NOT MEASUREMENT SENSITIVE

MIL-HDBK-217F 2 DECEMBER 1991

SUPERSEDING
MIL-HDBK-217E, Notice 1
2 January 1990

MILITARY HANDBOOK

RELIABILITY PREDICTION OF ELECTRONIC EQUIPMENT

AMSC N/A

wringing grame

FSC-RELI

DISTRIBUTION STATEMENT A: Approved for public release; distribution unlimited.

SEC et al. v. MRI SEC Exhibit 1016.001 IPR 2023-00199

DEPARTMENT OF DEFENSE WASHINGTON DC 20301

RELIABILITY PREDICTION OF ELECTRONIC EQUIPMENT

- 1. This standardization handbook was developed by the Department of Defense with the assistance of the military departments, federal agencies, and industry.
- 2. Every effort has been made to reflect the latest information on reliability prediction procedures. It is the intent to review this handbook periodically to ensure its completeness and currency.
- 3. Beneficial comments (recommendations, additions, deletions) and any pertinent data which may be of use in improving this document should be addressed to: Commander, Rome Laboratory, AFSC, ATTN: ERSS, Griffiss Air Force Base, New York 13441-5700, by using the self-addressed Standardization Document Improvement Proposal (DD Form 1426) appearing at the end of this document or by letter.

******	CONT	ENTS
SECTION	1: SCOPE	
1.1	Purpose	1-1
1.2	Application	1-1
1.3	Computerized Reliability Prediction	1-1
1.0	Tonpotorizo Floricomy (Tourison I I I I I I I I I I I I I I I I I I I	• •
SECTION	2: REFERENCE DOCUMENTS	2-1
SECTION	3: INTRODUCTION	
3.1	Reliability Engineering	3-1
3.2	The Role of Reliability Prediction	3-1
3.3	Limitations of Reliability Predictions	3-2
3.4	Part Stress Analysis Prediction	3-2
SECTION	4: RELIABILITY ANALYSIS EVALUATION	4-1
SECTION	•• •••••••	5-1
5.1	Gate/Logic Arrays and Microprocessors	5-3
5.2	Memories	5-4
5.3	VHSIC/VHSIC Like	5-7
5.4	GaAs MMIC and Digital Devices	5-8
5.5	Hybrids	5-9
5.6	SAW Devices	5-10
5.7	Magnetic Bubble Memories	5-11
5.8	π _T Table for All	5-13
5.9	C ₂ Table for All	5-14
5.10	π_{E}, π_{L} and π_{Q} Tables for All	5-15
5.11	T _J Determination, (All Except Hybrids)	5-17
5.12	T _J Determination, (For Hybrids)	5-18
5.13	Examples	5-20
SECTION	6: DISCRETE SEMICONDUCTORS	
6.0	Discrete Semiconductors, Introduction	6-1
6.1	Diodes, Low Frequency	6-2
6.2	Diodes, High Frequency (Microwave, RF)	6-4
6.3	Transistors, Low Frequency, Bipolar	6-6
6.4	Transistors, Low Frequency, Si FET	6-8
6.5	Transistors, Unijunction	6-9
6.6	Transistors, Low Noise, High Frequency, Bipolar	6-10
6.7	Transistors, High Power, High Frequency, Blpolar	6-12
6.8	Transistors, High Frequency, GaAs FET	6-14
6.9	Transistors, High Frequency, Si FET	6-16
6.10	Thyristors and SCRs	6-17
6.11	Optoelectronics, Detectors, Isolators, Emitters	6-19
6.12	Optoelectronics, Alphanumeric Displays	6-20
6.13	Optoelectronics, Laser Diode	6-21
6.14	T _J Determination	6-23
6 15	Example	6-25

CONTEN	TS	
SECTION	7: TUBES	
7.1	All Types Except TWT and Magnetron	
7.2	Traveling Wave	
7.3	Magnetron	. 7-4
SECTION	8: LASERS	
	Introduction	. 8- ⁻
8.0		
8.1	Helium and Argon	
8.2	Carbon Dioxide, Sealed	
8.3	Carbon Dioxide, Flowing	. 8-4 . 8-(
8.4	Solid State, ND:YAG and Ruby Rod	. 8-:
SECTION	9: RESISTORS	
9.0	Introduction	. 9-1
9.1	Fixed, Composition (RCR, RC)	
9.2	Fixed, Film (RLR, RL, RN (R,C, or N), RN)	
9.3	Fixed, Film, Power (RD)	
9.4	Network, Fixed, Film (RZ)	
9.5	Fixed, Wirewound (RBR, RB)	
9.6	Fixed, Wirewound, Power (RWR, RW)	
9.7	Fixed, Wirewound, Power, Chassis Mounted (RER, RE)	9-10
9.8	Thermistor (RTH)	9-12
9.9	Variable, Wirewound (RTR, RT)	9-13
9.10	Variable, Wirewound, Precision (RR)	9-15
9.11	Variable, Wirewound, Semiprecision (RA, RK)	9-17
9.12	Variable, Wirewound, Power (RP)	
9.13	Variable, Nonwirewound (RJ, RJR)	9-21
9.14	Variable Composition (RV)	9-23
9.15	Variable, Nonwirewound, Film and Precision (RQ, RVC)	9-25
9.16	Calculation of Stress Ratio for Potentiometers	9-27
9.17	Example	9-29
SECTION	10: CAPACITORS	40.4
10.1	Fixed, Paper, By-Pass (CP, CA)	
10.2	Fixed, Feed-Through (CZR, CZ)	10-3
10.3	Fixed, Paper and Plastic Film (CPV, CQR and CQ)	10-5
10.4	Fixed, Metallized Paper, Paper-Plastic and Plastic (CH, CHR)	
10.5	Fixed, Plastic and Metallized Plastic	10-9
10.6	Fixed, Super-Metallized Plastic (CRH)	
10.7	Fked, MICA (CM, CMR)	
10.8	Fixed, MICA, Button (CB)	10-14
10.9	Fixed, Glass (CY, CYR)	10-16
10.10	Fixed, Ceramic, General Purpose (CK, CKR)	10-18
10.11	Fixed, Ceramic, Temperature Compensating and Chip (CCR and CC, CDR)	10-20
10.12	Fixed, Electrolytic, Tantalum, Solid (CSR)	10-21
10.13	Fixed, Electrolytic, Tantalum, Non-Solid (CL, CLR)	
10.14	Fixed, Electrolytic, Aluminum (CUR and CU)	10-24
10.15	Fixed, Electrolytic (Dry), Aluminum (CE)	10-26
10.16	Variable, Ceramic (CV)	10-27
10.17	Variable, Piston Type (PC)	10-28
10.18	Variable, Air Trimmer (CT)	10-29
10.19	Variable and Fixed, Gas or Vacuum (CG)	10-30
10.20	Example	10-32

	CONT	ENTS
SECTION	11: INDUCTIVE DEVICES	
11.1	Transformers	11-1
11.2	Colls	11-3
11.3	Determination of Hot Spot Temperature	11-5
11.5	Determination of the oper remporature	11-5
SECTION	· · · · · · · · · · · · · · · · · · ·	
12.1	Motors	12-1
12.2	Synchros and Resolvers	12-3
12.3	Elapsed Time Meters	12-4
12.4	Example	12-5
SECTION	· · · · · · · · · · · · · · · · · · ·	
13.1	Mechanical	13-1
13.2	Solid State and Time Delay	13-3
SECTION	14: SWITCHES	
14.1	Toggle or Pushbutton	14-1
14.2	Basic Sensitive	14-2
14.3	Rotary	14-3
14.4	Thumbwheel	14-4
14.5	Circuit Breakers	14-5
SECTION		
15.1	General (Except Printed Circuit Board)	15-1
15.2	Printed Circuit Board	15-4
15.3	Integrated Circuit Sockets	15-6
SECTION 16.1	16: INTERCONNECTION ASSEMBLIES Interconnection Assemblies with Plated Through Holes	16-1
SECTION	17: CONNECTIONS	
17.1	Connections	17-1
SECTION	18: METERS	
18.1	Meters, Panel	18-1
SECTION		40.4
19.1	Quartz Crystals	19-1
SECTION	20: LAMPS	
20.1	Lamps	20-1
SECTION	21: ELECTRONIC FILTERS	
21.1	Electronic Filters, Non-Tunable	21-1
OFOTION	AA. FUODO	
SECTION 22.1	22: FUSES Fuses	22-1
	1 4000	22-1
SECTION		
23.1	Miscellaneous Parts	23-1
APPENDIX	A: PARTS COUNT RELIABILITY PREDICTION	A-1
ADDENDIV		
APPENDIX	B: VHSIC/VHSIC-LIKE AND VLSI CMOS (DETAILED MODEL)	B-1
APPENDIX	C: BIBLIOGRAPHY	C-1

CONTENT		
	LIST OF TABLES	
Table 3-1:	Parts with Multi-Level Quality Specifications	3-3
Table 3-2:	Environmental Symbol and Description	3-4
Table 4-1:	Reliability Analysis Checklist	4-1
Table 6-1:	Default Case Temperatures for All Environments (°C)	6-23
Table 6-2:	Approximate Thermal Resistance for Semiconductor Devices	
	in Various Package Sizes	6-24
	LIST OF FIGURES	
Figure 5-1:	Cross Sectional View of a Hybrid with a Single Multi-Layered Substrate	5-18
Figure 8-1:	Examples of Active Optical Surfaces	8-1
Clause O. 4	AAII D 20000 Donation Cump	0.1

FOREWORD

This revision to MIL-HDBK-217 provides the following changes based upon recently completed studies (see Ref. 30 and 32 listed in Appendix C):

- New failure rate prediction models are provided for the following nine major classes of microcircuits:
 - Monolithic Bipolar Digital and Linear Gate/Logic Array Devices
 - Monolithic MOS Digital and Linear Gate/Logic Array Devices
 - Monolithic Bipolar and MOS Digital Microprocessor Devices (Including Controllers)
 - Monolithic Bloolar and MOS Memory Devices
 - Monolithic GaAs Digital Devices
 - Monofithic GaAs MMIC Devices
 - Hybrid Microcircuits
 - Magnetic Bubble Memories
 - Surface Acoustic Wave Devices

This revision provides new prediction models for bipolar and MOS microcircuits with gate counts up to 60,000, linear microcircuits with up to 3000 transistors, bipolar and MOS digital microprocessor and coprocessors up to 32 bits, memory devices with up to 1 million bits, GaAs monolithic microwave integrated circuits (MMICs) with up to 1,000 active elements, and GaAs digital ICs with up to 10,000 transistors. The C_1 factors have been extensively revised to reflect new technology devices with improved reliability, and the activation energies representing the temperature sensitivity of the dice (π_T) have been changed for MOS devices and for memories. The C_2 factor remains unchanged from the previous Handbook version, but includes pin grid arrays and surface mount packages using the same model as hermetic, solder-sealed dual in-line packages. New values have been included for the quality factor (π_Q) , the learning factor (π_L) , and the environmental factor (π_E) . The model for hybrid microcircuits has been revised to be simpler to use, to delete the temperature dependence of the seal and interconnect failure rate contributions, and to provide a method of calculating chip junction temperatures.

- A new model for Very High Speed Integrated Circuits (VHSIC/VHSIC Like) and Very Large Scale Integration (VLSI) devices (gate counts above 60,000).
- The reformatting of the entire handbook to make it easier to use.
- 4. A reduction in the number of environmental factors (π_{F}) from 27 to 14.
- 5. A revised failure rate model for Network Resistors.
- Revised models for TWTs and Klystrons based on data supplied by the Electronic Industries Association Microwave Tube Division.

vii

1.0 SCOPE

- 1.1 Purpose The purpose of this handbook is to establish and maintain consistent and uniform methods for estimating the inherent reliability (i.e., the reliability of a mature design) of military electronic equipment and systems. It provides a common basis for reliability predictions during acquisition programs for military electronic systems and equipment. It also establishes a common basis for comparing and evaluating reliability predictions of related or competitive designs. The handbook is intended to be used as a tool to increase the reliability of the equipment being designed.
- 1.2 Application This handbook contains two methods of reliability prediction "Part Stress Analysis" in Sections 5 through 23 and "Parts Count" in Appendix A. These methods vary in degree of information needed to apply them. The Part Stress Analysis Method requires a greater amount of detailed information and is applicable during the later design phase when actual hardware and circuits are being designed. The Parts Count Method requires less information, generally part quantities, quality level, and the application environment. This method is applicable during the early design phase and during proposal formulation. In general, the Parts Count Method will usually result in a more conservative estimate (i.e., higher failure rate) of system reliability than the Parts Stress Method.
- 1.3 Computerized Reliability Prediction Rome Laboratory ORACLE is a computer program developed to aid in applying the part stress analysis procedure of MIL-HDBK-217. Based on environmental use characteristics, piece part count, thermal and electrical stresses, subsystem repair rates and system configuration, the program calculates piece part, assembly and subassembly failure rates. It also flags overstressed parts, allows the user to perform tradeoff analyses and provides system meantime-to-failure and availability. The ORACLE computer program software (available in both VAX and IBM compatible PC versions) is available at replacement tape/disc cost to all DoD organizations, and to contractors for application on specific DoD contracts as government furnished property (GFP). A statement of terms and conditions may be obtained upon written request to: Rome Laboratory/ERSR, Griffliss AFB, NY 13441-5700.

2.0 REFERENCE DOCUMENTS

This handbook cites some specifications which have been cancelled or which describe devices that are not to be used for new design. This information is necessary because some of these devices are used in so-called "off-the-shelf" equipment which the Department of Defense purchases. The documents cited in this section are for guidance and information.

SPECIFICATION	SECTION#	TITLE
MIL-C-5	10.7	Capacitors, Fixed, Mica-Dielectric, General Specification for
MIL-R-11	9.1	Resistor, Fixed, Composition (Insulated) General Specification for
MIL-R-19	9.11	Resistor, Variable, Wirewound (Low Operating Temperature) General Specification for
MIL-C-20	10.11	Capacitor, Fixed, Ceramic Dielectric (Temperature Compensating) Established and Nonestablished Reliability, General Specification for
MIL-R-22	9.12	Resistor, Wirewound, Power Type, General Specification for
MIL-C-25	10.1	Capacitor, Fixed, Paper-Dielectric, Direct Current (Hermetically Sealed in Metal Cases), General Specification for
MIL-R-26	9.6	Resistor, Fixed, Wirewound (Power Type), General Specification for
MIL-T-27	11.1	Transformer and Inductor (Audio, Power, High Power, High Power Pulse), General Specification for
MIL-C-62	10.15	Capacitor, Fixed Electrolytic (DC, Aluminum, Dry Electrolyte, Polarized), General Specification for
MIL-C-81	10.16	Capacitor, Variable, Ceramic Dielectric (Trimmer), General Specification for
MIL-C-92	10.18	Capacitor, Variable, Air Dielectric (Trimmer), General Specification for
MIL-R-93	9.5	Resistor, Fixed, Wirewound (Accurate), General Specification for
MIL-R-94	9.14	Resistor, Variable, Composition, General Specification for
MIL-V-95	23.1	Vibrator, Interrupter and Self-Rectifying, General Specification for
W-L-111	20.1	Lamp, Incandescent Ministure, Tungsten Filament
W-C-375	14.5	Circuit Breaker, Molded Case, Branch Circuit and Service
W-F-1726	22.1	Fuse, Cartridge, Class H (This covers renewable and nonrenewable)
W-F-1814	22.1	Fuse, Cartridge, High Interrupting Capacity
MIL-C-3098	19.1	Crystal Unit, Quartz, General Specification for
MIL-C-3607	15.1	Connector, Coaxial, Radio Frequency, Series Pulse, General Specifications for
MIL-C-3643	15.1	Connector, Coaxial, Radio Frequency, Series NH, Associated Fittings, General Specification for
MIL-C-3650	15.1	Connector, Coaxial, Radio Frequency, Series LC

SPECIFICATION	SECTION #	mle
MIL-C-3655	15.1	Connector, Plug and Receptacle, Electrical (Coaxial Series Twin) and Associated Fittings, General Specification for
MIL-C-3767	15.1	Connector, Plug and Receptacle (Power, Bladed Type) General Specification for
MIL-S-3786	14.3	Switch, Rotary (Circuit Selector, Low-Current (Capacity)), General Specification for
MIL-C-3950	14.1	Switch, Toggle, Environmentally Sealed, General Specification for
MIL-C-3965	10.13	Capacitor, Fixed, Electrolytic (Nonsolid Electrolyte), Tantalum, General Specification for
MIL-C-5015	15.1	Connector, Electrical, Circular Threaded, AN Type, General Specification for
MIL-F-5372	22.1	Fuse, Current Limiter Type, Aircraft
MIL-R-5757	13.1	Relay, Electrical (For Electronic and Communication Type Equipment), General Specification for
MIL-R-6106	13.1	Relay, Electromagnetic (Including Established Reliability (ER) Types), General Specification for
MIL-L-6363	20.1	Lamp, Incandescent, Aviation Service, General Requirement for
MIL-S-8805	14.1, 14.2	Switches and Switch Assemblies, Sensitive and Push, (Snap Action) General Specification for
MIL-S-8834	14.1	Switches, Toggle, Positive Break, General Specification for
MIL-M-10304	18.1	Meter, Electrical Indicating, Panel Type, Ruggedized, General Specification for
MIL-R-10509	9.2	Resistor, Fixed Film (High Stability), General Specification for
MIL-C-10950	10.8	Capacitor, Fixed, Mica Dielectric, Button Style, General Specification for
MIL-C-11015	10.10	Capacitor, Fixed, Ceramic Dielectric (General Purpose), General Specification for
MIL-C-11272	10.9	Capacitor, Fixed, Glass Dielectric, General Specification for
MIL-C-11693	10.2	Capacitor, Feed Through, Radio Interference Reduction AC and DC, (Hermetically Sealed in Metal Cases) Established and Nonestablished Reliability, General Specification for
MIL-R-11804	9.3	Resistor, Fixed, Film (Power Type), General Specification for
MIL-C-12889	10.1	Capacitor, By-Pass, Radio - Interference Reduction, Paper Dielectric, AC and DC, (Hermetically Sealed in Metallic Cases), General Specification for
MIL-R-12934	9.10	Resistor, Variable, Wirewound, Precision, General Specification for

SPECIFICATION	SECTION #	TITLE
MIL-C-14157	10.3	Capacitor, Fixed, Paper (Paper Plastic) or Plastic Dielectric, Direct Current (Hermetically Sealed in Metal Cases) Established Reliability, General Specification for
MIL-C-14409	10.17	Capacitor, Variable (Piston Type, Tubular Trimmer), General Specification for
MIL-F-15160	22.1	Fuse, Instrument, Power and Telephone
MIL-C-15305	11.2	Coil, Fixed and Variable, Radio Frequency, General Specification for
MIL-F-15733	21.1	Filter, Radio Interierence, General Specification for
MIL-C-18312	10.4	Capacitor, Fixed, Metallized (Paper, Paper Plastic or Plastic Film) Dielectric, Direct Current (Hermetically Sealed in Metal Cases), General Specification for
Mil-F-18327	21.1	Filter, High Pass, Low Pass, Band Pass, Band Suppression and Dual Functioning, General Specification for
MIL-R-18546	9.7	Resistor, Fixed, Wirewound (Power Type, Chassis Mounted), General Specification for
MIL-S-19500	6.0	Semiconductor Device, General Specification for
MIL-R-19523	13.1	Relay, Control, Naval Shipboard
MIL-R-19648	13.1	Relay, Time, Delay, Thermal, General Specification for
MIL-C-19978	10.3	Capacitor, Fixed Plastic (or Paper-Plastic) Dielectric (Hermetically Sealed in Metal, Ceramic or Glass Cases), Established and Nonestablished Reliability, General Specification for
MIL-T-21038	11.1	Transformer, Pulse, Low Power, General Specification for
MIL-C-21097	15.2	Connector, Electrical, Printed Wiring Board, General Purpose, General Specification for
MIL-R-22097	9.13	Resistor, Variable, Nonwirewound (Adjustment Types), General Specification for
MIL-R-22684	9.2	Resistor, Fixed, Film, Insulated, General Specification for
MIL-S-22710	14.4	Switch, Rotary (Printed Circuit), (Thumbwheel, In-line and Pushbutton), General Specification for
MIL-S-22885	14.1	Switches, Pushbutton, Illuminated, General Specification for
MIL-C-22992	15.1	Connector, Cylindrical, Heavy Duty, General Specification for
MiL-C-23183	10.19	Capacitor, Fixed or Variable, Vacuum Dielectric, General Specification for
MIL-C-23269	10.9	Capacitor, Fixed, Glass Dielectric, Established Reliability, General Specification for
MIL-R-23285	9.15	Resistor, Variable, Nonwirewound, General Specification for

SPECIFICATION	SECTION #	TITLE
MIL-F-23419	22.1	Fuse, Instrument Type, General Specification for
MIL-T-23648	9.8	Thermistor, (Thermally Sensitive Resistor), Insulated, General Specification for
MIL-C-24308	15.1	Connector, Electric, Rectangular, Miniature Polarized Shell, Rack and Panel, General Specification for
MIL-C-25516	15.1	Connector, Electrical, Miniature, Coaxial, Environment Resistant Type, General Specification for
MIL-C-26482	15.1	Connector, Electrical (Circular, Miniature, Quick Disconnect, Environment Resisting) Receptacles and Plugs, General Specification for
MIL-R-27208	9.9	Resistor, Variable, Wirewound, (Lead Screw Activated) General Specification for
MIL-C-28748	15.1	Connector, Electrical, Rectangular, Rack and Panel, Solder Type and Crimp Type Contacts, General Specification for
MIL-R-28750	13.2	Relay, Solid State, General Specification for
MIL-C-28804	15.1	Connector, Electric Rectangular, High Density, Polarized Central Jackscrew, General Specification for, Inactive for New Designs
MIL-C-28840	15.1	Connector, Electrical, Circular Threaded, High Density, High Shock Shipboard, Class D, General Specification for
MIL-M-38510	5.0	Microcircuits, General Specification for
MIL-H-38534	5.0	Hybrid Microcircuits, General Specification for
MIL-I-38535	5.0	Integrated Circuits (Microcircuits) Manufacturing, General Specification for
MIL-C-38999	15.1	Connector, Electrical, Circular, Miniature, High Density, Quick Disconnect, (Bayonet, Threaded, and Breech Coupling) Environment Resistant, Removable Crimp and Hermetic Solder Contacts, General Specification for
MIL-C-39001	10.7	Capacitor, Fixed, Mica Dielectric, Established Reliability, General Specification for
MIL-R-39002	9.11	Resistor, Variable, Wirewound, Semi-Precision, General Specification for
MIL-C-39003	10.12	Capacitor, Fixed, Electrolytic, (Solid Electrolyte), Tantalum, Established Reliability, General Specification for
MIL-R-39005	9.5	Resistor, Fixed, Wirewound, (Accurate) Established Reliability, General Specification for
MIL-C-39006	10.13	Capacitor, Fixed, Electrolytic (Nonsolid Electrolyte) Tantalum Established Reliability, General Specification for
MIL-R-39007	9.6	Resistor, Fixed, Wirewound (Power Type) Established Reliability, General Specification for

SPECIFICATION	SECTION #	TITLE
MIL-R-39008	9.1	Resistor, Fixed, Composition, (Insulated) Established Reliability, General Specification for
MIL-R-39009	9.7	Resistor, Fixed, Wirewound (Power Type, Chassis Mounted) Established Reliability, General Specification for
MIL-C-39010	11.2	Coil, Fixed, Radio Frequency, Molded, Established Reliability, General Specification for
MIL-C-39012	15.1	Connector, Coaxial, Radio Frequency, General Specification for
MIL-C-39014	10.10	Capacitor, Fixed, Ceramic Dielectric (General Purpose) Established Reliability, General Specification for
MIL-C-39015	9.9	Resistor, Variable, Wirewound (Lead Screw Actuated) Established Reliability, General Specification for
MIL-R-39016	13.1	Relay, Electromagnetic, Established Reliability, General Specification for
MIL-R-39017	9.2	Resistor, Fixed, Film (Insulated), Established Reliability, General Specification for
MIL-C-39018	10.14	Capacitor, Fixed, Electrolytic (Aluminum Oxide) Established Reliability and Nonestablished Reliability, General Specification for
MIL-C-39019	14.5	Circuit Breakers, Magnetic, Low Power, Sealed, Trip-Free, General Specification for
MIL-C-39022	10.4	Capacitor, Fixed, Metallized Paper, Paper-Plastic Film, or Plastic Film Dielectric, Direct and Alternating Current (Hermetically Sealed in Metal Cases) Established Reliability, General Specification for
MIL-R-39023	9.15	Resistor, Variable, Nonwirewound, Precision, General Specification for
MIL-R-39035	9.13	Resistor, Variable, Nonwirewound, (Adjustment Type) Established Reliability, General Specification for
MIL-C-49142	15.1	Connector, Triaxial, RF, General Specification for
MIL-P-55110	15.2	Printed Wiring Boards
MIL-R-55182	9.2	Resistor, Fixed, Film, Established Reliability, General Specification for
MIL-C-55235	15.1	Connector, Coaxial, RF, General Specification for
MIL-C-55302	15.2	Connector, Printed Circuit, Subassembly and Accessories
MIL-C-55339	15.1	Adapter, Coaxial, RF, General Specification for
MIL-C- 5 5514	10.5	Capacitor, Fixed, Plastic (or Metallized Plastic) Dielectric, Direct Current, In Non-Metal Cases, General Specification for
MIL-C-55629	14.5	Circuit Breaker, Magnetic, Unsealed, Trip-Free, General Specification for
MIL-T-55631	11.1	Transformer, Intermediate Frequency, Radio Frequency, and Discriminator, General Specification for

2.0 REFERENCE DOCUMENTS

SPECIFICATION	SECTIO	N# TITLE
MIL-C-55681	10.11	Capacitor, Chip, Multiple Layer, Fixed, Ceramic Dielectric, Established Reliability, General Specification for
MIL-C-81511	15.1	Connector, Electrical, Circular, High Density, Quick Disconnect, Environment Resisting, and Accessories, General Specification for
MIL-C-83383	14.5	Circuit Breaker, Remote Control, Thermal, Trip-Free, General Specification for
MIL-R-83401	9.4	Resistor Networks, Fixed, Film, General Specification for
MIL-C-83421	10.6	Capacitor, Fixed Supermetallized Plastic Film Dielectric (DC, AC or DC and AC) Hermetically Sealed in Metal Cases, Established Reliability, General Specification for
MIL-C-83513	15.1	Connector, Electrical, Rectangular, Microminiature, Polarized Shell, General Specification for
MIL-C-83723	15.1	Connector, Electrical (Circular Environment Resisting), Receptacles and Plugs, General Specification for
MIL-R-83725	13.1	Relay, Vacuum, General Specification for
MIL-R-83726	13.1, 13.2, 13.3	Relay, Time Delay, Electric and Electronic, General Specification for
MIL-S-83731	14.1	Switch, Toggle, Unsealed and Sealed Toggle, General Specification for
MIL-C-83733	15.1	Connector, Electrical, Miniature, Rectangular Type, Rack to Panel, Environment Resisting, 200 Degrees C Total Continuous Operating Temperature, General Specification for
MIL-S-83734	15.3	Socket, Plug-in Electronic Components, General Specification for
STANDARD		тть
MIL-STD-756		Reliability Modeling and Prediction
MIL-STD-883		Test Methods and Procedures for Microelectronics
MIL-STD-975		NASA Standard Electrical, Electronic and Electromechanical Parts List
MIL-8TD-1547		Parts, Materials and Processes for Space Launch Vehicles, Technical Requirements for
MIL-STD-1772		Certification Requirements for Hybrid Microcircuit Facilities and Lines

Copies of specifications and standards required by contractors in connection with specific acquisition functions should be obtained from the contracting activity or as directed by the contracting officer. Single copies are also available (without charge) upon written request to:

Standardization Document Order Desk 700 Robins Ave. Building 4, Section D Philadelphia, PA 19111-5094 (215) 697-2667

3.0 INTRODUCTION

3.1 Reliability Engineering - Reliability is currently recognized as an essential need in military electronic systems. It is looked upon as a means for reducing costs from the factory, where rework of defective components adds a non-productive overhead expense, to the field, where repair costs include not only parts and labor but also transportation and storage. More importantly, reliability directly impacts force effectiveness, measured in terms of availability or sortie rates, and determines the size of the "logistics tail" inhibiting force utilization.

The achievement of reliability is the function of reliability engineering. Every aspect of an electronic system, from the purity of materials used in its component devices to the operator's interface, has an impact on reliability. Reliability engineering must, therefore, be applied throughout the system's development in a diligent and timely fashion, and integrated with other engineering disciplines.

A variety of reliability engineering tools have been developed. This handbook provides the models supporting a basic tool, reliability prediction.

3.2 The Role of Reliability Prediction - Reliability prediction provides the quantitative baseline needed to assess progress in reliability engineering. A prediction made of a proposed design may be used in several ways.

A characteristic of Computer Aided Design is the ability to rapidly generate alternative solutions to a particular problem. Reliability predictions for each design alternative provide one measure of relative worth which, combined with other considerations, will aid in selecting the best of the available options.

Once a design is selected, the reliability prediction may be used as a guide to improvement by showing the highest contributors to failure. If the part stress analysis method is used, it may also reveal other fruitful areas for change (e.g., over stressed parts).

The Impact of proposed design changes on reliability can be determined only by comparing the reliability predictions of the existing and proposed designs.

The ability of the design to maintain an acceptable reliability level under environmental extremes may be assessed through reliability predictions. The predictions may be used to evaluate the need for environmental control systems.

The effects of complexity on the probability of mission success can be evaluated through reliability predictions. The need for redundant or back-up systems may be determined with the aid of reliability predictions. A tradeoff of redundancy against other reliability enhancing techniques (e.g.: more cooling, higher part quality, etc.) must be based on reliability predictions coupled with other pertinent considerations such as cost, space limitations, etc.

The prediction will also help evaluate the significance of reported failures. For example, if several failures of one type or component occur in a system, the predicted failure rate can be used to determine whether the number of failures is commensurate with the number of components used in the system, or, that it indicates a problem area.

Finally, reliability predictions are useful to various other engineering analyses. As examples, the location of built-in-test circuitry should be influenced by the predicted failure rates of the circuitry monitored, and maintenance strategy planners can make use of the relative probability of a failure's location, based on predictions, to minimize downtime. Reliability predictions are also used to evaluate the probabilities of failure events described in a failure modes, effects and criticality analysis (FMECAs).

3-1

3.0 INTRODUCTION

3.3 Limitations of Reliability Predictions - This handbook provides a common basis for reliability predictions, based on analysis of the best available data at the time of issue. It is intended to make reliability prediction as good a tool as possible. However, like any tool, reliability prediction must be used intelligently, with due consideration of its limitations.

The first limitation is that the failure rate models are point estimates which are based on available data. Hence, they are valid for the conditions under which the data was obtained, and for the devices covered. Some extrapolation during model development is possible, but the inherently empirical nature of the models can be severely restrictive. For example, none of the models in this handbook predict nuclear survivability or the effects of ionizing radiation.

Even when used in similar environments, the differences between system applications can be significant. Predicted and achieved reliability have always been closer for ground electronic systems than for avionic systems, because the environmental stresses vary less from system to system on the ground and hence the field conditions are in general closer to the environment under which the data was collected for the prediction model. However, failure rates are also impacted by operational scenarios, operator characteristics, maintenance practices, measurement techniques and differences in definition of failure. Hence, a reliability prediction should never be assumed to represent the expected field reliability as measured by the user (i.e., Mean-Time-Between-Maintenance, Mean-Time-Between-Removals, etc.). This does not negate its value as a reliability engineering tool; note that none of the applications discussed above requires the predicted reliability to match the field measurement.

Electronic technology is noted for its dynamic nature. New types of devices and new processes are continually introduced, compounding the difficulties of predicting reliability. Evolutionary changes may be handled by extrapolation from the existing models; revolutionary changes may defy analysis.

Another limitation of reliability predictions is the mechanics of the process. The part stress analysis method requires a significant amount of design detail. This naturally imposes a time and cost penalty. More significantly, many of the details are not available in the early design stages. For this reason this handbook contains both the part stress analysis method (Sections 5 through 23) and a simpler parts count method (Appendix A) which can be used in early design and bid formulation stages.

Finally, a basic limitation of reliability prediction is its dependence on correct application by the user. Those who correctly apply the models and use the information in a conscientious reliability program will find the prediction a useful tool. Those who view the prediction only as a number which must exceed a specified value can usually find a way to achieve their goal without any impact on the system.

3.4 Part Stress Analysis Prediction

3.4.1 Applicability - This method is applicable when most of the design is completed and a detailed parts list including part stresses is available. It can also be used during later design phases for reliability trade-offs vs. part selection and stresses. Sections 5 through 23 contain failure rate models for a broad variety of parts used in electronic equipment. The parts are grouped by major categories and, where appropriate, are subgrouped within categories. For mechanical and electromechanical parts not covered by this Handbook, refer to Bibliography items 20 and 36 (Appendix C).

The failure rates presented apply to equipment under normal operating conditions, i.e., with power on and performing its intended functions in its intended environment. Extrapolation of any of the base failure rate models beyond the tabulated values such as high or sub-zero temperature, electrical stress values above 1.0, or extrapolation of any associated model modifiers is completely invalid. Base failure rates can be interpolated between electrical stress values from 0 to 1 using the underlying equations.

The general procedure for determining a board level (or system level) failure rate is to sum individually calculated failure rates for each component. This summation is then added to a failure rate for the circuit board (which includes the effects of soldering parts to it) using Section 16, Interconnection Assemblies.

3.0 INTRODUCTION

For parts or wires soldered together (e.g., a jumper wire between two parts), the connections model appearing in Section 17 is used. Finally, the effects of connecting circuit boards together is accounted for by adding in a failure rate for each connector (Section 15, Connectors). The wire between connectors is assumed to have a zero failure rate. For various service use profiles, duty cycles and redundancies the procedures described in MIL-STD-756, Reliability Modeling and Prediction, should be used to determine an effective system level failure rate.

3.4.2 Part Quality - The quality of a part has a direct effect on the part failure rate and appears in the part models as a factor, π_Q . Many parts are covered by specifications that have several quality levels, hence, the part models have values of π_Q that are keyed to these quality levels. Such parts with their quality designators are shown in Table 3-1. The detailed requirements for these levels are clearly defined in the applicable specification, except for microcircuits. Microcircuits have quality levels which are dependent on the number of MIL-STD-883 screens (or equivalent) to which they are subjected.

Table 3-1: Parts With Multi-Level Quality Specifications

Part	Quality Designators
Microcircuits	S, B, B-1, Other: Quality Judged by Screening Level
Discrete Semiconductors	JANTXV, JANTX, JAN
Capacitors, Established Reliability (ER)	D, C, S, R, B, P, M, L
Resistors, Established Reliability (ER)	S, R, P, M
Coils, Molded, R.F., Reliability (ER)	S, R, P, M
Relays, Established Reliability (ER)	R, P, M, L

Some parts are covered by older specifications, usually referred to as Nonestablished Reliability (Non-ER), that do not have multi-levels of quality. These part models generally have two quality levels designated as "MIL-SPEC.", and "Lower". If the part is procured in complete accordance with the applicable specification, the π_Q value for MIL-SPEC should be used. If any requirements are waived, or if a commercial part is procured, the π_Q value for Lower should be used.

The foregoing discussion involves the "as procured" part quality. Poor equipment design, production, and testing facilities can degrade part quality. The use of the higher quality parts requires a total equipment design and quality control process commensurate with the high part quality. It would make little sense to procure high quality parts only to have the equipment production procedures damage the parts or introduce latent defects. Total equipment program descriptions as they might vary with different part quality mixes is beyond the scope of this Handbook. Reliability management and quality control procedures are described in other DoD standards and publications. Nevertheless, when a proposed equipment development is pushing the state-of-the-art and has a high reliability requirement necessitating high quality parts, the total equipment program should be given careful scrutiny and not just

3.0 INTRODUCTION

the parts quality. Otherwise, the low failure rates as predicted by the models for high quality parts will not be realized.

3.4.3 Use Environment - All part reliability models include the effects of environmental stresses through the environmental factor, π_E , except for the effects of lonizing radiation. The descriptions of these environments are shown in Table 3-2. The π_E factor is quantified within each part failure rate model. These environments encompass the major areas of equipment use. Some equipment will experience more than one environment during its normal use, e.g., equipment in spacecraft. In such a case, the reliability analysis should be segmented, namely, missile launch (M_L) conditions during boost into and return from orbit, and space flight (S_F) while in orbit.

Table 3-2: Environmental Symbol and Description

Environment	π _E Symbol	Equivalent MIL-HDBK-217E, Notice 1 π _E Symbol	Description
Ground, Benign	G _B	G _B G _{MS}	Nonmobile, temperature and humidity controlled environments readily accessible to maintenance; includes laboratory instruments and test equipment, medical electronic equipment, business and scientific computer complexes, and missiles and support equipment in ground silos.
Ground, Fixed	G _F	GF	Moderately controlled environments such as installation in permanent racks with adequate cooling air and possible installation in unheated buildings; includes permanent installation of air traffic control radar and communications facilities.
Ground, Mobile	G _M	G _M Mp	Equipment installed on wheeled or tracked vehicles and equipment manually transported; includes tactical missile ground support equipment, mobile communication equipment, tactical fire direction systems, handheld communications equipment, laser designations and range finders.
Naval, Sheltered	N _S	N _S N _{SB}	Includes sheltered or below deck conditions on surface ships and equipment installed in submarines.
Navai, Unsheltered	N U .	м ^н м п л	Unprotected surface shipborne equipment exposed to weather conditions and equipment immersed in salt water. Includes sonar equipment and equipment installed on hydrofoil vessels.

3.0 INTRODUCTION

Table 3-2: Environmental Symbol and Description (cont'd)

Environment	я _E Symbol	Equivalent MIL-HDBK-217E, Notice 1 π _E Symbol	Description
Airborne, Inhabited, Cargo	^A IC	AIC AIT AIB	Typical conditions in cargo compartments which can be occupied by an aircrew. Environment extremes of pressure, temperature, shock and vibration are minimal. Examples include long mission aircraft such as the C130, C5, B52, and C141. This category also applies to inhabited areas in lower performance smaller aircraft such as the T38.
Airborne, Inhabited, Fighter	A _{IF}	A _{IF} A _{IA}	Same as A _{IC} but installed on high performance aircraft such as fighters and interceptors. Examples include the F15, F16, F111, F/A 18 and A10 aircraft.
Airborne, Uninhabited, Cargo	Auc	Auc Aut Aub	Environmentally uncontrolled areas which cannot be inhabited by an aircrew during flight. Environmental extremes of pressure, temperature and shock may be severe. Examples include uninhabited areas of long mission aircraft such as the C130, C5, B52 and C141. This category also applies to uninhabited area of lower performance smaller aircraft such as the T38.
Airborne, Uninhabited, Fighter	A _{UF}	A _{UF} A _{UA}	Same as A _{UC} but installed on high performance aircraft such as fighters and interceptors. Examples include the F15, F16, F111 and A10 aircraft.
Airborne, Rotary Winged	^ rw	^A RW	Equipment installed on helicopters. Applies to both internally and externally mounted equipment such as laser designators, fire control systems, and communications equipment.
Space, Flight	s _F	s _F	Earth orbital. Approaches benign ground conditions. Vehicle neither under powered flight nor in atmospheric reentry; includes satellites and shuttles.

3.0 INTRODUCTION

Table 3-2: Environmental Symbol and Description (cont'd)

Environment	ж _E Symbol	Equivalent MIL-HDBK-217E, Notice 1 π _E Symbol	Description
Missile, Flight	M _E	M _{FF} M _{FA}	Conditions related to powered flight of air breathing missiles, cruise missiles, and missiles in unpowered free flight.
Missile, Launch	ML	M _L U _{SL}	Severe conditions related to missile launch (air, ground and sea), space vehicle boost into orbit, and vehicle re-entry and landing by parachute. Also applies to solid rocket motor propulsion powered flight, and torpedo and missile launch from submarines.
Cannon, Launch	CL	CL	Extremely severe conditions related to cannon launching of 155 mm. and 5 inch guided projectiles. Conditions apply to the projectile from launch to target impact.

3.4.4 Part Fallure Rate Models - Part failure rate models for microelectronic parts are significantly different from those for other parts and are presented entirely in Section 5.0. A typical example of the type of model used for most other part types is the following one for discrete semiconductors:

$$\lambda_D = \lambda_D \pi_T \pi_A \pi_R \pi_S \pi_C \pi_Q \pi_E$$

where:

L is the part failure rate,

λ_b is the base failure rate usually expressed by a model relating the influence of electrical and temperature stresses on the part,

 π_E and the other π factors modify the base failure rate for the category of environmental application and other parameters that affect the part reliability.

The π_E and π_Q factors are used in most all models and other π factors apply only to specific models. The applicability of π factors is identified in each section.

The base failure rate (λ_b) models are presented in each part section along with identification of the applicable model factors. Tables of calculated λ_b values are also provided for use in manual calculations. The model equations can, of course, be incorporated into computer programs for machine processing. The tabulated values of λ_b are cut off at the part ratings with regard to temperature and stress, hence, use of parts beyond these cut off points will overstress the part. The use of the λ_b models in a computer

MIT - MI JOK - Z T / E

3.0 INTRODUCTION

program should take the part rating limits into account. The λ_b equations are mathematically continuous beyond the part ratings but such failure rate values are invalid in the overstressed regions.

All the part models include failure data from both catastrophic and permanent drift failures (e.g., a resistor permanently falling out of rated tolerance bounds) and are based upon a constant failure rate, except for motors which show an increasing failure rate over time. Failures associated with connection of parts into circuit assemblies are not included within the part failure rate models. Information on connection reliability is provided in Sections 16 and 17.

3.4.5 Thermal Aspects - The use of this prediction method requires the determination of the temperatures to which the parts are subjected. Since parts reliability is sensitive to temperature, the thermal analysis of any design should fairly accurately provide the ambient temperatures needed in using the part models. Of course, lower temperatures produce better reliability but also can produce increased penalties in terms of added loads on the environmental control system, unless achieved through improved thermal design of the equipment. The thermal analysis should be part of the design process and included in all the trade-off studies covering equipment performance, reliability, weight, volume, environmental control systems, etc. References 17 and 34 listed in Appendix C may be used as guides in determining component temperatures.

RELIABILITY ANALYSIS EVALUATION

Table 4-1 provides a general checklist to be used as a guide for evaluating a reliability prediction report. For completeness, the checklist includes categories for reliability modeling and allocation, which are sometimes delivered as part of a prediction report. It should be noted that the scope of any reliability analysis depends on the specific requirements called out in a statement-of-work (SOW) or system specification. The inclusion of this checklist is not intended to change the scope of these requirements.

Major Concerns	ability Analysis Checklist Comments		
major Concerns	Comments		
MODELS Are all functional elements included in the reliability block diagram /model?	System design drawings/diagrams must be reviewed to be sure that the reliability model/diagram agrees with the hardware.		
Are all modes of operation considered in the math model?	Duty cycles, alternate paths, degraded conditions and redundant units must be defined and modeled.		
Do the math model results show that the design achieves the reliability requirement?	Unit failure rates and redundancy equations are used from the detailed part predictions in the system math model (See MIL-STD-756, Reliability Prediction and Modeling).		
ALLOCATION Are system reliability requirements allocated (subdivided) to useful levels?	Useful levels are defined as: equipment for subcontractors, assemblies for sub-subcontractors, circuit boards for designers.		
Does the allocation process consider complexity, design flexibility, and safety margins?	Conservative values are needed to prevent reallocation at every design change.		
PREDICTION Does the sum of the parts equal the value of the module or unit?	Many predictions neglect to include all the parts producing optimistic results (check for solder connections, connectors, circuit boards).		
Are environmental conditions and part quality representative of the requirements?	Optimistic quality levels and favorable environmental conditions are often assumed causing optimistic results.		
Are the circuit and part temperatures defined and do they represent the design?	Temperature is the biggest driver of part failure rates; low temperature assumptions will cause optimistic results.		
Are equipment, assembly, subassembly and part reliability drivers identified?	Identification is needed so that corrective actions for reliability improvement can be considered.		
Are alternate (Non MIL-HDBK-217) failure rates highlighted along with the rationale for their use?	Use of alternate failure rates, if deemed necessary, require submission of backup data to provide credence in the values.		
Is the level of detail for the part failure rate models sufficient to reconstruct the result? Are critical components such as VHSIC, Monolithic Microwave Integrated Circuits (MMIC), Application Specific Integrated Circuits (ASIC) or Hybrids highlighted?	Each component type should be sampled and failure rates completely reconstructed for accuracy. Prediction methods for advanced technology parts should be carefully evaluated for impact on the module and system.		

5.0 MICROCIRCUITS, INTRODUCTION

This section presents failure rate prediction models for the following ten major classes of microelectronic devices:

Section 5.1	Monolithic Bipolar Digital and Linear Gate/Logic Array Devices
5.1	Monolithic MOS Digital and Linear Gate/Logic Array Devices
5.1	Monolithic Bipolar and MOS Digital Microprocessor Devices
5.2	Monolithic Bipolar and MOS Memory Devices
5.3	Very High Speed Integrated Circuit (VHSIC/VHSIC-Like and VLSI) CMOS Devices (> 60K Gates)
5.4	Monolithic GaAs Digital Devices
5.4	Monolithic GaAs MMIC
5.5	Hybrid Microcircuits
5.6	Surface Acoustic Wave Devices
5.7	Magnetic Bubble Memories

In the title description of each monolithic device type, Bipolar represents all TTL, ASTTL, DTL, ECL, CML, ALSTTL, HTTL, FTTL, F, LTTL, STTL, BiCMOS, LSTTL, IIL, I³L and ISL devices. MOS represents all metal-oxide microcircuits, which includes NMOS, PMOS, CMOS and MNOS fabricated on various substrates such as sapphire, polycrystalline or single crystal silicon. The hybrid model is structured to accommodate all of the monolithic chip device types and various complexity levels.

Monolithic memory complexity factors are expressed in the number of bits in accordance with JEDEC STD 21A. This standard, which is used by all government and industry agencies that deal with microcircuit memories, states that memories of 1024 bits and greater shall be expressed as K bits, where 1K = 1024 bits. For example, a 16K memory has 16,384 bits, a 64K memory has 65,536 bits and a 1M memory has 1,048,576 bits. Exact numbers of bits are not used for memories of 1024 bits and greater.

For devices having both linear and digital functions not covered by MIL-M-38510 or MIL-I-38535, use the linear model. Line drivers and line receivers are considered linear devices. For linear devices not covered by MIL-M-38510 or MIL-I-38535, use the transistor count from the schematic diagram of the device to determine circuit complexity.

For digital devices not covered by MIL-M-38510 or MIL-I-38535, use the gate count as determined from the logic diagram. A J-K or R-S flip flop is equivalent to 6 gates when used as part of an LSI circuit. For the purpose of this Handbook, a gate is considered to be any one of the following functions; AND, OR, exclusive OR, NAND, NOR and inverter. When a logic diagram is unavailable, use device transistor count to determine gate count using the following expressions:

Technology	Gate Approximation			
Bipolar	No. Gates = No. Transistors/3.0			
CMOS	No. Gates = No. Transistors/4.0			
All other MOS except CMOS	No. Gates = No. Transistors/3.0			

5.0 MICROCIRCUITS, INTRODUCTION

A detailed form of the Section 5.3 VHSIC/VHSIC-Like model is included as Appendix B to allow more detailed trade-offs to be performed. Reference 30 should be consulted for more information about this model.

Reference 32 should be consulted for more information about the models appearing in Sections 5.1, 5.2, 5.4, 5.5, and 5.6. Reference 13 should be consulted for additional information on Section 5.7.

