at a state s[n] have a commonstarting state s[1] = b[0] =-++1 and a common
ending state s[n] over the time 1,...,”. By the same reasoning as above,the
sequence that has a worse accumulated metric at state s[n] can be discarded
from further consideration, since it cannot be part of the ML solution. Thus,
at any given state, we only need to keep track of the sequencethat has the

s[1]=b{0] s[2]=b{1]  s{3]=5[2] s[4]= 13]
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Figure 5.6 Example
application of the Viterbi
algorithm. Survivors are shown
in bold.

5.4 Maximum likelihood sequence estimation

s[1]=5[0] sl2]=5[1] s[3]=5[2] s[4]= b[3]
2.5

 
best accumulated metric up to that state. This sequenceis called the survivor
at state s[n]. Figure 5.6 showsthis pruning procedurein action forthetrellis
in Figure 5.5, with the survivors at each state shown in bold. In the figure,
the number labeling each state is the accumulated metric for the survivor at
that state. We can now make the following observations:

e At each time, there are two survivors, since there are two states. We cannot

compare across survivors endingat different states; a survivor with a poorer
metric now could makeup forit in the future. We do not know whetheror

not that happensuntil the survivors merge, at which point we can directly
compare the accumulated metrics and choosethe best.

Based on the given information, we know that the ML solution will be an

extension of the two survivors at any given state. Thus, if the survivors
have merged in the past, then we know that the ML solution must contain

this merged segment. Specifically, the two survivors at s[4] have actually
merged at s[3]. Thus, we know that the ML sequence must contain this
merged segment, which implies that [1] = +1, b[2] = —1 are the ML
decisions for b[1] and b[2], respectively.
Just as we have forced the starting state to be s[1] = b[0] = +1 to ensure
a common starting point for all paths throughthetrellis, we can also force
the ending state to be a predetermined state by specifying the final bit that
is sent. For example, if we send a hundred bits 5[0],..., b[99], we can
specify b[0] = b[99] = +1 to ensure that all sequences have a common
start and end state. The ML solution is then the survivorat state s[100] =
b[99] = +1.

In the above discussion, we have invoked the principle of optimality to
derive the Viterbi algorithm for efficient implementation of MLSE,in the
context of our running example. Let us nowstate this principle formally, and
in greater generality.

Principle of optimality Consider two sequences specified up to time k,
b= {b[1],..., d[k]} and ¢ = {c[1],..., c[k] }. Suppose that the state at time
k is the same for both sequences; that is, s[k] = (b[k—L],..., b[k—1]) =
(c[k -L],..., c[k —1]). If ¢-has a smaller running sum than b upto time
k, then it cannot be the ML sequence, and can be eliminated from further
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Branch
metrics

Survivor
ats’

Accumulated d
metric of survivor

Add step

 

Channel equalization

 A+c

At+d NO Pick the largest among
Accumulated Cc A+w, B+x, Cty, D+z
metrics goinginto Zz to determine survivorat

next set of states from 9’ 7 state sD

Accumulated Compare step
metrics of
survivors

Figure 5.7 The add and
compare steps in the Viterbi
algorithm.

consideration. This follows from the following reasoning. Sequence c is worse
than b up to time k. As we proceed further alongthetrellis, for any possible
state s[k-+ 1], the term A,(s[k] > s[k+1]) is the same for both sequences, so
that the running sum for any extension of the sequence ¢ will remain worse
than that of the corresponding extension for sequenceb.

Since any two sequences meeting at a state can be directly compared,
we can define the surviving sequence, or survivor, at state s[n] = a as the
sequence entering the state with the largest running sum. Bythe principle of
optimality, no other sequences entering state s[n] need be considered further
for the purpose of MLSE.Since there are S = M*possible states at any given
time, we need to maintain a list of S survivors at each time. Given S survivors

at time n, we extend each survivor in M possible ways, correspondingto the
M possible values for b[n], and update the corresponding running sums by
adding A(s[n] > s[n+1]). At time n+ 1, for each possiblestate s[n-+1] = b,
we pick the sequence entering the state with the largest running sum, thus
obtaining a new set of S survivors. If the first and last L symbols of the
transmitted sequence are known, the start and end states are fixed, and the
MLsequenceis the only survivor at the end ofthis process. This is the Viterbi
algorithm, which we state more formally below.

Viterbi algorithm Assume that the starting state of the encoder s{1] is
known. Now,all sequences through the trellis meeting at state s[n] can be
directly compared, using the principle of optimality between times 0 and n,
and all sequences except the one with the best running sum can be discarded.
If the trellis has S = M” states at any given time(the algorithm also applies
to time-varying trellises where the numberofstates can depend on time),
we have exactly S surviving sequences, or survivors, at any given time. We
need to keep track of only these S sequences(i.e., the sequence of states
throughthetrellis, or equivalently, the input sequence,that they correspond
to) up to the current time. We apply this principle successively at times
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n=1,2,3,.... Consider the S survivors at time k. Let F(s’) denote the set
of possible values of the next state s[k+ 1], given that the current state is
s[k] = s’. For an M-ary alphabet, there are M possible values of s[k+ 1] =
(by, b[k—1],..., b[k-L+1]) given that s[k] = (b[k-1],...,b[kK-L+
1], b[k — L]) is fixed. Denote the running sum of metrics up to time k for the
survivor at s[k] = s' by A*(1:k,s’). We now extend the survivors by one
more time step as follows:

Add step: for each state s’, extend the survivor at s’ in all admissible ways,
and add the corresponding branch metric to the current running sum to get

AJA :k+i,s oS) HAM1th s) +A’ > 5), se F(s’).

Compare step: after the “add” step, each possible state s[k-++1] = s has a
number of candidate sequences coming into it, corresponding to different
possible values of the prior state. We compare the metrics for these candidates

and choosethe best as the survivor at s[k-+1] = s. Denote by P(s) the set of
possible values of s[k] =’, given that s[k+ 1] = s. For an M-ary alphabet,
P(s) has M elements. We can now update the metric of the survivor at
s{k+ 1] =s as follows:

A*(1:k+1,5)= max Ap(1:k+1,5'> 5)
x & P(s)

and store the maximizing s’ for each s[k+ 1] = s (when we wish to minimize
the metric, the maximization above is replaced by minimization).

At the end of the add and compare steps, we have extended the set of
S survivors by one more time step. If the information sequence is chosen
such that the terminating state is fixed, then we simply pick the survivor with
the best metric at the terminal state as the ML sequence. The complexity of
this algorithm is O(S) per time step; that is, it is exponential in the channel
memory, but linear in the (typically much larger) number of transmitted
symbols. Contrast this with brute force ML estimation, which is exponential
in the numberof transmitted symbols.

The Viterbi algorithm is often simplified further in practical implemen-
tations. For trae MLSE, we must wait until the terminal state to make bit

decisions, which can be cumbersome in terms of both decoding delay and
memory (we need to keep track of S$ surviving information sequences) for
long information sequences. However, we can take advantage of the fact
that the survivors at time k typically have merged at some pointin thepast,
and make hard decisions on the bits corresponding to this commonsection
with the confidence that this section must be part of the ML solution. For
example, in Figure 5.4, the two survivors at time 4 have merged prior to
s[2], which means we can make the decision that bya [1] =: +1. In practice,
we may impose a hard constraint on the decoding delay d and say that, if
the Viterbi algorithm is at time step k, then we must make decisions on all
information bits prior to time step k — d. If the survivors at time k have not
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merged by time step k —d, therefore, we must employ heuristic rules for
making bit decisions: for example, we may make decisions prior to k—d
corresponding to the survivor with the best metric at time k. Alternatively,
some form of majority logic, or weighted majority logic, may be used to
combine the information contained in all survivors at time k.

5.4.1 Alternative MLSE formulation

The preceding MLSE formulation derived the cost function directly from
the continuous-time model (5.1) of a signal depending on b, plus WGN.
An alternative approach is to derive the cost function from a discrete-time
WGN model. Webriefly outline this approach here. Start with the matched

filter outputs {z[n]}, which consist of a discrete-time signal depending on
the transmitted sequence b, plus discrete-time colored noise. This noise is
obtained by passing continuous-time WGNthrough the matchedfilter p*(—2),
and samplingat the symbol rate. Knowing the matchedfilter impulse response,
we know the noise correlation, and we can pass it through a discrete-time
whitening filter to obtain discrete-time WGN. The whitening filter would
also change the signal component, but the overall discrete-time system can
be represented as the symbol sequence passed through a discrete-time filter
(the cascade of the transmit filter, channel filter, receive filter, sampler, and
whitening filter), plus discrete-time WGN. The received sequence v = {u[k]}
is therefore given by

L

fk] = Yo Alnlolk—n] +n, (5.17)
n=0

where {7,} is discrete-time WGN with variance o” per dimension,f = {f{n]}
is the overall discrete-time channel impulse response, and b = {b[n]} is the
transmitted symbol sequence. We have assumed that f[n] =0 for n <0
(causality) and n > L (finite memory): the causality follows from an appro-
priate choice of the whitening filter. The details of this whitened matched

filter approach are developed for the running example in Problem 5.7.
The MLSEfor the discrete-time WGN model (5.17) is obtained simply by

minimizing the distance between the received sequence v and the noiseless
signal s, = {s(k,b)}, where the kth component of the signal is given by
s(k, b) = “_, fln]b[k —n]. Thus, the cost function to be minimizedis

L

8(b) =D |vfk] — s(k, b)? = Y7 lulk] — )O flnblk —
k k n=0

Asbefore, the contribution at time & is a function of the current symbol b[k]
and the state s[k] = (b[k-L],..., b[k—1]) consisting of the L past symbols,
and can be written as

T(O[k], s{k]) = V(s{k] > s{k +1) = jel] —-Sfto[k—n]??. (5.18)
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Thus, the MLSEis defined as

Du = arg min) /T(s[k] — s[k+1]).k

The principles of optimality and the Viterbi algorithm apply as before, except
that maximization is replaced by minimization.

5.5 Geometric model for suboptimal equalizer design

The optimum MLSEreceiver has complexity O(M4“) per demodulated sym-
bol, where M is the alphabet size and L is the channel memory. This may
be excessive for large constellations or large channel memory. We now con-
sider suboptimal equalization strategies whose complexity scales linearly with
the channel memory. The schemes we describe are amenable to adaptive
implementation, and do not require an optimal front end. While they can be
developed in continuous time, we describe these equalization strategies in
discrete time, which is almostinvariably the setting in which they are imple-
mented. Specifically, assume that the received signal is passed through an
arbitrary receive filter ggx(¢), and being sampled at a rate 1/T, = m/T, where
m is a positive integer: m = 1 corresponds to symbol spaced sampling, while
m > 1 correspondstofractionally spaced sampling. The received signalis, as
before, given by

y(t) = D0 d[n]p(t—nT) +n(2).

The output of the sampler is a discrete-time sequence {r[k]}, where

[k] = (* ax) (KT, + 8),

where 6 is a sampling offset. To understand the structure of {r[k]}, consider
the signal and noise contributions to it separately. The signal contribution is
best characterized by considering the response,at the output of the sampler, to
a single symbol, say b[0]. This is given by the discrete-time impulse response

SUK] = (p* Spx)(kT, +8), k=...,-1,0,1,2,...

The next symbol sees the same response, shifted by the symbol interval T,
which corresponds to m samples, and so on. The noise sequence at the output
of the sampler is given by

w[k] = (n* Sex) (kT, + 6).

Ifn is complex WGN,the noiseat the receivefilter output, w(t) = (1 * gex) (2),
is zero mean, proper complex, Gaussian random process with autocorrela-
tion/covariance function

20° | 8rx(t)Sax (t— T)dt = 207(gex * Samp) (7),
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where gpwr(t) = 8kx(—2). (derivation left to the reader). Thus, the sampled
noise sequence {w[k] = w(kT, + 8)} is zero mean, proper complex Gaussian,
with autocovariance function

Cu(K) = COV(Wpaes Wy) = 20? f gra (akxe(t — RT,)at. (5.19)

In the following, we discuss equalization schemes which operate on a block of
received samples for each symboldecision. The formula (5.19) can be used to
determinethe covariance matrix for the noise contribution to any such block of
samples. Note that noise correlation dependson the autocorrelation function of
8rx(t) evaluated at integer multiples of the sample spacing.

 Running example Consider our running example of Figure 5.2, and
considera receivefilter gpx(t) = Ijo,1). Note that this receivefilter in this
example is not matched to either the transmit filter or to the cascade of

the transmit filter and the channel. The symbol interval T = 2, and we
choose a sampling interval T, = 1; that is, we sample twice as fast as
the symbol rate. Note that the impulse response of the receive filter is
of shorter duration than that of the transmit filter, which means that it
has a higher bandwidth than the transmit filter. While we have chosen

timelimited waveforms in the running example for convenience, this is
consistent with the discussion in Section 5.2, in which a widebandfilter

followed by sampling, typically at a rate faster than the symbolrate,
is employed to discretize the observation with no (or minimal) loss of
information, The received samples are given by

 

  

  HK) = 0+ex)= |”y(oae
The sampled response to the symbol b[0] can be shown to be

1 JI

(...,9, Lona
The sampled response to successive symbols is shifted by two samples,
since there are two samples per symbol. This definesthe signal contribution
to the output. To define the noise contribution, note that the autocovariance
function of the complex Gaussian noise samples is given by

0,...). (5.20)

C, [kK] = 2078;9.

Thatis, the noise samples are complex WGN.Suppose, now, that we wish
to make a decision on the symbol b[n] based on a block of five samples
r[n], chosen such that b[n] makesa strong contribution to the block. The
model for such a block can be written as
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5 0 0
-i 1 0

r[n]=b[n—1]| 0 [+ 3[n] $ [+b[n+1]] 0 }+w, =Ub[a]+win],
0 -1 1
0 0 1

(5.21)
where w[n] is discrete-time WGN,

b[n — 1]
b[n] = b[n] (5.22)

b[n+ 1]

is the block of symbols making a nonzero contribution to the block of

samples, and

a
li OOOren (5.23)| Onriseni-=© NieReOOO

is a matrix whose columns equal the responses corresponding to the sym-
bols contributing to r[n]. The middle column corresponds to the desired
symbol b[n], while the other columns correspond to the interfering sym-
bols b[n — 1] and b[n+ 1]. The columns are acyclic shifts of the basic
discrete impulse response to a single symbol, with the entries shifting
down by one symbol interval (two samples in this case) as the symbol
index is incremented. Weuse r[n] to decide on b[n] (using methodsto be
discussed shortly). For a decision on the next symbol, b[n +1], we simply
shift the window of samples to the right by a symbolinterval (i.e., by two
samples), to obtain a vector r[n+1]. Now b[n+ 1] becomes the desired
symbol, and b[n] and 5,,,. the interfering symbols, but the basic model
remains the same. Note that the blocks of samples used for successive
symbol decisions overlap, in general.

 
 

Geometric model Weare now ready to discuss a general modelforfinite-

complexity, suboptimal equalizers. A block of L received samples r[n] is used
to decide on b[n], with successive blocks shifted with respect to each other
by the symbol interval (sn samples). The model for the received vector is

r[n] =U b(n] + win], (5.24)

where b[n] = (b[n—k,],...,b[n—-1], b[n], bln+1],..., b[n+k,})”is the
K x1 vector of symbols making nonzero contributions to r[n], with K =
k,+k,+1. The Lx K matrix U has as its columns the responses, or “sig-
nal vectors,” corresponding to the individual symbols. All of these column
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vectors are acyclic shifts of the basic discrete-time impulse response to
a single symbol, given by the samples of gry * 86 * gx. We denote the
signal vector corresponding to symbol b[n+ i] as u,, —k,; <i<k». The
noise vector w[n] is zero mean, proper complex Gaussian with covariance
matrix C,.

5.6 Linear equalization

Linear equalization correspondsto correlating r[n] with a vector ¢ to produce
a decisionstatistic Z[n] = (r[n],c) = c*r[n]. This decision statistic is then
employed to generate either hard or soft decisions for b[n]. Rewriting r[n] as

r[n] = b[nJuy + > b[n + Ju, + w[n], (5.25)
iX40

we obtain the correlator output as

Z[n] =e"r[n] = B[n](c*ug) + >bint i](c%u, +e”w[n]. (5.26)
i740

To makeareliable decision on b[n] based on Z[n], we must choose ¢ such
that the term cup is significantly larger than the “residual IST” terms c#u,,
i #0. We mustalso keep in mind the effects of the noise term c“w[n], which
is Zero mean proper Gaussian with covariance eC,c.

The correlator ¢ can also be implemented as a discrete-time filter, whose
outputs are sampled at the symbolrate to obtain the desired decisionstatistics
{Z[n]}. Such an architecture is depicted in Figure 5.8.

Zero-forcing (ZF) equalizer The ZF equalizer addresses the preceding
considerations by insisting that the ISI at the correlator output be set to zero.
While doing this, we must constrain the desired term c7Uy So that it is not
driven to zero. Thus, the ZF solution, if it exists, satisfies

cu =1, (5.27)

Figure 5.8 A typical and
architecture for implementing

a linear equalizer. e“u,=0, for all 40. (5.28)

tate m/T rate 1/T

Complex baseband| Wideband . —-by— Symbolpr . sepa Linear equalizer Symbol by symbol|PY
received signal analogfilter decisions estimates

t . . ayt) Filter with coefficients computed
adaptively or with explicit channel estimates
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To obtain an expression for the ZF correlator, it is convenient to write (5.27)
and (5.28) in matrix form:

c"U=(0,...,0, 1,0,...,0) =e’,

where the nonzero entry on the right-hand side correspondsto the column with
the desired signal vector. It is more convenient to work with the conjugate
transpose of the preceding equation:

U¥c=e. (5.29)

The solution to the preceding equation may not be unique(e.g., if the dimen-
sion L is larger than the numberof signal vectors, as in the example consid-
ered earlier). Uniqueness is enforced by seeking a minimum norm solution
to (5.29). To minimize ||e||? subject to (5.29), we realize that any compo-
nent orthogonal to the subspace spanned by the signal vectors {u;} must be
set to zero, so that we may insist that c is a linear combination of the u,,
given by

c=Ua,

where the K x 1 vector a contains the coefficients of the linear combination.

Substituting in (5.29), we obtain

U"Ua =e.

We can now solve to obtain a = (U"U)~!e, which yields

Czp = U(U*U)Ie. (5.30)

Geometric view of the zero-forcing equalizer A linear correlator ¢ must
lie in the signal space spanned by the vectors {u,}, since any componentof c
orthogonal to this space only contributes noise to the correlator output. This
signal space can be viewedas in Figure 5.9, which shows the desired vector

Uy, and the interference subspace S, spanned by the interference vectors
{u,;, 7 4 0}. If there were no interference, then the best strategy is to point c
along Up to gather as much energy as possible from the desired vector: this
is the matched filter receiver. However, if we wish to force the ISI to zero,

Figure 5.9 The geometry of |

zero-forcing equalization. Orthogonal
. ~ Put Uoprojection P) Uo 
 

 
Desired signal

Interference

ut subspace
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we must choose c orthogonal to the interference subspace S,. The correlator
vector ¢ that maximizes the contribution of the desired signal, while being
orthogonalto the interference subspace, is simply (any scaled version of) the
projection Puy of uy orthogonal to S,. The ZF solution exists if and only if
this projection is nonzero, which is the case if and only if the desired vector
Uy is linearly independent of the interfering vectors. A rule of thumb for
the existence of the ZF solution, therefore, is that the number of available

dimensions L is greater than the numberofinterference vectors K — 1.

Howdoesthe preceding geometric view relate to the algebraic specification
(5.27), (5.28) of the ZF solution? Consider a correlator ¢ which is a scalar
multiple of the projection of ug orthogonal to the interference subspace,
c = aP}uy. By definition, this satisfies the zero ISI condition (5.28). The
contribution of the desired signal at the outputofthe correlator is given by

Lay 112
(C, Up) = (PjUp, Up) = a||P{Up||”.

To obtain the normalization (c, uy) = 1, we set
1

|Pyruo ||?

Thus, the smaller the orthogonal projection P;'up, the larger the scale factor a
required to obtain the normalization (5.27) for the contribution of the desired
signalto the correlator output. As the scale factor increases, so does the noise
at the correlator output: the variance v” (per dimension) of the output noise
is given by

2

Ue = 07 |[e||? = 070?||Ptug]? = — (5.31)
* , [[Pyuo|

The corresponding noise variance for matched filter reception (which is opti-
mal if there is no ISI) is

2 a
Re =. (5.32)ME [Iuol?

Thus, when wefix the desired signal contribution to the correlator output as
in (5.27), the output noise variance for the ZF solution is larger than that of
the matchedfilter receiver. The factor by which the noise variance increases
is called the noise enhancementfactor, and is given by

Uz |||?
ee TPFuglP ee)

The noise enhancement factor is the price we pay for knocking outthe ISI,
and is often expressed in dB. Since there is no ISI at the output of the ZF
equalizer, we obtain a scalar observation corrupted by Gaussian noise, so
that performance is completely determined by SNR.Fixing the desired signal
contribution at the output, the SNR scales inversely with the noise variance.
Thus, the noise enhancementfactor (5.33) is the factor by which the SNR must
be increased for a system employing the ZF equalizer to combatISI,in order to
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maintain the same performance as matchedfilter reception in a system with
no ISI.

Running example Going back to our running example, we see that L = 5
and K = 3, so that the ZF solution is likely to exist. Applying (5.30) to
the example, we obtain

1

Cr = gO 5:5,-1,2)", (5.34)
The output of the ZF equalizer for the example is therefore given by

Z[n] = ezr[n] = b[n] + Mr,

where N[n] ~ CN(0,2v”), where 2v? = c#.Cyezp = 207||ez¢||? = 2.507.
For BPSKtransmission b[n] <¢ {—1, 1}, our decision ruleis

b[n] = sign(Re(Z[n])).

Since Re(N[n]) ~ N(0,v’), the error probability is given by

o()
Using scaling arguments as in Chapter 3, we know that this can be written

as O(,/aE,/No) for some constant a. We can now solve for a by noting
that v* = 50°/4 =5N)/8, and that the received energy per bit is E, =
\|p||? = 3/2. Setting

1 /ak,
v VMN

yields a = 16/15. Contrast this with @ = 2 for ISI-free BPSK. The loss

of 10log,) 2/16/15 = 2.73 dB can be interpreted as “noise enhancement”
due to the ZF solution.

 
In the preceding, we have enforced the constraint that the ZF equalizer must
operate on a finite block of samples for each symbol.If this restriction is lifted

(i.e., if each symbol decision can involve an arbitrary number of samples),
then it is convenient to express the ZF solution in z-transform notation. For

fractionally spaced sampling at rate m/T, think of the samples as m parallel
symbol-spaced streams. The response to a single symbol for stream i is
denoted as {h,[n]}, 1 <i<m, and has z-transform H,(z) = >, h,{n]z~". In
our example, we may set

1. 1
H(@=1-52", Bh{z)=5.

A linear ZF equalizer can then be characterized as a set of parallel filters
with z-transforms {G,(z)} such that, in the absence of noise, the sum ofthe

Constellation Exhibit 2003

Page 235 of 395



Constellation Exhibit 2003
Page 236 of 395

220 Channelequalization

parallel filter outputs reconstructs the original symbol stream up to a decision
delay d, as follows:

YHi(2)Ge) =e. (5.35)
The coefficients ofthe filters {G,(z)} are time-reversed, subsampled versions
of the corresponding correlator operating on the fractionally spaced data.
Thus, the ZF correlator (5.34) in our example corresponds to the following
pair of parallelfilters:

G,(z) = al +52"), GoQ= s2+5e7 +527),
so that

A, (z)G;(z) + Ap (z)Gy(z) = zt.

For fractionally spaced equalization, it is known that finite-length {G,(z)}
satisfying (5.35) exist, as long as the parallel channel z-transforms {H,(z)}
do not have common zeros (although finite-length ZF solutions exist under
milder conditions as well). On the other hand, for symbol-spaced samples,
there is only one discrete-time channel, so that the ZF equalizer must take
the form (z~“)/(H, (z)). This has infinite length fora finite impulse response
(FIR) channel ,(z), so that perfect ZF equalization using a finite-length
equalizeris not possible for symbol-spaced sampling. This is one reason why
fractionally spaced samplingis often preferred in practice, especially when the
receivefilter is suboptimal. Fractionally spaced samplingis also less sensitive
to timing offsets. This is illustrated by Problem 5.8, which computes the ZF
solution for the running example when the sampling times are shifted by a
fraction of the symbol.

Even though perfect ZF equalization is not possible for symbol-spaced
sampling using a finite window of samples, it can be realized approximately
by choosing which of the ISI vectors to null out, and being reconciled to
having residual IS] due to the other ISI vectors at the correlator output. In
this case, we can compute the ZFsolution as in (5.30), except that the matrix
U contains as its columns the desired signal vector and the ISI vectors to be
nulled out (the columns correspondingto the other ISI vectors are deleted).

Linear MMSEequalizer The design of the ZF equalizer ignores the effect
of noise at the equalizer output. An alternative to this is the linear minimum
mean squared error (MMSE)criterion, which trades off the effect of noise

and IST at the equalizer output. The mean squared error (MSE) at the output
of a linear equalizerc is defined as

MSE = J(c) = Efe”r[n] — b[n] |], (5.36)

where the expectation is taken over the symbol stream {b[n]}. The MMSE
correlator is given by

Cvmss = R7'p, (5.37)
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where

R=Efr[n](t[])"], p= E[b"[n]r[x]]. (5.38)

The MMSEcriterion is useful in many settings, not just equalization, and the
preceding solution holds in great generality.

Direct Proof by differentiation For simplicity, consider real-valued r[n]
and ¢ first. The function J(c) is quadratic in c, so a global minimum exists,
and can be found by setting the gradient with respectto c to zero, as follows:

V_ S(c) = V_ E[(e"r[n] — b[n])7]

E[V, (e’r[n] — b[n])”] = E[2(e"r[n} — b[n])r[n]]

= 2(Re—p).

In addition to characterizing the optimal solution, the gradient can also be

employed for descent algorithms for iterative computation of the optimal
solution. For complex-valued r[7] and ¢, there is a slight subtlety in computing
the gradient. Letting c= c,+jc,, where ¢, and ¢, are the real and imaginary
parts of c, respectively, note that the gradient to be used for descentis actually

Ve I+ Ve J.

While the preceding characterization treats the function J as a function of two

independent real vector variables ¢, and ¢,, a more compact characterization
in the complex domain is obtained by interpreting it as a function of the
independent complex vectorvariables ¢ and c*. Since

c=¢,+j¢,, c* =¢, — jc,,

we can show, using the chain rule, that

Ve J=VeI+Ve J,
Vo, J=jV.I-jVe J,

so that

Ve, J+j Vo, J=2VeI. (5.39)

Thus, the right gradient to use for descent is V. J. To computethis, rewrite
the cost function as

J =E[((c*)"r[n] — 2[n]) @[n]%e —b*[n))],

so that

Vee J = Efr[n]((r[n})%e—- b*[n])] =Re—-p. (5.40)

Setting the gradient to zero provestheresult. O
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Alternative Proof using the orthogonality principle We do not prove the
orthogonality principle here, but state a form of it convenient for our purpose.
Suppose that we wish to find the best linear approximation for a complex
random variable Y in terms of a sequence of complex random variables {X;}.
Thus, the approximation mustbe of the form )7, a,X;, where {a,;} are complex
scalars to be chosen to minimize the MSE:

E lv - Donk .
The preceding can be viewed as minimizing a distance in a space of random
variables, in which the inner productis defined as

(U, V) = E[UV"*].

This satisfies all the usual properties of an inner product: (aU, bV) =
ab*(U,V), and (U,U) =0 if and only if U =0 (where equalities are to
be interpreted as holding with probability one). The orthogonality principle
holds for very general inner product spaces, and states that, for the optimal
approximation, the approximation error is orthogonal to every elementofthe
approximating space. Specifically, defining the error as

e= Y~)°a;X,,

we must have

{X,,e) =O for all i. (5.41)

Applying it to our setting, we have Y = b[n], X, are the components of r[n],
and

e=e"r[n] —D[n].

In this setting, the orthogonality principle can be compactly stated as

0 = Efr[n]e"] = E[r[n]((r[n])"e — b*[n])] = Rep.

This completes the proof. O

Let us now give an explicit formula for the MMSEcorrelator in terms of
the model (5.24), Assuming that the symbols {b[n]} are uncorrelated, with
E[b[n]b*[m]] = of6,,,, (5.37) and (5.38) specialize to

Cymse = R7'p, where R = ofUU"+C, = 0? Doauy+C,, p=apuy.
, (5.42)

While the ultimate performance measure for any equalizeris the error proba-
bility, a useful performance measure for the linear equalizer is the signal-to-
interference ratio (SIR) at the equalizer output, given by

TH |{C, Wo) |?
SIR =———___bvvt;

orn Divo |Xe, u,)|? + c#Cye (5.43)
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Two important properties of the MMSE equalizer are as follows:

© The MMSEequalizer maximizes the SIR (5.43) amongall linear equalizers.
Since scaling the correlator does not change the SIR, any scaled multiple
of the MMSEequalizer also maximizes the SIR.

e In the limit of vanishing noise, the MMSE equalizer specializes to the ZF
equalizer.

These, and other properties, are explored in Problem 5.9.

5.6.1 Adaptive implementations

Directly computing the expression (5.42) for the MMSEcorrelator requires
knowledge of the matrix of signal vectors U, which in turn requires an explicit
channelestimate. This approach requires the use of the specific model (5.24)
for the received vectors {r[n]}, along with an explicit channel estimate for
computing the matrix U. An alternative, and more general, approach begins
with the observation that the MSE cost function (5.36) and the solution (5.38)
are based on expectations involving only the received vectors {r[n]} and
the symbol sequence {b[n]}. At the receiver, we know the received vectors
{r[n]}, and, if we have a known training sequence, we know {b[n]}. Thus,
we can compute estimates of (5.36) and (5.38) simply by replacingstatistical
expectation by empirical averages. This approach does not rely on a detailed
model for the received vectors {r[n]}, and is therefore quite general.

In the following, we derive the least squares (LS) and recursive least squares
(RLS) implementations of the MMSEcorrelator by replacingthestatistical
expectations involved in the expression (5.38) by suitable empirical averages.
An alternate approach is to employ a gradient descent on the MSE cost
function: by replacing the gradient, which involvesastatistical expectation,
by its instantaneous empirical realization, we obtain the least mean squares
(LMS)algorithm.

Training and decision-directed modes It is assumed that the symbol
sequence {b[n]} is known in the training phase of the adaptive algorithm.
Oncea correlator has been computed based on thetraining sequence,it can
be used for making symbol decisions. These symbol decisions can then be
used to further update the correlator, if necessary, in decision-directed mode,
by replacing {b[n]} by its estimates.

