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I, Carol S. Peterson, state and declare as follows: 

I. Introduction 

1. I am currently a Research Librarian with the law firm of Knobbe, 

Martens, Olson & Bear, LLP, located at 2040 Main Street, 14th Floor, Irvine, CA 

92614. 

2. I am over eighteen years of age.  I am competent to make this 

Declaration, and I make this Declaration based on my own personal knowledge as 

well as my knowledge of library science practices. 

3. I earned a Master of Library Science from the University of California 

Los Angeles in 1979 and a Bachelors in English from the University of California, 

Davis in 1977.  I have worked as a research librarian at Knobbe, Martens, Olson & 

Bear for approximately 40 years. 

4. I understand that a petition for inter partes review of U.S. Patent No. 

8,280,072 will be filed concurrently with this Declaration. 

5. Exhibit  1003 of the concurrently filed petition is a true and correct copy 

of Thomas A. Powers & Volkmar Hamacher, Thomas A. Powers et al., Three-

Microphone Instrument Is Designed to Extend Benefits of Directionality, 55 The 

Hearing Journal, no. 10, Oct. 2002, at 38-45 (“Powers”) that was downloaded from 

The Hearing Journal’s publisher’s website at  

https://journals.lww.com/thehearingjournal/toc/2002/10000. 
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6. I understand that Exhibit 1005 of the concurrently filed petition is a 

copy of excerpts from Acoustic Signal Processing for Telecommunication (Steven 

L. Gay & Jacob Benesty eds., 2000) (“G&B”). 

7. Appendix J to this Declaration is a true and correct copy of excerpts 

from G&B obtained from the University of California Irvine Library.  I have 

reviewed Exhibit 1005 of the concurrently filed petition and Appendix J to this 

Declaration, and based on this review, Exhibit 1005 is a true and accurate copy of a 

softcover version of G&B that contains the same disclosure as Appendix J.  

II. Standard Library Practices Making Library Materials Publicly 
Available 

8. I have personal knowledge of standard library practices for making 

materials available to the public. 

9. I have knowledge of and experience with the Machine-Readable 

Cataloging (MARC) system, an industry-wide standard that libraries use to catalog 

materials.  Since at least 1980, MARC has been the international standard for 

cataloging bibliographic data in libraries’ systems.  Each MARC record contains 

fields that provide specific information about how cataloged items are held and made 

available to the public.  MARC records can be accessed through many libraries’ 

electronic cataloging systems. 
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III. MARC Records 

10. The MARC record system uses a specific three-digit numeric code 

(from 001-999) to identify each field in a catalog record.  For example: 

a. field tag 008 provides bibliographic information and includes the 

six-digit date of when the item was cataloged in the 

“YYMMDD” format (Date entered on file), the four-digit year 

of the item’s publication date; 

b. field tag 022 provides the International Standard Serial Number 

(ISSN), which is a unique identification number assigned to 

serial publications; 

c. field tag 245 identifies the full title statement for the work; 

d. field tags 260 and 264 provide information on the publication, 

printing, distribution, issue, release, or production of a work; 

e. field tag 300 identifies the physical description, often including 

holdings information, for the work; 

f. field tag 310 provides the current publication frequency; 

g. field tag 321 provides the former publication frequency; 

h. field tag 338 identifies the format of the storage and housing of 

a carrier; 
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i. field tag 362 indicates the numbering used for chronological 

cataloging of individual issues of the serial including information 

on when the serial began, which affects how issues of the serial 

are checked in, processed, and added to the library’s main 

collection; and 

j. field tags 9XX provide information on the local holdings 

information for the resource. 

11. More information about the MARC record system can be found on the 

Library of Congress’s website at:  

https://www.loc.gov/marc/bibliographic/bd20x24x.html. 

12. After an item is received by a library, the standard practice for the 

library is to process, catalog, date stamp, and then shelve the item.  The public may 

then access the item by searching the catalog and either requesting a print or 

electronic copy of the item.  If a resource is available online or electronically, 

standard practice is to provide a link in the library’s online catalog through which 

the resource can be downloaded.  Standard practice is to make the item available to 

the public within a few days or weeks of cataloging it. 

IV. Serial Publications 

13. A serial publication, often known as a “journal,” is a resource that is 

published in successive parts (“issues”) and has no predetermined conclusion.  Each 
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issue is usually chronologically numbered and dated.  The presence of enumeration, 

years of coverage, and/or other chronological information also indicates a serial 

publication. 

14. There are significant differences between cataloging finite resources 

(e.g., books) and continuing resources (e.g., serial publications).  For serial 

publications, the MARC record provides information about the serial as a whole, 

including the first or earliest available issue.  It also provides information about the 

volumes and issues held by a library, including the dates a serial publication’s issues 

were received by the library and the date they were made available to the public.   

15. Serial publications contain unique identifying characteristics that are 

slightly different from non-serial publications such as textbooks.  The issue date for 

a print serial publication, for example, generally appears on the front or back cover, 

the masthead page, title page (if any), table of contents page(s), or on the pages of 

the individual articles contained in the issue.  More information regarding the unique 

aspects of cataloging serials can be found at:  

https://www.loc.gov/aba/pcc/conser/scctppt/Basic-2014/Basic-Trainee-

Mannual.pdf. 
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V. Powers 

16. As detailed below, I have reviewed the University of California Irvine 

Library and Yale Library records for the serial publication, The Hearing Journal, 

containing Powers. 

 University of California Irvine Library Records for 
Powers 

17. Appendix A to this Declaration is a true and correct copy of the 

University of California Irvine Library’s public catalog record for The Hearing 

Journal, which contains Powers.  Appendix A was downloaded from  

https://uci.primo.exlibrisgroup.com/discovery/fulldisplay?docid=alma9914860432

006531&context=L&vid=01CDL_IRV_INST:UCI&lang=en. 

18. Appendix A provides the public with availability and holdings 

information for accessing The Hearing Journal.  Appendix A provides the following 

information:  

Title: The Hearing journal;  

Publication Date: 1983;  

Publisher: “New York, NY: Lippencott Williams & Wilkins.  Print began with 

v. 36, no. 1 (Jan. 1983)”;  

Frequency: Monthly.   

Appendix A also indicates that full access is available online beginning with the 

1994 volume 47, issue 1. 
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19. Appendix B to this Declaration is a true and accurate copy of the 

University of California Irvine Library’s public catalog record for Powers, which 

was downloaded from 

https://uci.primo.exlibrisgroup.com/discovery/fulldisplay?docid=cdi_gale_infotrac

misc_A93026282&context=PC&vid=01CDL_IRV_INST:UCI&lang=en.  

Appendix B shows that full access to The Hearing Journal is available online 

beginning with the 1994 volume 47, issue 1 and that Powers is available online.  

Appendix B further provides the following information for the public to access 

Powers:  

Title: Three-microphone instrument is designed to extend benefits of 

directionality;  

Publisher: Lippincott Williams & Wilkens, Inc;  

Is Part of: The Hearing journal, 2002, Vol. 55 (10), p.38-45. 

20. Appendix C to this Declaration is a true and accurate copy of the 

University of California Irvine Library’s record for the serial publication containing 

Powers, which was downloaded from  

https://uci.primo.exlibrisgroup.com/discovery/sourceRecord?vid=01CDL_IRV_IN

ST:UCI&docId=alma9914860432006531&recordOwner=01UCS_NETWORK. 

21. The University of California Irvine Library’s MARC record (Appendix 

C) for serial publication “The Hearing Journal” containing Powers indicates that: 
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a. The data elements of field tag 008 (060425c19839999nyumr-

pso-----0---a0eng--) provide the “date entered on file” for the 

record, which includes the six-digit date entry “000207,” 

indicating that the MARC record for The Hearing Journal was 

created on April 25, 2006, with the character position “c” 

followed by “19839999” indicating that The Hearing Journal is 

a continuing resource (serial publication) that was first published 

in 1983 and is currently published.  This denotes that The 

Hearing Journal was first cataloged by the University of 

California Irvine Library on April 25, 2006. 

b. Field tag 022 provides The Hearing Journal’s ISSN (2333-6218). 

c. Field tag 245 denotes the title statement of the work as “The 

Hearing Journal.” 

d. Field tag 264 indicates that the Hearing Journal is published by 

Lippencott Williams & Wilkins. 

e. Field tag 310 indicates that The Hearing Journal is published 

monthly. 

f. Field tag 338 indicates that The Hearing Journal is an online 

resource. 
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g. Field tag 362 indicates that “Print began with v. 36, no. 1 (Jan. 

1983).” 

 Yale Library Records for Powers 

22. Appendix D to this Declaration is a true and correct copy of the Yale 

Library public catalog record for the serial publication “The Hearing Journal” 

containing Powers, which was downloaded from:  

https://orbis.library.yale.edu/vwebv/holdingsInfo?bibId=12026360. 

23. Appendix D provides the public with availability and holdings 

information for accessing The Hearing Journal, including Powers.  Appendix D 

provides the following information:  

Uniform Title: Hearing journal (Online);  

Title: The Hearing journal [electronic resource];  

ISSN: 2333-6218;  

Published/Created: New York, NY : Lippencott Williams & Wilkins;  

Location: Yale Internet Resource;  

Frequency: Monthly;  

Extent: “Print began with v. 36, no. 1 (Jan. 1983).” 

24. Appendix E to this Declaration is a true and accurate copy of the Yale 

Library’s MARC record for The Hearing Journal, which was downloaded from:  

https://orbis.library.yale.edu/vwebv/staffView?bibId=12026360. 
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25. The Yale Library’s record (Appendix E) for Powers indicates that: 

a. The data elements of field tag 008 (830301c19839999nyumr pso 

0 a0eng d) provide the “date entered on file” for the record, which 

includes the six-digit date entry “830301,” indicating that the 

MARC record for The Hearing Journal was created, and The 

Hearing Journal was first cataloged by the Yale Library, on 

March 1, 1983, with the character position “c” followed by 

“19839999” indicating that The Hearing Journal is a continuing 

resource (serial publication) that was first published in 1983 and 

is currently published. 

b. Field tag 022 provides The Hearing Journal’s ISSN (2333-6218). 

c. Field tag 245 denotes the title statement of the work as “The 

Hearing Journal” and indicates it is an electronic resource. 

d. Field tag 260 indicates that the Hearing Journal is published by 

Lippencott Williams & Wilkins. 

e. Field tag 310 indicates that The Hearing Journal is published 

monthly. 

f. Field tag 362 indicates that “Print began with v. 36, no. 1 (Jan. 

1983).” 
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 The Library Catalog and MARC Records are 
Consistent with Publication Information in Powers 

26. The copy of Powers attached as Exhibit 1003 to the concurrently filed 

petition indicates that the work is titled “Three-microphone instrument is designed 

to extend benefits of directionality,” that it was written by Thomas A. Powers and 

Volkmar Hamacher, and that it published in Volume 55, No. 10 of The Hearing 

Journal in October 2002. 

27. The library catalog and MARC records for The Hearing Journal and 

Powers, discussed above, are consistent with and confirm the bibliographic and 

publication information provided in the copy of Powers (Exhibit 1003). 

28. Based on the evidence discussed above and my understanding of 

standard library practices, it is my opinion that Powers would have been publicly 

available no later than October 2002. 

VI. G&B 

29. As detailed below, I have reviewed the University of California Irvine 

and The Ohio State University Library MARC records for G&B. 

 University of California Irvine Library Records for 
G&B 

30. Appendix F to this Declaration is a true and correct copy of the 

University of California Irvine Library’s public catalog record for G&B, which was 

downloaded from  



Amazon.com, Inc. v. Jawbone Innovations, LLC 
Declaration of Carol Peterson – U.S. Patent No. 8,280,072 

-12- 

https://uci.primo.exlibrisgroup.com/discovery/fulldisplay?docid=alma9910239272

29704701&context=L&vid=01CDL_IRV_INST:UCI&lang=en. 

31. Appendix F provides the public with availability and holdings 

information for accessing G&B, including the location, scope of holdings, and call 

number for locating G&B.  Appendix F provides the following information for the 

public to access G&B:  

Main title: Acoustic signal processing for telecommunication / edited by 

Steven L. Gay, Jacob Benesty;  

Publication Date: 2000;  

Publisher Boston: Kluwer Academic;  

ISBNs: 0792378148 and 9780792378143.   

Appendix F also indicates that a copy with call number TK5102.9 .A27 2000 held 

at the University of California Irvine Library is currently on loan until December 12, 

2022, and that five other University of California schools have copies available. 

32. Appendix G to this Declaration is a true and accurate copy of the 

University of California Irvine Library’s MARC record for its copy of G&B, which 

was downloaded from  

https://uci.primo.exlibrisgroup.com/discovery/sourceRecord?vid=01CDL_IRV_IN

ST:UCI&docId=alma991023927229704701&recordOwner=01UCS_NETWORK. 
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33. The University of California Irvine Library MARC record (Appendix 

G) for G&B indicates that: 

a. The data elements of field tag 008 (000207s2000    maua     b    

001 0 eng) provide the “date entered on file” for the record, 

which includes the six-digit date entry “000207,” indicating that 

the MARC record for G&B was created on February 7, 2000, 

with the character position “s” followed by “2000” indicating 

that the item has a single known date of publication in 2000.  This 

denotes that G&B was first cataloged by the University of 

California Irvine Library on February 7, 2000.  Based on 

standard library practices, G&B would have been processed, 

cataloged, shelved, and made available to the public, on an 

ongoing, continuing basis, beginning a few days or weeks after 

February 7, 2000. 

b. Field tag 245 denotes the title statement of the work as “Acoustic 

signal processing for telecommunication” and indicates the work 

was authored or edited by Steven L. Gay and Jacob Benesty. 

c. Field tag 260 indicates that the work was first published or 

distributed in Boston by Kluwer Academic in 2000. 