MICROCIRCUITS, GATE/LOGIC ARRAYS AND MICROPROCESSORS

DESCRIPTION

- 1. Bipolar Devices, Digital and Linear Gate/Logic Arrays
- MOS Devices, Digital and Linear Gate/Logic Arrays
 Field Programmable Logic Array (PLA) and
- Programmable Array Logic (PAL)
- 4. Microprocessors

 $\lambda_{\rm p} = (C_1 \pi_{\rm T} + C_2 \pi_{\rm E}) \pi_{\rm Q} \pi_{\rm L}$ Failures/10⁶ Hours

Bipolar Digital and Linear Gate/Logic Array Die Complexity Failure Rate - C1

Digital		Linear		PLA/PAL		
No. Gates	C ₁	No. Transistors	C ₁	No. Gates	C ₁	
1 to 100 101 to 1,000 1,001 to 3,000 3,001 to 10,000 10,001 to 30,000 30,001 to 60,000	.0025 .0050 .010 .020 .040 .080	1 to 100 101 to 300 301 to 1,000 1,001 to 10,000	.010 .020 .040 .060	Up to 200 201 to 1,000 1,001 to 5,000	.010 .021 .042	

MOS Digital and Linear Gate/Logic Array Die Complexity Failure Rate - C1*

		Digital		Linear PLA/PAL			L		
N	lo. G	ates	C ₁	No.	Trai	nsistors	C ₁	No. Gates	C ₁
1 101 1,001 3,001 10,001 30,001	to to to to to	100 1,000 3,000 10,000 30,000 60,000	.010 .020 .040 .080 .16	1 101 301 1,001	to to to	100 300 1,000 10,000	.010 .020 .040 .060	Up to 500 501 to 1,000 2,001 to 5,000 5,001 to 20,000	.00085 .0017 .0034 .0068

*NOTE: For CMOS gate counts above 60,000 use the VHSIC/VHSIC-Like model in Section 5.3

Microprocessor Die Complexity Failure Rate - C1

210 Complexity Fallotto Flato Of							
	Bipolar	MOS					
No. Bits	C ₁	C ₁					
Up to 8	.060	.14					
Up to 16	.12	.28					
Up to 32	.24	.56					

All Other	Model	Parameters	

Parameter	Refer to	
π _T	Section 5.8	
C ₂	Section 5.9	
π _E , π _Q , π _L	Section 5.10	

5.2 MICROCIRCUITS, MEMORIES

DESCRIPTION

- 1. Read Only Memories (ROM)
- 2. Programmable Read Only Memories (PROM)
- 3. Ultraviolet Eraseable PROMs (UVEPROM)
- 4. "Flash," MNOS and Floating Gate Electrically Eraseable PROMs (EEPROM). Includes both floating gate tunnel oxide (FLÓTOX) and textured polysilicon type EEPROMs
- Static Random Access Memories (SRAM)
 Dynamic Random Access Memories (DRAM)

$$\lambda_{\rm D}$$
 = (C₁ $\pi_{\rm T}$ + C₂ $\pi_{\rm E}$ + $\lambda_{\rm CVC}$) $\pi_{\rm Q}$ $\pi_{\rm L}$ Failures/10⁶ Hours

Die Complexity Failure Rate - C₁

		MC	DS .	Bipolar		
Memory Size, B (Bits)	ROM	PROM, UVEPROM, EEPROM, EAPROM	DRAM	SRAM (MOS & BIMOS)	ROM, PROM	SRAM
Up to 16K 16K < B ≤ 64K 64K < B ≤ 256K 256K < B ≤ 1M	.00065 .0013 .0026 .0052	.00085 .0017 .0034 .0068	.0013 .0025 .0050 .010	.0078 .016 .031 .062	.0094 .019 .038 .075	.0052 .011 .021 .042

A_1 Factor for λ_{cyc} Calculation

/ I · doto · · · · · Cyc · · · · · · · · ·						
Total No. of Programming Cycles Over EEPROM Life, C	Flotox ¹	Textured- Poly ²				
Up to 100 100 < C ≤ 200 200 < C ≤ 500 500 < C ≤ 1K 1K < C ≤ 3K 3K < C ≤ 7K 7K < C ≤ 15K 15K < C ≤ 20K 20K < C ≤ 30K 30K < C ≤ 100K 100K < C ≤ 200K 200K < C ≤ 400K	.00070 .0014 .0034 .0068 .020 .049 .10 .14 .20 .68	.0097 .014 .023 .033 .061 .14 .30 .30 .30				
400K < C ≤ 500K	3.4	.30				

- 1. $A_1 = 6.817 \times 10^{-6} (C)$
- 2. No underlying equation for Textured-

A_2 Factor for λ_{cvc} Calculation

2 070	
Total No. of Programming Cycles Over EEPROM Life, C	Textured-Poly A ₂
Up to 300K	0
300K < C ≤ 400K	1.1
400K < C ≤ 500K	2.3

All Other Model Parameters

Parameter	Refer to
πΤ	Section 5.8
c ₂	Section 5.9
π _E , π _Q , π _L	Section 5.10
λ _{cyc} (EEPROMS only)	Page 5-5
2 0 500 011 0450	

For all other devices

5.2 MICROCIRCUITS, MEMORIES

EEPROM Read/Write Cycling Induced Failure Rate - λ_{CVC}

		g induced Pallure hate - A _{CyC}				
Devices Except Flotooly EEPROMS	ox and	λ _{Cyc} = 0				
Textured Poly EEPR	OMS	$\lambda_{\text{CYC}} = \left[A_1 B_1 + \frac{A_2 B_2}{\pi_Q} \right] \pi_{\text{ECC}}$				
n Code (ECC) Option chip ECC Hamming Code eds-One lant Cell Approach	Elotox Page 5-4 Page 5-6 $A_2 = 0$ $B_2 = 0$ Section 5.10 s: $\pi_{ECC} = 1.0$ $\pi_{ECC} = .72$ $\pi_{ECC} = .68$					
schemes at the 2. If EEPROM type 3. Error Correction on-chip error correction the on-chip ham approach which is represented to 4. The A ₁ and A ₂ is system life of 10 significantly long multiplied by:	memory system is in incorporates an easy the two-needs per or shorter exp	Some EEPROM manufacturers have incorporated into their EEPROM devices. This is represented by Other manufacturers have taken a redundant cell extra storage transistor in every memory cell. This one redundant cell entry. Section 5.2 were developed based on an assumed ours. For EEPROMs used in systems with sected lifetimes the A ₁ and A ₂ factors should be				
	Devices Except Flotoly EEPROMS Textured Poly EEPROMS Textured Poly EEPROM Code (ECC) Options thip ECC Hamming Code eds-One lant Cell Approach See Reference schemes at the conchip error conthe on-chip ham approach which is represented to system life of 10 significantly long multiplied by:	Devices Except Flotox and oly EEPROMS Textured Poly EEPROMS Elotox Page 5-4 Page 5-6 A ₂ = 0 B ₂ = 0 Section 5.16 Code (ECC) Options: This ECC Hamming Code Hamming Code Eds-One				

5.2	MICROCIRCUITS,	MEMORIES
-----	----------------	----------

	3	.2	MIC	n	<u> </u>	ın	<u> </u>	<u> </u>	3			: M	Ur		<u></u>								_											
		Σ	2.1	5.0	. .	2 1	100	s.	7	£.	£	2	· -	=	0:	86:	6 .	<u>6</u>	8 9.	3 5	3.5	2	2.	2	8	8	3 5	2 9	.58	111				
	y ³ (B ₂)	256K	5:	<u>.</u> .		5 6	! =	-	0.	96:	ō, (so G	? ?	75	.72	6	99	5 .	ē 6	ų r	, eg	ę.	ΕÚ	S	3 ;	4 .	? 3	3	₹.	$(\frac{1}{1+273} \cdot \frac{1}{303})$				
	Textured-Poly ³ (B ₂)	84K	=:	o e	2 6	4	8	75	27.	89	æ.	29. S	9.50	75	£ύ.	6	4	4 :	.	7. 4	6	86	3 8	35	4	ان ان	, <u>.</u>	. e	8					
	Text	-6K	0.76	0.7	. C	0.59	0.56	0.53	0.50	0.4 8	9.46	3.5	9	0.38	0.36	38	ල ල	0.32	5.0	9 6	0.28	0.27	9.7 0.7	8	7.5	S 6	2.6	2.5	0.21	.12)) X P			
			20.0	S: 4	\$	2.	9 .	.38	.36	.34	33	ج د د	78	.27	.26	52	7 , 5	£, 5	3 6	, ç	2	<u>6</u>	8 2.	= !	_:	2 4	<u>.</u>	<u>. + .</u>	.15	dxe	è , ,			
		₹	6.6	2 6				8.8	3.0	6. 6.	e, c	0 00	0.4	4.3	4.5	4.7	2.0	2.5	0 r	9	6.2	6.5	8 9.	7.1	4.7	9.0	. «		8.8	.25	-			
and B ₂ Factors for λ _{cyc} Calculation	² (B ₁)	256K	6.	4 4	9	6 0.	6.	5.0	2.1	2.3	2; c	, c	2.9						ກ ເ	. 4	4	4 .6	4.8	9.0	2.5	, n		6.	6.3	B ₁ • (B/000)				
λ _{Cyc} Ca	Textured-Poly ² (B ₁)	64K	g. 5	- -	- 2	.3	<u> </u>	7.	5.	6 1	<u>-</u> -		2.0	2.5	2.3	2.4	S 6	o e	9 0	0.0	3.5	9.	₹.	က (၁)	~ c	P (4	4	4.5	9. 9.			ation	
ctors for	Textur	- 79	99.					_	_	= 9	~ •	ر ن <u>4</u>	7	_	9	-	æ (- ·	- c	2 6	2.5	6 .3	7		9 17	, a	0	9.0	3.1				Determin	
nd B ₂ Fa		4	47	, 7	80	8	.67	Σ.	92.	<u>e</u> .	8.6	ē. 8	0.	=	Ξ:				• •	. 4.	9.	-1.6	1.7	æ :		, c	2 .	, , ,	2.2	33	7 ((.11 for T _J	
B ₁ ar		¥	4.3	4. r.	5.7	6.3	8 9.	7.4	8.0	80 G	ο. 6.	2 =	2	5	£ :	≠ ;	<u>ა</u>	2 ;	<u> </u>	9	ଥ	2	2	ខះ	*	3 5	2 8	8	8	$\left(\frac{1}{1+273} - \frac{1}{333}\right)$		$\left(\left(\frac{1}{1_{J} + 273} \cdot \frac{1}{303} \right) \right)$	Section 5.	
	(81)	256K	2.2	vi c	i ~i	i eri	က	eri i	₹.	4.4	4. 7	. r.	5.8			- F				9 15	_	=	= !	₽ 9	5 5	2 \$	7	. T	5			.5 (T)	Č. %	
	Flotox 1 (B1	64K	=:		4	9.	1.7	6.	5.0	2.5		, c	2.9	3.1			æ (÷ ;	, , , R	4	5.0	5.3	5.6	S. C	0	9 6		7.4	7.7	.15	2	(8.63 x 10 ⁻⁵	rature (°	024 bit
	u.	7	0.55																- c	2.7	2.5	5.6	5.8	8.6		3. K	, K	9.6	3.9	dxe	ه ف	exp (====================================	n Tempe	E: 1K=1
		₹ ¥	25	<u>ئ</u> د	98	4	€.	4.	<u>.</u>	S		3.5	2	.78	E	6	7	2:	= =	~		<u>.</u>	* :				=	-	=	RÚ) .25 (o	Junctio	fs. NOT
		Memory Size, B(Bits)→ 4K T _J (°C)	52	S &	3 4	. 53	26	32	09	 	2 }	c &	S 88	8	32	92	105	2 :	55	125	130	135	9	54	200	<u> </u>	25	170	175	1. $B_1 - \left(\frac{B}{16000}\right)$	•	3. $B_2 = \left(\frac{B}{64000}\right).25 \left[exp\right]$	T _J = Worse Case Junction Temperature (°C). See Section 5.11 for T _J Determination	B = Number of bits. NOTE: 1K = 1024 bits

5-6

5.3 MICROCIRCUITS, VHSIC/VHSIC-LIKE AND VLSI CMOS

DESCRIPTIONCMOS greater than 60,000 gates

 $\lambda_p = \lambda_{BD} \pi_{MFG} \pi_{T} \pi_{CD} + \lambda_{BP} \pi_{E} \pi_{Q} \pi_{PT} + \lambda_{EOS} \text{ Failures/10}^6 \text{ Hours}$

Die Base Faiture Rate - λ_{BD}

	UU
Part Type	λ _{BD}
Logic and Custom	0.16
Gate Array	0.24
1	1

All Other Model Parameters

Parameter	Refer to
π _T	Section 5.8
π _E , π _Q	Section 5.10

Manufacturing Process Correction Factor - π_{MFG}

™MFG
.55
2.0

Package Type Correction Factor - π_{PT}

		[≉] PT
Package Type	Hermetic	Nonhermetic
DIP Pin Grid Array Chip Carrier (Surface Mount Technology)	1.0 2.2 4.7	1.3 2.9 6.1

Die Complexity Correction Factor - π_{CD}

				<u> </u>					
Feature Size			Die Area (cm ²)						
(Microns)	A ≤ .4	.4 < A ≤ .7	.7 < A ≤ 1.0	1.0 < A ≤ 2.0	2.0 < A ≤ 3.0				
.80	8.0	14	19	38	58				
1.00	5.2	8.9	13	25	37				
1.25	3.5	5.8	8.2	16	24				
$\pi_{\text{CD}} = \left(\frac{A}{(21)} \cdot \left(\frac{2}{X_s}\right)^2 \cdot (.64)\right) + .36$ A = Total Scribed Chip Die Area in cm ² X_s = Feature Size (microns)									
Die Area Conver	Die Area Conversion: cm ² = MIL ² + 155,000								

Package Base Failure Rate - λ_{RP}

Number of Pins	λ _{BP}
24	.0026
28	.0027
40	.0029
44	.0030
48	.0030
52	.0031
64	.0033
84	.0036
120	.0043
124	.0043
144	.0047
220	.0060

 $\lambda_{BP} = .0022 + ((1.72 \times 10^{-5}) (NP))$

NP = Number of Package Pins

Electrical Overstress Failure Rate - λ_{EOS}

V _{TH} (ESD Susceptibility (Volts))*	λ _{EOS}
0 - 1000	.065
> 1000 - 2000	.053
> 2000 - 4000	.044
> 4000 - 16000	.029
> 16000	.0027

 $\lambda_{EOS} = (-\ln (1 - .00057 \exp(-.0002 V_{TH})) / .00876$

V_{TH} = ESD Susceptibility (volts)

 Voltage ranges which will cause the part to fail. If unknown, use 0 - 1000 volts.

5-7

5.4 MICROCIRCUITS, GAAS MMIC AND DIGITAL DEVICES

DESCRIPTION

Gallium Arsenide Microwave Monolithic Integrated Circuit (GaAs MMIC) and GaAs Digital Integrated Circuits using MESFET Transistors and Gold Based Metallization

$\lambda_{\rm p} = [C_1 \pi_{\rm T} \pi_{\rm A} + C_2 \pi_{\rm E}] \pi_{\rm L} \pi_{\rm Q}$ Failures/10⁶ Hours

MMIC: Die Complexity Failure Rates - C1

Complexity (No. of Elements)	C ₁	
1 to 100 101 to 1000	4.5 7.2	
C ₁ accounts for the following active elements: transistors, diodes.		

Digital: Die Complexity Failure Rates - C1

Complexity (No. of Elements)	C ₁	
1 to 1000 1,001 to 10,000	25 51	
C ₁ accounts for the following active elements: transistors, diodes.		

Device Application Factor - π_A

Application	*A
MMIC Devices Low Noise & Low Power (≤ 100 mW) Driver & High Power (> 100 mW) Unknown	1.0 3.0 3.0
Digital Devices All Digital Applications	1.0

All Other Model Parameters

Parameter	Refer to
πΤ	Section 5.8
c ₂	Section 5.9
π _E , π _L , π _Q	Section 5.10

5.5 MICROCIRCUITS, HYBRIDS

DESCRIPTIONHybrid Microcircuits

 $\lambda_{\rm p}$ = [Σ N_C $\lambda_{\rm C}$] (1 + .2 $\pi_{\rm E}$) $\pi_{\rm F}$ $\pi_{\rm Q}$ $\pi_{\rm L}$ Failures/10⁶ Hours

N_C = Number of Each Particular Component

 λ_c = Failure Rate of Each Particular Component

The general procedure for developing an overall hybrid failure rate is to calculate an individual failure rate for each component type used in the hybrid and then sum them. This summation is then modified to account for the overall hybrid function (π_F) , screening level (π_Q) , and maturity (π_L) . The hybrid package failure rate is a function of the active component failure modified by the environmental factor (i.e., $(1+.2\pi_E)$). Only the component types listed in the following table are considered to contribute significantly to the overall failure rate of most hybrids. All other component types (e.g., resistors, inductors, etc.) are considered to contribute insignificantly to the overall hybrid failure rate, and are assumed to have a failure rate of zero. This simplification is valid for most hybrids; however, if the hybrid consists of mostly passive components then a failure rate should be calculated for these devices. If factoring in other component types, assume $\pi_Q = 1$, $\pi_E = 1$ and $T_A = 1$ Hybrid Case Temperature for these calculations.

Determination of λ_c

Determine λ _C for These Component Types	Handbook Section	Make These Assumptions When Determining $\lambda_{\rm C}$
Microcircuits	5	$C_2 = 0$, $\pi_Q = 1$, $\pi_L = 1$, T_J as Determined from Section 5.12, $\lambda_{BP} = 0$ (for VHSIC).
Discrete Semiconductors	6	$\pi_{Q} = 1$, T_{J} as Determined from Section 6.14, $\pi_{E} = 1$.
Capacitors	10	$\pi_Q = 1$, $T_A = Hybrid Case Temperature, \pi_E = 1.$

NOTE:

If maximum rated stress for a die is unknown, assume the same as for a discretely package die of the same type. If the same die has several ratings based on the discrete packaged type, assume the lowest rating. Power rating used should be based on case temperature for discrete semiconductors.

Circuit Function Factor - TE

Circuit Type	π _F
Digital	1.0
Video, 10 MHz < f < 1 GHz	1.2
Microwave, f > 1 GHz	2.6
Linear, f < 10 MHz	5.8
Power	21

All Other H	ybrid Model	Parameters

π _L , π _Q , π _E	Refer to Section 5.10

5.6 MICROCIRCUITS, SAW DEVICES

DESCRIPTIONSurface Acoustic Wave Devices

 $\lambda_p = 2.1 \, \pi_Q \, \pi_E \, \text{Failures/} 10^6 \, \text{Hours}$

Quality Factor - π_Q

Screening Level	πQ
10 Temperature Cycles (-55°C to +125°C) with end point electrical tests at temperature extremes.	.10
None beyond best commerical practices.	1.0

Environmental Factor - π_E

Environment	π _E
GB	.5
G _F	2.0
G _B G _F G _M	4.0
NS	4.0
N _U	6.0
A _{IC}	4.0
A _{IF}	5.0
A _{UC}	5.0
A _{UF}	8.0
A _{RW}	8.0
S _F	.50
M _F	5.0
ML	12
CL	220

5.7 MICROCIRCUITS, MAGNETIC BUBBLE MEMORIES

The magnetic bubble memory device in its present form is a non-hermetic assembly consisting of the following two major structural segments:

- A basic bubble chip or die consisting of memory or a storage area (e.g., an array of minor loops), and required control and detection elements (e.g., generators, various gates and detectors).
- A magnetic structure to provide controlled magnetic fields consisting of permanent magnets, coils, and a housing.

These two structural segments of the device are interconnected by a mechanical substrate and lead frame. The interconnect substrate in the present technology is normally a printed circuit board. It should be noted that this model does not include external support microelectronic devices required for magnetic bubble memory operation. The model is based on Reference 33. The general form of the failure rate model is:

$$\lambda_0 = \lambda_1 + \lambda_2$$
 Failures/10⁶ Hours

where:

 λ_1 = Failure Rate of the Control and Detection Structure

$$\lambda_1 = \pi_Q [N_C C_{11} \pi_{T1} \pi_W + (N_C C_{21} + C_2) \pi_E] \pi_D \pi_L$$

 λ_2 = Failure Rate of the Memory Storage Area

$$\lambda_2 = \pi_Q N_C (C_{12} \pi_{T2} + C_{22} \pi_E) \pi_L$$

Chips Per Package - NC

N_C = Number of Bubble Chips per Packaged Device

Temperature Factor – π_T

$$\pi_{T} = (.1) \exp \left[\frac{-Ea}{8.63 \times 10^{-5}} \left(\frac{1}{T_{J} + 273} - \frac{1}{298} \right) \right]$$

Use:

 $\Xi_a = .8$ to Calculate π_{T1}

 $E_a = .55$ to Calculate π_{T2}

 T_J = Junction Temperature (°C), $25 \le T_J \le 175$

 $T_J = T_{CASE} + 10^{\circ}C$

Device Complexity Failure Rates for Control and Detection Structure - C₁₁ and C₂₁

 $C_{11} = .00095(N_1)^{.40}$

 $C_{21} = .0001(N_1)^{.226}$

N₁ = Number of Dissipative Elements on a Chip (gates, detectors, generators, etc.), N₁ ≤ 1000

5.7 MICROCIRCUIT, MAGNETIC BUBBLE MEMORIES

Write Duty Cycle Factor - π_W

$$\pi_{W} = \frac{10D}{(R/W).3}$$

 $\pi_W = 1$ for D \leq .3 or R/W \geq 2154

D = $\frac{\text{Avg. Device Data Rate}}{\text{Mfg. Max. Rated Data Rate}} \le 1$

R/W = No. of Reads per Write

NOTE:

For seed-bubble generators, divide π_W by 4, or use 1, whichever is greater.

Duty Cycle Factor - π_D

$$\pi_{D} = .9D + .1$$

 $D = \frac{Avg. \ Device \ Data \ Rate}{Mfg. \ Max. \ Rated \ Data \ Rate} \le 1$

Device Complexity Failure Rates for Memory Storage Structure - C₁₂ and C₂₂

$$C_{12} = .00007(N_2)^{.3}$$

 $C_{22} = .00001(N_2)^{.3}$

 N_2 = Number of Bits, $N_2 \le 9 \times 10^6$

All Other Model Parameters

Parameter	Section
C ₂	5.9
$\pi_{E}, \pi_{Q}, \pi_{L}$	5.10

MIL-HDBK-217F

5.8 MICROCIRCUITS, π_{T} TABLE FOR ALL

Gade Digital Active Devices, x-s	7.	2.50E-09 3.10E-07 3.10E-07 3.10E-07 3.10E-08 3.10E-08 3.10E-08 4.80E-08 4.80E-08 1.50E-04 5.80E-03 1.50E-04 1.50E-04 1.50E-04 1.50E-02 1.50E-03 1.5	
Gade MARC Active Devices, m.s.	1.6	2.06.02 2.06.03 2.06.03 2.06.03 2.06.03 3.06.03 3.06.03 1.106.03 1.106.03 1.06.03 2.06	GaAs Devices s). ion 5.11 for free
Memories (Bipder & MOS), MNOS	9	5 - 1 - 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2	\[\frac{\text{Ea}}{\text{7 x 10^{-6}}} \left(\frac{1}{\text{1} + 273} \cdot \frac{1}{289} \right) \] Silicon Devices \(\text{7 x 10^{-6}} \frac{\text{1} \frac{\text{1} \text{1} \cdot \frac{\text{5}}{\text{1} + 273} \cdot \frac{\text{1}}{\text{2} \frac{\text{1}}{\text{2} \cdot \frac{\text{5}}{\text{5}}} \] GaAs Devices \(\text{Case Junction Finishing (aV) (Shown Above)} \) The desire Junction Finishing (aV) (Shown Above) or Average Active Device Channel Temperature (GaAs Devicen), votion 5.11 for Eye Type Intermination. The desire Temperature (C) \(\text{P} \text{9}, \text{C} \) The device Function to Case Thermal Resistance (*C, W) \(\text{9} \) By a Device Power Dissipation (W) \(\text{9} \) By about Device Power Dissipation (W) \(\text{9} \) By about Device Thermal Resistance (*C, W) \(\text{9} \) Considered equivalent device. Lee Depiral MOS column for HC, HCT, AC, ACT, C and FCT technologies. Table entries should be considered valid only up to the raised temperature of the component under consideration.
Crocircuits - 7	.65	100 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	$(8.617 \times 10^{-5}) \left(\frac{1}{T_J + 273} - \frac{1}{10^{-5}}\right)$ in Channel Temperature (GaAs in from the default values shown in the component under contrast of the
Temperature Factor For All Microcircuits - 177 III, 13L, ISL Digital MOS, Linear (Bipolar WHSIC CMOS & MOS)	£.		(a.617 x 10.6) \$\frac{1}{1} + 273 - \frac{1}{298}\$\$\$\$)\$\$ Silicon Devices \$\frac{1}{8} = .1 \text{ axp}\$\$\$\frac{1-5}{6.617 \text{ x}}\$\$\frac{1}{1} + \frac{1}{273} - \frac{1}{623}\$\$\$\$)\$\$ Gibbs Case Activation Energy (eV) (Shown Above) Worse Case Junction illemperature (Silicon Devices) or Average Active Device Channel Temperature (GaAs Devices). See Section 5.11 (or Section 5.12 for Hybrids) for T_J Determination. 1.
in, I ³ L, ISL	æ.	01. 01. 01. 01. 01. 01. 01. 01. 01. 01.	(a.617 x 10 ⁻⁶ (T _J + 273 - 288)) Silcon Devices Profesive Activation Energy (eV) (Shown Above) Worse Case Junction Temperature (Silcon Devices) or Average Active See Section 5.11 (or Section 5.12 for Hybrids) for T _J Determination 1. T _J = T _C + P θ _{JC} T _C = Case Temperature (°C) P = Device Power Dissipation (W) P = Device Power Dissipation (W) P = Device Power Dissipation (W) P _{JC} = Junction to Case Thermal Resistance (°C/M) P _{JC} should be obtained from the device manufacturer, MIL-M closest equivalent device. 2. Use Dispital MOS column for HC, HCT, AC, ACT, C and FCT te 3. Table entries should be considered valid only up to the raised.
Bicatos, LSTR.	ĸ	5454667 0 555468 555 5454667 0 55546 557 55566 5566 5566 5566 5566 5566 5566 55	1 + 273 - 296 Silicon Devices T_1 + 273 - 296 Silicon Devices n Energy (eV) (Shown Above) bion Temperature (Silicon Devices) or Average (or Section 5.12 for Hybrids) for T_1 Determining (or Section 5.12 for Hybrids) for T_1 Determining Case Temperature (°C) Device Power Dissipation (W) Junction to Case Thermal Resistance (°C/M) Use obtained from the device manufacturer, Mod column for HC, HCT, AC, ACT, C and Fires should be considered valid only up to the rise should be considered valid only up to the rise should be considered valid only up to the rise should be considered valid only up to the rise should be considered valid only up to the rise should be considered valid only up to the rise should be considered valid only up to the rise should be considered valid only up to the rise should be considered valid only up to the rise should be considered valid only up to the rise should be considered valid only up to the rise should be considered valid only up to the rise should be considered valid only up to the rise should be considered valid only up to the rise should be considered valid only up to the rise should be considered valid only up to the rise should be considered valid only up to the rise should be considered valid only up to the rise should only up to the rise should be considered valid only up to the rise should only up to t
ғ. ст., ѕт.	54.		(a.617 x 10-6 (T + 273 - 288)) Silicon I Effective Activation Energy (eV) (Shown Above) Worse Case Junction Temperature (Silicon Devik See Section 5.11 (or Section 5.12 for Hybrids) to T _C = T _C + P 0,C T _C = Case Temperature (°C) P = Device Power Dissipation (W) 9,C = Junction to Case Thermal Resi 9,C = Junction to Case Thermal Resi 9,C = Junction to Case Thermal Resi 1. Use Digital MOS column for HC, HCT, AC, 3. Table entries should be considered valid case.
TH. ASTH. CML HTT. FTT. OT. ECL. ALSTH.	₹.		Effective Mores
	Ea(eV) → T _J (°C)	្ឋ ខេង៩៩៥៥៩៩៩៩៩៩៩៩៩៩៩៩៩៩៩៩៩៩៩៩៩៩៩៩៩៩៩៩៩៩៩៩៩	MOTES:

5-13

5.9 MICROCIRCUITS, C2 TABLE FOR ALL

Package Failure Rate for all Microcircuits - C2

Package Type					
Number of Functional Pins, N _p	Hermetic: DIPs w/Solder or Weld Seal, Pin Grid Array (PGA) ¹ , SMT (Leaded and Nonleaded)	DIPs with Glass Seal ² .	Flatpacks with Axial Leads on 50 Mil Centers ³	Cans ⁴	Nonhermetic: DIPs, PGA, SMT (Leaded and Nonleaded) ⁵
3 4 6 8 10 12 14 16 18 22 24 28 36 40 64 80 128 180 224	.00092 .0013 .0019 .0026 .0034 .0041 .0048 .0056 .0064 .0079 .010 .013 .015 .025 .032 .053	.00047 .00073 .0013 .0021 .0029 .0038 .0048 .0059 .0071 .0096 .011 .014 .020	.00022 .00037 .00078 .0013 .0020 .0028 .0037 .0047 .0058 .0083 .0098	.00027 .00049 .0011 .0020 .0031 .0044 .0060	.0012 .0016 .0025 .0034 .0043 .0053 .0062 .0072 .0082 .010 .011 .013 .017 .019 .032 .041 .068

1.
$$C_2 = 2.8 \times 10^{-4} (N_p)^{1.08}$$

2.
$$C_2 = 9.0 \times 10^{-5} (N_p)^{1.51}$$

3.
$$C_2 = 3.0 \times 10^{-5} (N_p)^{1.82}$$

4.
$$C_2 = 3.0 \times 10^{-5} (N_p)^{2.01}$$

5.
$$C_2 = 3.6 \times 10^{-4} (N_p)^{1.08}$$

NOTES:

1. SMT: Surface Mount Technology

2. DIP: Dual In-Line Package

3. If DIP Seal type is unknown, assume glass

4. The package failure rate (C₂) accounts for failures associated only with the package itself. Failures associated with mounting the package to a circuit board are accounted for in Section 16, Interconnection Assemblies.

5.10 MICROCIRCUITS, $\pi_{\mbox{\footnotesize E}}, \lambda_{\mbox{\footnotesize L}}$ AND $\pi_{\mbox{\footnotesize Q}}$ TABLES FOR ALL

Environment Factor - π_E

Environment	*E
G _B	.50
G _F	2.0
G _B G _F G _M	4.0
N _S	4.0
NS NU AIC AIF AUC AUF ARW SF	6.0
A _{IC}	4.0
AF	5.0
Auc	5.0
A _{UF}	8.0
A _{RW}	8.0
S _F	.50
M _F	5.0
M _L	12
M _L C _L	220

Learning Factor - π_L

πL
2.0
1.8
1.5
1.2
1.0

 $\pi_{L} = .01 \exp(5.35 - .35Y)$

Y = Years generic device type has been in production

Quality Factors - π_Q

	Quality Factors - #Q					
	Description	[⊼] Q				
Class 1:	Procured in full accordance with MIL-M-38510, Class S requirements.					
2.	Procured in full accordance with MiL-I-38535 and Appendix B thereto (Class U).	.25				
3.	Hybrids: (Procured to Class S requirements (Quality Level K) of MIL-H-38534.					
Class	B Categories:					
1.	Procured in full accordance with MIL-M-38510, Class B requirements.					
2.	Procured in full accordance with MIL-I-38535, (Class Q).	1.0				
3.	Hybrids: Procured to Class B requirements (Quality Level H) of MIL-H-38534.					
Class	B-1 Category:					
requests of Miles of the document of the docum	y compliant with all uirements of paragraph 1.2.1 ML-STD-883 and procured to a drawing, DESC drawing or er government approved umentation. (Does not include rids). For hybrids use custom sening section below.	2.0				

MICROCIRCUITS, π_{E} , π_{L} AND π_{Q} TABLES FOR ALL

Quality Factors (cont'd): $\pi_{\mathbb{Q}}$ Calculation for Custom Screening Programs

Group	MIL-STD-883 Screen/Test (Note 3)	Point	Valuation
1*	TM 1010 (Temperature Cycle, Cond B Minimum) and TM 2001 (Constant Acceleration, Cond B Minimum) and TM 5004 (or 5008 for Hybrids) (Final Electricals @ Temp Extremes) and TM 1014 (Seal Test, Cond A, B, or C) and TM 2009 (External Visual)	50	
2*	TM 1010 (Temperature Cycle, Cond B Minimum) or TM 2001 (Constant Acceleration, Cond B Minimum) TM 5004 (or 5008 for Hybrids) (Final Electricals @ Temp Extremes) and TM 1014 (Seal Test, Cond A, B, or C) and TM 2009 (External Visual)	37	
3	Pre-Burn in Electricals TM 1015 (Burn-in B-Level/S-Level) and TM 5004 (or 5008 for Hybrids) (Post Burn-in Electricals @ Temp Extremes)	30 36	(B Level) (S Level)
4.	TM 2020 Pind (Particle Impact Noise Detection)	11	
5	TM 5004 (or 5008 for Hybrids) (Final Electricals @ Temperature Extremes)	11	(Note 1)
6	TM 2010/17 (Internal Visual)	7	
7*	TM 1014 (Seal Test, Cond A, B, or C)	7	(Note 2)
8	TM 2012 (Radiography)	7	
9	TM 2009 (External Visual)	7	(Note 2)
10	TM 5007/5013 (GaAs) (Wafer Acceptance)	1	
11	TM 2023 (Non-Destructive Bond Pull)	1	

$$\pi_Q = 2 + \frac{87}{\Sigma \text{ Point Valuations}}$$

*NOT APPROPRIATE FOR PLASTIC PARTS.

NOTES:

- Point valuation only assigned if used independent of Groups 1, 2 or 3.
 Polnt valuation only assigned if used independent of Groups 1 or 2.
 Sequencing of tests within groups 1, 2 and 3 must be followed.
 TM refers to the MIL-STD-883 Test Method.

- 5. Nonhermetic parts should be used only in controlled environments (i.e., GB and other temperature/humidity controlled environments).

EXAMPLES:

- Mfg. performs Group 1 test and Class B burn-in: $\pi_Q = 2 + \frac{87}{50+30} = 3.1$
- Mfg. performs internal visual test, seal test and final electrical test: $\pi_Q = 2 + \frac{87}{7+7+11} = 5.5$ 2.

Other Commercial or Unknown Screening Levels $\pi_Q = 10$

5.11 MICROCIRCUITS, T. DETERMINATION, (ALL EXCEPT HYBRIDS)

Ideally, device case temperatures should be determined from a detailed thermal analysis of the equipment. Device junction temperature is then calculated with the following relationship:

$$T_J = T_C + \theta_{JC}P$$

T₁ = Worst Case Junction Temperature (°C).

T_C = Case Temperature (°C). If not available, use the following default table.

Default Case Temperature (T_C) for all Environments

Environment	GB	G_{F}	GM	NS	N _U	Atc	ĄF	Auc	A _{UF}	ARW	S _F	MF	ML	CΓ
T _C (℃)	35	45	50	45	50	60	60	75	75	60	35	50	60	45

 θ_{JC} = Junction-to-case thermal resistance (°C/watt) for a device soldered into a printed circuit board. If θ_{JC} is not available, use a value contained in a specification for the closest equivalent device or use the following table.

Package Type (Ceramic Only)	Die Area > 14,400 mil ² θ _{JC} (℃W)	Die Area ≤ 14,400 mit ² θ _{JC} (°C/W)
Dual-In-Line	11	28
Flat Package	10	22
Chip Carrier	10	20
Pin Grid Array	10	20
Can	_	70
Can	-	70

P = The maximum power dissipation realized in a system application. If the applied power is not available, use the maximum power dissipation from the specification for the closest equivalent device.

5.12 MICROCIRCUITS, T. DETERMINATION, (FOR HYBRIDS)

This section describes a method for estimating junction temperature (T_{j}) for integrated circuit dice mounted in a hybrid package. A hybrid is normally made up of one or more substrate assemblies mounted within a sealed package. Each substrate assembly consists of active and passive chips with thick or thin film metallization mounted on the substrate, which in turn may have multiple layers of metallization and dielectric on the surface. Figure 5-1 is a cross-sectional view of a hybrid with a single multi-layered substrate. The layers within the hybrid are made up of various materials with different thermal characteristics. The table following Figure 5-1 provides a list of commonly used hybrid materials with typical thicknesses and corresponding thermal conductivities (K). If the hybrid internal structure cannot be determined, use the following default values for the temperature rise from case to junction: microcircuits, 10°C ; transistors, 25°C ; diodes, 20°C . Assume capacitors are at T_{C} .

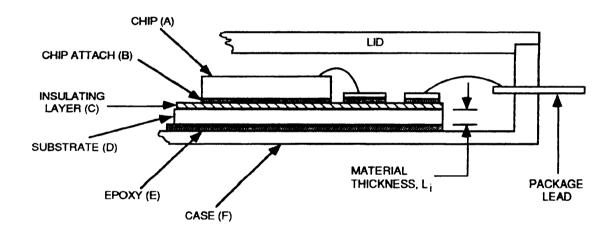


Figure 5-1: Cross-sectional View of a Hybrid with a Single Multi-Layered Substrate

5.12 MICROCIRCUITS, TJ DETERMINATION, (FOR HYBRIDS)

	Typical H	ybrid Cha	racteristics
--	-----------	-----------	--------------

Material	Typical Usage	Typical Thickness, L _i (in.)	Feature From Figure 5-1	Thermal Conductivity, K _i (<u>W/in²</u>)	$\binom{\frac{1}{K_i}}{\binom{L_i}{n^2}}$
Silicon	Chip Device	0.010	Α	2.20	.0045
GaAs	Chip Device	0.0070	Α	.76	.0092
Au Eutectic	Chip Attach	0.0001	В	6.9	.000014
Solder	Chip/Substrate Attach	0.0030	B/E	1.3	.0023
Epoxy (Dielectric)	Chip/Substrate Attach	0.0035	B/E	.0060	.58
Epoxy (Conductive)	Chip Attach	0.0035	В	.15	.023
Thick Film Dielectric	Glass Insulating Layer	0.0030	С	.66	.0045
Alumina	Substrate, MHP	0.025	D	.64	.039
Beryllium Oxide	Substrate, PHP	0.025	D	6.6	.0038
Kovar	Case, MHP	0.020	F	.42	.048
Aluminum	Case, MHP	0.020	F	4.6	.0043
Copper	Case, PHP	0.020	F	9.9	.0020

NOTE: MHP: Multichip Hybrid Package, PHP: Power Hybrid Package (Pwr: ≥ 2W, Typically)

$$\theta_{\text{JC}} = \frac{\sum\limits_{i=1}^{n} \left(\frac{1}{\kappa_{i}}\right) \left(L_{i}\right)}{A}$$

n = Number of Material Layers

 $K_i = \text{Thermal Conductivity of } i^{th} \text{ Material } \left(\frac{W/in^2}{{}^{\circ}\text{C/in}}\right) \text{ (User Provided or From Table)}$

L_i = Thickness of ith Material (in) (User Provided or From Table)

A = Die Area (in²). If Die Area cannot be readily determined, estimate as follows: A = $[.00278 \text{ (No. of Die Active Wire Terminals)} + .0417]^2$

Estimate T_J as Follows:

$$T_{J} = T_{C} + .9 (\theta_{JC}) (P_{D})$$

 T_C = Hybrid Case Temperature (°C). If unknown, use the T_C Default Table shown in Section 5.11.

 θ_{JC} = Junction-to-Case Thermal Resistance (°C/W) (As determined above)

P_D = Die Power Dissipation (W)

5.13 MICROCIRCUITS, EXAMPLES

Example 1: CMOS Digital Gate Array

Given:

A CMOS digital timing chip (4046) in an airborne inhabited cargo application, case temperature 48°C, 75mW power dissipation. The device is procured with normal manufacturer's screening consisting of temperature cycling, constant acceleration, electrical testing, seal test and external visual inspection, in the sequence given. The component manufacturer also performs a B-level burn-in followed by electrical testing. All screens and tests are performed to the applicable MIL-STD-883 screening method. The package is a 24 pin ceramic DIP with a glass seal. The device has been manufactured for several years and has 1000 transistors.

$$\lambda_{\rm p} = (C_1\pi_{\rm T} + C_2\pi_{\rm E})\,\pi_{\rm Q}\pi_{\rm L} \qquad {\rm Section} \ 5.1$$

$$C_1 = .020 \qquad 1000 \ {\rm Transistors} \sim 250 \ {\rm Gates}, \ {\rm MOS} \ C_1 \ {\rm Table}, \ {\rm Digital} \ {\rm Column}$$

$$\pi_{\rm T} = .29 \qquad {\rm Determine} \ T_{\rm J} \ {\rm from} \ {\rm Section} \ 5.11$$

$$T_{\rm J} = 48^{\circ}{\rm C} + (28^{\circ}{\rm C/W})(.075{\rm W}) = 50^{\circ}{\rm C}$$

$${\rm Determine} \ \pi_{\rm T} \ {\rm from} \ {\rm Section} \ 5.8, \ {\rm Digital} \ {\rm MOS} \ {\rm Column}.$$

$$C_2 = .011 \qquad {\rm Section} \ 5.9$$

$$\pi_{\rm E} = 4.0 \qquad {\rm Section} \ 5.10$$

$$\pi_{\rm Q} = 3.1 \qquad {\rm Section} \ 5.10$$

$${\rm Group} \ 1 \ {\rm Tests} \qquad 50 \ {\rm Points} \qquad 30 \ {\rm Points} \qquad 80 \ {\rm Points} \sim 80 \ {\rm Po$$

Example 2: EEPROM

Given:

A 128K Flotox EEPROM that is expected to have a T_J of 80°C and experience 10,000 read/write cycles over the life of the system. The part is procured to all requirements of Paragraph 1.2.1, MIL-STD-883, Class B screening level requirements and has been in production for three years. It is packaged in a 28 pin DIP with a glass seal and will be used in an airborne uninhabited cargo application.

$$\pi_{\rm p} = (C_1 \, \pi_{\rm T} + C_2 \, \pi_{\rm E} + \lambda_{\rm cyc}) \, \pi_{\rm Q} \, \pi_{\rm L}$$
 Section 5.2

 $\lambda_{\rm D} = [(.020)(.29) + (.011)(4)](3.1)(1) = .15$ Failure/ 10^6 Hours

C_1	=	.0034	Section 5.2
π_T	=	3.8	Section 5.8
Ca	=	.014	Section 5.9

5.13 MICROCIRCUITS, EXAMPLES

$\pi_{E} = 5.0$	Section 5.10
$\pi_Q = 2.0$	Section 5.10
$\pi_L = 1.0$	Section 5.10
λ _{cyc} ≖ .38	Section 5.2:
	$\lambda_{\text{cyc}} = \left[A_1 B_1 + \frac{A_2 B_2}{\pi_Q} \right] \pi_{\text{ECC}}$ $A_2 = B_2 = 0 \text{ for Flotox}$
	Assume No ECC, π _{ECC} = 1
	$A_1 = .1$, $7K \le C \le 15K$ Entry
	$B_1 = 3.8$ (Use Equation 1 at bottom of B_1 and B_2 Table)
	$\lambda_{\text{cyc}} = A_1 B_1 = (.1)(3.8) = .38$

 $\lambda_{\rm D}$ = [(.0034)(3.8) + (.014)(5.0) + .38] (2.0)(1) = .93 Failures/10⁶ Hours

Example 3: GaAs MMIC

Given:

A MA4GM212 Single Pole Double Throw Switch, DC - 12 GHz, 4 transistors, 4 inductors, 8 resistors, maximum input P_D = 30 dbm, 16 pin hermetic flatpack, maximum T_{CH} = 145°C in a ground benign environment. The part has been manufactured for 1 year and is screened to Paragraph 1.2.1 of MIL-STD-883, Class B equivalent screen.

$$\lambda_{D} = [C_{1}\pi_{T}\pi_{A} + C_{2}\pi_{E}]\pi_{L}\pi_{Q}$$
 Section 5.4

$$C_1$$
 = 4.5 Section 5.4, MMIC Table, 4 Active Elements (See Footnote to Table)

 π_T = .061 Section 5.8, $T_J = T_{CH} = 145^{\circ}C$
 π_A = 3.0 Section 5.4, Unknown Application

 C_2 = .0047 Section 5.9

 π_E = .50 Section 5.10

 π_L = 1.5 Section 5.10

 π_Q = 2.0 Section 5.10

$$\lambda_p = [(4.5)(.061)(3.0) + (.0047)(.5)](1.5)(2.0) = 2.5 \text{ Failures/}10^6 \text{ Hours}$$

NOTE: The passive elements are assumed to contribute negligibly to the overall device failure rate.

Example 4: Hybrid

Given:

A linear multichip hybrid driver in a hermetically sealed Kovar package. The substrate is alumina and there are two thick film dielectric layers. The die and substrate attach materials are conductive epoxy and solder, respectively. The application environment is naval unsheltered, 65°C case temperature and the device has been in production for over two years. The device is

5.13 MICROCIRCUITS, EXAMPLES

screened to MIL-STD-883, Method 5008, in accordance with Table VIII, Class B requirements. The hybrid contains the following components:

Active Components:

- LM106 Bipolar Comparator/Buffer Die (13 Transistors)

LM741A Bipolar Operational Amplifier Die (24 Transistors)

2 - Si NPN Transistor

2 - Si PNP Transistor

2 - Si General Purpose Diodes

Passive Components:

2 - Ceramic Chip Capacitors

17 - Thick Film Resistors

$$\lambda_{\rm p} = [\sum N_{\rm C} \lambda_{\rm c}] (1 + .2\pi_{\rm E}) \pi_{\rm F} \pi_{\rm Q} \pi_{\rm L}$$
 Section 5.5

1. Estimate Active Device Junction Temperatures

If limited information is available on the specific hybrid materials and construction characteristics the default case-to-junction temperature rises shown in the introduction to Section 5.12 can be used. When detailed information becomes available the following Section 5.12 procedure should be used to determine the junction-to-case (θ_{JC}) thermal resistance and T_J values for each component.

$$\theta_{JC} = \frac{\sum_{i=1}^{n} \left(\frac{1}{K_i}\right) (L_i)}{A}$$
 (Equation 1)

Layer	Figure 5-1 Feature		
Silicon Chip	Α		.0045
Conductive Epoxy	В		.023
Two Dielectric Layers	С	(2)(.0045) =	.009
Alumina Substrate	D		.039
Solder Substrate Attachment	E		.0023
Kovar Case	F		.048
		$\sum \left(\frac{1}{K_i}\right)(L_i) =$.1258

A = Die Area =
$$[.00278 \text{ (No. Die Active Wire Terminals)} + .0417]^2$$
 (Equation 2)
 $T_J = T_C + \theta_{JC} P_D$ (Equation 3)

5.13 MICROCIRCUITS, EXAMPLES

	LM106	LM741A	SINPN	Si PNP	Si Diode	Source
No. of Pins	8	14	3	3	2	Vendor Spec. Sheet
Power Dissipation, P _D (W)	.33	.35	.6	.6	.42	Circuit Analysis
Area of Chip (in. ²)	.0041	.0065	.0025	.0025	.0022	Equ. 2 Above
θ _{JC} (°C/W)	30.8	19.4	50.3	50.3	56.3	Equ. 1 Above
⊤ ு(℃)	75	72	95	95	89	Equ. 3 Above

- 2. Calculate Failure Rates for Each Component:
 - A) LM106 Die, 13 Transistors (from Vendor Spec. Sheet)

$$\lambda_p = [C_1 \pi_T + C_2 \pi_E] \pi_Q \pi_L$$

Section 5.1

Because $C_2 = 0$;

$$\lambda_{p} = C_{1} \pi_{T} \pi_{Q} \pi_{L}$$

 π_T : Section 5.8; π_Q , π_L Default to 1.0

$$= (.01)(3.8)(1)(1) = .038$$
 Failures/10⁶ Hours

B) LM741 Die, 23 Transistors. Use Same Procedure as Above.

$$\lambda_{\rm p} = C_1 \pi_{\rm T} \pi_{\rm Q} \pi_{\rm L} = (.01)(3.1)(1)(1) = .031 \text{ Failures/}10^6 \text{ Hours}$$

C) Silicon NPN Transistor, Rated Power = 5W (From Vendor Spec. Sheet), $V_{CE}/V_{CEO} = .6$, Linear Application

$$\lambda_{\rm p} = \lambda_{\rm b} \pi_{\rm T} \pi_{\rm A} \pi_{\rm R} \pi_{\rm S} \pi_{\rm Q} \pi_{\rm E}$$
 Section 6.3; $\pi_{\rm Q}$, $\pi_{\rm E}$ Default to 1.0 = (.00074)(3.9)(1.5)(1.8)(.29)(1)(1)

.0023 Failures/10⁶ Hours

D) Silicon PNP Transistor, Same as C.

$$\lambda_p = .0023 \text{ Failures/} 10^6 \text{ Hours}$$

E) Silicon General Purpose Diode (Analog), Voltage Stress = 60%, Metallurgically Bonded Construction.

$$\lambda_{\rm D} = \lambda_{\rm D} \, \pi_{\rm T} \, \pi_{\rm S} \, \pi_{\rm C} \, \pi_{\rm Q} \, \pi_{\rm E}$$
 Section 6.1; $\pi_{\rm Q}$, $\pi_{\rm E}$ Default to 1.0 = (.0038)(6.3)(.29)(1)(1)(1)

.0069 Failures/10⁶ Hours

MICROCIRCUITS, EXAMPLES

F) Ceramic Chip Capacitor, Voltage Stress = 50%, $T_A = T_{CASE}$ for the Hybrid, 1340 pF, 125°C Rated Temp.