Least squares algorithm The LS implementation replaces the statistical
expectations in (5.38) by empirical averages computed over a block of N
received vectors, as follows:

¢ I!

2l-
1 a

P, (5.44)
LS

R=yCratiela)*, p= EOL O'npln,
Ii
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where we would typically require an initial training sequence for {b[n]} to
compute p. Just as (5.38) is the solution that minimizes the MSE (5.36), the
LSsolution (5.44) is the solution that minimizes the empirical MSE

x 1%

Empirical MSE = J(c) = W |e"r[n] ~ b[n]}?, (5.45)n=1

obtained by replacing the expectation in (5.36) by an empirical average. Note
that the normalization factors of 1/N in (5.44) and (5.45) are included to
reinforce the concept of an empirical average, but can be omitted without
affecting the final result, since scaling a cost function does not change the
optimizing solution.

Recursive least squares algorithm While the preceding empirical aver-
ages (or sums, if the normalizing factors of 1/N are omitted) are computed
over a block of N received vectors, another approach is to sum over terms
corresponding to all available received vectors {r[n]} (i.e., to use a poten-
tially infinite numberof received vectors) for computing the empirical MSE
to be optimized, ensuring convergence of the cost function by putting in
an exponential forget factor. This approach allows continual updating of the
correlator, which is useful when we wish to adaptto a time-varying channel.
The cost function evolves over time as follows:

k

Jee) = OMe*x[n] — fn], (5.46)
n=0

where 0 < A < 1 is an exponential forget factor, and c[k], the solution that
minimizes the cost function J,(c), computed based on all received vectors
{r[n],n < k}. In direct analogy with (5.38) and (5.44), we can write down
the following formula for e[k}:

elk] = (RK) ted,
; (5.47)k

RK] = aefeia), ple) = lao"[we[.
n=0 n=0

Atfirst sight, the RLS solution appears to be computationally inefficient,
requiring a matrix inversion at every iteration, in contrast to the LS solution
(5.44), which only requires one matrix inversion for the entire block of
received vectors considered. However, the preceding computations can be
simplified significantly by exploiting the special relationship between the
sequence of matrices R{k] to be inverted. Specifically, we have

R[k] = AR[k — 1] +r[k](rf{))”, (5.48)

whichsays that the new matrix equals another matrix, plus an outer product.
We can now invoke the matrix inversion lemma (see Problem 5.18 for a
proof), which handles exactly this scenario.
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Matrix inversion Lemma_[IfA is an m x m invertible conjugate symmetric
matrix, and x is an m x 1 vector, then

(A+xx4)7! =A7!_ where k= A7'x (5.49)
1+x?x’ ‘ ,

That is, if the matrix A is updated by adding the outer product of x, then
the inverse is updated by the scaled outer product of & = A-!x. Thus, the
computation of the inverse of the new matrix reducesto the simple operations
of calculation of & andits outer product.

The matrices R[k] involved in the RLS algorithms are conjugate symmetric,
and (5.48) is precisely the setting addressed by the matrix inversion lemma,
with A = AR[k—1] and x =r[k]. It is convenientto define

P[k] = (R[x). (5.50)

Applying (5.49) to (5.48), we obtain, upon simplification,the following recur-
sive formula for the required inverse:

— afore ay. FeED” oa ptr.P[k] =A (Pe 1] Vale)ema) » Where r[k] = P[k—1]r]k].
(5.51)

The vector p[k] in (5.47) is easy to compute recursively, since

plk] = Ap[A — 1] +5"[k]r[k]. (5.52)

Wecan now compute the correlator at the kth iteration as

c[k] = P[k]p[k]. (5.53)

Further algebraic manipulations of (5.53) based on (5.51) and (5.52) yield the
following recursion for the correlator sequence {e[k]}:

e*[k]F[k]
e[k] = c[k — ‘+Syopenaaa’ (5.54)

where

e[k] = blk] — (c[k — 1])*r[k] (5.55)

is the instantaneous error in tracking the desired sequence {b[k]}.

Least mean squares algorithm When deriving (5.38), we showed that the
gradient of the cost function is given by

Ver S(c) = E[r[n]((r[n])"e — b*[n])] = Re—p.

One approach to optimizing the cost function J(c), therefore, is to employ
gradient descent:

e[k] = e[k— 1] — Ves (elk — 1])

= ¢e[k—1]-E[r[n] ((r[n])"e[k— 1] -b*{n])],
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where the parameter 44 can be adapted as a function of k. The LMSalgo-
rithm is a stochastic gradient algorithm obtained by dropping thestatis-
tical expectation above, using the instantaneous value of the term being
averaged: at iteration k, the generic terms r[n], b[n] are replaced by their
current values r[k], b[k]. We can therefore write an iteration of the LMS
algorithm as

c[k] = c[k — 1] ~ wr[k] ((r[k])“c[k — 1] — b*[k]) = c[k — 1] + we*[k]r[K],

(5.56)

where e[k] is the instantaneouserror(5.55) and y is a constantthat determines
the speed of adaptation. Too high a value of yw leadsto instability, while too
small a value leads to very slow adaptation (which may be inadequate for
tracking channel time variations).

The variant of LMSthat is most commonly used in practice is the normal-
ized LMS (NLMS)algorithm. To derivethis algorithm, suppose that we scale
the received vectors {r[k]} by a factor of A (which meansthat the power of
the received signal scales by A”). Since ce”r[k] must track b[k], this implies
that ¢ must be scaled by a factor of 1/A, making ec”r[k], and hence e[k],
scale-invariant. From (5.56), we see that the update to c[k — 1] scales by wA:
for this to have the desired 1/A scaling, the constant 4 mustscale as 1/A?.
That is, the adaptation constant must scale inversely as the received power.
The NLMSalgorithm implements this as follows:

c[k] = c[k —1] + pageele (5.57)
where P[k] is adaptively updated to scale with the power of the received
signal, while y is chosento be a scale-invariant constant(typically 0 < ys < 1).
A commonchoice for P[k] is the instantaneous power P[k] = (r[k])*r[k]+a,
where @ > 0 is a small constant providing a lower bound for P[k]. Another
choice is an exponentially weighted average of (r[k])"r[k].

Our goal here was to provide a sketch of the key ideas underlying some
common adaptive algorithms. Problem 5.15 contains further exploration of
these algorithms. However, there is a huge body of knowledge regarding both
the theory and implementation of these algorithms andtheir variants, that is
beyond the scope of this book.

5.6.2 Performance analysis

The output (5.26) of a linear equalizer c can be rewritten as

Z[n] = Agbln] +) Ajb[n+i] + Win],
i#0

where Ay = (€,Up) is the amplitude of the desired symbol, A; = (ec, U;),
i # 0 are the amplitudes of the terms corresponding to the residualIS] at the
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correlator output, and W[n] is zero mean Gaussian noise with variance
v? = 0"||e||? per dimension. If there is no residual ISI (i.e, A; =0 for i
0), as for a ZF equalizer, then error probability computation is straightfor-
ward, However, the residual ISI is nonzero for both MMSEequalization and
imperfect ZF equalization. Weillustrate the methodology for computing the
probability of error in such situations for a BPSK ({b[k]} iid, £1 with
equal probability), real baseband system. Generalizations to complex-valued
constellations are straightforward. The exact error probability computation
involves conditioning on, and then averaging out, the ISI, which is compu-
tationally complex if the number of ISI terms is large. A useful Gaussian
approximation, which is easy to compute, involves approximatingtheresidual
ISI as a Gaussian random variable.

BPSK system Thebit estimate is given by
a

b[n] = sign(Z[n])

and the error probability is given by

P, = PUb[n] # O[n]].

By symmetry, we can condition on b[n] = +1, getting

P, = P[Z[n] > O|b[n] = +1].

Computation of this probability involves averaging over the distribution of
both the noise and the ISI. For the exact error probability, we condition further
on the ISI bits b; = {b,,;, i 4 O}.

Pay, = P[Z[n] > 0|b[n] = +1, b,]

= P[W[n] > (Ap +> A,b[n+i])]
140

- of ).v

Wecan now average over b,; to obtain the average error probability:

P, = E[Pap,]-

The complexity of computing the exact error probability as above is exponen-
tial in the numberofISIbits: if there are K ISIbits, then b, takes 2* different
values with equal probability under our model. An alternative approach, which
is accurate when there are a moderately large numberof residual ISI terms,
each of which takes small values, is to apply the central limit theorem to

Constellation Exhibit 2003

Page 243 of 395



Constellation Exhibit 2003
Page 244 of 395

228 Channel equalization

approximate the residual ISI as a Gaussian random variable. The variance of
this Gaussian random variable is given by

v; = var (32 4.%0+ i) =)-A?.i¢0 160

Wetherefore get the approximate model

Z[n] = Agb[n] + N(O, v7 + v”).

The corresponding approximation to the error probability is

Ao lap
P,Q|= = Q( SIR),

Ju; +2

recognizing that the SIR is given by

Ag |e, Up) |?
itv? — Vizo(e, w,) +0? |Ie] |?"

 
SIR =

5.7 Decision feedback equalization

Figure 5.10 A typical
architecture for implementing
a decision feedback equalizer.

 Complex baseband
received signal

y(t)

Wideband

analogfilter

Linear equalizers suppress ISI by projecting the received signalin a direction
orthogonal to the interference space: the ZF equalizer does this exactly, the
MMSEequalizer does this approximately, taking into account the noise-ISI
tradeoff. The resulting noise enhancement can be substantial, if the desired
signal vector componentorthogonalto the interference subspace is small. The
DFE,depicted in Figure 5.10, alleviates this problem by using feedback from
prior decisions to cancelthe interference dueto the past symbols, and linearly
suppressing only the ISI due to future symbols. Since fewer ISI vectors are
being suppressed, the noise enhancement is reduced. The price of this is
error propagation: an errorin a prior decision can cause errors in the current
decision via the decision feedback.

The DFE employs a feedforward correlator c,; to suppress the ISI due
to future symbols. This can be computed based oneither the ZF or MMSE
criteria: the corresponding DFEis called the ZF-DFE or MMSE-DFE, respec-
tively. To compute this correlator, we simply ignore ISI from the past symbols
(assuming that they will be canceled perfectly by decision feedback), and
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decisions

Feedbackfilter

rate m/T
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work with the following reduced model including only the ISI from future
symbols:

rf = b[njuy +> b[nt flu; twirl. (5.58)
j>0

The corresponding matrix of signal vectors, containing {ujo J = O} is denoted
by U;. The ZF and MMSEsolutions for cpp can be computed simply by
replacing U by U,in (5.30) and (5.42), respectively.

 Running example For the model(5.21), (5.22), (5.23) corresponding to
our running example, we have

 

 
 

G
Il OrenHe© 

Nowthat cpp is specified, let us considerits output:

cfr[n] = b[net+ {» bln + jlefsu,; + cao + ib[n — flea.Jj>0 j>o

(5.60)

By optimizing ces, for the reduced model (5.58), we have suppressed the
contribution of the term within { } above, but the set of terms on the extreme
right-hand side, which correspondsto the ISI dueto past symbols at the output
of the feedforward correlator, can be large. Decision feedback is used to
cancel these terms. Setting ¢gg[j] = —c7.u_j, J > 0, the DFE decisionstatistic
is given by

Zore[n] = cpr[a] + Yo egg [J]b[n — J]. (5.61)
j>d

Note that

Zorg[n] = D[njet.uy + | YS b[n+ jjefeu; + cilj>0

+2Gln — jf] —b[n—esa,
jro

so that the contribution of the past symbols is perfectly canceled if the
feedbackis correct,

Setting U, as the matrix with the past ISI vectors {u_},U_,,...} as
columns, we can write the feedbackfilter taps in more concise fashion as

Cry = —c4.U,, (5.62)
where we define Cry = (Cyp[K,],..-, Cpp{1])7, where K, are the number of
past symbols being fed back.
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 Running example We compute the ZF-DFE,so as to avoid dependence
on the noise variance. The feedforwardfilter is given by

Crp = U;, (UFU,) Te.

 
  

  
 

Using (5.59), we obtain

1

rr = 75 (0, 10,5, -1, 2)”.  Since there is only one past ISI vector, we obtain a single feedback tap

 
Unified notation for feedforward and feedback taps Wecan write (5.61)“a

in vector form by setting b, = ([n— K,],...,b[n—1])” as the vector of
decisions on past symbols, and ¢.3 = (Crp [K,],-.-, ¢rp[1])”, to obtain

Zpee[n] = cfrln] +cfgb, = effF[n], (5.63)
where the extreme right-handside corresponds to an interpretation of the DFE
outputas the output of a single correlator

Cer¢ =DFE ( ) ,
whoseinputis the concatenation of the received vector and the vector of past
decisions, given by

=r _ (inlrn) = (Fin)
This interpretation is useful for adaptive implementation of the DFE; for
example, by replacing r[n] by F[] in (5.44) to obtain an LS implementation
of the MMSE-DFE.

5.7.1 Performance analysis

Computing the exact error probability for the DFE is difficult because of
the error propagation it incurs. However, we can get a quick idea of its
performancebasedon the following observations aboutits behavior for typical
channels. When ail the feedback symbols are correct, then the probability
of error equals that of the linear equalizer Crr for the reduced model (5.58),
since the past ISI is perfectly canceled out. This error probability, P.rr,
can be exactly computed or estimated using the techniques of Section 5.6.2.
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Starting from correct feedback, if an error does occur, then it initiates an
error propagation event. The error propagation event terminates when the
feedback again becomescorrect(i.e., when there are Leg consecutive correct
decisions, where Ly, is the numberof feedback taps). The numberof symbols
for which an error propagation event lasts T,, and the number of symbol
errors N, incurred during an error propagation event, are random variables
whose distributions are difficult to characterize. However, the number of
symbols between two successive error propagation events is much easier to
characterize. When the feedbackis correct, if we model the effect of residual
ISI and noise for the reduced model (5.58) as independent from symbol to
symbol (an excellent approximation in most cases), then symbol errors occur
independently. That is, the time T, between error propagation events is well
modeled as a geometric random variable with parameter P,gp:

PIT, = k] = Perr(1 — Pore),

with mean E[T,] = 1/P,:¢. We can now estimatethe error probability of the
DFEas the average numberoferrors in an error propagation event, divided
by the average length of the error-free and error propagation periods:

P.pre =aTx E[N.|Pere (5.64)
noting that the average length of an error propagationevent, E[T,] is typically
muchshorter than the average length of an error-free period, E[T,] © 1/P.re
The average number of errors E[N,] for an error propagation event can be
estimated by simulations in which we inject an error and let it propagate
(which is more efficient than directly simulating DFE performance,especially
for moderately high SNR).

The estimate (5.64) allows us to draw important qualitative conclusions
about DFE performance relative to the performance of a linear equalizer.
Since E[N,] is typically quite small, the decay of error probability with SNR
is governed by the term P,pe. Thus, the gain in performance of a DFE over
a linear equalizer can be quickly estimated by simply comparing the error
probability, for linear equalization, of the reduced system (5.58) with that for
the original system. In particular, comparing the ZF-DFE and the ZFlinear
equalizer, the difference in noise enhancement for the reduced and original
systems is the dominant factor determining performance.

5.8 Performance analysis of MLSE 

Wenow discuss performance analysis of MLSE. This is important not only
for understanding the impact of ISI, but the ideas presented here also apply
to analysis of the Viterbi algorithm in other settings, such as ML decoding of
convolutional codes.
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5.8.1 Union bound

Channel equalization

For concreteness, we consider the continuous-time system model

y(t) =D) b[n]p(t—nT) + n(0), (5.65)nN

where n is WGN. Wealsorestrict attention to real-valued signals and BPSK
modulation, so that b[n] e {—1, +1}.

Notation change To avoid carrying around complicated subscripts, we write
the noiseless received signal correspondingto the sequenceb as s(b), dropping
the time index. This is the same signal denoted earlier by s,:

s(b) = s, = }° b[n]p(t—n7), (5.66)

so that the received signal, conditioned on b beingsent, is given by

y=s(b) +n.

Note that this model also applies to the whitened discrete-time model (5.17)
in Section 5.4.1, with s(b) = {°%_y f[n]b[k — n] : k integer}. The analysis
is based on the basic results for M-ary signaling in AWGN developed in
Chapter 3, which applies to both continuous-time anddiscrete-time systems.

Let A(b) denote the log likelihood function being optimizedbythe Viterbi
algorithm, and let L denote the channel memory. As before, the state at time
n is denoted by s[n] = (b[n—L],..., b[n —1]). Let byq, denote the MLSE
output. We want to estimate

P.(k) = PLB[k] # BLK],

the probability of error in the kth bit.

Wefirst need the notion of an error sequence.

Definition 5.8.1 (Error sequence) The error sequence corresponding to an
estimate b and transmitted sequence b is defined as

b—b
e= (5.67)

so that

b=b+2e. (5.68)

For BPSK, the elements of e = {e[n]} take values in {0, —1, +1}. It is also
easy to verify the following consistency condition.

Consistency condition If e[n] £0 (i.e., b, 4 b[n]), then e[n] = dfn].
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Definition 5.8.2 (Valid error sequence) An error sequencee is validfor a
transmitted sequencebifthe consistency conditionis satisfiedfor all elements
of the error sequence.

The probability that a given error sequenceeis valid for a randomly selected
sequence b is

Pie is valid for b] = 27”), (5.69)

where w(e) denotes the weightofe(i.e., the number of nonzero elements
in e). This is because, for any nonzero elementof e, say e[n] 40, we have
P[b[n] = e[n]] = 1/2.

We can now derive a union bound for P,(&) by summing over all error
sequences that could cause anerror in bit b[k]. The set of such sequencesis
denoted by E, = {e : e[k] 4 0}. Since there are too many such sequences, we
tighten it using an “intelligent” union bound which sumsover an appropriate
subset of E,.

The exact error probability is given by summing over EF,as follows:

P(k= OP [b-+2e = bya le valid for b| Plevalid for b]
ek,

> P [Aw +2e) = arg max A(a)|e valid for b| 2-¥),
e€ Ek,

Wecan now boundthis as we did for M-ary signaling by noting that

P[A(b +2e)
ll

arg max A(a)|e valid for b|a

lA P[A(b+2e) > A(b)le valid for b]. (5.70)

The probability on the right-hand side above is simply the pairwise error
probability for binary hypothesis testing between y = s(b + 2e) +n versus
y = s(b) +2, which we know to be

Is(b-+26) ~ s()(a)
It is easy to see, from (5.66), that

s(b + 2e) — s(b) = 2s(e),

so that the pairwise error probability becomes

PLA(b + 2e) > A(b)e valid for b] = (Se) . (5.71)
Combining (5.70) and (5.71), we obtain the union bound

P< o(BOM), (5.72)
e€k, o

We now want to prune the terms in (5.72) to obtain an “intelligent union
bound.” To dothis, consider Figure 5.11, which showsa simplified schematic
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m ok n Transmitted sequence b
(all-zero error sequence)

A

ML sequenceb (error sequence e has nonzero entryat position k)

m k n Transmitted sequence b

\ 7 (all-zero error sequence)
Simple error sequence 6
(coincides with ML sequence between mand n,
and with transmitted sequence elsewhere)

Figure 5.11 Correct path and MLSE output as paths on the error sequencetrellis. The correct path
correspondsto theall-zero error sequence.In the scenario depicted, the MLSE output makes an error
in bit b[A]. 1 also show the simple error sequence, which coincides with the MLSE output whereit
diverges from the correct path around bit b[k], and coincides with the correct path elsewhere.

of the ML sequence b and the true sequence b as paths throughatrellis.
Instead of considering a trellis corresponding to the symbol sequence(as in
the development of the Viterbi algorithm), it is now convenient to consider
a trellis in which a symbol sequence is represented by its error sequence
relative to the transmitted sequence. Thistrellis has 3“ states at each time, and
the transmitted sequence correspondsto the all-zero path. Two pathsin the
trellis merge when 1 successive symbols for the path are the same. Thus, a
path in our error sequencetrellis merges with the all-zero path corresponding
to the transmitted sequence if there are L consecutive zeros in the error

sequence. In the figure, the ML sequenceis in E,, and is shown to diverge
and remerge with the transmitted sequence in several segments. Consider
now the error sequence @, which coincides with the segment of the ML
sequence which diverges from the true sequence around the bit of interest,
b[k], and coincides with the true sequence otherwise. Such a sequencehas the
property that, once it remerges with the all-zero path, it never diverges again.
We call such sequences simple error sequences, and characterize them as
follows.

Definition 5.8.3 (Simple error sequence) An error sequence e is simple
if there are no more than L—1 zeros between any two successive nonzero
entries, The set of simple error sequences with e[k] #0 is denoted by S,.

Wenowstate and provethat the union bound(5.72) can be prunedto include
only simple error sequences.

Proposition 5.8.1 (Intelligent union bound using simple error sequences)
The probability of bit error is bounded as

P< 3 OQ Ga) Qe), (5.73)
eb oc
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Proof Consider the scenario depicted in Figure 5.11. Since the ML sequence
and the true sequence have the samestate at times m and n, bytheprinciple
of optimality, the sum of the branch metrics between times m and n must be

strictly greater for the ML path. That is, denoting the sum of branch metrics
from m to nas A,,,, we have

Ain(B) > Amn (b). (5.74)

The sequence b corresponding to the simpler error sequencesatisfies

Ann(b) = Amn(b) (5.75)

by construction, since it coincides with the ML sequence b from m to n.
Further, since b coincides with the true sequence b prior to m and after n,
we have, from (5.74) and (5.75)

M(B) — A(b) = An.n(B) — Amn (b) > 0.

This shows that, for any e< E,, if b = b+2e is the ML estimate, then there
exists €¢ S$, such that

A(b +28) > A(b).

This implies that

PUK) = Deeg? [:A(b+2e) = arg max A(a)}e valid for b| 2-H)
< Vics, PIA(b +2e) > A(b)|e valid for b]2-,

which proves the desired result upon using (5.71). O

We now consider methods for computing (5.73). To this end, wefirst rec-
ognize that there is nothing special about the bit k whose error probability
we are computing. For any times k and /, an error sequence e in S, has a
one-to-one correspondence with a unique error sequence e’ in S, obtained by
time-shifting e by ]—k. To enumerate the error sequences in S, efficiently,
therefore, we introduce the notion of error event.

Definition 5.8.4 (Error event) An error event is a simple error sequence
whose first nonzero entry is at a fixed time, say at 0. The set of error events
is denoted by E.

For L = 2, two examples of error events are

e, = (£1,0,0,0,...),  e = (+1,0,+1,0,+1,0,0,...).

On the other hand, e; = (+1,0,0,+1,0,0,...) is not an error event, since
it is not a simple error sequence for L = 2.

Note that e, can be time-shifted so as to line up its nonzero entry with bit
b[k], thus creating a simple error sequence in S,. On the other hand, e, can be
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time-shifted in three different ways, correspondingtoits three nonzeroentries,
to line up with bit b[4]; it can therefore generate three distinct members of Sy.
In general, an error event of weight w(e) can generate w(e) distinct elements
in S,. Clearly, all members of S, can be generated in this fashion using error
events. We can therefore express the bound (5.73) in terms of error events as
follows:

e

P.(k) < 35 @ (He) w(e)2-®, (5.76)
ecé a

where the contribution of a given error event e is scaled by its weight, w(e)
corresponding to the numberof simple error sequencesin S, it represents.

High SNR asymptotics The high SNR asymptotics ofthe error probability
are determined by the term in the union bound that decays most slowly as
the SNR gets large. This corresponds to the smallest Q-function argument,
which is determined by

Emin = Ming ¢ ¢ ||s(€)||. (5.77)

Proceeding as in the developmentof the Viterbi algorithm, and specializing
to real signals, we have

n-l

IIs(e)I? = DUTALO]e"[n]+2e[n] 7 h[n—me[m]] =o A(s{n] > s[n+1)),
n m=n—-L ”

(5.78)

where s[n] = (e,_1,-.-, e[n —1]) is the state in the error sequencetrellis, and
where the branch metric is implicitly defined above. We can now use the
Viterbi algorithm on the error sequencetrellis to compute €2,,. We therefore
have the high SNR asymptotics

 

P,~ ex (-) o>0e Pp 202 > .

Compare this with the performance without ISI. This correspondsto the error
sequence e, = (+1,0,0,...), which gives

IIs(e:)I? = lel? = A[0}. (5-79)

Asymptotic efficiency The asymptotic efficiency of MLSE, relative to a
system with no ISI, can be defined as the ratio of the error exponents of the
error probability in the two cases, given by

—logP,(MLSE) _ min, ¢¢ |[s(e)||? _&_ 1i = = min .1 gs0 —log P,(no ISI) lis(e, 112 A{0] (5:80)
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Even for systems operating at low to moderate SNR,the preceding high
SNR asymptotics of MLSE shed some light on the structure of the memory
imposed by the channel, analogous to the concept of minimum distance in
understanding the structure of a signaling set.

Example 5.8.1 (Channels with unit memory) For L = 1, error events
must only have consecutive nonzero entries (no more than L—1 zeros
between successive nonzeroentries). For an error event of weight w, show
that

[Is(€) linin = Wh[O] ~ 2]A[1]](w— 1) = ALO] + (w— 1)(hfO] — 2|A[1])).
(5.81)

Weinfer from this, letting w get large, that

2|h[1]| < AO]. (5.82)

Note that this is a stronger result than that which can be obtained by the
Cauchy—-Schwartz inequality, which only implies that |A[1]| < A[0]. We
also infer from (5.82) that the minimum in (5.81) is achieved for w = 1.
Thatis, €2;, = h[0], so that, from (5.80), we see that the asymptotic effi-
ciency 7 = 1. Thus, we have shown that, for L = 1, there is no asymptotic
penalty due to ISI as long as optimal detection is employed.

Computation of union bound Usually, the bound (5.76) is truncated after
a certain numberof terms, exploiting the rapid decay of the Q function. The
error sequencetrellis can be used to compute the energies ||s(e)||? using
(5.78). Next, we discuss an alternative approach, which leads to the transfer
function bound.

5.8.2 Transfer function bound

The transfer function boundincludes ail termsofthe intelligent union bound,
rather than truncating it at a finite number of terms. There are twosteps to
computing this bound:first, represent each error event as a path inastate
diagram, beginning and ending at the all-zero state; second, replace the Q
function by an upper bound which can be evaluated as a product of branch
gains as we traverse the state diagram. Specifically, we employ the upper
bound
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which yields

1 iIs¢e)|[? —w(€Pio< 2 Do(4S) w(e)2-), (5.83)
From (5.78), we see that ||s(e)||? can be computed as the sum of additive
metrics as we go from state to state in an error sequencetrellis. Instead
of a trellis, we can consider a state diagram that starts from the all-zero
state, contains 3 — 1 nonzero states, and then endsat theall-zero state: an
error event is a specific path from the all-zero start state to the all-zero end

state. The idea now is to associate a branch gain with eachstate transition,
and to compute the net transfer function from the all-zero start state to

the all-zero end state, thus summing over all possible error events. By an
appropriate choice of the branch gains, we show that the bound (5.83) can
be computed as a function of such a transfer function. Weillustrate this for
L=1 below.

Example 5.8.2 (Transfer function bound for L=1) For L=1, (5.78)
specializes to

iIs(e)|[? = STAlO}e[n] + 2h[1]e[nJe[n — 1].

  
  We can therefore rewrite (5.83) as

  1 -letn h[O]e?[n] + 2A[1]e[nJe[n — 1]P, < 3 2OTT? lel exp(eeerat).  If it were not for the term w(e) inside the summation, the preceding
function could be written as the sum of products of branch gains in
the state transition diagram. To handle the offending term, we introduce
a dummy variable, and consider the following transfer function, which
can be computed as a sum of products of branch gains using a state
diagram:

T(X) = »e ce xve) I] 9-lelA]| exp (-
xy en h[O]e?[n] + 2h[ 1 ]e[nJe[n — 1=Yyeel(F) exp (—“Otnein—2).

 

  

  h[O]e*[n] + 2h[1]e[nJe[n — +)207  
  (5.84)

  Differentiating (5.84) with respect to X, we see that (5.83) can be rewrit-
ten as  

  paiS53 ap TOlear (5.85)  
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Wecan nowlabel the state diagram for L = 1 with branch gainsspecified
as in (5.84): the result is shown in Figure 5.12, with

dy = exp (-#9) ,
ay = exp (~42H)
dy = exp (-nist) .

A systematic way to compute the transfer function from theall-zerostart
state A to the all-zero end state D is to solve simultaneous equations that
relate the transfer functions from the start state to all other states. For

example, any path from A to D is a path from A to B, plus the branch
BD,or a path from A to C, plus the branch CD. This gives

Tap(X) = Th (X) Ppp + Tyc(X)bep,

’

where bgp = 1 and bop = | are the branch gains from B to D and C to D,
respectively. Similarly, we obtain

Tap (X) = Tyg (X)Dap + Tap (X) Opp + Tacl(X)be,

Tyo (X) = Tag (X) bac + Tap(X) dpc + Tac(X) bec:

Plugging in the branch gains from Figure 5.12, and the initial condition
Ta, (X) = 1, we obtain the simultaneous equations

Typ(X) = Tap(X) + Tac(X),

Tap (X) = Ay % +4; ¥ Typ (X) + a)¥ Tac(X), (5.86)

Ty¢(X) = aye + Ay * Tan (X) + ay ¥Txc(X),
which can be solved to obtain that

AyX

1— 5 (4, +4,)X°
T(X) = Tap (X) = (5.87)

Figure 5.12 State transition
diagram for L = 1.
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Substituting into (5.85), we obtain

A{0]p< $Ap _ exp (-#1)
e— _ i 2 — 2°

[1—5(a,+4))] [1-3 (exp (- Holi) texp(- Hora))]
We can infer from (5.82) that the denominator is bounded away from
zero as o” —> 0, so that the high SNR asymptotics ofthe transfer function
bound are given by exp(—(h[0])/(207)). This is the same conclusion that
wearrived at earlier using the dominant term of the union bound.
 

The computation of the transfer function bound for L > 1 is entirely similar
to that for the preceding example, with the transfer function defined as

le[n|

1(X) = >i(3) B(s{n] > s{n+1),eGén

where

B(s[n] > s[n+ 1] =exp (- 202

The bound (5.85) applies in this general case as well, and the simultaneous
equationsrelating the transfer function from the all-zero start state to all other

states can be written down and solved as before. However, solving for T(X)
as a function of X can be difficult for large L. An alternative strategy is to
approximate (5.85) numerically as

p< 17(1+6)—7(1)
°=9 fs) ,

where 6 > 0 is small. Simultaneous equations such as (5.86) can now be
solved numerically for X = 1+6 and X = 1, which is simpler than solving
algebraically for the function T(X).

h[O]e?[n] + 2e[n] "7! h[n — mien)

5.9 Numerical comparison of equalization techniques

To illustrate the performance ofthe equalization schemes discussed here, let
us consider a numerical example for a somewhat more elaborate channel

model than in our running example. Consider a rectangular transmit pulse
81x(t) = Tjo,(4) and a channel impulse response given by go(t) = 28(t —
0.5) — 36(¢ — 2)/4+j6(t — 2.25). The impulse response of the cascade of
the transmit pulse and channelfilter is denoted by p(#) and is displayed in
Figure 5.13. Over this channel, we transmit Gray coded QPSK symbols taking
values bin] € {1+j,1—j, -1—j, -1+ J} at a rate of 1 symbolperunit time.
Atthe receiver front end, we use the optimal matchedfilter, ggx(t) = p*(—2).