Amazon.com, Inc. v. Jawbone Innovations, LLC 
Declaration of Carol Peterson – U.S. Patent No. 8,280,072 

-14- 

 The Ohio State University Library Records for G&B 

34. Appendix H to this Declaration is a true and correct copy of The Ohio 

State University Library’s public catalog record for G&B, which was downloaded 

from:  https://library.ohio-state.edu/record=b5220423. 

35. Appendix H provides the public with availability and holdings 

information for accessing G&B, including the location, scope of holdings, and call 

number for locating G&B.  Appendix H provides the following information for the 

public to access G&B:  

Title: Acoustic signal processing for telecommunication / edited by Steven L. 

Gay, Jacob Benesty;  

Imprint: Boston : Kluwer Academic, [2000];  

ISBN: 0792378148.   

Appendix H also indicates that a copy with call number TK5102.9 .A27 2000 is 

available at “18th Ave Library Basement Compact Shelving” and another copy with 

call number TK5102.9 .A27 2000 c.2 is available at the Book Depository. 

36. Appendix I to this Declaration is a true and accurate copy of The Ohio 

State University Library’s MARC record for its copy of G&B, which was 

downloaded from:  https://library.ohio-

state.edu/search~S7?/.b5220423/.b5220423/1%2C1%2C1%2CB/marc~b5220423. 
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37. The Ohio State University Library MARC record (Appendix I) for 

G&B indicates that: 

a. The data elements of field tag 008 (000207t20002000maua     b    

001 0 eng) provide the “date entered on file” for the record, 

which includes the six-digit date entry “000207,” indicating that 

the MARC record for G&B was created on February 7, 2000, 

with the character position “t” followed by “20002000” 

indicating that the item has a publication date of 2000 and a 

copyright date of 2000.  This denotes that G&B was first 

cataloged by the University of California Irvine Library on 

February 7, 2000.  Based on standard library practices, G&B 

would have been processed, cataloged, shelved, and made 

available to the public, on an ongoing, continuing basis, 

beginning a few days or weeks after February 7, 2000. 

b. Field tag 245 denotes the title statement of the work as Acoustic 

signal processing for telecommunication and indicates the work 

good to was authored or edited by Steven L. Gay and Jacob 

Benesty. 
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c. Field tag 264 indicates that the work was first published, 

released, or issued in Boston by Kluwer Academic in 2000 with 

a copyright date of 2000. 

 The Library Catalog and MARC Records are 
Consistent with Publication Information in G&B 

38. Appendix J to the concurrently filed petition indicates that the work is 

titled “Acoustic Signal Processing for Telecommunication,” and published in 2000.  

Appendix J also indicates that Acoustic Signal Processing for Telecommunication 

has an ISBN of 0-7923-7814-8, that the work was edited by Steven L. Gay and Jacob 

Benesty, and that it was published by Kluwer Academic Publishers.  Furthermore, 

Appendix J bears a handwritten note on the front pages as well as a sticker on the 

outside spine of the work indicating it was published in 2000 and assigned call 

number TK 5102.9 A27 2000. 

39. The library catalog and MARC records for G&B, discussed above, are 

consistent with and confirm the bibliographic and publication information provided 

in the University of California Irvine Library’s copy of G&B (Appendix J). 

40. Based on the evidence discussed above and my understanding of 

standard library practices, it is my opinion that G&B would have been publicly 

available within a few days or weeks of February 7, 2000.
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VII. Conclusion

I declare that all statements made herein of my knowledgeare true, and that

all statements made on information and belief are believed to be true, and that these

statements were made with the knowledgethat willful false statements and the like

so madeare punishable by fine or imprisonment, or both, underSection 1001 ofTitle

18 of the United States Code.

Executed on November14, 2022 in Irvine, California.

(wal. Peteleag_s
Carol S. Peterson
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Theoverriding goal ofacoustic signal processing for telecommunication sys-
tems is to promote the feeling of “telepresence” among users. That is, make
users feel they are in the actual physical presence of each other even though
they may be separated into many groups overlarge distances. Unfortunately,
there are many obstacles which prevent system designers from easily attaining
this goal. These include the user’s acoustic environments, the physical andar-
chitectural aspects of modern telecommunication systems, and even the human
auditory perceptual system itself.

Telepresence implies the use ofhands-free communication which give rise to
problemsthat are almost nonexistent when handsets are used. Thesedifficulties
have motivated a considerable bodyofresearchin signal processing algorithms.
Technologies such as noise reduction and dereverberation algorithms using one
or more microphones (Parts [II and TV), camera tracking (Chapter 11), echo
control algorithms (Parts I and II), virtual sound (Part V), and blind source
separation (Part VI) havearisen to stabilize audio connections, eliminate echo,
and improve audio transmission and rendering.

Researchers are now endeavoring to enhance the telepresence experience
by using multi-channel audio streams between locations to increase spatial
realism, signal separation, andtalker localization and identification, by taking
advantage of our binaural hearing system. While stereo and surround-soundare
common examples of one-way free space multi-channel audio, realizing these
technologiesin the full duplex telecommunications realm hasraisedaset ofnew
fundamental problemsthat have only recently been addressed in a satisfactory
manner, Furthermore, multi-channel duplex communications enabled by multi-
channel echo cancellation and control algorithms will allow participants of
point-to-point and even multi-point teleconferences to instinctively know who
is talking and from where, simply by using the normal auditory cues that have
evolved in humans over millennia.
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Acoustic signal processing also plays an important role in enhancing the vi-.
sual aspect of multi-media telecommunication. Algorithms which localize and
identify the nature of soundsourcesallow camerasto be steered automatically to
the active participants of a teleconference, allowing participants to concentrate
on the issues at hand rather than cumbersome camera manipulation.

Our strategy for selecting the chapters for this book has been to present
digital signal processing techniques for telecommunications acoustics that are
both cutting edge and practical. Each chapter presents material that has not
appeared in book form before andyetis easily realizable in today’s technology.
To this end, those chapters that do not explicitly discuss impiementation are
followed by those that discuss implementation aspects on the same subject.
The endresult is a book that, we hope,is interesting to both researchers and
developers.

STEVEN L. GAY

JACOB BENESTY 
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SUPERDIRECTIONAL MICROPHONE ARRAYS

Gary W. Elko
Bell Labs, Lucent Technologies

gwe @bell-labs.com

Abstract Noise and reverberation canseriously degrade both the microphone reception and
. the loudspeaker transmission of speech signals in hands-free telecommunication.

' Directional loudspeakers and microphone arrays can be effective in combating
these problems. This chapter covers the design and implementationofdifferential
arrays that are small compared to the acoustic wavelength. Differential arrays
are therefore also superdirectional arrays since their directivity is higher than
that of a uniformly summed array with the same geometry. Aside from the
small size, another beneficial feature of these differential arrays is that their
directivity is independent of frequency. Derivations are included for several
optimal differential arrays that may be useful for teleconferencing and speech
pickup in noisy and reverberant environments. Novel expressions and design
details covering multiple-order hypercardioid and supercardioid-type differential
arrays are given. Also, the design of Dolph-Chebyshev equi-sidelobe differential
arrays is covered for thegeneral multiple-order case. The results shown here
shouidbe useful in designing and selecting directional microphonesfor a variety
of applications.

Keywords: Acoustic Arrays, Beamforming, Directional Microphones, Differential Micro-
phones, Room Acoustics

1. INTRODUCTION

~ Noise and reverberation can seriously degrade both the microphonereception
and the loudspeaker transmission of speech signals in hands-free telecommu-
nication. The use of small directional microphones and loudspeakers can be
effective in combating these problems. First-order differential microphones
have been in existence now for more than 50 years. Dueto their directional and
close-talking properties, they have proven essential for the reduction of feed-
back in public address systems. In telephoneapplications, such as speakerphone
teleconferencing, directional microphonesare very useful but at present are sel-
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dom utilized. Since smail differential arrayscan offer significant improvement
in typical teleconferencing configurations, it isexpected that they will become
more prevalent in years to come. .

Work on various differential microphone arrays has been ongoing in the
Acoustics Research Department at Bell Labs for many years, The intent of
the present work is to fill in some of the missing information and to develop
some of the necessary analytical expressions in differential microphone array
design. Included are several new results of potential importance to a designer
of such microphone systems. Various design configurations of multiple-order
differential arrays, that are optimal under variouscriteria, are discussed.

Generally, designs and applications of differential microphones are illus-
trated. Since transduction and transmission of acoustic waves are generally
reciprocal processes the results are also applicable to loudspeakers. However,
the loudspeaker implementation is difficult because of the large volume veloc-
ities required to approximate ideal differential microphones. The reasons are
twofold: first, the source must be small compared to the acoustic wavelength;
second, the real-part of the radiation impedance becomes very small for dif-
ferential operation. Another additional factor that must be carefully accounted
for in differential loudspeaker array design is the mutual radiation impedance
between array elements.

2. DIFFERENTIAL MICROPHONE ARRAYS

The term first-order differential applies to any array whose sensitivity is
proportional to the first spatial derivative of the acoustic pressure field. The
term n'-order differential is used for arrays that have a response proportional
to a linear combination of the spatial derivatives up to, and including n. The
classification superdirectional is applied to an array whose directivity factor
(to be defined later) is higher than that of an array of the same geometry with
uniform amplitude weighting. The systems that are discussed in this chapter,
respond to finite-differences of the acoustic pressure that closely approximate
the pressure differentials for general order. Thus, the interelement spacingofthe
array microphones is much smaller than the acoustic wavelength and the arrays
are therefore superdirectional. Typically, these arrays combine the outputs of
closely-spaced microphonesin an alternating sign fashion. These differential
arrays are therefore also commonly referred to as pattern-differencing arrays.

Before we discuss the various implementations of n‘” -orderfinite-difference
systems, we develop expressions for the n‘*-order spatial acoustic pressure
derivative in a direction r (the bold-type indicates a vector quantity). Since re-
alizable differential arrays approximate the true acoustic pressure differentials,
the equations for the general order differentials provide significant insight into
the operation of these systems. To begin, we examine the case for a propagat-
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ing acoustic,plane-wave. The acoustic pressure field for a propagating acoustic
plane-wave can be written as,

pk, r, t) — Peior-k'®) _ Pe)tke cos 6) | (10.1)

where P, is the plane-wave amplitude, w is the angular frequency, T is the
transpose operator, k is the acoustic wavevector (\|k|| = k = w/c = 27/2
whereA is the acoustic wavelength), c is the speed of sound, andr = ||r|j where
r is the position vector relative to the selected origin, and @ is the angle between

the position vector r and the wavevector k. Dropping the time dependence and
taking the n‘*-order spatial derivative along the direction of the position vector
r yields,

fia

7 p(k, r) = P,(—jk cos 6)" eJ 89, (10.2)re

The plane-wavesolution is valid for the response to sourcesthat are “far” from.
the microphone array. By “far’ we mean distances that are many times the
square of the relevant source dimension divided by the acoustic wavelength.
Using (10.2) we can conclude that the n‘*-order differential has a bidirectional
pattern with the shape of (cos 6)”. We can also see that the frequency response
of a differential microphone is a high-pass system with a slope of 6n dB per
octave. If we relax the far-field assumption and examine the response of the
differential system to a point source located at the coordinate origin, then

eitkr cos @)
p(k, r) = Pp. (10.3)

r

The n“*-order spatial derivative in the direction r is
tt

dr®

! “Gk ay"Pk, 7,0) = Pyareitr 208 8-1)" SEF COSP 194)
prt m!niz=0

wherer is the distance to the source. The interesting thing to notice in (10.4)is
that for kr cos @ small, the microphone is independent of frequency. Another
fundamental property is that the general n“-order differential response is a
weighted sum of bidirectional terms of the form cos” 6. We use this property
in later sections. First, though, we consider the effects of the finite-difference
approximation of the spatial derivative.