= $\lambda_{\rm D} \pi_{\rm CV} \pi_{\rm Q} \pi_{\rm E}$

Section 10.11; π_Q , π_E Default to 1.0

(.0028)(1.4)(1)(1)

.0039 Failures/10⁶ Hours

G) Thick Film Resistors, per instructions in Section 5.5, the contribution of these devices is considered insignificant relative to the overall hybrid failure rate and they may be ignored.

Overall Hybrid Part Failure Rate Calculation:

= $\left[\sum N_{C} \lambda_{C}\right] (1 + .2 \pi_{E}) \pi_{F} \pi_{Q} \pi_{L}$

6.0

Section 5.10

5.8

Section 5.5

Section 5.10

Section 5.10

$$\lambda_{p}$$
 = [(1)(.038) + (1)(.031) + (2)(.0023) + (2)(.0023)
+ (2)(.0069) + (2)(.0039)](1 + .2(6.0))(5.8)(1)(1)

1.3 Failures/10⁶ Hours

6.0 DISCRETE SEMICONDUCTORS, INTRODUCTION

The semiconductor transistor, diode and opto-electronic device sections present the failure rates on the basis of device type and construction. An analytical model of the failure rate is also presented for each device category. The various types of discrete semiconductor devices require different failure rate models that vary to some degree. The models apply to single devices unless otherwise noted. For multiple devices in a single package the hybrid model in Section 5.5 should be used.

The applicable MIL specification for transistors, and optoelectronic devices is MIL-S-19500. The quality levels (JAN, JANTX, JANTXV) are as defined in MIL-S-19500.

The temperature factor (π_T) is based on the device junction temperature. Junction temperature should be computed based on worse case power (or maximum power dissipation) and the device junction to case thermal resistance. Determination of junction temperatures is explained in Section 6.14.

Reference 28 should be consulted for further detailed information on the models appearing in this section.

6.1 DIODES, LOW FREQUENCY

SPECIFICATION MIL-S-19500

DESCRIPTION

Low Frequency Diodes: General Purpose Analog, Switching, Fast Recovery, Power Rectifier, Transient Suppressor, Current Regulator, Voltage Regulator, Voltage Reference

$$\lambda_p = \lambda_b \pi_T \pi_S \pi_C \pi_Q \pi_E$$
 Failures/10⁶ Hours

Base Failure Rate - λ.

Diode Type/Application	$\lambda_{\rm b}$
General Purpose Analog Switching	.0038
Power Rectifier, Fast Recovery Power Rectifier/Schottky Power Diode	.069
Power Rectifier with High Voltage Stacks Transient Suppressor/Varistor	.0050/ Junction .0013
Current Regulator Voltage Regulator and Voltage Reference (Avalanche and Zener)	.0034 .0020

Temperature Factor - π_T
(General Purpose Analog, Switching, Fast Recovery,

Power Hectifier, Transient Suppressor)			
T _J (°C)	π _T	T _J (°C)	π _T
25 30 35 40 45 50 55 60 65 70 75 80 85 90 95	1.0 1.2 1.4 1.6 1.9 2.2 2.6 3.0 3.4 3.9 4.4 5.0 5.7 6.4 7.2 8.0	105 110 115 120 125 130 135 140 145 150 155 160 165 170	9.0 10 11 12 14 15 16 18 20 21 23 25 28 30 32
$\pi_{T} = \exp\left(-3091\left(\frac{1}{T_{J} + 273} - \frac{1}{298}\right)\right)$			
T, -	Junction Temp	perature (°C)	

Temperature Factor - x_T
(Voltage Regulator, Voltage Reference, and Current Regulator)

	and Curren	(Negulator)	
T _J (℃)	π _T	T _J (°C)	* _T
25 30 35 40 45 50 55 60 65 70 75 80 85 90	1.0 1.1 1.2 1.4 1.5 1.6 1.8 2.0 2.1 2.3 2.5 2.7 3.0 3.2 3.4 3.7	105 110 115 120 125 130 135 140 145 150 155 160 165 170	3.9 4.2 4.5 4.8 5.1 5.7 6.0 6.4 6.7 7.1 7.5 7.9 8.3 8.7
		/ 1	1 \ \

$$\pi_{T} = \exp\left(-1925\left(\frac{1}{T_{J} + 273} - \frac{1}{298}\right)\right)$$

$$T_{J} = \text{Junction Temperature (°C)}$$

6.1 DIODES, LOW FREQUENCY

Electrical Stress Factor - π_S

Stress	π _S
Transient Suppressor, Voltage Regulator, Voltage Reference, Current Regulator	1.0
All Others:	0.054
V _s ≤ .30	1
.3 < V _s ≤ .40	0.11
.4 < V _S ≤ .50	0.19
.5 < V _S ≤ .60	0.29
.6 < V _S ≤ .70	0.42
.7 < V _S ≤ .80	0.58
.8 < V _S ≤ .90	0.77
$.9 < V_{S} \le 1.00$	1.0
-	

For All Except Transient Suppressor, Voltage

Regulator, Voltage Reference, or Current Regulator

$$\pi_{s} = .054$$
 $(V_{s} \le .3)$
 $\pi_{s} = V_{s}^{2.43}$ $(.3 < V_{s} \le 1)$

 V_s = Voltage Stress Ratio = $\frac{\text{Voltage Applied}}{\text{Voltage Rated}}$

Voltage is Diode Reverse Voltage

Contact Construction Factor - π_C

Contact Construction	π _C
Metallurgically Bonded	1.0
Non-Metallurgically Bonded and Spring Loaded Contacts	2.0

Quality Factor - π_Q

Quality	π _Q
JANTXV	0.7
JANTX	1.0
JAN	2.4
Lower	5.5
Plastic	8.0

Environment Factor - π_F

π _E
1.0
6.0
9.0
9.0
19
13
29
20
43
24
.50
14
32
320

6.2 DIODES, HIGH FREQUENCY (MICROWAVE, RF)

SPECIFICATION MIL-S-19500

DESCRIPTION

Si IMPATT; Bulk Effect, Gunn; Tunnel, Back; Mixer, Detector, PIN, Schottky; Varactor, Step Recovery

$\lambda_p = \lambda_b \pi_T \pi_A \pi_B \pi_Q \pi_E$ Failures/10⁶ Hours

Base Failure Rate - λ_h

^ზ
.22
.18
.0023
.0081
.027
.0025

Temperature Factor - π_T (All Types Except IMPATT)

T _J (°C)	π _T	T _J (°C)	π _T
25 30 35 40 45 50 55 60 65 70 75 80 85 90 95	1.0 1.1 1.3 1.4 1.6 1.7 1.9 2.1 2.3 2.5 2.8 3.0 3.3 3.5 3.8 4.1	105 110 115 120 125 130 135 140 145 150 155 160 165 170	4.4 4.8 5.1 5.5 6.3 6.7 7.1 7.6 8.0 8.5 9.0 9.5

$$\pi_{T} = \exp\left(-2100\left(\frac{1}{T_{J}+273}-\frac{1}{298}\right)\right)$$

T_J = Junction Temperature (°C)

Temperature Factor- π_T

(IMPATT)			
T _J (°C)	π _T	T _J (°C)	π _T
25 30 35 40 45 50 55 60 65 70 75 80 85 90 95	1.0 1.3 1.8 2.3 3.0 3.9 5.0 6.4 8.1 10 13 16 19 24 29 35	105 110 115 120 125 130 135 140 145 150 155 160 165 170	42 50 60 71 84 99 120 140 160 180 210 250 280 320 370

$$\pi_{T} = \exp\left(-5260\left(\frac{1}{T_{J} + 273} - \frac{1}{298}\right)\right)$$
 $T_{J} = \text{Junction Temperature (°C)}$

Application Factor - π_A

Diodes Application	πA
Varactor, Voltage Control	.50
Varactor, Multiplier	2.5
All Other Diodes	1.0

6.2 DIODES, HIGH FREQUENCY (MICROWAVE, RF)

Power Rating Factor - π_R

Rated Power, Pr (Watts)	π _R
PIN Diodes P _r ≤ 10	.50
$10 < P_r \le 100$	1.3
100 < P _r ≤ 1000	2.0
$1000 < P_r \le 3000$	2.4
All Other Diodes	1.0
PIN Diodes π _R =	= .326 ln(P _f)25
All Other Diodes π _R =	: 1 .0

Quality Factor - π_Q
(All Types Except Schottky)

Quality *	πQ	
JANTXV	.50	
JANTX	1.0	
JAN	5.0	
Lower	25	
Plastic	50	

For high frequency part classes not specified to MIL-S-19500 equipment quality classes are defined as devices meeting the same requirements as MIL-S-19500.

Quality Factor - π_Q

(Schottky)		
Quality*	πQ	
JANTXV	.50	
JANTX	1.0	
JAN	1.8	
Lower	2.5	
Plastic	_	

 For high frequency part classes not specified to MIL-S-19500 equipment quality classes are defined as devices meeting the same requirements as MIL-S-19500.

Environment Factor - π_E

Environment	π _E	
G _B	1.0	
GF	2.0	
G _M	5.0	
NS	4.0	
N _U	11	
A _{IC}	4.0	
A _{IF}	5.0	
AUC	7.0	
A _{UF}	12	
A _{RW}	16	
s _F	.50	
M _F	9.0	
M _L	24	
M _L C _L	250	

6.3 TRANSISTORS, LOW FREQUENCY, BIPOLAR

SPECIFICATION MIL-S-19500

NPN (Frequency < 200 MHz) PNP (Frequency < 200 MHz)

 $\lambda_p = \lambda_b \pi_T \pi_A \pi_R \pi_S \pi_Q \pi_E$ Failures/10⁶ Hours

Base Failure Rate - λ,

Туре	λ _b
NPN and PNP	.00074

Application Factor - π_A

Application	π _A	
Linear Amplification	1.5	
Switching	.70	

Temperature Factor - #~

T_J = Junction Temperature (°C)

Power Rating Factor - π_R

Rated Power (Pr., Watts)	π _R
P _r ≤ .1	.43
P _r = .5	.77
P _r = 1.0	1.0
P _r = 5.0	1.8
P _r = 10.0	2.3
P _r = 50.0	4.3
P _r = 100.0	5.5
P _r = 500.0	10
	l

 $\pi_{\text{Pl}} = .43$ Rated Power ≤ .1W $\pi_{\mathsf{R}} = (\mathsf{P}_{\mathsf{f}})^{.37}$ Rated Power > .1W

6.3 TRANSISTORS, LOW FREQUENCY, BIPOLAR

Voltage Stress Factor - π_S

Totage Circles Tables MS				
Applied VCE/Rated VCEO		πS		
0 < V _s	. ≤	.3	.11	
.3 < V	•		.16	
.4 < V	-		.21	
.5 < V	.5 < V _S ≤ .6		.29	
.6 < V	.6 < V _S ≤ .7		.39	
.7 < V	.7 < V _s ≤ .8		.54	
•	.8 < V _s ≤ .9		.73	
.9 < V	.9 < V _S ≤ 1.0		1.0	
πS		.045 exp (3.1(Vs))	(0 < V _S ≤ 1.0)	
٧ _s	-	Applied VCE / Rated VCEO		
[∨] CE	=	Voltage, Collector to Emitter		
VCEO	-	Voltage, Collector to Emitter, Base Open		

Environment Factor - π_E

Environment	π _E	
G _B	1.0	
G _F	6.0	
G _F G _M	9.0	
NS	9.0	
NU	19	
^A IC	13	
^A IC ^A IF	29	
Auc	20	
A _{UF}	43	
A _{RW}	24	
S _F	.50	
M _F	14	
м լ Ել	32	
cլ	320	

Quality Factor - π_Q

Quality	πQ
JANTXV	.70
JANTX	1.0
JAN	2.4
Lower	5.5
Plastic	8.0

6.4 TRANSISTORS, LOW FREQUENCY, SI FET

SPECIFICATION MIL-S-19500

DESCRIPTION

N-Channel and P-Channel Si FET (Frequency ≤ 400 MHz)

 $\lambda_p = \lambda_b \pi_T \pi_A \pi_Q \pi_E$ Failures/10⁶ Hours

Base Failure Rate - λ_h

Transistor Type	λ _b
MOSFET	.012
JFET	.0045

Temperature Factor - π_T

T J (°C)	π _T	T _J (°C)	πΤ
25 30 35 40 45 50 55 60 65 70 75 80 85 90 95	1.0 1.1 1.2 1.4 1.5 1.6 1.8 2.0 2.1 2.3 2.5 2.7 3.0 3.2 3.4 3.7	105 110 115 120 125 130 135 140 145 150 155 160 165 170	3.9 4.2 4.5 4.8 5.1 5.4 5.7 6.0 6.4 6.7 7.1 7.5 7.9 8.3 8.7

$$\pi_{T} = \exp\left(-1925\left(\frac{1}{T_{J} + 273} - \frac{1}{298}\right)\right)$$

 $T_J = Junction Temperature (°C)$

Quality Factor - πο

Quality Factor - π _Q		
Quality	π _Q	
JANTXV	.70	
JANTX	1.0	
JAN	2.4	
Lower	5.5	
Plastic	8.0	
	1 1	

('E--10 |

Application Factor - π_A

Application (P _r , Rated Output Power)	π _A
Linear Amplification (P _r < 2W)	1.5
Small Signal Switching	.70
Power FETs (Non-linear, P _r ≥ 2W)	
2 ≤ P _r < 5W	2.0
$5 \le P_r < 50W$	4.0
$50 \le P_r < 250W$	8.0
P _r ≥ 250W	10

Environment Factor - π_E

Environment ractor - RE		
Environment	π _E	
G _B	1.0	
G _F	6.0	
G _M	9.0	
N _S	9.0	
N _U	19	
A _{IC}	13	
	29	
A _{IF} A _{UC}	20	
A _{UF}	43	
A _{RW}	24	
S _F	.50	
M _F	14	
M_L	32	
CL	320	

6-8

6.5 TRANSISTORS, UNIJUNCTION

SPECIFICATION MIL-S-19500

DESCRIPTIONUnijunction Transistors

$\lambda_p = \lambda_b \pi_T \pi_Q \pi_E$ Failures/10⁶ Hours

Base Failure Rate - λ_b

Туре	λъ
All Unijunction	.0083

Temperature Factor - π_T

	T _J (°C)	π_{\uparrow}	T _J (°C)	πΤ
	25 30 35 40 45 50 55 65 75 85 90 95 10	1.0 1.1 1.3 1.5 1.7 1.9 2.1 2.4 2.7 3.0 3.3 3.7 4.0 4.4 4.9 5.3	105 110 115 120 125 130 135 140 145 150 155 160 165 170	5.8 6.4 6.9 7.5 8.1 8.8 9.5 10 11 12 13 13 14 15
1				

$$\pi_{\text{T}} = \exp\left(-2483\left(\frac{1}{\text{T}_{\text{J}} + 273} - \frac{1}{298}\right)\right)$$

$$T_{\text{J}} = \text{Junction Temperature (°C)}$$

Quality Factor - π_Q

Quality	π _Q
JANTXV	.70
JANTX	1.0
JAN	2.4
Lower	5.5
Plastic	8.0

Environment Factor - π_F

	<u></u>
Environment	π _E
GB	1.0
G _F	6.0
G _B G _F G _M	9.0
N _S	9.0
N _U	19
A _{IC}	13
A _{IF} A _{UC} A _{UF}	29
Auc	20
A _{UF}	43
A _{RW}	24
S _F	.50
M _F	14
M_L	32
cĹ	320

6.6 TRANSISTORS, LOW NOISE, HIGH FREQUENCY, BIPOLAR

SPECIFICATION MIL-S-19500

DESCRIPTION

Bipolar, Microwave RF Transistor (Frequency > 200 MHz, Power < 1W)

$$\lambda_p = \lambda_b \pi_T \pi_R \pi_S \pi_Q \pi_E$$
 Failures/10⁶ Hours

Application Note: The model applies to a single die (for multiple die use the hybrid model). The model does apply to ganged transistors on a single die.

Base Failure Rate - λ.

Daso I amoro I lako 146	
Туре	λ _b
All Types	.18

Temperature Factor - π_T

25 1.0 105 4.5 30 1.1 110 4.8 35 1.3 115 5.2 40 1.4 120 5.6 45 1.6 125 5.9 50 1.7 130 6.3 55 1.9 135 6.8 60 2.1 140 7.2 65 2.3 145 7.7 70 2.5 150 8.1 75 2.8 155 8.6 80 3.0 160 9.1 85 9.7 90 3.6 170 10 95 3.9 175 11

$$\pi_{T} = \exp\left(-2114\left(\frac{1}{T_{j}+273}-\frac{1}{298}\right)\right)$$

T_{.1} = Junction Temperature (°C)

Power Rating Factor - TR

Tower Hating Factor MR		
Rated Power (P _r , Watts)	πR	
P _r ≤ .1	.43	
.1 < Pr ≤ .2	.55	
.2 < P _r ≤ .3	.64	
$.3 < P_r \le .4$.71	
.4 < P _r ≤ .5	.77	
.5 < P _r ≤ .6	.83	
.6 < P _r ≤ .7	.88	
.7 < P _r ≤ .8	.92	
.8 < P _r ≤ .9	.96	
π _R = .43	P _r ≤ .1W	
$\pi_{R} = (P_r)^{.37}$	P _r > .1W	

Voltage Stress Factor - π_S

Applied VCE/Rated VCEO	π ₈
0 < V _s ≤ .3	.11
.3 < V _s ≤ .4	.16
.4 < V _s ≤ .5	.21
.5 < V _s ≤ .6	.29
.6 < V _s ≤ .7	.39
.7 < V _s ≤ .8	.54
.8 < V _s ≤ .9	.73
.9 < V _s ≤ 1.0	1.0

 π_s = .045 exp (3.1(Vs)) (0 < V_s ≤ 1.0)

V_s = Applied V_{CE} / Rated V_{CEO}

V_{CE} = Voltage, Collector to Emitter

V_{CEO} = Voltage, Collector to Emitter, Base Open

6.6 TRANSISTORS, LOW NOISE, HIGH FREQUENCY, BIPOLAR

Quality Factor - TO

	· · · · · ·
Quality	πQ
JANTXV	.50
JANTX	1.0
JAN	2.0
Lower	5.0
	1

NOTE: For these devices, JANTXV quality class must include IR Scan for die attach and screen for barrier layer pinholes on gold metallized devices.

Environment Factor - π_F

	L
Environment	π _E
G _B	1.0
G _F	2.0
G _M	5.0
N _S	4.0
NU	11
A _{IC}	4.0
A _{IF}	5.0
Auc	7.0
A _{UF}	12
A _{RW}	16
S _F	.50
M _F	9.0
M _L	24
CL	250

TRANSISTORS, HIGH POWER, HIGH FREQUENCY, BIPOLAR

SPECIFICATION MIL-S-19500

Power, Microwave, RF Bipolar Transistors (Average Power ≥ 1W)

 $\lambda_p = \lambda_b \pi_T \pi_A \pi_M \pi_Q \pi_E$ Failures/10⁶ Hours

Base Failure Rate - λ_b

					U					
Frequency				Output Po	wer (Watts)					
(GHz)	1.0	5.0	10	50	100	200	300	400	500_	600
≤ 0.5	.038	.039	.040	.050	.067	.12	.20	.36	.62	1.1
1	.046	.047	.048	.060	.080	.14	.24	.42	.74	1.3
2	.065	.067	.069	.086	.11	.20	.35			
3	.093	.095	.098	.12	.16	.28				
4	.13	.14	.14	.17	.23					
5	.19	.19	.20	.25						

.032 exp(.354(F) + .00558(P)) Ъ

Frequency (GHz)

Output Power (W)

NOTE: Output power refers to the power level for the overall packaged device and not to individual transistors within the package (if more than one transistor is ganged together). The output power represents the power output from the active device and should not account for any duty cycle in pulsed applications. Duty cycle is accounted for when determining π_A .

Temperature Factor - π_T

(Gold Metallization)

		V _s (V _{CE} /B	VCES)	
T _J (°C)	≤ .40	.45	.50	.55
≤100	.10	.20	.30	.40
110	.12	.25	.37	.49
120	.15	.30	.45	.59
130	.18	.36	.54	.71
140	.21	.43	.64	. 8 5
150	.25	.50	.75	1.0
160	.29	.59	.88	1.2
170	.34	.68	1.0	1.4
180	.40	.79	1.2	1.6
190	.45	.91	1.4	1.8
200	.52	1.0	1.6	2.1

$$\pi_{T} = .1 \exp\left(-2903 \left(\frac{1}{T_{J} + 273} - \frac{1}{373}\right)\right),$$

$$(V_{S} \le .40)$$

$$\pi_{T} = 2 (V_{S} - .35) \exp \left(-2903 \left(\frac{1}{T_{J} + 273} - \frac{1}{373} \right) \right),$$

$$(.4 < V_{S} \le .55)$$

٧s VCE / BVCES

Operating Voltage (Volts) **VCE**

Collector-Emitter Breakdown BVCES Voltage with Base Shorted to Emitter (Volts)

Peak Junction Temperature (°C)

Temperature Factor - π_T

(Aluminum Metallization)

	17 (1017)	Jili Wie terinze			
	V _s (VCE/BVCES)				
T _J (°C)	≤ .40	.45	.50	.55	
≤100	.38	.75	1.1	1.5	
110	.57	1.1	1.7	2.3	
120	.84	1.7	2.5	3.3	
130	1.2	2.4	3.6	4.8	
140	1.7	3.4	5.1	6.8	
150	2.4	4.7	7.1	9.5	
160	3.3	6.5	9.7	13	
170	4.4	8.8	13	18	
180	5.9	12	18	23	
190	7.8	15	23	31	
200	10	20	30	40	

$$\pi_{T} = .38 \exp\left(-5794 \left(\frac{1}{T_{J} + 273} - \frac{1}{373}\right)\right).$$

$$\pi_{T} = 7.55 \ (V_{s} - .35) \exp\left(-5794\left(\frac{1}{T_{J} + 273} - \frac{1}{373}\right)\right),$$

$$(.4 < V_{s} \le .55)$$

VCE / BVCES

Operating Voltage (Volts) VCE

Collector-Emitter Breakdown BVCES Voltage with Base Shorted to

Emitter (Volts)

Peak Junction Temperature (°C) Tj

6.7 TRANSISTORS, HIGH POWER, HIGH FREQUENCY, BIPOLAR

Application Factor - π_A

Application	Duty Factor	πA
CW	N/A	7.6
Pulsed	≤ 1% 5% 10% 15% 20% 25% ≥ 30%	.46 .70 1.0 1.3 1.6 1.9 2.2

 $\pi_{\Delta} = 7.6$, CW

 π_{Δ} = .06 (Duty Factor %) + .40 , Pulsed

Quality Factor - π_Q

Quality	$\pi_{\mathbf{Q}}$
JANTXV	.50
JANTX	1.0
JAN	2.0
Lower	5.0
l	1

NOTE: For these devices, JANTXV quality class must include IR Scan for die attach and screen for barrier layer pinholes on gold metallized devices.

Matching Network Factor - π_M

Matching	πM
Input and Output	1.0
Input	2.0
None	4.0
	į.

Environment Factor - π_E

Environment	π _E
G _B	1.0
G _F	2.0
G _M	5.0
N _S	4.0
N _U	11
A _{IC} A _{IF}	4.0
A _{IF}	5.0
Auc	7.0
A _{UF}	12
A _{RW}	16
SF	.50
M _F	9.0
M_L	24
M _L Ել	250

TRANSISTORS, HIGH FREQUENCY, GAAS FET

SPECIFICATION MIL-S-19500

DESCRIPTION

GaAs Low Noise, Driver and Power FETs (≥ 1GHz)

$$\lambda_p = \lambda_b \pi_T \pi_A \pi_M \pi_Q \pi_E \quad \text{Failures/10}^6 \text{ Hours}$$

Base Failure Rate - λ_b

Operating	Average Output Power (Watts)						
Frequency (GHz)	<.1	.1	.5 1		2	44	6
1	.052			_	••		
4	.052	.054	.066	.084	.14	.36	.96
5	.052	.083	.10	.13	.21	.56	1.5
6	.052	.13	.16	.20	.32	.85	2.3
7	.052	.20	.24	.30	.50	1.3	3.5
8	.052	.30	.37	.47	.76	2.0	
9	.052	.46	.56	.72	1.2		
10	.052	.71	.87	1.1	1.8		

.052

1≤F≤10, P<.1

 $.0093 \exp(.429(F) + .486(P))$

 $4 \le F \le 10$, $.1 \le P \le 6$

Frequency (GHz)

P - Average Output Power (Watts)

The average output power represents the power output from the active device and should not account for any duty cycle in pulsed applications.

Temperature Factor - π_T

T _C (°C)	πŢ	T _C (°C)	πΤ
25 30 35 40 45 50 55 60 65 70 75 80 85 90 95	1.0 1.3 1.6 2.1 2.6 3.2 4.0 4.9 5.9 7.2 8.7 10 12 15 18 21	105 110 115 120 125 130 135 140 145 150 155 160 165 170	24 28 33 38 44 50 58 66 75 85 97 110 120 140 150
π _T =	exp (- 4485	$\left(\frac{1}{T_{C} + 273} - \right)$	1 298))

Application Factor - π_A

Application (P ≤ 6W)	π _A
All Low Power and Pulsed	1
CW	4
P = Average Output Power (Watts)	

6.8 TRANSISTORS, HIGH FREQUENCY, GaAs FET

Matching Network Factor - π_M

	Matching	πM
	Input and Output	1.0
	Input Only	2.0
	None	4.0
- 1		I

Quality Factor - π_Q

	, «
Quality	πQ
JANTXV	.50
JANTX	1.0
JAN	2.0
Lower	5.0

Environment Factor - π_E

Environment	π _E
G _B	1.0
G _F	2.0
G _M	5.0
N _S	4.0
NU	11
	4.0
A _{IC} A _{IF}	5.0
A _{UC}	7.0
A _{UF}	12
A _{RW}	16
S _F	.50
M _F	7.5
ML	24
C _L	250

TRANSISTORS, HIGH FREQUENCY, SI FET

SPECIFICATION MIL-S-19500

DESCRIPTION

Si FETs (Avg. Power < 300 mW, Freq. > 400 MHz)

$$\lambda_p = \lambda_b \pi_T \pi_Q \pi_E$$
 Failures/10⁶ Hours

Base Failure Rate - λ_b

	U
Transistor Type	λ _b
MOSFET	.060
JFET	.023

Quality Factor - π_Q

Quality	π_{Q}
JANTXV	.50
JANTX	1.0
JAN	2.0
Lower	5.0
ľ	I

Temperature Factor - π_T

T _J (°C)	π _T	T _J (°C)	π_{T}
25 30 35 40 45 50 55 60 65 70 75 80 85 90 95	1.0 1.1 1.2 1.4 1.5 1.8 2.0 2.1 2.3 2.7 3.0 3.2 3.4 3.7	105 110 115 120 125 130 135 140 145 150 155 160 165 170 175	3.9 4.2 4.5 4.8 5.1 5.7 6.0 6.4 6.7 7.1 7.5 7.9 8.3 8.7
$\pi_{T} = \exp\left(-1925\left(\frac{1}{T_{J} + 273} - \frac{1}{298}\right)\right)$			
T Junction Temperature (°C)			

Environment Factor - π_E

Environment	π _E
G _B	1.0
G _F	2.0
G _M	5.0
N _S	4.0
N _U	11
A _{IC}	4.0
A _{IF}	5.0
A _{UC}	7.0
A _{UF}	12
A _{RW}	16
S _F	.50
M_{F}	9.0
M_L	24
Mլ Cլ	250

6.10 THYRISTORS AND SCRS

SPECIFICATION MIL-S-19500

DESCRIPTION Thyristors SCRs, Triacs

$\lambda_p = \lambda_b \pi_T \pi_R \pi_S \pi_Q \pi_E$ Failures/10⁶ Hours

Base Failure Rate - λ_b

Device Type	λ _b
All Types	.0022

Temperature Factor - π_T

T _J (℃)	πΤ	⊤յ (℃)	π_{\top}
25 30 35 40 45 50 55 60 65 70 75 80 85 90 95	1.0 1.2 1.4 1.6 1.9 2.2 2.6 3.0 3.4 3.9 4.4 5.0 5.7 6.4 7.2 8.0	105 110 115 120 125 130 135 140 145 150 155 160 165 170	8.9 9.9 11 12 13 15 16 18 19 21 23 25 27 30 32

$$\pi_{\text{T}} = \exp\left(-3082\left(\frac{1}{\text{T}_{\text{J}} + 273} - \frac{1}{298}\right)\right)$$
 $T_{\text{J}} = \text{Junction Temperature (°C)}$

Current Rating Factor - π_R

Rated Forward Current (Ifrms (Amps))	πR
.05 .10 .50 1.0 5.0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170	.30 .40 .76 1.0 1.9 2.5 3.3 3.9 4.4 4.8 5.1 5.5 5.8 6.0 6.3 6.6 6.8 7.0 7.2 7.4 7.6 7.8 7.9
π _R = (l _{frms}) ^{.40} l _{frms} = RMS Rated Forwar	d Current (Amps)

6.10 THYRISTORS AND SCRS

Voltage Stress Factor - π_S

<u> </u>	3
V _S (Blocking Voltage Applied/ Blocking Voltage Rated)	π_{S}
$V_{S} \le .30$ $.3 < V_{S} \le .4$ $.4 < V_{S} \le .5$ $.5 < V_{S} \le .6$ $.6 < V_{S} \le .7$ $.7 < V_{S} \le .8$ $.8 < V_{S} \le .9$ $.9 < V_{S} \le 1.0$.10 .18 .27 .38 .51 .65 .82
$\pi_{S} = .10$ $\pi_{S} = (V_{S})^{1.9}$	$(V_{S} \le 0.3)$ $(V_{S} > 0.3)$

Quality Factor - π_{O}

9	
Quality	πQ
JANTXV	0.7
JANTX	1.0
JAN	2.4
Lower	5.5
Plastic	8.0

Environment Factor - π_E

	<u> </u>
Environment	π _E
GB	1.0
G_{F}	6.0
G _B G _F G _M N _S N _U	9.0
N _S	9.0
N _U	19
	13
A _{IF}	29
A _{IC} A _{IF} A _{UC} A _{UF} A _{RW}	20
A _{UF}	43
A _{RW}	24
S _F	.50
M_{F}	14
ML	32
м լ Ել	320

6.11 OPTOELECTRONICS, DETECTORS, ISOLATORS, EMITTERS

SPECIFICATION MIL-S-19500

DESCRIPTION

Photodetectors, Opto-isolators, Emitters

$\lambda_p = \lambda_b \pi_T \pi_Q \pi_E$ Failures/10⁶ Hours

Base Failure Rate - λ_b

Optoelectronic Type	λ _b
Photodetectors	
Photo-Transistor	.0055
Photo-Diode	.0040
Opto-Isolators	
Photodiode Output, Single Device	.0025
Phototransistor Output, Single Device	.013
Photodarlington Output, Single Device	.013
Light Sensitive Resistor, Single Device	.0064
Photodiode Output, Dual Device	.0033
Phototransistor Output, Dual Device	.017
Photodarlington Output, Dual Device	.017
Light Sensitive Resistor, Dual Device	.0086
Emitters	
Infrared Light Emitting Diode (IRLD)	.0013
Light Emitting Diode (LED)	.00023

Temperature Factor - π-

Temperature Factor 70			
T _J (°C)	π _T	T _J (°C)	π_{T}
25 30 35 40 45 50 55 60 65 70	1.0 1.2 1.4 1.6 1.8 2.1 2.7 3.0 3.4	75 80 85 90 95 100 105 110	3.8 4.3 4.8 5.3 5.9 6.6 7.3 8.0 8.8
$\pi_{T} = \exp\left(-2790\left(\frac{1}{T_{J} + 273} - \frac{1}{298}\right)\right)$			
T _J = Junction Temperature (°C)			

RECOmmending acceptance of rejection of and mili-

Quality Factor - π_Q

	<u> </u>
Quality	πQ
JANTXV	.70
JANTX	1.0
JAN	2.4
Lower	5.5
Plastic	8.0

Environment Factor - π_E

Environment actor x	<u> </u>
Environment	πE
G _B	1.0
G _F	2.0
G _F G _M N _S	8.0
N _S	5.0
N _U	12
	4.0
A _{IF}	6.0
Auc	6.0
A _{UF}	8.0
A _{UF} A _{RW}	17
S _F	.50
M _F	9.0
ML	24
Mլ Cլ	450

6.12 OPTOELECTRONICS, ALPHANUMERIC DISPLAYS

SPECIFICATION MIL-S-19500

DESCRIPTION Alphanumeric Display

$$\lambda_p = \lambda_b \pi_T \pi_Q \pi_E$$
 Failures/10⁶ Hours

Base Failure Rate - λ_h

Date Care Care Care Care Care Care Care Car			
Number	λь	λ _b	
of	Segment	Diode Array	
Characters	Display	Display	
1	.00043	.00026	
1 w/Logic Chip	.00047	.00030	
2	.00086	.00043	
2 w/Logic Chip	.00090	.00047	
3	.0013	.00060	
3 w/Logic Chip	.0013	.00064	
4	.0017	.00077	
4 w/Logic Chip	.0018	.00081	
5	.0022	.00094	
6	.0026	.0011	
7	.0030	.0013	
8	.0034	.0015	
9	.0039	.0016	
10	.0043	.0018	
11	.0047	.0020	
12	.0052	.0021	
13	.0056	.0023	
14	.0060	.0025	
15	.0065	.0026	

 $\lambda_D = .00043(C) + \lambda_{1C}$, for Segment Displays

 $\lambda_{b} = .00009 + .00017(C) + \lambda_{1C}$, Diode Array Displays

C = Number of Characters

λ_{IC} = .000043 for Displays with a Logic Chip

= 0.0 for Displays without Logic Chip

NOTE: The number of characters in a display is the number of characters contained in a <u>single</u> sealed package. For example, a 4 character display comprising 4 separately packaged single characters mounted together would be 4-one character displays, not 1-four character display.

Quality Factor - π_O

_	
Quality	πQ
JANTXV	0.7
JANTX	1.0
JAN	2.4
Lower	5.5
Plastic	8.0

Temperature Factor - π_T

7 3 1 4 3 1 2 1 2 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1			
T _J (℃)	π _T	T _J (℃)	π_{T}
25 30 35 40 45 50 55 60 65 70	1.0 1.2 1.4 1.6 1.8 2.1 2.4 2.7 3.0 3.4	75 80 85 90 95 100 105 110 115	3.8 4.8 5.3 5.9 6.6 7.3 8.0 8.8
$\pi_{T} = \exp\left(-2790\left(\frac{1}{T_{J} + 273} - \frac{1}{298}\right)\right)$			
T _J = Junction Temperature (°C)			

Environment Factor - π_E

Environment	π _E
G _B	1.0
G _F	2.0
G _B G _F G _M	8.0
NS	5.0
N _U	12
A _{IC} A _{IF} A _{UC} A _{UF}	4.0
A _{IF}	6.0
Auc	6.0
AUF	8.0
A _{RW}	17
S _F	.50
M _F	9.0
ML	24
Mլ C _L	450

6.13 OPTOELECTRONICS, LASER DIODE

SPECIFICATION MIL-S-19500

DESCRIPTION Laser Diodes with Optical Flux Densities < 3 MW/cm² and Forward Current < 25 amps

 $\lambda_p = \lambda_b \pi_T \pi_Q \pi_I \pi_A \pi_P \pi_E$ Failures/10⁶ Hours

Base Failure Rate - λ_h

Laser Diode Type	λ _b
GaAs/Al GaAs	3.23
In GaAs/In GaAsP	5.65

Temperature Factor - π_T

T _J (℃)	πΤ
25 30 35 40 45 50 55 60 65 70 75	1.0 1.3 1.7 2.1 2.7 3.3 4.1 5.1 6.3 7.7 9.3

$$\pi_{T} = \exp\left(-4635\left(\frac{1}{T_{J} + 273} - \frac{1}{298}\right)\right)$$
 $T_{J} = \text{Junction Temperature (°C)}$

Quality Factor - TO

Quality	πQ
Hermetic Package	1.0
Nonhermetic with Facet Coating	1.0
Nonhermetic without Facet Coating	3.3

Forward Current Factor, π_l

Forward Peak Current (Amps)	π_{l}
.050	0.13
.075	0.17
.1	0.21
.5	0.62
1.0	1.0
2.0	1.6
3.0	2.1
4.0	2.6
5.0	3.0
10	4.8
15	6.3
20	7.7
25	8.9

 $\pi_1 = (1)^{.68}$

I = Forward Peak Current (Amps), i ≤ 25

NOTE: For Variable Current Sources, use the Initial Current Value.

Application Factor π_{Δ}

• • •	^		
Application	Duty Cycle	πA	
OW		4.4	
Pulsed	.1	.32	
	.2	.45	
	.3	.55	
}	.4	.63	
1	.5	.71	
ļ	.6	.77	
1	.7	.84	
	.8	.89	
1	.9	.95	
ł	1.0	1.00	

 $\pi_A = 4.4$, CW

 π_A = Duty Cycle ^{0.5}, Pulsed

NOTE: A duty cycle of one in pulsed application represents the maximum amount it can be driven in a pulsed mode. This is different from continuous wave application which will not withstand pulsed operating levels on a continuous basis.

6.13 OPTOELECTRONICS, LASER DIODE

Power Degradation Factor - π_P

Ratio P _r /P _s	π _P
0.00 .05 .10 .15 .20 .25 .30 .35 .40 .45 .50 .55 .60 .65 .70 .75 .80 .85	.50 .53 .56 .59 .63 .67 .71 .77 .83 .91 1.0 1.1 1.3 1.4 1.7 2.0 2.5 3.3 5.0

$$\pi_{p} = \frac{1}{2 (1 - \frac{Pr}{Ps})}$$
 $0 < \frac{Pr}{Ps} \le .95$

P_S = Rated Optical Power Output (mW)

Pr = Required Optical Power Output (mW)

NOTE: Each laser diode must be replaced when power output falls to Pr for failure rate prediction to be valid.

Environment Factor - π_E

	<u> </u>
Environment	π _E
G _B	1.0
G _F	2.0
G _F G _M	8.0
N _S	5.0
NU	12
	4.0
^A IC ^A IF	6.0
AUC	6.0
^A UC ^A UF	8.0
A _{RW}	17
S _F	.50
M _F	9.0
ML	24
M _L C _L	450

6.14 DISCRETE SEMICONDUCTORS, T. DETERMINATION

Ideally, device case temperatures should be determined from a detailed thermal analysis of the equipment. Device junction temperature is then calculated with the following relationship:

$$T_J = T_C + \theta_{JC}P$$

where:

T_{.1} = Junction Temperature (°C)

T_C = Case Temperature (°C). If no thermal analysis exists, the default case temperatures shown in Table 6-1 should be assumed.

θ_{JC} = Junction-to-Case Thermal Resistance (°C/W). This parameter should be determined from vendor, military specification sheets or Table 6-2, whichever is greater. It may also be estimated by taking the reciprocal of the recommended derating level. For example, a device derating recommendation of .16 W/°C would result in a θ_{JC} of 6.25 °C/W. If θ_{JC} cannot be determined assume a θ_{JC} value of 70°C/W.

P = Device Worse Case Power Dissipation (W)

The models are not applicable to devices at overstress conditions. If the calculated junction temperature is greater than the maximum rated junction temperature on the MIL slash sheets or the vendor's specifications, whichever is smaller, then the device is overstressed and these models ARE NOT APPLICABLE.

Table 6-1: Default Case Temperatures (T_C) for All Environments

Environment	T _C (°C)
[G _B	35
G _F	45
GB GF GM NS NU AC AIF AUC AUF ARW	50
N _S	45
N _U	50
A _{IC}	60
A _{IF}	60
A _{UC}	75
A _{UF}	75
A _{RW}	60
S _F M _F	35
M _F	50
ML	60
M _L C _L	45

6.14 DISCRETE SEMICONDUCTORS, T, DETERMINATION

Table 6-2: Approximate Junction-to-Case Thermal Resistance (θ_{JC}) for Semiconductor Devices in Various Package Sizes*

Package Type	θJC (°C/W)	Package Type	θJC (₀CVM)
TO-1	70	TO-205AD	70
TO-3	10	TO-205AF	70
TO-5	70	TO-220	
TO-8	70	DO-4	5 5 5
TO-9	70	DO-5	5
TO-12	70	DO-7	10
TO-18	70	DO-8	5 5
TO-28	5	DO-9	5
TO-33	70	DO-13	10
TO-39	70	DO-14	5
TO-41	10	DO-29	10
TO-44	70	DO-35	10
TO-46	70	DO-41	10
TO-52	70	DO-45	5
TO-53	5	DO-204MB	70
TO-57	5 5 5 5 5	DO-205AB	5
TO-59	5	PA-42A,B	70
TO-60	5	PD-36C	70
TO-61	5	PD-50	70
TO-63	5	PD-77	70
TO-66	10	PD-180	70
TO-71	70	PD-319	70
TO-72	70	PD-262	70
TO-83	5	PD-975	70
TO-89	22	PD-280	70
TO-92	70	PD-216	70
TO-94	5	PT-2G	70
TO-99	70	PT-6B	70
TO-126	5	PH-13	70
TO-127	5	PH-16	70
TO-204	10	PH-56	70
TO-204AA	10	PY-58	70
		PY-373	70

^{*}When available, estimates must be based on military specification sheet or vendor values, whichever θ_{JC} is higher.

6.15 DISCRETE SEMICONDUCTORS, EXAMPLE

Example

Given:

Silicon dual transistor (complementary), JAN grade, rated for 0.25 W at 25°C, one side only, and 0.35 W at 25°C, both sides, with T_{max} = 200°C, operating in linear service at 55°C case temperature in a sheltered naval environment. Side one, NPN, operating at 0.1 W and 50 percent of rated voltage and side two, PNP, operating at 0.05 W and 30 percent of rated voltage. The device operates at less than 200 MHz.

Since the device is a bipolar dual transistor operating at low frequency (<200 MHz), it falls into the Transistor, Low Frequency, Bipolar Group and the appropriate model is given in Section 6.3. Since the device is a dual device, it is necessary to compute the failure rate of each side separately and sum them together. Also, since θ_{JC} is unknown, $\theta_{JC} = 70^{\circ}\text{C/W}$ will be assumed.

Based on the given information, the following model factors are determined from the appropriate tables shown in Section 6.3.

SIDE 1 SIDE 2 $^{\lambda}_{\text{D}}$ = $^{\lambda}_{\text{b}}$ $^{\pi}$ T1 $^{\pi}$ A $^{\pi}$ R $^{\pi}$ S1 $^{\pi}$ Q $^{\pi}$ E + $^{\lambda}_{\text{b}}$ $^{\pi}$ T2 $^{\pi}$ A $^{\pi}$ R $^{\pi}$ S2 $^{\pi}$ Q $^{\pi}$ E

 $\lambda_{\rm p} = (.00074)(2.2)(1.5)(.68)(.21)(2.4)(9) + (.00074)(2.1)(1.5)(.68)(.11)(2.4)(9)$

= .011 Failures/10⁶ Hours

7.1 TUBES, ALL TYPES EXCEPT TWT AND MAGNETRON

DESCRIPTION

All Types Except Traveling Wave Tubes and Magnetrons. Includes Receivers, CRT, Thyratron, Crossed Field Amplifier, Pulsed Gridded, Transmitting, Vidicons, Twystron, Pulsed Klystron, CW Klystron

$\lambda_p = \lambda_b \pi_L \pi_E$ Failures/10⁶ Hours

Base Failure Rate - λ_b

(Includes Both Random and Wearout Failures)				
Tube Type	λ _b	Tube Type	λ _b	
Receiver		Klystron, Low Power,		
Triode, Tetrode, Pentode	5.0	(e.g. Local Oscillator)	30	
Power Rectifier	10			
CRT	9.6	Klystron, Continuous Wave*		
Thyratron	50	3K3000LQ	9.0	
Crossed Field Amplifier		3K50000LF	54	
QK681	260	3K210000LQ	150	
SFD261	150	3KM300LA	64	
Pulsed Gridded		3KM3000LA	19	
2041	140	3KM50000PA	110	
6952	390	3KM50000PA1	120	
7835	140	3KM50000PA2	150	
Transmitting	1-10	4K3CC	610	
Triode, Peak Pwr. ≤ 200 KW, Avg.	75	4K3SK	29	
Pwr. ≤ 2KW, Freq. ≤ 200 MHz	, 3	4K50000LQ	30	
Tetrode & Pentode, Peak Pwr.	100	4KM50LB	28	
≤ 200 KW, Avg. Power ≤ 2KW,	100	4KM50LC	15	
5 200 KW, Avg. Fower 5 2KW, Freq. ≤ 200 KW		4KM50SJ	38	
If any of the above limits exceeded	250	4KM50SK	37	
Vidicon	230	4KM3000LR	140	
Antimony Trisulfide (Sb2S3)		4KM50000LQ	79	
, _ ,		4KM50000LR	57	
Photoconductive Material	51	4KM170000LA	15	
Silicon Diode Array Photoconductive		8824	130	
Material	48	8825	120	
Twystron		8826	280	
VA144	850	VA800E	70	
VA145E	450	VA853	220	
VA145H	490	VA856B	65	
VA913A	230	VA888E	230	
Klystron, Pulsed*				
4KMP10000LF	43			
8568	230	* If the CW Klystron of interest is not listed above,		
L3035	66	use the Alternate CW Klystron λ _b Table on the		
L3250	69	following page.		
L3403	93	ionoming page.		
SAC42A	100			
VA842	18			
Z5010A	150			
ZM3038A	190			

^{*} If the pulsed Klystron of interest is not listed above, use the Alternate Pulsed Klystron λ_D Table on the following page.