It can be checked that the channel memory L = 2, so that MLSE requires
4° = 16 states. For a linear equalizer, suppose that we use an observation
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Figure 5.13 The received

pulse p() formed by the
cascade of the transmit and
channelfilters.

Figure 5.14 Numerical
comparison of the
performance of various

equalizers.

5.9 Numerical comparison of equalization techniques

—— Real component
— — Imaginary component

 
interval that exactly spans the impulse response {h[n]} for the desired symbol:
this is of length 2L+1 = 5.It can be seen that the ZF equalizer does notexist,
and that the LMMSEequalizer will have an error floor due to unsuppressed
ISI. The ZF-DFE and MMSE-DFEcan be computed as described in thetext:
the DFE has four feedback taps, corresponding to the four “past” ISI vectors.
A comparison of the performance ofall of the equalizers, obtained by aver-
aging over multiple 500 symbol packets, is shown in Figure 5.14. Note that
MLSEperformance is almost indistinguishable from ISI-free performance.
The MMSE-DFEis the best suboptimal equalizer, about 2dB away from

10°

1071 be

ISI-FREE

10°%— OPSK

104

Probabilityofbiterror(logscale)
 

 
1 -50 0
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5.10 Further reading

Channel equalization

MLSEperformance. The LMMSEperformanceexhibits an error floor, since
it does not have enough dimensionsto suppressall of the ISI as the SNR gets
large. The ZF performanceis particularly poor here: the linear ZF equalizer
does not exist, and the ZF-DFE performs more poorly than even the linear
MMSEequalizer over a wide range of SNR.

The treatment of MLSE in this chapter is based on someclassic papers
that are still recommended reading. The MLSE formulation followed here
is that of Ungerboeck [27], while the alternative whitening-based approach
was proposedearlier by Forney [28]. Forney was also responsible for naming
and popularizing the Viterbi algorithm in his paper [29]. The sharpest known
performance bounds for MLSE(sharper than the ones developed here) are
in the paper by Verdu [30]. The geometric approach to finite-complexity
equalization, in which the ISI is expressed as interference vectors, is adapted
from the author’s own work on multiuser detection [31,32], based on the
analogy between intersymbol interference and multiuser interference. For

example, the formulation of the LMMSEequalizer is exactly analogousto the
MMSEinterference suppression receiver described in [31]. It is worth noting
that a geometric approach wasfirst suggested for infinite-length equalizers in
a classic two-part paper by Messerschmitt [33], which is still recommended
reading. A number of papers have addressed the problem of analyzing DFE
performance,the key difficulty in which lies in characterizing the phenomenon
of error propagation; see [34] and the references therein.

Discussionsonthe benefits of fractionally spaced equalization can be found
in [35]. Detailed discussion of adaptive algorithms for equalization is found
in the books by Haykin [36] and Honig and Messerschmitt [37].

While we discuss three broad classes of equalizers, linear, DFE, and
MLSE, manyvariations have been exploredin the literature, and we mention
a few below. Hybrid equalizers employing MLSEwith decision feedback can
be used to reduce complexity, as pointed out in [38]. The performance of the
DFE can be enhanced by running it in both directions and then arbitrating the
results [39]. For long, sparse, channels, the number of equalizer taps can be
constrained, but their location optimized [40]. A method for alleviating error
propagation in a DFE by using parallelism, and a high-rate error correction
code, is proposed in [41].

While the material in this chapter, and in the preceding references,
discusses broad principles of channel equalization, creative modifications are
required in order to apply these ideas to specific contexts such as wireless
channels (e.g., handling time variations due to mobility), magnetic record-
ing channels (e.g., handling runlength constraints), and optical communi-
cation channels (e.g., handling nonlinearities). We do not attempt to give
specific citations from the vastliterature on these topics.
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5.11 Problems

5.11.1 MLSE

5.11 Problems

Problem 5.1 Consider a digitally modulated system using QPSKsignaling
at bit rate 2/T, and with transmit filter, channel, and receive filter specified
as follows:

1 T

&rx(t) = No.3) — {2.73 &c(t) = 8(t) — zoe 5) Sex(t) = Tio, F):
Let z[k] denote the receivefilter output sample at time kT,+7, where T, is
a sampling interval to be chosen.

(a) Show that ML sequence detection using the samples {z[k]} is possible,
given an appropriate choice of T, and 7. Specify the corresponding choice
of T, and 7.

(b) How manystates are neededin thetrellis for implementing ML sequence
detection using the Viterbi algorithm?

Problem 5.2 Consider the transmit pulse g7x(¢) = sinc(+)sinc(;¢), which
is Nyquist at symbol rate 1/T.

(a) If gry(f) is used for Nyquist signaling using 8-PSK at 6 Mbit/s, whatis
the minimum required channel bandwidth?

(b) For the setting in (a), suppose that the complex baseband channel has
impulse response g¢(t) = 6(¢—0.5T) —56(¢-1.5T)+48-25T).
What is the minimum numberofstates in the trellis for MLSE using the
Viterbi algorithm?

Problem 5.3 (MLSE performance analysis) For BPSK +1 signaling in
the standard MLSEsetting, suppose that the channel memory L = 1, with
ho = 1, h, = —0.3.

(a) What is the maximum pairwise error probability, as a function of the
received E/N, for two bit sequences that differ only in the first two
bits? Express your answerin terms of the Q function.

(b) Plot the transfer function bound(log scale) as a function of E,/No (dB).
Also plot the error probability of BPSK without ISI for comparison.

Problem 5.4 Consider a received signal of the form y(t) = >), b{l]p(t—
IT) +n(t), where b[/] € {—1, 1}, n(t) is AWGN,and p(¢) has Fourier trans-
form given by

i
cosmfT |f|< 57,

PA) = 0 else. (5.88)
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(a) Is p a Nyquist pulse for signaling at rate 1/T?
(b) Suppose that the receive filter is an ideal lowpass filter with transfer

function

_f1 WflsyCax) = {4 else. " (6.89)
Note that Gay is not the matched filter for P. Let r(t) = (y * gpx)(t)
denote the output of the receive filter, and define the samples r{J] =
r(IT, — 7). Show that it is possible to implement MLSE based on the
original continuous-time signal y(t) using only the samples {r{J]}, and
specify a choice of T, and 7 that makesthis possible.

(c) Drawatrellis for implementing MLSE,and find an appropriate branch
metric assuming that the Viterbi algorithm searches for a minimum weight
path throughthetrellis.

(d) Whatis the asymptoticefficiency(relative to the ISI-free case) of MLSE?
(e) Whatis the asymptotic efficiency of one-shot detection (which ignores

the presence of ISI)?

(f) For E,/Ny of 10dB, evaluate the exact error probability of one-shot
detection (condition on the ISI bits, and then remove the conditioning)
and the transfer function bound on the error probability of MLSE, and
compare with the ISI-free error probability benchmark.

Problem 5.5 (Noise samples at the output ofa filter) Consider complex
WGN n(Z) with PSD o? per dimension, passed through a filter g(t) and
sampled at rate 1/(T,). The samples are given by

Mk] = (n*g)(KT,).

(a) Show that {N[k]} is a stationary proper complex Gaussian random process
with zero mean and autocorrelation function

Ryl!] = E[MKIN*[k — 1] = 07 [0],
where

rll] = / e(t)g*(t —IT,)dt
is the sampled autocorrelation function of g(t).

(b) Show that {7,[/]} and {Ry[J]} are conjugate symmetric,
(c) Define the PSD of N asthe z-transform

Sy(2)= SD Ryle"
k=-0

(setting z =e" yields the discrete-time Fourier transform). Show that
Siy(z) = Sk(z* — 1).

(d) Concludethat, if zy is a root of Sy(z), then so is 1 /%.
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(e) Assuming a finite numberof roots {a,} inside the unit circle, show that

Sy(z) = ATG — 4,27")— ajz),
k

where A is a constant. Note that the factors (1 — a,z~!) are causal and
causally invertible for |a,| < 1.

(f) Show that {N[k]} can be generated by passing discrete-time WGN through
a causalfilter (this is useful for simulating colored noise).

(g) Show that {N[k]} can be whitened by passing it through an anticausal
filter (this is useful for algorithms predicated on white noise).

Problem 5.6 (MLSE simulation) We would like to develop a model
for simulating the symbol rate sampled matched filter outputs for linear
modulation through a dispersive channel. That is, we wish to generate the
samples z[k] = (y * Py) (KT) for y() = +, b[n]pC — nT) +n(d), where n is
complex WGN.

(a) Show that the signal contribution to z[k] can be written as

z[k] = >- b[n]h[k —n] = (b* A) [kK],

where A[l] = (p * Pup) (IT) as before.
(b) Show that the noise contribution to z[k] is a WSS, proper com-

plex Gaussian random process {z,[k]} with zero mean and covariance
function

C,, [A] = Elz, [0]ze [0 — ky] = 207A[k].

For real-valued symbols,signals and noise, h[k] are real, and

C.,.[k] = Elz, [z,{1 — k]] = o7h[A].<n

(c) Now,specialize to the running example in Figure 5.1, with BPSK signal-
ing (b[n] ¢ {-—1, +1}). We can nowrestrict y, p and n to bereal-valued.
Show thatthe results of (a) specialize to

elk) = 5 2LK) ~ 5 (Ok 1+ of+1).
Show thatthe results of (b) specialize to

8,(2) =0? G -5+2") ;
where the PSD S,(z) =), C,,[k]z™is the z-transform of C,[k].

Constellation Exhibit 2003

Page 261 of 395



Constellation Exhibit 2003
Page 262 of 395

246 Channel equalization

(d) Suppose that {w[k]} are iid. N(O, 1) random variables. Show thatthis
discrete-time WGN sequencecan befiltered to generate z,[k]} as follows:

z[k]= g[O}w[k]+ g[1]w[k — 1].

Findthe coefficients g[0] and g[1] such thatz,,[k] has statistics as specified
in (c).

Hint Factorize S,(z) = (a+ bz)(a* + b*z7') by finding the roots, and use one of
the factors to specify the filter.

(e) Use these results to simulate the performance of MLSE for the running
example. Compare the resulting BER with that obtained using the transfer
function bound.

Problem 5.7 (Alternative MLSE formulation for running example) In
Problem 5.6,it is shown that the MF output for the running examplesatisfies:

z[k] = z,[k] +z,[k],

where z,[k] = 3b[k] ~ 3 (b[k—1] + 5[k+1]), and {z,[k]} is zero mean colored
Gaussian noise with PSD S,(z) = ($-—$(z+z7')) (set o? = 1 for con-
venience, absorbing the effect of SNR into the energies of the symbol stream
{b[k]}). In Problem 5.6, we factorized this PSD in orderto be able to simulate
colored noise by putting white noise through a filter. Now, we use the same
factorization to whiten the noise to get an alternative MLSE formulation.

(a) Show that S,(z) = A(1+az7!)(1+<a*z), where |a| < 1 and A > 0. Note
that the first factor is causal (and causally invertible), and the second is
anticausal (and anticausally invertible).

(b) Define a whitening filter Q(z) = 1/(/A(1+a*z)). Observethat the corre-
sponding impulse response is anticausal. Show that {z,[k]} passed through
the filter Q yields discrete-time WGN.

(c) Show that {z,[k]} passed through thefilter Q yields the symbol sequence
{b[k]} convolved with A(1 +az7').

(d) Conclude that passing the matchedfilter output {z[k]} through the whiten-
ing filter Q yields a new sequence {y[k]} obeying the following model

yk] = VA(b[k] + ab[k — 1]) + wk],

where w[k] ~ N(0,1) are i.i.d. WGN samples. This is an example ofthe
alternative whitened model (5.17).

(e) Is there any information loss due to the whitening transformation?

Problem 5.8 For our running example, how does the model (5.21) change
if the sampling times at the output of the receivefilter are shifted by 1/2?
(Assumethat westill use a block of five samples for each symbol decision.)
Pind a ZF solution and compute its noise enhancement in dB. How sensitive
is the performance tothe offset in sampling times?
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Remark The purposeofthis problem is to show the relative insensitivity of
the performanceof fractionally spaced equalization to sampling timeoffsets.

Problem 5.9 (Properties of linear MMSE reception) Prove each of
the following results regarding the linear MMSEcorrelator specified by
(5.37)45.38). For simplicity, restrict attention to real-valued signals and
noise and +1 BPSK symbols in yourproofs.

(a) The MMSEis given by

MMSE = 1 — p’Ghmse = 1—p?R7'p.

(b) For the model (5.25), the MMSEreceiver maximizes the SIR as defined
in (5.43).

Hint Consider the problem of maximizing SIR subject to (c, ug) = a@. Show that the
achieved maximum SIR is independent of a. Now choose @ = (Caymses Ug)-

(c) Show that the SIR attained by the MMSEcorrelator is given by
1

STRinax = MMSE _ 1,
where the MMSEis given by (a).

(d) Suppose that the noise covariance is given by C, = o7I, and that the
desired vector Uy is linearly independent of the interference vectors
{u,;, j #0}. Prove that the MMSEsolution tendsto the zero-forcing solu-
tion as 0? — 0. That is, show that

{e, Up) > 1,
{c,u;)>0, j=2,...,K.

Hint Showthat a correlator satisfying the preceding limits asymptotically (as 0? >
0) satisfies the necessary and sufficient condition characterizing the MMSEsolution.

(e) For the model (5.24), show that a linear correlator ¢ maximizing ¢7Uo,
subject to c7Re = 1, is proportional to the LMMSEcorrelator.

Hint Write down the Lagrangian for the given constrained optimization problem,
and use the fact that p in (5.37)-(5.38) is proportional to ug for the model (5.24).

Remark The correlator in (e) is termed the constrained minimum output
energy (CMOE)detector, and has been studied in detail in the context of
linear multiuser detection.

Problem 5.10 The discrete-time end-to-end impulse response for a lin-
early modulated system sampled at three times the symbol rate is ...,0,
1, 11 +2j, $,0,-2,4, 22, +20, .... Assumethat the noise at the
output of the sampler is discrete-time AWGN.
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(a) Find a length 9 ZF equalizer where the desired signal vector is exactly
aligned with the observation interval. What is the noise enhancement?

(b) Express the channel as three parallel symbol rate channels {H,(z), i=
1, 2,3}. Show that the equalizer you foundsatisfies a relation of the form
Yh A)Gz) = <4, specifying {G,(z), i= 1,2, 3} and d.

(c) If you were using a rectangular 16-QAM alphabet over this channel,
estimate the symbolerrorrate and the BER (with Gray coding) at E,/No
of 15 dB.

(d) Plot the noise enhancement in dB as you vary the equalizer length
between 9 and 18, keeping the desired signal vector in the “middle” of
the observation interval (this does not uniquely specify the equalizers in
all cases). As a receiver designer, which length would you choose?

Problem 5.11 Considerthe setting of Problem 5.10. Answerthe following
questions for a linear MMSEequalizer of length 9, where the desired sig-
nal vector is exactly aligned with the observation interval. Assume that the

modulation format is rectangular 16-QAM.Fix E,/No at 15 dB.

(a) Find the coefficients ofthe MMSEequalizer, assumingthatthe desired sym-
bol sequencebeing tracked is normalized to unit average energy (7 = 1).

(b) Generate and plot a histogram of the I and Q components ofthe residual
ISI at the equalizer output. Does the histogram look zero mean Gaussian?

(c) Use a Gaussian approximationfor the residual ISI to estimate the symbol
error rate and the BER (with Gray coding) at the outputof the equalizer.
Comparethe performancewith that of the ZF equalizer in Problem 5.10(c).

(d) Compute the normalized inner product between the MMSEcorrelator,
and the corresponding ZF equalizer in Problem 5.10. Repeat at E,/No of
5 dB and at 25 dB, and comment ontheresults.

Problem 5.12 Consider again the setting of Problem 5.10. Answerthe fol-
lowing questions for a DFE in which the feedforwardfilter is of length 9, with
the desired signal vector exactly aligned with the observation interval. Assume
that the modulation formatis rectangular 16-QAM.Fix E,/No at 15dB.

(a) How many feedbacktaps are neededto canceloutthe effectofall “past”
symbolsfalling into the observation interval?

(b) For a numberof feedback taps as in (a), find the coefficients of the feed-
forward and feedbackfilters for a ZF-DFE.

(c) Repeat (b) for an MMSE-DFE.
(d) Estimate the expected performance improvementin dB forthe DFE,relative

to the linear equalizers in Problems 5.10 and 5.11. Assume moderately high
SNR,and ignore error propagation.

Problem 5.13 Consider the channel of Problem 5.10, interpreted as three
parallel symbol-spaced subchannels, with received samples {r,[n]} for the ith
subchannel, i= 1,2, 3. We wish to perform MLSE for a QPSK alphabet.
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(a) What is the minimum numberofstates required in the trellis?
(b) Specify the form of the additive metric to be used.

Problem 5.14 (Computer simulations of equalizer performance) For the
channel model in Problem 5.10, suppose that we use a QPSK alphabet with
Gray coding. Assume that we send 500 byte packets (i.e., 4000 bits per
packet). Estimate the BER incurred by averaging within and across packets
for the linear MMSE and MMSE-DFE,for a range of error probabilities
1071-1074.

(a) Plot the BER (log scale) versus E,/Np (dB). Provide for comparison the
BERcurve without ISI.

(b) From a comparison of the curves, estimate the approximate degradation
in dB due to ISI at BER of 10~?. Can this be predicted by computing
the noise enhancement for the corresponding ZF and ZF-DFE equalizers
(e.g., using the results from Problems 5.10 and 5.12)?

Problem 5.15 (Computer simulations of adaptive equalization) Consider
the packetized system of Problem 5.14. Suppose that the first 100 symbols of
every packet are arandomly generated, but known,training sequence.

(a) Implement the normalized LMS algorithm (5.57) with w = 0.5, and
plot the MSEas a function of the numberof iterations. (Continue run-
ning the equalizer in decision-directed mode after the training sequence
is over.)

(b) Simulate over multiple packets to estimate the BER asa function of E,/No
(dB). Compare with the results in Problem 5.14 and commenton the degra-
dation due to the adaptive implementation.

(c) Implementa block least squares equalizer based on the training sequence
alone. Estimate the BER and comparewiththeresults in Problem 5.14. Does
it work better or worse than NLMS?

(d) Implement the RLS algorithm, using both training and decision-directed
modes. Plot the MSEas a function of the numberofiterations.

(c) Plot the BER as a function of E,/Npy of the RLS implementation, and
compare it with the otherresults.

Problem 5.16 (BER for linear equalizers) The decision statistic at the
output of a linear equalizer is given by

yln] = b[n] +0.1b[n — 1] — 0.05b[n—2] —0.1b[n + 1] -0.05b[n +2] + wfnl,
where {b[k]} are independentand identically distributed symbols taking values
£1 with equal probability, and {w[k]} is real WGN with zero mean and
variance 0”. The decision rule employedis

b[n] = sign(y[n]).
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(a) Find a numerical value for the following limit:

lim o*log P(b, # b,).o?>0

(b) Find the approximateerror probability for 7? =0.16, modeling the sum of
the ISI and the noise contributions to y[n] as a Gaussian random variable.

(c) Find the exact error probability for c? = 0.16.

Problem 5.17 (Software project) This project is intended to give hands-on
experience of complexity and performance tradeoffs in channel equalization
by working through the example in Section 5.9. Expressing time in units of
the symbol time, we take the symbol rate to be 1 symbol per unit time. We
consider Gray coded QPSK with symbols b[n] taking valuesin {-+1+ j}. The
transmit filter has impulse response

&r(t) = To,1;@).

The channel impulse responseis given by
3

&c(t) = 26(t — 0.5) — gol —2)+j6(t —2.25)
(this can be varied to see the effect of the channel on equalizer performance).
The receivefilter is matched to the cascadeof the transmit and channel filters,
and is sampled at the symbol rate so as to generate sufficient statistics for
symbol demodulation. .

You are to evaluate the performance of MLSE as well as of suboptimal
equalization schemes, as laid out in the steps below. The results should be
formatted in a report that supplies all the relevant information and formulas
required for reproducing your results, and a copy of the simulation software
should be attached.

Therangeoferrorprobabilities of interest is 10-3 or higher, and the range
of E,/No of interest is 0-30aB. In plotting your results, choose your range
of E,/No based on the preceding two factors. For all error probability com-
putations, average over multiple 500 symbol packets, with enough additional
symbols at the beginning and end to ensure that MLSEstarts and ends with
a state consisting of 1+ j symbols. In all your plots, include the error prob-
ability curve for QPSK over the AWGNchannelwithoutISIfor reference. In
(c) and (d), nominal values for the number of equalizer taps are suggested,
but you are encouraged to experiment with other values if they work better.

(a) Set up a discrete-time simulation, in which, given a sequence of symbols
and a value of received E,/No, you can generate the corresponding sam-
pled matchedfilter outputs {z[n]}. To generate the signal contribution to
the output, first find the discrete-time impulse response seen by a single
symbol at the output of the sampler. To generate the colored noise at the
output, pass discrete-time WGN through a suitable discrete-time filter.
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Specify clearly how you generate the signal and noise contributions in
your report.

(b) For symbol rate sampling, and for odd values of L ranging from 5 to
21, compute the MMSEasa function of the number of taps for an L-tap
LMMSEreceiver with decision delay chosen suchthat the symbol being
demodulated falls in the middle of the observation interval. What choice
of L would you recommend?

Note In finding the MMSE solution, make sure you account for the fact that the
noise at the matched filter output is colored.

(c) For L = 11, find by computer simulations the bit error rate (BER)of the
LMMSEequalizer. Plot the error probability (on log scale) against E,/No
in dB, simulating over enough symbols to get a smooth curve.

(d) Compute the coefficients of an MMSE-DFE with five symbol-spaced
feedforward taps, with the desired symbol falling in the middle of the
observation interval used by the feedforward filter. Choose the number
of feedback taps equal to the numberofpast symbols falling within the
observation interval. Simulate the performance for QPSK as before, and
compare the BER with the results of (a).

(e) Find the BER of MLSE by simulation, again considering QPSK with
Gray coding. Compare with the results from (b) and (c), and with the
performance with no ISI. Whatis the dB penaity due to ISI at high SNR?
Can you predict this based on analysis of MLSE?

Problem 5.18 (Proof of matrix inversion lemma) If we knowthe inverse
of a matrix A, then the matrix inversion lemma (5.49) provides a simple way
of updating the inverse to compute B = (A+xx”yr. Derive this result as
follows, For an arbitrary vector y, consider the equation

(A+xx")z=y. (5.90)
Finding B is equivalentto finding a formula for z of the form z = By.

(a) Premultiply both sides of (5.90) by A7! and obtain

z= Aqly—Anlxxyz, (5.91)

(b) Premultiply both sides of (5.91) by x” and then solve for x”z in terms
of x, A, and y.

(c) Substitute into (5.91) and manipulate to bring into the desired form z =
By. Read off the expression for B to complete the proof.
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6 Information-theoretic limits and
their computation

Information theory (often termed Shannon theory in honorof its founder,
Claude Shannon) provides fundamental benchmarks against which a com-
munication system design can be compared. Given a channel model and
transmission constraints (e.g., on power), information theory enables us to
compute,at least in principle, the highest rate at which reliable communication
over the channel is possible. This rate is called the channel capacity.

Once channel capacity is computed for a particular set of system parame-
ters, it is the task of the communication link designer to devise coding and
modulation strategies that approach this capacity. After 50 years of effort
since Shannon’s seminal work, it is now safe to say that this goal has been

accomplished for some of the most common channel models, The proofs of
the fundamental theorems of information theory indicate that Shannon lim-
its can be achieved by random code constructions using very large block
lengths. While this appeared to be computationally infeasible in terms of
both encoding and decoding, the invention of turbo codes by Berrou et al.
in 1993 provided implementable mechanisms for achieving just this. Turbo
codes are random-looking codes obtained from easy-to-encode convolutional
codes, which can be decodedefficiently using iterative decoding techniques
instead of ML decoding (which is computationally infeasible for such con-
structions). Since then, a host of “‘turbo-like” coded modulationstrategies have
been proposed, including rediscovery of the low density parity check (LDPC)
codes invented by Gallager in the 1960s. These developments encourage us
to postulate that it should be possible (with the application of sufficient inge-
nuity) to devise capacity-achieving turbo-like coded modulation strategies
for a very large class of channels. Thus, it is more important than ever to
characterize information-theoretic limits when setting out to design a com-
munication system, both in terms of setting design goals and in terms of
gaining intuition on design parameters(e.g., size of constellation to use). The
goal of this chapter, therefore, is to provide enough exposure to Shannon
theory to enable computation of capacity benchmarks, with the focus on the
AWGNchannel and somevariants. There is no attempt to give a complete,

252
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or completely rigorous, exposition. For this purpose, the reader is referred to
information theory textbooks mentioned in Section 6.5. .

The techniquesdiscussed in this chapter are employed in Chapter8 in order
to obtain information-theoretic insights into wireless systems. Constructive
coding strategies, including turbo-like codes, are discussed in Chapter7.

Wenote that the law of large numbers (LLN)is a key ingredient of infor-
mation theory: if X,,...,X,, are iid. random variables, then their empirical
average (X, +-+-+X,,)/n tendsto thestatistical mean E[X,] (with probability
one) as m —> oo under rather general conditions. Moreover, associated with
the LLN are large deviations results that say that the probability of O(1)
deviation of the empirical average from the mean decays exponentially with
n. These can be proved using the Chernoff bound (see Appendix B).In this
chapter, when we invoke the LLNto replace an empirical average or sum by
its statistical counterpart, we implicitly rely on such large deviations results
as an underlying mathematical justification, although we do not provide the
technical details behind such justification.

Mapofthis chapter In Section 6.1, we compute the capacity of the con-
tinuous and discrete-time AWGN channels using geometric arguments, and

discuss the associated power—bandwidth tradeoffs. In Section 6.2, we take a
more systematic view, discussing some basic quantities and results of Shan-
non theory, including the discrete memoryless channel model and the channel
coding theorem. This provides a framework for the capacity computations
in Section 6.3, where we discuss how to compute capacity under input con-
straints (specifically focusing on computing AWGNcapacity with standard
constellations such as PAM, QAM,and PSK). We also characterize the
capacity for parallel Gaussian channels, and apply it for modeling dispersive
channels. Finally, Section 6.4 provides a glimpse of optimization techniques
for computing capacity in more general settings.

6.1 Capacity of AWGN channel: modeling and geometry
In this section, we discuss fundamental benchmarks for communication over
a bandlimited AWGNchannel.

Theorem 6.1.1 For an AWGNchannel of bandwidth W and received power
P, the channel capacity is given by the formula

C=Wlog, (1 + xan) bit/s. . (6.1)
Let usfirst discuss some implications of this formula, and then provide some

insight into why the formula holds, and how one would go about achieving
the rate promised by (6.1).
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Consider a communication system that provides an information rate of R
bit/s. Denoting by E, the energy per information bit, the transmitted power
is P = E,R.Forreliable transmission, we must have R < C, so that we have
from (6.1):

E,RR < Wlog, (+55) .
Defining r = R/W as the spectral efficiency, or information rate per unit of
bandwidth, of the system, we obtain the condition

Eyr

r<log, (+=).
This implies that, for reliable communication, the signal-to-noise ratio must
exceed a threshold that depends on the operating spectral efficiency:

E, 27-1

No > r .
“Reliable communication”in an information-theoretic context meansthat the

error probability tends to zero as codewordlengths getlarge, while a practical
system is deemedreliable if it operates at some desired, nonzero but small,
error probability level. Thus, we might say that a communication system is
operating 3dB away from Shannoncapacityat a bit error probability of 10-°,
meaning that the operating E,/Np for a BER of 10-6 is 3 dB higher than the
minimum required based on (6.2).

Equation (6.2) brings out a fundamental tradeoff between power and band-
width. The required E,/No, and hence the required power (assuming that
the information rate R and noise PSD Ng are fixed) increase as we increase
the spectral efficiency r, while the bandwidth required to support a given
information rate decreases if we increase r. Taking the log of both sides
of (6.2), we see that the spectral efficiency and the required E,/N) in dB
have an approximately linear relationship. This can be seen from Figure 6.1,
which plots achievable spectral efficiency versus E,,/No (dB). Reliable com-
munication is not possible above the curve. In comparing a specific coded _
modulation scheme with the Shannon limit, we compare the B,/No required
to attain a certain reference BER (e.g., 10>) with the minimum possible
E,/No, given by (6.2) at that spectral efficiency (excess bandwidth used in the
modulating pulse is not considered, since that is a heavily implementation-
dependent parameter). With this terminology, uncoded QPSK achieves a
BER of 107° at an E,/Np of about 9.5dB. For the corresponding spec-
tral efficiency r = 2, the Shannon limit given by (6.2) is 1.76dB, so that
uncoded QPSK is about 7.8dB away from the Shannonlimit at a BER of
10-5, A similar gap also exists for uncoded 16-QAM. As weshall see in
the next chapter, the gap to Shannon capacity can be narrowed considerably
by the use of channel coding. For example, suppose that we use a rate 1/2
binary code (1 information bit/2 coded bits), with the coded bits mapped to a
QPSKconstellation (2 coded bits/channel use). Then the spectral efficiency

 
(6.2)
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Figure 6.1 Spectral effidency
as a function of £,/Ng (dB).
The large gap to capacity for
uncodedconstellations (at a
reference BER of 1075) shows
the significant potential
benefits of channel coding,
which I discuss in Chapter 7.

7.8 dB'gep
16-OAM at BER 10-5Spectralefficiencyr(inbit/channeluse) 

2 0 2 4 6 8 0 12 #14=«16

, Ep/No {in dB)

is r= 1/2x2=1, and the corresponding Shannonlimit is OdB. We now
know howto design turbo-like codes that get within a fraction of a dB of
this limit.

The preceding discussion focuses on spectral efficiency, which is important
when there are bandwidth constraints. What if we have access to unlim-

ited bandwidth (for a fixed information rate)? As discussed below, even in
this scenario, we cannot transmit at arbitrarily low powers: there is a fun-
damental limit on the smallest possible value of E,/Ng required forreliable
communication.