After expanding the acoustic pressurefield into a Taylor series, we must keep
zero and first-order terms to express the first derivative. The resulting equa-
tion is nothing other than the finite-difference approximation to the first-order
derivative. As long as the spacing is small compared to the acoustic wave-
length, the higher-order terms (namely, the higher-order derivatives) become
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insignificant over a desired freqiiency range. Likewise, the second and third-
order derivatives can be incorporated by retaining the second and third-order
terms in the expansion. The resulting approximation can be expressed as the
exact spatial derivative multiplied by a bias error term. Forthe first-order case —
in a plane-wave acoustic field [(10.2)], the pressure derivative is

dp(k, 1,0 thrPET) iRP, cos Qe dKF 608 8. (10.5)
dr

Thefinite-difference approximation forthe first-order system is defined as

A ptk,r,@) p(k, r +d/2,0) — plk,r — d/2,@)
Ar

—j2P, sin (kd/2 cos OeFk008 @
Ts

where d the distance between the two microphones. If we now define the
amplitude bias error €) as ,

(10.6)

_ Ap/Ar
= dp/dr’ (10.7)

then on-axis (0 = 0),

sinkd/2 sin wd/d
te d/2 oda . (10.8)

Figure 10.1 shows the amplitudebias error €, between the true pressure differ-
ential and the approximation by the two closely-spaced omnidirectional (zero-
order) microphones, Thebias erroris plotted as a nondimensional function of
microphone spacing divided by the acoustic wavelength (d/4). From Fig. 10.1,
it can be seen that for less than 1 dB error, that the element spacing must be
less than 1/4 of the acoustic wavelength. Similar equations can be written for
higher-order arrays. The bias function for these systemsis low-pass in nature

if the frequency range is limited to the small kd range.
‘In general, to realize an array that is sensitive to the n“ derivative of the

incident acoustic pressure field, we require m p''-order microphones, where,
m+p—1=n. For example, a first-order differential microphone requires
two zero-order microphones. The linearized Euler’s equation for an ideal (no
viscosity) fluid states that

(10.9)

where p is the fluid density and v is the acoustic particle velocity. The time
derivative of the particle velocity is proportional to the pressure-gradient. For
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Amplitudebiaserror(dB)
02 025 03

spacing/wavelength

Figure 10.1 Finite-difference amplitude bias error in dB for a plane-wave propagating along
the microphone axis, as a function of element spacing divided by the acoustic wavelength.

an axial componentofa sinusoidal velocity vector, the output is proportional to
the pressure differential along that axis. Moretypically, a first-orderdifferential
dipole microphone is designed as a diaphragm that-is open to the soundfield
on both sides. The motion of the diaphragm is dependent on the netforce dif-
ference (pressure-difference) across the diaphragm andis therefore an acoustic
particle velocity microphone. Thus, by proper design of a microphone,it is
easy to constructa first-order acoustic microphone. Thedesign of higheror-
der microphones can be formed by combinations of lower-order microphones
where the sum of all of component microphone orders is equal to the desired
order differential microphone.

For a plane-wave with amplitude P, and wavenumber k incident on a two-
elementarray, as shown in Fig. 10.2, the output can be written as

E(k, 0) = P, (1 — eSkd cos °), (10.10)
where d is the interelement spacing and the subscript indicatesa first-orderdif-
ferential array. Note again that the explicit time dependence factoris neglected
for the sake of compactness. If it is now assumed that the spacing is much
smaller than the acoustic wavelength, we can write

E,(k,@) © Pjkd cos @. (10.11)

As expected,the first-order array has the factor cos 6 that resolves the compo-
nent of the acoustic particle velocity along the microphone axis.
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Figure 10.2 Diagram offirst-order microphone composed oftwo zero-order (omnidirectional)microphones.

We now examine the case where a delay is introduced between these two
zero-order microphones. For a plane-wave incident on this new array, we can
write |

E,(w, 0) = P, ( — eJolt + dcos #/0)) . (10.12)
where tis equal to the delay applied to the signal from one microphone and
we have made the substitution & = w/c. If we again assume a smail spacing(kd. <a andwr< 1),

Ey(@, 0) % P,w (t + d/c cos 6). (10,13)
Onething to notice about (10.13), is. that the first-order array has a first-order

high-pass frequency dependence. The term in the parentheses in (10.13) con-
tains the array directional response. in the design of differential arrays, the
atray directivity function is the quantity that is of interest, To simplify further
analysis for the directivity of the first-order array, let us define ap, a,, and ay,such that

T

= = 0.14a)=ag idJe (10.14)

d/e
l-o =a= . 0.151=ay r+ de (10.15)

a+a; = 1, (10.16)
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Thus, the normalized directional response is

En, @) = ao + ay'cos 0 = a; + (1 — a1) cos 0, (10.17)

where the subscript N denotes the normalized response ofa first-order system,
i.e., Ey,(0) = 1. The normalization of the array response has effectively
factored out the term that-defines the normalized directional response of the
microphone array. The mostinteresting thing to notice in (10.17) is that the first-
order differential array directivity function is independentof frequency within
the region where the assumption of small spacing compared to the acoustic
wavelength holds. Note that we have substituted the dependent variable a
which is itself a function of the variables d and tr.

The magnitude of (10.17) is the parametric expression for the “limagon of
Pascal” algebraic curve. The two termsin (10.17) can be seen to be the sum of a
zero-order microphone(first-term) and a first-ordermicrophone (second term),
which is the general form of thefirst-order array. Early unidirectional micro-
phones were actually constructed by summing the outputs of an omnidirectional
pressure microphone and a velocity ribbon microphone (pressure-differential
microphone) [12]. One implicit property of (10.17) is that forO < a, < 1
there is a maximum at @ = 0 and a minimum at an angle between 2/2 and z.
For values of a, > 1/2 the response has a minimum at 180°, although there is
no zero in the response. An example of the response for this case is shown in
Fig. 10.3(a). When o = 1/2, the parametric algebraic equation has a specific
form which is called a cardioid. The cardioid pattern has a zero response at
@ = 180°. For values of a, < 1/2 there is no longer a minimum at @ = 180°,
although there is a zero-response (null) at 90° < 6 < 180°. Figure 10.3(b)
showsa directivity response corresponding to this case. Forthe first-order
system, the solitary null is located at

6, = cos1(—) = cos! (=) , (10.18)ay 1—-—a,

The directivities shown by Fig. 10.3 are actually a representation of a plane
slice through the center line of the true three-dimensional directivity plot. The
arrays discussed in this chapter are rotationally symmetric around their axes.
Figure 10,4 shows a three-dimensional representation of the directivity pattern
shownin Fig. 10.3(b).

The realization of a generalfirst-order differential response is accomplished
by adjusting the time delay between the two zero-order microphonesthat com-
prise the first-order system model. From (10.14) and (10.15), the value of
t determines the ratio of a;/aq. The value of t is proportional to d/c, the
propagation time for an acoustic wave to axially travel between the zero-order
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Response(10dBydivision} Response(10dB/divisien)

Figure 10.4 Three dimensional representation of directivity in Fig. 10.3(b). Note that the
viewing angle is from the rear-half plane at an angle of approximately 225°. ‘The viewing angle
was chosen sothat the rear-lobe of the array would not be obscured by the mainlobe. 
microphones. This interelement propagation timeis 

   
 

 
The nx’order array can be written as the sum ofthe n“* spatial derivative of the
soundfield plus lower-order terms. The n‘"-order array can also be written as
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From (10.19) and (10.18), the pattern zero is at

6, = cos™! (-S) : (10.20)
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Superdirectional Microphone Arrays

Second-order

Third-order

Figure 10.5 Construction of differential arrays as first-order differential combinations up to
third-order.

the product of 1 first-order response terms as

E,(o, 0) = Po| | i — eJa(t + di/c cos ), (40.21)
is}

where the d; relate to the microphonespacings, and the 1; relate to chosen time
delays. There is a design implementation advantage in expressing the array
response in terms of the products of first-order terms since it is now simple to
represent higher-order systems as cascaded systems of lowerorder. Figure 10.5
shows how a differential array can be constructed for orders up to three. The
extension of the design technique to higher orders is straightforward. The
values of t; can be determined by using the relationships developed in (10.14)
and (10.19). The ordering of the t; is not important.

If again we assumethat kd; < m and wt < m, then (10.21) can be approx-
imated as it

E,(o, 0) ® Pow”|| (4; +d;/c cos 6). (10.22)
i=l

Equation (10.22) can be simplified by making the same substitution as was
done in (10.14) and (10.15) for the arguments in the product term. If weset
a; = ti /(t%; +d;/c), then

E,(@, 6) © Poo"|| [ou + (1 — a) cos 6]. (10.23)
i=1

If the product in (10.23) is expanded, a powerseries in cos @ can be written for
the response ofthe n’"-order array to an incident plane-wave with frequency o.
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Theresult is

E,(@, 0) = P,Aw” (ag +a) cos 0 + a cos” O +... +4, cos” 8),
(10.24)

where the constant A is an overall gain factor and we have suppressed the ex-
plicit dependence of the directivity function E on the variables d; and 1; for
compactness. The only frequency dependent term in (10.24) is the term w”.
The frequency response of an n“*-order differential array can therefore beeasily
compensated by a lowpassfilter whose frequency response is proportional to
w". By choosing the structure that places only a delay behind each element in
a differential array, the coefficients in the powerseries in (10.24) are indepen-
dent of frequency, resulting in an array whose beampattern is independent of
frequency. To simplify the following exposition on the directional properties of
differential arrays, we will assume that the amplitude factor can be neglected.
Also, since the directional pattern described by the powerseries in cos 9 can
have any general scaling, we will typically describe the normalized directional
‘response as only a function of @, such that

Ey, (0) = ao + a1 cos @ + a2 cos” 6 +... +a, cos” 0, (10.25)

where the subscript N denotes a normalized response at 6 = 0° [as in (10.17)]
which implies .

ya; = 1. (10.26)
ix0

In general therefore, the n‘”-order differential microphone has at most, n nulls
(zeros). This follows directly from (10.25) and the fundamental theorem of
algebra. Equation (10.25) can also be written in “canonic” form as the product
offirst-order terms

Ey, @) =|| fo; + (1 — a) cos 6]. (10.27)
i=l]

Note that we have dropped the frequency dependent variable @ in (10,25) and
(10.27) since we have arguedthat the frequency response for small interelement
spacing is simply proportional to w”. The terms a; in (10.25) can take on any
desired value by adjusting the delays used in defining the desired differential
microphone array. For the second-order array

En, (0) = ayn + ay cos 6 + ao cos* 0. (10.28)

Equation (10.28) can also be factored into two first-order terms and written as

Ey, (0) = [o; + (1 — a1) cos @][a2 + (1 — a2) cos 6], (10.29)
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) ; = |
10.24) ay (1 — @2) + o2(1 — a)

heex. ae = (l-a)(l-m), (10.30)
| t; for . |
rm w",

> easily : @ = agtay/2+V¥ (ao +a)/2)" — ap
onal to | ey = aytay/24 (ao +41/22 — ay. (10.31)
nent in

depen-  _~ As shown, the general form of the second-order system is the sum of second-
tent of — © order, first-order and zero-order terms. If certain constraints are placed on the
ttiesof values of dp and ay, it can be seen that there are two nulis (zeros) in the interval
lected, 0 < @ < a. The array response pattern is symmetric about @ = 0. The
: @ can appearance of four nulls in the interval 27 < @ < 0 are actually the same two
ctional nulls in the interval O < @ < mw. These zeros can be explicitly found at the

angles 0, and 62:

10.25) 6,=cos"! (=), (10.32)
lO.17)] '

5 = cos"! (=) ; (10.33)10.26) ie
where now of and @2 can take on either positive or negative values. If the
resulting beampattern is constrained to have a maximum at @ = 0°, then the
values of a, and a2 can only take on certain values; we have ruled out designs
that have a higher sensitivity at any angle other than 9 = 0°. The interesting
thing to note is that negative values of a OF @2 correspond to a null moving
into the front half-plane. Negative values of a; for the first-order microphone
can beshownto havea rear-lobe sensitivity that exceeds the sensitivity at 0°.
Since (10.29) is the product of twofirst-order terms, emphasis of the rear-lobe,
caused by a negative value of a2, can be counteracted by the zero from the

'5) and term containing aj. As a result, a beam-pattern can be found for the second-

n nulls .

rem of

roduct

10.27)

lement order microphone that has maximum sensitivity at @ = 0° and a null in the
onany front-half plane. This result also implies that the beamwidth of a second-order
rential microphonewith a negative value of a‘2 is narrower than that of the second-order

dipole.
It is straightforward to extend the previous results to the third-order case.

For completeness, the equation governing the directional characteristics for the
tten as third-orderarray is .

 
10.28)

10.29) Ewn,(@) = ap + a1 Cos @ +. a2 cos* 6 +43 cos? 0. (10.34)
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if certain constraints are placed on the coefficients in (10.34),it can be factoreg |
into three real roots:

Ey,(@) = [oy + (1 — a) cos O][a2 + (1 — a2) cos O] [a3 + (1 — a3) cos ey.
(10.35)

The third-order microphonehasthe possibility of three zeros that can be placed
at desired locationsin the directivity pattern. Solving this cubic equation yields
expressions for aj, a, and a3 in terms of ao, a), a2, and a3. However, these
expressions are long and algebraically cumbersomeand, as such, not repeated
here.

3. ARRAY DIRECTIONAL GAIN

In order to “best” reject the noise in an acoustic field, we need to optimize
the way we combine multiple microphones. Specifically we need to consider
the directional gain, i.e. the gain of the microphonearray in a noise field over
that of a simple omnidirectional microphone. A common quantity used is the ~
Directivity Factor Q, or equivalently, the Directivity Index DJ [10 log,)(Q)}.