7.1 TUBES, ALL TYPES EXCEPT TWT AND MAGNETRON

Alternate* Base Failure Rate for Pulsed Klystrons - λ_{D}

	<u> </u>			F	(GHz)			
P(MW)	.2	.4	.6	.8	1.0	2.0	4.0	6.0
.01 .30 .80 1.0 3.0 5.0 8.0	16 16 16 17 18 19 21	16 16 17 17 20 22 25	16 17 17 18 21 25 30	16 17 18 18 23 28 35	16 17 18 19 25 31 40	16 18 21 22 34 45 63	16 20 25 28 51 75 110	16 21 30 34
10	22	28	34	40	45	75		
25	31	45	60	75	90	160		

 $\lambda_{h} = 2.94 (F)(P) + 16$

F = Operating Frequency in GHz, 0.2 ≤ F ≤ 6

P = Peak Output Power in MW, .01 ≤ P ≤ 25 and P ≤ 490 F^{-2.95}

*See previous page for other Klystron Base Fallure Rates.

Alternate* Base Failure Rate for CW Klystrons - λ_b

							_	
					(MHz)			
P(KW)	300	500	800	1000	2000	4000	6000	8000
1	l							
0.1	30	31	33	34	38	47	57	66
1.0	31	32	33	34	39	48	57	66
3.0	32	33	34	35	40	49	58	
5.0	33	34	35	36	41	50		
8.0	34	35	37	38	42			
10	35	36	38	39	43			
30	45	46	48	49				
50	55	56	58	59				
80	70	71	73					
100	80	81						
						_		

 $\lambda_{h} = 0.5P + .00046F + 29$

P = Average Output Power in KW, 0.1 ≤ P ≤ 100 and P ≤ 8.0(10)⁶(F)^{-1.7}

F = Operating Frequency in MHz, 300 ≤ F ≤ 8000

*See previous page for other Klystron Base Failure Rates.

Learning Factor - π_L

T (years)	π
≤ 1	10
2	2.3
≥ 3	1.0

 $\pi_1 = 10(T)^{-2.1}, 1 \le T \le 3$

= 10, T≤1

= 1, T≥3

T = Number of Years since Introduction to Field Use

Environment Factor - π_E

Environment	π _E
G _B	.50
G _F	1.0
G _M	14
N _S	8.0
N _U	24
A _{IC}	5.0
A _{IF}	8.0
A _{UC}	6.0
A _{UF}	12
A _{RW}	40
S _F	.20
M _F	22
M _L	57
M _L C _L	1000

7.2 TUBES, TRAVELING WAVE

DESCRIPTIONTraveling Wave Tubes

 $\lambda_p = \lambda_b \pi_E$ Failures/10⁶ Hours

Base Failure Rate - λ_h

		Frequency (GHz)							
Power (W)	.1	1	2	4	6	8	10	14	18
100	11	12	13	16	20	24	29	42	61
500	11	12	13	16	20	24	29	42	62
1000	11	12	14	16	20	24	29	43	62
3000	12	13	14	17	21	25	30	44	65
5000	12	13	15	18	22	26	32	46	68
8000	13	14	16	19	23	28	33	49	72
10000	14	15	16	20	24	29	35	51	75
15000	15	16	18	22	26	32	39	56	83
20000	17	18	20	24	29	35	43	62	91
30000	20	22	24	29	36	43	52	76	110
40000	25	27	30	36	43	53	64	93	140
							- '		

 $\lambda_{b} = 11(1.00002)^{P} (1.1)^{F}$

P = Rated Power in Watts (Peak, if Pulsed), .001 ≤ P ≤ 40,000

F = Operating Frequency in GHz, .3 ≤ F ≤ 18.

If the operating frequency is a band, or two different values, use the geometric mean of the end point frequencies when using table.

Environment Factor - π_E

	1
Environment	π _E
G _B	1.0
G _B	3.0
G _M	14
Ns	6.0
N _U	21
N _U	10
A _{IF}	14
Auc	11
A _{UF}	18
A _{RW}	40
S _F	.10
MF	22
ML	66
м _L Ել	1000

7.3 TUBES, MAGNETRON

DESCRIPTION

Magnetrons, Pulsed and Continuous Wave (CW)

 $\lambda_{\rm p} = \lambda_{\rm b} \pi_{\rm U} \pi_{\rm C} \pi_{\rm E}$ Failures/10⁶ Hours

Base Failure Rate - λ_h

							Freq	uency (G	Hz)					
P(MW)	1	.5	. 1	5	10	20	30	4Ó `	50	60	70	80	90	100
.01	1.4	4.6	7.6	24	41	67	91	110	130	150	170	190	200	220
.05	1.9	6.3	10	34	56	93	120	150	180	210	230	260	280	300
.1	2.2	7.2	12	39	64	110	140	180	210	240	270	290	320	350
.3	2.8	9.0	15	48	80	130	180	220	260	300	330	370	400	430
.5	3.1	10	17	54	89	150	200	240	290	330	370	410	440	480
1 1	3.5	11	19	62	100	170	230	280	330	380	420	470	510	550
3	4.4	14	24	77	130	210	280	350	410	470	530	580	630	680
5	4.9	16	26	85	140	230	310	390	460	520	580	640	700	760

Pulsed Magnetrons:

19(F).73 (P).20

Operating Frequency in GHz, $.1 \le F \le 100$

Output Power in MW,

.01 ≤ P ≤ 5

CW Magnetrons (Rated Power < 5 KW):

λ_b = 18

Utillization Fa	acto	٠-	π_{U}
adiate Hours/		Г	

Utilization (Radiate Hours/ Filament Hours)	πυ
0.0 0.1	.44 .50
0.2	.55
0.3	.61 .66
0.5	.72
0.6	.78 .83
0.8	.89
0.9 1.0	.94 1.0

0.44 + 0.56R

Radiate Hours/Filament Hours

Construction Factor - π_C

Construction	π _C
CW (Rated Power < 5 KW)	1.0
Coaxial Pulsed	1.0
Conventional Pulsed	5.4

Environment Factor - π_F

Environment	π _E		
G _B	1.0		
G _F	2.0		
G _M	4.0		
N _S	15		
NU	47		
A _{IC}	10		
A _{IC} A _{IF}	16		
A _{UC}	12		
A _{UF}	23		
A _{RW}	80		
	.50		
S _F M _F	43		
	133		
м _L С _L	2000		

8.0 LASERS, INTRODUCTION

The models and failure rates presented in this section apply to <u>laser peculiar items only</u>, i.e., those items wherein the lasing action is generated and controlled. In addition to laser peculiar items, there are other assemblies used with lasers that contain electronic parts and mechanical devices (pumps, valves, hoses, etc.). The failure rates for these parts should be determined with the same procedures as used for other electronic and mechanical devices in the equipment or system of which the laser is a part.

The laser failure rate models have been developed at the "functional," rather than "piece part" level because the available data were not sufficient for "piece part" model development. Nevertheless, the laser functional models are included in this Handbook in the interest of completeness. These laser models will be revised to include piece part models and other laser types when the data become available.

Because each laser family can be designed using a variety of approaches, the failure rate models have been structured on three basic laser functions which are common to most laser families, but may differ in the hardware implementation of a given function. These functions are the lasing media, the laser pumping mechanism (or pump), and the coupling method.

Examples of media-related hardware and reliability influencing factors are the solid state rod, gas, gas pressure, vacuum integrity, gas mix, outgassing, and tube diameter. The electrical discharge, the flashlamp, and energy level are examples of pump-related hardware and reliability influencing factors. The coupling function reliability influencing factors are the "Q" switch, mirrors, windows, crystals, substrates, coatings, and level of dust protection provided.

Some of the laser models require the number of active optical surfaces as an input parameter. An active optical surface is one with which the laser energy (or beam) interacts. Internally reflecting surfaces are not counted. Figure 8-1 below illustrates examples of active optical surfaces and count.

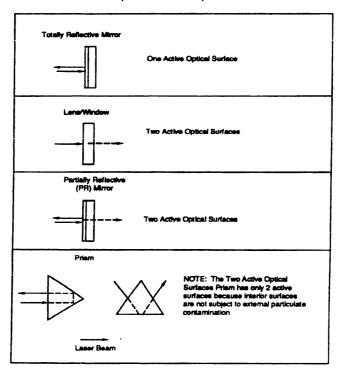


Figure 8-1: Examples of Active Optical Surfaces

8.1 LASERS, HELIUM AND ARGON

DESCRIPTION Helium Neon Lasers Helium Cadmium Lasers Argon Lasers

 $\lambda_p = \lambda_{MEDIA}^{\pi_E + \lambda_{COUPLING}^{\pi_E}}$ Failures/10⁶ Hours

Lasing Media Failure Rate - λ_{MEDIA}

	MEDIA
Туре	λ _{MEDIA}
He/Ne	84
He/Cd	228
Argon	457

Coupling Failure Rate - $\lambda_{COUPLING}$

Types	λ _{COUPLING}
Helium	0
Argon	6

NOTE: The predominant argon laser failure mechanism is related to the gas media (as reflected in λ_{MEDIA} ; however, when the tube is refilled periodically (preventive maintenance) the mirrors (as part of $\lambda_{COUPLING}$) can be expected to deteriorate after approximately 10⁴ hours of operation if in contact with the discharge region.

 $\lambda_{\mbox{COUPLING}}$ is negligible for helium lasers.

Environment Factor - π_F

	E
Environment	π _E
GB	.30
G _F	1.0
G _M	4.0
N _S	3.0
N _U	4.0
A _{IC}	4.0
A _{IF}	6.0
AUC	7.0
A _{UF}	9.0
A _{RW}	5.0
S _F	.10
M _F	3.0
ML	8.0
CL	N/A

8.2 LASERS, CARBON DIOXIDE, SEALED

DESCRIPTION CO₂ Sealed Continuous Wave Lasers

 $\lambda_{\rm p} = \lambda_{\rm MEDIA} \pi_{\rm O} \pi_{\rm B} \pi_{\rm E} + 10 \pi_{\rm OS} \pi_{\rm E}$ Failures/10⁶ Hours

Lasing Media Failure Rate - \(\lambda_{MEDIA} \)

	WILLIAM
Tube Current (mA)	^λ меdia
10	240
20	930
30	1620
40	2310
50	3000 6450
100 150	9900
100	

λ_{MEDIA} = 69(I) - 450

 $I = Tube Current (mA), 10 \le I \le 150$

Gas Overfill Factor = π_O

CO ₂ Overfill Percent (%)	π _O
0	1.0
25	.75
50	.50

 $\pi_{O} = 1 - .01$ (% Overfill)

Overfill percent is based on the percent increase over the optimum $\rm CO_2$ partial pressure which is normally in the range of 1.5 to 3 $\rm T_{OTT}$ (1 $\rm T_{OTT}$ = 1 mm Hg Pressure) for most sealed $\rm CO_2$ lasers.

Ballast Factor - π_B

Percent of Ballast Volumetric Increase	π _B
0	1.0
50	.58
100	.33
150	.19
200	.11

Optical Surface Factor - π_{OS}

Active Optical Surfaces	πOS
1	1
2	2

 π_{OS} = Number of Active Optical Surfaces

NOTE: Only active optical surfaces are counted. An active optical surface is one with which the laser energy or beam interacts. Internally reflecting surfaces are not counted. See Figure 8-1 for examples on determining the number of optical surfaces.

Environment Factor - π_E

Environment	π _E
G _B	.30
G _F	1.0
G _B G _F G _M	4.0
NS	3.0
NU	4.0
A _{IC} A _{IF}	4.0
A _{IF}	6.0
A _{UC}	7.0
^ _{UF}	9.0
A _{RW}	5.0
S _F	.10
S _F M _F	3.0
	8.0
Mլ Cլ	N/A

8-3

8.3 LASERS, CARBON DIOXIDE, FLOWING

DESCRIPTION CO₂ Flowing Lasers

$\lambda_p = \lambda_{COUPLING} \pi_{OS} \pi_E$ Failures/10⁶ Hours

Coupling Failure Rate - λ_{COUPLING}

COUPLING	
^λ COUPLING	
3 30 300	

λCOUPLING = 300P

P = Average Power Output in KW, $.01 \le P \le 1.0$

Beyond the 1KW range other glass failure mechanisms begin to predominate and alter the $\lambda_{COUPLING}$ values. It should also be noted that CO_2 flowing laser optical devices are the primary source of failure occurrence. A tailored optical cleaning preventive maintenance program on optic devices greatly extends laser life.

Optical Surface Factor - TOS

Active Optical Surfaces	πOS
1	1
2	2
	1

 π_{OS} = Number of Active Optical Surfaces

NOTE: Only active optical surfaces are counted. An active optical surface is one with which the laser energy or beam interacts. Internally reflecting surfaces are not counted. See Figure 8-1 for examples on determining the number of optical surfaces.

Environment Factor - π_F

Environment	π _E
G _B	.30
G _F	1.0
G _M	4.0
N _S	3.0
NU	4.0
A _{IC}	4.0
A _{IF}	6.0
Auc	7.0
A _{UF}	9.0
A _{RW}	5.0
S _F	.10
M _F	3.0
M_L	8.0
м լ Ել	N/A

8.4 LASERS, SOLID STATE, ND:YAG AND RUBY ROD

DESCRIPTION

Neodymium-Yttrium-Aluminum-Garnet (ND:YAG) Rod Lasers

Ruby Rod Lasers

 λ_{p} = (λ_{PUMP} + λ_{MEDIA} + 16.3 $\pi_{C}\pi_{OS}$) π_{E} Failures/10⁶ Hours

Pump Pulse Failure Rate - λ_{PUMP} (Xenon Flashlamps)

The empirical formula used to determine λ_{PUMP} (Failures/10⁶ Hours) for Xenon lamps is:

$$\lambda_{\text{PUMP}}$$
 = (3600) (PPS) $\left[2000 \left(\frac{E_{j}}{\text{dL}\sqrt{t}}\right)^{8.58}\right] \left[\pi_{\text{COOL}}\right]$

λρυμρ is the failure rate contribution of the Xenon flashlamp or flashtube. The flashlamps evaluated herein are linear types used for military solid state laser systems. Typical default model parameters are given below.

PPS is the repetition pulse rate in pulses per second. Typical values range between 1 and 20 pulses per second.

Ej is the flashlamp or flashtube input energy per pulse, in joules. Its value is determined from the actual or design input energy . For values less than 30 joules, use $E_j = 30$. Default value: $E_j = 40$.

d is the flashlamp or flashtube inside diameter, in millimeters.
 Default value: d = 4.

L is the flashlamp or flashtube arc length in inches. Default value: L = 2.

is the truncated pulse width in microseconds. Use t = 100 microseconds for any truncated pulse width exceeding 100 microseconds. For shorter duration pulses, pulse width is to be measured at 10 percent of the maximum current amplitude. Default value: t = 100.

 π_{COOL} is the cooling factor due to various cooling media immediately surrounding the flashlamp or flashtube. $\pi_{\text{COOL}} = 1.0$ for any air or inert gas cooling. $\pi_{\text{COOL}} = .1$ for all liquid cooled designs. Default value: $\pi_{\text{COOL}} = .1$, liquid cooled.

Pump Pulse Failure Rate - λ_{PUMP}3 (Krypton Flashlamps)

The empirical formula used to determine λ_{PUMP} for Krypton lamp is:

λ_{PUMP} = [s25] [10^{(0.9} ^P_L] [π_{COOL}] Failures/10⁶ Hours
λ_{PUMP} is the failure rate contribution of the krypton flashlamp or flashtube. The flashlamps evaluted herein are the continuous wave (CW) type and are most widely used for commercial solid state applications. They are approx-imately 7mm in diameter and 5 to 6 inches long.

P is the average input power in kilowatts.

Default value: P = 4.

L is the flashlamp or flashtube arc length in inches. Default value: L = 2.

 π_{COOL} is the cooling factor due to various cooling media immediately surrounding the flashlamp or flashtube. $\pi_{\text{COOL}} = 1$ for any air or inert gas cooling. $\pi_{\text{COOL}} = .1$ for all liquid designs. Default value: $\pi_{\text{COOL}} = .1$, liquid cooled.

Media Failure Rate - λ_{MEDIA}

Laser Type	^λ MEDIA	
ND:YAG	0	
Ruby	(3600) (PPS) [43.5 F ^{2.52}]	

PPS is the number of pulses per second

F is the energy density in Joules per cm.²/pulse over the cross-sectional area of the laser beam, which is nominally equivalent to the cross-sectional area of the laser rod, and its value is determined from the actual design parameter of the laser rod utilized.

NOTE: $\lambda_{\mbox{\scriptsize MEDIA}}$ is negligible for ND:YAG lasers.

8.4 LASERS, SOLID STATE, ND:YAG AND RUBY ROD

Coupling Cleanliness Factor - π_C

Cleanliness Level	™ C
Rigorous cleanliness procedures and trained maintenance personnel. Bellows provided over optical train.	1
Minimal precautions during opening, maintenance, repair, and testing. Bellows provided over optical train.	30
Minimal precautions during opening, maintenance, repair, and testing. No bellows provided over optical train.	60

NOTE: Although seeled systems tend to be reliable once compatible materials have been selected and proven, extreme care must still be taken to prevent the entrance of particulates during manufacturing, field flashlamp replacement, or routine maintenance/repair. Contamination is the major cause of solid state laser malfunction, and special provisions and vigilance must continually be provided to maintain the cleanliness level required.

Optical Surface Factor - πOS

Active Optical Surfaces	πos	
1	1	
2	2	

 π_{OS} = Number of Active Optical Surfaces

NOTE: Only active optical surfaces are counted. An active optical surface is one with which the laser energy or beam interacts. Internally reflecting surfaces are not counted. See Figure 8-1 for examples on determining the number of optical surfaces.

Environment Factor - π_F

Ellamoration actor wE		
Environment	π _E	
G _B	.30	
G _F	1.0	
G _M	4.0	
N _S	3.0	
N _U	4.0	
A _{IC}	4.0	
A _{lF}	6.0	
Auc	7.0	
A _{UF}	9.0	
A _{RW}	5.0	
S _F	.10	
MF	3.0	
M_L	8.0	
м _L с _L	N/A	

9.0 RESISTORS, INTRODUCTION

This section includes the active resistor specifications and, in addition, some older/inactive specifications are included because of the large number of equipments still in field use which contain these parts.

The Established Reliability (ER) resistor family generally has four qualification failure rate levels when tested per the requirements of the applicable specification. These qualification failure rate levels differ by a factor of ten (from one level to the next). However, field data has shown that these failure rate levels differ by a factor of about only three, hence the π_{O} values have been set accordingly.

The use of the resistor models requires the calculation of the electrical power stress ratio, Stress = operating power/rated power, or per Section 9.16 for variable resistors. The models have been structured such that derating curves do not have to be used to find the base failure rate. The rated power for the stress ratio is equal to the full nominal rated power of the resistor. For example, a MIL-R-39008 resistor has the following derating curve:

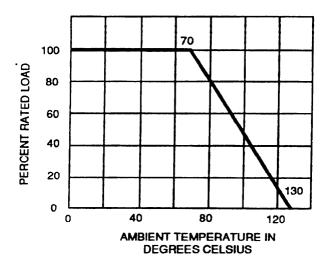


Figure 9-1: MIL-R-39008 Derating Curve

This particular resistor has a rating of 1 watt at 70°C ambient, or below. If it were being used in an ambient temperature of 100°C, the rated power for the stress calculation would still be 1 watt, not 45% of 1 watt (as read off the curve for 100°C). Of course, while the derating curve is not needed to determine the base failure rate, it must still be observed as the maximum operating condition. To aid in determining if a resistor is being used within rated conditions, the base failure rate tables show entries up to certain combinations of stress and temperature. If a given operating stress and temperature point falls in the blank portion of the base failure rate table, the resistor is overstressed. Such misapplication would require an analysis of the circuit and operating conditions to bring the resistor within rated conditions.

9.1 RESISTORS, FIXED, COMPOSITION

SPECIFICATION MIL-R-39008

MIL-R-11

STYLE RCR RC DESCRIPTION

Resistors, Fixed, Composition (Insulated), Established Reliability

Resistors, Fixed, Composition (Insulated)

 $\lambda_p = \lambda_b \pi_R \pi_Q \pi_E$ Failures/10⁶ Hours

Base Failure Rate - λh

_						
				Stress		
ד	A (℃)	.1	.3	.5	.7	.9
	0 10 20 30 40 50 60 70 80 90 100	.00007 .00011 .00015 .00022 .00031 .00044 .00063 .00090 .0013 .0018 .0026	.00010 .00015 .00022 .00031 .00045 .00066 .00095 .0014 .0020 .0029	.00015 .00021 .00031 .00046 .00067 .00098 .0014 .0021 .0031 .0045	.00020 .00030 .00045 .00066 .00098 .0014 .0021 .0032	.00028 .00043 .00064 .00096 .0014 .0021 .0032 .0048
L	120	.0054				

$$\lambda_{\rm b} = 4.5 \times 10^{-9} \exp\left(12\left(\frac{\rm T+273}{\rm 343}\right)\right) \exp\left(\frac{\rm S}{.6}\left(\frac{\rm T+273}{\rm 273}\right)\right)$$

$$T = \text{Ambient Temperature (°C)}$$

S = Ratio of Operating Power to Rated Power

Resistance Factor - π_R

Resistance Range (ohms)	^π R
< .1 M	1.0
> .1 M to 1 M	1.1
> 1.0 M to 10 M	1.6
> 10 M	2.5

Quality Factor - π_Q

Quality	πQ
S	.03
R	0.1
Р	0.3
М	1.0
MIL-R-11	5.0
Lower	15

Environment Factor - π_E

Environment ractor - xE				
Environment	π _E			
G _B	1.0			
G _F	3.0			
G _M	8.0			
N _S	5.0			
N _U	13			
AIC	4.0			
A _{IF}	5.0			
AUC	7.0			
A _{UC} A _{UF}	11			
A _{RW}	19			
	.50			
S _F M _F	11			
м լ Ել	27			
c_L	490			

9.2 RESISTORS, FIXED, FILM

SPECIFICATION

MIL-R-39017 MIL-R-22684

MIL-R-55182 MIL-R-10509

STYLE RLR

RN (R, C, or N) RN

DESCRIPTION

Fixed, Film, Insulated, Established Reliability

Fixed, Film, Insulated

Fixed, Film, Established Reliability

Fixed, Film, High Stability

 $\lambda_p = \lambda_b \pi_R \pi_Q \pi_E$ Failures/10⁶ Hours

Base Failure Rate - λ_b

(MIL-R-22684 and MIL-R-39017) Stress T_A (℃) .7 .1 .3 .5 .9 0 .00059 .00073 .00089 .0011 .0013 10 .00063 .00078 .00096 .0012 .0014 20 .00067 .00084 .0010 .0013 .0016 30 .00072 .00090 .0011 .0014 .0018 40 .00078 .00098 0012 .0016 .0019 50 .00084 .0011 .0014 .0017 .0022 60 .00092 .0012 .0015 .0019 .0024 70 .0010 .0013 .0017 .0021 .0027 80 .0011 .0014 .0018 .0024 .0012 90 .0016 .0021 .0027 100 .0013 .0018 .0023 110 .0015 .0020 .0026 120 .0017 .0023 130 .0019 .0022 140

$$\lambda_b = 3.25 \times 10^{-4} \exp\left(\frac{T + 273}{343}\right)^3 \exp\left(S\left(\frac{T + 273}{273}\right)\right)$$

Ambient Temperature (°C)

Ratio of Operating Power to Rated Power

Base Failure Rate - λ_b

(MIL-R-10509 and MIL-R-55182)					
			ress		
T _A (℃)	.1	.3	.5	.7	.9
0	.00061	.00074	.00091	.0011	.0014
10	.00067	.00082	.0010	.0012	.0015
20	.00073	.00091	.0011	.0014	.0017
30	.00080	.0010	.0013	.0016	.0019
40	.00088	.0011	.0014	.0017	.0022
50	.00096	.0012	.0015	.0020	.0025
60	.0011	.0013	.0017	.0022	.0028
70	.0012	.0015	.0019	.0025	.0032
80	.0013	.0016	.0021	.0028	.0036
90	.0014	.0018	.0024	.0031	.0040
100	.0015	.0020	.0026	.0035	.0045
110	.0017	.0022	.0029	.0039	.0051
120	.0018	.0024	.0033	.0043	.0058
130	.0020	.0027	.0036	.0049	.0065
140	.0022	.0030	.0040	.0054	
150	.0024	.0033	.0045		
160	.0026	.0036			
170	.0029				

$$\lambda_{b} = 5 \times 10^{-5} \exp\left(3.5 \left(\frac{T + 273}{398}\right)\right) \exp\left(S \left(\frac{T + 273}{273}\right)\right)$$

Ambient Temperature (°C)

Ratio of Operating Power to Rated Power

NOTE: Do not use MIL-R-10509 (Characteristic B) below the line. Points below are overstressed.

9.2 RESISTORS, FIXED, FILM

Resistance Factor - π_R

Resistance Range (ohms)	π _R
<.1M	1.0
≥ 0.1 M to 1 M	1.1
> 1.0 M to 10 M	1.6
> 10 M	2.5

Quality Factor - π_Q

Quality	πQ
S	.03
R	0.1
P	0.3
М	1.0
MIL-R-10509	5.0
MIL-R-22684	5.0
Lower	15

Environment Factor - π_E

Environment	π _E
G _B	1.0
G _F	2.0
G _F G _M	8.0
NS	4.0
NU	14
A _{IC}	4.0
A _{IF}	8.0
Auc	10
A _{UF}	18
A _{RW}	19
S _F	.20
M _F	10
ML	28
M _L C _L	510

9.3 RESISTORS, FIXED, FILM, POWER

SPECIFICATION MIL-R-11804

STYLE RD

DESCRIPTION Fixed, Film, Power Type

 $\lambda_p = \lambda_b \pi_R \pi_Q \pi_E$ Failures/10⁶ Hours

Base Failure Rate - λ₊,

$ T_{A}(^{\circ}C) $		Base Failure Rate - Ab				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			Str	ress		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	T _A (℃)	.1	.3	.5	.7	.9
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0	.0089	.0098	.011	.013	.015
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10	.0090	.010	.011	.013	.015
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.010	.012	.014	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.017
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.017	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			—			
120 .012 .014 .016 .012 .014 .017 .012 .014 .017 .014 .015 .013 .015 .013 .015 .013 .016 .013 .016 .014 .016 .014 .016 .014 .015 .015 .0016 .015 .016 .015 .016 .	1					
130 .012 .014 .017 140 .012 .014 .017 150 .013 .015 160 .013 .016 170 .014 .016 180 .014 .016 190 .015 200 .015 210 .016 $\lambda_{b} = 7.33 \times 10^{-3} \exp\left(.202\left(\frac{T+273}{298}\right)^{2.6}\right) \times \exp\left(\left(\frac{S}{1.45}\right)\left(\frac{T+273}{273}\right)^{8.89}\right)^{1.3}$	1					
140 .012 .014 150 .013 .015 160 .013 .016 170 .014 .016 180 .014 190 .015 200 .015 210 .016 $\lambda_{b} = 7.33 \times 10^{-3} \exp\left(.202\left(\frac{T+273}{298}\right)^{2.6}\right) \times \exp\left(\left(\frac{S}{1.45}\right)\left(\frac{T+273}{273}\right)^{8.89}\right)^{1.3}$						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		–		.017		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	160	.013	.016			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	170	.014	.016			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	180	.014				
$\lambda_{b} = 7.33 \times 10^{-3} \exp\left(.202 \left(\frac{T + 273}{298}\right)^{2.6}\right) \times \exp\left(\left(\frac{S}{1.45}\right) \left(\frac{T + 273}{273}\right)^{1.3}\right)$.015				
$\lambda_{b} = 7.33 \times 10^{-3} \exp\left(.202 \left(\frac{T + 273}{298}\right)^{2.6}\right) \times \exp\left(\left(\frac{S}{1.45}\right) \left(\frac{T + 273}{273}\right)^{.89}\right)^{1.3}$						
$\exp\left(\left(\frac{S}{1.45}\right)\left(\frac{T+273}{273}\right)^{.89}\right)^{1.3}$	210	.016				
$\exp\left(\left(\frac{S}{1.45}\right)\left(\frac{T+273}{273}\right)^{.89}\right)^{1.3}$		47 070 26				
$\exp\left(\left(\frac{S}{1.45}\right)\left(\frac{T+273}{273}\right)^{.89}\right)^{1.3}$	\ \\ \lambda_{b}	= 7.33 x	10 ⁻³ exp	.202	2/3) x
, ,		((290)				
, ,	1	ava (1	<u>s</u> \/	T+273\·	89 /1.3	
		$\Theta^{AP}\left(\left(\overline{1.45}\right)\left(\overline{273}\right)\right)$				
T = Ambient Temperature (°C)	Т.	- Ambier	t Tempera	ture (°C)		

Quality Factor - π_Q

Quality	πQ
MIL-SPEC	1.0
Lower	3.0

Environment Factor - π_E

Environment	T -
Literonnien	π _E
G _B	1.0
G _F	2.0
G _B G _F G _M	10
N _S	5.0
N _U	17
A _{IC}	6.0
A _{IF}	8.0
^A IC ^A IF ^A UC	14
AUF	18
A _{RW}	25
S _F	.50
MF	14
Mլ Ել	36
СĹ	660

Resistance Factor - π_R

S Ratio of Operating Power to Rated Power

Resistance Range (ohms)	πR
10 to 100	1.0
> 100 to 100K	1.2
> 100K to 1M	1.3
> 1M	3.5

9.4 RESISTORS, NETWORK, FIXED, FILM

SPECIFICATION MIL-R-83401 STYLE RZ **DESCRIPTION**

Resistor Networks, Fixed, Film

 $\lambda_p = .00006 \, \pi_T \, \pi_{NR} \pi_Q \pi_E$ Failures/10⁶ Hours

Temperature Factor - π_{T}

	Temperature	racioi - AT	
T _C (°C)	πТ	T _C (°C)	πΤ
25 30 35 40 45 50 55 60 65 70 75	1.0 1.3 1.6 1.9 2.4 2.9 3.5 4.0 6.0 7.1	80 85 90 95 100 105 110 115 120	8.3 9.8 11 13 15 18 21 24 27 31
[

$$\pi_{\text{T}} = \exp\left(-4056\left(\frac{1}{T_{\text{C}} + 273} - \frac{1}{298}\right)\right)$$
 $T_{\text{C}} = \text{Case Temperature (°C)}$

NOTE: If T_C is unknown, it can be estimated as follows:

 $T_C = T_A + 55 (S)$

T_A = Ambient Temperature (°C)

S = Operating Power
Package Rated Power

Any device operating at $T_C > 125$ °C is overstressed.

Quality Factor - πQ

Quality	$\pi_{\mathbf{Q}}$
MIL-SPEC	. 1
Lower	3

Environment Factor - π_F

Environment	π _E
G _B	1.0
G _B	2.0
G _M	8.0
N _S	4.0
NU	14
A _{IC}	4.0
A _{IF}	8.0
A _{UC}	9.0
A _{UF}	18
A _{RW}	19
S _F	.50
M _F	14
ML	28
M _L C _L	510
L	

Number of Resistors Factor - π_{NR}

 π_{NR} = Number of Film Resistors in Use

NOTE: Do not include resistors that are not used.

RESISTORS, FIXED, WIREWOUND

SPECIFICATION

MIL-R-39005 MIL-R-93

STYLE RBR RB

DESCRIPTION

Fixed, Wirewound, Accurate, Established Reliability Fixed, Wirewound, Accurate

 $\lambda_p = \lambda_b \pi_R \pi_Q \pi_E$ Failures/10⁶ Hours

Base Failure Rate - λ_h

			Stress	-	
T _A (℃)	.1	.3	.5	.7	.9
0 10	.0033	.0037 .0038 .0039	.0045 .0047 .0048	.0057 .0059 .0062	.0075 .0079 .0084
20 30 40	.0034 .0034 .0035	.0039 .0040 .0042	.0048	.0062	.0090
50 60	.0037	.0043	.0055	.0075	.011
70 80	.0041 .0044	.0049 .0053	.0064	.0089 .0099	.013 .015
90 100 110	.0048 .0055 .0065	.0059 .0068 .0080	.0079 .0092 .011	.011 .013 .016	.017 .020 .025
120 130	.0079 .010	.0099	.014 .018	.021 .028	.033
140	.014				
		/T 070\	10	/T 07	ox x 1.5

λ _t	, = .0	031 $\exp\left(\frac{T+273}{398}\right)^{1.5} \exp\left(S\left(\frac{T+273}{273}\right)\right)^{1.5}$
Т	_	Ambient Temperature (°C)

DECCDIDITION

Ratio of Operating Power to Rated Power

Resistance Factor - π_R

Resistance Range (ohms)	πR
Up to 10K	1.0
> 10K to 100K	1.7
> 100K to 1M	3.0
> 1M	5.0

Quality Factor - π_O

Quality	πQ
S	.030
R	.10
Р	.30
М	1.0
MIL-R-93	5.0
Lower	15

Environment Factor - π_F

Environment doter wE		
Environment	π _E	
G _B	1.0	
G _F	2.0	
G _M	11	
N _S	5.0	
N _U	18	
AIC	15	
^А Ю ^A IF	18	
Auc	28	
A _{UF}	35	
^A UF ^A RW	27	
	.80	
M _F	14	
Տ _F M _F M _L C _L	38	
CL	610	

RESISTORS, FIXED, WIREWOUND, POWER

SPECIFICATION MIL-R-39007

MIL-R-26

STYLE RWR RW

DESCRIPTION

Fixed, Wirewound, Power Type, Established Reliability Fixed, Wirewound, Power Type

 $\lambda_{\rm p} = \lambda_{\rm b} \pi_{\rm R} \pi_{\rm Q} \pi_{\rm E}$ Failures/10⁶ Hours

Base Failure Rate - λ _b					
TA (°C)	.1	.3	Stress .5	.7	.9
0 10 20 30 40	.0042 .0045 .0048 .0052 .0056	.0062 .0068 .0074 .0081	.0093 .010 .011 .013	.014 .016 .017 .020	.021 .024 .027 .031 .035
50 60 70 80 90 100	.0061 .0066 .0072 .0078 .0085	.0097 .011 .012 .013 .014 .016	.016 .017 .020 .022 .025 .028	.025 .028 .032 .037 .042 .048	.040
110 120 130 140 150	.010 .011 .012 .014 .015	.018 .020 .022 .025 .028	.031 .036 .040 .045 .052	.055 .063	
160 170 180 190 200	.017 .019 .021 .023 .026	.032 .036 .040 .046 .052	.060 .068 .078	-	
210 220 230 240 250	.029 .033 .037 .042 .047	.059 .068 .077 .088 .10	•		
260 270 280 290 300 310	.054 .061 .06 .079 .091				

λ _b = .00148 exp	$\left(\frac{T+273}{298}\right)^2 \exp\left(\left(\frac{S}{.5}\right)\right)$	$\left(\frac{T+273}{273}\right)$
T - Ambion	t Tomporaturo (°C)	

Ambient Temperature (°C)

S Ratio of Operating Power to Rated Power

NOTE: Do not use MIL-R-39007 Resistors below the line. Points below are overstressed.

Resistance Factor - π_R

(MIL-R-39007) Resistance Range (ohms)									
			Re	sistano	e Ran	ge (oh	ms)		
MIL-R- 39009 Style	Up to 500	>500 to 1K	>1K to 5K	>5K to 7.5K	>7.5 K to 10K	>10K to 15K	>15K to 20K	>20K	
RW R 71	1.0	1.0	1.2	1.2	1.6	1.6	1.6	NA	
PW R 74	1.0	1.0	1.0	1.2	1.6	1.6	NA	NA	
RWR 78	1.0	1.0	1.0	1.0	1.2	1.2	1.2	1.6	
RWR 80	1.0	1.2	1.6	1.6	NA	NA	NA	NA	
RWR 81	1.0	1.6	NA	NA	NA	NA	NA	NA	
RWR 82	1.0	1.6	1.6	NA	NA	NA	NA	NA.	
RWR 84	1.0	1.0	1.1	1.2	1.2	1.6	NA	NA	
RWR 89	1.0	1.0	1.4	NA	NA	NA	NA	NA	

Quality Factor - π_{O}

	Q
Quality	π _Q
S	.03
R	.10
Р	.30
М	1.0
MIL-R-26	5.0
Lower	15

9.6 RESISTORS, FIXED, WIREWOUND, POWER

Resistance Factor - π_R

(MIL-R-26) Resistance Range (ohms) Up 10 100 MIL-R-26 >1K >100K >150K Style to 10K to 100K to 200K to 150K RW 10 1.6 1.0 1.0 1.0 1.0 **RW 11** 1.0 1.0 1.0 1.2 1.6 NA RW12 1.0 1.0 1.2 1.6 NA NA RW 13 1.0 1.0 2.0 NA NA 1.0 **RW 14** NA NA 2.0 1.0 1.0 1.0 NA NA **RW 15** NA 1.0 1.0 1.2 2.0 **RW** 16 NA NA 1.0 1.2 1.4 NA **RW 20** 1.0 1.0 1.6 NA NA 1.2 NA NA 2.0 NA **RW 21** 1.0 1.0 RW 22 1.6 NA 1.0 1.0 NA NA NA 1.4 1.2 NA **RW** 23 1.0 1.0 1.0 RW 24 1.0 1.0 1.0 NA **RW 29** 1.0 1.0 1.4 NA NA **RW 30** 1.0 1.2 1.6 NA NA NA NA NA NA NA NA NA RW 31 1.4 1.0 1.0 RW 32 1.0 1.0 1.2 NA RW 33 1.0 1.0 1.0 1.4 NA **RW 34** 1.0 1.0 1.0 1.4 NA NA **FW 35** 1.0 1.0 1.0 1.4 NA NA 1.2 1.5 RW 36 NA NA 1.0 1.0 NA NA RW 37 1.0 1.0 **RW 38** 1.0 1.0 1.0 1.4 1.6 NA **RW 39** 1.0 1.0 1.0 1.4 1.6 2.0 1.4 1.6 NA **RW 47** 1.0 1.0 1.0 2.0 RW 55 1.0 1.0 1.4 NA NA NA NA RW 56 1.2 2.6 NA 1.0 1.0 NA NA NA NA **RW** 67 1.0 1.0 1.0 **PW 68** 1.0 1.0 1.0 NA NA RW 69 1.0 1.0 NA NA 1.4 NA NA **RW** 70 1.0 1.2 NA NA **RW 74** 1.0 1.0 1.6 NA **RW 78** 1.0 1.0 1.0 1.6 NA NA NA NA NA 1.0 1.4 NA RW 79 1.0 NA RW 80 NA NA NA 1.2 1.0 NA 1.0 1.2 **RW** 81 NA

Environment Factor - π_E

Environment actor AE					
Environment	πE				
G _B	1.0				
G _F	2.0				
G _F G _M	10				
N _S	5.0				
N _U	16				
	4.0				
^A IC ^A IF	8.0				
A _{UC}	9.0				
A _{UF}	18				
A _{RW}	23				
S _F	.30				
M _F	13				
M_L	34				
CL	610				

9.7 RESISTORS, FIXED, WIREWOUND, POWER, CHASSIS MOUNTED

SPECIFICATION MIL-R-39009

STYLE RER DESCRIPTION

Fixed, Wirewound, Power Type, Chassis Mounted,

Established Reliability
MIL-R-18546 RE Fixed, Wirewound, Po

Fixed, Wirewound, Power Type, Chassis Mounted

 $\lambda_p = \lambda_b \pi_R \pi_Q \pi_E$ Failures/10⁶ Hours

Base Failure Rate - λ₊

Base Failure Rate - λ _b								
			ess	_	•			
T _A (℃)	.1	.3	.5	.7	.9			
0	.0021	.0032	.0049	.0076	.012			
10	.0023	.0036	.0056	.0087	.014			
20	.0025	.0040	.0064	.0100	.016			
30	.0028	.0045	.0072	.012	.019			
40	.0031	.0050	.0082	.013	.022			
50	.0034	.0056	.0093	.016	.026			
60	.0037	.0063	.011	.018				
70	.0041	.0070	.012	.021				
80	.0045	.0079	.014	.024				
90	.0050	.0088	.016	.028				
100	.0055	.0098	.018	.032				
110	.0060	.011	.020					
120	.0066	.012	.023					
130	.0073	.014	.026					
140	.0081	.015	.030					
150	.0089	.017	.034					
160	.0098	.019						
170	.011	.022 .02 4						
180 190	.012 .013	.024						
200	.013	.030						
210	.014	.030						
220	.017							
230	.019							
240	.021							
250	.023							
-00								
			-		-			

$$\lambda_b = .00015 \exp\left(2.64 \left(\frac{T + 273}{298}\right)\right) \exp\left(\frac{S}{.466} \left(\frac{T + 273}{273}\right)\right)$$

T = Ambient Temperature (°C)

S = Ratio of Operating Power to Rated Power

Resistance Factor - πR

(Characteristic G (Inductive Winding) of MIL-R-18546 and Inductively Wound Styles of MIL-R-39009)

		Resistance Range (ohms)						
Style	Rated Power (W)	Up to 500	>500 to 1K	>1K to 5K	>5K to 10K	>10K to 20K	20K	
RE 60 RER60	5	1.0	1.2	1.2	1.6	NA	NA	
RE 65 RER65	10	1.0	1.0	1.2	1.6	NA	NA	
RE 70 RER70	20	1.0	1.0	1.2	1.2	1.6	NA	
RE 75 RER75	30	1.0	1.0	1.0	1.1	1.2	1.6	
RE 77	75	1.0	1.0	1.0	1.0	1.2	1.6	
RE 80	120	1.0	1.0	1.0	1.0	1.2	1.6	

Resistance Factor - π_R

(Characteristic N (Noninductive Winding) of MIL-R-18546 and Noninductively Wound Styles of MIL-R-39009)

			Resistance Range (ohms)						
Style	Rated Power (W)	Up to 500	>500 to 1K	>1K to 5K	25K 10K	>10K to 20K	20K		
RE 60 RER40	5	1.0	1.2	1.6	NA	NA	NA		
RE 65 RER45	10	1.0	1.2	1.6	NA	NA	NA		
RE 70 RER50	20	1.0	1.0	1.2	1.6	NA	NA		
RE 75 RER55	30	1.0	1.0	1.1	1,2	1,4	NA		
RE 77	75	1.0	1.0	1.0	1.2	1.6	NA		
RE 80	120	1.0	1.0	1.0	1.1	1.4	NA		

9.7 RESISTORS, FIXED, WIREWOUND, POWER, CHASSIS MOUNTED

Quality Factor - π_Q

	<u> </u>
Quality	πQ
S	.030
R	.10
Р	.30
м	1.0
MIL-R-18546	5.0
Lower	15

Environment Factor - π_E

Environment	π _E
G _B	1.0
G _F	2.0
G _B G _F G _M	10
N _S	5.0
N _U	16
AIC AIF AUC AUF	4.0
A _{IF}	8.0
Auc	9.0
A _{UF}	18
A _{RW}	23
S _F	.50
M _F	13
M_L	34
м _L С _L	610

9.8 RESISTORS, THERMISTOR

SPECIFICATION MIL-T-23648

STYLE RTH

DESCRIPTION

Thermally Sensitive Resistor, Insulated, Bead, Disk and Rod Types

 $\lambda_p = \lambda_b^{\pi} \alpha_E^{\pi}$ Failures/10⁶ Hours

Base Failure Rate - λb

Туре	λ _b
Bead (Styles 24, 26, 28, 30, 32, 34, 36, 38, 40)	.021
Disk (Styles 6, 8, 10)	.065
Rod (Styles 12, 14, 16, 18, 20, 22, 42)	.105

Quality Factor - π_Q

Quality	π_{Q}
MIL-SPEC	1
Lower	15

Environment Factor - π_E

Environment	π _E
G _B	1.0
G _F	5.0
G _F G _M	21
N _S	11
N _U	24
A _{IC} A _{IF} A _{UC} A _{UF}	11
A _{IF}	30
Auc	16
A _{UF}	42
A _{RW}	37
S _F	.50
M_{F}	20
	53
M _L Ել	950

RESISTORS, VARIABLE, WIREWOUND

SPECIFICATION

MIL-R-27208

STYLE RTR

DESCRIPTION

MIL-R-39015

RT

Variable, Wirewound, Lead Screw Actuated, Established Reliability Variable, Wirewound, Lead Screw Actuated

 $\lambda_p = \lambda_b^{\pi} \pi_{APS}^{\pi} \pi_{R}^{\pi} \nabla^{\pi}_{Q}^{\pi} E$ Failures/10⁶ Hours

Base Failure Rate - 34

	U							
			Stress					
T _A (℃)	.1	.3	.5	.7	.9			
				24.0				
0	.0089	.011	.013	.016	.020			
10	.0094	.012	.014	.017	.021			
20	.010	.012	.015	.019	.024			
30	.011	.013	.017	.021	.026			
40	.012	.015	.018	.023	.029			
50	.013	.016	.020	.026	.033			
60	.014	.018	.023	.029	.037			
70	.016	.020	.026	.033	.043			
80	.018	.023	.03	.039	.050			
90	.021	.027	.035	.046	.060			
100	.024	.032	.042	.055				
110	.029	.038	.051					
120	.035	.047						
130	.044	.059						
140	.056							

$$\lambda_{\rm b} = .0062 \exp\left(\frac{T + 273}{358}\right)^5 \exp\left(S\left(\frac{T + 273}{273}\right)\right)$$

Ambient Temperature (°C)

Ratio of Operating Power to Rated Power. See Section 9.16 for Calculation of S.

Resistance Factor - π_{R}

Resistance Range (ohms)	π _R
10 to 2K	1.0
>2K to 5K	1.4
>5K to 20K	2.0

Potentiometer Taps Factor - π_{TAPS}

				- 17 (1 0	
N TAPS	TAPS	N TAPS	TAPS	N TAPS	TAPS
3 4 5 6 7 8 9 10 11 12	1.0 1.1 1.2 1.4 1.5 1.7 1.9 2.1 2.3 2.5	13 14 15 16 17 18 19 20 21	2.7 2.9 3.1 3.4 3.6 3.8 4.1 4.4 4.9	23 24 25 26 27 28 29 30 31 32	5.2 5.5 5.8 6.1 6.4 6.7 7.0 7.4 7.7 8.0

$$\pi_{\text{TAPS}} = \frac{\left(N_{\text{TAPS}}\right)^{\frac{3}{2}}}{25} + 0.792$$

$$N_{\text{TAPS}} = N_{\text{Umber of Potentiometer Ta}}$$

NTAPS Number of Potentiometer Taps, including the Wiper and Terminations.