Power-limited communication As welet the spectral efficiency r —> 0,
we enter a power-limited regime. Evaluating the limit (6.2) tells us that, for
reliable communication, we must have

E,

ra >In2 (—1.6dB) Minimum required for reliable communication." WNo
(6.3)

That is, even if we let bandwidth tend to infinity for a fixed information
rate, we cannot reduce E,,/Np below its minimum value of ~1.6 dB. As we

“have seen in Chapters 3 and 4, M-ary orthogonalsignaling is asymptotically

optimum in this power-limited regime, both for coherent and noncoherent
communication.

Let usnow sketch an intuitive proof of the capacity formula (6.1). While
the formularefers to a continuous-time channel, both the proofofthe capacity
formula, and the kinds of constructions we typically employto try to achieve
capacity, are based on discrete-time constructions.

Constellation Exhibit 2003

Page 271 of 395



Constellation Exhibit 2003
Page 272 of 395

256 Information-theoretic limits and their computation

6.1.1 From continuousto discrete time

Consider an ideal complex WGN channel bandlimited to [-W/2, W/2]. If
the transmitted signal is s(t), then the received signal

y(t) = (seh)+n),

where h is the impulse response of an ideal bandlimited channel, and n(¢) is
complex WGN. Wewish to design the set of possible signals that we would
send over the channel so as to maximize the rate of reliable communication,

subject to a constraint that the signal s(t) has average powerat most P.
To start with, note that it does not make sense for s(t) to have any com-

ponent outside of the band [—W/2, W/2], since any such component would
be annihilated once we passit through the ideal bandlimited filter 4. Hence,
withoutloss of generality, s(?) must be bandlimited to [—W/2, W/2] for an
optimal signal set design. We nowrecall the discussion on modulation degrees
of freedom from Chapter 2 in order to obtain a discrete-time model.

By the sampling theorem, a signal bandlimited to [—W/2, W/2] is com-
pletely specified by its samples at rate W, {s(i/W)}. Thus, signal design
consists of specifying these samples, and modulation for transmission over
the ideal bandlimited channel consists of invoking the interpolation formula.
Thus, once we have designed the samples, the complex baseband waveform
that we send is given by

x) = stp(1-5), (64)
where p(t) = sinc(W?) is the impulse response ofan ideal bandlimited pulse
with transfer function P(f) = wiyw). As noted in Chapter2, this is linear
modulation at symbol rate W with symbol sequence {s(i/W)} and transmit
pulse p(t) = sinc(Ws), whichis the minimum bandwidth Nyquist pulse at
rate W. Thetranslates {p(t —i/W)} form an orthogonalbasis for the space of
ideally bandlimited functions, so that (6.4) specifies a basis expansionof s(2).

For signaling under a power constraint P over a (large) interval T,, the
transmitted signal energy shouldsatisfy

To

[ |s(t)|?dt ~ PT,.
Let P, = E[|s(1/W)|?] denote the average power per sample. Since energy is
preserved under the basis expansion (6.4), and we have about T,W samples
in this interval, we also have

T,WP,|lpII? x PT,.

For p(t) = sinc(W2), we have |{p||* = 1/W,so that P, = P. Thatis, for the
scaling adopted in (6.4), the samples obey the same powerconstraint as the
continuous-time signal.
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When the bandlimited signal s passes through the ideally bandlimited
complex AWGNchannel, weget

yf) = sf) +n), (6.5)

where n is complex WGN.Since s is linearly modulated at symbol rate W
using modulating pulse p, we know that the optimal receiver front end is
to pass the received signal through a filter matched to p(t), and to sample
at the symbol rate W. For notational convenience, we use a receivefilter

transfer function Gp(f )== I|_¥,¥) which is a scalar multiple of the matched
filter P*(f )= Pf)= whey. w}. This ideal bandlimitedfilter lets the signal
s(t) through unchanged, so that the signal contributions to the output of the
receive filter, sampled at rate W, are {s(i/W)}. The noiseat the outputof the

receivefilter is bandlimited complex WGN with PSD No/|_y._w), from which
it follows that the noise samples at rate W are independent complex Gaussian
random variables with covariance N,W. To summarize, the noisy samples at
the receive filter output can be written as

yLi] = s(i/W) + NUZ), (6.6)
where the signal samples are subject to an average power constraint
E{|s(i/W)|*] < P, and {N{[i]} are i.i.d., zero mean, proper complex Gaussian
noise samples with E[|N{é]|?] = NoW.

Thus, we have reduced the continuous-time bandlimited passband AWGN
channel modelto the discrete-time complex WGN channel model (6.6) that
we get to use W times per second if we employ bandwidth W. We can now
characterize the capacity of the discrete-time channel, and then infer that of
the continuous-time bandlimited channel.

6.1.2 Capacity of the discrete-time AWGN channel

Sincethe real and imaginary part of the discrete-time complex AWGN model

(6.6) can be interpreted as two uses ofa real-valued AWGNchannel, we
consider the latter first.

Consider a discrete-time real AWGN channel iin which the output at any
given time

Y=X+Z,_ (6.7)

where X is a real-valued inputsatisfying E[X?] < S, and Z ~ N(0, N) is real-
valued AWGN.The noise samples over different channel uses are i.i.d. This
is an example ofa discrete memoryless channel, where p(Y|X)is specified
for a single channel use, and the channel outputs for multiple channel uses
are conditionally independent given the inputs. A signal, or codeword, over
such a channel is a vector X = (X,,...,X,)", where X, is the input for the
ith channel use. A code of rate R bits per channel use can be constructed
by designing a set of 2"* such signals {X*,k =1,...,2"*}, with each signal
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having an equal probability of being chosen for transmission over the channel, -
Thus, nF bits are conveyed over n channel uses, Capacity is defined as the --
largest rate R for which the error probability tends to zero as n > ov. 7

Shannon has provided a general framework for computing capacity for a
discrete memoryless channel, which we discuss in Section 6.3. However, we. -
provide here a heuristic derivation of capacity for the AWGNchannel (6.7), .
that specifically utilizes the geometry induced by AWGN.

Sphere packing based derivation of capacity formula For a transmitted
signal X/, the n-dimensional output vector Y= (Y;,..., Y,)* is given by

Y=X/+Z, X?/sent,

where Z is a vectorofiid. NCO, N) noise samples. For equal priors, the MPE
and ML rules are equivalent. The ML rule for the AWGN channel is the
minimum distance rule

8ya,(Y) = arg min |[Y —X*||*.
1sk<2"%

Now,the noise vector Z that perturbs the transmitted signal has energy
N

[IZ|? = 3027 + nE[Z7] = aN,
i=l

where we have invoked the LLN. This implies that, if we draw a sphere of
radius /nN aroundasignal X/, then, with high probability, the received
vector Y lies within the sphere when X/ is sent. Calling such a sphere the
“decoding sphere” for X/, the minimum distancerule would Jead to very small
error probability if the decoding spheres for different signals were disjoint.
Wenow wish to estimate how many such decoding spheres we can come up
with; this gives the value of 2"* for which reliable communicationis possible.

Since X is independent of Z (the transmitter does not know the noise
realization) in the model (6.7), the input power constraint implies an output
powerconstraint

E[Y¥?] =E[(X+Z)?] =E[X?]+E[Z?]+2E[X]E[Z] = E[X?]+-E[Z?] <S+N.
(6.8)

Invoking the law of large numbers again,the received signal energy satisfies

E[||¥|)"] *n(S+),

so that, with high probability, the received signal vector lies within an
n-dimensional sphere with radius R, = ./n(S+W). The problem of signal
design for reliable communication now boils down to packing disjoint decod-
ing spheres of radius r, = /nN within a sphere of radius R,, as shown in
Figure 6.2, The volume of an n-dimensional sphere of radius r equals K,r”,
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Figure 6.2 Decoding spheres
of radius r, = /nN are
packedinside a sphere of
radius R, = ./n(S +N).

 
and the number of decoding spheres we can pack is roughly the following
ratio of volumes:

K,Rt _ KVn(SEN))" ne
K,r K,(/nN)*

Solving, we obtain that the rate R = 1/2log,(1+.S/N). We show in Section
6.3 that this rate exactly equals the capacity of the discrete-time real AWGN
channel. (It is also possible to make the sphere packing argumentrigor-
ous, but we do not attempt that here.) We now state the capacity formula
formally.

 

Theorem 6.1.2 (Capacity of discrete-timereal AWGN channel) The
capacity of the discrete-time real AWGN channel(6.7) is

Cawon = 5 loaa(t +SNR)bit/channeluse, (6.9).
where SNR = S/Nis the signal-to-noise ratio.

Thus, capacity grows approximately logarithmically with SNR, or approxi-
mately linearly with SNR in dB.

6.1.3 From discrete to continuous time

Forthe continuous-time bandlimited complex baseband channelthat we con-
sidered earlier, we have 2W uses per secondofthe discrete-time real AWGN
channel (6.7). With the normalization we employed in (6.4), wehavethat, per
real-valued sample, the average signal energy 5 = P/2 and the noise energy
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N = N,W/2, where P is the power constraint on the continuous-time signal,’
Plugging in, we get

1 P .

Ccont-time = 2W 2 log,(1+ ™w? bit/s,
whichgives (6.1).

Asthe invocation of the LLNin the sphere packing based derivation shows,
capacity for the discrete-time channel is achieved by using codewords that
span a large number of symbols. Suppose, now, that we have designed a
capacity-achieving strategy for the discrete-time channel; that is, we have
specified a good code, or signal set. A codeword from this set is a discrete-
time sequence {s[i]}. We can now translate this design to continuous time
by using the modulation formula (6.4) to send the symbols {s{i] = s(i/W)}.
Ofcourse, as we discussed in Section 2, the sinc pulse used in this formula
cannot be used in practice, and should be replaced by a modulating pulse
whose bandwidth is larger than the symbol rate employed. A good choice
would be a square root Nyquist modulating pulse at the transmitter, and its
matchedfilter at the receiver, which again yields the ISI-free discrete-time
model (6.6) with uncorrelated noise samples.

In summary, good codesfor the discrete-time AWGN channel(6.6) can be
translated into good signal designs for the continuous-time bandlimited AWGN
channelusing practical linear modulation techniques; this corresponds to using
translates of a square root Nyquist pulse as an orthonormalbasis for the signal
space,It is also possible to usean entirely different basis: for example, orthog-
onal frequency division multiplexing, which we discuss in Chapter 8, employs
complex sinusoids as basis functions. In general, the use of appropriate signal
space arguments allowsusto restrict attention to discrete-time models, both for
code design and for deriving information-theoretic benchmarks.

Real baseband channel Thepreceding observations also hold for a phys-
ical (i.e., real-valued) baseband channel. That is, both the AWGNcapacity
formula (6.1) andits corollary (6.2) hold, where W for a physical baseband
channelrefers to the bandwidth occupancy for positive frequencies. Thus, a
real baseband signal s(t) occupying a bandwidth W actually spansthe inter-
val [—W, W], with the constraint that S(f) = S*(—f). Using the sampling
theorem, such a signal can be represented by 2W real-valued samples per
second. This is the sameresult as for a passband signal of bandwidth W, so
that the arguments made so far, relating the continuous-time model to the
discrete-time real AWGN channel, apply as before. For example, suppose
that we wish to find out how far uncoded binary antipodal signaling at BER
of 1075 is from Shannon capacity. Since we transmitat 1 bit per sample, the
information rate is 2W bits per second, correspondingto a spectral efficiency
of r= R/W =2. This correspondsto a Shannonlimit of 1.8dB E,/No, using

(6.2). Setting the BER of Q (V@E/N0)) for binary antipodal signaling to
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10-5, we find that the required E,/No is 9.5 dB, which is 7.7dB away from
the Shannonlimit. There is good reason for this computation looking familiar:
we obtained exactly the same result earlier for uncoded QPSK on a pass-
band channel. This is because QPSK can be interpreted as binary antipodal

modulation along the I and Q channels, and is therefore exactly equivalent to
binary antipodal modulation for a real baseband channel.

At this point, it is worth mentioning the potential for confusion when
dealing with Shannonlimits in the literature. Even though PSKis a passband
technique, the term BPSK is often used whenreferring to binary antipodal
signaling on a real baseband channel. Thus, when we compare the performance
of BPSK with rate 1/2 coding to the Shannon limit, we should actually be
keeping in mind a real baseband channel, so that r = 1, corresponding to a
Shannonlimit of OdB £,/Npo. (On the other hand,ifwe hadliterally interpreted
BPSKasusing only the I channel in a passbandsystem, we would have gotten
r= 1/2.) That is, whenever we consider real-valued alphabets, we restrict
ourselves to the real baseband channel for the purpose of computing spectral
efficiency and comparing Shannonlimits. For a passband channel, we can use
the samereal-valued alphabet over the I and Q channels (corresponding to a
rectangular complex-valued alphabet) to get exactly the same dependence of
spectral efficiency on E,/Np.

6.1.4 Summarizing the discrete-time AWGNmodel
In previous chapters, we have used constellations over the AWGN channel
with a finite numberofsignal points. One ofthe goals of this chapteris to be
able to compute Shannontheoretic limits for performance when weconstrain
ourselves to using such constellations. In Chapters 3 to 5, when sampling

signals corrupted by AWGN, we modelthe discrete-time AWGN samples
as having variance 0? = Np/2 per dimension. Onthe other hand,the noise
variance in the discrete-time model in Section 6.1.3 depends on the system
bandwidth W. We would nowlike to reconcile these two models, and use a

notation that is consistent with that in the prior chapters.

Real discrete-time AWGN channel Consider the following model for a
real-valued discrete-time channel:

Y=X+Z, Z~N(0,o’) (6.10)

where X is a power-constrained input, E[X?] < E,, as well as possibly con-
strained to take values in a given alphabet (e.g., BPSK or 4-PAM). This
notation is consistent with that in Chapter 3, where we use E, to denote the
average energy per symbol. Suppose that we compute the capacity of this
discrete-time model as Cy bits per channel use, where Cy is a function of
SNR = E,/o*.IfE, is the energy per information bit, we must have E, = E,C,
joules per channel use. Now,if this discrete-time channel arose from a real
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baseband channel of bandwidth W, we would have 2W channel uses per
second,so that the capacity of the continuous-time channel is C, =2WC,bits _

per second. This meansthat the spectral efficiency is given by

r= a =2C, Real discrete-time channel. (6.11) ©
Thus, the SNR for this system is given by

E E, £
SNR = — =2C, =r—__Real discrete-time channel. (6.12) .

oe No No

Thus, we can restrict attention to the real discrete-time model (6.10), which
is consistent with our notation in prior chapters. To apply the results to
a bandlimited system as in Sections 6.1.1 and 6.1.3, all we need is the
relationship (6.11) which specifies the spectral efficiency (bits per Hz) in
terms of the capacity of the discrete-time channel (bits per channel use).

Complex discrete-time AWGN model Thereal-valued model (6.10) can
be used to calculate the capacity for rectangular complex-valued constellations
such as rectangular 16-QAM,which can be viewed as a productof two real-
valued 4-PAM constellations. However, for constellations such as 8-PSK, it is

necessary to work directly with a two-dimensional observation. We can think
of this as a complex-valued symbol, plus proper complex AWGN (discussed
in Chapter 4). The discrete-time model we employfor this purposeis

Y=X+Z, Z~CN(0,20°), (6.13)

where E[|X|?] < £, as before. However, we can also express this model in
terms of a two-dimensional real-valued observation (in which case, we do
not need to invoke the concepts of proper complex Gaussianity covered in
Chapter 4):

Y,=X,+Z., Y=X,+Z,, (6.14)

with Z,, Z, iid. N(O, 0), and E[X? + X?] < E,. The capacity C, bits per
channel use for this system is a function of the SNR, which is given by
E,/20, as well as any otherconstraints (e.g., that X is drawn from an 8-PSK
constellation). If this discrete-time channel arises from a passband channel
of bandwidth W, we have W channel uses per second for the corresponding
complex baseband channel,so that the capacity of the continuous-time channel
is C, = WC, bits per second, so that the spectral efficiency is given by

r= 5 =C, Complex discrete-time channel. (6.15)
The SNR is given by

E. EB, Ey . .
5g? = Cay, = "Ny Complex discrete-time channel. (6.16)

Comparing (6.12) with (6.16), we note that the relation of SNR with E,/No
and spectral efficiency is the same for both systems. Therelations (6.11) and

SNR =
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(6.15) are also consistent: if we get a given capacity for a real-valued model,
weshould be able to double that in a consistent complex-valued model by
using the real-valued model twice.

6.2 Shannontheory basics

From the preceding sphere packing arguments, we take awaytheintuition that
we need to design codewordsso as to achieve a good packing of decoding
spheres in n dimensions. A direct approachto tryingto realize this intuition is
not easy (although much progress has been madein recent yearsin the encod-
ing and decodingoflattice codes that attempt to implement the sphere pack-
ing prescription directly). We are interested in determining whether standard
constellations (e.g., PSK, QAM), in conjunction with appropriately chosen
error-correcting codes, can achieve the same objectives. In this section, we
discuss just enough of the basics of Shannon theory to enable us to develop
elementary capacity computation techniques. We introduce the general dis-
crete memoryless channel model, for which the model (6.7) is a special case.
Key information-theoretic quantities such as entropy, mutual information, and
divergence are discussed. We end this section. with a statement and partial
proof of the channel coding theorem.

While developing this framework, we emphasize the role played by the
LLN as the fundamental basis for establishing information-theoretic bench-
marks: roughly speaking, the randomness that is inherent in one channel
use is averaged out by employing signal designs spanning multiple inde-
pendent channel uses, thus leading to reliable communication. We have
already seen this approach at work in the sphere packing arguments in
Section 6.1.2.

Definition 6.2.1 (Discrete memoryless channel) A discrete memoryless
channel is specified by a transition density or probability mass function
p(y|x) specifying the conditional distribution of the output y given the input
x. For multiple channel uses, the outputs are conditionally independentgiven
the inputs. Thatis, if x,,...,x, are the inputs, and y,,...,yY, denote the
corresponding outputs, for n channel uses, then

POs + ++ Yaltiy +924) = POLL)» «+ POH):

Real AWGNchannel Forthe real Gaussian channel (6.10), the channel
transition density is given by ,

2poX,

(yl) eax)=
P V 2707

Here both the input andthe outputare real numbers, but we typically constrain
the input to average symbolenergy E,. In addition, we can constrain the input

» y teal. (6.17)
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x to be drawn fromafinite constellation: for example, for BPSK, the input
would take values x = +./E,.

Complex AWGN channel For the complex Gaussian channel (6.13) or
(6.14), the channeltransition density is given by

or eon at gat
~ 2re? fae? J/220?"

where the output y = y, +jy, and input x = x, +jx, can be viewed as complex
numbers or two-dimensional real vectors. We typically constrain the input to

average symbol energy E,, and mayalsoconstrain it to be drawn fromafinite
constellation: for example, for M-ary PSK, the input xe {./E,e?"/™, i=
0,1,...,4—1}. Equation (6.18) makes it transparent that the complex
AWGNmodel is equivalent to two uses of the real model (6.17), where the
I component x, and the Q component x, of the input may be correlated due
to constraints on the input alphabet.

P(x) (6.18)

Binary symmetric channel (BSC) _In this case, x and y both take values in
{0, 1}, and the transition “density” is now a probability mass function:

p(|x) = {i va" (6.19), y=l1-x.

That is, the BSC is specified by a “crossover” probability p, as shown in
Figure 6.3.

Consider BPSK transmission over an AWGN channel. When we make

symbol-by-symbol ML decisions, we create a BSC with crossover prob-
ability p = Q(/2E,/Np). Of course, we know that such symbol-by-symbol
hard decisions are not optimal; for example, ML decoding using the Viterbi
algorithm for a convolutional code involves real-valued observations, or soft
decisions. In Problem 6.10, we quantify the fundamental penalty for hard
decisions by comparing the capacity of the BSC induced by hard decisions
to the maximum achievable rate on the AWGN channel with BPSK input.

Figure 6.3 Binary symmetric Input X Output Y_.
channel with crossover 1-p

probability p. 0 0

1-p
Channeltransition

probabilities p{y|x)
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6.2.1 Entropy, mutual information, and divergence
Wenow provide a brief discussion of relevant information-theoretic quantities
and discuss their role in the law of large numbers arguments invoked in
information theory.

Definition 6.2.2 (Entropy) For a discrete random variable (or vector) X
with probability mass function p(x), the entropy H(X) is defined as

H(X) = -Eflog, p(X)] = — ))p(;) log, p(x;) Entropy, (6.20)
i

where {x;} is the set ofvalues taken by X.

Entropy is a measureof the information gained from knowing the value ofthe
random variable X. The more uncertain we are regarding the random variable

from just knowing its distribution, the more information we gain whenits
value is revealed, and the larger its entropy. The information is measured in
bits, corresponding to the base 2 used in the logarithmsin (6.20).

Example 6.2.1 (Binary entropy) We set aside the special notation
H;(p) for the entropy of a Bernoulli random variable X with P[X = 1] =
p=1—P[X =0]. From (6.20), we can compute this entropy as

H;(p) = —plog, p—(1—p)log,(1—p) Binary entropy function.
(6.21)

Note that H,(p) = H,(1 — p): as expected, the information content of X
does not change if we switch the labels 0 and 1. The binary entropy func-
tion is plotted in Figure 6.4. The end points p = 0 and p=1correspond
to certainty regarding the value of the random variable, so that no infor-
mation is gained by revealing its value. On the other hand, H,(p)attains
its maximum value of 1 bit at p = 1/2, which corresponds to maximal
uncertainty regarding the value of the random variable (which maximizes
the information gained by revealing its value).

 
Law of large numbers interpretation of entropy Let X,,...,X,, be iid.
random variables, each with pmf p(x). Thentheir joint pmf satisfies

1 1,

h log, p(X1,---+X,) = a >log, p(X) — Eflog, p(X,)]=—H(X), no.i=l

(6.22)

Wecan therefore infer that, with high probability, we see the “typical”

behavior |

P(X1,000) Xq) 2-H) typical behavior. (6.23)
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Figure 6.4 The binary entropy
function.

Information-theoretic limits and their computation

BinaryentropyfunctionHg(p)(inbits)  
0 0.2 0.4 0.6 0.8 1

Crossover probability p

A sequencethat satisfies this behavior is called a typical sequence. The set
of such sequencesis called the typical set. The LLN implies that

PI(X,,...,X,) is typical] > 1, 2 oo. (6.24)

That is, any sequence of length n that is not typical is extremely unlikely
to occur, Using (6.23) and (6.24), we infer that there must be approximately
2"#) sequences in the typical set: We have thus inferred a very important
principle, called the asymptotic equipartition property (AEP), stated infor-
mally as follows. ,

Asymptotic equipartition property (Discrete random variables) For a
length n sequenceofi.i.d. discrete random variables X,,..., X,, where n is
large, the typical set consists of about 2"“ sequences, each occurring with
probability approximately 2-"“), Sequences outside the typical set occur
with negligible probability for large n.

Since nH(X) bits are required to specify the 2””™ typical sequences, the
AEPtells us that describing n i.i.d. copies of the random variable X requires
about nH(X) bits, so that the average numberofbits per copy of the random
variable is H(X). This gives a concrete interpretation for what we mean by
entropy measuring information content. The implications for data compression
(not considered in detail here) are immediate: by arranging i.i.d. copies of
the source in long blocks, we can describe it at rates approaching H(X) per
source symbol, by only assigning bits to represent the typical sequences.

Wehave defined entropy for discrete random variables. We also need an
analogous notion for continuous random variables, termed differential
entropy, defined as follows.
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Definition 6.2.3 (Differential entropy) For a continuous random variable
(or vector) X with. probability density function p(x), the differential entropy
A(X) is defined as

h(X) = —E[log, p(X)] = —/ p(x) log, p(x) dx Differential entropy.

Example 6.2.2 (Differential entropy for a Gaussian random variable)
For X ~ N(m, v’),

‘x—m)? J—log, p(x) = aa(log, e) +5 log,(27v’).
Thus, we obtain

_m\2

| W(X) = ~Blog, »(0)) = |==og, 2) + Fton2mv?)
1 1

=5loge+ 5 log,(27v’).

We summarize as follows:

1

A(X) =5 log,(27rev*) Differential entropy for Gaussian N(m, v’)
random variable. (6.25)

Note that the differential entropy does not depend on the mean,since that
is a deterministic parameter that can be subtracted out from X without any
loss of information.

 
Cautionary note There are key differences between entropy and differential
entropy. While entropy must be nonnegative, this is not true of differential
entropy (e.g., set v* < 1/2ae in Example 6.2.2). While entropy is scale-invariant,
differential entropy is not, even though scaling a random variable by a known
constant should not change its information content. These differences can be
traced to the differences between probability mass functions and probability den-
sity functions. Scaling changes the location of the mass points for a discrete ran-
dom variable, but does not change their probabilities. On the other hand, scaling
changes both the location and size of the infinitesimal intervals used to define
a probability density function for a continuous random variable. However, such
differences between entropy and differential entropy are irrelevant for our main
purpose of computing channel capacities, which, as we shall see, requires com-
puting differences between unconditional and conditional entropies or differen-
tial entropies. The effect of scale factors ‘cancels out” when we compute such
differences,
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Law of large numbers interpretation of differential entropy Let
X,,-.+,X, be iid. random variables, each with density f(x), thentheir joint
density satisfies

1 1<

a log, f(Xi,-- ++ X,) = a >log, f(X,) > Eflog, f(X;)] = —A(X), n—> oO,i=l

(6.26)

Wenow define “typical” behavior in terms of the value of the joint density

f(Xgy 2 Xq) YH Q-MO  typical behavior, (6.27)

and invoke the LLNto infer that (6.24) holds. Since the “‘typical” value of
the joint density is a constant, 2~"*), we infer that the typical set must have
volume approximately 2"", in order for the joint density to integrate to one.
This leads to the AEP for continuous random variables stated below.

Asymptotic equipartition property (Continuous random variables) For
a length n sequenceofi.i.d. continuous random variables X,,...,X,, where
n is large, the joint density takes value approximately 2-7"overa typical
set of volume 2"), The probability mass outside the typical set is negligible
for large n.

Joint entropy and mutual information The entropy H(X, Y) of a pair of
random variables (X, Y) (e.g., the input and output of a channel)is called the
joint entropy of X and Y,andis given by

H(X, Y) = —Eflog, p(X, ¥)], (6.28)

where p(x, y) = p(x)p(y|x) is the joint pmf. The mutual information between
X and¥Yis defined as

I(X;Y) = H(X) + H(Y) — H(X,Y). (6.29)

Conditional entropy The conditional entropy H(Y|X) is defined as

H(¥ |X) = —Eflog, p(¥|X)]=— )7 >) p(x, y) logs pO|x). (6.30)
x y

Since p(y|x) = p(x, y)/p(x), we have

log, p(Y|X) = log, p(X, ¥) ~ log, p(X).

Taking expectations and changing sign, we get

H(Y|X) = H(X, Y) — H(X).

Substituting into (6.29), we get an alternative formula for the mutual
information (6.29): I(X; Y) = H(Y) — H(¥|X). By symmetry, we also have
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1(X; Y) = H(X) — H(X|¥). For convenience, westate all of these formulas
for mutual information together:

I(X; Y) = H(Y) — H(¥|X)

= H(X)— H(X|Y)

= H(X)-+ H(Y) — H(X,»). (6.31)

It is also useful to define the entropy of Y conditioned on a particular value
of X = x, as follows:

H(¥|X = x) = —E[log p(¥|X)|X = x] = — }0p(x) log, pa),
y

and note that

H(VIX) =Dp(2)H(WIX = 2). (6.32)

The preceding definitions and formulas hold for continuous random variables
as well, with entropy replaced by differential entropy.

Onefinal conceptthatis closely related to entropies is information-theoretic
divergence, also termed the Kullback-Leibler (KL) distance.

Divergence The divergence D(P||Q) between two distributions P and Q
(with corresponding densities p(x) and ¢(x)) is defined as

D¢Piio) =B»[les (253)|= 2P(s)l08 (55):
where Ep denotes expectation computed using the distribution P (i.e., X is a
random variable with distribution P).

Divergence is nonnegative The divergence D(P||Q) = 0, with equality if
and only if P= Q.

The proofis as follows:

-a88)=Pean)
x)SVxp>o poy (4.y -.) = (Yo xpty>0 9(x)) — 150,

wherethefirst inequality is because log x < x —1. Since equality in thelatter
inequality occurs if and only if x = 1, the first inequality is an equality if and
only if q(x)/p(x) = 1 wherever p(x) > 0. The second inequality follows from
the fact that q is a pmf, andis an equality if and only if q(x) =0 wherever
p(x) = 0. Thus, we find that D(P||Q) =0 if and only if p(x) = q(x) for all
x (for continuous random variables, the equalities would only need to hold
“almost everywhere”).
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Mutual information as a divergence The mutual information between ~
two random variables can be expressed as a divergence betweentheir joint
distribution, and a distribution corresponding to independentrealizations of
these random variables, as follows:

1(X; ¥) = D(Pxy||PxPy). (6.33) °

This follows by noting that

I(X;Y) = H(X)+H(Y) — A(X,Y)

= —E[log p(X)] — E[logp(¥)] + Eflog p(X, ¥)]

_ p(X, ¥)= Eve (sonacn)
where the expectation is computed using the joint distribution of X and Y.

6.2.2 The channel coding theorem

Wefirst introduce joint typicality, which is the central component of a random
coding argument for characterizing the maximum achievable rate on a DMC.

Joint typicality Let X and Y have joint density p(x, y). Then the law of
large numbers can be applied to n channel uses with i.i.d. inputs X,,...,X,5
leading to outputs Y,,..., ¥,, respectively. Note that the pairs (X;, Y;) are
id.d., as are the outputs {Y,}. We thus get three LLN-based results:

1

= 1082 P(Xir- -++X,) > —H(X)
1

5 log, p(Y%,,..-,Y,) > —H(Y¥) (6.34)
1

= logs P(Xa» Ys ++ ++ Xas Yan) > —H% ¥).
For an input sequence x = (x,,...,x,)7 and an output sequence y =
(y1)+++2 Yn)’, the pair (x,y) is said to be jointly typical if its empirical
characteristics conform to thestatistical averages in (6.34); thatis, if

P(x) & 2-780)
ply) % 2-0 (6.35)
P(K, y) © 2-0,

Wealsoinfer that there are about 2"“%jointly typical sequences, since

py)* 1.
x,y jointly typical

In the following, we apply the concept ofjoint typicality to a situation in which
X is the input to a DMC,and¥its output. In this case, p(x, y) = p(x)p(y|x),

__ where p(x) is the marginal pmfof X, and p(y|x) is the channeltransition pmf.
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Random coding For communicating at rate R bit/channel use over a
DMC p(y|x), we use 2"* codewords, where a codeword of the form X =
(X,,...,X,)" is sent using n channeluses (input X, sent for ith channeluse).
The elements {X,} are chosen to be i.i.d., drawn from a pmf p(x). Thus,all
elements in all codewordsarei.i.d., hence the term random coding(of course,

_ the encoder and decoder both knowthe set of codewords once the random

codebook choice has been made). All codewords are equally likely to be sent.