The directivity factor is defined as

O(w A do) = | E(@, 60, do) [?
_ Lf"| BU, 0,6) 2 ule, 0, 6) sin 040 db

where the angles @ and @ are the standard spherical coordinate angles, 6) and
o are the angles at which the directivity factor is being measured, E(w, @, )
is the pressure response of the array, and u(w, @, #) is the distribution ofthe
noise power, The function uw is normalized suchthat

(10.36)

2H pK

| u(w, 0, @) sin dé dé = 1. (10.37)0 0

Thedirectivity factor Q can be written as the ratio of two Hermitian quadratic
forms [3] as

Q= weAw (10.38)
~ wHBw’ ‘

A= 8,824, (10.39)

w is the complex weighting applied to the microphones and H is the complex
conjugate transpose. The elementsof the matrix B are defined as

20 :

ban = — [ u(m, 8, p)exp[jk- (rm —¥rp)]sin@ddddé, (10.40)dz 0 0

 gen

| Th

oSAmmsoo



 

¥

 
 
 

 
 

 
 
 
 

 

Superdirectional Microphone Arrays 193 .

factored and the elements of the vector So are defined as

Son = exp(jKo- Ty). (10.41)
cos @]. -
(10.35) Note that for clarity we have left off the explicit functional dependencies of

. the above equations onthe angular frequency w. The solution for the maxi-
2 placed mum of Q, which is a Rayleigh quotient, is obtained by finding the maximum

a ves generalized eigenvector of the homogeneous equation-T, these

epeated Aw = AyBw. — (10.42)

The maximum eigenvalue of (10.42) is given by

_ Au = SpB~'So. (10.43)
plimize
‘onsider The corresponding eigenvectorcontains the weights for combining the elements
2ld over to obtain the maximum directional gain

‘dis the 4 .
10(Q)]. Wopt = B'S. (10.44)

In general, the optimal weights Wop' are a function of frequency, array geometry,
(10.46) element directivity and the spatial distribution of the noisefield.

4, OPTIMAL ARRAYSFOR SPHERICALLY
,@9 and : ISOTROPIC FIELDS
v, 8, g)
1 of the Acoustic reverberation in roomshas historically been modeled as spherically

isotropic noise. A spherically isotropic noise field can be constructed by com-
bining uncorrelated noises propagating in all directions with equal power. In
room acoustics this noise field is referred to as a “diffuse” sound field and has

been the modelused for many investigations into the distribution of reverberant
sound pressurefields. Sinceit is of interest to design microphone systemsthat
optimally reject reverberant sound fields, the first optimization of array gain
will assume a “diffuse” sound field.

(10.37)

tadratic

(10.38) 4,1 MAXIMUM GAIN FOR OMNIDIRECTIONAL
MICROPHONES

10.39 The literature on the maximization of the directional gain for an arbitrary(10.39) array is quite extensive [17, 18, 13, 4, 16, 8]. Uzkov [17] showed that for
ympiex uniformly spaced omnidirectional microphonesthatthe directional gain reaches

N®as the spacing between the elements goes to zero. The maximum value of
directional gain is obtained when the array is steered to end-fire. Weston [18]

10.40) has shown the same result by an alternative method. Parsons [13] has extended
the proof to include nonuniformly spaced arrays that are much smaller than
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- the acoustic wavelength, The proof given here also relies on the assumption
that the elements are closely-spaced comparedto the acoustic wavelength. The
‘approach taken here is similar to that of Chu [4], Tai [16], and Harrington [8],
who expanded the radiated/receivedfield in terms of spherical wave functions,
Chu did not look explicitly at the limiting case. Harrington did examine the
limiting case of vanishing spacing, but his analysis involved approximations
that are not necessary in the following analysis.

Fora spherically isotropic field and omnidirectional microphones,

u(w, 6,6) = 1. (10.45)

In general, the directivity of N closely-spaced microphones can be expanded
in terms of spherical wave functions. Now let us express the farfield pressure
response E(@, }) as a summation of orthogonal polynomials,

N-lT on

E@.8)= YY ham Prcos(0 —8,)]cosm—4.), (10.46)
n=0) m=0

where we have limited the sum to be equal to the numberofdegrees of freedom
in the N-element microphone case, where the Py’ are the associated Legendre
functions, and @, and ¢, are possible rotations of the coordinate system. Now
define

Gram(@, @) = P;"[cos(@ — @,)] cos m(p — ¢z). (10.47)

The normalization of the function Gam is

Qn l 9Mam =f cos?me [ [pron] dnad
0 ~J

4x(n+m)!

Em(2n + 1)(n — my!’ (10.48)

where €,, is the Neumann factor, which equals 1 for m = 0 and 2 for m > 1.
Byusing the orthogonal Legendre function expansion, we can write

: 2

[Sao Dia=0 Ham Gam Go, 60)
200 bo) =Fa7 24x Z.n=0 mao im Nom
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(10.45)

Xpanded

pressure

(10.46)

freedom

gendre
m. Now

(10.47).

(10.48)

m > 1.

(10.49)
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To find the maximum of(10.49), weset the derivative of Q withrespectto Ann
for all x and m to zero. The resulting maximum occurs when

Am Po, 0Oman 5[GnGorBo)Ir

< eR (10.50)
asNam ,

The inequality in (10.50) infers that the maximum must occur when ¢, = ¢,.
From the addition theorem of Legendre polynomials,

m)!Pa(cosy) = YsemTm)! P," (cos 0.) P." (cos 8,) cos(m (bo — $z)),

— (10.51)

where yf is the angle subtended by two points on a sphere and is expressed in
terms of spherical coordinates as

cos yr = cos 4, cos 4, + sin @, sin @, cos(¢, — ¢,). (10.52)

Equation (10.51) maximizes for all n, when y = 0. Therefore (10.50) maxi-
mizes when @, = @,. Since

1 m=0PO) = | 0 ifm>O (10.53)
(10.50) can be reducedto

N-1

Omax = S"Qn + 1) 3
n=0

N2. (10.54)

Thus, the maximum directivity factor @ for N closely-“spaced omnidirectional
microphones is N?.

4.2 MAXIMUM DIRECTIVITY INDEX FOR
DIFFERENTIAL MICROPHONES

As was shown in Section 2, there are an infinite numberof possibilities for
differential array designs. What we are interested in are the special cases that
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are optimal in some respect. For microphonesthat are axisymmetric, as is the
case for all of the microphones that are covered, (10.36) can be written in a
simpler form:

2
—“PHpoyPODyIo | Ev(@, 9, 6) [2 sin 6 dé

where it has also been assumedthat the directions 6, dg are in the direction
of maximum sensitivity and that the atray sensitivity function is normalized:
| Ev(@,6, @o) |= 1. If we now insert the formula from (10.25) and carry out
the integration, wefind the directivity factor

Oo) (10.55)

cl —1Ha

a it

aja;O(a, .., Ay) = > y [CC (10.56)
x0 1+i+j |

i-+j even

Thedirectivity factor for a general n‘* -order differential array (no normalization
assumption) can be written as

-1

2
nt it

aa;O(d9, «05 On) = 04: y- —
par é — T+itj

i+j even

where H is a Hankel matrix given by
1

Hig=41+it+;
0 otherwise

if i+j even

a” = (a0, ay, .., dn} (10.58)
  

B=bb’, (10.59)

n-+1

b’ ={1,1,.., 1}. (10.60)
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“as is the
itten in Table 10.1 Table of maximum array gain Q, and corresponding eigenvector for differentiala asays from first to fourth-order for spherically isotropic noisefields.

microphone maximum eigen-|corresponding eigenvector
(10.55) order value

directionpaA
malized: | 2 | 9 | [-146 1/3 5/6] |
carry out | 16 | [-3/32 -15/32 15/32 35/32] |3

4 | 25 [0.075 -0.300 -1.050 0.700 1.575]

(10.56) From (10.57) we can seethat the directivity factor Q is a Rayleigh quotient for
two hermitian forms. The maximum of the Rayleigh quotient is reached at a
value equal to the largest generalized eigenvalue of the equivalent generalized

; eigenvalue problem,
alization

Bx = AHx (10.61)

where, A is the general eigenvalue and x is the corresponding general eigen-
vector. The eigenvector corresponding to the largest eigenvalue will contain

Ba the coefficients a; which maximize the directivity factor Q. Since B equalsa
da’ _ dyadic product there is only one eigenvector x = H~'b withthe eigenvalue ©

b’H-'b. Thus,

(10.57): . max Q = dim = b'H'b. (10.62)

Table 10.1 gives the maximum array gain (largest eigenvalue), Q, for differential
orders up to fourth-order. Note that the largest eigenvector has been scaled
such that the microphone output is unity at 9 = 0°. The directivity index
is a considerably useful measure in quantifying the directional properties of
microphones and loudspeakers. The directivity index provides a rough estimate
of the relative gain in signal-to-reverberation for a directional microphone in a

(10.58) . reverberant environment. However, the directivity index is meaningless with
. respect to the performance of directional microphones in non-diffuse fields. A

more detailed discussion on the relevance of the microphone directivity index

(10.59) . with respect to room acoustics is given in Appendix A.

43 MAXIMIMUM FRONT-TO-BACK RATIO

Another possible measure of the “merit” of an array is the front-to-back
(10.60) rejection ratio, i.e., the gain of the microphonefor signals propagating to the
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front of the microphonerelative to signals propagating to the rear. One such
quantity was suggested by Marshal! and Harry [11] which will be referred to
here as “F’,” for the front-to-back ratio. The ratio F is defined as

a? | E(w, 0, ) |? sin 06 dd 7
Fo)= (10.63)

o Str | Ej, 8, ) |? sin 0d6 dé
where the angles @ and ¢ are the spherical coordinate angles and E(w,0, ) is
the far-field pressure response, For axisymmetric microphones (10.63) can be
written in a simpler form by uniform integration over od,

Ie” | En@, 0, 6) |? sin 0 6
Me) = Fin | Ew(@, 8, 6)? sin 00 (10.64)

Carrying out the integration of (10.64) and using the form of (10.25) yields,
—!I

af

Fao, ., Gn) = Ye yyaoea (10.65)
i=0 j=0 i=0 j=0

The supercardioid nameis givento the differential system that has the maximum
front-to-rear powerratio. In equation form,the front-to-rear powerratio can be
written as

—1

a (— LitiF(a9, +++) Gn) = > > Gang » » “Teej=0 =

a’Ba

~ aTHa’

where H is a Hankel matrix given by

(10.66)

(—1)/4/
10.67

1+i+j
ij =

= {a9, 21, ..., dy}. (10.68)

B is a special form of a Hankel matrix designated as a Hilbert matrix and is
given by

1
Bij = ————. 6Tit] 19.89)
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fable 10.2 Table of maximum F ratio and corresponding eigenvector for differential arrays
from first to fourth-order for spherically isotropic noise fields.

microphone maximum eigen-|corresponding eigenvector
value

| 743 ne ea |
1 vi 5piresv7 | tetas oe aah

| +5875 | * [0.0184 0.2004 0.4750 0.3061] |
151695 [0.0036 0.0670 0.2870 0.4318

0.2107]

From (10.66) we can seethat, as was the case for the maximum directional gain, |
the front-to-back ratio canbe represented as Rayleigh quotient of two hermitian
forms. The maximum of theRayleigh quotient is reached. at a value equal to
the largest eigenvalue of the equivalent generalized eigenvalue problem,

Bx = AHx (10.70)

where A is the eigenvalue andxis the corresponding eigenvector. Thus, as in
the case of maximizing the directional gain Q, the maximization of the front-
to-backratio is a general eigenvalue problem with F asthe largest eigenvalue.
The matrices H and B are real Hankel matrices and are positive definite. The
resulting eigenvalues are therefore positive real numbers and the eigenvectors
are real, Table 10.2 summarizes the tesults for the maximum front-to-back
ratios for differential arrays up to fourth-order.

Aswith the directivity index, the front-to-back ratio is a very useful measure
in quantifying the directional properties of electroacoustic transducers.

The utility of the front-to-back ratio F measure in teleconferencingis clear
if we consider the following scenario. In a typical teleconference, people sit
along one side of a table facing a video screen that is generally acoustically
reflective, The rear and sides of the room are usually absorptive. Maximizing
the front-to-back rejection ratio will therefore minimize reflections from the
front wall and video screen, as well as minimize the response to a wide distri-
bution of loudspeakers used for transmitting the remote site audio to the room.
The above example is somewhat contrived andthe actual optimal microphone
array will depend on the source andreceiver locations and the room acoustics.
For the particular case above, however, the ratio F yields a better measure of
microphone performance than the directivity index.                           
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4.4 MINIMUM PEAK DIRECTIONAL RESPONSE
Another approach that mightbe ofinterest, is to design differential arrays to

have an absolute maximum sidelobe response. This specification would allow
the designer to guarantee thatthe differential airay response would not exceed a |
defined level, over a given angular range, where suppression of acoustic Signals
is desired.