Voltage Factor - π_{V}

Applied Voltage* Rated Voltage	π _V
0 to 0.1 >0.1 to 0.2 >0.2 to 0.6 >0.6 to 0.7 >0.7 to 0.8 >0.8 to 0.9 >0.9 to 1.0	1.10 1.05 1.00 1.10 1.22 1.40 2.00

√RP_{Applied} *V Applied

Nominal Total Potentiometer Resistance

PApplied **Power Dissipation**

V_{Rated} 40 Volts for RT 26 and 27

V Rated 90 Volts for RTR 12, 22 and 24; RT 12 and 22

9.9 RESISTORS, VARIABLE, WIREWOUND

Quality Factor - π_{O}

Quality	π _Q
s	.020
R	.060
Р	.20
м	.60
MIL-R-27208	3.0
Lower	10

Environment Factor - π_E

Environment	π _E
GB	1.0
G _F	2.0
G _B G _F G _M N _S N _U	12
N _S	6.0
N _U	20
A _{IC} A _{IF} A _{UC} A _{UF}	5.0
A _{IF}	8.0
A _{UC}	9.0
A _{UF}	15
A _{RW}	33
S _F	.50
M _F	18
ML	48
Mլ Cլ	870

9.10 RESISTORS, VARIABLE, WIREWOUND, PRECISION

SPECIFICATION MIL-R-12934

STYLE RR **DESCRIPTION**Variable, Wirewound, Precision

 $\lambda_p = \lambda_b^{\pi} T_{APS}^{\pi} C^{\pi} R^{\pi} V^{\pi} Q^{\pi} E$ Failures/10⁶ Hours

Base Failure Rate - λ_h

T _A (°C) .1 .3 .5 .7 .9 0 .10 .11 .12 .13 .14 10 .11 .12 .13 .14 .15 20 .12 .13 .14 .16 .17 30 .13 .14 .16 .17 .19 40 .14 .15 .17 .20 .22 50 .15 .17 .20 .22 .26 60 .17 .19 .22 .26 .30 70 .19 .22 .26 .30 .36 80 .21 .25 .30 .36 .43 90 .24 .30 .36 .44 .54 100 .28 .35 .44 .54 110 .33 .42 .54 120 .40 .52 130 .49 .65 140 .60						
0 .10 .11 .12 .13 .14 .15 .10 .11 .12 .13 .14 .15 .20 .12 .13 .14 .16 .17 .30 .13 .14 .16 .17 .19 .40 .14 .15 .17 .20 .22 .26 .50 .15 .17 .20 .22 .26 .30 .70 .19 .22 .26 .30 .36 .31 .30 .21 .25 .30 .36 .43 .90 .24 .30 .36 .44 .54 .54 .100 .28 .35 .44 .54 .54 .120 .40 .52 .130 .49 .65	1	ł				
10 .11 .12 .13 .14 .15 20 .12 .13 .14 .16 .17 30 .13 .14 .16 .17 .19 40 .14 .15 .17 .20 .22 50 .15 .17 .20 .22 .26 60 .17 .19 .22 .26 .30 70 .19 .22 .26 .30 .36 .43 90 .24 .30 .36 .44 .54 100 .28 .35 .44 .54 110 .33 .42 .54 120 .40 .52 130 .49 .65	T _A (℃)	.1	.3	.5	.7	.9
60	10 20 30 40	.11 .12 .13 .14	.12 .13 .14 .15	.13 .14 .16 .17	.14 .16 .17 .20	.15 .17 .19 .22
	60 70 80 90 100 110 120 130	.17 .19 .21 .24 .28 .33 .40 .49	.19 .22 .25 .30 .35 .42	.22 .26 .30 .36 .44	.26 .30 .36 .44	.30 .36 .43

$$\lambda_{b} = .0735 \exp\left(1.03 \left(\frac{T + 273}{358}\right)^{4.45}\right) x$$

$$\exp\left(\left(\frac{S}{2.74}\right) \left(\frac{T + 273}{273}\right)^{3.51}\right)$$

- T = Ambient Temperature (°C)
- S = Ratio of Operating Power to Rated Power. See Section 9.16 for Calcuating S.

Construction Class Factor - π_{C}

Construction Class	π _C
RR0900A2A9J103*	2.0
3	1.0
4	3.0
5	1.5

 Sample type designation to show how construction class can be found. In this example the construction class is 2. Construction class should always appear in the eighth position.

Resistance Factor - π_R

Resistance Range (ohms)	π _R
100 to 10K	1.0
>10K to 20K	1.1
>20K to 50K	1.4
>50K to 100K	2.0
>100 K to 200K	2.5
>200K to 500K	3.5

Potentiometer Taps Factor - TAPS

3 1.0 13 2.7 23 5.2 4 1.1 14 2.9 24 5.5 5 1.2 15 3.1 25 5.8 6 1.4 16 3.4 26 6.1					IAPS	
4 1.1 14 2.9 24 5.5 5 1.2 15 3.1 25 5.8 6 1.4 16 3.4 26 6.1	NTAPS	TAPS	N	TAPS	N TAPS	TAPS
7 1.5 17 3.6 27 6.4 8 1.7 18 3.8 28 6.7 9 1.9 19 4.1 29 7.0 10 2.1 20 4.4 30 7.4 11 2.3 21 4.6 31 7.7 12 2.5 22 4.9 32 8.0	4 5 6 7 8 9 10	1.1 1.2 1.4 1.5 1.7 1.9 2.1 2.3	14 15 16 17 18 19 20 21	2.7 2.9 3.1 3.4 3.6 3.8 4.1 4.4	23 24 25 26 27 28 29 30 31	5.2 5.5 5.8 6.1 6.4 6.7 7.0 7.4 7.7

$$\pi_{\text{TAPS}} = \frac{\left(N_{\text{TAPS}}\right)^{\frac{3}{2}}}{25} + 0.792$$

N_{TAPS} Number of Potentiometer Taps, including the Wiper and Terminations.

9.10 RESISTORS, VARIABLE, WIREWOUND, PRECISION

Voltage Factor - π_{V}

Applied Voltage* Rated Voltage	π _V
0 to 0.1	1.10
>0.1 to 0.2	1.05
>0.2 to 0.6	1.00
>0.6 to 0.7	1.10
>0.7 to 0.8	1.22
>0.8 to 0.9	1.40
>0.9 to 1.0	2.00

I .		
*V Applied	-	$\sqrt{R_{P}P_{Applied}}$
Rp	-	Nominal Total Potentiometer Resistance
PApplied	-	Power Dissipation
V _{Rated}	-	250 Volts for RR0900, RR1100,
Halou		RR1300, RR2000, RR3000, RR3100, RR3200, RR3300, RR3400, RR3500
V Rated	=	423 Volts for RR3600, RR3700
V	-	500 Volts for RR1000, RR1400,
nateo		RR2100, RR3800, RR3900

Quality Factor - π_Q

Quality	π _Q
MIL-SPEC	2.5
Lower	5.0

Environment Factor - $\pi_{\rm F}$

	E
Environment	πE
G _B	1.0
G _F	2.0
G _M	18
N _S	8.0
N _U	30
	8.0
^A IC ^A IF ^A UC	12
A _{UC}	13
A _{UF}	18
A _{RW}	53
S _F	.50
M _F	29
ML	76
M _L Ել	1400

9.11 RESISTORS, VARIABLE, WIREWOUND, SEMIPRECISION

SPECIFICATION MIL-R-19

STYLE RA DESCRIPTION

Variable, Wirewound, Semiprecision (Low Operating

Temperature)
MIL-R-39002 RK Variable, Wire

Variable, Wirewound, Semiprecision

 $\lambda_p = \lambda_b \pi_{TAPS} \pi_R \pi_V \pi_Q \pi_E$ Failures/10⁶ Hours

Base Failure Rate - λ_h

Dase railule hate - Ab					
			Stress		
T _A (℃)	.1	.3	.5	.7	.9
0	.055	.063	.072	.083	.095
10	.058	.069	.081	.095	.11
20	.063	.076	.092	.11	.13
30	.069	.086	.11	.13	.17
40	.076	.098	.13	.16	.21
50	.085	.11	.15	.20	.27
60	.096	.13	.19	.26	.37
70	.11	.16	.24	.35	.52
80	.13	.20	.31	.48	.75
90	.16	.26	-¹ .42	.69	1.1
100	.19	.34	.59	1.0	
110	.24	.45	.85		
120	.31				
130	.42				

$$\lambda_b = .0398 \exp\left(.514 \left(\frac{T+273}{313}\right)^{5.28}\right) x$$

$$\exp\left(\frac{S}{1.44} \left(\frac{T+273}{273}\right)^{4.46}\right)$$

T = Ambient Temperature (°C)

S = Ratio of Operating Power to Rated Power. See Section 9.16 for S Calculation.

NOTE: Do not use MIL-R-19 below the line. Points below are overstressed.

Resistance Factor - π_R

Resistance Range (ohms)	π _R
10 to 2K	1.0
>2K to 5K	1.4
>5K to 10K	2.0

Potentiometer Taps Factor - π_{TAPS}

NTAPS	TAPS	N TAPS	TAPS	N TAPS	* TAPS
3	1.0	13	2.7	23	5.2
4	1.1	14	2.9	24	5.5
5	1.2	15	3.1	25	5.8
6	1.4	16	3.4	26	6.1
7	1.5	17	3.6	27	6.4
8	1.7	18	3.8	28	6.7
9	1.9	19	4.1	29	7.0
10	2.1	20	4.4	30	7.4
11	2.3	21	4.6	31	7.7
12	2.5	22	4.9	32	8.0

$$\pi_{\text{TAPS}} = \frac{\left(N_{\text{TAPS}}\right)^{\frac{3}{2}}}{25} + 0.792$$

N_{TAPS} = Number of Potentiometer Taps, including the Wiper and Terminations.

9.11 RESISTORS, VARIABLE, WIREWOUND, SEMIPRECISION

Voltage Factor - π_{\bigvee}

Applied Voltage* Rated Voltage	π _V
0 to 0.1	1.10
>0.1 to 0.2	1.05
>0.2 to 0.6	1.00
>0.6 to 0.7	1.10
>0.7 to 0.8	1.22
>0.8 to 0.9	1.40
>0.9 to 1.0	2.00

*V Applied	=	√R _P P _{Applied}
RP	-	Nominal Total Potentiometer Resistance
P _{Applied}	-	Power Dissipation
V Rated	=	50 Volts for RA10
	-	75 Volts for RA20X-XC, F
	=	130 Volts for RA30X-XC, F
	-	175 Volts for RA20X-XA
	-	275 Volts for RK09
	=	320 Volts for RA30X-XA

Quality Factor - π_{Q}

	Q
Quality	πQ
MIL-SPEC	2.0
Lower	4.0

Environment Factor - π_F

	<u> </u>
Environment	πE
G _B	1.0
G _F	2.0
G _M	16
N _S	7.0
N _U	28
AIC	8.0
A _{IF}	12
AUC	N/A
A _{UF}	N/A
A _{RW}	38
S _F	.50
M _F	N/A
ML	N/A
Mլ Cլ	N/A

9.12 RESISTORS, VARIABLE, WIREWOUND, POWER

SPECIFICATION MIL-R-22

STYLE RP **DESCRIPTION**Variable, Wirewound, Power Type

$$\lambda_p = \lambda_b \pi_{\mathsf{TAPS}} \pi_{\mathsf{R}} \pi_{\mathsf{V}} \pi_{\mathsf{C}} \pi_{\mathsf{Q}} \pi_{\mathsf{E}} \text{ Failures/10}^6 \text{ Hours}$$

Base Failure Rate - λ_b

				סי	
T _A (℃)	.1	.3	Stress .5	.7	.9
0	.064	.074	.084	.097	.11
10	.067	.078	.091	.11	.12
20	.071	.084	.099	.12	.14
30	.076	.091	.11	.13	.16
40	.081	.099	.12	.15	
50	.087	.11	.14	.17	
60	.095	.12	.15		
70	.10	.14	.18		
80	.12	.15			
90	.13	.18			
100	.15				
110	.17				
120	.20				

$$\lambda_b = .0481 \exp\left(.334 \left(\frac{T + 273}{298}\right)^{4.66}\right) x$$

$$\exp\left(\frac{S}{1.47} \left(\frac{T + 273}{273}\right)^{2.83}\right)$$

T = Ambient Temperature (°C)

S = Ratio of Operating Power to Rated Power. See Section 9.16 for S Calculation.

Resistance Factor - π_R

Resistance Range (ohms)	π _R
1 to 2K	1.0
>2K to 5K	1.4
>5K to 10K	2.0

Potentiometer Taps Factor - π_{TAPS}

TAIO					
N	TAPS	N	TAPS	N TAPS	TAPS
3	1.0	13	2.7	23	5.2
4	1.1	14	2.9	24	5.5
5	1.2	15	3.1	25	5.8
6	1.4	16	3.4	26	6.1
7	1.5	17	3.6	27	6.4
8	1.7	18	3.8	28	6.7
9	1.9	19	4.1	29	7.0
10	2.1	20	4.4	30	7.4
11	2.3	21	4.6	31	7.7
12	2.5	22	4.9	32	8.0

$$\pi_{\text{TAPS}} = \frac{\left(N_{\text{TAPS}}\right)^{\frac{3}{2}}}{25} + 0.792$$

N_{TAPS} = Number of Potentiometer Taps, including the Wiper and Terminations

9.12 RESISTORS, VARIABLE, WIREWOUND, POWER

Voltage Factor - π_{V}

	· · · · · · · · · · · · · · · · · · ·
Applied Voltage* Rated Voltage	π
0 to 0.1	1.10
>0.1 to 0.2	1.05
>0.2 to 0.6	1.00
>0.6 to 0.7	1.10
>0.7 to 0.8	1.22
>0.8 to 0.9	1.40
>0.9 to 1.0	2.00
*V _{Applied} = $\sqrt{R_P P_{Ap}}$	plied
R _P = Nominal 1 Resistand	Fotal Potentiometer ce
P _{Applied} = Power Dis	ssipation
V _{Rated} = 250 Volts	for RP06, RP10

Construction Class Factor - π_{C}

= 500 Volts for Others

Construction Class	Style	^π C
Enclosed Unenclosed	RP07, RP11, RP16 All Other Styles are Unenclosed	2.0 1.0

Quality Factor - π_Q

Quality	πQ
MIL-SPEC	2.0
Lower	4.0

Environment Factor - π_{F}

E E				
Environment	π _E			
G _B	1.0			
G _F	3.0			
G _M	16			
N _S	7.0			
N _U	28			
A _{IC}	8.0			
A _{IF}	12			
AUC	N/A			
A _{UF}	N/A			
A _{RW}	38			
S _F	.50			
M _F	N/A			
ML	N/A			
м _L с _L	N/A			

RESISTORS, VARIABLE, NONWIREWOUND

SPECIFICATION MIL-R-22097 MIL-R-39035

STYLE RJ **RJR**

DESCRIPTION

Variable, Nonwirewound (Adjustment Types) Variable, Nonwirewound (Adjustment Types), **Established Reliability**

 $\lambda_p = \lambda_b^{\pi}_{TAPS}^{\pi}_{R}^{\pi}_{V}^{\pi}_{Q}^{\pi}_{E}$ Failures/10⁶ Hours

Base	Failure	Rate	-	ት
------	---------	------	---	---

	Stress				
T _A (℃)	.1	.3	.5	.7	.9
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140	.021 .021 .022 .023 .024 .025 .026 .028 .030 .034 .038 .043 .050 .060	.023 .023 .024 .025 .026 .028 .030 .032 .035 .039 .044 .051	.024 .025 .026 .028 .029 .031 .033 .036 .040 .045	.026 .027 .029 .030 .032 .035 .038 .042 .046 .053	.028 .030 .031 .033 .036 .039 .043 .047 .053

$$\lambda_{b} = .019 \exp\left(.445 \left(\frac{T+273}{358}\right)^{7.3}\right) x$$

$$\exp\left(\frac{S}{2.69} \left(\frac{T+273}{273}\right)^{2.46}\right)$$

Ambient Temperature (°C)

Ratio of Operating Power to Rated Power. See Section 9.16 for S Calculation.

Resistance Factor - π_{D}

Resistance Range (ohms)	π _R
10 to 50K	1.0
>50K to 100K	1.1
>100K to 200K	1.2
>200K to 500K	1.4
>500K to 1M	1.8

Potentiometer Taps Factor - π_{TAPS}

	1711 0					
	N	*TAPS	N TAPS	TAPS	N TAPS	TAPS
	3	1.0	13	2.7	23	5.2
	4	1.1	14	2.9	24	5.5
	5	1.2	15	3.1	25	5.8
	6	1.4	16	3.4	26	6.1
	7	1.5	17	3.6	27	6.4
	8	1.7	18	3.8	28	6.7
	9	1.9	19	4.1	29	7.0
	10	2.1	20	4.4	30	7.4
	11	2.3	21	4.6	31	7.7
	12	2.5	22	4.9	32	8.0
1						

$$\pi_{\text{TAPS}} = \frac{\left(N_{\text{TAPS}}\right)^{\frac{3}{2}}}{25} + 0.792$$

Number of Potentiometer Taps, including the Wiper and Terminations.

9.13 RESISTORS, VARIABLE, NONWIREWOUND

Voltage Factor - π_{V}

Applied Voltage* Rated Voltage			π _V	
0 to 0.8			1.00	
>0.8 to	>0.8 to 0.9			
>0.9 to	>0.9 to 1.0			
PApplied Papplied VRated		√RPPApplied Nominal Total Potent Resistance Power Dissipation 200 Volts for RJ and RJ and RJR50		
	•	300 Volts for All Others		

Environment Factor - π_{E}

Environment	π _E	
GB	1.0	
G _F	3.0	
G _B G _F G _M	14	
N _S	6.0	
NU	24	
A _{IC}	5.0	
A _{IF}	7.0	
A _{UC}	12	
A _{UF}	18	
A _{RW}	39	
S _F	.50	
M _F	22	
MŁ	57	
м _L С _L	1000	

Quality Factor - π_Q

Quality	π _Q
S	.020
R	.060
Р	.20
м	.60
MIL-R-22097	3.0
Lower	10

9.14 RESISTORS, VARIABLE, COMPOSITION

SPECIFICATION MIL-R-94

STYLE RV DESCRIPTION

Variable, Composition, Low Precision

$$\lambda_p = \lambda_b^{\pi}_{TAPS}^{\pi}_{R}^{\pi}_{V}^{\pi}_{Q}^{\pi}_{E}$$
 Failures/10⁶ Hours

Base Failure Rate - λ_h

Dase railure nate - M						
T _A (℃)	.1	.3	Stress .5	.7	.9	
0	.027	.030	.032	.035	.038	
10	.028	.031	.034	.038	.042	
20	.029	.033	.037	.042	.048	
30	.031	.036	.041	.048	.056	
40	.033	.039	.047	.056	.067	
50	.036	.044	.054	.067	.082	
60	.039	.050	.065	.083	.11	
70	.045	.060	.08	.11	.14	
80	.053	.074	.10	.15		
90	.065	.096	.14			
100	.084	.13				
110	.11					

$$\lambda_{b} = .0246 \exp\left(.459 \left(\frac{T+273}{343}\right)^{9.3}\right) x$$

$$\exp\left(\frac{S}{2.32} \left(\frac{T+273}{273}\right)^{5.3}\right)$$

T = Ambient Temperature (°C)

S = Ratio of Operating Power to Rated Power. See Section 9.16 for S Calculation.

Resistance Factor - π_R

Resistance Range (ohms)	π _R
50 to 50K	1.0
>50K to 100K	1.1
>100K to 200K	1.2
>200K to 500K	1.4
>500K to 1M	1.8

Potentiometer Taps Factor - π_{TAPS}

N	*TAPS	N TAPS	TAPS	NTAPS	π _{TAPS}
3	1.0	13	2.7	23	5.2
4	1.1	14	2.9	24	5. 5
5	1.2	15	3.1	25	5.8
6	1.4	16	3.4	26	6.1
7	1.5	17	3.6	27	6.4
8	1.7	18	3.8	28	6.7
9	1.9	19	4.1	29	7.0
10	2.1	20	4.4	30	7.4
11	2.3	21	4.6	31	7.7
12	2.5	22	4.9	32	8.0

$$\pi_{\text{TAPS}} = \frac{\left(N_{\text{TAPS}}\right)^{\frac{3}{2}}}{25} + 0.792$$

N_{TAPS} = Number of Potentiometer Taps, including the Wiper and Terminations.

9.14 RESISTORS, VARIABLE, COMPOSITION

Voltage Factor - π_V

<u> </u>						
Applie Rate	π _V					
0 to 0.8			1.00			
>0.8 to	o 0.9)	1.05			
>0.9 to	o 1.0)	1.20			
V Applied	-	$\sqrt{R_P^P}Applied$				
Rp						
PApplied	PApplied - Power Dissipation					
V _{Rated}	V = 500 Volts for RV4X					
	=	500 Volts for 2RV7X	XA&XB			
	-	350 Volts for RV2X	XA&XB			
	=	350 Volts for RV4X	XA&XB			
	= 350 Valts for RV5X					
	= 350 Volts for RV6X					
	 250 Volts for RV1X 					
	=	200 Volts for All Othe	er Types			

Environment Factor - π_E

Environment	π _E
GB	1.0
G _F	2.0
G _M	19
N _S	8.0
N _U	29
	40
A _{IC} A _{IF} A _{UC}	65
Auc	48
A _{UF}	78
A _{RW}	46
S _F	.50
M _F	25
M _L	66
c _L	1200

Quality Factor - π

Quality	π _Q				
MIL-SPEC	2.5				
Lower	5.0				

9-24

9.15 RESISTORS, VARIABLE, NONWIREWOUND, FILM AND PRECISION

SPECIFICATION

MIL-R-39023 MIL-R-23285 STYLE RQ RVC DESCRIPTION

Variable, Nonwirewound, Film, Precision

Variable, Nonwirewound, Film

 $\lambda_p = \lambda_b^{\pi} \pi_{APS}^{\pi} \pi_{R}^{\pi} \nabla^{\pi}_{Q}^{\pi} \pi_{E}$ Failures/10⁶ Hours

Base Failure Rate - λ_b

(RQ Style Only)

(Mar Otyle Offig)									
		Stress							
T _A (℃)	.1	.3	.5	.7	.9				
0 10 20 30 40 50 60 70 80 90 100	.023 .024 .026 .028 .032 .037 .044 .053 .068 .092 .13	.024 .026 .029 .032 .036 .042 .051 .064 .083 .11	.026 .029 .032 .036 .041 .049 .060 .076 .10	.028 .031 .035 .040 .047 .057 .070 .091	.031 .034 .039 .045 .053 .065 .083				

$$\lambda_{b} = .018 \exp\left(\frac{T+273}{343}\right)^{7.4} \times \exp\left(\left(\frac{S}{2.55}\right) \left(\frac{T+273}{273}\right)^{3.6}\right)$$

- T = Ambient Temperature (°C)
- S = Ratio of Operating Power to Rated Power. See Section 9.16 for S Calculation.

Resistance Factor - $\pi_{\mathbf{p}}$

	n		
Resistance Range (Ohms)	π _R		
Up to 10K	1.0		
>10K to 50K	1.1		
>50K to 200K	1.2		
>200K to 1M	1.4		
>1M	1.8		
1	. 1		

Base Failure Rate - λ_b

(RVC Style Only)

	Stress							
T _A (℃)	.1	.3	.5	.7	.9			
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170	.028 .029 .030 .031 .032 .034 .036 .049 .048 .055 .064 .077 .096 .12 .17	.031 .032 .033 .035 .037 .040 .044 .055 .063 .075 .091 .11 .15 .20	.033 .035 .037 .040 .043 .047 .053 .060 .070 .083 .10 .13 .17 .23 .33	.036 .038 .041 .045 .050 .056 .064 .075 .09 .11 .14 .18 .25 .36	.039 .042 .046 .051 .058 .066 .078 .093 .11 .15 .19 .26			

$$\lambda_{b} = .0257 \exp\left(\frac{T+273}{398}\right)^{7.9} \times \exp\left(\left(\frac{S}{2.45}\right) \left(\frac{T+273}{273}\right)^{4.3}\right)$$

- T = Ambient Temperature (°C)
- S = Ratio of Operating Power to Rated Power. See Section 9.16 for S Calculation.

9.15 RESISTORS, VARIABLE, NONWIREWOUND, FILM AND PRECISION

Potentiometer Taps Factor - π_{TAPS}

	N TAPS	*TAPS	NTAPS	TAPS	N TAPS	TAPS
ſ	3	1.0	13	2.7	23	5.2
	4	1.1	14	2.9	24	5.5
	5	1.2	15	3.1	25	5.8
1	6	1.4	16	3.4	26	6.1
l	7	1.5	17	3.6	27	6.4
	8	1.7	18	3.8	28	6.7
	9	1.9	19	4.1	29	7.0
	10	2.1	20	4.4	30	7.4
	11	2.3	21	4.6	31	7.7
	12	2.5	22	4.9	32	8.0

π_{TAPS} = $\frac{\left(N_{TAPS}\right)^{\frac{3}{2}}}{25}$ + 0.792

N_{TAPS} = Number of Potentiometer Taps, including the Wiper and Terminations.

Voltage Factor - π_V

Applie Rat	πV				
0 to 0.	1.00				
>0.8 to	>0.8 to 0.9				
>0.9 to	1.20				
*V _{Applied} • $\sqrt{\text{RpP}_{Applied}}$					
R _P					
PApplied	-	Power Dissipation			
V Rated	, 110, 150, 200,				
	= 500 Volts for RQ100,				
	■ 350 Volts for RVC5. 6				

Quality Factor - π_Q

Quality	πQ
MIL-SPEC	2
Lower	4

Environment Factor - π_E

Entrionment ractor - RE					
Environment	π _E				
GB	1.0				
G _F	3.0				
G _F G _M	14				
N _S	7.0				
N _U	24				
	6.0				
A _{IC} A _{IF}	12				
A _{UC}	20				
A _{UF}	30				
A _{RW}	39				
S _F	.50				
M _F	22				
M_L	57				
м _L с _L	1000				

9.16 CALCULATION OF STRESS RATIO FOR POTENTIOMETERS

Stress Ratio (S) Calculation for Rheostats

$$S = \frac{\binom{I_{op_{max}}^{2}}{\text{GANGED}(I_{max_{rated}})^{2}}$$

l_{opmax} = M

Maximum current which will be passed through the rheostat in the circuit.

I_{maxrated}

Current rating of the potentiometer. If current rating is not given, use:

I_{maxrated} = $\sqrt{P_{rated}/R_{P}}$

P rated Power Rating of Potentiometer

 R_{P}

Nominal Total Potentiometer

Resistance

*GANGED

Factor to correct for the reduction in effective rating of the potentiometer due to the close proximity of two or more potentiometers when they are ganged together on a common shaft. See below.

Stress Ratio (S) Calculation for Potentiometers Connected Conventionally

$$S = \frac{P_{APPLIED}}{\pi_{EFF} \times \pi_{GANGED} \times P_{RATED}}$$

Papplied = Equivalent power input to the potentiometer when it is not loaded (i.e., wiper lead disconnected). Calculate as follows:

 $P_{Applied} = \frac{V_{in}^2}{R_P}$

V_{in} = Input Voltage

Rp = Nominal Total Potentiometer
Resistance

P_{RATED} = Power Rating of Potentiometer

*GANGED - Factor to correct for the reduction

in effective rating of the potentiometer due to the close proximity of two or more potentiometers when they are ganged together on a common

shaft. See below.

π_{EFF} = Correction factor for the electrical

loading effect on the wiper contact of the potentiometer. Its value is a function of the type of potentiometer, its resistance, and the load resistance. See next page.

Ganged-Potentiometer Factor - π_{GANGED}

Number of Sections	First Potentiometer Next to Mount	Second in Gang	Third in Gang	Fourth in Gang	Fifth in Gang	Sixth in Gang
Single	1.0			Not Applicable		
Two	0.75	0.60		Not	Applicable	
Three	0.75	0.50	0.60	Not	Applicable	
Four	0.75	0.50	0.50	0.60	Not	Applicable
Five	0.75	0.50	0.40	0.50	0.60	Not Applicable
Six	0.75	0.50	0.40	0.40	0.50	0.60

9.16 CALCULATION OF STRESS RATIO FOR POTENTIOMETERS

Loaded Potentiometer Derating Factor - π_{FFF}

Loaded Potentiometer Derating Factor - REFF					
	K _H				
₽ _Ĺ ∕₽₽	0.2	0.3	0.5	1.0	
0.1 0.2 0.3 0.4 0.5 0.8 0.7 0.8 0.9 1.0 1.5 2.0 3.0 4.0 5.0	.04 .13 .22 .31 .38 .45 .51 .55 .59 .63 .74 .80 .87 .90 .92 .96 1.00	.03 .09 .16 .23 .29 .35 .40 .45 .49 .53 .65 .73 .81 .86 .88	.02 .05 .10 .15 .20 .25 .29 .33 .37 .40 .53 .62 .72 .78 .82 .90	.01 .03 .05 .08 .11 .14 .17 .20 .22 .25 .36 .44 .56 .64 .69 .83	
$\pi_{\text{EFF}} = \frac{R_L^2}{R_L^2 + \kappa_H \left(R_P^2 + 2R_P R_L\right)}$					
Я _Ĺ	 Load resistance (If R_L is variable, use lowest value). R_L is the total resistance between the wiper arm and one end of the potentiometer. 				

Rp = Nominal Total Potentiometer
Resistance

K_H = Style Constant. See K_H Table.

Style Constant - KH

Potentiometer MIL-SPEC	Style Type	К _Н
MIL-R-19	RA	0.5
MIL-R-22	RP	1.0
MIL-R-94	RV	0.5
MIL-R-12934	RR1000, 1001,	0.3
	1003, 1400,	
	2100, 2101,	
,	2102, 2103	
MIL-R-12934	All Other Types	0.2
MIL-R-22097	RJ11, RJ12	0.3
MIL-R-22097	All Other Types	0.2
MIL-R-23285	RVC	0.5
MIL-R-27208	RT22, 24, 26, 27	0.2
MIL-R-27208	All Other Types	0.3
MIL-R-39002	RK	0.5
MIL-R-39015	RTR 22, 24	0.2
MIL-R-39015	RTR12	0.3
MIL-R-39023	RQ	0.3
MIL-R-39035	RJR	0.3

I 10 I 0010

9.17 RESISTORS, EXAMPLE

Example

Given:

Type RV1SAYSA505A variable 500K ohm resistor procured per MIL-R-94, rated at 0.2 watts is being used in a fixed ground environment. The resistor ambient temperature is 40°C and is dissipating 0.06 watts. The resistance connected to the wiper contact varies between 1 megohm and 3 megohms. The potentiometer is connected conventionally without ganging.

The appropriate model for RV style variable resistors is given in Section 9.14. Based on the given information the following model factors are determined from the tables shown in Section 9.14 and by following the procedure for determining electrical stress for potentiometers as described in Section 9.16.

From Section 9.16

$$P_{APPLIED} = .06W$$
 $\pi_{EFF} = .62$
 $\pi_{GANGED} = 1.0$

Not Ganged (Section 9.16 Table)

First Potentiometer)

$$\pi_{RATED} = .2W$$

$$S = \frac{P_{APPLIED}}{\pi_{EFF} \times \pi_{GANGED} \times \pi_{RATED}} = \frac{.06}{(.62)(1.0)(.2)} = .48$$

From Section 9.14

$$\lambda_{b} = .047$$

$$\pi_{R} = 1.4$$

$$\pi_{TAPS} = 1.0$$

$$\pi_{TAPS} = 1.0$$

$$\pi_{V} = 1.0$$

$$T_{A} = 40^{\circ}C, S \text{ Rounded to } .5$$

$$500K \text{ ohms}$$

3 Taps, Basic Single Potentiometer

$$V_{RATED} = 250 \text{ Volts for RV1 prefix}$$

$$V_{APPLIED} = \sqrt{(500.000)(.06)} = 173 \text{ volts}$$

$$V_{APPLIED} = \sqrt{(500.000)(.06)} = 173 \text{ volts}$$

$$V_{APPLIED} = \sqrt{(500.000)(.06)} = .69$$

$$\lambda_{D} = \lambda_{D} \pi_{TAPS} \pi_{R} \pi_{V} \pi_{Q} \pi_{E}$$

$$= (.047)(1.0)(1.4)(1.0)(2.5)(2.0) = .33 \text{ Failures/10}^{6} \text{ Hours}$$

10.1 CAPACITORS, FIXED, PAPER, BY-PASS

SPECIFICATION

MIL-C-25 MIL-C-12889 STYLE CP CA **DESCRIPTION**

Paper, By-pass, Filter, Blocking, DC

Paper, By-pass, Radio Interference Reduction AC

and DO

 $\lambda_p = \lambda_b^{\pi} c v^{\pi}_Q^{\pi} E$ Failures/10⁶ Hours

Base Failure Rate - λ_b

(T = 85°C Max Rated) (All MIL-C-12889; MIL-C-25 Styles CP25, 26, 27, 28, 29, 40, 41, 67, 69, 70, 72, 75, 76, 77, 78, 80, 81, 82;

	<u>C</u>	haracteris	tics E, F)		
	1		Stress		
T _A (℃)	.1	.3	.5	.7	.9
0	.00088	.0011	.0036	.015	.051
10	.00089	.0011	.0036	.016	.052
20	.00092	.0011	.0037	.016	.054
30	.00097	.0012	.0039	.017	.057
40	.0011	.0013	.0044	.019	.063
50	.0013	.0016	.0052	.022	.075
60	.0017	.0021	.0069	.030	.10
70	.0027	.0034	.011	.048	.16
80	.0060	.0074	.024	.10	.35

$$\lambda_{b} = .00086 \left[\left(\frac{S}{.4} \right)^{5} + 1 \right] \exp \left(2.5 \left(\frac{T + 273}{358} \right)^{18} \right)$$

T = Ambient Temperature (°C)

S = Ratio of Operating to Rated Voltage

Operating voltage is the sum of applied D.C. voltage and peak A.C. voltage.

Base Failure Rate - λ_{D} (T = 125°C Max Rated) (MIL-C-25 Styles CP 4, 5, 8, 9, 10, 11, 12 13;

		Charact	eristic K)		
T _A (℃)	.1	.3	Stress .5	.7	.9
- ^ ` · ·				***************************************	
0	.00086	.0011	.0035	.015	.051
10	.00087	.0011	.0035	.015	.051
20	.00087	.0011	.0035	.015	.051
30	.00088	.0011	.0035	.015	.051
40	.00089	.0011	.0036	.015	.052
50	.00091	.0011	.0037	.016	.053
60	.00095	.0012	.0039	.017	.056
70	.0010	.0013	.0041	.018	.060
80	.0011	.0014	.0046	.020	.067
90	.0014	.0017	.0056	.024	.081
100	.0019	.0023	.0076	.033	.11
110	.0030	.0037	.012	.052	.18
120	.0063	.0078	.026	.11	.3 7

$$\lambda_{b} = .00086 \left[\left(\frac{S}{.4} \right)^{5} + 1 \right] \exp \left(2.5 \left(\frac{T + 273}{398} \right)^{18} \right)$$

T = Ambient Temperature (°C)

S = Ratio of Operating to Rated Voltage

Operating voltage is the sum of applied D.C. voltage and peak A.C. voltage.

10.1 CAPACITORS, FIXED, PAPER, BY-PASS

Capacitance Factor - π_{CV}

Capacitance, C (μF)	π _C V
MIL-C-25*	
.0034	0.7
.15	1.0
2.3	1.3
16.	1.6
MIL-C-12889 Ali	1.0
• π _{CV} = 1.2C ^{.095}	

Quality Factor - π_Q

Quality	πQ
MIL-SPEC	3.0
Lower	7.0

Environment Factor - π_

	E
Environment	π _E
G _B	1.0
G _F	2.0
G _M	9.0
N _S	5.0
N _S N _U	15
	6.0
A _{IF}	8.0
Auc	17
A _{UF}	32
A _{IC} A _{IF} A _{UC} A _{UF} A _{RW}	22
S _F	.50
M _F	12
ML	32
Mլ Cլ	570

Editoroa/100 Haura

10.2 CAPACITORS, FIXED, PAPER, FEED-THROUGH

SPECIFICATION MIL-C-11693

STYLE CZR and CZ DESCRIPTION

Paper, Metallized Paper, Metallized Plastic, RFI Feed-Through Established Reliability and Non-Established Reliability

$$\lambda_p = \lambda_b^{\pi} c V^{\pi} Q^{\pi} E$$
 Failures/10⁶ Hours

Base Failure Rate - λ_b (T = 85°C Max Rated)

(Characteristics E, W)							
		Stress					
T _A (℃)	.1	.3	.5	.7	.9		
0	.0012	.0014	.0047	.020	.069		
10	.0012	.0015	.0048	.021	.070		
20	.0012	.0015	.0050	.021	.072		
30	.0013	.0016	.0053	.023	.076		
40	.0014	.0018	.0058	.025	.084		
50	.0017	.0021	.0069	.030	.10		
60	.0023	.0028	.0092	.039	.13		
70	.0037	.0045	.015	.064	.21		
80	.0080	.0099	.032	.14	.47		

$$\lambda_{b} = .00115 \left[\left(\frac{S}{.4} \right)^{5} + 1 \right] \exp \left(2.5 \left(\frac{T + 273}{358} \right)^{18} \right)$$

T = Ambient Temperature (°C)

Ratio of Operating to Rated Voltage

Operating voltage is the sum of applied D.C. voltage and peak A.C. voltage.

Base Failure Rate - λ_D (T = 125°C Max Rated) (Characteristic K)

		S	tress		
T _A (℃)	.1	.3	.5	.7	.9
0	.0012	.0014	.0047	.020	.068
10	.0012	.0014	.0047	.020	.068
20	.0012	.0014	.0047	.020	.068
30	.0012	.0014	.0047	.020	.069
40	.0012	.0015	.0048	.021	.070
50	.0012	.0015	.0049	.021	.072
60	.0013	.0016	.0052	.022	.075
70	.0014	.0017	.0055	.024	.08
80	.0015	.0019	.0062	.027	.09
90	.0019	.0023	.0075	.032	.11
100	.0025	.0031	.010	.044	.15
110	.0040	.005	.016	.07	.24
120	.0084	.010	.034	.15	.49

$$\lambda_{b} = .00115 \left[\left(\frac{S}{.4} \right)^{5} + 1 \right] \exp \left(2.5 \left(\frac{T + 273}{398} \right)^{18} \right)$$

T = Ambient Temperature (°C)

S = Ratio of Operating to Rated Voltage

Operating voltage is the sum of applied D.C. voltage and peak A.C. voltage.

Base Failure Rate - λ_b
(T = 150°C Max Rated)
(Characteristic P)

(Characteristic P)						
		S	tress		_	
T _A (℃)	.1	.3	.5	.7	.9	
0	.0012	.0014	.0047	.020	.068	
10	.0012	.0014	.0047	.020	.068	
20	.0012	.0014	.0047	.020	.068	
30	.0012	.0014	.0047	.020	.068	
40	.0012	.0014	.0047	.020	.068	
50	.0012	.0015	.0048	.020	.069	
60	.0012	.0015	.0048	.021	.070	
70	.0012	.0015	.0049	.021	.071	
80	.0013	.0016	.0051	.022	.074	
90	.0013	.0017	.0055	.023	.079	
100	.0015	.0018	.0060	.026	.087	
110	.0017	.0022	.0071	.03	.10	
120	.0022	.0028	.0091	.039	.13	
130	.0033	.0040	.013	.057	.19	
140	.0058	.0072	.024	.10	.34	
150	.014	.017	.057	.24	.82	
i	1					

$$\lambda_{b} = .00115 \left[\left(\frac{S}{.4} \right)^{5} + 1 \right] exp \left(2.5 \left(\frac{T + 273}{423} \right)^{18} \right)$$

T = Ambient Temperature (°C)

S = Ratio of Operating to Rated Voltage

Operating voltage is the sum of applied D.C. voltage and peak A.C. voltage.

10.2 CAPACITORS, FIXED, PAPER, FEED-THROUGH

Capacitance Factor - π_{CV}

Capacitance, C (μF)	πCV
0.0031	.70
0.061	1.0
1.8	1.5

Quality Factor - π_Q

Quality	πQ
М	1.0
Non-Established Reliability	3.0
Lower	10

Environment Factor - π_E

Environment	π _E
G _B	1.0
G _F	2.0
G _B G _F G _M	9.0
N _S	7.0
N _U	15
AIC	6.0
A _{IF}	8.0
A _{UC}	17
A _{UF}	28
A _{RW}	22
S _F	.50
M _F	12
ML	32
CL	570

10.3 CAPACITORS, FIXED, PAPER AND PLASTIC FILM

SPECIFICATION MIL-C-14157 MIL-C-19978 STYLE CPV CQR and CQ DESCRIPTION

Paper and Plastic Film, Est. Rel.

Paper and Plastic Film, Est. Rel. and Non-Est. Rel.

 $\lambda_p = \lambda_b^{\pi}_{CV}^{\pi}_{Q}^{\pi}_{E}$ Failures/10⁶ Hours

Base Failure Rate - λ_b

(T = 65°C Max Rated) (MIL-C-14157 Style CPV07; MIL-C-19978 Characteristics P. L)

	WILE-0-19976 CHARACTERISTICS F, E)					
	1	St	Tess			
T _A (°C)	.1	.3	.5	.7	.9	
0	.00053	.00065	.0021	.0092	.031	_
10	.00055	.00069	.0022	.0096	.032	
20	.00061	.00075	.0025	.011	.036	
30	.00071	.00088	.0029	.012	.042	
40	.00094	.0012	.0038	.016	.055	
50	.0015	.0019	.0061	.026	.088	
60	.0034	.0042	.014	.059	.20	

$$\lambda_{b} = .0005 \left[\left(\frac{S}{.4} \right)^{5} + 1 \right] \exp \left(2.5 \left(\frac{T + 273}{338} \right)^{18} \right)$$

T = Ambient Temperature (°C)

S - Ratio of Operating to Rated Voltage

Operating voltage is the sum of applied D.C. voltage and peak A.C. voltage.

Base Failure Rate - λ_b
(T = 125°C Max Rated)
(MIL-C-14157 Style CPV09 and MIL-C-19978

Characteristics K, Q, S)						
		Stress				
T _A (°C)	.1	.3	.5	.7	.9	
0	.00050	.00062	.0020	.0087	.029	
10	.00050	.00062	.0020	.0088	.029	
20	.00051	.00062	.0020	.0088	.030	
30	.00051	.00063	.0021	.0089	.030	
40	.00052	.00064	.0021	.009	.030	
50	.00053	.00066	.0021	.0092	.031	
60	.00055	.00068	.0022	.0096	.032	
70	.00059	.00073	.0024	.010	.035	
80	.00067	.00083	.0027	.012	.039	
90	.00081	.0010	.0033	.014	.047	
100	.0011	.0013	.0044	.019	.064	
110	.0018	.0022	.0071	.030	.10	
120	.0037	.0045	.015	.064	.21	

$$\lambda_{b} = .0005 \left[\left(\frac{S}{.4} \right)^{5} + 1 \right] \exp \left(2.5 \left(\frac{T + 273}{398} \right)^{18} \right)$$

T = Ambient Temperature (°C)

S - Ratio of Operating to Rated Voltage

Operating voltage is the sum of applied D.C. voltage and peak A.C. voltage.

Base Failure Rate - λ_b
(T = 85°C Max Rated)
(MIL-C-14157 Style CPV17;

		MIL-C-199/8 Characteristics E, F, G, M)				
		S	tress			
T _A (°C)	.1	.3	.5	.7	.9	
0	.00051	.00063	.0021	.0089	.030	
10	.00052	.00064	.0021	.0090	.030	
20	.00054	.00066	.0022	.0093	.031	
30	.00057	.00070	.0023	.0099	.033	
40	.00063	.00077	.0025	.011	.037	
50	.00074	.00092	.0030	.013	.043	
60	.00099	.0012	.0040	.017	.058	
70	.0016	.0020	.0064	.028	.093	
80	.0035	.0043	.014	.061	.20	

$$\lambda_{b} = .0005 \left[\left(\frac{S}{.4} \right)^{5} + 1 \right] \exp \left(2.5 \left(\frac{T + 273}{358} \right)^{18} \right)$$

= Ambient Temperature (°C)

S = Ratio of Operating to Rated Voltage
Operating voltage is the sum of applied D.C. voltage
and peak A.C. voltage.

Base Failure Rate - λ_b

(T = 170°C Max Rated) (MIL-C-19978 Characteristic T) Stress T_A (℃) .3 .9 .00050 .00062 0 .0020 .029 .0087 .00050 10 .00062 .0020 .0087 .029 20 .00050 .00062 .0020 .0087 .029 30 .00050 .00062 .0020 .0087 .029 .00050 .00062 .0020 .0087 .029 .00050 .00062 .0020 .0088 .030 60 .00051 .0021 .00063 .0088 .030 70 .00051 .00063 .0021 .0089 .030 80 .00052 .00065 .0021 .0091 .031 90 .00054 .00066 .0022 .0093 .031 100 .00056 .00069 .0023 .0097 .033 110 .00060 .00074 .0024 .010 .035 120 .00067 .00083 .0027 .012 .039 130 .00079 .00098 .0032 .014 .046 140 .0010 .0013 .0041 .018 .060 150 .0015 .0018 .006 .026 .087 160 .0026 .0032 .011 .15 046 170 .0061 .0075 .025 11 .36

 $\lambda_{b} = .0005 \left[\left(\frac{S}{.4} \right)^{5} + 1 \right] \exp \left(2.5 \left(\frac{T + 273}{443} \right)^{18} \right)$

T = Ambient Temperature (°C)

and made & C. unbana

S = Ratio of Operating to Rated Voltage Operating voltage is the sum of applied D.C. voltage and peak A.C. voltage.

10.3 CAPACITORS, FIXED, PAPER AND PLASTIC FILM

Capacitance Factor - π_{CV}

Capacitance, C (μF)	π _C V
MIL-C-14157: * .0017 .027 .20 1.0 MIL-C-19978: ** .00032 .033 1.0 15.0	.70 1.0 1.3 1.6 .70 1.0 1.3 1.6
$\pi_{CV} = 1.6C^{0.13}$	
$_{\text{CV}} = 1.30^{0.077}$	

Quality Factor - π_Q

Quality	πQ
s	.03
R	.10
P	.30
М	1.0
L	3.0
MIL-C-19978, Non-Est. Rel.	10
Lower	30

Environment Factor - π_E

Environment	π _E
G _B	1.0
G _F	2.0
G _M	8.0
N _S	5.0
N _U	14
	4.0
A _{IC} A _{IF} A _{UC} A _{UF}	6.0
A _{UC}	11.0
A _{UF}	20
A _{RW}	20
S _F	.50
M_F	11
м _L С _L	29
CL	530

10.4 CAPACITORS, FIXED, METALLIZED PAPER, PAPER-PLASTIC AND PLASTIC

SPECIFICATION MIL-C-18312

MIL-C-39022

STYLE CH CHR DESCRIPTION

Metallized Paper, Paper-Plastic, Plastic Metallized Paper, Paper-Plastic, Plastic, Established Reliability

 $\lambda_p = \lambda_b \pi_{CV} \pi_Q \pi_E$ Failures/10⁶ Hours

Base Failure Rate - λ_b

(T = 85°C Max Rated) (MIL-C-39022 Characteristic 9 and 12 (50 Volts rated), Characteristic 49; and MIL-C-18312 Characteristic R)

Cinarac	Characteristic 49; and MiL-C-18312 Characteristic H)				
T _A (℃)	.1	.3	tress .5	.7	.9
0	.00070	.00087	.0029	.012	.041
10	.00072	.00089	.0029	.012	.042
20	.00074	.00091	.0030	.013	.043
30	.00078	.00097	.0032	.014	.046
40	.00086	.0011	.0035	.015	.051
50	.0010	.0013	.0041	.018	.06
60	.0014	.0017	.0055	.024	.08
70	.0022	.0027	.0089	.038	.13
80	.0048	.0059	.019	.084	.28

$$\lambda_{b} = .00069 \left[\left(\frac{S}{.4} \right)^{5} + 1 \right] \exp \left(2.5 \left(\frac{T + 273}{358} \right)^{18} \right)$$

T = Ambient Temperature (°C)

S - Ratio of Operating to Rated Voltage

Operating voltage is the sum of applied D.C. voltage and peak A.C. voltage.

Base Failure Rate - λ_b
(T = 125°C Max Rated)
(MIL-C-39022 Characteristic 9 and 12 (above 50 Volts rated), Characteristics 1, 10, 19, 29, 59; and

MIL-C-18312 Characteristic N)					
T _A (°C)	.1	.3	itress .5	.7	.9
0	.00069	.00086	.0028	.012	.041
10	.00069	.00086	.0028	.012	.041
20	.00070	.00086	.0028	.012	.041
30	.00070	.00087	.0028	.012	.041
40	.00071	.00088	.0029	.012	.042
50	.00073	.00090	.003.	.013	.043
60	.00076	.00094	.0031	.013	.045
70	.00082	.0010	.0033	.014	.048
80	.00092	.0011	.0037	.016	.054
90	.0011	.0014	.0045	.019	.065
100	.0015	.0019	.0061	.026	.088
110	.0024	.0030	.0098	.042	.14
120	.0051	.0063	.020	.088	.30

$$\lambda_{b} = .00069 \left[\left(\frac{S}{.4} \right)^{5} + 1 \right] \exp \left(2.5 \left(\frac{T + 273}{398} \right)^{18} \right)$$

T = Ambient Temperature (°C)

Ratio of Operating to Rated Voltage

Operating voltage is the sum of applied D.C. voltage and peak A.C. voltage.