Joint typicality decoder While ML decoding is optimal for equiprob-
able transmission, it suffices to consider the following joint typicality
decoder for our purpose. This decoder checks whether the received vector
Y=(¥,,...,¥,) is jointly typical with any codeword X = (X;,...,X,).
If so, and if there is exactly one such codeword, then the decoder outputs x.
If not, it declares decoding failure. Decoding error occursif x # X, where X
is the transmitted codeword. Let us now estimate the probability of decoding
error orfailure.

If X is the transmitted codeword, and X is any other codeword, then xX
and the output Y are independent by our random coding construction, so
that p(X, Y) = p(X)p(Y) © 2-"#@)+#) if X and Y are typical. Now,the
probability that they are jointly typical is

P[X,Y jointly typical] = yx p(X)p(y)
: x,y jointly typical

av gnH(X.Y)9—n(HCO+H() = Qr-OGY)

Since there are 2”* — 1 possible incorrect codewords,the probability of at least
one of them being jointly typical with the received vector can be estimated
using the union bound :

(278 _ 12-7 < QR-R) | (6.36)

which tends to zero as n —> 00, as long as R < I(X;Y).
There are some other possible events that lead to decoding error that we

also need to estimate (but that we omit here), However, the estimate (6.36) is
the crux of the random coding argumentfor the “forward” part of the noisy
channel coding theorem, which we nowstate below.

Theorem 6.2.1 (Channel coding theorem: achievability)

(a) For a DMC with channeltransition pmf p(y|x), we can useiid. inputs
with pmfp(x) to communicatereliably, as long as the coderate satisfies

R <1(X;Y).

(b) The preceding achievable rate can be maximized over the input density
P(x) to obtain the channel capacity .

C= max 1(X; ¥).
p(s)
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Weomitdetailed discussion and proofof the “converse” part of the channel _
coding theorem, which states that it is not possible to do better than the
achievable rates promised by the preceding theorem.

Note that, while we considered discrete random variables for concreteness,
the preceding discussion goes through unchanged for continuous random
variables (as well as for mixed settings, such as when X isdiscrete andYis
continuous), by appropriately replacing entropy by differential entropy.

6.3 Some capacity computations

We are now ready to undertake some example capacity computations. In
Section 6.3.1, we discuss capacity computations for guiding the choice of
signal constellations and code rates on the AWGNchannel. Specifically, for
a given constellation, we wish to establish a benchmark on the bestrate that
it can achieve on the AWGNchannel as a function of SNR. Sucharesultis

nonconstructive, saying only that there is some error-correcting code which,
whenused with the constellation, achieves the promised rate (and that no code
can achievereliable communication at a higher rate). However, as mentioned
earlier, it is usually possible with a moderate degree of ingenuity to obtain
a turbo-like coded modulation scheme that approaches these benchmarks
quite closely. Thus, the information-theoretic benchmarks provide valuable
guidance on choice of constellation and code rate. We then discuss the parallel
Gaussian channel model, andits application to modeling dispersive channels,
in Section 6.3.2. The optimal “waterfilling” powerallocation for this model
is an important technique that appears in many differentsettings.

6.3.1 Capacity for standard constellations

We now compute mutual information for some examples. We term the max-

imum mutual information attained under specific input constraints as the
channel capacity under those constraints. For example, we computethe capac-
ity of the AWGN channel with BPSK Signaling and a powerconstraint. This
is, of course, smaller than the capacity of power-constrained AWGNsignal-
ing when there are no constraints on the input alphabet, which is what we
typically refer to as the capacity of the AWGN channel.

Binary symmetric channel capacity Consider the BSC with crossover

probability p as in Figure 6.3. Given the symmetry of the channel, it is
plausible that the optimal input distribution is to send 0 and 1 with equal
probability (see Section 6.4 for techniques for validating such guesses, as
well as for computing optimal input distributions when the answer is not
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“obvious”). We now calculate C = I(X; Y) = H(Y) — H(Y|X). By symmetry,
the resulting output distribution is also uniform over {0, 1}, so that

1 1 1 1

H(Y) = —5 loge 373 log, 7= 1,
Now,

H(Y|X = 0) =— p(Y = 1|X = 0) log, p(Y = 1|X = 0) — p(¥Y = 0|X =0)x
log, p(Y = 0|X =0) —

= — plog, p—(1—p)log,(1 — p) = Ha (p),

where H,(p) is the entropy of a Bernoulli random variable with probability
p of taking the value one. By symmetry, we also have H(Y|X = 1) = Hg(p),
so that, from (6.32), we get

Wetherefore obtain the capacity of the BSC with crossover probability p as

Cysc(p) = 1 — Hg (p). (6.37)

AWGN channel capacity Consider the channel model (6.10), with the
observation

Y=X+Z

with input E[X?] < E, and Z ~ N(0, a”). We wish to computethe capacity

= max I(X;Y).P(x):E[X?]sE, GN)
Given X = x, h(Y|X =x) = A(Z), so that A(Y|X) = A(Z). Wetherefore have

I(X;Y) = h(Y) —h(Z), (6.38)

so that maximizing mutual information is equivalent to maximizing A(Y).
Since X and Z are independent (the transmitter does not know the noise
realization Z), we have E[Y?] = E[X?]+-E[Z?] < E, +07. Subject to this
constraint, it follows from Problem 6.3 that A(Y) is maximized if Y is zero
mean Gaussian. This is achieved if the input distribution is X ~ N(0, £,),
independentofthe noise Z, which yields Y ~ N(0, E, +07). Substituting the
expression (6.25) for the entropy of a Gaussian random variable into (6.38),
weobtain the capacity:

K(X; ¥) = 5 log, (27e(E, +07)) — 5 loes(2e07)
1 E. 1

the same formulathat we got from the sphere packing arguments. We have now
in addition proved that this capacity is attained by Gaussian input X ~ N(0,E,).

We now consider the capacity of the AWGN channel when the signal
constellation is constrained.
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Example 6.3.1 (AWGN capacity with BPSK signaling) Let us first
consider BPSKsignaling, for which we have the channel model

Y=J/EX+Z, Xe{-1,+1}, Z~N(0,c°).

It can be shown (e.g., using the techniques to be developed in Section
6.4.1) that the mutual information J(X; Y), subject to the constraint of
BPSK signaling, is maximized for equiprobable signaling. Let us now
compute the mutual information /(X; Y) as a function of the signal power
E, and the noise power o7. Wefirst showthat, as with the capacity without
an input alphabet constraint, the capacity for BPSK also depends on these
parameters only through their ratio, the SNR E,/o7. To showthis, replace
Y by Y/a to get the model

Y=VSNRX+Z, Xe{-1,+1}, Z~N(0,1). (6.39)

For notational simplicity, set A= /SNR. We have

1 2
$+1)= e704) p.pul?) J2t

1 2
-1l)= ——etA) 2pol) Jir

1 1

PY) = 5P0|+1)+5P0|—1). (6.40)
We can now compute

I(X;Y) = h(Y) — (YX).

As before, we can show that h(Y|X) = A(Z) = 1/21log,(27re). We can
now compute

h() =—f logs(Pr(0)) pr(y)dy
by numerical integration, plugging in (6.40). An alternative approach,
whichis particularly useful for more complicated constellations and chan-
nel models, is to use Monte Carlo integration (i.e., simulation-based empir-
ical averaging) for computing the expectation A(Y) = ~E{log, p(Y)]. For
this method, we generate iid. samples Y,,..., Y, using the model (6.39),
and then use the estimate

a 1
h(¥) = ——}Vlog,p(Y))-

Ae

Wecanalso usethe alternative formula

I(X;Y) = H(X) — H(X|¥)
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to computethe capacity. For equiprobable binary input, H(X) = Holas)=l
bit/symbol. It remains to compute

H(X|Y) = [ H(XIY =y)py) dy. (6.41)
By Bayes’ rule, we have

PIX =+1)pO|+1)
PY)

_ P[X = +1]p0|+1)
~ PIX =+1]pQ|+1)+P[X = -1]p0|-1)

P[X=+41|Y =y]

e4y .
= yew (equal priors).

Wealso have

. e74Y

PIX = -l|¥ =y]=1-P[X = +1|¥ =y] = Go
Such a posteriori probability computations can be thoughtof as soft deci-
sions on the transmitted bits, and are employed extensively when wediscuss
iterative decoding. We can nowusethe binary entropy function to compute

A(X|Y = y) = Hg (P[X = 4+1[¥ = y)).

The averagein (6.41) can now be computed by direct numerical integration
or by Monte Carlo integration as before. The latter, which generalizes
better to more complex models, gives the estimate

ACX|) =~5Hg(PIX = +1|¥,=y,)).
Nis | 

The preceding methodology generalizes in a straightforward manner to PAM
constellations. For complex-valued constellations, we need to consider the
complex discrete-time AWGN channel model (6.13). For rectangular QAM
constellations, one use of the complex channel with QAM inputis equivalent
to two uses of a real channel using PAM input, so that the same methodol-
ogy applies again. However, for complex-valued constellations that cannot be
decomposedin this fashion (e.g., 8-PSK and other higher order PSK alpha-
bets), we must work directly with the complex AWGNchannel model (6.18).

Example 6.3.2 (Capacity with PSK signaling) For PSK signaling over
the complex AWGNchannel (6.13), we have the model:

Y=X-+Z, 
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where XEA = {/SNRe?7/", i = 0,1,...,M—1} and Z ~ CN(0, 1)
with density

~kP

P2(z) = —, z complex-valued,
where we have normalized the noise to obtain a scale-invariant model. As

before, for an additive noise model in which the noise is independent of
the input, we have A(Y|X) = A(Z). The differential entropy of the proper
complex Gaussian random variable Z can be inferred from that for a real
Gaussian random variable given by (6.25), or by specializing the formula
in Problem 6.4(b). This yieldsthat

h(Z) = log, we.

Furthermore, assuming that a uniform distribution achieves capacity (this
can be proved using the techniques in Section 6.4.2), we have

1 11 .Pr) =— > p2ly-x) = — DS —exp —|y-VSNRe=™|)M ves M i=0 7

We can now use Monte Carlo integration to compute A(Y), and then
compute the mutual information /(X; Y) = h(Y)—A(Z).

 
Figure 6.5 plots the capacity (in bits per channel use) for QPSK, 16PSK and
16-QAM versus SNR (dB).

Power-bandwidth tradeoffs Now that we know how to compute capacity

as a function of SNR forspecific constellations using the discrete-time AWGN
channel model, we can relate it, as discussed in Section 6.1.4, back to the

Figure 6.5 The capacity of the
AWGN channelwith different

constellations as a function of
SNR,

4.5 .

4

o

o
aCapacity(inbitsperchanneluse) 

0 5 10 15 20

SNR(in dB)
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Figure 6.6 The capacity of the
__ AWGN channel with different

constellations as a function of

Capacity(inbitsperchanneluse} 
-5-1.6dB! 9 5 10 15

E,/Np(in dB)

continuous-time AWGNchannel to understand the tradeoff between power

efficiency and spectral efficiency. As shown in Section 6.1.4, we have, for
both the real and complex models,

where r is the spectral efficiency in bit/s per Hz (not accounting for excess
bandwidth requirements imposed by implementation considerations).

For a given complex-valued constellation A, suppose that the capacity in
discrete time is C,(SNR) bit/channel use. Then, using (6.15), we find that
the feasible region for communication using this constellation is given, as a
function of E/N, by

E

r<C, (=) , complex-valued constellation A. (6.42)0

Figure 6.6 expresses the plots in Figure 6.5 in terms of £,/Np (dB), obtained
by numerically solving for equality in (6.42). (Actually, for each value of

SNR, we compute the capacity, and then the corresponding E,/No value, and
then plot the latter two quantities against each other.)

For real-valued constellations such as 4-PAM, we would use (6.11), and
obtain

E

r<2C, Ga , feal-valued constellation A. (6.43)0

6.3.2 Parallel Gaussian channels and waterfilling

A useful generalization of the AWGN channel modelis the parallel Gaussian
channel model (wecan usethis to model both dispersive channels and colored
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noise, as we shall see shortly), stated as follows. We have access to K parallel .
complex Gaussian channels, with the output of the kth channel, 1 <k <K.
modeled as .

¥,=h,X,+Z;,

where h, is the channel gain, Z, ~ CN(0, N,) is the noise on the kth channel,
and E[|X,|?] = P,, with a constraint on the total power:

K

><P. (6.44)
k=1

The noises {Z,} are independent across channels, as well as across time. The
channel is characterized by the gains {h,} and the noise variances {N,}. The
goal is to derive the capacity of this channel model for fixed {P,}, which is
appropriate when the transmitter does not know the channel characteristics,
as well as to optimize the capacity over the power allocation {P,} when the
channel characteristics are known at the transmitter.

The mutual information between the input vector X = (X,,..., X,) and
the output vector Y = (Y,,..., Yx) is given by

I(X;Y) = h(¥) — A(¥|X) = h(Y) — h(Z).

Owing to the independenceofthe noises, h(Z) = Vf, A(Z,). Furthermore,
we can boundthe joint differential entropy of the output as the sum of the
individual differential entropies:

K

ACY) =A(Y¥,,..-+ ¥%e) S LA)
with equality if Y,,..., Y, are independent. Thus, we obtain

K

1(X; ¥) < D0 (A(%) — h(Z,))-
k=l

Each of the K termsonthe right-hand side can be maximized as for a standard
Gaussian channel, by choosing X, ~ CN(O, P,). Wetherefore find that, for a
given powerallocation P= (P;,..., Px), the capacity is given by

C(P) = 5log, (1.4Pae) Fixed power allocation (6.45)k=1

(the received signal power onthe kth channelis 5, = |h,|*P,). The preceding
development also holds for real-valued parallel Gaussian channels, except
that a factor of 1/2 must beinserted in (6.45).

Optimizing the power allocation We can now optimize C(P) subject to

the Constraint (6.44) by maximizing the Lagrangian
HP) =C(P) FAP, = Solos, (1+ Aareteat) --ADPy (6.46)

k=1 kel
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Wediscuss the theory of such convex optimization problems very briefly in
Section 6.4.1, but for now, it suffices to note that we can optimize J(P) by
setting the partial derivative with respect to P, to zero. This yields

= MP) _ uP/Ne
OP, 1+ VaPsk

so that N :
P, =a- —

[ae
for some constant a. However, we must also satisfy the constraint that P, > 0.
Wetherefore get the following solution.

Waterfilling power allocation

ae OM cy
[Ay?” [Al?

P, = ; (6.47)
0, —_ > a,

[A,|?
where a is chosen so as to satisfy the power constraint with equality:

K

YP = P.
k=l

This has the waterfilling interpretation depicted in Figure 6.7. The water level
ais determined by pouring water until the net amount equals the power budget
P. Thus,if the normalized noise level N,/|h,|? is too large for a channel, then
it does not get used (the corresponding P, =0in the optimal allocation).

Application to dispersive channels Theparalle] Gaussian model provides
a meansof characterizing the capacity of a dispersive channel with impulse
response A(t) (we are working in complex baseband now), bysignaling across
parallel frequency bins, Let us assume colored proper complex Gaussian noise
with PSD S,(f ). Then a frequencybin ofwidth Af around f, follows the model

¥, = AA)Xe + Ze

where N, ~ CN(0, S,(f,)Af) and E[|X;,|7] = S,Cf,)Af, where S,(f) is the
PSD ofthe input (which must be proper complex Gaussian to achieve cap-
acity). Note that the SNR on the channel around f, is

IH(fPSSG)AS_[HOPS
SNR(f,) = ——————— = ——_——.«) Sn 79)Af Sn (ft)

Figure 6.7 Waterfilling power
allocation for the parallel

Gaussian channel, --r--- 

  
w---l---- ~— Water level a

Py :
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The net capacity is now given by

DAF log, (1+SNR(f,)).
k

Byletting Af + 0, the sum above tends to an integral, and we obtain the
capacity as a function of the input PSD:

3 IH(f)PS.CF)C(S,) = lo 1df, 6.48
where W is the channel bandwidth, and the input poweris given by

Ww
T

[ * SCF) df =P. (6.49)~T

This reduces to the formula (6.1) for the complex baseband AWGNchannel
by setting H(f) =1, S,(f) = P/W and S,(f) = N, for —W/2 <f < W/2.

Waterfilling can now be used to determine the optimum input PSD as
follows:

g-Sbf) SCF) og
lH(A)P ACAD P

SS) og
lH(f)P

with a chosento satisfy the power constraint (6.49).
An important application of the parallel Gaussian model is orthogonal

frequency division multiplexing (OFDM), also called discrete multitone, in -
which data are modulated onto a discrete set of subcarriers in parallel. Orthog-
onal frequency division multiplexing is treated in detail in Chapter 8, where
wefocusonits wireless applications. However, OFDM hasalso been success-
fully applied to dispersive wireline channels such as digital subscriber loop
(DSL). In such settings, the channel can be modeled as time-invariant, and
can be learntby the transmitter using channel sounding andreceiver feedback.
Waterfilling, appropriately modified to reflect practical constraints such as
available constellation choices and the gap to capacity for the error correction
scheme used, then plays an importantrole in optimizing the constellations to
be used on the different subcarriers, with larger constellations being used on
subcarriers seeing a better channel gain.

S(f) = (6.50)
0,

6.4 Optimizing the input distribution

We have shown how to compute mutual information between the input
and output of a discrete memoryless channel (DMC) for a given input
distribution. For finite constellations over the AWGN channel, we have, for

example, considered input distributions that are uniform over the alphabet.
This is an intuitively pleasing and practical choice, and indeed,it is optimal in
certain situations, as we shall show. However, the optimal input distribution
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is by no means obvious in all cases, hence it is important to develop a set

of tools for characterizing and computing it in general. The key ideas behind
developing such tools are as follows:

(a) Mutualinformation is a concave function of the input distribution, hence
a unique maximizing input distribution exists.

(b) There are necessary and sufficient conditions for optimality that can
easily be used to check guesses regarding the optimal input distribution.

However,directly solving for the optimal input distribution based on these
conditionsis difficult.

(c) An iterative algorithm to find the optimal input distribution can be obtained
by writing the maximum mutual informationas the solution to a two-stage
maximization problem, suchthatit is easy to solve each stage. Convergence
to the optimalinput distribution is obtained by alternating between the two
stages. This algorithm is referred to as the Blahut~Arimoto algorithm.

Webegin with a brief discussion of concave functions and their maximization.
Weapply this to obtain necessary and sufficient conditions that must be
satisfied by the optimal input distribution. We end with a discussion of the
Blahut—Arimoto algorithm.

6.4.1 Convex optimization

A set C is convex if, given x,,x,€C, Ax, +(1—A)x, EC for any Ae [0,1].
Weare interested in optimizing mutual information over a set of probability
distributions, which is a convex set. Thus, we consider functions whose

arguments lie in a convexset.
A function f(x) (whose argument may be a real or complex vector x in a

convex set C) is convex (also termed convex up) if

F(AX, + (1 —A)x2) S AFH) + 1 — A)FH) (6.51)
for any x,, Xj, and any Ae (0,1]. Thatis, the line joining any two points on
the graph of the function lies above the function.

Similarly, f(x) is concave (also termed convex down)if

FAX, + (1 = A)x2) = AF(%,) + (1 — A)F(X). (6.52)

From the preceding definitions, it is easy to show that linear combinations
of convex (concave) functions are convex (concave). Also, the negative of
a convex function is coneave, and vice versa. Affine functions(i.e., linear
functions plus constants) are both convex and concave, since they satisfy
(6.51) and (6.52) with equality.

Example 6.4.1 A twice differentiable function f(x) with a one-
dimensional argument x is convex if f”(x) = 0, and concaveiff”(x) <0.
Thus, f(x) = x* is convex, f(x) = logx is concave, and a line has second
derivative zero, and is therefore both convex and concave. 
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Entropy is a concave function of the probability density/mass function
The function f(x) = —xlog x is concave (verify by differentiating twice). Use.
this to show that :

—¥p(x) log p(x)

is concavein the probability mass function {p(x)}, where thelatter is viewed
as a real-valued vector.

Mutual information between input and output of a DMCis a concave
function of the input probability distribution The mutual information is
given by 1(X; Y) = H(Y) — H(¥|X). The output entropy H(Y) is a concave
function of py, and py is a linear function of py. It is easy to show, pro-
ceeding from the definition (6.52) that H(Y) is a concave function of py. The
conditional entropy H(Y|X) is easily seen to be a linear function of py.

Kuhn-Tucker conditions for constrained maximization of a concave

function Westate without proof necessary and sufficient conditions for
optimality for a special case of constrained optimization, which are spe-
cializations of the so-called Kuhn—Tucker conditions for constrained convex

optimization. Suppose that f(x) is a concave function to be maximized over
X=(x,,...,2,,)7, Subject to the constraints x, >0,1<k <m, and 7) & =
c, where c is a constant. Then the following conditions are necessary and

sufficient for optimality: for 1 << k <m, we have

oe =i, x,>0,
af (6.53)
3. < A, Xz = 0,
Ox,

for a value of A such that >>, x, =c.
Wecaninterpret the Kuhn—Tucker conditions in terms of the Lagrangian

for the constrained optimization problem at hand:

J(x) = f(x) -AD xy.k

For x, > 0, we set d/dx,J(x) =0. For a point on the boundary with x, = 0,
the performance must get worse when we move in from the boundary by
increasing x,, so that 0/dx,J(x) <0.

We apply these results in the next section to characterize optimal input
distributions for a DMC. .

6.4.2 Characterizing optimal input distributions

A capacity-achieving input distribution mustsatisfy the following conditions.

Necessary andsufficient conditions for optimal input distribution For
a DMCwith transition probabilities p(y|x), an input distribution p(x) is
optimal, achieving a capacity C, if and only if, for each input x,
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D(Pyyx=nllPy) =C, p(y) >9,
D(Pyj\x=3,||Py) s C, P(x) =0. (6.54)

Interpretation of optimality condition We show that the mutual informa-

tion is the average of the terms D(Py,y_;||Py) as follows.

I(X;Y) = D(Pxy||PxPy) = >> p@, y) log (22.ny P(x)p(y)

= DecCellos (Ae)
== 50600ppl. (6.55)

 

The optimality conditions state that each term making a nontrivial contribution
to the average mutual information must be equal. That is, each term equals
the average, which for the optimal input distribution equals the capacity C.
Terms corresponding to p(x) = 0 do not contribute to the average, and are
smaller (otherwise we could get a bigger average by allocating probability
mass to them). We now provide a proofof these conditions.

Proof The Kuhn-Tucker conditions for capacity maximization are as fol-
lows:

0
——~Il(X; Y)-A=0, p(x) >0,

éne) (6.56)
oe Y)-A<0, p(x) =0.

Nowto evaluate the partial derivatives of I(X; Y) = H(Y) — H(Y|X). Since

H(¥) =—}/pO) log pQ),
y

wehave,using the chain rule,

aH(Y) aply)ooHY) =ena
=YI-1 —log p(y)] pyle) (6.57)

 

=—-1-))p(y1x,)log p(y).
y

Also,

H(Y[X) = — 0p(*)POIs) log pO),

so that

eytee) = ~ LPObs) log POIs) = H(Y¥|X = x). (6.58)
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Using (6.57) and (6.58), we obtain

——~(X; ¥)=-1+Dpola)loaOl) _p(y) —1+D(Py\x-,,||Py)-
(6.59)

Plugginginto (6.56), we get D(Py}x_,, ||Py) S A+ 1, with equality for p(x,) >
0. Averaging overthe inputdistribution, we realize from (6.55) that we must
have A+ 1=C, completing the proof. O

p(x)

Remark While we prove all results for discrete random variables, their
natural extensions to continuous random variables hold, with probability mass
functions replaced by probability density functions, and summations replaced
by integrals. In what follows, we use the term density to refer to either
probability mass function or probability density function.

Symmetric channels The optimality conditions (6.54) impose a symmetry
in the input-outputrelation. When the channeltransition probabilities exhibit a
natural symmetry,it often suffices to pick an inputdistribution that is uniform
over the alphabet to achieve capacity. Rather than formally characterizing the
class of symmetric channels for which this holds, we leave it to the reader
to check, for example, that uniform inputs work for the BSC, and for PSK
constellations over the AWGNchannel.

While the conditions (6.54) are useful for checking guessesas to the optimal
input distribution, they do not provide an efficient computational procedure
for obtaining the optimal input distribution. For channels for which guessing
the optimal distribution is difficult, a general procedure for computing it is
provided by the Blahut-Arimoto algorithm, which we describe in the next
section.

6.4.3 Computing optimalinputdistributions

A key step in the Blahut~Arimoto algorithm is the following lemma, which
expresses mutual information as the solution to a maximization problem with
an explicit solution. This enables us to write the maximum mutual information,
or capacity, as the solution to a double maximization that can be obtained by
an alternating maximization algorithm.

Lemma6.4.1 The mutual information between X and Y can be written as

q(ly)
1(X;Y)= max x x)lo ,(X; 4)=max dP )p(yls) log 75

where {q(x|y)} is a set of conditional densities for X (that is, >, q(x|y) = 1
for each y). The maximumis achieved by the conditional distribution p(x]y)
that is consistent with p(x) and p(y|x). That is, the optimizing q is given by

P(x)PQs)

Lv P(x)POI)

 

q" (sly) =
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Proof We show that the difference in values attained by q* and any other
q is nonnegative as follows:

Xpep!) 10g LE—yp(a)p03)1g SBxy ny

=P@)POb) og qeee
_ q* (xy)P60) Le(xly) logab)
= SpONDO*MIIlACb) >0,

y

where we haveused p(x, y) = p(x)p(y|x) = p(y)pGly) = p)4@*Gly), and
where Q*(-]y), Q(-|y) denote the conditional distributions corresponding to
the conditional densities g*(x|y) and q(x|y), respectively. O

  

The capacity of a DMC characterized by transition densities {p(y|x)} can
now be written as

C= maxX: 2) =maxmaxpeel)}08
Westate withoutproofthat an alternating maximization algorithm, which max-
imizes over g(x|y) keeping p(x) fixed, and then maximizes over p(x) keeping
q(x|y) fixed, convergesto theglobal optimum.Theutility ofthis procedureis that
each maximization can be carried out explicitly. The lemmaprovidesan explicit
form for the optimal ¢(x|y) for fixed p(x). Itremainsto provide an explicit form
for the optimal p(x) for fixed q(x]y). To this end, consider the Lagrangian

Kp) = XppOb) Ios TH - AYpe)
= SppCopcyh) tos a(eb) —P@)POLs)ogpO)-ALPC). (6.60)

correspondingto the usual sum constraint >, p(x) = 1. Setting partial deriva-

ato zero, we obtain
aS5 J(p) = 2LPO) log aC) — PQ|x,) — PO|x,) log p(x,)] — A = 0.
Noting that >, role) == 1, we get

log p(x) = —A— 1+ Do p(y|x,) log g(aly),
. y

from which we conclude that

P*(x,) = Kexp(D p(y |%) log q(xily)) = KT, (aly),
.

where the constant K is chosen so that >, p*(x) = 1.
We can nowstate the Blahut—Arimoto algorithm for computing optimal

input distributions.
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Blahut-Arimoto algorithm

Step 0 Choosean initial guess p(x) for input distribution, ensuring that there
is nonzero probability mass everywhere that the optimal input distribution
is expected to have nonzero probability mass (e.g., for finite alphabets, a
uniform distribution is a safe choice).

Step I For the current p(x), compute the optimal q(x|y) using

. P(x)POIx)
x|y) ==.TED==@)PO)

Set this to be the current g(x|y).

Step 2 For the current g(x|y), compute the optimal p(x) using

(a) = ela
Dy Hy,(gly)?

Set this to be the current p(x). Go back to Step 1.

Alternate Steps 1 and 2 until convergence (using any sensible stopping cri-
terion to determine when the changes in p(x) are sufficiently small).

Example 6.4.2 (Blahut-Arimoto algorithm applied to BSC) For a
BSC with crossover probability a, we know that the optimal input distri-
bution is uniform. However, let us apply the Blahut—Arimoto algorithm,
starting with an arbitrary input distribution PLX = 1] = p=1-—P[X =0],
where 0 < p < 1. We can now checkthat Step 1 yields

= PO ye
q(1|0) = pat—pyi =a) = 1—4(0)0)

(1—p)a
41) = GatpO =a)

and Step 2 yields

q(1]0)*4(4]1)-*
q(1|0)*4(1|1)!-* + g(0|1)*q(0|0)'-

Iterating these steps should yield p — 1/2.

p=p(l)=
 
Extensions of the basic Blahut-Arimoto algorithm Natural extensions
of the Blahut-Arimoto algorithm provide methods for computing optimal
input distributions that apply in great generality. As an example of a simple
extension, Problem 6.16 considers optimization of the input probabilities for a
4-PAM alphabet {+d, +3d} over the AWGNchannel with a powerconstraint.
The Blahut-Arimoto iterations must now accountfor the fact that the signal
power depends both on d and the input probabilities.
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6.5 Further reading

The information theory textbook by Cover and Thomas [14] provides a lucid
exposition ofthe fundamentalconcepts ofinformation theory,and is perhaps the
best starting pointfor delvingfurtherinto this field. Theclassic text by Gallager
[42] is an important reference for many topics. The text by Csiszar and Korner
[43] is the definitive work on the use ofcombinatorial techniquesand the method
of types in proving fundamental theoremsofinformation theory. Other notable
texts providing in-depth treatments of information theory include Blahut[44],
McEliece [45], Viterbi and Omura [12], and Wolfowitz [46]. Shannon’soriginal
work [47, 48] is a highly recommendedread, because ofits beautiful blend of
intuition andrigor in establishing the foundationsofthefield.

For most applications, information-theoretic quantities such as capacity
must be computed numerically as solutions to optimization problems. The
Blahut-Arimoto algorithm discussed here [49,50] is the classical technique
for optimizing input distributions. More recently, however, methods based on
convex optimization and duality [51,52] and on linear programming [53] have
been developed for deeperinsight into, and efficient solution of, optimization
problemsrelated to the computation of information-theoretic quantities. Much
attention has been focused in recent years on information-theoretic limits for
the wireless channel, as discussed in Chapter8.

Good sources for recent results in information theory are the Proceedings
of the International Symposium on Information Theory (ISIT), and the journal
IEEE Transactions on Information Theory. The October 1998 issue of the
latter commemoratesthe fiftieth anniversary of Shannon’s seminal work, and
provides a perspective on the state of the field at that time.

6.6 Problems

Problem 6.1 (Estimating the capacity of a physical channel) Consider
a line of sight radio link with free space propagation. Assume transmit and
receive antenna gains of 10dB each, a receiver noise figure of 6dB, and a
range of 1km. Using the Shannon capacity formula for AWGN channels,
whatis the transmit power required to attain a link speed of 1 gigabit/s using
a bandwidth of 1.5 GHz (assuming 50% excess bandwidth)?