The first suggestion of an equi-sidelobe differential array design was in a
“comment”publication by V. I. Korenbaum [9], who only discussedarestricted
class of n'*-order microphones that have the following form:

Ex, (0) = [ay + (1 — a4) cos 6] cos"! 9, (10.71)
The restricted class’ defined by (10.71) essentially assumes that an n‘*-order
differential microphoneis the combination of an (n — 1)"*-order dipole pattern
and a generalfirst-orderpattern. The major reason for consideringthis restricted
class is obvious; the algebra becomes very simple. Since we are dealing with
systemsoforderless than or equalto three, we do not needto restrict ourselves
to the class defined by (10.71).

A more general design of equi-sidelobe differential arrays can be obtained
by using standard Dolph-Chebyshev design techniques [6]. With this method
we can easily realize any order differential microphone that we desire. The
roots of the Dolph-Chebyshev system are easily obtained. Knowledge of the
roots simplifies formulation of the canonic equations that describe the n™ order
microphones as productsoffirst-order differential elements.

Webegin our analysis with the Chebyshev polynomials

_|cosa cos! x), -1 <x <1]
Tnx) = cosh(n cosh! x), 1 <]x|, (10.72)

The Chebyshev polynomial of order n has n real roots for arguments between
~1 and 1, and growsproportionalto x” for arguments with a magnitude greater
than 1. The design of the n'*-order Chebyshevarray requires a transformation
of the variable x in (10.72). If we substitute x = b+a cos 6 in (10.72), then we
can form a desired n'*-order directional response that follows the Chebyshev
polynomialover any range. At @ = 0°, x =X) =a +b,and the valueof the
Chebyshev polynomialis 7, (Xo) = 1. Setting this value to the desired mainlobe
to sideloberatio, say S, we have

S = T,(%») = cosh(n cosh! x,). (10.73)
Equivalently,

1Xo =a+h= cosh (- cosh7! s) (10.74)it

 SsAom.

tin
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Thesidelobe at 6 = 180° corresponds tox = b -a = —1. Therefore

Xeotl1

2

b = a (10.75)
Since the zeros of the Chebyshev polynomial are readily calculable, the null
locations are easily found. From the definition of the Chebyshev polynomial
given in (10.72), the zeros occur at

(Qn — be]Sv : Mm

Zn

a

(10.76)Xm = cos|
The nulls are therefore at angles

Xm —Xo +16m = cos”! (Henin) (10.77)oe

4.5 BEAMWIDTH

Another useful measure of the array performance is the beamwidth. The
beamwidth can be defined in many ways. It can refer to the angle enclosed
between thezeros of a directional response, the 3 dB points, or the 6 dB points.
Wewill use the 3 dB beamwidth definition in this chapter. For the first-order
microphone response [(10.17)], the 3 dB beamwidth is simply

1{—2a0 + V2(ap + a1)
Op, = 2 cos”

Bi 2a (10.78)

For the second-order system, the algebra is somewhat more difficult but still
straightforward. The result from (10.28) is

,f-at of a? + 22a? + ajar + (1 — V2)aaz]
Oz, = 200s” rr; ;

(10.79)

whereit is assumed that a2 4 0. If a. = 0, the microphone degenerates into a
first order array and the beamwidth can be calculated by (10.78).

Similarly, the beamwidth for a third-order array can be found although the
algebraic form is extremely lengthy and, as such, has not been included here.

5. DESIGN EXAMPLES

For differential microphones with interelement spacing much less than the
acoustic wavelength, the maximum directivity index is attained when all of the
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DirectivityIndex(dB)

Figure 10.6 Directivity index offirst-
rameter oy.

microphones are situated collinearly, For this case, the Maximum directivity
index is 20 log,)(n + 1) wherenis the order of the microphone [13]. For first,
second, and third-order microphones, the maximum directivity indices are, 6.0,
9.5, and 12.0 dB respectively. Derivations ofthe Specific results for n < 3 are
given in thefollowing sections.

Asindicated in (10.25), there are an infinite
n'"order differential arrays. Presently,
phonesare: dipole, cardioid, hypercardioid, and supercardioid. The extension
to higher orders is straightforward and is developedin later sections. Most of
the arraysthat are describedin this chapter have directional characteristics that
are optimal in some way; namely, the arrays are optimal with respect to one
of the performance measures previously discussed: directivity index, front-to-
back ratio, sidelobe threshold, and beamwidth. A summary of the results for
first, second, and third-order microphonesis given in Table 10.3.
5.1

numberof possible designs for
the most commonfirst-order micro-

FIRST-ORDER DESIGNS

Before we discuss actual first-order differential designs, we first examine
the effects of the parameter a; on the directivity index DJ , the front-to-back
ratio F, and the beamwidth ofthe microphone. We have defined a) = a and
a, = 1—ay. Figure 10.6 shows the directivity index ofa first-order system for
values of a; between 0 and 1.

order microphoneversus thefirst-order differential pa-
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fable 10.3 Tabie offirst-order differential, second-order differential, and third-order differen-
tial designs.

microphone
type

|

| dipole | 4.8
| cardioid | 4.8

| hypercardioid | 6.0
| supercardioid | 5.7

|

| dipole | 7.0

| cardioid | 7.0
| OSW cardioid | 8.8

| hypercardioid | 9.5

| supercardioid | 8.3

| Korenbaum | 8.9

| —15 dB sidelobe | 9.4
| —30dB sidelobe | 8.1
| min. rear peak | 8.5

|

| dipole | 8.5

| cardioid | 8.5

| OSW cardioid | 10.7
| hypercardioid | 12.0
| supercardioid | 9.9
| —20 dB sidelobe | 11.8
| -30dB sidelobe | 10.8

DI (dB)|F (dB) 3dB
Beamwidth

First-order designs

| 0.0 | 90°

| 8.5 | 131°

| 8.5 | 105°

| 11.4 | 115°

Second-order designs
| 0.0 | 65°

| 14.9 _| 94°

— {| 14.9 | 76°
| 8.5 | 66°

| 24.0 | 80°
[17.6 | | 76°
| 10.7 | 70°
| 18.5 | 84°

| 22.4 | 80°
Third-order designs

| 0.0 | 54°

| 21.0 | 78°

| 18.5 | 60°
| 11.2 | 48°
| 37.7 | 66°

| 14.8 | 52°

| 25.2 | 60°

Null(s) (de-
grees)

| 90

| 180

| 109

| 125
 
 
 
 
 

 
 
 
 
 
 
 

|

|

|

|

|

| 90

| 180. |

| 90, 180 |

| 73, 134 |
| 104, 144 |
| 90, 146 |

| 78, 142
| 109,152 |

| 98, 149

|

|

|

|

| 90

| 180

| 90, 180

| 55, 100, 145 |

| 97, 122, 153 |

| 62, 102, 153 |

| 79, 111, 156 |
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Front-to-backratio(dB)

Figure 10.7 Front-to-back ratio of first-order microphone versus the first-order differential
parameter o,.

Thefirst-order differential microphone that corresponds to the maximum
in Fig. 10.6 is given the name hypercardioid. When o= 0, the first-order
differential system is a dipole. At o= 1, the microphone is an omnidirectional
microphone with 0 dB directivity index. Figure 10.7 shows the dependence of
the front-to-back ratio F on ay.

The maximum F value correspondsto the supercardioid design. Figure 10. g
showsthe 3 dB beamwidth ofthefirst-order differential microphone as a func-
tion ofa). - .

When a, * 0.7, the 3 dB down point is approximately at 180°. Higher
values of of; correspond to designsthat are increasingly omnidirectional. Fig-
ure 10.8 indicates that the first-order differential microphone with the smallest
beamwidth is the dipole microphone with a 3 dB beamwidth of 90°.

5.1.1 Dipole. The dipole microphoneis basically an acoustic particle-
velocity microphone. The construction was described earlier; the dipole is
normally a diaphragm that is open on both sidesto the acoustic field. In(10.17),
the dipole microphone corresponds the simple case where ag = 0, a) = 1,

Ep,(@)=cos 0. (10.80)

In Fig. 10.9(a), a polar plot of the magnitude of (10.80) showsthe classic cosine
pattern for the microphone.
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Beamwidth(degrees) 
 
 
 
 
 
 
 
 

 
 
 
 

 
 

ferential Figure 10.8 3 dB beamwidth of first-order microphone versus the first-order differential pa-
rameter @.

ximum The fact that the output phase reverses in either direction is of no concern
‘t-order — to us here, The directivity index is 4.8 dB and the 3 dB beamwidth for the
ctional | dipole microphone is 90°. The zero in the response is at @ = 90°. One
nce of : potential problem, however,is that it is bidirectional; in other words, the pattern

is symmetric about the axis tangential to the diaphragm or normal to the two
re 10.8 zero-order microphone axis. As a result the front-to-back ratio is equal to 0 dB.

a fune 5.1.2 Cardioid. As shown earlier, all first-order patterns correspond to
the “limagon of Pascal” algebraic form. The special case of a, = 1/2 is theHigher a . .
cardioid pattern. The pattern is described by1. Fig-

nallest 1+cos 6
Ec, (9) = > (10.81)

irticle- which is plotted in Fig. 10.9(b). Although the cardioid microphone is not
dole is optimal in directional gain or front-to-back ratio, it is the most commonly
10.17), - manufactured differential microphone. The cardioid directivity index is 4.8
1, dB, the sameas that of the dipole microphone and the 3 dB beamwidth is 131°.

_ The zero in the response is located at 6 = 180°. The front-to-back ratio is 8.5
10.80) _ dB.

 
cosine — . 3.13 Hypercardioid. The hypercardioid microphonehasthedistinction

_ of having the highest directivity index of any first-order microphone. The
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Response(10dB/division} Response(10dB/division)

Response(10dB/division) Response(10dB/division)
Figure 10.9 Variousfirst-order directional responses,(a) dipole, (b) cardioid, (c) hypercardioid,
{d) supercardioid.

derivation, which has apparently not been presented in the literature, is not
difficult and was included in Section 4.2. The hypercardioid response can be
written as

1 +3 cos 6

Exc, (@) = r . (10.82)

Figure 10.9(c) is a polar plot of the absolute value of (10.82). The 3 dB
beamwidth is equal to 105° and the zero is at 109°. The directivity index
is 6 dB or 10 log,9(4), the maximum directivity index for a first-order system.
The front-to-back ratio is equal to 8.5 dB.

5.1.4 Supercardioid. The name supercardioid is commonly used for
the first-order differential design which maximizes the front-to-back received
power; the term was probably coined by Shure engineers in the early 1940’s,
although the author could notfind direct evidenceofthis. Thefirst reference to
the supercardioid design appears in a 1941 paper by Marshall and Harry [11].
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The supercardioidis of interest sinceofall first-order designs it has the highest
front-to-back powerrejection for isotropic noise. The derivation of this result
is contained in Section 4.3. The directional response can be written as

V3 —1+ (3 — V3) cos @
Esc, (@) = 5 (10.83)

Figure 10.9(d) is a plot of the magnitude of (10.83). The directivity index for
the supercardioid is 5.7 dB and the 3 dB beamwidth is 115°. The zero in the
response is located at 125°. The front-to-backratio is equal to 11.4 dB.

5.2 SECOND-ORDER DESIGNS

Aswith first-order systems, there are an unlimited number of second-order
designs. Since second-order microphones are not readily available on the
market today, there are no “common”designs. Two designs that have been
suggested are the second-order cardioid and the second-order hypercardioid
[12, 15]. Another group of proposed differential microphones is a restricted
class of equi-sidelobe designs for arbitrary order n [9]. The following section
presents some of these designs as well as a non-restricted equi-sidelobe de-
sign and a variety of second-orderdifferential array designs based on common
first-order microphones. The general second-order form as given in (10.28) has
three parameters, ag, a1, and a2. Equivalently, the second-order differential is
the productof twofirst-order differential forms, as shown in (10.29).

The contours in Fig. 10.10 and Fig. 10.11 depict the dependence of D/ and
F on the parameters a) and a2 from (10.29). Both figuresare plotted for values
of a, and a2 between —1 and +1. Figure 10,10 has a DJ maximum value
of 9.5 dB and the interval between the contours is 0.5 dB. Figure 10,11 has a
maximum value of 24.0 dB; the contours are in 1 dB steps.

5.2.1 Second-Order Dipole. By pattern multiplication, the second-
order dipole directional responseis the productof twofirst-order dipoles which
have cos @ response patterns given by

Ep, (0) = cos? @. (10.84)

Figure 10.12(a) shows the polar magnitude response for this array. The direc-
tivity index is 7.0 dB, and by symmetry the front-to-back ratio is 0 dB. The 3
dB beamwidth is 65°.

5.2.2 Second-Order Cardioid. In general the term second-order car-
dioid implies that eitherfirst-order term in the second-order expression given in
(10.29), can be a cardioid. However, wefirst adhere to the specification that a
second-order cardioid corresponds to the case where both first-order terms are
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,

order Hypercardiokd

8+ Max Di-9.5 4B \

Figure 10.10 Contourplot of the directivity index DJ in dB for second-order array Versus a,
and a. The contours are in 0.5 dB intervals,

Second-order Supercardioid

Max Fs 24.6 dB

Figure 10.11 Contourplot of the front-to-back ratio in dB for second-order arrays versus ay
and of. The contours are in 1 dB increments.

of the cardioid form. In equation form,
2

Ec,(0) = & = oy (10.85)
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Response(10dB/division) Response(10dBydivision) 
Response(10dB/division) Response(16dB/division) 

%

Figure 10.12 Various second-order directional responses, (a) dipole, (b) cardioid, (c) hyper-
cardioid, (d) supercardioid. ,

In this case of; = a2 = 0.5. The directivity index is 7.0 dB and the two zeros
both fall at @ = 180°. The front-to-back ratio is equal to 14.9 dB.