10.4 CAPACITORS, FIXED, METALLIZED PAPER, PAPER-PLASTIC AND PLASTIC

Capacitance Factor - π_{CV}

Capacitance, C (μF)	π _C V
0.0029	.70
0.14	1.0
2.4	1.3
$\pi_{\text{CV}} = 1.20^{0.092}$	

Quality Factor - π_Q

Quality	πQ
S	0.03
R	.10
Р	.30
М	1.0
L	3.0
MIL-C-18312, Non-Est. Rel.	7.0
Lower	20

Environment Factor - π_E

	E
Environment	π _E
G _B	1.0
G _F	2.0
G _F G _M	8.0
N _S	5.0
N _U	14
A _{IC}	4.0
^A IC ^A IF ^A UC	6.0
Auc	11.0
A _{UF}	20
A _{RW}	20
S _F	.50
M _F	11
M_L	29
M _L C _L	530

10.5 CAPACITORS, FIXED, PLASTIC AND METALLIZED PLASTIC

SPECIFICATION MIL-C-55514

STYLE CFR **DESCRIPTION**

Plastic, Metallized Plastic, Est. Rel.

$$\lambda_p = \lambda_b^{\pi}_{CV}^{\pi}_{Q}^{\pi}_{E}$$
 Failures/10⁶ Hours

Base Failure Rate - λ_b (T = 85°C Max Rated) (Characteristics M. N)

	(Characteristics M, N) Stress					
T _A (℃)	.1	.3	.5	.7	.9	
0	.0010	.0012	.0041	.018	.059	
10	.0010	.0013	.0042	.018	.060	
20	.0011	.0013	.0043	.018	.062	
30	.0011	.0014	.0045	.020	.066	
40	.0012	.0015	.0050	.022	.073	
50	.0015	.0018	.0059	.026	.086	
60	.0020	.0024	.0079	.034	.11	
70	.0032	.0039	.013	.055	.18	
80	.0069	.0085	.028	.12	.40	

$$\lambda_{b} = .00099 \left[\left(\frac{S}{.4} \right)^{5} + 1 \right] exp \left(2.5 \left(\frac{T + 273}{358} \right)^{18} \right)$$

T = Ambient Temperature (°C)

S = Ratio of Operating to Rated Voltage

Operating voltage is the sum of applied D.C. voltage and peak A.C. voltage.

Base Failure Rate - λ_b
(T = 125°C Max Rated)
(Characteristics Q, R, S)

,	(Characteristics Q, R, S)					
T _A (°C)	.1	.3 	tress .5	.7	.9	
0	.00099	.0012	.0040	.017	.058	
10	.0010	.0012	.0040	.017	.058	
20	.0010	.0012	.0041	.017	.059	
30	.0010	.0012	.0041	.018	.059	
40	.0010	.0013	.0041	.018	.060	
50	.0011	.0013	.0043	.018	.062	
60	.0011	.0014	.0044	.019	.064	
70	.0012	.0015	.0048	.020	.069	
80	.0013	.0016	.0054	.023	.077	
90	.0016	.0020	.0065	.028	.094	
100	.0022	.0027	.0087	.038	.13	
110	.0035	.0043	.014	.06	.20	
120	.0073	.0090	.029	.13	.43	

$$\lambda_{b} = .00099 \left[\left(\frac{S}{.4} \right)^{5} + 1 \right] exp \left(2.5 \left(\frac{T + 273}{398} \right)^{18} \right)$$

T = Ambient Temperature (°C)

S = Ratio of Operating to Rated Voltage

Operating voltage is the sum of applied D.C. voltage and peak A.C. voltage.

10.5 CAPACITORS, FIXED, PLASTIC AND METALLIZED PLASTIC

Capacitance Factor - π_{CV}

Capacitance, C (μF)	π _{CV}
0.0049	.70
0.33	1.0
7.1	1.3
38.	1.5
π _{CV} = 1.1C ^{0.085}	

Quality Factor - π_Q

Quality	π _Q
S	.030
R	.10
Р	.30
М	1.0
Lower	10

Environment Factor - π_E

Environment	πE
G _B	1.0
G _F	2.0
G _M	10
N _S	5.0
NU	16
	6
A _{IC} A _{IF}	11
A _{UC}	18
A _{UF}	30
A _{RW}	23
S _F	.50
M _F	13
ML	34
Mլ Cլ	610

10.6 CAPACITORS, FIXED, SUPER-METALLIZED PLASTIC

SPECIFICATION MIL-C-83421

STYLE CRH DESCRIPTION

Super-Metallized Plastic, Est. Rel.

$$\lambda_p = \lambda_b \pi_{CV} \pi_O \pi_E$$
 Failures/10⁶ Hours

Base Failure Rate - λ_b

(T = 125°C Max Rated) Stress .5 .7 T_A (℃) .9 .00055 0 .00068 .0022 .0096 .032 10 .00055 .00068 .0022 .0096 .032 20 .00056 .00069 .0023 .0097 .033 30 .00056 .00069 .0023 .0098 .033 40 .00057 .00070 .0023 .0099 .033 50 .00058 .00072 .0024 .010 .034 60 .00061 .00075 .0025 .011 .036 70 .00065 .00081 .0026 .011 .038 80 .00073 .00091 .0030 .013 .043 90 .00089 .0011 .0036 .052 .07 .015 100 .0015 .0049 .0012 .021 .0024 110 .0019 .033 .11 120 .0040 .0050 .016 .070 .24

$$\lambda_b = .00055 \left[\left(\frac{S}{.4} \right)^5 + 1 \right] \exp \left(2.5 \left(\frac{T + 273}{398} \right)^{18} \right)$$

T = Ambient Temperature (°C)

Ratio of Operating to Rated Voltage

Operating voltage is the sum of applied D.C. voltage and peak A.C. voltage.

Quality Factor - TO

	Q
Quality	πQ
s	.020
R	.10
Р	.30
м	1.0
Lower	10

Capacitance Factor - π_{CV}

Capacitance, C (μF)	πCV
.001	.64
0.14	1.0
2.4	1.3
23	1.6
$\pi_{\text{CV}} = 1.2 \text{C}^{0.092}$	

Environment Factor - $\pi_{\mathbf{F}}$

Environment	π _E
GB	1.0
G _F	4.0
G _M	8.0
N _S	5.0
Nυ	14
A _{IC}	4.0
A _{IF}	6.0
Auc	13.0
A _{UF}	20
^A RW	20
S _F	.50
M _F	11
M_L	29
м _L с _L	530

10.7 CAPACITORS, FIXED, MICA

SPECIFICATION MIL-C-5

MIL-C-39001

STYLE CM **CMR**

DESCRIPTION

MICA (Dipped or Molded)

MICA (Dipped), Established Reliability

 $\lambda_p = \lambda_b^{\pi}_{CV}^{\pi}_{Q}^{\pi}_{E}$ Failures/10⁶ Hours

Base Failure Rate - λ_b (T=70°C Max Rated) (MIL-C-5, Temp, Range M)

(MIC-0-3, Yellip, Hange W)					
	Stress				
T _A (℃)	.1	.3	.5	.7	.9
0	.00030	.00041	.00086	.0019	.0036
10	.00047	.00066	.0014	.0030	.0058
20	.00075	.0011	.0022	.0047	.0092
30	.0012	.0017	.0035	.0075	.015
40	.0019	.0027	.0056	.012	.023
50	.0031	.0043	.0089	.019	.037
60	.0049	.0068	.014	.030	.059
70	.0078	.011	.023	.049	.095

$$\lambda_b = 8.6 \times 10^{-10} \left[\left(\frac{S}{.4} \right)^3 + 1 \right] exp \left(16 \left(\frac{T + 273}{343} \right) \right)$$

Ambient Temperature (°C)
Ratio of Operating to Rated Voltage

Operating voltage is the sum of applied D.C. voltage and peak A.C. voltage.

Base Failure Rate - λb (T-125°C May Dated

(I=I25°C Max Hated)						
(MIL-C-5,	Temp. Range C	D; MIL-C-39001	Temp. Range O)			
		O4				

	Stress					
T _A (°C)	.1	.3	.5	.7	.9	
0	.00005	.00007	.00015	.00032	.00062	
10	.00008	.00011	.00022	.00048	.00093	
20	.00011	.00016	.00033	.00071	.0014	
30	.00017	.00024	.00050	.0011	.0021	
40	.00025	.00036	.00074	.0016	.0031	
50	.00038	.00053	.0011	.0024	.0046	
60	.00057	.0008	.0017	.0036	.0069	
70	.00085	.0012	.0025	.0053	.010	
80	.0013	.0018	.0037	.008	.016	
90	.0019	.0027	.0055	.012	.023	
100	.0028	.0040	.0083	.018	.035	
110	.0042	.0059	.012	.027	.052	
120	.0063	.0089	.018	.040	.077	

$$\lambda_b = 8.6 \times 10^{-10} \left[\left(\frac{S}{.4} \right)^3 + 1 \right] \exp \left(16 \left(\frac{T + 273}{398} \right) \right)$$

Ambient Temperature (°C)
Ratio of Operating to Rated Voltage

Operating voltage is the sum of applied D.C. voltage and peak A.C. voltage.

Base Failure Rate - λ_b (T=85°C Max Rated) (MIL-C-5, Temp. Range N)

(MIC-CS, Temp. Hange N)					
	Stress				
T _A (°C)	.1	.3	.5	.7	.9
0	.00017	.00024	.00051	.0011	.0021
10	.00027	.00038	.00079	.0017	.0033
20	.00042	.00059	.0012	.0027	.0052
30	.00066	.00093	.0019	.0042	.0081
40	.0010	.0015	.003	.0065	.013
50	.0016	.0023	.0047	.010	.020
60	.0025	.0036	.0074	.016	.031
70	.0040	.0056	.012	.025	.048
80	.0062	.0087	.018	.039	.076

$$\lambda_{b} = 8.6 \times 10^{-10} \left[\left(\frac{S}{.4} \right)^{3} + 1 \right] exp \left(16 \left(\frac{T + 273}{358} \right) \right)$$

Ambient Temperature (°C)

Ratio of Operating to Rated Voltage

Operating voltage is the sum of applied D.C. voltage and peak A.C. voltage.

> Base Failure Rate - λ_b (T=150°C Max Rated)

(MIL-C-5, Temp. Range P: MIL-C-39001, Temp. Range P)

,,,,,,	Temp. Hange 1, WIL-0-03001, Temp. Hange 1				
	ł	S	tress		
TA (°C)	.1	.3	.5	.7	.9
0	.00003	.00004	.00008	.00017	.00033
10	.00004	.00005	.00011	.00024	.00047
20	.00006	.00008	.00017	.00036	.00069
30	.00008	.00012	.00024	.00052	.0010
40	.00012	.00017	.00035	.00076	.0015
50	.00018	.00025	.00051	.0011	.0022
60	.00026	.00036	.00075	.0016	.0031
70	.00038	.00053	.0011	.0024	.0046
80	.00055	.00077	.0016	.0034	.0067
90	.0008	.0011	.0023	.0050	.0098
100	.0012	.0016	.0034	.0073	.014
110	.0017	.0024	.0050	.011	.021
120	.0025	.0035	.0073	.016	.030
130	.0036	.0051	.011	.023	.044
140	.0053	.0074	.015	.033	.065
150	.0078	.011	.023	.049	.095

$$\lambda_b = 8.6 \times 10^{-10} \left[\left(\frac{S}{.4} \right)^3 + 1 \right] exp \left(16 \left(\frac{T + 273}{423} \right) \right)$$

Ambient Temperature (°C)

Ratio of Operating to Rated Voltage Operating voltage is the sum of applied D.C. voltage

and peak A.C. voltage.

10.7 CAPACITORS, FIXED, MICA

Capacitance Factor - π_{CV}

Capacitance, C (pF)	π _{CV}
2	.50
38	.75
300	1.0
2000	1.3
8600	1.6
29000	1.9
84000	2.2
π _{CV} = 0.45C ^{.14}	

Quality Factor - π_Q

Quality	πQ
Т	.010
s	.030
R	.10
Р	.30
М	1.0
L	1.5
MIL-C-5, Non-Est. Rel. Dipped	3.0
MIL-C-5, Non-Est. Rel. Molded	6.0
Lower	15

Environment Factor - π_{\square}

	E
Environment	πE
G _B	1.0
G _F	2.0
G _F G _M	10
N _S	6.0
N _U	16
AIC	5.0
A _{IF}	7.0
Auc	22
A _{UF}	28
ARW	23
S _F	.50
M _F	13
M_L	34
M _L C _L	610

10.8 CAPACITORS, FIXED, MICA, BUTTON

SPECIFICATION MIL-C-10950

STYLE CB **DESCRIPTION**MICA, Button Style

$$\lambda_p = \lambda_b^{\pi}_{\text{CV}}^{\pi}_{\text{Q}}^{\pi}_{\text{E}}$$
 Failures/10⁶ Hours

Base Failure Rate - λ_b
(T = 85°C Max Rated)
(Style CB50)

	(Style CB50) Stress				
T _A (℃)	.1	.3	.5	.7	.9
0	.0067	.0094	.019	.042	.082
10	.0071	.0099	.021	.044	.086
20	.0076	.011	.022	.047	.092
30	.0082	.011	.024	.051	.10
40	.009	.013	.026	.056	.11
50	.010	.014	.029	.063	.12
60	.012	.016	.033	.072	.14
70	.013	.019	.039	.084	.16
80	.016	.023	.047	.10	.20

$$\lambda_{b} = .0053 \left[\left(\frac{S}{.4} \right)^{3} + 1 \right] exp \left(1.2 \left(\frac{T+273}{358} \right)^{6.3} \right)$$

T = Ambient Temperature (°C)

S = Ratio of Operating to Rated Voltage

Operating voltage is the sum of applied D.C. voltage and peak A.C. voltage.

Base Failure Rate - λ_b
(T = 150°C Max Rated)
(All Types Except CB50)

	(All Types Except CB50) Stress					
T _A (℃)	.1	.3	.5	.7	.9	
0	.0058	.0081	.017	.036	.071	
10	.0059	.0083	.017	.037	.072	
20	.0061	.0085	.018	.038	.074	
30	.0062	.0087	.018	.039	.076	
40	.0064	.009	.019	.040	.079	
50	.0067	.0094	.019	.042	.082	
60	.0070	.0098	.020	.044	.086	
70	.0074	.010	.022	.046	.090	
80	.0079	.011	.023	.049	.096	
90	.0085	.012	.025	.053	.10	
100	.0093	.013	.027	.058	.11	
110	.010	.014	.03	.064	.12	
120	.011	.016	.033	.072	.14	
130	.013	.018	.038	.082	.16	
140	.015	.021	.044	.095	.18	
150	.018	.025	.052	.11	.22	

$$\lambda_{b} = .0053 \left[\left(\frac{s}{.4} \right)^{3} + 1 \right] exp \left(1.2 \left(\frac{T + 273}{423} \right)^{6.3} \right)$$

T = Ambient Temperature (°C)

S = Ratio of Operating to Rated Voltage

Operating voltage is the sum of applied D.C. voltage and peak A.C. voltage.

10.8 CAPACITORS, FIXED, MICA, BUTTON

Quality Factor - π_Q

<u> </u>	
Quality	π_{Q}
MIL-C-10950	5.0
Lower	15

Capacitance Factor - π_{CV}

Capacitance, C (pF)	πCV
8	.50
50	.76
160	1.0
500	1.3
1200	1.6
2600	1.9
5000	2.2

Environment Factor - π_E

	<u> </u>
Environment	π _E
G _B	1.0
G _F	2.0
G _F G _M	10
N _S	5.0
N _U	16
N _U A _{IC} A _{IF} A _{UC}	5.0
A _{IF}	7.0
AUC	22
AUF	28
A _{RW}	23
S _F	.50
MF	13
ML	34
CL	610

10.9 CAPACITORS, FIXED, GLASS

SPECIFICATION

MIL-C-11272 MIL-C-23269 STYLE CY CYR DESCRIPTION

Glass

Glass, Established Reliability

$$\lambda_p = \lambda_b^{\pi}_{CV}^{\pi}_{Q}^{\pi}_{E}$$
 Failures/10⁶ Hours

Base Failure Rate - λ_b (T=125°C Max Rated)

(All MIL-C-23296 and MIL-C-11272 Temp. Range C)

	(All MIL	<u>-C-23296</u>	and MIL	<u>-C-11272</u>	Temp. R	ange C)
	T _A (℃)	.1	.3	Stress .5	.7	.9
	0	.00005	.00005	.00010	.00023	.00055
	10	.00007	.00008	.00014	.00035	.00083
	20	.00011	.00012	.00022	.00052	.0012
	30	.00016	.00018	.00032	.00078	.0018
	40	.00024	.00027	.00048	.0012	.0028
	50	.00036	.00041	.00072	.0017	.0041
l	60	.00054	.00061	.0011	.0026	.0062
	70	.0008	.00091	.0016	.0039	.0092
l	80	.0012	.0014	.0024	.0058	.014
	90	.0018	.0020	.0036	.0087	.021
	100	.0027	.0030	.0054	.013	.031
	110	.0040	.0045	.0080	.019	.046
	120	.0060	.0068	.012	.029	.069

$$\lambda_b = 8.25 \times 10^{-10} \left[\left(\frac{S}{.5} \right)^4 + 1 \right] \exp \left(16 \left(\frac{T + 273}{398} \right) \right)$$

T = Ambient Temperature (°C)

S = Ratio of Operating to Rated Voltage

Operating voltage is the sum of applied D.C. voltage and peak A.C. voltage.

Base Failure Rate - λ_b
(T = 200°C Max Rated)

(MIL-C-11272 Temp. Range D)					
T _A (℃)	.1	.3	Stress .5	.7	.9
0	.00001	.00001	.00002	.00004	.00010
10	.00001	.00001	.00002	.00006	.00014
20	.00002	.00002	.00003	.00008	.00019
30	.00002	.00003	.00005	.00011	.00027
40	.00003	.00004	.00007	.00016	.00038
50	.00005	.00005	.00009	.00022	.00053
60	.00006	.00007	.00013	.00031	.00074
70	.00009	.00010	.00018	.00044	.0010
80	.00013	.00014	.00025	.00061	.0015
90	.00018	.00020	.00035	.00086	.0020
100	.00025	.00028	.00050	.0012	.0029
110	.00035	.00039	.00070	.0017	.0040
120	.00049	.00055	.00098	.0024	.0056
130	.00069	.00078	.0014	.0033	.0079
140	.00096	.0011	.0019	.0047	.011
150	.0014	.0015	.0027	.0065	.016
160	.0019	.0021	.0038	.0092	.022
170	.0027	.0030	.0053	.013	.031
180	.0037	.0042	.0075	.018	.043
190	.0052	.0059	.010	.025	.060
200	.0073	.0083	.015	.035	.084

$$\lambda_{b} = 8.25 \times 10^{-10} \left[\left(\frac{s}{.5} \right)^{4} + 1 \right] \exp \left(16 \left(\frac{T + 273}{473} \right) \right)$$

T = Ambient Temperature (°C)

S = Ratio of Operating to Rated Voltage

Operating voltage is the sum of applied D.C. voltage and peak A.C. voltage.

10.9 CAPACITORS, FIXED, GLASS

Capacitance Factor - π_{CV}

Capacitance, C (pF)	πCV
1	.62
4	.75
30	1.0
200	1.3
900	1.6
3000	1.9
8500	2.2
$\pi_{CV} = 0.62C^{0.14}$	

Quality Factor - π_Q

Quality	πQ
S	.030
R	.10
Р	.30
м	1.0
L	3.0
MIL-C-11272, Non-Est. Rel.	3.0
Lower	10

Environment Factor - π_F

	<u> </u>
Environment	πE
G _B	1.0
G _F	2.0
G _M	10
N _S	6.0
N _U	16
Аю	5.0
A _{IF} A _{UC}	7.0
Auc	22
A _{UF}	28
A _{RW}	23
S _F	.50
M _F	13
ML	34
M _L C _L	610

10.10 CAPACITORS, FIXED, CERAMIC, GENERAL PURPOSE

SPECIFICATION MIL-C-11015 MIL-C-39014 STYLE CK CKR DESCRIPTION
Ceramic, General Purpose
Ceramic, General Purpose, Est. Rel.

 $\lambda_p = \lambda_b^{\pi}_{\text{CV}}^{\pi}_{\text{Q}}^{\pi}_{\text{E}}$ Failures/10⁶ Hours

Base Failure Rate - \(\lambda\right)
(T = 85°C Max Rated)
(MIL-C-39014 Styles CKR13, 48, 64, 72;
MIL-C-11015 Type A Rated Temperature)

	ME 0 1101.	2 13 pa n	TOLOU TO	iperature/	
		S	ress		
T _A (℃)	.1	.3	.5	.7	.9
0	.00067	.0013	.0036	.0088	.018
10	.00069	.0013	.0037	.0091	.019
20	.00071	.0014	.0038	.0093	.019
30	.00073	.0014	.0039	.0096	.020
40	.00075	.0014	.004	.0099	.020
50	.00077	.0015	.0042	.010	.021
60	.00079	.0015	.0043	.010	.021
70	.00081	.0016	.0044	.011	.022
80	.00083	.0016	.0045	.011	.023
	7				

$$\lambda_{b} = .0003 \left[\left(\frac{S}{.3} \right)^{3} + 1 \right] exp \left(\frac{T + 273}{358} \right)$$

T = Ambient Temperature (°C)
S = Ratio of Operating to Rated Voltage

Operating voltage is the sum of applied D.C. voltage and peak A.C. voltage.

Base Failure Rate - λ₀
(T = 125°C Max Rated)
(MIL-C-39014 Styles CKR05-12, 14-19, 73, 74;
MIL-C-11015 Type B Rated Temperature)

	1	S	tress	··········	
T _A (℃)	.1	.3	.5	.7	.9
0	.00062	.0012	.0033	.0082	.017
10	.00063	.0012	.0034	.0084	.017
20	.00065	.0013	.0035	.0086	.018
30	.00067	.0013	.0036	.0088	.018
40	.00068	.0013	.0037	.0090	.018
50	.00070	.0014	.0038	.0093	.019
60	.00072	.0014	.0039	.0095	.019
70	.00074	.0014	.0040	.0097	.020
80	.00076	.0015	.0041	.010	.020
90	.00077	.0015	.0042	.010	.021
100	.00079	.0015	.0043	.010	.021
110	.00081	.0016	.0044	.011	.022
120	.00084	.0016	.0045	.011	.023

$$\lambda_b = .0003 \left[\left(\frac{S}{.3} \right)^3 + 1 \right] \exp \left(\frac{T + 273}{398} \right)$$

T = Ambient Temperature (°C)

S = Ratio of Operating to Rated Voltage

Operating voltage is the sum of applied D.C. voltage and peak A.C. voltage.

Base Failure Rate - λ_b (T =150°C Max Rated)

(MIL-C-11015 Type C Rated Temperature)					
T _A (℃)	.1	.3	Stress .5	.7	.9
0	.00059	.0011	.0032	.0078	.016
10	.00061	.0012	.0033	.008	.016
20	.00062	.0012	.0034	.0082	.017
30	.00064	.0012	.0035	.0084	.017
40	.00065	.0013	.0035	.0086	.018
50	.00067	.0013	.0036	.0088	.018
60	.00068	.0013	.0037	.009	.018
70	.00070	.0013	.0038	.0092	.019
80	.00072	.0014	.0039	.0095	.019
90	.00073	.0014	.0040	.0097	.020
100	.00075	.0014	.0041	.0099	.020
110	.00077	.0015	.0042	.010	.021
120	.00079	.0015	.0043	.010	.021
130	.00081	.0016	.0044	.011	.022
140	.00083	.0016	.0045	.011	.022
150	.00085	.0016	.0046	.011	.023

$$\lambda_{\rm b} = .0003 \left[\left(\frac{\rm S}{.3} \right)^3 + 1 \right] \exp \left(\frac{\rm T+273}{423} \right)$$

T = Ambient Temperature (°C)

S = Ratio of Operating to Rated Voltage

Operating voltage is the sum of applied D.C. voltage and peak A.C. voltage.

NOTE: The rated temperature designation (type A, B, or C) is shown in the part number, e.g., CKG1AW22M).

10.10 CAPACITORS, FIXED, CERAMIC, GENERAL PURPOSE

Capacitance Factor - π_{CV}

Capacitance, C (pF)	π _C V
6.0	.50
240	.75
3300	1.0
36,000	1.3
240,000	1.6
1,100,000	1.9
4,300,000	2.2
$\pi_{CV} = .41C^{0.11}$	

Quality Factor - π_Q

Quality	πQ
S	.030
R	.10
Р	.30
М	1.0
L	3.0
MIL-C-11015, Non-Est. Rel.	3.0
Lower	10
1	i .

Environment Factor - π_E

Environment	πE
G _B	1.0
G _F	2.0
G _M	9.0
NS	5.0
NU	15
A _{IC}	4.0
A _{IF}	4.0
A _{UC}	8.0
A _{UF}	12
A _{RW}	20
S _F	.40
M _F	13
ML	34
CL	610

10.11 CAPACITORS, FIXED, CERAMIC, TEMPERATURE COMPENSATING AND CHIP

SPECIFICATION

STYLE

DESCRIPTION

MIL-C-20

CCR and CC

Ceramic, Temperature Compensating, Est.

MIL-C-55681 CDR

and Non Est. Rel. Ceramic, Chip, Est. Rel.

 $\lambda_p = \lambda_b^{} \pi_{CV}^{} \pi_{Q}^{} \pi_{E}$ Failures/10⁶ Hours

Base Failure Rate - λ_b

(T = 85°C Max Rated)

(MIL-C-	(MIL-C-20 Styles CC 20, 25, 30, 32, 35, 45, 85, 95-97)				
		S	tress		
TA (°C)	.1	.3	.5	.7	.9
0	.00015	.00028	.00080	.0019	.0040
10	.00022	.00042	.0012	.0029	.0059
20	.00033	.00063	.0018	.0043	.0088
30	.00049	.00094	.0026	.0064	.013
40	.00073	.0014	.0039	.0096	.020
50	.0011	.0021	.0059	.014	.029
60	.0016	.0031	.0088	.021	.044
70	.0024	.0046	.013	.032	.065
80	.0036	.0069	.019	.047	.097

$$\lambda_{b} = 2.6 \times 10^{-9} \left[\left(\frac{S}{.3} \right)^{3} + 1 \right] exp \left(14.3 \left(\frac{T + 273}{358} \right) \right)$$

T = Ambient Temperature (°C)
S = Ratio of Operating to Rated Voltage

Operating voltage is the sum of applied D.C. voltage and peak A.C. voltage.

Base Failure Rate - λ_b (T = 125°C Max Rated)

(MIL-C-20 Styles CC 5-9,13-19, 21, 22, 26, 27, 31, 33, 36, 37, 47, 50-57, 75-79, 81-83, CCR 05-09,13-19, 54-57, 75-79, 81-83, 90; MIL-C-55681 All CDR Styles)

		S	tress		
T _A (°C)	.1	.3	.5	.7	.9
0	.00005	.00009	.00027	.00065	.0013
10	.00007	.00014	.00038	.00093	.0019
20	.00010	.00019	.00055	.0013	.0027
30	.00014	.00028	.00078	.0019	.0039
40	.00021	.00040	.0011	.0027	.0056
50	.00030	.00057	.0016	.0039	.008
60	.00042	.00082	.0023	.0056	.011
70	.00061	.0012	.0033	.008	.016
80	.00087	.0017	.0047	.011	.023
90	.0012	.0024	.0068	.016	.034
100	.0018	.0034	.0097	.024	.048
110	.0026	.0049	.014	.034	.069
120	.0037	.0071	.020	.048	.099
	_		٠,		

$$\lambda_{b} = 2.6 \times 10^{-9} \left[\left(\frac{s}{.3} \right)^{3} + 1 \right] exp \left(14.3 \left(\frac{T + 273}{398} \right) \right)$$

T = Ambient Temperature (°C)

S = Ratio of Operating to Rated Voltage

Operating voltage is the sum of applied D.C. voltage and peak A.C. voltage.

Capacitance Factor - π_{CV}

Capacitance, C (pF)	π _C V
1	.59
7	.75
81	1.0
720	1.3
4,100	1.6
17,000	1.9
58,000	2.2
π _{CV} = .59C ^{0.12}	

Quality Factor - π_{O}

Quality	π _Q
S	.030
R	.10
Р	.30
М	1.0
Non-Est. Rel.	3.0
Lower	10

Environment Factor - π_{F}

Emmoniment rustor we				
Environment	π _E			
G _B	1.0			
G _F	2.0			
G _F	10			
N _S	5.0			
N _U	17			
A _{IC}	4.0			
A _{IF}	8.0			
Auc	16			
A _{UF}	35			
A _{RW}	24			
S _F	.50			
M _F	13			
ML	34			
Mլ Cլ	610			

10.12 CAPACITORS, FIXED, ELECTROLYTIC, TANTALUM, SOLID

SPECIFICATION MIL-C-39003

STYLE CSR DESCRIPTION

Tantalum Electrolytic (Solid), Est. Rel.

 $\lambda_p = \lambda_b \pi_{CV} \pi_{SR} \pi_Q \pi_E$ Failures/10⁶ Hours

Base Failure Rate - λ_b

	Stress				
T _A (℃)	.1	.3	.5	.7	.9
0	.0042	.0058	.012	.026	.051
10	.0043	.0060	.012	.027	.052
20	.0045	.0063	.013	.028	.055
30	.0048	.0067	.014	.030	.058
40	.0051	.0072	.015	.032	.063
50	.0057	.0079	.016	.035	.069
60	.0064	.009	.019	.040	.078
70	.0075	.011	.022	.047	.092
80	.0092	.013	.027	.058	.11
90	.012	.017	.034	.074	.14
100	.016	.023	.047	.10	
110	.024	.034	.07	.15	
120	.039	.054	.11	.24	

$$\lambda_{b} = .00375 \left[\left(\frac{S}{.4} \right)^{3} + 1 \right] exp \left(2.6 \left(\frac{T + 273}{398} \right)^{9} \right)$$

T = Ambient Temperature (°C)S = Ratio of Operating to Rated Voltage

Operating voltage is the sum of applied D.C. voltage and peak A.C. voltage.

Capacitance Factor - π_{CV}

Capacitance, C (μF)	πCV
.003	0.5
.091	.75 1.0
8.9	1.3
50	1.6
210 710	1.9 2.2
π _{CV} = 1.0C ^{0.12}	

Quality Factor - π

	<u>\</u>
Quality	π_{Q}
D	0.0010
) C	0.010
S	0.030
В	0.030
R	0.10
Р	0.30
М	1.0
L	1.5
Lower	10

Series Resistance Factor - π_{SR}

Circuit Resistance, CR (ohms/volt)	πSR
>0.8	.066
>0.6 to 0.8	.10
>0.4 to 0.6	.13
>0.2 to 0.4	.20
>0.1 to 0.2	.27
0 to 0.1	.33

CR = Eff. Res. Between Cap. and Pwr. Supply
Voltage Applied to Capacitor

Environment Factor - π_E

E				
Environment	πE			
GB	1.0			
G _F	2.0			
G _F G _M	8.0			
N _S	5.0			
N _U	14			
AIC AIF AUC	4.0			
A _{IF}	5.0			
Auc	12			
A _{UF}	20			
A _{RW}	24			
S _F	.40			
M _F	11			
ML	29			
м _L С _L	530			

10.13 CAPACITORS, FIXED, ELECTROLYTIC, TANTALUM, NON-SOLID

SPECIFICATION

MIL-C-3965 MIL-C-39006

STYLE CL CLR

DESCRIPTION

Tantalum, Electrolytic (Non-Solid)

Tantalum, Electrolytic (Non-Solid), Est. Rel.

$$\lambda_p = \lambda_b \pi_{CV} \pi_C \pi_Q \pi_E \text{ Failures/10}^6 \text{ Hours}$$

Base Failure Rate - Ab (T = 85°C Max Rated) (MIL-C-3965 Styles CL24-27, 34-37)

(IVIE-0-0303 Otyles OLE4-27, 04-07)					
i i	Stress				
T _A (℃)	.1	.3	.5	.7	.9
0	.0021	.0029	.0061	.013	.026
10	.0023	.0032	.0067	.014	.028
20	.0026	.0036	.0075	.016	.031
30	.0030	.0042	.0087	.019	.036
40	.0036	.0051	.011	.023	.044
50	.0047	.0066	.014	.029	.057
60	.0065	.0091	.019	.041	.079
70	.0098	.014	.029	.062	.12
80	.017	.023	.048	.10	.20
	F (c) 3	7	/ /	T. 272 \	90\

$$\lambda_{b} = .00165 \left[\left(\frac{S}{.4} \right)^{3} + 1 \right] \exp \left(2.6 \left(\frac{T + 273}{358} \right)^{9.0} \right)$$

Ratio of Operating to Rated Voltage

Operating voltage is the sum of applied D.C. voltage and peak A.C. voltage.

> Base Failure Rate - λ_b (T = 125°C Max Rated)

(MIL-C-3965 Styles CL20-23, 30-33, 40-43, 46-56, 64-67, 70-73; and all MIL-C-39006 Styles)

	Stress				
T _A (℃)	.1	.3	.5	.7	.9
0	.0018	.0026	.0053	.011	.022
10	.0019	.0026	.0055	.012	.023
20	.0020	.0028	.0057	.012	.024
30	.0021	.0029	.0061	.013	.026
40	.0023	.0032	.0066	.014	.028
50	.0025	.0035	.0072	.016	.030
60	.0028	.0040	.0082	.018	.034
70	.0033	.0046	.0096	.021	.040
80	.0041	.0057	.012	.025	.049
90	.0052	.0073	.015	.033	.064
100	.0071	.010	.021	.045	- 1
110	.011	.015	.031	.066	
120	.017	.024	.050	.11	

$$\lambda_{b} = .00165 \left[\left(\frac{S}{.4} \right)^{3} + 1 \right] exp \left(2.6 \left(\frac{T + 273}{398} \right)^{9.0} \right)$$

Ambient Temperature (°C)

Ratio of Operating to Rated Voltage

Operating voltage is the sum of applied D.C. voltage and peak A.C. voltage.

Base Failure Rate - λ_b (T = 175°C Max Rated)

(MIL-C-3965 Styles CL10, 13, 14, 16-18)					
T _A (℃)	.1	.3	tress .5	.7	.9
0	.0017	.0024	.0050	.011	.021
10	.0017	.0024	.0051	.011	.021
20	.0018	.0025	.0052	.011	.022
30	.0018	.0025	.0053	.011	.022
40	.0019	.0026	.0054	.012	.023
50	.0019	.0027	.0056	.012	.023
60	.002	.0028	.0058	.013	.024
70	.0021	.0030	.0062	.013	.02ι
80	.0023	.0032	.0066	.014	.028
90	.0025	.0035	.0072	.016	.030
100	.0028	.0039	.0080	.017	.034
110	.0032	.0044	.0092	.020	.039
120	.0037	.0052	.011	.023	
130	.0046	.0064	.013	.029	
140	.0059	.0082	.017	.037	
150	.0079	.011	.023	.049	
160	.011	.016	.033	.071	
170	.018	.025	.051		

$$\lambda_{b} = .00165 \left[\left(\frac{S}{.4} \right)^{3} + 1 \right] \exp \left(2.6 \left(\frac{T + 273}{448} \right)^{9.0} \right)$$

Ambient Temperature (°C)

VĐ

Ratio of Operating to Rated Voltage

Operating voltage is the sum of applied D.C. voltage and peak A.C. voltage.

10.13 CAPACITORS, FIXED, ELECTROLYTIC, TANTALUM, NON-SOLID

Capacitance Factor - π_{CV}

Capacitance, C (μF)	π _C V
.091 20 1100	.70 1.0 1.3
$\pi_{\text{CV}} = .82\text{C}^{0.066}$	

Construction Factor - π_C

Construction Type	π _C
Slug, All Tantalum Foil, Hermetic * Slug, Hermetic * Foil, Non-Hermetic * Slug, Non-Hermetic *	.30 1.0 2.0 2.5 3.0
i e	1

*Type of Seal Identified as Follows:

1) MIL-C-3965 (CL) - Note Last Letter in Part Number: G - Hermetic E - Non-Hermetic

Example: CL10BC700TPG is Hermetic

2) MIL-C-39006 (CLR) - Consult Individual Part Specification Sheet (slash sheet)

NOTE:

Foil Types - CL 20-25, 30-33, 40, 41, 51-54, 70-73 CLR 25, 27, 35, 37, 53, 71, 73

Slug Types - CL 10, 13, 14, 16, 17, 18, 55, 56,

64-66, 67

CLR 10, 14, 17, 65, 69, 89

All Tantalum - CL 26, 27, 34-37, 42, 43, 46-49 CLR 79

Quality Factor - π_{O}

Quality	π _Q
S	.030
R	.10
Р	.30
М	1.0
L	1.5
MIL-C-3965, Non-Est. Rel.	3.0
Lower	10

Environment Factor - π_F

E			
Environment	π _E		
G _B	1.0		
G _F G _M	2.0		
G _M	10		
N _S	6.0		
N _U	16		
	4.0		
A _{IF}	8.0		
AUC	14		
A _{UF}	30		
AIC AIF AUC AUF ARW	23		
S _F	.50		
M _F	13		
MŁ	34		
Mլ Cլ	610		

10.14 CAPACITORS, FIXED, ELECTROLYTIC, ALUMINUM

SPECIFICATION MIL-C-39018

STYLE CUR and CU DESCRIPTION

Electrolytic, Aluminum Oxide, Est. Rel. and Non-Est. Rel.

$$\lambda_p = \lambda_b^{\pi} c V^{\pi}_Q^{\pi} E$$
 Failures/10⁶ Hours

Base Failure Rate - λ_b (T = 85°C Max Rated) (MIL-C-39018 Style 71)

Stress							
T _A (℃)	.1	.3	.5	.7	.9		
0	.0095	.011	.019	.035	.064		
10	.012	.015	.024	.046	.084		
20	.017	.020	.033	.062	.11		
30	.023	.028	.046	.087	.16		
40	.034	.042	.068	.13	.23		
50	.054	.0 65	.11	.20	.36		
60	.089	.11	.18	.33	.60		
70	.16	.19	.31	.58	1.1		
80	.29	.35	.58	1.1	2.0		

$$\lambda_{b} = .00254 \left[\left(\frac{S}{.5} \right)^{3} + 1 \right] exp \left(5.09 \left(\frac{T + 273}{358} \right)^{5} \right)$$

T = Ambient Temperature (°C)

Ratio of Operating to Rated Voltage

Operating voltage is the sum of applied D.C. voltage and peak A.C. voltage.

Base Failure Rate - λ_b
(T = 105°C Max Rated)
(MIL-C-39018 Styles 16 and 17)

	Stress					
T _A (°C)	.1	.3	.5	.7	.9	
0	.0070	.0084	.014	.026	.047	
10	.0085	.010	.017	.031	.057	
20	.011	.013	.021	.040	.072	
30	.014	.017	.027	.051	.094	
40	.019	.022	.037	.069	.13	
50	.026	.031	.052	.097	.18	
60	.038	.046	.076	.14	.26	
70	.059	.071	.12	.22	.40	
80	.095	.11	.19	.35	.64	
90	.16	.20	.32	.61	1.1	
100	.30	.36	.59	1.1	2.0	

$$\lambda_b = .00254 \left[\left(\frac{S}{.5} \right)^3 + 1 \right] \exp \left(5.09 \left(\frac{T + 273}{378} \right)^5 \right]$$

T = Ambient Temperature (°C)

Ratio of Operating to Rated Voltage

Operating voltage is the sum of applied D.C. voltage and peak A.C. voltage.

Base Failure Rate - λ_b
(T = 125°C Max Rated)

(All MIL-C-39018 Styles Except 71, 16 and 17)					
T _A (℃)	.1	.3	tress .5	.7	.9
0	.0055	.0067	.011	.021	.038
10	.0065	.0078	.013	.024	.044
20	.0077	.0093	.015	.029	.052
30	.0094	.011	.019	.035	.064
40	.012	.014	.023	.044	.080
50	.015	.019	.030	.057	.10
60	.021	.025	.041	.077	.14
70	.029	.035	.057	.11	.20
80	.042	.050	.083	.16	.28
90	.064	.077	.13	.24	.43
100	.10	.12	.20	.38	
110	.17	.21	.34	.63	
120	.30	.37	.60	1.1	

$$\lambda_{b} = .00254 \left[\left(\frac{S}{.5} \right)^{3} + 1 \right] \exp \left(5.09 \left(\frac{T + 273}{398} \right)^{5} \right)$$

T = Ambient Temperature (°C)

S - Ratio of Operating to Rated Voltage

Operating voltage is the sum of applied D.C. voltage and peak A.C. voltage.

10.14 CAPACITORS, FIXED, ELECTROLYTIC, ALUMINUM

Capacitance Factor - π_{CV}

	<u>CV</u>
Capacitance, C (µF)	π _{CV}
2.5	.40
55	.70
400	1.0
1700	1.3
5500	1.6
14,000	1.9
32,000	2.2
65,000	2.5
120,000	2.8
π _{CV} = .34C ^{0.18}	

Environment	πE
G _B	1.0
G _F	2.0
G _M	12
N _S	6.0
N _U	17
Aic	10
A _{IF}	12
A _{UC}	28
AUF	35
A _{RW}	27
S _F	.50
M _F	14
	38
Mլ Cլ	690

Environment Factor - π_E

Quality Factor - π_Q

<u> </u>	
Quality	π_{Q}
S	.030
R	.10
P	.30
М	1.0
Non-Est. Rel.	3.0
Lower	10

10.15 CAPACITORS, FIXED, ELECTROLYTIC (DRY), ALUMINUM

SPECIFICATION MIL-C-62

STYLE CE **DESCRIPTION**

Aluminum, Dry Electrolyte, Polarized

 $\lambda_p = \lambda_b^{\pi} \kappa_C^{\pi} \kappa_D^{\pi}$ Failures/10⁶ Hours

Base Failure Rate - λ_b

(T = 85°C Max Rated)

	(1 - 00 0 Max 1 Made)					
Stress						
T _A (℃)	.1	.3	.5	.7	.9	
0	.0064	.0074	.011	.020	.034	
10	.0078	.009	.014	.024	.042	
20	.0099	.011	.017	.030	.053	
30	.013	.015	.023	.040	.070	
40	.018	.021	.031	.055	.096	
50	.026	.030	.046	.08	.14	
60	.041	.047	.071	.12	.22	
70	.068	.078	.12	.21	.36	
80	.120	.14	.21	.37	.65	

$$\lambda_{b} = .0028 \left[\left(\frac{S}{.55} \right)^{3} + 1 \right] \exp \left(4.09 \left(\frac{T + 273}{358} \right)^{5.9} \right)$$

T = Ambient Temperature (°C)

S - Ratio of Operating to Rated Voltage

Operating voltage is the sum of applied D.C. voltage and peak A.C. voltage.

Capacitance Factor - π_{CV}

Capacitance, C (μF)	π _C V
3.2 62 400 1600 4800 12,000 26,000 50,000 91,000	.40 .70 1.0 1.3 1.6 1.9 2.2 2.5 2.8
π _{CV} = .32C ^{0.19}	

Quality Factor - π_Q

Quality	πQ
MIL-SPEC	3.0
Lower	10

Environment Factor - π_{E}

Environment ractor "E			
Environment	π _E		
G _B	1.0		
G _F	2.0		
G _F G _M	12		
NS	6.0		
N _U	17		
A _{IC}	10		
A _{IF}	12		
AUC	28		
A _{UF}	35		
A _{RW}	27		
S _F	.50		
M _F	14		
ML	38		
м _L С _L	690		

10.16 CAPACITORS, VARIABLE, CERAMIC

SPECIFICATION MIL-C-81

STYLE CV **DESCRIPTION** Variable, Ceramic

 $\lambda_p = \lambda_b \pi_Q \pi_E$ Failures/10⁶ Hours

Base Failure Rate - λ_b

(T = 85°C Max Rated) (MIL-C-81 Styles CV 11, 14, 21, 31, 32, 34, 40, 41)

	Stress					
T _A (℃)	.1	.3	.5	.7	.9	
0	.0030	.016	.066	.18	.37	
10	.0031	.017	.069	.18	.39	
20	.0033	.018	.073	.20	.41	
30	.0036	.020	.080	.21	.45	
40	.0041	.022	.089	.24	.50	
50	.0047	.026	.10	.28	.59	
60	.0058	.031	.13	.34	.72	
70	.0076	.041	.17	.45	.94	
80	.011	.058	.24	.63	1.3	

$$\lambda_b = .00224 \left[\left(\frac{S}{.17} \right)^3 + 1 \right] \exp \left(1.59 \left(\frac{T + 273}{358} \right)^{10.1} \right)$$

T = Ambient Temperature (°C)

S = Ratio of Operating to Rated Voltage

Operating voltage is the sum of applied D.C. voltage and peak A.C. voltage.

Base Failure Rate - λ_b (T = 125°C Max Rated) (MIL-C-81 Styles CV 35, 36)

	Stress					
T _A (℃)	.1	.3	.5	.7	.9	
Ö	.0028	.015	.061	.16	.35	
10	.0028	.015	.062	.17	.35	
20	.0029	.016	.064	.17	.36	
30	.0030	.016	.066	.18	.37	
40	.0031	.017	.068	.18	.39	
50	.0033	.018	.072	.19	.41	
60	.0035	.019	.077	.21	.44	
70	.0038	.021	.084	.23	.48	
80	.0043	.023	.095	.25	.54	
90	.0050	.027	.11	.30	.63	
100	.0062	.033	.14	.36	.76	
110	.0079	.043	.17	.47	.98	
120	.011	.059	.24	.64	1.4	

$$\lambda_b = .00224 \left[\left(\frac{S}{.17} \right)^3 + 1 \right] \exp \left(1.59 \left(\frac{T + 273}{398} \right)^{10.1}$$

T = Ambient Temperature (°C)

Ratio of Operating to Rated Voltage

Operating voltage is the sum of applied D.C. voltage and peak A.C. voltage.

Quality Factor - πQ

Quality	πQ
MIL-SPEC	4
Lower	20

Environment Factor - π_E

	<u> </u>
Environment	πE
G _B	1.0
G _F	3.0
G _F G _M	13
N _S	8.0
NU	24
^A ic	6.0
A _{IC} A _{IF}	10
A _{UC}	37
A _{UF}	70
A _{RW}	36
S _F	.40
M _F	20
M_L	52
м _L С _L	950

10.17 CAPACITORS, VARIABLE, PISTON TYPE

SPECIFICATION MIL-C-14409

STYLE PC

DESCRIPTION

Variable, Piston Type, Tubular Trimmer

 $\lambda_p = \lambda_b \pi_Q \pi_E$ Failures/10⁶ Hours

Base Failure Rate - λ_b

(T = 125°C Max Rated)
-C-14409 Styles G. H. J. L. T)

(MIL-C-14409 Styles G, H, J, L, 1)							
1	Ī	Stress					
T _A (°C)	.1	.3	.5	.7	.9		
0	.0030	.0051	.013	.031	.063		
10	.0041	.0070	.018	.042	.085		
20	.0055	.0094	.024	.057	.11		
30	.0075	.013	.033	.077	.16		
40	.010	.017	.044	.10	.21		
50	.014	.024	.060	.14	.29		
60	.019	.032	.082	.19	.39		
70	.025	.043	.11	.26	.53		
80	.034	.059	.15	.35	.71		
90	.047	.079	.20	.48	.96		
100	.063	.11	.27	.65	1.3		
110	.086	.15	.37	.88	1.8		
120	.12	.20	.51	1.2	2.4		

$$\lambda_b = 7.3 \times 10^{-7} \left[\left(\frac{S}{.33} \right)^3 + 1 \right] \exp \left(12.1 \left(\frac{T + 273}{398} \right) \right)$$

Ratio of Operating to Rated Voltage Operating voltage is the sum of applied D.C. voltage and peak A.C. voltage.