Problem 6.2 (Entropy for an M-ary random variable) Suppose that X is
a random variable taking one of M possiblevalues (e.g., X may be the index
of the transmitted signal in an M-ary signaling scheme).

(a) Whatis the entropy of X, assuming all M values are equally likely?
(b) Denoting the pmffor the uniform distribution in (a) by q(x), suppose

now that X is distributed according to pmf p(x). Denote the entropy of X

under pmf p by H,(X). Show that the divergence between p and q equals
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D(vlla) =F,log,2) = tog, M — #0).
(c) Infer from (b) that the maximum possible entropy for X is log, M, which

is achieved by the uniform distribution.

Problem 6.3 (Differential entropy is maximum for Gaussian random vari-
ables) Consider a zero mean random variable X with density p(x) and
variance v*. Let g(x) denote the density of an N(0, u*) random variable with
the same mean and variance.

(a) Compute the divergence D(p||q) in terms of h(X) and v*.
(b) Use the nonnegativity of divergence to show that

h(X) < ; log, (27ev”) = A(N(O,v’)) .
That is, the Gaussian density maximizes the differential entropy over all
densities with the same variance.

Remark This result, and the technique used for proving it, generalizes
to random vectors, with Gaussian random vectors maximizing differential
entropy overall densities with the same covariance.

Problem 6.4 (Differential entropy for Gaussian random vectors) Derive
the following results.

(a) If X ~ Nam,C)is an n-dimensional Gaussian random vector with mean
vector m and covariance matrix C,then its differential entropyis given by

1

h(X) = 3 log, ((27re)"|C|) Differential entropy for real Gaussian.
(b) If X ~ CN(m,C) is an n-dimensional proper complex Gaussian random

vector with mean vector m and covariance matrix C, thenits differential

entropy is given by

h(X) = log, ((7e)"|C|) Differential entropy for proper complex
Gaussian.

Problem 6.5 (Entropy under simple transformations) Let X denote a
random variable, and a, b denote arbitrary constants.

(a) If X is discrete, how are the entropies H(aX) and H(X + 5) related to
A(X)?

(b) If X is continuous, how are the differential entropies h(aX) and A(X +5)
related to h(X)?
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Figure 6.8 The binary Input X Output Y

(symmetric) erasures channel. 0 1-q 0
q

e

q
1 1

1-q

Channeltransition probabilities
ply|x)

Figure 6.9 The binary Input X Output Y
(symmetric) errors and
erasures channel,  

Channeltransition probabilities

Ply|x)

Problem 6.6 (Binary erasures channel) Show that the channel capacity of

the binary erasures channel with erasure probability q, as shown in Figure
6.8, is given by 1—q.

Problem 6.7 (Binary errors and erasures channel) Find the channel
capacity of the binary errors and erasures channel with error probability p
and erasures probability g, as shown in Figure 6.9.

Problem 6.8 (AWGNcapacity plots for complex constellations) Write
computer programsfor reproducing the capacity plots in Figures 6.5 and 6.6.

Problem 6.9 (Shannon theory for due diligence) A binary noncoherent
FSK system is operating at an E,/Np of 5.dB, and passes hard decisions(i.e.,
decides whether 0 or 1 was sent) up to the decoder. The designer claims that
her system achieves a BER of 1075 using a powerful rate 1/2 code. Do you
believe her claim?

Problem 6.10 (BPSKwith errors and erasures) Consider BPSKsignaling
with the following scale-invariant model for the received samples:

Y¥ = A(-1)* +Z,

where X € {0, 1} is equiprobable, and Z ~ N(0, 1), with A? = SNR.

(a) Find the capacity in bits per channel use as outlined in the text, and plot
it as a function of SNR (dB).
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(b) Specify the BSC induced by hard decisions. Find the capacity in bits per °
channel use and plot it as a function of SNR (dB). m,

(c) What is the degradation in dB due to hard decisionsata rate of 1/4 bits -
per channel use?

(d) What is the E,/No (dB) corresponding to (c), for both soft and hard
decisions?

(ec) Now supposethat the receiver supplements hard decisions with erasures. .
Thatis, the receiver declares an erasure when |Y| < a, with a> 0. Find |
the error and erasure probabilities as a function of a and SNR.

(f) Apply the result of Problem 6.7 to compute the capacity as a function
of a and SNR. Set SNR at 3dB, and plot capacity as a function of a.
Compare with the capacity for hard decisions.

(g) Find the best value of a for SNR of 0dB, 3dB and 6dB.Is there a value
of a that works well over the range 0-6dB?

Problem 6.11 (Gray coded two-dimensional modulation with hard deci-
sions) A communication system employs Gray coded 16-QAM, with the
demodulator feeding hard decisions to an outer binary code,

(a) Whatis a good channel modelfor determining information-theoretic limits
on the rate of the binary code as a function of 2,/No?

(b) We would like to use the system to communicate at an information rate
of 100 Mbps using a bandwidth of 150MHz, where the modulating pulse
uses an excess bandwidth of 50%. Use the model in (a) to determine the
minimum required value of E,/No for reliable communication.

(c) Now suppose that we use QPSK instead of 16-QAM in the setting
of (b). What is the minimum required value of E,/Np for reliable
communication?

Problem 6.12 (Parallel Gaussian channels) Consider two parallel com-
plex Gaussian channels with channel gains A, = 1+, h, = —3j and noise
covariances N, = 1, N, =2. Assumethat the transmitter knows the channel
characteristics.

(a) At “low” SNR, which of the two channels would you use?
(b) For what values of net input power P wouldyoustart using both channels?
(c) Plot the capacity as a function of net input power P using the waterfilling

powerallocation.

Also plot for comparison the capacity attained if the transmitter does not know
the channel characteristics, and splits power evenly across the two channels.

Problem 6.13 (Waterfilling for a dispersive channel) A real baseband
dispersive channel with colored Gaussian noise is modeled as in Figure 6.10.
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Figure 6.10 Channel |H(F)|
characteristics for Problem
6.13.

2

1

0 40 100 f

Noise PSD

 
0 100

Weplan to use the channel over the band [0, 100]. Let N = h* S,Cfdf
denote the net noise power over the band.If the net signal poweris P, then
we define SNR as P/N.

(a) Assuming an SNR of 10dB,find the optimal signal PSD using waterfill-
ing. Find the corresponding capacity.

(b) Repeat (a) for an SNR of OdB.
(c) Repeat (a) and (b) assumingthat signal poweris allocated uniformly over

the band [0, 100].

Problem 6.14 (Multipath channel) Consider a complex baseband multi-
path channel with impulse response

h(t) =28(t—1)— J5¢-2)+(1 +-))8(t—3.5).
The channel is used over the band [—W/2, W/2]. Let Cy(SNR) denote the
capacity as a function of bandwidth W and SNR, assumingthat the input
poweris spread evenly over the bandwidth used andthat the noise is AWGN.

(a) Plot Cy(SNR)/W versus W over the range 1 < W < 20, fixing the SNR
at 10dB. Do you notice any trends?

(b) For W = 10, find the improvement in capacity due to waterfilling at an
SNRof 10dB.

Problem 6.15 (Blahut-Arimoto iterations for BSC) Consider the binary
symmetric channel with crossover probability 0.1, Starting from an initial
input distribution with P[X = 1] = p =0.3,specify the values of p obtained

Constellation Exhibit 2003

Page 307 of 395



Constellation Exhibit 2003
Page 308 of 395

292 Information-theoretic limits and their computation

in the first five iterations of the Blahut-Arimoto algorithm. Comment on
whetherthe iterations are converging to the result you would expect.

Problem 6.16 (Extension of Blahut-Arimoto algorithm for constellation
optimization) Consider a 4-PAM alphabet {-d,+3d} to be used on the
real, discrete-time AWGNchannel. Withoutloss of generality, normalize the
noise variance to one. Assumingthatthe inputdistribution satisfies a natural
symmetry condition:

PIX=4d)=p, P[X =+3d] =57P.
(a) Whatis the relation between p and d at SNR of 3dB?
(b) Starting from an initial guess of p = 1/4, iterate the Blahut-Arimoto

algorithm to find the optimal input distribution at SNR of 3 dB, modifying
as necessary to satisfy the SNR constraint.

(c) Commenton howthe optimal value of p varies with SNR by running the
Blahut~Arimoto algorithm for a few other values.
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7 Channel coding

In this chapter, we provide an introduction to some commonly used channel
coding techniques. The key idea of channel codingis to introduce redundancy
in the transmitted signal so as to enable recovery from channel impairments
such as errors and erasures. We know from the previous chapter that, for any

given set of channel conditions, there exists a Shannon capacity, or maxi-
mum rate of reliable transmission. Such Shannon-theoretic limits provide the
ultimate benchmark for channel code design. A large number of error con-
trol techniques are available to the modern communication system designer,
and in this chapter, we provide a glimpse of a small subset of these. Our
emphasis is on convolutional codes, which have been a workhorse of com-
munication link design for many decades, and turbo-like codes, which have
revolutionized communication systems by enabling implementable designs
that approach Shannon capacity for a variety of channel models.

Map of this chapter We begin in Section 7.1 with binary convolutional
codes. We introducethetrellis representation and the Viterbi algorithm for ML
decoding, and develop performance analysis techniques. The structure of the
memory introduced by a convolutional code is similar to that introduced by a
dispersive channel. Thus, the techniquesare similar to (but simpler than) those
developed for MLSE for channel equalization in Chapter5. Concatenation of
convolutional codes leads to turbo codes, whichareiteratively decoded by

exchanging soft information between the component convolutional decoders.
Wediscuss turbo codes in Section 7.2. While the Viterbi algorithm gives the

ML sequence, we need soft information regarding individualbits for iterative
decoding. This is provided by MAP decoding using the BCJR algorithm,
discussed in Section 7.2.1. The logarithmic version of the BCJR algorithm,
which is actually more useful both practically and conceptually, is discussed
in Section 7.2.2. Once this is done, we can specify both parallel andserial
concatenated turbo codes quite easily, and this is done in Section 7.2.3. The
performance of turbo codesis discussed in Sections 7.2.4, 7.2.5 and 7.2.6.
Anespecially intuitive way of visualizing the progress ofiterative decoding,

293
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as well as to predict the SNR threshold at which the BER starts decreasing
steeply, is the method of EXIT charts introduced by ten Brink, which is
discussed in Section 7.2.5. Another important class of “turbo-like” codes,
namely, low density parity check (LDPC) codes, is discussed in Section 7.3,
Section 7.4 discusses channel code design for two-dimensional modulation.
A broadly applicable approach is the use ofbit interleaved coded modulation
(BICM), which allows us to employ powerful binary codes in conjunction with
higher order modulation formats: the output of a binary encoder is scrambled
and then mapped to the signaling constellation, typically with a Gray-like
encoding that minimizes the numberof bits changing across nearest neighbors.
Wealso discuss another approach that couples coding and modulation more
tightly: trellis coded modulation (TCM). Finally, in Section 7.5, we provide
a quick exposure to the role played in communication system design by
codes such as Reed-Solomon codes, which are constructed using finite-field

algebra. We attempt to provide an operational understanding of what we can
do with such codes, without getting into the details of the code construction,

since the required backgroundin finite fields is beyond the scope of this book.

7.1 Binary convolutional codes

Binary convolutional codes are important not only because they are deployed
in many practical systems, but also because they form a building block for
other important classes of codes, such as trellis coded modulation and a
variety of “‘turbo-like” codes. Such codes can be interpreted as convolving a
binary information sequence througha filter, or “code generator,” with binary
coefficients (with addition and multiplication over the binary field). They
therefore have a structure very similar to the dispersive channels discussed
earlier, and are therefore amenable to similar techniques for decoding (using
the Viterbi algorithm) and performance analysis (union bounds using error
events, and transfer function bounds). We discuss these techniques in the
following, focusing on examples rather than on the most general development.

Consider a binary information sequence u[k]¢ {0,1}, which we want to
send reliably using BPSK over an AWGNchannel. Instead of directly sending

the informationbits (e.g., sending the BPSK symbols {(—1)“"}), wefirst use
u = {u[k]} to generate a coded binary sequence, termed a codeword, which
includes redundancy. This operation is referred to as encoding. We then send

this new coded bit sequence using BPSK, over an AWGN channel. The
decoderat the receiver exploits the redundancy to recover the informationbits
from the noisy received signal. The code is the set of all possible codewords
that can be obtained in this fashion. The encoder, or the mapping between
information bits and coded bits, is not unique for a given code, and bit error
rate attained by the code, as well as its role as a building block for more
complex codes, can depend on the mapping. The encoder mapping is termed
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nonrecursive, or feedforward, if the codeword is obtained by passing the
information sequence through a finite impulse response feedforward filter.
It is termed recursive if codeword generation involves the use of feedback.
The encoderis systematic if the information sequence appearsdirectly as one
component of the codeword, and it is termed nonsystematic otherwise. In
addition to the narrow definition of the term “code”as the set of all possible
codewords, we often also employ the term morebroadly, to refer to both the
set of codewords and the encoder.

For the purpose of this introductory development, it suffices to restrict
attention to two classes of convolutional codes, based on how the encoding

is done: nonrecursive, nonsystematic codes and recursive, systematic codes.

7.1.1 Nonrecursive nonsystematic encoding

Consider the following nonrecursive nonsystematic convolutional code: for
an input sequence {u[k]}, the encoded sequence c[k] = (y,[k], y[k]), where

y,[k] = ufk] + u[k —1]+u[k—2], (7.1)
yolk] = u[k] + u[k — 2],

where the addition is modulo2. A shift register implementation of the encoder

is depicted in Figure 7.1.
The output sequences y, = {y,[A]}, Yo = {y2[A]} are generated by convolv-

ing the input sequence u with two “channels” using binary arithmetic. The
output y[k} = (y,[k], yo[k]) at time & depends on the input u[X] at time k,
and the encoderstate s[k] = (u[k— 1], u[k —2]). A codeword is any sequence
y = (y,,Y2) that is a valid output of such a system. Therate R of the code
equals the ratio of the number of information bits to the number of coded
bits. In our example, R = 1/2, since two codedbits y,[k], y,[k] are generated
per information bit u[k] comingin.

Nomenclature Some commonterminology used to describe convolutional

encoding is summarized below. It is common to employ the D-transform
in the literature on convolutional codes; this is the same as the z-transform

commonly used in signal processing, except that the delay operator D = zi,

Figure 7.1 Shift register
implementation of
convolutional encoder for the

running example. The outputs
(y, [kK], Y2[K]) at time k are a
function of the input u[k] and
the shift register state
s{k] = (atk — 1], ulk -2)).

yk]

 
yal A]
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Figure 7.2 A section of the
trellis representation of the
code, showing state transitions
between time k and k +1.
Each trellis branch is

labeled with the input and

outputs associated with it,
ulkl/y, [Aly2Ik].

Channel coding

For a discrete-time sequence {x[k]}, let x(D) = 3°, x[k]D* denote the
D-transform. The encoding operation (7.1) can now be expressed as

y,(D) = u(D)(1+D+D?),
y,(D) = u(D)(1+D?).

Thus, we can specify the convolutional encoder by the set of two generator
polynomials

G(D) =[g(D)=1+D+D*, g(D)=1+D']. (7.2)

The input polynomial u(D) is multiplied by the generator polynomials to
obtain the codeword polynomials. The generator polynomials are often spe-
cified in termsof their coefficients. Thus, the generator vectors corresponding

to the polynomials are

[=(11), g,=(101)). (7.3)

Often, we specify the encoder even more compactly by representing the
preceding coefficients in octal format. Thus, in our example, the generators
are specified as [7,5].

Trellis representation As for a dispersive channel, we can introduce a
trellis that represents the code. The trellis has four states at each time k,
corresponding to the four possible values of s[k]. The transition from s[k] to
s[k + 1] is determined by the value of the input u[k]. In Figure 7.2, we show
a section of the trellis between time k and k-+1, with each branch labeled

with the input and outputs associated with it: u[k]/y,[k]y.[k]. Each path
through the trellis corresponds to a different information sequence u and a
corresponding codeword y.

Weuse this nonrecursive, nonsystematic code as a running example for
our discussions of ML decoding and its performance analysis.

 
sik] s{k+ 1]

State at tkl/ys Ud yall State at: ulkl/y;[Aly. :
time k (Branch iatrel) time k+1
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7.1.2 Recursive systematic encoding

The same set of codewords as in Section 7.1.1 can be obtained using a

recursive systematic encoder, simply by dividing the generator polynomials
in (7.2) by g,(D). That is, we use the set of generators

g(D)__-1+D?
°g(D) 14+D+D?]}°

 
G(D) = (7.4)

Thus, the encoder outputs two sequences, the information sequence {u[k]},
and a parity sequence v[k] whose D-transform satisfies

1+D*

The code canstill be specified in octal notation as [7, 5], where we understand
that, for a recursive systematic code, the parity generating polynomial is
obtained by dividing the second polynomialby the first one.

We would now like to specify a shift register implementation for gener-
ating the parity sequence {v[k]}. The required transfer function we wish to
implement is (1+ D7)/(1+D+ D*). Let us do this in twostages,first by
implementingthe transfer function 1/(1+D+ D*), which requires feedback,
and then the feedforward transfer function 1+ D7. To this end, define

as the outputof the first stage. We see that

y(D) + Dy(D) + D*y(D) = u(D),

so that

y[k] + yk — 1] + yk —2] = uk].

Thus, in binary arithmetic, we have

yk] = ulk] + y[k — 1] + y[k — 2].

Wenow haveto pass {y[k]} through the feedforward transfer function 1+ D?
to get {v[k]}. That is,

o[k] = yk] + yk — 2].

The resulting encoder implementation is depicted in Figure 7.3.
We employ this recursive, systematic code as a running example in our

later discussions of maximum a posteriori probability (MAP) decoding and
turbo codes.
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ulk] Systematic bits

ylkl = ulk] + yik- 114 ylk-2]
vik] = ikl + yik-2]
Parity bits ulk]

Encoder
input

 
(a) Shift register realization of feedback (b) Shift register realization of encoderfor recursive systematic code

transfer function (cascade feedforward transfer function with feedback function in

4/1 + D+ D2} (a) to generate parity bits)

Figure 7.3 Shift register implementation of a {7,5] recursive systematic code. The state of the shift
register at time & is s[k] = (y[k —1], y[k —2]), and the outputs at time k depend on the input u{k] and
the state s[K].

Systematic bits

Parity bits

Figure 7.4 Recursive
systematic encoder for a
23,35] code. : : :[25.55] co Another example code While our running example is a 4-state code,

in practice, we often use more complex codes; for example, a 16-state
code is shown in Figure 7.4. This codeis historically important because
it was a componentcode for the turbo code invented by Berrouetal. in
1993. This example also gives us the opportunity to clarify our notation
for the code generators. Note that g, = 10011 (specifies the feedback taps)
and g, = 11101 (specifies the feedforward taps), reading the shift register
tap settings from left to right. The convention for the octal notation for
specifying the generators is to group the bits specifying the taps in groups
of three, from right to left. This yields g, = 23 and g, = 35. Thus, the code
in Figure 7.4 is a [23,35] recursive systematic code.

 
7.1.3 Maximum likelihood decoding

We use the rate 1/2 [7,5] code as a running example in our discussion.
For both the encoders shown in Figures 7.1 and 7.4, an incoming input bit
u[k] at time & results in two coded bits, say c,[k] and c[k], that depend on
u[k] andthe state s[k] at time k. Also, there is a unique mapping between
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(u[k], s[k]) and (s[k], s[&+1]), since, given s[k], there is a one-to-one map-
ping between the input bit and the next state s[k-+ 1]. Thus, c,[A] and c,[k]
are completely specified given either (u[k], s[k]) or (s[k], s[k+1]). This
observation is important in the developmentofefficient algorithms for ML
decoding.

Let us now consider the example of BPSK transmission for sending these
coded bits over an AWGNchannel.

BPSKtransmission Letting E, denote the received energy per information

bit, the energy per code symbol is E, = E,R, where R is the code rate. For
BPSK transmission over a discrete-time real WGN channel, therefore, the

noisy received sequence z[k] = (z,[K], Z.[k]) is given by

z[k] = VE(-1)%!4 +n,[k],
zo{k] = /E,(—1)2) + ng[k],

where {n,[k]}, {n2[k]} are i.i.d. N(O, o?) random variables (o? = N,/2). Hard
decision decoding corresponds to only the signs of the received sequence
{z[k]} being passed up to the decoder. Soft decisions correspond to the real
values {z,[k]}, or multilevel quantization (numberof levels greater than two)
of some function of these values, being passed to the decoder. We now discuss
maximum likelihood decoding when the real values {z,[k]} are available to
the decoder.

(7.5)

Maximumlikelihood decoding with soft decisions An ML decoder for
the AWGN channel must minimize the minimum distance between the

noisy received signal and the set of possible transmitted signals. For
any given information sequence u = {u[k]} (with corresponding codeword
c= {(c,[k], co[k])}), this distance can be written as

Dw) =D { (ale VEC)+ (ale -VE)|.
Recalling that (c,[k], c,[k]) are determined completely by s[k] and s[k+ 1],
we can denote the kth term in the above sum by

ASH sk+U) = (al -VE)+ (oll - VEC")
The ML decoder must therefore minimize an additive distance squared metric

to obtain the sequence

2

fiyg = arg min D(u) =arg min )>A,(s[k], s[k + 1]).u u
k

An alternative form of the metric is obtained by noting that

CeVE): = [kK] +B, —2/Ealkl(-1),
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with the first two terms on the right-hand side independent of u. Dropping
these terms, and scaling and changing the sign of the third term, we can
therefore define an alternative correlator branch metric:

ve(s[k], S[k + 1]) = 2fk](-1),

where the objective is now to maximize the sum of the branch metrics.
For an information sequenceof length K, a direct approach to ML decoding

would require comparing the metrics for 2* possible sequences;this exponen-
tial complexity in K makesthe direct approach infeasible even for moderately
large values of K. Fortunately, ML decoding can be accomplished much more
efficiently, with complexity linear in K, using the Viterbi algorithm described
below.

The basis for the Viterbi algorithm is the principle ofoptimality for additive
metrics, which allows us to prune drastically the set of candidates when
searching for the ML sequence. Let

A(m:n,u) = > Az (sy{K], sy{k + 1)
k=m

denote the running sum of the branch metrics between times m and n, where
{s,[k]} denotes the sequenceoftrellis states corresponding to u.

Principle of optimality Suppose that two sequences u, and u, have the
same state at times m and n (ie., sy,[m] = s,,[m] and s,,[n] = 5,,[n]), as
shown in Figure 7.5. Then the sequence that has a worse running sum between
m and n cannot be the ML sequence.

Proof For concreteness, suppose that we seek to maximize the sum metric,
and that A(m:n,u,) > AQ@m:n,u,). Then we claim that u, cannot be the
MLsequence. To see this, note that the additive nature of the metric implies
that

A(a) = ACL: m—1,u.)+A(m:n, u)+A(+1:K, uy). (7.6)

Since u, and u, have the same states at times m and n, and the branch
metrics depend only on the states at either end of the branch, we can replace
the segment of u, between m and n by the corresponding segment from u,

Us aa
Wy ue

n
~7m Common

- + uyo7 section
-7 ug

Figure 7.5 Two paths throughatrellis with a commonsection between times m and n. The principle of
optimality states that the path with the worse metric in the commonsection cannot be the MLpath.
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without changing the first and third terms in (7.6). We get a new sequence
u, with metric

A(a,;) = ACL: m—1,u,.)+A(m:n, u,)+A(n4+1: K,u,) > A(uy).

Since u, has a better metric than uj, we have shown that u, cannot be the
MLsequence. Cj

Wecan nowstate the Viterbi algorithm.

Viterbi algorithm Assumethat the starting state of the encoder s[0] is
known. Now,all sequences through the trellis meeting at state s[k] can be
directly compared, using the principle of optimality between times 0 and k,
andall sequences except the one with the best running sum can be discarded.
If the trellis has S states at any given time(the algorithm also applies to time-
varying trellises where the number of states can depend on time), we have
exactly $ surviving sequences, or survivors, at any given time. We need to
keeptrack of only these S sequences(i.e., the sequence of states through the
trellis, or equivalently, the input sequence, that they correspond to) up to the
current time. We apply this principle successively at times k= 1,2,3,....
Consider the S$ survivors at time k. Let F(s’) denote the set of possible values
of the next state s[k+ 1], given that the currentstate is s[k] = s’. For example,
for a convolutional code with one input bit per unit time, for each possible
value of s[k] = s’, there are two possible values of s[k-+1]; that is, F(s’)
contains two states. Denote the running sum of metrics up to time & for the
survivor at s[k] =s’ by A*(1:k, 5’). We now extend the survivors by one
more time step as follows:

Add step For each state s’, extend the survivorat s’ in all admissible ways,
and add the corresponding branch metric to the current running sum to get

Ag(t:k+1, 5° > s)=A*(1t ky s)+AgG5), SE F(s’).

Compare step After the “add” step, each possible state s[k+1] =s has
a number of candidate sequences coming into it, corresponding to differ-
ent possible values of the prior state. We compare the metrics for these
candidates and choose the best as the survivor at s[k+ 1] = s. Denote by
P(s) the set of possible values of s[k] = s’, given that s[k+1] = s. For
example, for a convolutional code with one input bit per unit time, P(s)
has two elements. We can now update the metric of the survivor at s[k-+
1] =s as follows {assuming for concreteness that we wish to maximize the
running sum)

A*(1:k+1,5s)= max Aj(i:k+1, 5's)
s € P(s)

and store the maximizing s’ for each s[k +1] = s. (When we wish to minimize
the metric, the maximization above is replaced by minimization.)
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At the end of the add and compare steps, we have extended the set of §
survivors by one moretimestep. If the information sequence is chosen such
that the terminating state is fixed, then we simply pick the survivor with
the best metric at the terminal state as the ML sequence. The complexity of
this algorithm is O(S) per time step; that is, it is exponential in the encoder
complexity but linear in the (typically much larger) number of transmitted
symbols. Contrast this with brute force ML estimation, which is exponential
in the numberof transmitted symbols.

The Viterbi algorithm is often simplified further in practical implementa-
tions. For true ME decoding, we must wait until the terminal state to make

bit decisions, which can be cumbersomein terms of both decoding delay and
memory (we need to keep track of S$ surviving information sequences) for
long information sequences. However, we can take advantage ofthe factthat
the survivors at time k typically have merged at some point in the past, and
make hard decisions on the bits corresponding to this common section with
the confidence that this section must be part of the ML solution. In practice,
we may impose a hard constraint on the decoding delay d and say that, if
the Viterbi algorithm is at time step k, then we must make hard decisions on
all information bits prior to time step & —d. If the survivors at time k have
not merged by time step k — d, therefore, we must employ heuristic rules for
making bit decisions: for example, we may make decisions prior to k —d
corresponding to the survivor with the best metric at time k. Alternatively,
some form of majority logic, or weighted majority logic, may be used to
combine the information contained in all survivors at time k.

General applicability of the Viterbi algorithm The Viterbi algorithm
applies wheneverthere is an additive metric that depends only on the current
time and the state transition, and is an example of dynamic programming. In
the case of BPSK transmission over the AWGN channel, it is easy to see,
for example, how the Viterbi algorithm applies if we quantize the channel
outputs. Referring back to (7.5), suppose that we pass back to the decoder
the quantized observation r[k] = Q(z[k]), where Q is a memoryless transfor-
mation. An example of this is hard decisions on the codebits c,[k]; that is
r[k] = (, [A], ¢,[k]), where

elk] = Lipgeos 2= 1,2.

Regardless of the choice of 2, we can characterize the equivalent discrete
memoryless channel p(r[k]|e[k]) that it induces. By the independenceof the
noise at different time units, we can write the ML decoding metric in terms
of maximizing the log likelihood ratio,

Y log p(rfklle[k)), (7.7)
k

over all possible codewords ¢ (or equivalently, information sequences u).
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As discussed in Problem 7.7, ML decoding for the BSC induced by hard
decisions for BPSK over an AWGNchannel takes a particularly simple and
intuitive form, minimizing the Hamming distance between the hard decision
estimate and the codewords.

7.1.4 Performance analysis of ML decoding

We develop a general framework for performanceanalysis, rather than consid-
ering a code with a specific structure. Let c = {c[i]} denote a binary codeword
in C, the set of all possible codewords. Let s = {s,} denote the BPSK signal
corresponding to it. Thus,

sli) = VE(-1)".

Wefirst analyze the performance of ML decoding with channel outputs
directly available to the decoder (i.e., with unquantized soft decisions). We
then note that the same methods apply when the decoder only has access to

quantized channel outputs.
The first step is to determine the pairwise error probability, or the proba-

bility that, given that c, is the transmitted codeword, the ML decoder outputs
a different codeword c,. We know that, over an AWGNchannel, this prob-
ability is determined by the Euclidean distance between the BPSKsignals s,
and s, corresponding to these two codewords. Now, s,[i] — s,{i] =+2./E, if
ca[i] 4 c, [i]. Let dy(e,,¢)) denote the Hamming distance between c, and cy,
which is defined as the numberofbits in which they differ. We can also write

the Hamming distance as w{c, —¢,), the weight of the difference between
the two codewords (computed, of course, using binary arithmetic, so that
C, —C, =e, +¢,). Thus,

|S. —s,|[? = » |so[é] — 1 [i]? =4E,w(c, —¢,) = 4E,R w(e) —¢)),

where R is the code rate. We can now write the pairwise error probability of

decoding to ¢, when ¢, is sent as

ro}0(lAl) <o( BEBE), ag
Condition on sending the all-zero codeword Now, note that a convolu-

tional code is a linear code, in that, if c, and c, are codewords, then so is
C, —¢€; =e, +¢,. We can therefore subtract out ¢, from the code, leaving
it (and hence the relative geometry of the corresponding BPSK modulated
signal set) unchanged. This means that we can condition, without loss of
generality, on the all-zero codeword being sent. Let us therefore set c, equal
to the all-zero codeword, and set c, = c.

We wish to estimate P,(k), the probability that the kth information bit,
u[k] is decoded incorrectly. Since we have sent the all-zero codeword, the
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correct information sequenceis the all-zero sequence. Thus, to make an error
in the kth information bit, the ML decoder must output a codeword such that
u[k] = 1. Let C[k] denote the set of all such codewords:

C[k] = {ee C: u[k] = 1}.

Clearly,

P,(k) = P[ML decoder chooses some c € C,].

From (7.8), we see that the pairwise error probability that a codeword c has
a higher likelihood than the all-zero codeword, when the all-zero codeword
is sent, is given by Q(./(2E,Rw(c)/No)). Since this depends only on the
weight of ¢, it is convenient to define

[2B,Rxq(x) =Q ( 2) (7.9)
as the pairwise error probability for a codeword of weight x relative to the
all-zero codeword.