Returning to the generality mentioned above, we now consider a second-
order cardioid formed from a cardioid and a general first-order response.
second-order cardioid design can be easily seen The equation for this second-
orderdifferential cardioid is 

[a, + (1 — ay) cos 6]f1 + cos @]
rrEro, (a, 0) = (10.86)
 

Olson [12] and Sessler and West [15] presented results for the specific case of
o1=0 in (10.86). Figure 10.13 is a plot of the magnitude of the response for
this particular realization. The 3 dB beamwidth of the microphoneis 76°. The
directivity index is 8.8 dB, the nulls are at 90° and 180°, andthe front-to-back
ratio is equal to 14.9 dB. . .
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Response(10dB/division)  
Figure 10.13 Second-order Olson-Sessler-West cardioid directional response.

5.2.3 Second-Order Hypercardioid. The second-order hypercardioid -
has the highest directivity index of a second-order system;its directivity index
is 9.5 dB. The derivation of the directivity pattern and the parameters that
determine the second-order hypercardioid are contained in Section 4.2. The
results are: ,

i

ay = be OAL, 40.87)

=F&£0Al 088)o> —= tl, ws .2a FERNS

These values correspond to the peaks in Fig. 10.10. The null locations for the
second-order hypercardioid are at 73° and 134°. The front-to-back ratio is 8.5
dB, the same for the first-order differential cardioid and first-order differential
hypercardioid, A polar responseis given in Fig. 10.12(c).

5.2.4 Second-OrderSupercardioid. The term second-ordersupercar-
dioid designates an optimal desiga for the second-order differential microphone —
with respect to the front-to-back received powerratio. The derivation for the
supercardioid microphone wasgiven in Section 4.3. The results(repeated here)
are: |

V7 -24/8-3/7
5 — x 0.45, 0.20, (10.89)
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Figure 10.14 Various second-order equi-sidelobe designs, (a) Korenbaum design,(b) -15 dB
sidelobes, (c) —30 dB sidelobes, (d} minimum rear half-plane peak response.

_ Ji-24V8-3V7
aeeOp | =~ 0.20, 0.45. (10.90)

These values correspond to the peaks in Figure 10.11. Figure 10.12(d) is a plot
of the magnitude of the directional-response. The directivity index is equal to
8.3 dB, the nulls are located at 104° and 144°, and the front-to-back ratio is
24.0 dB.

5.2.5 Equi-Sidelobe Second-OrderDifferential. Since a second-order
differential microphone has two zeros in its responseit is possibleto design a
second-order differential microphone suchthat the two lobes defined by these
zeros are at the same level. Figure 10.14(a) shows the only second-orderdif-
ferential equi-sidelobe design possible using the form of (10.71). (The second-
order differential cardioid as shown in Fig. 10.13 is not considered an equi-
sidelobe design since the two lobes in the figure are actually the same lobe
due to the symmetry of the polar pattern.) The directivity index of this Koren-
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baum second-order differential array is 8.9 dB. The beamwidth is 76° andthe
front-to-back ratio is 17.6 dB.

Webegin our analysis of second-order Chebyshev differential arrays begins
by comparing terms of the Chebyshev polynomial and the second-order array
response function. The Chebyshev polynomial of order 2 is

To{x) = 2x*-1
. 2b* —1+4ab cos 6 + 2a” cos” @. (10.91)

Comparing like terms of (10.91) and (10.28) yields:
2b? — 1

5

4ab

5

a

Ss

aq

a1

a (10.92)

where S isagain the sidelobe threshold.
By substituting the results of (10.75) into (10.92), we can determine the

necessary coefficients for the desired equi-sidelobe second-order differential
microphone:

x% — 2x9 —- J
* 2S

x*—]
S

(x9 +1)
5p (10.93)

X%» = cosh (5 cosh7! 5) , (10.94)
Thusfor the second-orderdifferential microphone,

_fl—-x. +2
Ao1,2 cos 1+ Xp (10.95)

The zero locations given in (10.95) can be used along with (10.32) and (10.33)
to determine the canonic first-order differential parameters a, and 2. Fig-
ures 10.14(b) and 10.14(c) show the resulting second-order designs for —15 dB
and —30 dB sidelobes respectively. The directivity indices for the two designs
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are respectively 9.4 dB and8.1 dB. Thenull locations for the —15 dB sidelobes
design are at 78° and 142°. Byallowing a highersidelobe level than the Ko-
renbaum design (for x» = 1+ /2, with 6; = 90°), a higher directivity index
can be achieved. In fact, the directivity index monotonically increases until the
sidelobe levels exceed —13 dB; at this point the directivity index reaches its
maximum at 9.5 dB, almost the maximum directivity index for a second-order
differential microphone. For sidelobe levels less than —20.6 dB (Korenbaum
design), both nulls are in the rear half-plane of the second-order microphone;
the null locations for the —30 dB sidelobes design are at 109 and 152degrees.
Equi-sidelobe second-orderdirectional patterns is always contain a lobe pe
at @ = 180°. . .

Aninteresting design that arises from the preceding developmentis a second-
order differential microphone that minimizes the peak rear half-space response.
This design corresponds to the case where the front-lobe response level at
6 = 90° is equal to the equi-sidelobe level (for x, = 3). Figure 10.14(d)-
is a directional plot of this realization. The canonic first-order differential
parameters for this equi-sidelobedesignare:

5+2,/2
17

5422/2
17

Thedirectivity index is 8.5 dB. The nulls are located at 149° and 98°, and the
front-to-back ratio is 22.4 dB.

Two other design possibilities can be obtained by determining the equi-
sidelobe second-order design that maximizeseither the directivity index DJ or
the front-to-back ratio F. Figure 10.15 is a plot of the directivity and front-
to-back indices as a function of sidelobe level. As mentioned earlier, a —13

dB sidelobe level maximizes the directivity index at 9.5 dB. A sidelobe level
of —27.5 dB maximizes the front-to-back ratio. Plots of these two designs are
shownin Fig. 10.16. Of course, an arbitrary combination of DJ and F could
also be maximized for some given optimality criterion if desired.

ay

a (10.96)

5.2.6 Maximum Second-Order Differential DJ and F Using Com-
mon First-Order Differential Microphones. Another typical approach to
the design of second-orderdifferential microphones involves the combinations
of the outputs of twofirst-order differential microphones. Specifically, the
combination is a subtraction of the first-order differential outputs after one is
passed through a delay element. If the first-order differential microphone can

‘ be designed to have any desired canonic parameter0, then any second-order
differential array can be designed. More commonly, however,the designer will
have to work with off the shelffirst-order differential microphones, such as, the -
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Directivity i dex
Directivityindexandfront-to-backratio(dB) 

Sidelobe theshold (dB)

Figure 10.15 Directivity index (solid) and front-to-backratio (dotted) for equi-sidelobe second-
order array designs versus sidelobe level.

Response(10dB/division) Response(10dB/division) 
Figure 10.16 Directional responses for equi-sidelobe second-order differential arrays for, (a)
maximum directivity index, and, (b) maximum front-to-backratio,

standardfirst-order differential designs discussed in Section 3.1. If we constrain
the second-order differential design to these typical first-order differential mi-
crophones, then we will not be able to reach the maximum directivity index and
front-to-backratio that is possible with the more general second-order differen-
tial array designed discussed previously. The following equations show how to
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Figure 10.17 Maximum second-order differential directivity index DJ for first-order differen-
tial microphones defined by (10.97).

implementan optimal design with respect to directivity index and front-to-back
powerrejection.

Givenafirst-order differential microphone with the directivity function,

En, (@2, 8) = a2 + (1 — a) cos 0, (10.97)

where of is a constant, we would like to know how to combine twoof these
microphonesso that the directivity index is maximized. The maximum is found
by multiplying (10.97) by a general first-order response, integrating the square
of this product from 6 = 0 to 7, taking derivative with respect to a1, and setting
the resulting derivative to zero. The result is

3 5a
a=—___* 10.988  8(2 — 9a + 1203) (10.98)

A plot of the directivity index for 0 < a2 <1 is shown in Fig. 10.17. A
Maximum value of 9.5 dB occurs when —a, = a2 © 0.41, ;

A similar calculation for the maximum front-to-back power response yields

af Saf + Ber} + 8a} — 1202 + 3,/ 12er$ + 6a} + 1705 — 20a2 + 5 — 80} — 1207 + 1302 —3
24a} — Gar +2

ay=

(10.99)

A plot of the front-to-back ratio for 0 < @2 < 1 is shown in Fig. 10.18.
A maximum value of 24.0 dB occurs when a2 0.45 and a; * 0.20, which

are the values of the second-order supercardioid. By symmetry, the values of
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Figure 10.18 Maximum second-order differential front-to-backratio forfirst-order differential 5
. microphones defined by (10.97). 8

cy and acan obviously be interchanged. The double peak at F = 24.0 dB in
Figure 10.18 is a direct result of this symmetry.

5.3 THIRD-ORDER DESIGNS Figure
dioid,

Very little can be found in the open literature on the construction and design

of third-order differential microphones. The earliest paper in which an actual 532
device was designed and constructed was authored by B. R. Beavers and R. he 4
Brown in 1970 [2]. This lack of any papers is not unreasonable given both hand
‘the extreme precision that is necessary to realize a third-order array and the thre
serious signal-to-noise problems. Recent advances in low noise microphones SNeeS
and electronics, however, support the feasibility of third-order microphone con- ee
struction. With this in mind, the following section describes several possible we
design implementations. The mathematics that govern the directional response
were given in (10.34) and (10.35).

5.3.1 Third-Order Differential Dipole. By the pattern multiplication Figui
the third-order dipole directional response is given by . all fe

21.0

Ep,(0) = cos? 0. (10.100) A

Figure 10.19(a) shows the magnitude response for this array. tern
The directivity index is 8.5 dB, the front-to-back ratio is 0 dB and the 3 dB diffe

beamwidth is 54°. desis
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Figure 10.19 Various third-order directional responses, (a) dipole, (b) cardioid, (c) hypercar-
dioid, (d) supercardioid.

§,3.2 Third-Order Differential Cardioid. In Section 3.2.2 we noted
that the terminology of cardioids is ambiguous for second-order arrays. For the

- third-order, this ambiguity is even more pervasive. Nevertheless, we begin by
suggesting the most obvious array possibility. If we form the cardioid by the
straightforward pattern multiplication of three first-order differential cardioids
wehave -

_ (1 +cos 6)?
=

Figure 10.19(b) showsthe directional response for this array. The three nulls
all fall at 180°. The directivity index is 8.5 dB and the front-to-back ratio is
21.0 dB.

Another possible design for the third-order cardioid correspondsto the pat-
tern multiplication of a first-order differential cardioid with a second-order
differential bidirectional pattern. The third-order differential OSW cardioid
design implies that a; = 1 and a, = a; = 0 in (10.35). Figure 10.20 shows

Ec, (10.101)    
     



  
 

*

218 Acoustic Signal Processing. -

Response(10dB/division)
Figure 10.20 Third-order Olson-Sessler-West cardioid directional response.

the directional responseofthis third-order differential microphone. Thediréc-
tivity index is 10.7 dB and the front-to-back ratio is 18.5 dB. Thenulls fall at
@ = 180° and at 6 = 90°, thelatter of which is a second-order Zero.