> Base Failure Rate - λ_b (T = 150°C Max Rated) (MIL-C-14409 Characteristic Q)

	Stress					
T°C	.1	.3	.5	.7	.9	
0	.0019	.0032	.0081	.019	.038	
10	.0025	.0042	.011	.025	.051	
20	.0033	.0056	.014	.034	.068	
30	.0044	.0074	.019	.045	.09	
40	.0058	.0099	.025	.060	.12	
50	.0077	.013	.034	.079	.16	
60	.010	.018	.045	.11	.21	
70	.014	.023	.060	.14	.28	
80	.018	.031	.079	.19	.38	
90	.024	.041	.11	.25	.50	
100	.032	.055	.14	.33	.67	
110	.043	.073	.19	.44	.89	
120	.057	.097	.25	.59	1.2	
130	.076	.13	.33	.78	1.6	
140	.10	.17	.44	1.0	2.1	
150	.13	.23	.59	1.4	2.8	

$$\lambda_{b} = 7.3 \times 10^{-7} \left[\left(\frac{S}{.33} \right)^{3} + 1 \right] \exp \left(12.1 \left(\frac{T + 273}{423} \right) \right)$$

N/11 - 171 115 15 - 2 1 7 17 17

T = Ambient Temperature (°C)
S = Ratio of Operating to Rated Voltage Operating voltage is the sum of applied D.C. voltage and peak A.C. voltage.

Quality Factor - π_{Q}

π _Q
3
10

Environment Factor - π₋

E E				
Environment	π _E			
GB	1.0			
G _F	3.0			
G _M	12			
N _S	7.0			
N _U	18			
A _{IC}	3.0			
A _{IF}	4.0			
AUC	20			
A _{UF}	30			
A _{RW}	32			
S _F	.50			
MF	18			
ML	46			
м _L с _L	830			

10.18 CAPACITORS, VARIABLE, AIR TRIMMER

SPECIFICATION MIL-C-92

STYLE

DESCRIPTION Variable, Air Trimmer

$$\lambda_p = \lambda_b^{\pi} \pi_Q^{\pi}$$
 Failures/10⁶ Hours

Base Failure Rate - λ_b

(T = 85°C Max Rated)

		Stress						
	T _A (℃)	.1	.3	.5	.7	.9		
	0	.0074	.013	.032	.076	.15		
	10	.010	.017	.044	.10	.21		
	20	.014	.023	.059	.14	.28		
	30	.018	.031	.08	.19	.38		
	40	.025	.042	.11	.26	.52		
I	50	.034	.057	.15	.35	.70		
	60	.046	.078	.20	.47	.94		
	70	.062	.10	.27	.63	1.3		
I	80	.083	.14	.36	.85	1.7		
f								

$$\lambda_{\rm b} = 1.92 \times 10^{-6} \left[\left(\frac{\rm S}{.33} \right)^3 + 1 \right] \exp \left(10.8 \left(\frac{\rm T+273}{358} \right)^3 \right)$$

T = Ambient Temperature (°C)

S = Ratio of Operating to Rated Voltage

Operating voltage is the sum of applied D.C. voltage and peak A.C. voltage.

Environment Factor - π_E

	E
Environment	πΕ
G _B	1.0
G _F	3.0
G _F G _M	13
N _S	8.0
N _U	24
A _{IC}	6.0
A _{IF}	10
A _{UC}	37
A _{UF}	70
A _{RW}	36
S _F	.50
M _F	20
M_L	52
M _L C _L	950

Quality Factor - TO

π _Q
5
20

10.19 CAPACITORS, VARIABLE AND FIXED, GAS OR VACUUM

SPECIFICATION MIL-C-23183

STYLE CG

DESCRIPTION

Gas or Vacuum Dielectric, Fixed and Variable, Ceramic or

Glass Envelope

$$\lambda_p = \lambda_b \pi_{CF} \pi_Q \pi_E$$
 Failures/10⁶ Hours

Base Failure Rate - λ_b (T = 85°C Max Rated) (Styles CG 20, 21, 30, 31, 32, 40-44, 51, 60-64,

67)							
	Stress						
T℃	.1	.3	.5	.7	.9		
0	.015	.081	.33	.88	1.9		
10	.016	.084	.34	.92	1.9		
20	.017	.090	.37	.98	2.1		
30	.018	.098	.40	1.1	2.2		
40	.020	.11	.45	1.2	2.5		
50	.024	.13	.52	1.4	2.9		
60	.029	.16	.64	1.7	3.6		
70	.038	.20	.83	2.2	4.7		
80	.054	.29	1.2	3.2	6.6		

$$\lambda_b = .0112 \left[\left(\frac{S}{.17} \right)^3 + 1 \right] \exp \left(1.59 \left(\frac{T + 273}{358} \right)^{10.1} \right)$$

Ambient Temperature (°C)Ratio of Operating to Rated Voltage

Operating voltage is the sum of applied D.C. voltage and peak A.C. voltage.

Base Failure Rate - λ_b (T = 100°C Max Rated) (Styles CG 65, 66)

Y STATE OF THE STA							
İ	Stress						
T℃	.1	.3	.5	.7	.9		
0	.014	.078	.30	.85	1.8		
10	.015	.080	.33	.87	1.8		
20	.015	.084	.34	.91	1.9		
30	.016	.088	.36	.96	2.0		
40	.018	.095	.39	1.0	2.2		
50	.020	.11	.43	1.2	2.4		
60	.022	.12	.49	1.3	2.8		
70	.027	.14	.59	1.6	3.3		
80	.034	.18	.74	2.0	4.2		
90	.045	.24	.99	2.7	5.6		
100	.066	.36	1.5	3.9	8.2		

$$\lambda_{b} = .0112 \left[\left(\frac{S}{.17} \right)^{3} + 1 \right] exp \left(1.59 \left(\frac{T + 273}{373} \right)^{10.1} \right)$$

Ambient Temperature (°C)

Ratio of Operating to Rated Voltage

Operating voltage is the sum of applied D.C. voltage and peak A.C. voltage.

Base Failure Rate - λ_b (T = 125°C Max Rated)

	(Style CG 50) Stress				
T℃	.1	.3_	.5	.7	.9
0	.014	.075	.31	.82	1.7
10	.014	.077	.31	.83	1.8
20	.014	.078	.32	.85	1.8
30	.015	.08	.33	.88	1.9
40	.016	.084	.34	.91	1.9
50	.016	.088	.36	.96	2.0
60	.018	.095	.39	1.0	2.2
70	.019	.10	.42	1.1	2.4
80	.022	.12	.48	1.3	2.7
90	.025	.14	.55	1.5	3.1
100	.031	.17	.68	1.8	3.8
110	.04	.21	.87	2.3	4.9
120	.055	.29	1.2	3.2	6.8

$$\lambda_{b} = .0112 \left[\left(\frac{S}{.17} \right)^{3} + 1 \right] \exp \left(1.59 \left(\frac{T + 273}{398} \right) 10.1 \right)$$

Ambient Temperature (°C)

Ratio of Operating to Rated Voltage

Operating voltage is the sum of applied D.C. voltage and peak A.C. voltage.

10.19 CAPACITORS, VARIABLE AND FIXED, GAS OR VACUUM

Configuration Factor - π_{CF}

	<u> </u>
Configuration	^π CF
Fixed	.10
Variable	1.0
	. I

Quality Factor - π_{O}

Quality	- 4		
Quality	πQ		
MIL-SPEC	3.0		
Lower	20		

Environment Factor - π_{E}

<u> </u>			
Environment	πE		
G _B	1.0		
G _F	3.0		
G _M	14		
N _S	8.0		
N _U	27		
AIC	10		
A _{IF}	18		
AUC	70		
A _{UF}	108		
A _{RW}	40		
S _F	.50		
M _F	N/A		
ML	N/A		
Mլ Cլ	N/A		

10.20 CAPACITORS, EXAMPLE

Example

Given:

A 400 VDC rated capacitor type CQ09A1KE153K3 is being used in a fixed ground environment, 55°C component ambient temperature, and 200 VDC applied with 50 Vrms @ 60 Hz. The capacitor is being procured in full accordance with the applicable specification.

The letters "CQ" in the type designation indicate that the specification is MIL-C-19978 and that it is a Non-Established Reliability quality level. The 1st "K" in the designation indicates characteristic K. The "E" in the designation corresponds to a 400 volt DC rating. The "153" in the designation expresses the capacitance in picofarads. The first two digits are significant and the third is the number of zeros to follow. Therefore, this capacitor has a capacitance of 15,000 picofarads. (NOTE: Pico = 10^{-12} , μ = 10^{-6})

The appropriate model for CQ style capacitors is given in Section 10.3. Based on the given information the following model factors are determined from the tables shown in Section 10.3. Voltage stress ratio must account for both the applied DC volts and the peak AC voltage, hence,

$$S = .68$$

$$S = \frac{DC \text{ Volts Applied} + \sqrt{2} \text{ (AC Volts Applied)}}{DC \text{ Rated Voltage}} =$$

$$\frac{200 + \sqrt{2}(50)}{400} = .68$$

$$\lambda_b$$
 - .0082

Substitute S = .68 and T_A = 55°C into equation shown with Characteristic K λ_b Table.

$$\pi_{\text{CV}} = .94$$

$$\pi_{\text{O}} = 10$$

Use Table Equation (Note 15,000 pF = $.015 \mu$ F)

 $\lambda_{\rm p} = \lambda_{\rm b} \, \pi_{\rm CV} \, \pi_{\rm Q} \, \pi_{\rm E} = (.0082)(.94)(10)(2) = .15 \, \text{Failures/} 10^6 \, \text{Hours}$

STYLE

TF

TP

MIL-HDBK-217F

11.1 INDUCTIVE DEVICES, TRANSFORMERS

SPECIFICATION

MIL-T-27

MIL-T-21038 MIL-T-55631

DESCRIPTION

Audio, Power and High Power Pulse

Low Power Pulse

IF, RF and Discriminator

 $\lambda_p = \lambda_b^{\pi} \pi_Q^{\pi}$ Failures/10⁶ Hours

Base Failure Rate - λb

	Maximum Rated Operating Temperature (°C)					
T _{HS} (℃)	85 ¹	105 ²	130 ³	155 ⁴	170 ⁵	>170 ⁶
30	.0024	.0023	.0022	.0021	.0018	.0016
35	.0026	.0023	.0023	.0022	.0018	.0016
40	.0028	.0024	.0024	.0022	.0019	.0016
45	.0032	.0025	.0025	.0022	.0019	.0016
50	.0038	.0027	.0026	.0023	.0020	.0017
55	.0047	.0029	.0027	.0023	.0020	.0017
60	.0060	.0032	.0029	.0023	.0021	.0017
65	.0083	.0035	.0030	.0024	.0021	.0017
70	.012	.0040	.0033	.0025	.0022	.0017
75	.020	.0047	.0035	.0026	.0023	.0017
80	.036	.0057	.0039	.0027	.0024	.0017
85	.075	.0071	.0043	.0028	.0024	.0017
90		.0093	.0048	.0029	.0025	.0018
95		.013	.0054	.0031	.0026	.0018
100		.019	.0062	.0033	.0027	.0018
105		.030	.0072	.0035	.0028	.0018
110			.0085	.0038	.0030	.0019
115			.010	.0042	.0031	.0019
120			.013	.0046	.0032	.0019
125			.016	.0052	.0034	.0020
130			.020	.0059	.0036	.0020
135				.0068	.0038	.0021
140				.0079	.0040	.0021
145				.0095	.0042	.0022
150				.011	.0044	.0023
155]			.014	.0047	.0024
160					.0050	.0025
165					.0053	.0026
170					.0056	.0027
175		ļ				.0029
180		ì				.0030
185						.0032

NOTE: The models are valid only if THS is not above the temperature rating for a given insulation class.

$$\lambda_{b} = .0018 \exp \left(\frac{T_{HS} + 273}{329} \right) 15.6$$

MIL-T-27 Insulation Class Q, MIL-T-21038 Insulation Class Q, and MIL-T-55631 Insulation Class Q.*

$$\lambda_{b} = .002 \exp\left(\frac{T_{HS} + 273}{352}\right)^{14}$$

MIL-T-27 Insulation Class R, MIL-T-21038 Insulation Class R, and MIL-T-55631 Insulation Class A.*

$$\lambda_{b} = .0018 \exp\left(\frac{T_{HS} + 273}{364}\right) 8.7$$

MIL-T-27 insulation Class S, MIL-T-21038 insulation Class S, and MIL-T-55631 insulation Class B.*

MIL-T-27 Insulation Class V, MIL-T-21038 Insulation Class T, and MIL-T-55631 Insulation Class C.*

MIL-T-27 Insulation Class T and MIL-T-21038 Insulation Class U.*

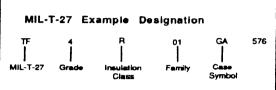
T_{HS} = Hot Spot Temperature (°C), See Section 11.3.

MIL-T-27 Insulation Class U and MIL-T-21038 Insulation Class V.*

*Refer to Transformer Application Note for Determination of Insulation Class

11.1 INDUCTIVE DEVICES, TRANSFORMERS

Quality Factor - TO

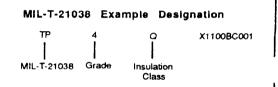

Family Type*	MIL-SPEC	Lower	
Pulse Transformers	1.5	5.0	
Audio Transformers	3.0	7.5	
Power Transformers and Filters	8.0	30	
RF Transformers	12	30	

 Refer to Transformer Application Note for Determination of Family Type

Environment Factor - π_E

E			
Environment	π _E		
G _B	1.0		
G _F	6.0		
G _F	12		
N _S	5.0		
NU	16		
A _{IC}	6.0		
A _{IF}	8.0		
Auc	7.0		
A _{UF}	9.0		
A _{RW}	24		
S _F	.50		
M _F	13		
ML	34		
c _L	610		

TRANSFORMER APPLICATION NOTE: Insulation Class and Family Type Determination



Family Type Codes Are:

Power Transformer and Filter: 01 thru 09, 37 thru 41

Audio Transformer: 10 thru 21, 50 thru 53

Pulse Transformer: 22 thru 36, 54

MIL-T-55631. The Transformers are Designated with the following Types, Grades and Classes.

Type I - Intermediate Frequency Transformer
Type II - Radio Frequency Transformer

Type III - Discriminator Transformer

Grade 1 - For Use When Immersion and Moisture Resistance Tests are

Grade 2 - For Use When Moisture Resistance Test is Required

For Use in Sealed Assemblies

Class O - 85°C Maximum Operating

Grade 3

Required

Class A - 105°C Maximum Operating
Temperature

Class B - 125°C Maximum Operating

Temperature
Class C - > 125°C Maximum Operating

Temperature

enotes the maximum opera

The class denotes the maximum operating temperature (temperature rise plus maximum ambient temperature).

11.2 INDUCTIVE DEVICES, COILS

SPECIFICATION

MIL-C-15305 MIL-C-39010

STYLE

DESCRIPTION

Fixed and Variable, RF Molded, RF, Est. Rel.

 $\lambda_p = \lambda_b \pi_C \pi_Q \pi_E$ Failures/10⁶ Hours

Base Failure Rate - λμ

			0	
		aximum Ope	rating Temp	erature (°C)
T _{HS} (°C)	85 ¹	105 ²	125 ³	150 ⁴
30	.00044	.00043	.00039	.00037
35	.00048	.00044	.0004	.00037
40	.00053	.00046	.00042	.00037
45	.0006	.00048	.00043	.00038
50	.00071	.00051	.00045	.00038
55	.00087	.00055	.00048	.00039
60	.0011	.0006	.00051	.0004
6 5	.0015	.00067	.00054	.00041
70	.0023	.00076	.00058	.00042
75	.0037	.00089	.00063	.00043
80	.0067	.0011	.00069	.00044
85	.014	.0013	.00076	.00046
90	l	.0018	.00085	.00047
95		.0024	.00096	.0005
100		.0036	.0011	.00052
105		.0057	.0013	.00055
110			.0015	.00059
115			.0018	.00063
120			.0022	.00068
125			.0028	.00075
130				.00083
135				.00093
140				.0011
145				.0012
150				.0014

NOTE: The models are valid only if $T_{\mbox{\scriptsize HS}}$ is not above the temperature rating for a given insulation class.

2
$$\lambda_{b} = .000379 \exp\left(\frac{T_{HS} + 273}{352}\right)^{-14}$$

Insulation Class O.*

$$\lambda_{\rm b} = .000379 \exp\left(\frac{{\rm T}_{\rm HS} + 273}{352}\right)^{-14}$$

MIL-C-15305 Insulation Class A and MIL-C-39010 Insulation Class A.*

$$\lambda_b = .000319 \exp \left(\frac{T_{HS} + 273}{364} \right) 8.7$$

MIL-C-15305 Insulation Class B and MIL-C-39010 Insulation Class B.*

$$\lambda_{\rm b} = .00035 \exp \left(\frac{{\rm T_{HS}} + 273}{409} \right)^{10}$$

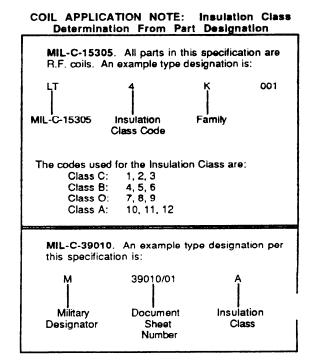
MIL-C-15305 Insulation Class C and MIL-C-39010

T_{HS} = Hot Spot Temperature (°C), See Section 11.3.

*Refer to Coil Application Note for Determination of insulation Class.

Construction Factor - π_C

Construction	π _C
Fixed	1
Variable	2
	f


Quality Factor - TO

Quality	πο
S	.03
R	.10
Р	.30
М	1.0
MIL-C-15305	4.0
Lower	20

11.2 INDUCTIVE DEVICES, COILS

Environment Factor - π_{\sqsubseteq}

E		
Environment	π _E	
G _B	1.0	
G _F	4.0	
G _F G _M	12	
N _S	5.0	
N _U	16	
A _{IC}	5.0	
A _{IF}	7.0	
AUC	6.0	
A _{UF}	8.0	
A _{RW}	24	
S _F	.50	
M _F	13	
ML	34	
M _L C _L	610	

11.3 INDUCTIVE DEVICES, DETERMINATION OF HOT SPOT TEMPERATURE

Hot Spot temperature can be estimated as follows:

$$T_{HS} = T_A + 1.1 (\Delta T)$$

where:

T_{HS} = Hot Spot Temperature (°C)

T_A = Inductive Device Ambient Operating Temperature (°C)

ΔT = Average Temperature Rise Above Ambient (°C)

ΔT can either be determined by the appropriate "Temperature Rise" Test Method paragraph in the device base specification (e.g., paragraph 4.8.12 for MIL-T-27E), or by approximation using one of the procedures described below.

ΔT Approximation

	Information Known	ΔT Approximation
1.	MIL-C-39010 Slash Sheet Number MIL-C-39010/1C-3C, 5C, 7C, 9A, 10A, 13, 14	ΔT = 15°C
	MIL-C-39010/4C, 6C, 8A, 11, 12	ΔT = 35°C
2.	Power Loss Case Radiating Surface Area	$\Delta T = 125 \text{ W}_{L}/A$
3.	Power Loss Transformer Weight	$\Delta T = 11.5 W_L/(Wt.)^{.6766}$
4.	Input Power Transformer Weight (Assumes 80% Efficiency)	$\Delta T = 2.1 \text{ W}_{1}/(\text{Wt.}).6766$

 $W_1 = Power Loss (W)$

A = Radiating Surface Area of Case (in²). See below for MIL-T-27 Case Areas

Wt. = Transformer Weight (lbs.)

W_i = Input Power (W)

NOTE: Methods are listed in preferred order (i.e., most to least accurate). MIL-C-39010 are microminiature devices with surface areas less than 1 in². Equations 2-4 are applicable to devices with surface areas from 3 in² to 150 in². Do not include the mounting surface when determining radiating surface area.

	MIL-T-	27 Case Radiatine	Areas (Excludes M	ounting Surface	
Case	Area (in ²)	Case	Area (in ²)	Case	Area (in ²)
AF	4	GB	33	LB	82
AG	7	GA	43	LA	98
AH	11	HB .	42	MB	98
AJ	18	HA	53	MA	115
EB	21	JB	58	NB	117
EA	23	JA	71	NA	139
FB	25	KB	72	OA	146
FA	31	KA	84		

11-5

12.1 ROTATING DEVICES, MOTORS

The following failure-rate model applies to motors with power ratings below one horsepower. This model is applicable to polyphase, capacitor start and run and shaded pole motors. It's application may be extended to other types of fractional horsepower motors utilizing rolling element grease packed bearings. The model is dictated by two failure modes, bearing failures and winding failures. Application of the model to D.C. brush motors assumes that brushes are inspected and replaced and are not a failure mode. Typical applications include fans and blowers as well as various other motor applications. The model is based on Reference 4, which contains a more comprehensive treatment of motor life prediction methods. The reference should be reviewed when bearing loads exceed 10 percent of rated load, speeds exceed 24,000 rpm or motor loads include motor speed slip of greater than 25 percent.

The instantaneous failure rates, or hazard rates, experienced by motors are not constant but increase with time. The failure rate model in this section is an average failure rate for the motor operating over time period "t". The motor operating time period (t-hours) is selected by the analyst. Each motor must be replaced when it reaches the end of this period to make the calculated λ_p valid. The average failure rate, λ_p , has been obtained by dividing the cumulative hazard rate by t, and can be treated as a constant failure rate and added to other part failure rates from this Handbook.

$$\lambda_p = \left[\frac{t^2}{\alpha_B 3} + \frac{1}{\alpha_W}\right] \times 10^6 \text{ Failures/} 10^6 \text{ Hours}$$

Bearing & Winding Characteristic Life - α_B and α_W

T _A (°C)	α _B (Hr.)	α _W (Hr.)	T _A (°C)	α _B (Hr.)	α _W (Hr.)
-40	310	1.9e+08	55	44000	2.3e+05
-35	310	1.2e+08	60	3500 0	1.8e+05
-30	330	7. 4e +07	65	27000	1.49+05
-25	370	4.7 e +07	70	22000	1.1e+05
-20	460	3.1e+07	75	17000	8.8e+04
-15	660	2.0e+07	80	14000	7.09+04
-10	1100	1.4e+07	85	11000	5.7e+04
-5	1900	9.2e+06	90	9100	4.6e+04
0	3600	6.4e+06	95	7400	3.80+04
5	6700	4.5e+06	100	6100	3.1e+04
10	13000	3.2e+06	105	5000	2.5e+04
15	23000	2.3e+06	110	4200	2.1e+04
20	39000	1.6e+06	115	3500	1.8e+04
25	60000	1.2e+06	120	2900	1.5e+04
30	78000	8.9e+05	125	2400	1.2e+04
35	86000	6.60+05	130	2100	1.0e+04
40	80000	5.0e+05	135	1700	8.9e+03
45	68000	3.8e+05	140	1500	7.5e+03
50	55000	2.9e+-5		. 200	

$$\alpha_{\text{B}} = \begin{bmatrix} 10^{\left(2.534 \cdot \frac{2357}{T_{\text{A}} + 273}\right)} + \frac{1}{\left(20 \cdot \frac{4500}{T_{\text{A}} + 273}\right)} \end{bmatrix}$$

$$\alpha_{\text{M}} = 10^{\left[\frac{2357}{T_{\text{A}} + 273} - 1.83\right]}$$

α_B = Weibull Characteristic Life for the Motor Bearing

α_W = Weibull Characteristic Life for the Motor Windings

T_Δ = Ambient Temperature (°C)

Motor Operating Time Period (Hours)

NOTE: See next page for method to calculate α_B and α_W when temperature is not constant.

12.1 ROTATING DEVICES, MOTORS

^αCalculation for Cycled Temperature

The following equation can be used to calculate a weighted characteristic life for both bearings and windings (e.g., for bearings substitute α_B for all α 's in equation).

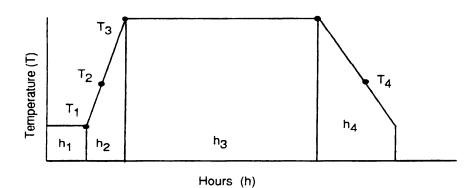
$$\alpha = \frac{\begin{pmatrix} h_1 + h_2 + h_3 + \cdots + h_m \end{pmatrix}}{\frac{h_1}{\alpha_1} + \frac{h_2}{\alpha_2} + \frac{h_3}{\alpha_3} + \cdots + \frac{h_m}{\alpha_m}}$$

where:

 α = either α_B or α_W

 h_1 = Time at Temperature T_1

 h_2 = Time to Cycle From Temperature T_1 to T_3


 h_3 = Time at Temperature T_3

h_m = Time at Temperature T_m

 α_1 = Bearing (or Winding) Life at T_1

 α_2 = Bearing (or Winding) Life at T_2

NOTE:
$$T_2 = \frac{T_1 + T_3}{2}$$
, $T_4 = \frac{T_3 + T_1}{2}$

Thermal Cycle

12.2 ROTATING DEVICES, SYNCHROS AND RESOLVERS

DESCRIPTION

Rotating Synchros and Resolvers

$$\lambda_p = \lambda_b^{\pi} \pi_N^{\pi} \pi_E$$
 Failures/10⁶ Hours

NOTE: Synchros and resolvers are predominately used in service requiring only slow and infrequent motion. Mechanical wearout problems are infrequent so that the electrical failure mode dominates, and no mechanical mode failure rate is required in the model above.

Base Failure Rate - λ_b

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
35 .0088 90 .041 40 .0095 95 .052 45 .010 100 .069 50 .011 105 .094 55 .013 110 .13 60 .014 115 .19 65 .016 120 .29 70 .019 125 .45 75 .022 130 .74	T _F (℃)	λ _b	T _F (℃)	λ _b
	35 40 45 50 55 60 65 70 75	.0088 .0095 .010 .011 .013 .014 .016 .019	90 95 100 105 110 115 120 125 130	.041 .052 .069 .094 .13 .19 .29 .45

$$\lambda_{b} = .00535 \exp\left(\frac{T + 273}{334}\right)^{8.5}$$

 T_F = Frame Temperature (°C)

If Frame Temperature is Unknown Assume T_F = 40 °C + Ambient Temperature

Size Factor - π_S

		πS	
DEVICE TYPE	Size 8 or Smaller	Size 10-16	Size 18 or Larger
Synchro	2	1.5	1
Resolver	3	2.25	1.5

Number of Brushes Factor - π_N

Number of Brushes	π _N
2	1.4
3	2.5
4	3.2

Environment Factor - π_{E}

	E
Environment	πE
G _B	1.0
G _F	2.0
G_M	12
N _S	7.0
N _U	18
	4.0
A _{IF}	6.0
^A IC ^A IF ^A UC	16
^A UF	25
A _{RW}	26
S _F	.50
M _F	14
ML	36
M _L C _L	680

12.3 ROTATING DEVICES, ELAPSED TIME METERS

DESCRIPTIONElapsed Time Meters

 $\lambda_p = \lambda_b^{\pi} \pi_E$ Failures/10⁶ Hours

Base Failure Rate - λ_b

Туре	λ _b
A.C.	20
Inverter Driven	30
Commutator D.C.	80

Temperature Stress Factor - π_T

Operating T (°C)/Rated T (°C)	πΤ
0 to .5	.5
.6	.6
.8	.8
1.0	1.0

Environment Factor - $\pi_{\rm F}$

	<u> </u>
Environment	πE
G _B	1.0
G _F	2.0
G _B G _F G _M	12
N _S	7.0
N _U	18
	5.0
A _{IF}	8.0
A _{UC}	16
A _{UF}	25
A _{IC} A _{IF} A _{UC} A _{UF} A _{RW}	26
S _F M _F	.50
M _F	14
ML	38
м _L С _L	N/A

12.4 ROTATING DEVICES, EXAMPLE

Example

Given:

Fractional Horsepower Motor operating at a thermal duty cycle of: 2 hours at 100°C, 8 hours at 20°C, 0.5 hours from 100°C to 20°C, and 0.5 hours from 20°C back to 100°C. Find the average failure rate for 4000 hours operating time.

The basic procedure is to first determine operating temperature at each time interval (or averge temperature when traversing from one temperature to another, e.g. T_2 = (100 + 20)/2 = 60°C. Determine α_B and α_W at each temperature and then use these values to determine a weighted average α_B and α_W to use in the λ_D equation.

13.1 RELAYS, MECHANICAL

SPECIFICATION

MIL-R-5757 MIL-R-6106 MIL-R-19648

MIL-R-83725

MIL-R-83726 (Except Class C, Solid State Type)

MIL-R-19523 MIL-R-39016

$\lambda_p = \lambda_b \pi_L \pi_C \pi_C \gamma_C \pi_F \pi_Q \pi_E$ Failures/10⁶ Hours

Base Failure Rate - λ_b

5450 1 41510 1 1415			
1	Rated	Temperature	
T _A (℃)	85°C ¹	125°C ²	
25	.0060	.0059	
30	.0061	.0060	
35	.0063	.0061	
40	.0065	.0062	
45	.0068	.0064	
50	.0072	.0066	
55	.0077	.0068	
60	.0084	.0071	
65	.0094	.0074	
70	.011	.0079	
75	.013	.0083	
80	.016	.0089	
85	.020	.0097	
90	1 1	.011	
95		.012	
100	1	.013	
105		.015	
110		.018	
115	1	.021	
120		.025	
125		.031	

1.
$$\lambda_b = .00555 \exp\left(\frac{T_A + 273}{352}\right)^{15.7}$$
2. $\lambda_b = .0054 \exp\left(\frac{T_A + 273}{377}\right)^{10.4}$

2.
$$\lambda_{b} = .0054 \exp\left(\frac{T_{A} + 273}{377}\right)^{10.4}$$

Ambient Temperature (°C)

Contact Form Factor - TC (Applies to Active Conducting Contacts)

3PDT

4PDT

Contact Form	π _C
SPST	1.00
DPST	1.50
SPDT	1.75
3PST	2.00
4PST	2.50
DPDT	3.00

4.25

5.50

Load Stress Factor - πι

DESCRIPTION

Mechanical Relay

		Load Type	
S	Resistive 1	Inductive ²	Lamp ³
.05	1.00	1.02	1.06
.10	1.02	1.06	1.28
.20	1.06	1.28	2.72
.30	1.15	1.76	9.49
.40	1.28	2.72	54.6
.50	1.48	4.77	
.60	1.76	9.49	
.70	2.15	21.4	
.80	2.72		
.90	3.55		
1.00	4.77		
.90	3.55		

1.
$$\pi_L = \exp\left(\frac{S}{.8}\right)^2$$
 3. $\pi_L = \exp\left(\frac{S}{.2}\right)^2$

3.
$$\pi_{L} = \exp\left(\frac{S}{.2}\right)^2$$

2.
$$\pi_L = \exp\left(\frac{S}{.4}\right)^2$$
 S = $\frac{\text{Operating Load Current}}{\text{Rated Resistive Load Current}}$

For single devices which switch two different load types, evaluate π_{l} for each possible stress load type combination and use the worse case (largest π_i).

Cycling Factor - πCYC

	0.0
Cycle Rate (Cycles per Hour)	π _{CYC} (MIL-SPEC)
	Cycles per Hour
≥ 1.0	10
< 1.0	0.1

Cycle Rate (Cycles per Hour)	π _{CYC} (Lower Quality)
> 1000	$\left(\frac{\text{Cycles per Hour}}{100}\right)^2$
10 - 1000	Cycles per Hour 10
< 10	1.0

NOTE: Values of π_{CYC} for cycling rates beyond the basic design limitations of the relay are not valid. Design specifications should be consulted prior to evaluation of π_{CYC} .

13.1 RELAYS, MECHANICAL

Quality Factor - *

Quality	*0
R	.10
P	.30 .45 .60
X	.45
U	
M	1.0
L	1.5
Non-Est. Rel.	3.0

Environment Factor - *E

	π _E	
Environment	MIL-SPEC	Lower Quality
e ⁸	1.0	2.0
G _F G _M	2.0	5.0
G _M	15	44
N _S	8.0	24
N _U	27	78
Aic	7.0	15
A _{IF}	9.0	20
	11	28
Auc Auf	12	38
A _{FIW}	46	1:40
	.50	1.0
S _F M _F	25	72
	68	200
M լ Cլ	N/A	N/A

Application and Construction Factor - $\boldsymbol{\pi}_{\boldsymbol{F}}$

Contact Rating Type Construction Type MIL-SPEC Quality Signal Current (Low mv and ma) O-5 Amp General Purpose Solenoid Sensitive (0 - 100 mw) Sensitive (0 - 100 mw) Construction Type MIL-SPEC Quality Armature (Long) 4 8 Magnetic Latching 4 8 Balanced Armature 7 14 Solenoid 7 14 Armature (Long) 3 6 10 Sensitive (0 - 100 mw) Armature (Long and 5 10 Short) Mercury Wetted 2 6 Magnetic Latching 6 12
Signal Current (Low mv and ma)
CLow mv and ma) Mercury Wetted 1 3 3 4 8 8
Amgnetic Latching 4 8
Balanced Armsture 7 14
Solenoid 7 14
Purpose Balanced Armature 5 10 Solenoid 6 12 Sensitive (0 - 100 mw) Armature (Long and 5 10 Short) Mercury Wetted 2 6 Megnetic Latching 6 12
Solenoid 6 12 Sensitive (0 - 100 mw) Armature (Long and 5 10 Short) Mercury Wetted 2 6 Megnetic Latching 6 12
Sensitive (0 - 100 mw) Short) Mercury Wested 2 6 Megnetic Latching 6 12
(0 - 100 mw) Short) Wested 2 6 Megnetic Latching 6 12
Mercury Wested 2 6 Megnetic Latching 6 12
Magnetic Latching 6 12
Meter Movement 100 100
Balanced Armature 10 20
Polarized Armature (Short) 10 20
Meter Movement 100 100
Vibrating Dry Reed 6 12
Reed Mercury Wetted 1 3
High Speed Armature (Balanced 25 NA and Short)
Dry Reed 6 NA
Thermal Birnetal 10 20
Electronic 9 12
Time Delay,
Non-
Thermal
Latching, Dry Reed 10 20
Magnetic Mercury Wetted 5 10 Balanced Aramture 5 10
5-20 High Vacuum (Glass) 20 40
Amp Voltage Vacuum (Ceramic) 5 10
Medium Armature (Long and 3 6
Power Short) Mercury Wetted 1 3
Magnetic Latching 2 6
Mechanical Latching
Balanced Armature 3 6
Solenoid 2 6
2 6
25-600 Contactors Armature (Short) 7 14
Amp (High Mechanical Latching 12 24
Current) Balanced Armature 10 20
Solenoid 5 10

13.2 RELAYS, SOLID STATE AND TIME DELAY

SPECIFICATION MIL-R-28750 MIL-R-83726

DESCRIPTION

Relay, Solid State

Relay, Time Delay, Hybrid and Solid State

The most accurate method for predicting the failure rate of solid state (and solid state time delay) relays is to sum the failure rates for the individual components which make up the relay. The individual component failure rates can either be calculated from the models provided in the main body of this Handbook (Parts Stress Method) or from the Parts Count Method shown in Appendix A, depending upon the depth of knowledge the analyst has about the components being used. If insufficient information is available, the following default model can be used:

 $\lambda_p = \lambda_b \pi_Q \pi_E$ Failures/10⁶ Hours

Base Failure Rate - λ₊

Dubb i dilaite i lat	~ ~ b
Relay Type	λ _b
Solid State	.40
Solid State Time Delay	.50
Hybrid	.50

Quality Factor - To

Quality	πο	
MIL-SPEC	1.0	
Lower	4.0	

Environment Factor - π_E

π _E
1.0
3.0
12
6.0
17
12
19
21
32
23
.40
12
33
590

14.1 SWITCHES, TOGGLE OR PUSHBUTTON

SPECIFICATION

MIL-S-3950 MIL-S-8805 MIL-S-22885

MIL-S-8834

MIL-S-83731

DESCRIPTION

Snap-action, Toggle or Pushbutton,

Single Body

$\lambda_p = \lambda_b \pi_{CYC} \pi_L \pi_C \pi_E$ Failures/10⁶ Hours

Base Failure Rate - λ_b

U			
Description	MIL-SPEC	Lower Quality	
Snap-action	.00045	.034	
Non-snap Action	.0027	.040	

Cycling Factor - π_{CYC}

Switching Cycles per Hour	πCYC
≤ 1 Cycle/Hour	1.0
> 1 Cycle/Hour	Number of Cycles/Hour

Load Stress Factor - π_l

Stress		Load Type	
S	Resistive	Inductive	Lamp
0.05	1.00	1.02	1.06
0.1	1.02	1.06	1.28
0.2	1.06	1.28	2.72
0.3	1.15	1.76	9.49
0.4	1.28	2.72	54.6
0.5	1.48	4.77	
0.6	1.76	9.49	
0.7	2.15	21.4	
0.8	2.72		
0.9	3.55		
1.0	4.77		

S = Operating Load Current Rated Resistive Load Current

 π_L = exp (S/.8)² for Resistive Load π_L = exp (S/.4)² for Inductive Load π_1 = exp (S/.2)² for Lamp Load

NOTE: When the switch is rated by inductive load, then use resistive π_{l} .

Contact Form and Quantity Factor - π_{C}

Contact Form	π _C
SPST	1.0
DPST	1.5
SPDT	1.7
3PST	2.0
4PST	2.5
DPDT	3.0
3PDT	4.2
4PDT	5.5
6PDT	8.0

Environment Factor - π_E

<u> </u>
π _E
1.0
3.0
18
8.0
29
10
18
13
22
46
.50
25
67
1200

14-1

14.2 SWITCHES, BASIC SENSITIVE

SPECIFICATION MIL-S-8805

DESCRIPTIONBasic Sensitive

$\lambda_{p} = \lambda_{b}^{\pi}_{CYC}^{\pi}_{L}^{\pi}_{E}$ Failures/10⁶ Hours

Base Failure Rate - λ_b

$\lambda_{b} = \lambda_{bE} + n \lambda_{bC}$	(if Actuation Differential is > 0.002 inches)
λ _D = λ _{DE} + n λ _{D0}	(if Actuation Differential is ≤ 0.002 inches)

n = Number of Active Contacts

Description	MIL-SPEC	Lower Quality
^λ ьЕ	.10	.10
λьс	.00045	.23
^λ ь0	.0009	.63

Load Stress Factor - π_i

Stress	Load Type		
S	Resistive	Inductive	Lamp
0.05	1.00	1.02	1.06
0.1	1.02	1.06	1.28
0.2	1.06	1.28	2.72
0.3	1.15	1.76	9.49
0.4	1.28	2.72	54.6
0.5	1.48	4.77	
0.6	1.76	9.49	
0.7	2.15	21.4	
0.8	2.72		
0.9	3.55		
1.0	4.77		

S = Operating Load Current
Rated Resistive Load Current

 π_L = exp (S/.8)² for Resistive Load π_L = exp (S/.4)² for Inductive Load π_L = exp (S/.2)² for Lamp Load

NOTE: When the Switch is Rated by Inductive Load, then use Resistive $\pi_{\underline{L}}.$

Cycling Factor - π_{CYC}

Switching Cycles per Hour	πCYC
≤ 1 Cycle/Hour	1.0
> 1 Cycle/Hour	Number of Cycles/Hour
	1

Environment Factor - π_E

π _E
3.0
18
8.0
29
10
18
13
22
46
.50
25
67
1200

14.3 SWITCHES, ROTARY

SPECIFICATION MIL-S-3786

DESCRIPTION

Rotary, Ceramic or Glass Wafer, Silver Alloy Contacts

 $\lambda_{p} = \lambda_{b}^{\pi}_{CYC}^{\pi}_{L}^{\pi}_{E}$ Failures/10⁶ Hours

Base Failure Rate - λ_b

Base failure rate model (λ_b):

 $\lambda_{b} = \lambda_{bE} + n\lambda_{bF}$ (for Ceramic RF Waters)

 $\lambda_b = \lambda_{bE} + n \lambda_{bG}$ (for Rotary Switch Medium Power Wafers)

n = Number of Active Contacts

Description	MIL-SPEC	Lower Quality
^λ ьЕ	.0067	.10
λ _{bF}	.00003	.02
λ _{bG}	.00003	.06

Load Stress Factor - π_L

Stress	Load Type		
S	Resistive	Inductive	Lamp
0.05	1.00	1.02	1.06
0.1	1.02	1.06	1.28
0.2	1.06	1.28	2.72
0.3	1.15	1.76	9.49
0.4	1.28	2.72	54.6
0.5	1.48	4.77	1
0.6	1.76	9.49	i .
0.7	2.15	21.4	1
0.8	2.72		
0.9	3.55		
1.0	4.77		

S = Operating Load Current
Rated Resistive Load Current

 $\pi_{L} = \exp(S/.8)^{2}$ for Resistive Load $\pi_{L} = \exp(S/.4)^{2}$ for Inductive Load $\pi_{L} = \exp(S/.2)^{2}$ for Lamp Load

NOTE: When the Switch is Rated by Inductive Load, then use Resistive π_L .

Cycling Factor - π_{CYC}

Switching Cycles per Hour	πCYC
≤ 1 Cycle/Hour	1.0
> 1 Cycle/Hour	Number of Cycles/Hour

Environment Factor - π_{F}

E		
Environment	πE	
G _B	1.0	
G _F	3.0	
G _F G _M	18	
N _S	8.0	
N _U	29	
A _{IC}	10	
A _{IF}	18	
A _{UC}	13	
A _{UF}	22	
A _{RW}	46	
S _F	.50	
M _F	25	
M_L	67	
M _L C _L	1200	

14.4 SWITCHES, THUMBWHEEL

SPECIFICATION MIL-S-22710 Line

DESCRIPTION

Switches, Rotary (Printed Circuit) (Thumbwheel, Inand Pushbutton)

$$\lambda_p = (\lambda_{b1} + \pi_N \lambda_{b2}) \pi_{CYC} \pi_L \pi_E$$
 Failures/10⁶ Hours

CAUTION:

This model applies to the switching function only. The model does not consider the contribution of any discrete components (e.g., resistors, diodes, lamp) which may be mounted on the switch. If significant (relative to the switch failure rate), the failure rate of these devices must be calculated using the appropriate section of this Handbook and added to the failure rate of the switch.

This model applies to a single switch section. This type of switch is frequently ganged to provide the required function. The model must be applied to each section individually.

Base Failure Rate - λ_{b1} and λ_{b2}

Description	MIL-SPEC	Lower Quality
λ _{b1}	.0067	.086
λ _{b2}	.062	.089

Cycling Factor - π_{CYC}

Switching Cycles per Hour	πCYC
≤ 1 Cycle/Hour	1.0
> 1 Cycle/Hour	Number of Cycles/Hour

Number of Active Contacts Factor - π_N

 π_N = Number of Active Contacts

Load Stress Factor - π_I

Stress	Load Type		
S	Resistive	Inductive	Lamp
0.05	1.00	1.02	1.06
0.1	1.02	1.06	1.28
0.2	1.06	1.28	2.72
0.3	1.15	1.76	9.49
0.4	1.28	2.72	54.6
0.5	1.48	4.77	
0.6	1.76	9.49	
0.7	2.15	21.4	İ
0.8	2.72		1 1
0.9	3.55		1
1.0	4.77		

 $S = \frac{\text{Operating Load Current}}{\text{Rated Resistive Load Current}}$ $\pi_{L} = \exp(S/.8)^{2} \text{ for Resistive Load}$ $\pi_{L} = \exp(S/.4)^{2} \text{ for Inductive Load}$ $\pi_{1} = \exp(S/.2)^{2} \text{ for Lamp Load}$

NOTE: When the Switch is Rated by Inductive Load, then use Resistive π_l .

Environment Factor - π_E

E	
Environment	π _E
G _B	1.0
G _F	3.0
G _M	18
N _S	8.0
N _U	29
A _{IC}	10
A _{IF}	18
AUC	13
A _{UF}	22
A _{RW}	46
S _F	.50
M _F	25
ML	67
M _L C _L	1200

14.5 SWITCHES, CIRCUIT BREAKERS

SPECIFICATION

MIL-C-55629 MIL-C-83383 MIL-C-39019 W-C-375

DESCRIPTION

Circuit Breakers, Magnetic, Unsealed, Trip-Free Circuit Breakers, Remote Control, Thermal, Trip-Free Circuit Breakers, Magnetic, Low Power, Sealed, Trip-Free Service Circuit Breakers, Molded Case, Branch Circuit and Service

$\lambda_p = \lambda_b^{\pi} C^{\pi} U^{\pi} Q^{\pi} E$ Failures/10⁶ Hours

Base Failure Rate - λ_h

U		
Description	λ _b	
Magnetic	.020	
Thermal	.038	
Thermal-Magnetic	.038	

Quality Factor - π_O

Quality	πQ
MIL-SPEC	1.0
Lower	8.4

Configuration Factor - π_C

Configuration	π _C
SPST	1.0
DPST	2.0
3PST	3.0
4PST	4.0

Environment Factor - $\pi_{\rm p}$

Environment Factor - π _E		
Environment	πE	
GB	1.0	
G _F	2.0	
G _M	15	
NS	8.0	
NU	27	
A _{IC} A _{IF}	7.0	
A _{IF}	9.0	
Auc	11	
A _{UF}	12	
A _{RW}	46	
S _F	.50	
M _F	25	
ML	66	
CL	N/A	

Use Factor - π₁

Ose r acior - πυ			
Use	πυ		
Not Used as a Power On/Off Switch	1.0		
Also Used as a Power On/Off Switch	10		

CONNECTORS, GENERAL (EXCEPT PRINTED CIRCUIT BOARD)

SPECIFICATION*	DESCRIPTION	SPECIFICATION*	DESCRIPTION
MIL-C-24308	Rack and Panel	MIL-C-3607	Coaxial, RF
MIL-C-28748		MIL-C-3643	·
MIL-C-28804		MIL-C-3650	
MIL-C-83513		MIL-C-3655	
MIL-C-83733		MIL-C-25516	
MIL-C-5015	Circular	MIL-C-39012	
MIL-C-26482		MIL-C-55235	
MIL-C-28840		MIL-C-55339	
MIL-C-38999		MIL-C-3767	Power
MIL-C-81511		MIL-C-22992	
MIL-C-83723			
* NOTE: See following pa	age for connector configurations.	MIL-C-49142	Triaxial, RF

$$\lambda_p = \lambda_b \pi_K \pi_p \pi_E$$
 Failures/10⁶ Hours

APPLICATION NOTE: The failure rate model is for a mated pair of connectors. It is sometimes desirable to assign half of the overall mated pair connector (i.e., single connector) failure rate to the line replaceable unit and half to the chassis (or backplane). An example of when this would be beneficial is for input to maintainability prediction to allow a failure rate weighted repair time to be estimated for both the LRU and chassis. This accounting procedure could be significant if repair times for the two halves of the connector are substantially different. For a single connector divide $\lambda_{\rm p}$ by

Base Failure Rate - λ_h

	Duos i dilbro i lato i Ap						
į	Insert Material*						
T _O (°C)	A ¹	в ²	c ₃	D^4			
0	.00006	.00025	.0021	.0038			
10	.00008	.00033	.0026	.0048			
20	.00009	.00044	.0032	.0062			
30	.00011	.00057	.0040	.0078			
40	.00014	.00073	.0048	.0099			
50	.00016	.00093	.0059	.013			
60	.00020	.0012	.0071	.016			
70	.00023	.0015	.0087	.020			
80	.00027	.0019	.011	.026			
90	.00032	.0023	.013	.033			
100	.00037	.0029	.016	.043			
110	.00043	.0036	.020	.056			
120	.00050	.0045	.024	.074			
130	.00059	.0056					
140	.00069	.0070		1			
150	.00080	.0087					
160	.00094	.011					
170	.0011	.014					
180	.0013	.018					
190	.0016	.022		- 1			
200	.0019	.029		- 1			
210	.0023			- 1			
220	.0028						
230	.0034			1			
240	.0042			I			
250	.0053						

^{*} If a mating pair of connectors uses two types of insert materials, use the average of the base failure rates for the two insert material types. See following page for insert material determination.