Westart with a loose union bound on the bit error probability

Pk) < 2! (we). (7.10)
¢ € Clk]

We now want to prune the terms in (7.10) to obtain an “intelligent union
bound.” To do this, consider Figure 7.6, which shows a simplified schematic

of the ML codeword ¢ and the transmitted all-zero codeword as paths through
a trellis. Any nonzero codeword must diverge from the all-zero codeword on
the codetrellis at some point. Such a codeword may or may not remerge with
the all-zero codeword at some later point, and in general, may diverge and

m k n All-zero codeword

ML codewordhavinganerror in information bit k must diverge from
all-zero codeword around k

ML codeword may diverge and remergefrom all-zero codeword several times

m k n All-zero codeword

Simple codeword coinciding with ML codeword between mand n
Has better metric than all-zero codeword, and hasanerrorin information bit k

Figure 7.6 Transmitted all-zero codeword and ML codewordas paths on thetrellis. In the scenario
depicted, the input bit u[k] corresponding to the ML codewordis incorrect. | also show the simple
codeword which coincides with the ML codeword whereit diverges from the all-zero path aroundbit k,
and coincides with the all-zero codeword elsewhere.
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remerge several times. We define a simple codeword as a nonzero codeword

that, if it remerges with the all-zero codeword, neverdiverges again. Let C,[k]
denote all simple codewords that belong to C[4]; that is,

C,[k] = {ce eC: u[k] = 1, ¢ simple}.

Wenowstate and prove that the union bound (7.10) can be prunedto include
only simple codewords.

Proposition 7.1.1 (Intelligent union bound using simple codewords) The
probability of bit error is bounded as

PAk)< DY que). (7.11)
c&C,[k]

Proof Consider the scenario depicted in Figure 7.6. Since the ML codeword
and the all-zero codeword have the same state at times m and n, by the

principle of optimality, the sum of the branch metrics between times m and
n mustbe strictly greater for the ML path. Thatis,

A(m:n, Uy) > AG: n, 9),

where Uy, denotes the information sequence corresponding to the ML
codeword. Thus, the accumulated metric for the simple codeword which
coincides with the ML codeword between m and n, and with the all-zero path
elsewhere, must be bigger than that of the all-zero path, since the difference
in their metrics is precisely the difference accumulated between m and n,
given by

A(m:n,u)—A(m:n, 9) > 0.

This shows that the ML codeword ce C[k] if and only if there is some simple
codeword ¢<C,[k] which has a better metric than the all-zero codeword. A
union bound on the latter event is given by

P.(k)< >> Pie has better metric than 0/0 sent] = >° g(w(c)),
cE Clk} cE Ck]

which proves the desired result. O

Wenow want to count simple codewordsefficiently for computing the above
bound. To this end, we use the concept of error event, defined via thetrellis
representation of the code.

Definition 7.1.1 (Error event) An error event c is a simple codeword which
diverges on the trellis from the all-zero codeword for the first time at time
zero.
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Figure 7.7 An error event for
our running example ofa
nonrecursive, nonsystematic
rate 1/2 code with generator
[7,5].

Channel coding

 
1/11 1/01 0/01 0/11

(Inputs and outputs along the path shownin bold)

Input weight i=2

Output weight w=6

For the rate 1/2 nonrecursive, nonsystematic code [7,5] in Section 7.1.1 that
serves as my running example, Figure 7.7 shows an error event marked as
a path in bold through the trellis. Note that the error event is a nonzero
codeword that diverges from the all-zero path at time zero, and remerges four
time units later (never to diverge again).

Let E denote the set of error events. Suppose that a given codeword
céE has output weight x and input weight i. That is, the input sequence
that generates c has i nonzero elements, and the codeword ¢ has x nonzero
elements. Then we can translate ¢to create i simple error events in C,[k], by
lining up each of the nonzero inputbits in turn with u[k]. The corresponding
pairwise error probability g(x) depends only on the output weight w. Now,
suppose there are A(i, x) error events with input weight i and output weight
x. We can now rewrite the bound (7.11) as follows:

Union bound using error event weight enumeration

P.(k) < >> IAG, x) g(x). (7.12)
i=] x=1

If {AG, x)}, the weight enumerator function of the code, is known, then the
preceding bound can be directly computed, truncating the infinite summations
in i and x at moderate values, exploiting the rapid decay of the Q function
with its argument.

Wecan also use a “nearest neighbor” approximation, in which we only

consider the minimum weight codewordsin the preceding sum. The minimum
possible weight for a nonzero codeword is called the free distance of the
code, d;... That is,

dire == Min{x > 0: A(i, x) > O for some i}.
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Figure 7.8 State diagram for
tunning example. Each
transition is labeled with the

input and outputbits, as well
as a branch gain /°X°, where
a is the input weight, and b
the output weight.

7.1 Binary convolutional codes

Then the nearest neighbor approximation is given by

Pk) © Q ( [eae Dial, dee): (7.13)
This provides information on the high SNR asymptotics of the error prob-
ability. The exponent of decay of error probability with E,,/Np relative to
uncoded BPSKis better by a factor of Rd,,., which is termed the coding
gain (typically expressed in dB). Of course, this provides only coarse insight;
convolutional codes are typically used at low enough SNRthat it is neces-
sary to go beyond the nearest neighbors approximation to estimate the error
probability accurately.

We now show how A(i, x) can be computed using the transfer function
method. Wealso slightly loosen the bound (7.12) to get a more explicit form
that can be computed using the transfer function method without truncation
of the summations in i and x.

Transfer function Define the transfer function

TU, X) = °° AG, xX". (7.14)i=l x=]

This transfer function can be computed using a state diagram representation
for the convolutional code. We illustrate this procedure using our running
example, the nonrecursive, nonsystematic encoder depicted in Figure 7.1 in
Section 7.1.1. The state diagram is depicted in Figure 7.8. We start from the
all-zero state START and endat the all-zero state END, but the states in

betweenare all nonzero. Thus, a path from START to ENDisan error event, or

a codeword that diverges from the all-zero codeword forthe first time at time
zero, and does not diverge again once it remerges with the all-zero codeword.

By considering all possible paths from START to END, we can enumerate
all possible error events. If a state transition corresponds to a nonzero input
bits and b nonzero outputbits, then the branch gain forthat transition is I“X°.
For an error event of input weight i and output weight x, the product of all
branch gains along the path equals /'X*. Thus, summing overall possible
paths gives usthe transfer function TU, X) between START and END.
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The transfer function for our running example equals

1X5
TU, X) =———. 7.1(.) =I hix (7.15)

A formal expansion yields

TUL, X) = 1X? So 2*TFX*, (7.16)
k=0

Comparing the coefficients of terms of the form J'X*, we can now read off
A(i, x), and then compute (7.12). We can also see that the free distance die. =
5, corresponding to the smallest power of X that appears in (7.16). Thus, the
coding gain Rd, relative to uncoded BPSK is 10log,)(5/2) ~ 4 dB. Note
that the running example is meantto illustrate basic concepts, and that better
coding gains can be obtained at the samerate by increasing the code memory
(with a corresponding penalty in terms of decoding complexity, which is
proportional to the numberoftrellis states).

Transfer function bound We now develop a transfer function based bound

that can be computed without truncating the sum over paths from START to
END. Using the bound Q(x) < 4e~*’”in (7.9), we have

q(x) < ab’, (7.17)

where a= 1/2 andb= et, Plugging into (7.12), we get the slightly weaker
bound

P.(k) < ay SoiAti, x)b*. (7.18)
i=1 x=]

From (7.14), we see that

<rU, X) = OY AG, wilX*.i=] x=]

Wecan now rewrite (7.18) as follows:

Transfer function bound

a

P(k) <aaX)|ra1,x=0 (7.19)

(a =1/2, b=e"™ forsoft decisions).
For our running example, we can evaluate the transfer function bound

(7.19) using (7.15) to get

(7.20)
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For moderately high SNR,this is close to the nearest neighbors (7.13), which
is given by

5E,\ 1 _35P.~O{ [—*} <x,0( (58) <3
where we have used (7.16) to infer that dy... =5, A(i, dpe.) = 1 for i=1, and
AG, diee) = 0 for i> 1.

7.1.5 Performance analysis for quantized observations

Wenoted in Section 7.1.3 that the Viterbi algorithm applies in great generality,
and can be used in particular for ML decoding using quantized observations.
We now show that the performance analysis methods we have discussed
are also directly applicable in this setting. To see this, consider a single
coded bit c sent using BPSK over an AWGN channel. The corresponding
real-valued received sample is z = ./E,(—1)° +N, where N ~ N(0,¢7). A
quantized version r = Q(z) is then sent up to the decoder. The equivalent
discrete memoryless channel hastransition densities p(r|1) and p(r|0). When
running the Viterbi algorithm to maximize the log likelihood, the branch
metric corresponding to r is log p(r]0) for a trellis branch with c =0, and
log p(r|1) for a trellis branch with c = 1.

The quantized observations inherit the symmetry of the noise and the signal
around the origin, as long as the quantizer is symmetric. That is, p(r|0) =
p(—r|1) for a symmetric quantizer. Under this condition, it can be shown
with a little thought that there is no loss of generality in assuming in our
performance analysis that the all-zero codewordis sent.

Next, we discuss computation of pairwise error probabilities. A given
nonzero codeword ¢ is more likely than the all-zero codeword if

Dlog p(nle) > Dogptr),

where c; denotes the ith code symbol, and r, the corresponding quantized
observation. Canceling the common terms corresponding to c, = 0, we see
that ¢ is more likely than the all-zero codeword if

{1> log PA" ) > 0.
iej=1 p(r,|0)

if c has weight x, then there are x terms in the summation above. These

terms are independent and identically distributed, conditioned on the all-zero
codeword being sent. A typical term is of the form

1V =log pC )
p(r|0)

where, conditioned on the code bit c= 0,

r=Q(/E,+N), N~N(,o°).

 

 

(7.21)
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It is clear that the pairwise error probability depends only on the codeword
weight x, hence we denote it as before by g(x), where

q(x) = PV, +-:-+V, > 0], (7.22)

with Py denoting the distribution conditioned on zero code bits being sent.
Given the equivalent channel model, we can compute g(x) exactly.

We now note that the intelligent union bound (7.12) applies as before,
since its derivation only used the principle of optimality and the fact that the
pairwise error probability for a codeword depends only on its weight. Only
the value of g(x) depends on the specific form of quantization employed.

The transfer function bound (7.19) is also directly applicable in this more
general setting. This is because, for sums of iid. random variables as in
(7.22), we can find Chernoff bounds (see Appendix B) of the form

q(x) < ab*

for constants a > 0 and b <1. A special case of the Chernoff bound that is
useful for random variables which are log likelihood ratios, as in (7.21)is
the Bhattacharya bound, introduced in Problem 7.9, and applied in Problems
7.10 and 7.11.

Example 7.1.1 (Performance with hard decisions) Consider a BPSK

system with hard decisions. The hard decision r= ¢ = Toy where
2=./E,(—1)°+N is the noisy observation correspondingto the transmit-
ted code symbol c¢ {0, 1}, where N ~ N(0, 07). Clearly, we can model r
as the output when c is passed through an equivalent BSC with crossover
probability p = O(./(2E,,R/Np)). In Problems 7.8 and 7.10, we derive the
following upper bound on the pairwise error probability for ML decoding
over a BSC:

q(x) = 2VpU—p))’.

 
This can now be plugged into the transfer function bound to estimate the BER
with hard decisions as follows:

a

PSST, Dlerx-w (7.23)

where b = 2,/p(1—p). For large SNR, p = e7**/%, gq that
b=2,/p(1—p) © 2,/p =e"? Comparing with (7.19), where
bx eR, we see that hard decisions incur a 3dB degradation in
performance relative to soft decisions, asymptotically at high SNR (at low
SNR,the degradation is smaller — about 2 dB). However, most of this deficit
can be made up by using observations quantized using relatively few levels.
Problem 7.11 explores this commentin further detail.
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7.2 Turbo codesanditerative decoding

Wenow describe turbo codes, which employ convolutional codes as build-

ing blocks for constructing random-looking codes that perform very close
to Shannon-theoretic limits. Since the randomization leads to dependencies
among code bits that are very far apart in time, a finite state representation of
the code amenable to ML decoding using the Viterbi algorithm is infeasible.
Thus, a crucial component of this breakthrough in error correction coding
is a mechanism for suboptimal iterative decoding, in which simple decoders
for the component convolutional codes exchange information over several

iterations. The component decoders are based on the BCJR algorithm (named
in honor ofits inventors, Bahl, Cocke, Jelinek, and Raviv), which provides
an estimate of the a posteriori probability of each bit in a codeword, based on
the received signal, and taking into account the constraints imposed by the
code structure. Therefore, we first describe the BCJR algorithm in a great deal
of detail. This makes our subsequent description of turbo codes anditerative
decoding quite straightforward. We consider both parallel concatenated codes

(the original turbo codes) and serial concatenated codes (often found to yield
superior performance).

7.2.1 The BCR algorithm:soft-in, soft-out decoding

Maximum likelihood decoding using the Viterbi algorithm chooses the most
likely codeword. If all codewords are equally likely to be sent, this also
minimizes the probability of choosing the wrong codeword. In contrast, the
BCJR algorithm provides estimates of the posterior distribution of each bit in

the codeword. The method applies to both the information bits and coded bits

for all classes of convolutional codes that I have discussed so far. The major
part of the computation is in running two Viterbi-like algorithms, one forward
and one backward, through the trellis. The complexity of the BCJR algorithm
is therefore somewhat higher than that of the Viterbi algorithm. For any given
bit be {0, 1}, the output of the BCJR algorithm can be summarized by the
log likelihood ratio (LLR) L,,,(b) = log(P[b = Oly])/(P[b = 1ly]), where y
denotes the observations fed to the BCJR algorithm. Note that computation
of the posterior distribution of b requires knowledge of the prior distribution
of b, which can also be summarized in terms of an LLR L,,(b) = log(P[b =
0])/(P[b = 1]). These LLRs provide soft information regarding b, with our
confidence on our knowledge of b increasing with their magnitude (the LLR
takes value +-oo if b = 0 and value —oo if b = 1).

Webegin with an exposition of the original BCJR algorithm, followed by
a detailed discussion of its logarithmic version, which is preferred in practice
because of its numerical stability. The logarithmic implementation also pro-
vides more insight into the nature of the different kinds of information being
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used by the BCJR algorithm. This is important in our later discussion of how
to use the BCJR algorithm as a building block for iterative decoding.

Notation: BPSK version of a bit Since we focus on BPSK modulation,

it is convenient to define for any bit b taking values in {0,1} its BPSK
counterpart,

b=(-1)’, (7.24)

taking values in {+1, —1}, with 0 mapped to +1 and 1 to —1. Thus,

P[b =0] Pib= +41]
L(b) = log ———=_ = log —-——_-. 7.250) Pb=1]  Pib=—1] (725)

After running the algorithm, we can make a maximumaposteriori probability
(MAP) hard decision for b, if we choose to, as follows:

i _ | 0, L(b) > 0,MAP | 1, L(b) <0,

with ties broken arbitrarily. From the theory of hypothesis testing, we know
that such MAP decoding minimizes the probability of error, so that the BCJR
algorithm can be used to implementthe bitwise minimum probability of error
(MPE)rule. However,this in itself does notjustify the additional complexity
relative to the Viterbi algorithm: for a typical convolutional code, the BER

obtained using ML decoding is almost as good as that obtained using MAP

decoding. This is why the BCJR algorithm, while invented in 1974, did not
have a major impact on the practice of decoding until the invention of turbo
codes in 1993. We now know that the true value of the BCJR algorithm,

and of a number of its suboptimal, lower-complexity, variants, lies in their
ability to accept soft inputs and produce soft outputs. Interchange of soft
information between such soft-in, soft-out (SISO) modules is fundamentalto
iterative decoding.

As a running example in this section, we consider the rate 1/2 RSC code
with generator [7, 5] introduced earlier. A trellis section for this code is shown
in Figure 7.9.

The fundamental quantity to be computed by the BCIJR algorithm is the

posterior probability of a given branch of the trellis being traversed by

the transmitted codeword, given the received signal and the priors. Given the
posterior probabilities of all allowable branches in a trellis section, we can
compute posterior probabilities for the bits associated with these branches.

For example, we see from Figure 7.9 that the input bit u, = 0 corresponds
to exactly four of the eight branches in the trellis section, so the posterior
probability that u, = 0 can be written as:

Plu, = Oly] = Pls, = 00, 5,41 = OOly] + Pls, = 01, 5,4; = 10ly]

+P[s;, = 10, p41 = Uy] + Pls, = 11, 5,4, = Olly].

(7.26)
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Figure 7.9 Shift register
implementation and trellis
section for our running

example of a rate 1/2 recursive
systematic code.

7.2. Turbo codesanditerative decoding

Output u,v,

 
Similarly, the posterior probability that u, = 1 can be obtained by summing
up the posterior probability of the other four branchesin the trellis section:

Plu, = lly]= Pls, = 00, 5,,, = 10ly] + Pls, = 01, 5,41 = 00ly]

+Pls, = 10, 54, = Olly] + Pls, = 11, 5,4; = 11|ly].

(7.27)

The posterior probability Pls, = A, 5,., = Bly] of a branch A > B is propor-
tional to the joint probability Pls, =A, s,,., = B, y], which is more convenient
to compute. Note that we have abused notation in denoting this as a proba-
bility: y is often a random vector with continuous-valued components (e.g.,
the output of an AWGN channel with BPSK modulation), so that this “joint
probability” is really a mixture of a probability mass function and a prob-
ability density function. That is, we get the value one when we sum over

branches and integrate over y. However, since we are interested in posterior
distributions conditioned on y, we never need to integrate out y. We therefore
do not need to be careful about this issue. On the other hand, the posterior
probabilities of all branches in a trellis section do add up to one. Since the
posterior probability of a branch is proportional to the joint probability, this
gives us the normalization condition that we need. That is, for any state
transition A > B,

Pls, = A, 5,4, = Bly] = &, Pls, =A, 5,4; =B,y], (7.28)

where &, is a normalization constant such that the posterior probabilities of
all branches in the kth trellis section sum up to one:

é 1kTOa
eyeseas Pls, = s', Shad = 8, y]

where only the eight branches s’ > s that are feasible under the code con-

straints appear in the summation above. For example,the transition 10 > 00
does not appear, since it is not permitted by the code constraints in the code
trellis.

Constellation Exhibit 2003

Page 329 of 395



Constellation Exhibit 2003
Page 330 of 395

314 Channel coding

Explicit computation of the normalization constant é, is often not required
(e.g., if we are interested in LLRs). For example, if we compute the output
LLRof u, from (7.26) and (7.27), and plug in (7.28), we see that &, cancels
out and we get

Plu, = Oly]

Plu, = ly]

= Jog (F = 00, s,,; = 00, y] + Pls, = 01, 5,,, = 10, y]Pls, = 00, 5,4, = 10, y]+ Pls, = 01, 5, = 00, y]

+P[s, = 10, 54) = 11, y]+ Pls, = 11, 44) = 01, y]+P[s, = 10, 54, = Ol, y]+ Pls, = 11, y= TI)
Let us now express this in more compact notation. Denote by Up and U, the
branchesin the trellis section corresponding to u, = 0 and u, = 1, respectively,
given by

Lou (uz) = log

Up = {(8'1 5) 8, = 8, Spy, = 5, ty = O},
U, = {(8', 5) 5S, = 5", S44 = 5, Uy, = 1}.

In our example, we have

Up = {(00, 00), (01, 10), (10, 11), (11, 01},
U, = {(00,10), (01, 00), (10, 01), (11, 11}.

(Since we consider a time-invarianttrellis, the sets Uy and U, do not depend
on k. However, the method of computing bit LLRs from branch posteriors
applies just as well to time-varying trellises.)

Writing

(7.29)

PCS, S,Y) = PI = 5, Sea = 5,9);

we can now provide bit LLRsas the output of the BCJR algorithm, as follows.

Log likelihood ratio computation

Ys) € Uy Pes’ 5, 4Mw.eu, Pel’, sy) J
This method applies to any bit associated with a given trellis section. For

example, the LLR for the parity bit v, output by the BCIJR algorithm is
computed by partitioning the branches according to the valueofv,:

Ls) EV P,(s', 8, 4Loney, els)
where, for our example, we see from Figure 7.9, that

Lou(Uy) = log ( (7.30)

Lou(dg) = log ( (7.31)
Vo ={(8', 5) 25, = 5", Seay = S, Vg =O}

= {(00,00), (01, 10), (10, 01), (11, 11},

V, = {(9', 5) 2 5, = 5, Spy = 5, 0, = 1}

= {(00, 10), (01, 00), (10, 11), (11, 01}.
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Wenow discuss how to compute the joint “probabilities” P,(s’, s, y). Before
doing this, let us establish some more notation. Let y, denote the received
signal corresponding to the bits sent in the kth trellis section, and let y?
denote (y,,Ya41;+++;Y,)» the received signals corresponding to trellis sec-
tions a through b. Suppose that there are K trellis sections in all, numbered

from 1 through K. Considering our rate 1/2 running example, suppose that
we use BPSK modulation over an AWGN channel, and that we feed the

unquantized channel outputs directly to the decoder. Then the received sig-
nal y, = (y,(1), y,(2)) in the kth trellis section is given by the two real-
valued samples:

y(1) = A(- 1)" +N, = A+Na
Y,(2) = A(-1)"* +N, = AD + Noi,

where N, ,, Nz, are iid. N(O, a”) noise samples, and A = ./E, =./E,/2 is
the modulating amplitude.

Applying the chain rule for joint probabilities, we can now write

(7.32)

P,(s',5,y) = Ply, =s', Spat = 8; yi Vks Yiu

= PUYpat p=.4 = SIPLY]

x Ploy= 5 Yel= STPy, = 8's yf. (7.33)

Wecan nowsimplify the preceding expression as follows. Given s,,; =, the
channel outputs y{,, are independentofthe valuesof the prior channel outputs
yé and thepriorstate s,, because the channel is memoryless, and because future
outputs of a convolutional encoder are determined completely by current
state and future inputs. Thus, we have Plyf,,|s, = s', 4; =s, yf, y,] =
Plygs1|S¢41 = 5]. Following the notationin the original exposition of the BCJR
algorithm, we define this quantity as

B,(s) = PLYet Se41 = 5]. (7.34)

The memorylessness of the channel also implies that Pls,., = 5s, y,/s, = 5’,
¥i-'] = Plsp41 = 5, Yz|5, =5'], since, given thestate at time k, the past channel
outputs do nottell us anything about the present and future states and channel
outputs. We define this quantity as

Ves", 8) = PLS= 8, Yel, = 5’). (7.35)

Finally, let us define the quantity

ay1(s') = Pls, = 5’, yz"). (7.36)

Wecan now rewrite (7.33) as follows.

Branch probability computation

P,(s', 5, ¥) = Be(s)¥e(S", 8) Oy_1(5'). (7.37)
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Note that a, 8, y do not have the interpretation of probability mass functions
over a discrete space, since all of them involve the probability density of
a possibly continuous-valued observation. Indeed, these functions can be

scaled arbitrarily (possibly differently for each k), as long as the scaling
is independent of the states. By virtue of (7.37), these scale factors get
absorbed into the joint probability P,(s’, s, y), which also does not have the

interpretation of probability mass function over a discrete space. However,
the posterior branch probabilities P,(s’, s|y) must indeed sum to one over
(s’, s), so that the arbitrary scale factors are automatically resolved using the
normalization (7.28). By the same reasoning, arbitrary (state-independent)
scale factors in a, B, y leave posterior bit probabilities and LLRs unchanged.

We now develop a forward recursion for @, in terms of a@,_,, and a
backward recursion for 6,_, in terms of B,. Let us assume that thetrellis
sections are numbered from k =0,..., K ~1, with initial all-zero state s[0] =
0. The final state s, is also terminated at 0 (although we will have occasion
to revisit this condition in the context of turbo codes).

Wecan rewrite @,(s) using the law of total probability as follows:

a, (s) = Pl5p41 = 5, yi] = Pls =S, Yi» 5 =5'], (7.38)
y

considering all possible prior states s’ (the set of states s’ that need to be
considered is restricted by code constraints, as weillustrate in an example
shortly). A typical term in the preceding summation can be rewritten as

Plspay = 5; Yi; 5 = 5] = Ply = 5, Yp, yrs 5 = 5]

= Pls= 5, yel¥t = sPlyi|, 5S, = 5'].

Now, given the present state s, = s’, the future states and observations are
independentof the past observations y‘~!, so that

PSp41 = 5, yil¥t = S) = Pls=s, yy, = 5']y,(5',5).
Wenowseethat

PlSpat = 58, Ye y=ST=y,(8, 5)a@,_1(s').

Substituting into (7.38), we get the forward recursion in compactform.

Forward recursion

a,(s) = » VWs’, S)ay_1(5'), (7.39)
sf

which is the desired forward recursion for a. If the initial state is known to
be, say, the all-zero state 0, then we would initialize the recursion with

ag(s) = {529c, s=0,

where the constant c > 0 can be chosen arbitrarily, since we only need to
know a@,(s) for any given k up to a scale factor. We often set c = 1 for
convenience,

(7.40)
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Forward recursion for running example Consider now the forward
recursion for a,(s), s= 01. Referring to Figure 7.9, we see that the two
possible valuesof prior state s’ permitted by the code constraints are s’ = 10
and s’ = 11. Wetherefore get

a,(01) = y,(10, 01)a,_,(10) + y,(11, 01)a,_, (11). (7.41)

Similarly, we can rewrite B,_,(s') using the law oftotal probability, consid-
ering all possible future states s, as follows:

BiG’) = Pye Is =s']= > Plyz: Sei = $|5, = 5". (7.42)s

A typical term in the summation above can be written as

PYG» Seat = 51, = 5] = PLYiat Ver Sear = 51S, = 5°]

= PLYi Set = 555% = 8, Ye lPlSp41 = 5, Yel, = 5’.

Given the state s,,,, the future observations yf,, are independent of past
states and observations, so that

PLYfat Set =5,5=5,Y,] = PLYfar lS = s] = B,(s).
This showsthat

Ply; » Seu = 8, = S'] = B,(s) yz (5", 8).

Substituting into (7.42), we obtain the backward recursion.

Backward recursion

By-1(8') = »B.(s)¥%(8', 5). (7.43)
Often, we set the terminal state of the encoder to bethe all-zerostate, 0, in
which casethe initial condition for the backward recursion is given by

bx) =|{
where weoften set c = 1.

0, s0,
c>0, s=0, (7.44)

 Backward recursion for running example Consider 6,_,(s’) for s’ =
11. The two possible values of next state s are 01 and 11, so that

By(11) = y,(11, 01)8,(01) + y, (11, 11)8, (11).  
While terminationin the all-zero code for a nonrecursive encoderis typically
a matter of sending several zero information bits at the end of the information

payload, for a recursive code, the terminating sequenceof bits may depend
on the payload,as illustrated next for our running example.
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Table 7.1 Terminating information bits required to
obtain s, = 00 are a function of the state s[K — 2],
as shownfor the RSC running example. 

 s[K —2] u[K ~—2] u[K -1]

00 0 0
01 1 0
10 1 1
11 0 I

Trellis termination for running example To get an all-zero terminal
state s(K) = 00, we see from Figure 7.9 that, for different values of the
state s[K —2], we need different choices of information bits u[K —2] and
u[K ~—1], as listed in Table 7.1.
 

It remains to specify the computation of y,(s’, s), which we can rewrite as

¥(s', 5) = Ply, Spt = 5|5, = 8']

= PLYAlso = 5,= S)P[Sp41 = 5|5, = 5’). (7.45)

Given the states s,,, and s,, the code output corresponding to thetrellis
section k is completely specified as c,(s', s). The probability

PlyclScr1 = 5 5 = 5'] = Ply; le,(s’, 5)]

is a function of the modulation and demodulation employed, and the channel
model(i.e., how code bits are mapped to channel symbols, how the channel
output and input are statistically related, and how thereceived signal is
processed before sending the information to the decoder). The probability
P[S,41 = 5|5, = s'] is the prior probability that the input to the decoderis such
that, starting from state s’, we transition to state s. Letting u,(s’, s) denote the
value of the input corresponding to this transition, we have

VSS 5) = PLY, Sey = 5], = 5] = Ply;le,(s’, 5) ]P[u,(s’, 5)]. (7.46)

Thus, y;, incorporates information from the priors and the channel outputs.
Note that, if prior information aboutparity bits is available, then it should
also be incorporated into y,. For the moment, we ignore this issue, but we
return to it when we consider iterative decoding of serially concatenated
convolutional codes.

 Computation of y,(s’, s) for running example Assume BPSK modula-
tion of the bits u, and v, correspondingto the kthtrellis section as in (7.32).
There is a unique mapping between the states SiSz, and the outputbits
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u,, U,. Thus, the first term in the extreme right-hand side of (7.46) can be
written as

Plyg|ug(s's 5), U¢(s', 8)] = Ply (1) lu(s’, 8)PL, (2) lap (s", 5)],

using the independence of the channel noise samples. Since the noise is
Gaussian, we get

 
 
 
 

 

  Ply, (1) |4,] = exp (—[y,(1) _ Ait,]’) :
1

2702  
 

  
 

Py, (2)|v4] = exp (—[y,(2) — Av,)..
1

/ 270"

Note that we can scale these quantities arbitrarily, as longasthe scale factor
is independentofthe states. Thus, we can discard the factor 1/,/(2707).
Further, expanding the exponent in the expression for Piy,(D|u,],
we have

  
 
  [y,(1) — A(-1)"P = y,(1) + A? —2Ay, (1)i.

Only the third term, which is a correlation between the received signal
and the hypothesized transmitted signal, is state-dependent. The other
two terms contribute state-independent multiplicative factors that can be
discarded. The same reasoning applies to the expression for Ply, (2)|v,].
Wecan therefore write

Ply (D|ag] =a exe (2)
Pix24] = nx exp (EE),

where f,, ¥, are constants that are implicitly evaluated or cancelled when
we compute posterior probabilities.

For computing the second term on the extremeright-handside of (7.46),
we note that, given s, = s’, the information bit u, uniquely defines the
next state s,,, = s. Thus, we have

  
  
 

(7.47)

 
  

  
P(u, =0), (s',5) € Up,Pisces = sls, = 9]=Pln(s9)={ t=OEM crag)  Using (7.47) and (7.48), we can now write down an expression for ¥(s', 5)

as follows:

(9 = Ler (SOA+Al) Pad (7.48)  where the dependenceofthe bits on (s', s) has been suppressed from the
notation.    
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We can now summarize the BCJR algorithm as follows.

Summary of BCJR algorithm

Step 1 Using the received signal and the priors, compute y,(s’, s) for all k,
and forall (s’, s) allowed by the code constraints.

Step 2 Run the forward recursion (7.39) and the backward recursion (7.43),
scaling the outputs at any given time in state-independentfashion as necessary
to avoid overflow or underflow.