5.3.3 Third-Order Differential Hypercardioid, The derivation of the
third-order differential hypercardioid was given in Section 4.2. The results for
the coefficients in (10.34)are:

ag

a]

@

a3

— 3/32

— 15/32

15/32

35/32. (10.102)

After solving for the roots of (10.34) with the coefficients given in (10.102),
we can obtain the coefficients of the canonic representation given in (10.35),

- namely

a; = 1/2 [v5 cos (@/3) —1/2| es 0.45
a=1/2 [v5 cos (6/3 + 27/3) — 1/2| ww 0.15
a;=1/2 [v5 cos (6/3 + 4/3) — 1 /2] 1.35, (10.103)

= arecos (-2/v5) (10.104)
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Figure 10.19(c) shows the directional response of the third-order differential
hypercardioid. The directivity index of the third-order differential hypercar-
dioid is the maximum forall third-order designs: 12.0 dB. The front-to-back

‘ratio is 11.2 dB andthethree nulls are located at @= 55°, 100°, and 145°.

| §.3.4 Third-Order Differential Supercardioid. The third-order super-
cardioid is the third-order differential array with the maximum front-to-back
powerratio. The derivation of this array was given in Section 4.3. The requisite
coefficients a; are:

V221 = ¥21 = V21=1 org
5 ;

21 + 9/21 — V26 + V2DV21— V21 0 nop
8

3E./2(4 + /21)V21 — /21 — 25 — 5,/21]
] 8

63 + 7/21 — J/2(7 + 2/21)/ 21 — /21
arce

- ag = 0.475

ay & 0.306. (10.105)

Figure 10.19(d) is a directivity plot of the resulting supercardioid microphone.
The directivity index is 9.9 dB and the front-to-back ratio is 37.7 dB. The
nulls are located at 97°, 122°, and 153°. The third-order supercardioid has
almost no sensitivity to the rear half-plane. For situations where the user desires
information from only one half-plane, the third-order supercardioid microphone
performsoptimally. Finding the roots of (10.34) with the coefficients given by
(10.105) yields the parameters of the canonic expression given in (10.35). The
results are:

473

346. (10.106)

5.3.5 Equi-Sidelobe Third-Order Differential. Finally, we discuss the
design of equi-sidelobe third-order differential arrays. Like the design of equi-
sidelobe second-order differential microphones, the design of third-order equi-
sidelobe arrays relies on he use of Chebyshev polynomials and the Dolph-
Chebyshev antenna synthesis technique. The basic technique was discussed
earlier in Section 2.3. For the third-order microphone, n=3, and the Chebyshev
polynomial is

T3(x) = 4x° — 3x. (10.107)
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Usingthe transformation x = b -+ a cos @ and comparing terms with (10.34)
we have

b(4b? — 3)
S

3a(4b* ~ 1)
S

12a*b
ay

a3 , (10.108)

Combining (10.73), (10.74), (10.75), and (10.108) yields the coefficients de-
scribing the equi-sidelobe third-order differential. These results are;

x2 — 3x2 42
28

3Xe%o + D(x — 2)
25

3(% — 1)(%9 + 1)?
2S

ay

al

a2

(%9 + 13
8a3 (10.109)

Figures 10.21(a) and 10.21(b) show the resulting patterns for —20 dB and —30
dB sidelobelevels.

From (10.77), the nulls for the —20 dB sidelobe levels are at 62°, 102°, and
153°. The nulls for the —30 dB sidelobe design are at 79°, 111°, and 156°. The
directivity indices are 11.8 dB and 10.8 dB, respectively. The front-to-back
ratio for the —20 dB design is 14.8 dB and for the —30 dB designis 25.2 dB.

Finally, we examine the directivity index and the front-to-backratio for the
equi-sidelobe third-order array as a function of sidelobe level. Figure 10.22
showsthese two quantities for equi-sidelobe levels from —10 dB to —60 dB.

The directivity reaches its maximum at 12.0 dB fora sidelobe level of —16
dB. The —16 dB equi-sidelobe design plotted in Fig. 10.23(a), approaches the
optimal third-order differential hypercardioid of Fig. 10.19(c).

The front-to-back ratio reaches a maximum of 37.3 dB at a sidelobe level
of —42.5 dB; the responseis plotted in Fig. 10.23(b). For sidelobe levels less
than —42.5 dB, the mainlobe movesinto the rear half-plane. For sidelobe levels
greater than —42.5 dB,the zero locations move towards @ = 0° and as a result
the beamwidth decreases.
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Response(10dB/division} Response(19dB/division}
Figure 10.21 Equi-sidelobe third-order differential microphone for (a} —20 dB and (b) —30
dB sidelobes.
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Figure 10.22 Directivity index and front-to-back ratio for equi-sidelobe third-orderdifferential
array designs versus sidelobe level.

3.4 HIGHER-ORDER DESIGNS

Dueto sensitivity to electronic noise and microphone matching requirements,
differential array designs higher that third-order are not practically realizable.
These arrays will probably never be implemented on anything other than in
a computer simulation. In fact, the design of higher-order supercardioid and         
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fon)

Response(10dB/diviston Response(10dB/division)oe

Figure 10.23 Directivity responses for equi-sidelobe third-order differential arrays for (a) max-
imum directivity index and (b) maximum front-to-backratio.

hypercardioid differential arrays using the techniques discussed in Sections 4.2
and 4.3, can becomedifficult on present computers.

6. OPTIMAL ARRAYS FOR CYLINDRICALLY
ISOTROPIC FIELDS

Althoughthe standard to model for reverberant acoustic fields has been the
“diffuse” field model (spherically isotropic noise), another noise field that is
appropriate for room acoustics is cylindrical noise. In many rooms, where
carpet and ceiling tiles are used, the main surfaces of absorption are the ceiling
andthe floor. As aresult, a noise field model that has the noise propagatingin the
axial plane may be more appropriate. This type ofnoisefield is better modeled
as a cylindrically distributed noise field and the optimization of directional gain
in this typeoffield is therefore ofinterest. The following sections deal with the
design of differential arrays in a cylindrical noise field,

6.1 MAXIMUM GAIN FOR OMNIDIRECTIONAL
MICROPHONES

Fora cylindrically isotropic field we have plane waves arriving with equal
probability from any angle @ and wavevector directionsthatlic in the ¢ plane.
The cylindrical directivity factorin this field is defined as

E(@, 6) |?Oc, bo) = — | E(@, bo) | (10.110)
az Jo | E(@, 6) 2 ula, ddd
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Again, the general weighting function u allows for the possibility of a nonuni-
form distribution of noise power and microphonedirectivity. For the case that
weare presently interested in

u(w, b) = 1. (10.111)

Following the developmentin the last section, we expand the directional re-
sponse of N closely-spaced elements in a series of orthogonal functions. For
cylindrical fields we can use the normal expansion in the ¢ dimension:

N-1

Eo) = » hm cos[m(p — ¢,)]. (10.112)
m=0

The normalization of these cosine functions is simply [1]:
2m

Nn = [ cos”(m@) db
Oo .

250
—. (10.113)
Em

The directivity factor can therefore be written as
2

Q 6 ) pee hm Cos(m (do — ¢.)|
C\Po) =7<Notae

2a 2wm=0 hiNm

The maximum is found by equating the derivative of this equation for Oc with
respect to the h,, weights to zero. The result is

N-1 2 _

Qcmax(%o) = >aeto),
m=0

The equation for Qc maximizes when ¢, = ¢,. Therefore
N-1

Ocmax = > em
m=0

= 2N-1. (10.116)

The above result indicates that the maximum directional gain of N closely-
spaced omnidirectional microphonesin a cylindrically correlated soundfield is
2N — 1. This result is apparently known in the microphone array processing
community [5], but apparently there is no general proofthat has been published.
One obvious conclusion that can be drawn from the aboveresult is that the rate

of increase in directional gain as a function of the number of microphonesis
much slowerin a cylindrically isotropic field than a spherically isotropic field.
A plot comparing the maximum gain for microphone arrays up to N = 10 for
both types of isotropic fields is shown in Fig. 10.24.

(10.114)

(10.115)  
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Figure 10.24 Maximum gainof an array of N omnidirectional microphonesfor spherical and
cylindrical isotropic noise fields. The «
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6.2 OPTIMAL WEIGHTS FOR MAXIMUM the n
DIRECTIONAL GAIN equ

It was shown previously that the directivity pattern fora N“" -orderdifferential
array can in general be written as whet

tor.

E(0) = ay + a, cos@ + a2 C08" 6 +... +ay_1cos*1 9, (10.117) coef

wherethe coefficients a; are general weighting scalars. The directivity factor, prod
Qc, from (10.38)is | m

| T
a’ Ba

Qc(a, ...4n-1) = aTHa’ (10.118) Tab
wherethe subscript C indicate a cylindricalfield and H is a Hankel matrix given fere
by gair

Fig.
G@+y-" o.,

Hj=4) G+) if i+j even, 6.3
0 otherwise,

where

ae 1.
al = {a9, a1, .., dn}, (10.119) he the
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Table 10.4 Table of maximum eigenvalue and corresponding eigenvectorfor differential arrays
from first to fourth-order, for cylindrically isotropic noisefields.

microphone maximum eigen-|corresponding eigenvector
order value

[4 | 3 | [1/3 1/2] |
| 2 | 5 | [-1/5 2/5 4/5] |
| 3 47 | [-1/7 -4/7 4/7 8/7] |
| 4 | 9 | [1/9 -4/9 -4/3 8/9 16/9] |

.

B=bb’, (10.120)

atl

b? = {1,1,..., 1). | (10.121)
The double factorial function is defined as [1]: (2n)!! = 2.4... . (2n) for n
even and (2n +1)!!=1-3-...- (n+ 1) for n odd. As wasstated previously,
the maximumdirectivity factor Oc is equal to the maximum eigenvalueofthe
equivalent generalized eigenvalue problem:

 
 

Bx = AHx. (10.122)
where, A is the general eigenvalue andx is the corresponding general eigenvec-
tor. The eigenvector correspondingto the largest eigenvalue will contain the
coefficients a; which maximize the directivity factor Oc. Since B is a dyadic
product there is only one eigenvector x = H—'b with the eigenvalue b’H-'!pb,
Thus,

max Oc = dy = b'Hop, (10.123)
Table10.4 gives the optimum values for array gain in isotropic noise for dif-
ferential orders up to and including fourth-order. A plot of the highest array
gain directivity patterns for differential orders up to fourth-order is given in
Fig, 10.25,

6.3 SOLUTION FOR OPTIMAL WEIGHTS FOR
MAXIMUM FRONT-TO-BACK RATIO FOR
CYLINDRICAL NOISE

The front-to-backratioFis defined as the ratio of the powerofthe output of
the array to signals propagating from the front-half planeto the output powerfor             
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Figure 10.25 Optimumdirectivity patterns for differential arrays in a cylindrically isotropic
noise field for (a) first, (b) second, (c) third, and (d) fourth-order ,

as2=signals arriving from the rear-half plane. Theratio for cylindrically isotropic
fields is mathematically defined as _

fg? | E@) 2 ap
| © fin | E@)P do”

Using the differential pattern expansion from (10.117), we can write ¥

a’Ba I
= Tia’

(10.124) 
c

r( Lift)
jr 

rts
Ay = (DV

ret)

meet
(10.125)
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Table 10,5 Table of maximum eigenvalue corresponding to the maximum front-to-back ratio
and corresponding eigenvectorfor differential arrays from first to fourth-order, for cylindrically
isotropic noise fields.

microphone - maximum eigen-|corresponding eigenvector
value

porterA

| 7443 | [2-1 2--/2] |

|gut+12V/7x$88| [0.103 0.484 0.413 ] Z
|| a 11556 | -2[0.002 0.217 0.475 0.286]

FY 336035 s [0.00430 0.07429 0.29914
. 0.42521 0.19705]

where T is the Gammafunction [1]. From (10.125) we can see that the front-
to-backratio is a Rayleigh quotient. The maximum of the Rayleigh quotient is
reached at a value equal to the largest eigenvalue of the equivalent generalized
eigenvalue problem

| Bx = AHx, (10,126)

ssonopie where) is the eigenvalue and x is the corresponding eigenvector. Thus, the
maximization of the front-to-back ratio is again a general eigenvalue problem

sotropic with Fo as the largest eigenvalue. As before, the corresponding eigenvector
will contain the coefficients a;, which maximize the front-to-back ratio Fc, max Fo = max dp = 2Bae (10.127)

10.124) ax Fo = max k=ae ;

where the subscript & refers to the k'" eigenvalue or eigenvector. The matrices
Hi and B are real Hankel matrices and are positive definite. The resulting
eigenvalues are positive real numbers and the eigenvectors are real.

Table 10.5 contains the maximum front-to-back powerratios (givenby the
maximum eigenvalue). The maximum eigenvalue for the third and fourth-
order cases result in very complex algebraic expressions. Therefore only the
numeric results are given. A plot showing the highest front-to-back powerra-
tio directivity patterns given by the optimum weightings (correspondingto the
eigenvectors given in Table 10.5 are displayed in Fig. 10.26). One observation
that can be made by comparingthe cylindrical noise results with the spherical
noise resultsis that the patterns are fairly similar although there are differences.
The differences are dueto the omission of the sine term in the denominator of             
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Figure 10.26 Directivity patterns for maximum front-to-back powerratio for differential arrays
in a cylindrically isotropic noise field for (a) first, (b) second, (c) third, and (d) fourth-order

(10.36). The optimal patterns for cylindrically isotropic fields keep their side-
lobes smaller in the rear-half of the microphone sincethis area is not weighted
downbythe sine term. Table 10.6 also summarizes the above results relative
to the results for the spherically isotropic condition. Table 10.6 also contains
the 3 dB beamwidth andtheposition of the pattern nulls. By knowing the null
positions, these designs can beeasily realized by combiningfirst-order sections
in a nulling tree architecture,

The results summarized in Table 10.6 also show thatthereis telatively small
difference between the optimal designs ofdifferential arrays for the spherically -
and cylindrically isotropic noise fields. Typically the differences between the
optimum directional gains from either the cylindrical or spherical isotropy as-
sumptionresultsin less than a few tenths of a dB; most probably an insignificant
amount. The mostsignificant detail to notice is that the rate of increase in the
directional gain versus differential array order is much smaller for. cylindri-
cally isotropic fields. This conclusion was also proven earlier and shown in
Fig. 10.24,
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Table 10.6 Table of maximum directional gain and front-to-back power ratio for differential
arrays from first to fourth-order, for cylindrically and spherically isotropic noisefields.

Mic. Dic|Fe DI F Beam|Null(s)
(dB)|(dB)|(dB) (dB) width

order cyl cyl sph sph degs|degs

| . Maximum gain for cylindrical noise
| 1s |48 | 109 | 59 | 11.1=| 112° | 120
| 2" i790 |109 |94 | 7.5 | 65° | 72,144
| 3” }35 [13.9 [118 | 103 | 46° | 51,103,154
| 4" 95 [139 |13.7 | 89 | 36° | 80,120,160
| Maximum gain for spherical noise
| 1% [46 [74 [60 |85 | 105° | 109
| ar \69 |97 |95 | 8.5 | 65° | 73,134
ja¢ | 83 | 12.4 | 12.0 | 11.2 | 48° | 55,100,145
| 4%" jo4 | 138 [140 | 112 | 38° | 44,80,117,152
| Maximum front-to-back ratio for cylindrical noise .
| 1% [46 | 128 | 54 {10.9 | 120° | 135
| 24 [63 | 263 [82 | 234 | 81° | 106,153
| 374 [7.2 | 40.6 | 98 | 37.0 | 66° | 98,125,161
ja! | 78 | 55.3 | 10.9 | 51.1 | 57° | 95,112,137,165
| Maximum front-to-back ratio for spherical noise
| 1s }4.8 [12.0 | 5.7 1149| 115° | 125
pet [od | 251 [83 | 240 | 80°|104,144
| 374 \7.2 [392 [99=| 377 | 65° | 97,122,154
| 4" |78 | 536 [110 | 518 | 57° | 94,111,133,159
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7. SENSITIVITY TO MICROPHONE MISMATCH

AND NOISE

There is a significant amountofliterature on the sensitivity of superdirec-
tional microphonearray design to interelementerrors in position, amplitude, and
phase [7, 10, 5]. Since the array designs discussedin this chapter haveinterele- -
ment spacings which are muchless than the acoustic wavelength, differential
arrays are indeed superdirectional arrays. Early work in superdirectional for
Supergain atrays involved over-steering a Dolph-Chebyshev array past endfire.
Whenthe effective interelement spacing becomes muchless than the acoustic
wavelength, the amplitude weighting of the elements oscillate between plus
and minus,resulting in pattern differencingor differential operation. Curiously
though, the papersin thefield of superdirectional arrays never pointoutthat at
small spacings the array can be designedas a differential system as given by
(10.25). The usual commentin the literature is that the design of superdirec-
tional arrays requires amplitude weighting that is highly frequency dependent.
Forthe application of the designs that we are discussing, namely differential
systems where the wavelength is much larger than the array size, the ampli-
tude weighting is constant with frequency as long as we do not consider the
necessary time delay as part of the weighting coefficient. The only frequency
correction necessary is the compensation ofthe output of the microphone for
the w” high-pass characteristic of the n‘* order system.

One quantity which characterizes the sensitivity of the array to random am-
plitude and position errorsis the sensitivity function introduced by Gilbert and
Morgan [7]. The sensitivity function modified by adding a delay parameter t
is

K= m= | Din ?
© Lhe bineFEFBo? (10.128)

where, 7, is the distance from the origin to microphone m,b,, are the amplitude
shadingcoefficients of a linear array, and t,, 1s the delay associated with micro-
phone m. Forthe differential microphones discussed, the sensitivity functionreduces to

na+i

~TT2sink@+ct,)/D]2’ (10.129)

where d is the microphone Spacing. For values of kd < 1, (10.129) can be
further reduced to

n+l
K x% |ny kd + ct,)P ae 130)
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Forthe n™-order dipole case, (10.130) reduces to

n+1

PY Gay (10.131)D

The ramifications of (10.131) are intuitively appealing. The equation merely
indicates that the sensitivity to noise and array errors for n‘*-order differential
attays is inversely proportional to the frequency responseofthe array.

The responseof an array to perturbations of amplitude, phase, and position
can be expressed as a function of a commonerror term 8”. Thevalidity to
combining these terms into one quantity hinges on the assumption that these
errors are small compared to the desired values. The readeris referred to the
article by Gilbert andMorgan for specific details [7].

Theerror perturbation power response pattern is dependent on the error term
5’, the actual desired beam pattern, and the sensitivity factor K. The response
is given by

Ey,, (0) = Ew, (0) + K 8. (10.132)

Typically 6 is very small, and can be controlled by careful design. However,
even with careful control, we can only hope for 1% tolerances in amplitude
and position. Therefore, even under the best of circumstances we will have
trouble realizing a differentialarray if the value of K approaches or exceeds
10,000 (40 dB). A plot of the value of K for variousfirst-order microphones as
a function of the dimensionless parameter kd, is shown in Figure 10.27(a). We
note here that of all of the microphone designs discussed, the hypercardioid is
the design that has the lowest K factor. This is in direct contradiction to most
superdirectional array designs that can be foundin the literature [5].

Typically, the higher the directional supergain,thehigherthe value of K. The
reason for the apparent contradiction in Fig. 10.27(a) is that the overall gain of
the hypercardioid is higher than the other microphones shown sinceit uses the
highest delay. Otherfirst-order designs with lower values of K are possible, but
these do notexhibit the desired optimum directional patterns, Figure 10.27(b)
Showsthe sensitivity function for first, second, and third-order dipoles. Asis
obvious, a higher differential array order results in a muchlarger sensitivity.
Also, as the phase delay (d/c) between the elements is increased, the upper
frequency limit of the usable bandwidth is reduced; in Figures 24a and 24b,it
is clear that as the spacing or the frequency is reduced, the sensitivity increases
exponentially. |

Another problem thatis directly related to the sensitivity factor K is the sus-
ceptibility of the differential system to microphoneand electronic preamplifier
noise. If the noise is approximately independent between microphones, the
SNR /oss will be proportional to the sensitivity factor K. At low frequencies
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Figure 10.27 Sensitivity as a function of wavelength element-spacing productfor, (a) various
first-order differential microphones, and, (b) first, second, and third-order dipoles.

and small spacings, the signal to noise ratio can easily become less than 0 dB
and that is of course not a very useful design,

As an example, we consider the case of a first-order dipole array with an
effective dipole spacing of 1 cm. Assumethatthe self-noise ofthe microphone
is equal to an equivalent sound pressure level of 35 dB re 20uPa, which is
typical for available first-order differential microphones. Now, weplacethis
first-order differential dipole at 1 meter from a sourcethat generates 65 dB at
500 Hz at 1 meter(typical of speech levels). The resulting first-order differential
microphone output SNR from Fig. 10.27(b), is only 9 dB. For a second-order
atray with equivalent spacing the SNR would be —12 dB, and for a third-
order array, —33 dB. Althoughthis example makes differential arrays higher
than first-order look hopeless, there are design solutions that can improve the
situation.

In the design of second-order arrays, West, Sessler, and Kubli [15] used
baffles aroundfirst-orderdipolesto increase the second-orderdifferential signal-
to-noise. The diffraction caused by the baffle effectively increases the dipole
distance d, by a factor that is proportional to the baffle radius. The diffraction
is angle and frequency dependent and, if used properly, can be exploited to

_ Offer superior performanceto an equivalent dipole composedof two zero-order.
(omnidirectional) microphones. The use of the baffles discussed in reference
[15] resulted in a an effective increase in the SNR by approximately 10 dB.
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The benefit of the-baffles used by West, Sessler, and Kubli, becomes clear by
examining (10.131) and noting the aforementioned increase in the effective
dipole distance.

Another possible technique to improve both the signal-to-noise ratio and re-
duce the sensitivity to microphone amplitude and phase mismatch,is to split
the design into multiple arrays, each covering a specific frequency range. In the
design of a differential array, the spacing must be kept small compared to the
acoustic wavelength. Since the acoustic wavelength is. inversely proportional
to the frequency, the desired upper frequency cutoff for an array sets the array.
microphone spacing requirements. If we divide the differential array into fre-

" quency subbands, then the ratio of upper frequency to lower frequency cutoff
can be reduced and the spacing for each subband can be made much larger than
the spacing for a full-band differential array. The increase in signal-to-noise
ratio is proportional to the relative increase in spacing allowed by the use of
the subband approach. If the desired frequency range is equally divided into m
subbands, the lowest subband SNR increase will be proportional to 20 log ;){m).
Theincrease in SNR for each increasing frequency subband will diminish until
the highest subband which will have the same SNRasthe full-band system. The
subband solution does have some cost: the numberof array elements must also
increase. The increase is at least m, and by reuse of the array elements in the
subbandarrays, can be controlled to be less that nm, where n is the differential
array order.

Finally, another approach to control microphone self-noise would be to con-
struct many differential arrays that are very close in position to each other. By
combining the outputs of many arrays with uncorrelated self-noise, the SNR
can be effectively enhanced by 10 log,)(«), where u is the numberof individual
differential arrays.
 

8 CONCLUSIONS 

Very little work regarding the analytical development of optimaldifferential
microphones can be foundin the literature. The purpose of the work presented
in this. chapter is to provide a basis for the design of differential microphone
array systems. Systems with differential orders greater than three require mi-
crophones and calibration with tolerances and noise levels not yet currently
available. Also, higher order systems are somewhat impractical in that the
relative gain in directivity is small [O(log,)(#))} as the order n of the micro-
phone increases. Primarily though, differential microphone array designs are
limited by the sensitivity to microphone mismatch and self-noise. One feasible
design solution is to split the system into frequency bands and change the spac-
ing as a function of frequency, thereby maintaining an approximately constant.
signal-to-noise ratio over the desired operating frequency range.             
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The results presented in this chapter have shown some novel optunal designs
for second and third-order systems. Table 10.3 summarizes mostofthe results.

One possible critical issue that has not been discussed in this chapter is
the sensitivity of these differential systems to non-propagating acoustic high-
wavenumber noise. These forms of noise occur in turbulent flow and in the
near-field of sources undergoing subsonic bending waves below thecritical fre-
quency. The problem of high-wavenumbernoise can be counteracted by com-
bining multiple differential arrays that are themselves part of a conventional
delay-sum beamformer. The synergy here is that the conventional beamformer
acts like a spatial lowpassfilter, which can greatly reduce the high-wavenumber
spatial reception by the differential elements. Another advantage of a hybrid
combination of differential elements andaclassical delay-sum beamformeris
the increase in signal-to-noise ratio achieved by the addition of many inde-
pendent elements. If the element noise is uncorrelated between differential
elements in a classic uniformly weighted array, the gain in signal-to-noise will
be 10 log,y(N), where N is the total numberof array elements. The incorpora-
‘tion of differential sub-arrays as elements in a classic delay-sum beamformer
has yet another advantage: the differential elements put a lower bound on the
frequency dependentdirectivity index of the classic beamformer.
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Appendix: DirectivityFactor and Room Acoustics

The relative sound pressure level (SPL) in a reverberant enclosure can be
ideally modeled as the sum of the direct sound signal and a diffuse reverberant
part. The ratio of these terms can be used to obtain a rough estimate of the
signal-to-reverberation ratio. The relative sound-pressure level is |

Q 4SPLret = 10 logigi + R ; (10.A.1)
where Q is the directivity factor, and R is the room constant equal to Sa /(1—&),
where S is equal to the room surface area and @ is equal to the average absorption
coefficient. The term “critical distance”is given to the value of r for which the
two terms of (10.A.1) are equal:

so OR1

Yeritical = 4Vn~ (10.A.2)
If we use the simple reverberation equation of Sabine, Tgp * 0.16V/(S@),
where Jey is the —60 dB reverberation time and V is the volume in cubic.
meters, and if we assume that a < 1 so that R ~ Sa, then (10.A.2) can be
written as

| QVVYYoritical = a xTo (10.A.3)
Equations (10.A.2) and (10.A.3) indicate that a higher value of the term Q
corresponds to a larger critical distance; the higher values of Q correspond
to an improvedratio of direct sound to reverberant sound at a given position.
Equation (10.A.2) can also be interpreted in another way: if we define a new
room constant R’ such that R’ = QR, then we have an equivalent situation

of an omnidirectional transducer (Q = 1) in a more absorbent room, in other
words a room with a larger @.

Onecaveat that should be mentionedhere is that these expressions assume
a diffuse sound field, where the term diffuse means that acoustic energy inci-
dent on a point in space, is equally probable from any direction. The diffuse
assumption is valid only at frequencies where the room modal overlap is such
that three modesfall intoone modal bandwidth. The frequency where the modal
density reaches this value depends on the room size and the absorption; this |
frequencyis usually referred to as the Schroeder cutofffrequency [14]. It should
be emphasized that the transition from non-diffuse to diffuse is of course not
instantaneous. The original “Schroeder cutoff frequency” was formulated as
twice the present value. The cutoff frequency is

Té0
fo = T° (10.A.4)
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where

C & 2000 (m/s)*”. (10.4.5)

Below the diffuse frequency limit, the sound field is dominated by individual
modespropagating in discrete directions. At low frequencies, the axial modes
dominate and the use of the above analysis breaks down, Since axial modes
havethe longest mean-free-path, the decay rate for these modes is much slower
than for tangential and oblique modes. Compounding the problem is the fact
that wall absorption decreases at lower frequencies. To accountforthe effects
individual modes, an optimal transducer design must necessarily depend on the
position and orientation of the sensor in the room as well as the room acoustics.

     
 