Step 3 Compute the LLRsof the bits of interest. Substituting (7.37) into
(7.30), we get

e.g€vpMes)NSsDBO)Let.s) EU, %e-1 (s')y,(s’,| . (7.50)
(A similar equation holds for v,, with U, replaced by V,, i= 0, 1.)

Lou (Ux) = log (
Hard decisions, if needed, are made based on the sign of the LLRs: for a

generic bit b, we make the hard decision

» {0, L(b)>0,
~|1, L(b) <0.

We now discuss the logarithmic implementation of the BCJR algorithm,
which is not only computationally more stable, but also reveals more clearly
the role of the various sources of soft information.

(7.51)

7.2.2 Logarithmic BCR algorithm

Wepropagate the log of the intermediate variables a, 8 and y, defined as

a,(s) = log a, (s),
b,(s) = log B, (5),
8 (5) = logy, (5).

Wecan nowrewrite a typical forward recursion (7.41) for our running example
as follows:

a,{00) _ log(e801)+441 (10) + et 1,01)+ax(1) | (7.52)

To obtain a more compact notation, as well as to better understand the nature
of the preceding computation,it is convenient to define a new function, max",
as follows.

The max” operation For real numbers x,,...,x,, we define

max*(x;,X2,...,%,) =log(e*! +e%4+---,e%), (7.53)

For two arguments, the max* operation can be rewritten as

max*(x, y) = max(x, y)+log(1+e7?™), (7.54)
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This relation is easy to see by considering x > y and y > x separately. For
x>Yy,

max*(x, y) = log(e*(1+e"*™))

loge* +log ((1+e-°™))

= x+log((Ite&™)),
|

while for y > x, we similarly obtain

max"(x, y) = y+log((It+e°-)),
The second term in (7.54) has a small range, from 0 to log2. It can therefore
be computed efficiently using a look-up table. Thus, the max* operation can
be viewed as a maximization operation together with a correction term.

Properties ofmax* Welist below two useful properties ofthe max* operation.

Associativity The max* operation can be easily shownto be associative, so

that its efficient computation for two arguments can be applied successively
to evaluate it for multiple arguments:

max*(x, y, Z) = max* (max*(x, y), z). (7.55)

Translation of arguments It is also easy to check that common additive

constants in the arguments of max* can be pulled out. That is, for any real
numberc,

max*(x,+¢, x) +¢,...,%, te) = c+ max" (x,,%,.-.5%,)+ (7.56)

Wecan now rewrite the computation (7.52) as

a, (00) = max*{g,(10, 01) +a,_,(10), g,(11, 01) +a,_,(1 1}.

Thus, the forward recursion is analogous to the Viterbi algorithm, in that
we add a branch metric g, to the accumulated metric a,_, for the different
branches entering the state 00. However, instead of then picking the maximum
from among the various branches, we employ the max* operation. Similarly,
the backward recursion is a Viterbi algorithm running backward through the
trellis, with maximum replaced by max*. If we drop the correction term in
(7.54) and approximate max* by max, the recursions reduce to the standard
Viterbi algorithm.

Wenowspecify computation of the logarithmic version of y,. From (7.46),
we can write

&(5', 5) = log Ply, |c,(s’, s)] + log P[u,(s’, s)].

For our running example, we can write a more explicit expression, based on
(7.49) as follows:

“(itp + ye(2ig] + log Plug(s',s)]. (7.57)als s)=
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To express the role of priors in a convenient fashion, we now derive a
convenient relation between LLR and log probabilities. For a generic bit }
taking values in {0, 1}, the LLR L is given by

P[b=0]
L=log ———.,,°8 bb = 1]

from which wecaninfer that

et el/2

Plb=0]= SF = Gaper’
Similarly,

1 =L/2
Pib=1]= =e+] el/+e-LA’

Taking logarithms, we have

_fL/2+log(e4? +4”),log P(b) a | —L/2+log(e4/? +e-4/?),
This can be summarized as

log P(b) = bL/2. +log(e’”? +e7/”), (7.58)

where b is the BPSKversion of b. The second term on the right-hand side is
the same for both b=0 and b=1in the expressions above. Thus, it can be
discarded as a state-independent constant when it appears in quantities such
as g,(s’, S).

The channel information can also be conveniently expressed in terms of an
LLR. Suppose that y is a channel observation corresponding to a transmitted
bit b. Assuming uniform priors for b, the LLR for b that we can compute
from the observation is as follows:

plylb = 0]
Lehane (D) = log Plylb= .

For BPSKsignaling over an AWGNchannel, we have

y= Ab+N,

where N ~ N(O, o”), from whichit is easy to show that
2A

Lenanet (8) = re (7.59)
For our running example, we have

2A 2A

Lcpannel Ug) = gre) ’ cchannel (Ux) = Gute). (7.60)
Returning to (7.57), suppose that the prior information for u, is specified in
the form of an input LLR L,,(u,). We can replace the prior term log P(u;)
in (7.57) by Lin(u,)/2, using the first term in (7.58). Further, we use the
channel LLRs(7.60) to express the information obtained from the channel.
We can now rewrite (7.57) as

8x(5', 8) = tty [L;, (uy) + Lechannet (Uy) ] /2 + DLchannei (Uz) /2. (7.61)
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If prior information is available aboutthe parity bit v, (e.g., from another
component decoderin aniteratively decoded turbo code), then weincorporate
it into (7.61) as follows:

& (s', Sy) = iy [Lin (Uy) + Lepannet Ux)| /2+%, [Zin (d,) + Levannet (Y;)] /2. (7.62)

Wenow turn to the computation of the output LLR fora given information
bit u,. We transform (7.50) to logarithmic form to get

Lou (Uy) = nas(te (s') +8, (s's) +b, ()}
- manyait (3) +.8:(s's) +b, (s)}.

(7.63)

We now write this in a form that makes transparent the roles played by
different sources of information about u,. Specializing to our running example
for concreteness, we rewrite (7.62) in more detail:

[Lin (Ug) + Lehannet (Ux) ] /2 + 0, [Lin (0,)

g (s' 5) — + Lenannet (Uy) ] /2, (s‘s) € U;
mw ~ [Lin (u;) + Lehane Ux) | /2 + v, [Lin (v,)

+ Lerannes (Ux) | /2, (s‘s) € U, >

since u, = +1 (u, =0) for (s's) € Up, and #, = —1 (u, = 1) for (s’s) € U;. The
commoncontribution due to the input and channel LLRsfor u, can therefore
be pulled out of the max* operations in (7.63), and we get

Leone (Uy) = Lin (u;) + Lehannet (Ux) + Logie (Ux)» (7.64)

where we define the code LLR Lyoge(uj,) as

Decode (Uy) = ( max’ {4g_1(8') + Oy [Lin (0g) + Lepannet (¥y) 1/2 + by (5)}Sy 0

~( max {ay_1 (8!) + Dg[Lin(0;) + Lehannet (Ue)]/2 + by (5)} .5S, 1

This is the information obtained about u, from the prior and channel informa-
tion about otherbits, invoking the code constraints relating u, to these bits.

Equation (7.64) shows that the output LLR is a sum of three LLRs: the
input(or prior) LLR, the channel LLR, and the code LLR. We emphasizethat
the code LLR for u, does not depend on the input and channel LLRsfor u,.
The quantity a,_,(s’) summarizes information from bits associated withtrellis
sections before time k, and the quantity b,(s) summarizes information from
bits associated with trellis sections after time k. The remaining information
in Leoge(u,) comes from the prior and channel information regarding other
bits in the kth trellis section (in our example, this correspondsto L,,(v,) and
Leenannel (Uz) ):
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Weare now ready to summarize the logarithmic BCJR algorithm.

Step 0 (Input LLRs) Express prior information,if any, in the form of input
LLRs L,,(b). If no prior information is available for bit b, then set L;,(b) = 0.

Step I (Channel LLRs) Use the received signal to compute Lipanne(b) for
all bits sent over the channel. For BPSK modulation over the AWGN

channel with received signal y = AD+N, N ~ N(O, 07), we have
cechannes (8) = 2Ay/o”.

Step 2 (Branch gains) Compute the branch gains g,(s’, s) using the prior and
channel informationfor all bits associated with that branch, adding terms of
the form bL(b)/2. For our running example,

8x(5', 8) = Wy [Lin (Ug) + Lepannet (Ue) 1/2 + 5 [Lin (04) + Lenannes (Y%)]/2-

Step 3 (Forward and backward recursions) Run Viterbi-like algorithms for-
ward and backward, using max* instead of maximization.

4, (s) = max"{a,_,(s') + 8; (s', 5)}-

(Initial condition: ap(s) = —C, s #0 and a)(0) = 0, where C > 0 is a large
positive number.)

bya (s') = max"{b, (s) + 2:(s', 5)}-

(Initial condition: by(s) = —C, s £0 and by(0) =0, where C > 0 is a large
positive number.)

Step 4 (Output LLRs and hard decisions) Compute output LLRs for eachbit
of interest as

Lou (b) = Lin (b) + Lchannet (2) + Licode (d),

where L,.g.(b) is a summary of prior and channel information for bits other
than , using the code constraints. For my running example, I have

Leode (Uy) = maxant (8!) + B,[Lin (0g) + Lenannet (Y%)]/2 +b, (5)}a8, 0

— manyla (8!) + [Lin (_) + Lehannet (04) ]/2 + b;(s)},3; 1

Lode (U4) = ( max"{a.-1 (8') + [Lin (Ug) + Lehannes Ux)1/2 + b,(5)}ss 0

~ max"{4x1 (8!) + Mg [Lin(Uy,) + Lehannet Ue)1/2 + 2, (5)}-S45 1

Once output LLRs have been computed, hard decisions are obtained using
b= 114.(6) <0"
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Note on Step 3 In case the trellis is not terminated in the all-zero state
(or some other fixed state), then the initial condition stated earlier for the
backward recursion need notbesatisfied, In this case, one practical approach
is to use the result of the forward recursion as an initial condition for the
backward recursion (e.g., By (s) = ay(s)).

7.2.3 Turbo constructions from convolutional codes

We know from Shannon theory that random coding can be used to attain
capacity. However, optimum (e.g., ML or MPE) decoding of random codes
with no structure is computationally infeasible, unlike, for example, Viterbi or
BCIJR decoding for convolutional codesthat can be describedbyatrellis with
a manageable numberofstates. Thus, the basic contradiction in coding theory
prior to the invention of turbo codes was that, while random codes are known

to be good,all known codes were highly structured and “not good”(i.e., far
from Shannon-theoretic limits). Turbo codes avoid this dilemmaby using long
interleavers to obtain a random-looking code based onstructured component
codes, and then exploiting the structure of the component codes to obtain
a very effective suboptimal iterative decoding algorithm. For concatenated
convolutional codes, iterative decoding may involve information exchange
between two or more decoders running the BCJRalgorithm, or approximations
thereof. A given decoder sends another decoder extrinsic information that is

approximately independentof the information available to the second decoder,
and that serves as a prior for the second decoder. For example, if Decoder
1 sends Decoder 2 the LLR for a given bit b, this becomes L,,(b) for
Decoder 2. Decoder 2 then applies the BCJR algorithm to compute L,,,,(b) =
Lin(d) + Lehammet(P) + Leoae(b). However, it does not send L,.(b) back to
Decoder1, since it includes L,,(b), the information that came from Decoder
1. The extrinsic information that Decoder 2 sends back to Decoder 1 will

either be Lepanne (0) + Leoge(b) (if Decoder 1 does not have direct access to
the channel observation regardingbit b), or L.,4.(b) (if Decoder 1 does have
access to the same channelinformation regarding bit b that Decoder 2 does).
Weclarify these concepts in the context of two turbo constructions built from

simple convolutional component codes: parallel concatenation (the original
turbo codes) and serial concatenation.

Parallel concatenated codes Parallel concatenation of convolutional codes

is depicted in Figure 7.10. An information sequence u is fed into a convo-
lutional encoder, Encoder 1. To get good performance, it turns out that the
encoder should be chosen to be recursive. We employ our recursive Sys-
tematic rate 1/2 code in Figure 7.9 as a running example. The information
sequence is then permuted and fed to another convolutional encoder, Encoder
2. Encoders 1 and 2 can be, and often are, chosen to be identical. The infor-
mation sequence and the two parity sequences are then modulated and sent
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Figure 7.10 Encoder and
decoderfor a parallel
concatenated turbo code.

Channel coding
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Liglu) = Looge(u) Extrinsic information sent to Decoder 2 

y(1) Decoder1 £
(BCJR)

y(3)

through the channel (we use BPSK over an AWGNchannel as a running
example). Thus, if the constituent encodersare rate 1/2, then the overall turbo
code thus obtained is of rate 1/3. A higher rate can be achieved using the
same construction simply by not transmitting some of the bits generated by
the encoders. This procedure is referred to as puncturing. Note that a punc-
tured convolutional code can be decoded in the same manner as one without

puncturing, by interpreting the bits not sent as erasures (set Lohannel(0) = 0 in
the logarithmic BCJR algorithm). For simplicity of notation, however, we do
not consider puncturing in our discussion here.

In the iterative decoding depicted in Figure 7.10. both decoders see the
channel output y(1) for the information sequence. Decoder 1 sees the channel
output y(2) for the parity sequence for Encoder 1, while Decoder 2 sees the
channel output y(3) for the parity sequence from Encoder 2. The decoders
exchange information aboutthe information sequence u.

For a typical information bit u, the two decoders function as follows.

Channel LLRs These are computed as in the standard BCJR algorithm for
both information and parity bits. For example,for a bit b sent using BPSK over
AWGN,we have Lehane (b) = 2Ay/a”, where y= Ab+N, N ~ N(O, 0”).

Decoder 1 Operates using channel outputs y(1) and y(2), and extrinsic
information from Decoder 2.

Step I Receive extrinsic information from Decoder 2 regarding the LLRs of
informationbits. Use these as L,,(u) for BCJR algorithm (set L,,(u) = 0 for
first iteration). Set L,,(v) =0 forparity bits.
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Step 2 Run forward and backward recursions.

Step 3 Compute L,oge(u) for each information bit u. Feed L,,3.(u) back as
extrinsic information to Decoder 2 (note that L,,;.(u) does not depend on
Lin(u) OF Ecnannes (4), and henceis not directly available to Decoder2).

Decoder 2 Operation is identical to that of Decoder 1, except that it works
with the permuted information sequence, and with the received signals y(1)
(permuted) and y(3).

Iteration and termination Decoders 1 and 2 interchange information in
this fashion until some termination condition is satisfied (e.g., a maximum
numberof iterations is reached, or the LLRs have large enough magnitude,
or a CRC check is satisfied). Then they make hard decisions based on
Loy (U) = Lin (4) + Lehannet (4) + Leode(#) for each information bit based on the
output of Decoder1.

Serial concatenated codes Serial concatenation of convolutional codes is

shown in Figure 7.11. The output from the first convolutional encoder is
interleaved and then fed as input to a second convolutional encoder. The
output from the second encoder is then modulated and transmitted over the
channel.

In the iterative decoding method depicted in Figure 7.11, only Decoder 2
sees the channel outputs. Thus, extrinsic information sent by Decoder 2 is
given by Licge + Lehane» Since Decoder 1 does not have access to the channel.
Decoder 1 employs this extrinsic information to compute L,,,., and sends it

Figure 7.11 Encoder and back to Decoder 2 as extrinsic information. The final decisions are based on
decoder for a serial the output LLRs L,,, from Decoder 1, since the information sequenceis theconcatenated turbo code.

 
  
 
 

. . 2
Information bits Interleaver u?) Channel

a) Encoder1 Encoder 2 and
u=U modulator] Decoder 
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input to Encoder 1. Note that L;,(u“) = 0 if the outer code is nonsystematic,
since the extrinsic information available to the outer decoderis regarding the
output bits of the outer code. Thus, for a nonsystematic outer code, the only
information extracted regarding the input bits uis L.4.(u).

7.2.4 The BER performanceof turbo codes

Figure 7.12 Bit error rate
for a rate 1/3 parallel
concatenated turbo code

obtained by concatenating two
identical rate 1/2 [7,5]
convolutional codes. The block

length is 2" = 16000.

Figure 7.12 shows the BER for a rate 1/3 parallel concatenated turbo code.
The component convolutional code is our familiar rate 1/2 convolutional code
with generator [7,5]. Despite the simplicity of this code (each component
decoder employsonly fourstates), parallel concatenation gets to within 1 dB
of the Shannon limit at a BER of 10~*, as shown in Figure 7.12. The steep
decrease in BER is termed the “waterfall” region. As the BER gets smaller
(not shownin the figure), we eventually hit an “error floor” region (not evident
from the figure) where the decrease in BER becomesless steep. Turbo code
design requires an understanding of how codeconstruction impacts the SNR
threshold for the waterfall region and the BER floor. As shown in Section

7.2.5, the SNR threshold can be understood in terms of averaged trajectories
for iterative decoding which are termed extrinsic information transfer (EXIT)
charts. The slope ofthe errorfloor region, on the other hand,is governed by the
“most likely” error events, the characterizing of which requires investigation
of the code weightdistribution, as discussed in Section 7.2.6.

While Figure 7.12 shows the BER after a relatively large number of
iterations, the dependence of BER on the numberofiterations is shown in

Performanceof the parallel rate 1/3 turbo code

= gnN

Biterrorrate
= 9

ow

104 iidee

 

 
E,/No (dB)
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Figure 7.13 Bit error rate as a Performancewith increasing iterations
function of number of
iterations for the turbo codein

Figure 7.12.
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Figure 7.13. There is a large improvement in performance in the first few
iterations, after which the progress is slower. Typically, the improvement in
performanceis insignificant after about 10-15 iterations.

Similar observations also hold for serially concatenated turbo codes, hence
we omit BER plots for these.

7.2.5 Extrinsic information transfer charts

Bit error rate curves for turbo codes have a distinct waterfall region: once
E,/No crosses a threshold, the BER decays sharply. Extrinsic information
transfer (EXIT) charts provide a computationally efficient tool for visual-
izing the progress of iterative decoding, showing what happens before and
after the waterfall region without requiring exhaustive simulations for esti-
mating the BER. These EXIT charts are therefore a very useful design
tool for optimizing the component codes in parallel or serial concatenated
turbo codes.

Let usillustrate the concept by considering the parallel concatenated turbo
code shown in Figure 7.10. Decoders 1 and 2 exchange extrinsic information
about the information bits. Let X denote a particular information bit. Let
E, denote the extrinsic information (expressed as an LLR) regarding X at
the output of Decoder 1, and let E, denote the LLR corresponding to the
extrinsic information regarding X at the output of Decoder 2. Similarly,let A,
denote the a priori information regarding X at the input of Decoder 1, and A,
the a priori information regarding X at the input of Decoder2. For iterative
decoding, A,[n] = £,[n — 1] and A,[n] = E,[n —1], where n denotes the nth
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Figure 7.14 An EXIT chart

showing decoding progress for
the running example of a
parallel concatenated code

when the SNRis high enough
(£,/N = 0.8 dB) that the
iterations converge.

Channel coding

iteration. The mutual information J(X; E,) is a measure of the quality oftk
information regarding X at the output of Decoder1, and equals the mutu:
information I(X; A,) at the input of Decoder 2 at the nextiteration. Similarly,
I(X; E,) is a measure of the quality of the output of Decoder 2, and equals
I(X; A,) at the input of Decoder 1 at the nextiteration.

Theinformation transfer function for Decoder j (j = 1, 2) plots the mutual
informationat its output, I(X; Eis versus the mutual information atits input,
I(X; Aj). Let us call this curve 7;(i), where i is the mutual information
at the input, and 7;(i) the mutual information at the output. The output
extrinsic information for Decoder 1 is the input extrinsic information for
Decoder 2, and vice versa. Thus, to plot both decoder characteristics using
the sameset of axes, we flip the roles of input and output for one of them.
Specifically, let us plot /(X; E,) and I(X; A,) on the y-axis, and 1(X; A,)
and I(X; E,) on the x-axis. That is, we plot 7,(é) versus i, and T;'(i)
versus i. Figure 7.14 shows an example of such a plot. We can now visu-
alize the progress of iterative decoding as shown. We have I(X; A,) =0 at
the beginning (no input from Decoder 2). In this case, Decoder 1 gener-
ates extrinsic information E, of nonzero quality i = I(X; E,) using its code
constraints and the information available from the channel. This provides
extrinsic information A, of quality i= 1(X; Ay) at the input to Decoder 2.
This is then used by Decoder 2, in conjunction with the channel informa-
tion, to generate extrinsic information E, of quality T(i) = 1(X; E,), which
is now fed as input A, for Decoder 1. Figure 7.14 indicates that iterative
decoding should be successful, since the quality of the extrinsic information
keeps increasing, approaching the (1, 1) point on the EXIT chart. This is

Extrinsicinformation(bits) oO or  
 
 Lo :

0 0.2 0. 0.6 0.8 1
Input information (bits)
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Figure 7.15 An EXIT chart for

the running example of a
parallel concatenated code,
showingthat iterative decoding
gets stuck when the SNRis too
low (E,/Ny = —0.7 dB).

7.2 Turbo codesanditerative decoding

Extrinsicinformation(bits)   
0 O17 02 03 04 05 06 07 08 09 14

Input information (bits)

consistent with the BER curve in Figure 7.12: the E,/Np value of 0.8dB
used in the EXIT chart is beyond the onset of the waterfall region. In
contrast, Figure 7.15 shows a scenario where iterative decoding gets stuck
at the intersection of the curves for Decoders 1 and 2, since the “tun-
nel” required to progress towards the (1,1) point is not available. Refer-
ring back to the BER curve in Figure 7.12, we see that the E,/No value
of --0.7dB used in the EXIT chart is prior to the onset of the waterfall
region.

The shape of the information transfer functions depends, of course, on
the quality of the information obtained from the channel. Thus, the tunnel
between the curves for Decoders 1 and 2 should be open at large enough
E,/No. The value of E,/No at which the tunnel is barely open is when we
expectiterative decoding to begin to work, and provides an excellent estimate
of the beginning of the waterfall portion of the BER curvefor a turbo code
with long enough block length. The beauty of this approach is that we do
not need exhaustive simulations of the turbo code; we only need to simulate
the performance of the individual decoders to generate their input-output
characteristics. Let us now discuss howto dothis.

Estimation of mutual information Wefirst discuss computation of mutual
information between an information bit and an LLR. Specifically, if we run
a decoder with a given set of priors and generate a set of extrinsic LLRs
{L,,} corresponding to information bits {X,}, how do weestimate the mutual
information I(X; L) from the pairs (X,,, L,,)? The mutual information between
a bit X taking values 0 and 1 with equal probability, and a random variable
L is given by
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dl
 Sof (lx)

Le)|_pUls)loe,
1p 2p(I|x)
aul.Pls) 108aapay (7.65)

Suppose now that the random variable L is an LLR for X obtained using
an observation Y whosedistribution conditioned on X satisfies the following
symmetry condition: p(y|0) = p(—y|1). Note that L(y) = log,(P[X = 0|Y =
y])/(P[X = 1|Y = y]). As shownin Problem 7.12, the conditional distribution
of L given X obeys the following consistency condition:

p(l|0) = p(—i|1) =e'p(—/|0) Consistency condition for LLRs. (7.66)

Plugging (7.66) into (7.65), we obtain
J co

(XL) = 5 f_P(Ll0) log,

1(X; L)

{I

2p(i0)

p|0) +pl)

2p(1|1)

p(|0) + p@|1)

2p(i|0)

PLO) + p(—10)

2p(—|0)
P(L|0) + p(—i|0)

2p(Z|0)

P(l|0) + p(—L0)

] oo

+5 [. p(I|1) logy dl
1 oo

=5 [_P(t|0) log, dl
1 co

+5 [_P(-H10) log, dl

= | p(ii0) log, di

| p(i|0) log dl{+e

1- / p(i|0) log,(1+e7) dl.
In summary, under the consistency condition (7.66), the mutual information
between a bit X and its LLR L is given by

I(X; L) = 1—Eflog,(1-+e~4) |X =0] =1— / p(l|0)log,(1+e~) dl.
(7.67)

Under the consistency condition, it also follows that

Eflog,(1+e7")|X = 0] = E[log,(1 +e“) |X = 1],
so that

1(X; L) = 1— Eflog,(1+-e°C4) |X = x]. (7.68)

To measure the mutual information empirically using independent pairs
(X,,,L,), 2 =1,...,N, we can replace (7.68) by the following empirical
average:

a 1 x,-T)=1—-— ~(-1)%"L,(xX; L)=1 W X log, (1 +e ) . (7.69)
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For symmetric channels,it suffices to consider the all-zero codeword in order

to measure the mutual information, in which case, we can use the empirical
average corresponding to the formula (7.67):

12

1(X;L) =1- N log, (1+e*)  All-zero codeword sent. (7.70)n=l

The Gaussian approximation for computing information transfer func-
tions We now know how to measure the mutual information between the

information bits and the extrinsic information at the output of a decoder. To
run the decoder, however, we need to generate the LLRsat the input to the
decoder. Assuming large enough code block lengths and good enoughinter-
leaving, the LLRs correspondingto different information bits can be modeled
as conditionally independent, conditioned on the value of the information bit.

Thus, we can generate these LLRs if we know their conditional marginal
distributions. For parallel concatenation, the LLR for a given bit X at the
input to the decoder is given by Lig = Lehanner + Lprior- In turn, Lehanne) and
Lor Can be modeled as conditionally independent, given X. The conditional
distribution of Leanne: Can be computed based on the channelstatistics. Let us
consider the example of BPSK transmission of bit X € {0, 1} over an AWGN
channel to obtain observation Y:

Y = A(—1)*+N(0,0”).

It can be shown that the channel LLR is given by

P[X=0|¥=y]  2Ay
P[IX=1|\¥=y} 0?

Since L(Y) depends linearly on Y, it inherits the conditional Gaussian-

ity of Y. We have L~ N (2A?/o?, 44/0) conditioned on X = 0, and
L~ N (-2A?/o*, 4A?/o”) conditioned on 1. That is, the conditional mean
and variance of the LLR depend on a scale-invariant SNR parameter, and are
linearly related. In particular, we can take 07 = 4A?/o? as a measureofthe
quality of the LLR, and with the means under the two hypotheses given by
07/2.

Thus,all that remains is to specify the conditional distribution of Lyyo,
which is actually the extrinsic information from some other decoder. A key
simplification results from modeling the extrinsic conditional distribution as
Gaussian; simulations show that this is an excellent model for the AWGN

channel. A complete explanation for this observed Gaussianity is not yet
available. The Gaussianity of the underlying channel may be a factor. Another
factor, perhaps,is that a particular extrinsic LLR involves contributions from
many LLRs, so that some form of central limit theorem might be at work
(although the operations in the log BCJR algorithm cannot be interpreted
simply as an arithmetic sum, which is the standard setting for application
of central limit theorem approximations). Indeed, an excellent model of the

L(y) = log,
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extrinsic LLR L is to assume that it comes from BPSK modulation over

virtual AWGNchannel. This yields the following model for the conditionaj
distribution of the extrinsic LLR.

Gaussian model for LLR

L~N(4,02) ifx=0, L~N(-$,0?) ifX=1. (71)
As shown in Problem 7.12, if we assume that the conditional LLRs are

Gaussian, then the consistency condition (7.66) can be used to infer that the
conditional means and variances mustberelated as in (7.71).

Using (7.71), we can generate the decodercharacteristic very simply. The
input LLR for bit X is given by

Lin = Lghannet + Lexiors

where Lepannet ~ N ((~1)*02/2, 02) and Lorioe ~ N ((—1)*02/2, 0?)are con-
ditionally independent. The parameter 0? = 4A?/o? for BPSK signaling,
whereas a; is a parameter that we vary from 0 to oo to vary the quality of the
input extrinsic information (which would be obtained from the other decoder
during iterative decoding). The quality of the input extrinsic informationis
given by the mutual information (7.67), where

pO) =
 2 2

s exp{|— ('-¢) /20%
Let us term this mutual information Tn(Op). We can now simulate BCJR
decoding and generate the output extrinsic LLRs {L,} for the bits {X,}. We
could model these as conditionally Gaussian, but we do not need to. We can
empirically estimate the mutual information using the formula (7.69). We
term this Tou (03). The information transfer function is simply the plot of
T(i) = Iny(o;) versus i = I,,(0;) as the parameter a? varies from 0 to oo. The
function T(i) depends on E/N, but we have suppressedthis dependence from
the notation.

The results shown in Figures 7.14 and 7.15 were obtainedusing the preced-
ing procedure to computethe information transfer functions for the component
decoders. Of course, since we consider identical component codes, we only
need to find a single information transfer function. Thus, the curve for decoder

1 is T(i) versus i, whereas the curve for decoder 2 is T~!(i) versusi.
The EXIT charts apply to serially concatenated codes as well. Consider

the serial concatenated code shown in Figure 7.11. Even though the bits
of ultimate interest are the information bits u“ at the input to the outer
encoder, for the EXIT chart, we must consider the mutual information of the

bits c® at the output of the outer encoder, which are also the inputs u®to
the inner encoder(after interleaving), since the decoders exchange extrinsic
information regarding these bits. This leads to information transfer functions
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00 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Input information (bits) input information (bits)

(a) Decoding converges (E,/Np = 0.5 dB) {b) Decoding does not converge (E,/N, =-2 dB)

Figure 7.16 The EXIT charts
for a rate 1/4 serial
concatenated turbo code, Inner
and outer codes are identical

recursive systematic rate 1/2
[7,5] convolutional codes,

Touer(4) aNd Tiyye-(i) for the outer and inner decoders, respectively. The inner
decoderstarts decoding first, since it has access to the channel measurements.

Asbefore, the extrinsic inputs can be modeled as Gaussian when generating
the information transfer curves, The EXIT chart plots Tinne-(i) and T>L,(i)
versus i. In this case, the Tinye(i) must lie above T,!. (i), to provide the
tunnel needed foriterative decoding to converge. Figure 7.16 shows an EXIT
chart for a serially concatenated code constructed from our rate 1/2 running
example convolutional code. Since the outer decoder does not have access to

the channel measurements,its curve does not change with E,/Npo. On the other
hand, Tipne(2) moves upward as we increase E,/No. Thus, we can again esti-
mate the threshold correspondingto the waterfall region as the £,/No at which
the inner decoder’s curve Timne(i) is barely above the curve T;.(i) for the
outer decoder.

Area properties When the extrinsic information can be modeled as coming
from an erasures channel, it is possible to relate the area under the information
transfer function of a code to quantities such as channel capacity and code
rate. Moreover, empirical results indicate that such area properties hold more
generally (e.g., over AWGN channels in which the extrinsic information is

well approximated as Gaussian). Westate without proof two such results:

Code without channel access For a binary code of rate R that does not see
the channel observations(e.g., the outer code in a serially concatenated turbo
code), we have

[ T(i)di =1—R.0
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