Base Failure Rate - λ_{b} (cont'd)

1.
$$\lambda_{b} = .020 \exp\left(\left(\frac{-1592.0}{T_{o} + 273}\right) + \left(\frac{T_{o} + 273}{473}\right)^{5.36}\right)$$
2. $\lambda_{b} = .431 \exp\left(\left(\frac{-2073.6}{T_{o} + 273}\right) + \left(\frac{T_{o} + 273}{423}\right)^{4.66}\right)$
3. $\lambda_{b} = .190 \exp\left(\left(\frac{-1298.0}{T_{o} + 273}\right) + \left(\frac{T_{o} + 273}{373}\right)^{4.25}\right)$
4. $\lambda_{b} = .770 \exp\left(\left(\frac{-1528.8}{T_{o} + 273}\right) + \left(\frac{T_{o} + 273}{358}\right)^{4.72}\right)$

$$T_{o} = \text{Internal Contact Operating Temperature (°C)}$$

$$T_{o} = \text{Connector Ambient Temperature + Insert Temperature Rise}$$
See following page for Insert Temperature Rise

15.1 CONNECTORS, GENERAL (EXCEPT PRINTED CIRCUIT BOARD)

Insert Material Determination							
				Possible Insert Materials			
Configura	ation	Specification	A	ГВ	C	ГД	
Rack and		MIL-C-28748		X			
		MIL-C-83733	l	X		1	
1		MIL-C-24308	X	l x			
i		MIL-C-28804	ļΧ	X	[{	
		MIL-C-83513	X	X	1	ĺ	
Circular		MIL-C-5015		×		×	
l		MIL-C-26482	X	XXXXX	1	X	
ŀ		MIL-C-28840	X	X		}	
		MIL-C-38999	X	X		l	
i		MIL-C-81511	1	X		1	
		MIL-C-83723		X	1	ł	
Power		MIL-C-3767	İ	x		х	
		MIL-C-22992		X		X	
Coaxial		MIL-C-3607			×		
		MIL-C-3643	l	1	X X X X		
		MIL-C-3650	l	1	Х		
		MIL-C-3655	l	1	X		
		MIL-C-25516	1		Х		
		MIL-C-39012			X		
		MIL-C-55235		×	X X X		
		MIL-C-55339		^	^		
Triaxial		MIL-C-49142		X	х		
Insert							
Material	_				perat		
Type	Comm	on Insert Materia	ıls	Ran	ge (°(2).	

L	Triaxial		MIL-C-49142		X	X	
I	Insert	1					
1	Material	1		I	Tem	perat	ure
1	Type	Comm	on Insert Materia	als	Ran	ge (°	C)*
	Α	Vitreou	s Glass, Alumina	1	-55	to 2	50
I			c, Polyimide				
ł	В		htalate, Melamin		-55	to 20	00
١			silicione, Silicone	,			
١			Rubber, Polysulfone,				
١			Epoxy Resin				
ļ	С	, ,	Polytetrafluorethylene			to 12	25
1		(Teflon	• •				
1			rifluorethylene	1			
1	_	(Kel-f)	- [
1	D	Polyamide (Nylon),			-55	to 12	25
1		Polychi					
L		(Neopri	ene), Polyethyle	ne	** : ** : 12***		

^{*}These temperature ranges indicate maximum capability of the insert material only. Connectors using these materials generally have a reduced temperature range caused by other considerations of connector design. Applicable connector specifications contain connector operating temperature range.

1112GIT LGII	perature	nise		/ Determination
Amperes		Co	ntact	Gauge

Amperes		Contact Gauge				
Per Contact	22	20	16	12		
2 3 4 5 6 7 8 9 10 15 20 25 30 35 40	4 8 13 19 27 36 46 57 70	2 5 8 13 18 23 30 37 45 96	1 2 4 5 8 10 13 16 19 41 70	0 1 1 2 3 4 5 6 7 15 26 39 54 72 92		
$\Delta T = 0.6$ $\Delta T = 0.2$	989 (i) 1.85 540 (i) 1.85 274 (i) 1.85 00 (i) 1.85	20 16	2 Gauge 0 9 Gauge 0 6 Gauge 0 2 Gauge 0	ontacts ontacts		

ΔT	=	Insert Temperature Rise
i	_	Amnores per Contact

RF Coaxial Connectors	ΔT = 5°C
RF Coaxial Connectors (High Power Applications)	ΔT = 50°C

Mating/Unmating Factor - π_K

Mating/Unmating Cycles* (per 1000 hours)	πK
0 to .05	1.0
> .05 to .5	1.5
> .5 to 5	2.0
> 5 to 50	3.0
> 50	4.0

^{*}One cycle includes both connect and disconnect.

15.1 CONNECTORS, GENERAL (EXCEPT PRINTED CIRCUIT BOARD)

Active Pins Factor - π_P

Active i into i dotor sep				
Number of Active		Number of Active		
Contacts	π _P	Contacts	π _P	
1	1.0	65	13	
2	1.4	70	15	
2 3 4	1.6	75	16	
4	1.7	80	18	
5	1.9	85	19	
5 6 7	2.0	90	21	
7	2.2	95	23	
8	2.3	100	25	
9	2.4	105	27	
10	2.6	110	30	
11	2.7	115	32	
12	2.9	120	35	
13	3.0	125	37	
14	3.1	130	40	
15	3.3	135	43	
16	3.4	140	46	
17	3.6	145	50	
18	3.7	150	53	
19	3.9	155	57	
20	4.0	160	61	
25	4.8	165	65	
30	5.6	170	69	
35	6.5	175	74	
40 45	7.4	180	78	
50	8.4 9.5	185 190	83 89	
55 55	9.5 11	195	89 94	
60	12.	200	100	
"	12.	200	100	

$$\pi_P = \exp\left(\frac{N-1}{10}\right)^Q$$

q = 0.51064

N = Number of Active Contacts

An active contact is the conductive element in a connector which mates with another element for the purpose of transferring electrical energy. For coaxial and triaxial connectors, the shield contact is counted as an active contact.

Environment Factor - π_F

E			
	πE		
Environment	MIL-SPEC	Lower Quality	
G _B	1.0	2.0	
G _F	1.0	5.0	
G _F G _M	8.0	21	
NS	5.0	10	
N _U	13	27	
A _{IC}	3.0	12	
ЧF	5.0	18	
A _{UC}	8.0	17	
A _{UF}	12	25	
A _{RW}	19	37	
S _F	.50	.80	
M _F	10	20	
M_L	27	54	
c_L	490	970	

15.2 CONNECTORS, PRINTED CIRCUIT BOARD

SPECIFICATION MIL-C-21097 MIL-C-55302 DESCRIPTION
One-Piece Connector
Two-Piece Connector

 $\lambda_p = \lambda_b \pi_K \pi_p \pi_E$ Failures/10⁶ Hours

Base Failure Rate - λ_b

Baco i ancio i iato 140						
T _o (℃)	λ _b	T _o (℃)	λ_{b}			
0 10 20 30 40 50 60 70 80 90	.00012 .00017 .00022 .00028 .00037 .00047 .00059 .00075 .00093 .0012	110 120 130 140 150 160 170 180 190 200	.0018 .0022 .0028 .0035 .0044 .0055 .0069 .0088 .011			

$$\lambda_b = .216 \exp\left(\left(\frac{-2073.6}{T_o + 273}\right) + \left(\frac{T_o + 273}{423}\right)^{4.66}\right)$$

T_o = Internal Contact Operating Temperature (°C)

Connector Temperature Rise (AT °C) Determination

Amperes	С	ontact Guag	е
Per Contact	26	22	20
1 2 3 4 5	2 8 16 27 41	1 4 8 13 19	1 2 5 8 13

 $\Delta T = 2.100 \text{ (i)}^{1.85}$ 26 Guage Contacts $\Delta T = 0.989 \text{ (i)}^{1.85}$ 22 Guage Contacts $\Delta T = 0.640 \text{ (i)}^{1.85}$ 20 Guage Contacts

 ΔT = Contact Temperature Rise

= Amperes per Contact

Mating/Unmating Factor - π_K

Mating/Unmating Cycles*	πK
(Per1000 Hours)	
0 to .05 > .05 to .5 > .5 to 5 > 5 to 50 > 50	1.0 1.5 2.0 3.0 4.0

 A cycle is defined as the mating and unmating of a connector.

15.2 CONNECTORS, PRINTED CIRCUIT BOARD

Active Pins Factor - π_{P}

Number of Active Contacts TP Contacts TP	Active Fins Factor - πp		
	Active		
1 1.0 65 13 2 1.4 70 15 3 1.6 75 16 4 1.7 80 18 5 1.9 85 19 6 2.0 90 21 7 2.2 95 23 8 2.3 100 25 9 2.4 105 27 10 2.6 110 30 11 2.7 115 32 12 2.9 120 35 13 3.0 125 37 14 3.1 130 40 15 3.3 135 43 16 3.4 140 46 17 3.6 145 50 18 3.7 150 53 19 3.9 155 57 20 4.0 160 61 25 4.8 165 65 30 5.6 175 74	2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 25 30 35 40 45 50 55		

Environment Factor - π_E

$\pi_{!}$	=
MIL-SPEC	Lower Quality
1.0	2.0
3.0	7.0
8.0	17
5.0	10
13	26
6.0	14
11	22
6.0	14
11	22
19	37
.50	.80
10	20
27	54
490	970
	1.0 3.0 8.0 5.0 13 6.0 11 6.0 11 19 .50 10 27

 $\pi_P = \exp\left(\frac{N-1}{10}\right)^q$

q = 0.51064

N = Number of Active Pins

An active contact is the conductive element which mates with another element for the purpose of transferring electrical energy.

15.3 CONNECTORS, INTEGRATED CIRCUIT SOCKETS

SPECIFICATION MIL-S-83734

DESCRIPTION IC Sockets, Plug-in

$$\lambda_p = \lambda_b \pi_p \pi_E$$
 Failures/10⁶ Hours

Base Failure Rate - λ_b

Туре	λ _b	
All MIL-S-83734	.00042	

Active Pins Factor - π_P

Number of Active Contacts	π _P
Number of Active Contacts 6 8 10 14 16 18 20 22 24 28 36 40 48 50	πp 2.0 2.3 2.6 3.1 3.4 3.7 4.0 4.3 4.6 5.3 6.7 7.4 9.1
64	13

$$\pi_P = \exp\left(\frac{N-1}{10}\right)^q$$

q = 0.51064

N = Number of Active Contacts

An active contact is the conductive element which mates with another element for the purpose of transferring electrical energy.

Environment Factor - π_E

	E
Environment	πE
G _B	1.0
G _F	3.0
G _M	14
NS	6.0
N _U	18
AIC	8.0
A _{IF}	12
AUC	11
^A UC ^A UF	13
A _{RW}	25
S _F	.50
M _F	14
M_L	36
M _L C _L	650

II IUI I

16.1 INTERCONNECTION ASSEMBLIES WITH PLATED THROUGH HOLES

DESCRIPTION

Circuit Boards, Printed (PCBs) and Discrete Wiring

$$\lambda_{p} = \lambda_{b} [N_{1} \pi_{C} + N_{2} (\pi_{C} + 13)] \pi_{Q} \pi_{E}$$
 Failures/10⁶ Hours

APPLICATION NOTE: For assemblies not using Plated Through Holes (PTH), use Section 17, Connections. A discrete wiring assembly with electroless deposit plated through holes is basically a pattern of insulated wires laid down on an adhesive coated substrate. The primary cause of failure for both printed wiring and discrete wiring assemblies is associated with plated through hole problems (e.g., barrel cracking).

Base Failure Rate - λ_h

Technology	λ _b
Printed Wiring Assembly/Printed Circuit Boards with PTHs	.000041
Discrete Wiring with Electroless Deposited PTH (≤ 2 Levels of Circuitry)	.00026

Quality Factor - π_Q

Quality	πQ
MIL-SPEC or Comparable Institute for Interconnecting, and Packaging Electronic Circuits (IPC) Standards	1
Lower	2

Number of PTHs Factor - N₁ and N₂

Factor	Quantity
N ₁	Quantity of Wave Soldered Functional PTHs
N ₂	Quantity of Hand Soldered PTHs

Environment Factor - π_{F}

Environment	πE
G _B	1.0
G _F	2.0
G _M	7.0
N _S	5.0
NU	13
	5.0
A _{IC} A _{IF} A _{UC}	8.0
A _{UC}	16
A _{UF}	28
A _{RW}	19
S _F	.50
M _F	10
M_L	27
м _L С _L	500

Complexity Factor - π_C

Number of Circuit Planes, P	π _C
≤ 2	1.0
3	1.3
4 5	1.6
5	1.8
6	2.0
7	2.2
8	2.4
9	2.6
11	2.8
12	2.9 3.1
13	3.3
1 14	3.4
15	3.6
16	3.7
Discrete Wiring w/PTH	11
$\pi_{\rm C} = .65 {\rm P}^{.63}$	2 ≤ P ≤ 16

17.1 CONNECTIONS

DESCRIPTION

Connections Used on All Assemblies Except Those Using Plated Through Holes (PTH)

APPLICATION NOTE: The failure rate model in this section applies to connections used on all assemblies except those using plated through holes. Use the Interconnection Assembly Model in Section 16 to account for connections to a circuit board using plated through hole technology. The failure rate of the structure which supports the connections and parts, e.g., non-plated-through hole boards and terminal straps, is considered to be zero. Solderless wrap connections are characterized by solid wire wrapped under tension around a post, whereas hand soldering with wrapping does not depend on a tension induced connection. The following model is for a single connection.

$\lambda_p = \lambda_b \pi_Q \pi_E$ Failures/10⁶ Hours

Base Failure Rate - λ_b

Connection Type	λ _b (F/10 ⁶ hrs)
Hand Solder, w/o Wrapping	.0026
Hand Solder, w/Wrapping	.00014
Crimp	.00026
Weld	.00005
Solderless Wrap	.0000035
Clip Termination	.00012
Reflow Solder	.000069

Quality Factor - π_O

		<u> </u>
Quality Grade	πQ	Comments
Crimp Types		
Automated	1.0	Daily pull tests recommended.
Manual		
Upper	1.0	Only MIL-SPEC or equivalent tools and terminals, pull test at beginning and end of each shift, color coded tools and terminations.
Standard	2.0	MIL-SPEC tools, pull test at beginning of each shift.
Lower	20.0	Anything less than standard criteria.
All Types Except Crimp	1.0	

Environment Factor - π₌

Environment	πE
G _B	1.0
G _F	2.0
G _M	7.0
N _S	4.0
NU	11
^A IC	4.0
A _{IF}	6.0
AUC	6.0
A _{UF}	8.0
A _{RW}	16
s _F	.50
M _F	9.0
ML	24
M _L C _L	420

18.1 METERS, PANEL

SPECIFICATION MIL-M-10304

DESCRIPTION

Meter, Electrical Indicating, Panel Type, Ruggedized

$\lambda_p = \lambda_b \pi_A \pi_F \pi_Q \pi_E$ Failures/10⁶ Hours

Base Failure Rate - λ_b

Туре	λ _b
All	.090

Quality Factor - πQ

Quality	π _Q
MIL-M-10304	1.0
Lower	3.4

Application Factor - π_A

Application	πA
Direct Current	1.0
Alternating Current	1.7

Environment Factor - π₌

Environment	πE
G _B	1.0
G _F	4.0
G _F G _M N _S	25
N _S	12
N _U	35
A _{IC}	28
A _{IF}	42
AUC	58
A _{UF}	73
A _{RW}	60
S _F	1.1
M _F	60
ML	N/A
м լ Ել	N/A

Function Factor - π_F

Function	π _F
Ammeter	1.0
Voltmeter	1.0
Other*	2.8

Meters whose basic meter movement construction is an ammeter with associated conversion elements.

19.1 QUARTZ CRYSTALS

SPECIFICATION MIL-C-3098

DESCRIPTIONCrystal Units, Quartz

 $\lambda_p = \lambda_b \pi_Q \pi_E$ Failures/10⁶ Hours

Base Failure Rate - λ₊

Base Fallure Rate	
Frequency, f(MHz)	λ_{b}
0.5 1.0 5.0 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105	.011 .013 .019 .022 .024 .026 .027 .028 .029 .030 .031 .032 .033 .033 .034 .035 .035 .035 .036 .037
$\lambda_{b} = .013(f)^{.23}$	

Environment Factor - π_{F}

Environment	π _E
G _B	1.0
G _F	3.0
G _M	10
N _S	6.0
N _U	16
A _{IC}	12
A _{IF}	17
AUC	22
AUF	28
A _{RW}	23
S _F	.50
MF	13
M_L	32
CL	500

Quality Factor - TO

Quality	πQ
MIL-SPEC	1.0
Lower	2.1

20.1 LAMPS

SPECIFICATION MIL-L-6363 W-L-111

DESCRIPTION

Lamps, Incandescent, Aviation Service Lamps, Incandescent, Miniature, Tungsten-Filament

$$\lambda_p = \lambda_b^{} \pi_b^{} \pi_A^{} \pi_E^{}$$
 Failures/10⁶ Hours

APPLICATION NOTE: The data used to develop this model included randomly occurring catastrophic failures and failures due to tungsten filament wearout.

Base Failure Rate - λ_b

Rated Voltage, V _r (Volts)	λ _b
5 6 12 14 24 28 37.5	.59 .75 1.8 2.2 4.5 5.4 7.9
$\lambda_{b} = .074(V_{r})^{1.29}$	

Utilization Factor - π_U

Utilization (Illuminate Hours/ Equipment Operate Hours)	πυ
< 0.10	0.10
0.10 to 0.90	0.72
> 0.90	1.0
	ł

Application Factor - π_A

Amelia atian	
Application	, π _A
Alternating Current	1.0
Direct Current	3.3
İ	i

Environment Factor - π₌

πE
1.0
2.0
3.0
3.0
4.0
4.0
4.0
5.0
6.0
5.0
.70
4.0
6.0
27

21.1 ELECTRONIC FILTERS, NON-TUNABLE

SPECIFICATION

MIL-F-15733 MIL-F-18327

DESCRIPTION

Filters, Radio Frequency Interference Filters, High Pass, Low Pass, Band Pass, Band Suppression, and Dual Functioning (Non-tunable)

The most accurate way to estimate the failure rate for electronic filters is to sum the failure rates for the individual components which make up the filter (e.g., IC's, diodes, resistors, etc.) using the appropriate models provided in this Handbook. The Parts Stress models or the Parts Count method given in Appendix A can be used to determine individual component failure rates. If insufficient information is available then the following default model can be used.

$\lambda_p = \lambda_b \pi_Q \pi_E$ Failures/10⁶ Hours

Base Failure Rate - λ_h

Туре	λ _b
MIL-F-15733, Ceramic-Ferrite Construction (Styles FL 10-16, 22, 24, 30-32, 34, 35, 38, 41-43, 45, 47-50, 61-65, 70, 81-93, 95, 96)	.022
MIL-F-15733, Discrete LC Components, (Styles FL 37, 53, 74)	.12
MIL-F-18327, Discrete LC Components (Composition 1)	.12
MIL-F-18327, Discrete LC and Crystal Components (Composition 2)	.27

Quality Factor - πQ

Quality	πQ
MIL-SPEC	1.0
Lower	2.9

Environment Factor - π₌

	E		
Environment	π _E		
G _B	1.0		
G _F	2.0		
G _M	6.0		
N _S	4.0		
N _U	9.0		
A _{IC}	7.0		
A _{IF}	9.0		
A _{IC} A _{IF} A _{UC}	11		
A _{UF}	13		
A _{RW}	11		
S _F	.80		
M _F	7.0		
M_L	15		
м _L с _L	120		

22.1 FUSES

SPECIFICATION W-F-1726 W-F-1814 MIL-F-5372 ML-F-23419 MIL-F-15160

DESCRIPTION

Fuse, Cartridge Class H

Fuse, Cartridge, High Interrupting Capacity

Fuse, Current Limiter Type, Aircraft

Fuse, Instrument Type

Fuse, Instrument, Power and Telephone

(Nonindicating), Style F01

$\lambda_p = \lambda_b \pi_E \text{ Failures/10}^6 \text{ Hours}$

APPLICATION NOTE: The reliability modeling of fuses presents a unique problem. Unlike most other components, there is very little correlation between the number of fuse replacements and actual fuse failures. Generally when a fuse opens, or "blows," something else in the circuit has created an overload condition and the fuse is simply functioning as designed. This model is based on life test data and represents fuse open and shorting failure modes due primarily to mechanical fatigue and corrosion. A short failure mode is most commonly caused by electrically conductive material shorting the fuse terminals together causing a failure to open condition when rated current is exceeded.

Base Failure Rate - λ_b

Туре	λ _b
W-F-1726, W-F-1814, MIL-F- 5372, MIL-F-23419, ML-F-15160	.010

Environment Factor - π_{F}

Environment	π _E
G _B	1.0
G _B G _F	2.0
G _M	8.0
N _S	5.0
N _U	11
	9.0
^A IC ^A IF	12
AUC	15
A _{UF}	18
A _{RW}	16
S _F	.90
M _F	10
M_L	21
м լ Ել	230

23.1 MISCELLANEOUS PARTS

 λ_{D} - Failure Rates for Miscellaneous Parts (Failures/10⁶ Hours)

Part Type	Failure Rate
Vibrators (MIL-V-95) 60-cycle 120-cycle 400-cycle	15 20 40
Lamps Neon Lamps	0.20
Fiber Optic Cables (Single Fiber Types Only)	0.1 (Per Fiber Km)
Single Fiber Optic Connectors*	0.10
Microwave Elements (Coaxial & Waveguide) Attenuators (Fixed & Variable)	See Resistors, Type RD
Fixed Elements (Directional Couplers, Fixed Stubs & Cavities)	Negligible
Variable Elements (Tuned Stubs & Cavities)	0.10
Microwave Ferrite Devices Isolators & Circulators (≤100W)	0.10 × π _E
Isolators & Circulators (>100W)	0.20 x π _E
Phase Shifter (Latching)	0.10 x π _E
Dummy Loads < 100W	0.010 × π _E
100W to ≤ 1000W	0.030 x π _E
> 1000W	0.10 x π _E
Terminations (Thin or Thick Film Loads Used in Stripline and Thin Film Circuits)	0.030 × π _E

^{*}Caution: Excessive Mating-Demating Cycles May Seriously Degrade Reliability

23.1 MISCELLANEOUS PARTS

Environment Factor - π_E

(Microwave Ferrite Devices) Environment π_{E} 1.0 G_B G_{F} 2.0 G_{M} 8.0 Ns 5.0 NU 12 A_{IC} 5.0 A_IF 8.0 7.0 AUC AUF 11 17 ARW .50 $S_{\boldsymbol{F}}$ M_{F} 9.0 M_{L} 24

450

CL

Environment Factor - π_E

(Dummy Load	s)
Environment	πE
G _B	1.0
G _F	2.0
G _F G _M N _S	10
N _S	5.0
NU	17
^A IC	6.0
A _{IF}	8.0
^A IC ^A IF ^A UC	14
A _{UF}	22
	25
A _{RW} S _F	.50
M _F	14
м _L C _L	36
C _L	660

APPENDIX A: PARTS COUNT RELIABILITY PREDICTION

Parts Count Reliability Prediction - This prediction method is applicable during bid proposal and early design phases when insufficient information is available to use the part stress analysis models shown in the main body of this Handbook. The information needed to apply the method is (1) generic part types (including complexity for microcircuits) and quantities, (2) part quality levels, and (3) equipment environment. The equipment failure rate is obtained by looking up a generic failure rate in one of the following tables, multiplying it by a quality factor, and then summing it with failure rates obtained for other components in the equipment. The general mathematical expression for equipment failure rate with this method is:

$$\lambda_{\text{EQUIP}} = \sum_{i=1}^{i=n} N_i (\lambda_g \pi_Q)_i$$
 Equation 1

for a given equipment environment where:

 λ_{FOLIP} = Total equipment failure rate (Failures/10⁶ Hours)

 λ_0 = Generic failure rate for the i th generic part (Failures/10⁶ Hours)

 π_{O} = Quality factor for the i th generic part

N_i = Quantity of i th generic part

n = Number of different generic part categories in the equipment

Equation 1 applies if the entire equipment is being used in one environment. If the equipment comprises several units operating in different environments (such as avionics systems with units in airborne inhabited (A_{\parallel}) and uninhabited (A_{\parallel}) environments), then Equation 1 should be applied to the portions of the equipment in each environment. These "environment-equipment" failure rates should be added to determine total equipment failure rate. Environmental symbols are defined in Section 3.

The quality factors to be used with each part type are shown with the applicable λ_g tables and are not necessarily the same values that are used in the Part Stress Analysis. Microcircuits have an additional multiplying factor, π_L , which accounts for the maturity of the manufacturing process. For devices in production two years or more, no modification is needed. For those in production less than two years, λ_g should be multiplied by the appropriate π_L factor (See page A-4).

It should be noted that no generic failure rates are shown for hybrid microcircuits. Each hybrid is a fairly unique device. Since none of these devices have been standardized, their complexity cannot be determined from their name or function. Identically or similarly named hybrids can have a wide range of complexity that thwarts categorization for purposes of this prediction method. If hybrids are anticipated for a design, their use and construction should be thoroughly investigated on an individual basis with application of the prediction model in Section 5.

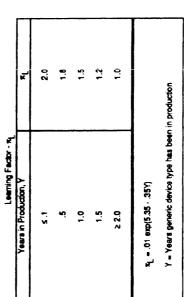
The failure rates shown in this Appendix were calculated by assigning model default values to the failure rate models of Section 5 through 23. The specific default values used for the model parameters are shown with the $\lambda_{\rm g}$ Tables for microcircuits. Default parameters for all other part classes are summarized in the tables starting on Page A-12. For parts with characteristics which differ significantly from the assumed defaults, or parts used in large quantities, the underlying models in the main body of this Handbook can be used.

APPENDIX A: PARTS COUNT

1.2 1.2 1.2 1.2 1.2 1.2 4.8.6 1.1 - 4.08 - 22.5. 6. 6. 6. 6. 5.63 ರ 8 8 - 588 25.25.4 22 2222014 82.84 8 S O 5255 2.48 ≥ 2 Yr.)) 044 072 12 10 122 582 044 053 053 079 =83 572 = 1 (Device in Production 0036 0000 0000 0033 0052 0052 0046 0056 0061 0095 933 0061 0057 010 040 084 13 028 052 11 286 **₹**% 4.00 5.4.58 322.28 980.05 28.2.4.2.83 000 083 13 35.23 3.18 See Page A-4 for x_{Cl} Values 840 200 ± 4.00 100 ± 4.00 886 - 12 S 5282 855 1.52 5246 5446 9.32 Weld Seal DIPs/PGAs (No. Pine as Shown Below), x_L ဒ္ဓင 440.04 25 T E E 26.28.28 2248 053 32 44.8 030 048 088 28 28 58 062 119 30 937 19 14 30 044 052 080 24 49 32 32 (Failures/10⁶ Hours) for Microcircuits. 025 039 070 34 46 029 040 040 27 27 27 29 25 5 5 5 .032 .099 8558 043 212 58.5 .039 12.24 13.54 13.54 040 085 049 078 13 23.028 052 063 094 533 28 29 027 22,027 288284 034 054 15 034 092 15 82228 99 - 8 22 22 3 € 53 95 53 039 488884 033 1 1 8 1 1 8 1 029 048 087 042 098 18 36 5 2 4 **₽**8 2228272 016 028 052 25.04. 4.25. 5.25. 2222 021 022 033 089 17 34 22.22 8=2 2=8 Generic Fallure Rate, $\lambda_{\mathbf{g}}$.0036 .0060 .011 .052 .0046 .0056 .0061 20095 7-10: 033 .0095 .017 .033 .0061 011 022 Based on En Shown, Solder 028 993 (16 Pin DIP) (24 Pin DIP) (40 Pin DIP) (128 Pin PGA) (180 Pin PGA) (224 Pin PGA) (16 Pin DIP) (24 Pin DIP) (40 Pin DIP) (128 Pin PGA) (180 Pin PGA) (224 Pin PGA) (40 Pin DIP) (64 Pin PGA) (128 Pin PGA) (40 Pin DIP) (64 Pin PGA) (128 Pin PGA) (14 Pin DIP) (16 Pin DIP) (24 Pin DIP) (40 Pin DIP) (16 Pin DIP) (24 Pin DIP) (40 Pin DIP) (14 Pin DIP) (18 Pin DIP) (24 Pin DIP) (40 Pin DIP) (24 Ph DIP) (28 Ph DIP) (28 Ph DIP) (40 Ph DIP) 1 S Gaiel opic Arrays, Deptal (Ea = .35)
1 to 100 Gaies
101 to 1000 Gaies
101 to 2000 Gaies
1001 to 2000 Gaies
10,001 to 20,000 Gaies
10,001 to 20,000 Gaies
20,000 to 0,000 Gaies
30,000 to 0,000 Gaies
10 to 300 Terralishers
10 to 300 Terralishers
10 to 300 Terralishers
10 to 300 Terralishers
10 to 300 Terralishers
10 to 200 Terralishers
10 to 200 Terralishers
10 to 200 Terralishers
10 to 200 Terralishers
10 to 200 Terralishers
10 to 200 Terralishers
10 to 200 Terralishers
10 to 200 Terralishers
10 to 200 Terralishers
10 to 200 Terralishers
10 to 200 Terralishers
256K to 1M Cells
256K to 1M Cells Garal-Logic Arrays, Digital (Ea = .4)
1 - 100 Gates
101 - 100 Gates
1001 to 3000 Gates
3001 to 10,000 Gates
10,000 to 60,000 Gates
30,000 to 60,000 Gates
30,000 to 60,000 Gates
1 - 100 Trensistore
1 - 100 Trensistore 1-100 Transistors
10-100 Transistors
301-1000 Transistors
1001-10,000 Transistors
1001-10,000 Transistors
Programmable Logic Arrays (E)
Up to 200 Gales
201 to 1000 Gales
1001 to 5000 Gales
1001 to 5000 Gales ¥ Part IVP Detauths 5.1 5.1 5.1 5.1 5.1

MIL-HDBK-217F

APPENDIX A: PARTS COUNT


50 60 65 75 75 76<	5.2	Environ. → GB	Environ.		S.	j	12		5	C. C. N. (Device in	ž	- C	ice in P.	oduction		-	
Up 1/8 Well		MOS Technology		25	- 8	₹ 2	8 9 80	5 °	Q.	¥		5	Apple	ď		- 1	
Seek to 2584 Carrier of Carri		-								2	8	8	75	50	- 60	£, ×	ۍ د
Control of the cont		10K to 64K	(24 Pin Dir			036	350	į	ļ								
Continue PROMILE Continue		04K 5 256K				0.	9.5		.037	.045	88	.074	170.	0047	;	;	
Charles Char	5.2	Memories DDCv4 1/2 552	(40 Pin Dip				4	900	943	200	8	8	980	.0059	50	- 6	- ς
University Continue Continu		EEPROM, EAPROM (E		L	1		8	8	576	900	§ -	<u> </u>	980	7900	055	<u></u>	2.5
Set to Back Carbon Dip 0.046 0.14 0.046 0.	_	POTE 1 ap - 6 American for EEPROM													28	۶Į	"
Service 2844 Care Phi Dipy Code Care	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	CA Pin Dip	_	;	;												
Continue Continue		GAK to oran	AKO WA BY		6.6	9 6	986	SS	037	0.46	070	į	į				
Wennowist DRAM (Est - 8) (19 hr DIP) 0.02 0.03 0.07 0.05 0		256K to 1 MB	AIO WAR		.024	640	3 2	90.	048	950.	963		.072	8400	.045	=	9
Up to 16K Up t	5.	Memories, DRAM (Fa. a)	TO THE STATE OF TH	-	8	0.71	8	è ;	50.	90.	.073	9) G	.0062	20.	<u>.</u>	~
Section 148 Section 148 Carte No.		Co to 18K		_				2	990	.09 5	. 2	=	7	7 5	.057	<u>.</u>	٦
Charles Char		19K to 64K	2000		.04	.027	760	9						١	98	, 20	က
Care Care Digital Digital Care Digital Care Digital Care Digital Care Digital Care Digital Care Digital Care Digital Care Digital Care Digital Care Digital Care Digital Digital Care Digital Digital Care Digital		64K & 256K	22.2	_	910	98	3 6	0.0	650	35	0.00	O.S.O	ž				
Up to 18K MACS & BIAROS Carry	1			_	.023	043	0.0	20.00	80.0	.04	980	0.0	66	96	.034	080	-
Use 15K Car Dig	y.	I. SPAIK, (V		4	83 2	.057	.053	3.6	9,0	6. 80.	.07 8	2	10	9 5	5.0	2:	1.7
Marchest Color C		3								욁	-12	5.	=	3	2 5	~ :	_
Section 2-864 Car Phi Dip Color Car Phi Dip Color Car Phi Dip Color Car Phi Dip Color Car Phi Dip Color Car Phi Dip Color Car Phi Dip Color Car Phi Dip Color Car Phi Dip Color Car Phi Dip Color Car Phi Dip Color Car Phi Dip Color Car Phi Dip Color Car Phi Dip Car Phi Dip Color Car Phi Dip Car Ph		¥ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	(18 Pin DIP)												è	2	~
2 Biodia Technology		64K to 2525	(Z) Pr. D.P.	<u> </u>			.034		870	į	;						
Pagint Extraction Carl Pin Dir) Carl Carl Carl Carl Carl Carl Carl Carl		256K to 1 to 2	2 P	_			.050		6	, 5, 6	80				770		
Marrodes, ROM (Ea = .6) (24 Pin DiP) 0.10 0.28 0.55 0.46 0.67 0.62 0.70 0.10 0.15 0.65 0.46 0.67 0.66 0.65 0.71 0.65 0.65 0.71 0.65 0.65 0.71 0.65 0.65 0.71 0.65 0.65 0.71 0.65 0.65 0.71 0.65 0.65 0.71 0.65 0.65 0.71 0.65 0.65 0.71 0.65 0.72 0.75 0	T	Booler Technology	(28 Pin DIP)	_			.071		<u>.</u>	5 5 5	= 8				, a	9	<u>-</u>
Up to 16K Car	-	5		╀	1	-	=		. 52	<u>.</u> 2	, ,				36	<u>.</u> •	
16k b 64k 12k		Lo to 16K						ı		3		1			12.	<u> </u>	- c
Marches SFAM (Ea. B) C2P Fin DIP 0.017 0.43 0.71 0.48 0.691 0.062 0.70 0.10 0.13 0.96 0.10 0.068 0.01 0.01 0.068 0.01		10K 10 64K	ProP	010.										ı			4
Cart Name	_	64K to 256K	20.5	.017													
Memories, SNAM (Ea = 3) 10 10 10 10 10 10 10 1	1	256K to 1 MB		.028												£1.	Ξ
Car b car Car pin Dip .0075 .023 .041 .060 .050 .058 .077 .10 .084 .0075 .053 .19 .018 .048 .048 .048 .074 .059 .054 .074 .059 .054 .074 .059 .054 .074 .059 .054 .074 .059 .054 .074 .059 .054 .074 .059 .054 .074 .059 .054 .074 .059 .054 .074 .059 .054 .074 .059 .054 .074 .059 .054 .074 .059 .054 .074 .059 .054 .074 .059 .055 .065 .065 .065 .065 .065 .065 .069 .074 .006 .074 .	7.0	١.		553												= :	2.3
Carlo National National Carlo National Carlo National Carlo National Carlo Nati			(24 Pin Dip				ı	ı	- [-						S 6	~
VASIC March Car Pin Dip Cap Pin Dip	_	ALK IN DEAK	(28 Pin DiP											ı	1	3	6
VHSIC Macdicula CARDS		2007 P. 1 P. 10	(28 Pin DIP)										4			ç	,
Carla MARC (Ea = 1.5) 19 19 19 19 19 19 19 1		-	(40 Pin DIP)													, t.	- c
10 10 Active and/or Passive (8 Ptn DIP) .019 .034 .046 .039 .052 .085 .088 .11 .12 .076 .019 .040				*	100		k	1								.	, C
1 1 1 1 1 1 1 1 1 1	-	-	(8 Chr. 79	1		4	200	3		H	П			- 1	-	8	9.
Control of Control o				•	-	·											
Contact Date and Apply Contact Date Contact D	_		(16 Pln DIP)					-	•				•			90	•
Code Digital (Fin = 1.4) Code Code Code Code Code Code Code Code	_	4				-										B	9
Passive (36 Fin DIP) .0085 .030 .057 .057 .084 .060 .073 .080 .12 .11 .0085 .071 .073 .080 .12 .11 .0085 .071																_	•
India (64 Pin PGA) .014 .053 .10 .10 .15 .11 .49 .19 .12 .11 .0065 .071		Element Active and/or Passive	80														?
MOON (64 Pin PGA) .014 .053 .10 .10 .15 .11 .49		1001 to 10 mo America				•											
10. 01. 01. 02.	-	Paraive Elements	(64 Pin PGA)														
																	0

MIL-HDBK-217F

APPENDIX	A:	PAK	15	CUU	INI

		Quality Factors (confd): Ro Calculation for Custom Screening Programs	amarak.
ſ	g S S S S	ML-STD-BES Screen/Test (Note 3)	Point Valuation
٥	÷	TM 1010 (Temperature Cycle, Cond B Markmun) and TM 2001 (Constant Accelerator, Cond B Markmun) and TM 8004 (are 8008 for Hybrids) (Final Bedictials @ Temp Extreme) and TM 1014 (Seal Test, Cond A, B, or C) and TM 2009 (External Visual)	2
.26	5.	TM 1010 (Temperature Cycle, Cond B Marimum) or TM 2001 (Constant Acceleration, Cond Marimum) TM 5004 (Cot Scot for Hybrits) (Final Electricale @ Temp Eutremes) and TM 1014 (Sea 17 est, Cond A, B, or C) and TM 2009 (External Visual)	37
	ေ	Pre-Burn in Electricals TM 1015 (Burn-in B-Lavel/S-Laver) and TM 5004 (or 5008 for hybrits) [Post Burn-in Bectricals @ Temp Extrames]	30 (B Level) 36 (S Level)
	•	TM 2020 Plnd (Particle Impact Notes Detection)	l .
	ю.	TM 5004 (or 5008 for Hybrids) (Final Electricals @ Temperature Extremes)	11 (Note 1)
	•	TM 2010/17 (internal Visual)	
T	٠.	TM 1014 (Seal Test, Cond A, B, or C)	7 (Note 2)
	•	TM 2012 (Radiography)	^
	-	TM 2009 (External Visual)	7 (Note 2)
	2	TM 5007/5013 (GaAs) (Waler Acceptance)	-
7	=	TM 2023 (Non-Destructive Band Pull)	-
		FO = 2 + E Point Valuations	
	NOT AP	NOT APPROPRIATE FOR PLASTIC PARTS.	
	X En ≒ 44 44 45 80 14 14 15	Point valuation only assigned if used holopendent of Groups 1, 2 or 3. Point valuation only assigned is used independent of Groups 1 or 2. Sequencing of basis within groups 1, 2 and 3 must be followed. TM refers to the MiL-STD-883 Test Method. Nonhermelic parts should be used only in controlled environments (i.e., Gg and other temperature-humidity controlled environments).	odter
	EXAMPLES	Ö	
	<u>-</u>	Mg. performs Group 1 test and Class 8 burn-in: $\pi_Q = 2 + \frac{87}{80+30} = 3.1$	
	7	Mg. performs internal visual test, seal test and final electrical test: $R_Q = 2 + \frac{87}{7+7+11}$	7,7,11 -5.5
	_		

	Description	Ç
Clara S Catagodes;		
. Proc	Procured in full accordance with MilM-38510, Class S requirements.	
2. Proc	Procured in full accordance with MIL-I-38536 and Appendix B thereto (Class U).	85.
3. Hybri	Hybrids: (Procured to Class S requirements (Quality Level K) of Mil.:H-38534.	
Clans B Catagorias:		
 P	Procured In full accordance with MilL-M-38510, Class B requirements.	
2. Prog	Procured in full accordance with Mit.+38535, (Class O).	1.0
3. Hyter	Hybrids: Procured to Class B requirements (Quality Level H) of MR-H-38634.	
Clans B-1 Category	1	
Fully complier Mil. drawing, i include hybrid	Fully compliant with all requirements of paragraph 1.2.1 of MilLSTD-863 and procured to a MilL drawing, DESC drawing or other government approved documentation. (Does not include hybride). For hybride use custom screaning section below.	5.0

Other Commercial or Unknown Screening Levels

A-4

MIL-HDBK-217F

APPENDIX A: PARTS COUNT

a of the second															
uonoe.	Part Type		ዯ	ē [₹]	ž	₽	Ş V	¥ ¥	ş	4	₩	S _L	¥	کے	ۍ
		T _J (°C) → 50	8	88	99	88	12	22	8	8	75	8	8	75	8
	DIODES														
6.1	General Purpose Analog	9000	.028	.049	.043	₽.	.092	2	8,	7	17	8100	076	23	<u>.</u>
1.9	Switching	№ 000.	.0075	.013	110.	.027	.024	.054	.054	5	54G.	.00047	050	98	9
1.9	Fast Recovery Pwr. Rectilier	990:	.52	68	.78	6 .	1.7	3.7	3.7	8.0	3.	.032	T .	7	58
6.1	Power Rectilier/ Schottky Pwr.	.0028	.022	.039	.034	.082	.073	91.	91.	35	5.	4100.	980	∞	1.2
6.1	Transient Suppressor/Variator	.0029	.023	040	.035	.	.075	17	71.	36	7	5100.	.082	6	1.2
6.1	Voltage Rel/Reg. (Avaianche	.0033	.024	.039	.035	.08	990:	₽.	£.	73:	5.	.0016	990	9.	£.
	and Zener)														
£.	Current Regulator	9500:	940	990:	990	=	Ξ.	ĸ	22	4	24	.0028	9	28	2.1
6.2	Si Impett (1 < 35 GHz)	98.	8.8	8.0	5.6	ଛ	Ξ	=	36	8	4	£4.	ģ.	67	8
6.2	Gunn/Bulk Effect	E	.76	2.1	5.1	4 .6	2.0	2.5	4 .5	7.6	6.7	9	3.7	. 2	3
6.2	Turnel and Back	96.	9600	.0026	9100.	990.	.025	.032	.057	200	9	003	970	. 	-
6.2	N.	.028	89 0:	0	Ξ.	7	=	8į	9	89	Ε.	40.	\$	=	80
6.2	Schottky Barrier and Point	740.	Ξ.	£.	.23	8	99	37	29	-	1.2	83	85	60	7
	Contact (200 MHz sf s 35 GHz)														
6.2	Varador	.0043	010	.029	.02	8	.028	.034	96.	=	Ę	.0022	.052	.17	5.5
6.10	Thyristor/SCR	.0025	.020	.034	.030	.072	96.	=	7	£.	12	2100.	.053	91.	7
	THANSISTORS														
6.3	NPWPNP (1 < 200 MHz)	.00015	.001	7100	7100.	.0037	0030	2900	0900	013	9500	000073	7600	4700	8
6.3	POWER NPW/PNP (f < 200 MHz)	7500:	.042	690	8	5 1.	5	92,	83	S	នុ	0020	=	8	2.2
9.4	SI FET (1 ≤ 400 MHz)	410.	660	91.	51.	.34	.28	8	53	=	Ę	6900	52	28	4 0
6.9	SI FET (1 > 400 MHz)	660	77	2	74.	4.	19:	9/:	1.3	2.3	7	640	2.	3.6	8
8.8	GaAs FET (P < 100 mM)	.17	2	8.	1.0	3.4	1.8	2.3	5.4	9.2	7.2	.083	2.8	=	2
8.9	GaAs FET (P≥ 100 mW)	24:	6.	3.0	2.5	8.5	4 70	5.6	5	ន	=	.21	6.9	27	3
8.9	Unijunction	.016	1.	.20	6 .	24.	36.	8	7.	9.	8	9200	٤.	88	6.4
9.9	RF, Low Noise (I > 200 MHz, P < 1W)	8 .	.23	8	4 .	7.	8	82.	1.3	2.3	2.4	7.	=	3.6	88
6.7	RF, Power (P≥1W)	.074	.15	.37	.29	æ	.2 9	13	25	8	780	66	ğ	•	ģ

A-5

MIL-HDBK-217F

				o Hate	= √	#Inres/		18) tot	Discrete	Semico	Generic Fallure Hate . Ag (Fallures/10" Hours) for Discrete Semiconductore (cont.d)	(cout.d)				
Section	Part Type	±	g	e,	₹.	ž	Z	ν	A _{IF}	3	ځ	A _{FIW}	س ا	₹.	¥	5
•		T _J ("C)→ 50		8	28	8	83	75	75	8	&	82	8	65	75	. 8
	OPTO-ELECTRONICS															
<u>E</u> .	Photodetector		.011	.029	S8 0:	.059	8 .	8	Ξ	12.	35	.	.0057	<u>5.</u>	ęć	3.7
6.11	Opto-isolator	٥.	.027	070	8	=	£.	.20	.25	4 .	8	8 6	.013	S.	54	8.7
6.11	Emitter	.00047		.0012	.0035	.0025	7200.	.0035	.0044	9800	10.	10.	.00024	800	.021	5
6.12	Alphanumeric Display	8	.0062	.016	346	.032	₽.	946	.058	Ξ.	6 .	80	1003	.082	5 8	2.0
6.13	Laser Diode, GaAs/Al GaAs		5.1	9	4	8	100	88	27	8	170	230	9.8	87	320	2000
6.13	Laser Diode, in GeAs/in GaAsP	_	8.0	58	82	SS.	95	100	130	180	300	Ş	4.5	051	8	3800
7	TUBES		88	edlan 7 (includes	Receivers,	CRTs, Cro	ses Fleki A	mplifiers, K	ystrons, T	Section 7 (includes Receivers, CRTs, Cross Field Amplifiers, Klystrons, TWTs, Magnetrons	(trons)				
8	LASERS		38	Section	80											

Section Number	Part Types	JANTICV	JANTX	JAN	Lower	Plastic
6.1, 6.3, 6.4, 6.5, 6.10, 6.11, 6.12	Non-RF Devices/ Opto-Electronics*	۶.	1.0	4.2	5.5	8.0
6.2	High Freq Diodes	.50	1.0	5.0	25	50
6.2	Schottky Diodes	.5G	1.0	1.8	2.5	:
6.6, 6.7, 6.8, 6.9	RF Transistors	98.	1.0	2.0	0. 0.	;
6.13	*Laser Diodes	δ 	7Q = 1.0 Hermetic Package = 1.0 Nonhermetic with F = 3.3 Nonhermetic withou	Hermetic Package Nonhermetic with Facet Coating Annhermetic without Facet Coating	hg Dating	

MIL-HDBK-217F

Companies Part Pa							-	-	Ψ.	•					-	ŀ	Ĭ
Composition FG1 39003 A. Young Composition FG2 39003 A. Young Composition FG2 39003 A. Young Composition FG2 39003 A. Young Composition FG2 A. Young Composition FG2 A. Young	Section Part 1ype	Style	M.A.	Erk. + GB		≩ Æ	ر ا	5 &	2 SS	Ę R	şe	j e	£ 55	∦ 8	¥. 2	۲. رو د	
Fig. Parallel Fig. 11 20059 20071 2017 2017 2017 2017 2017 2017 201	9.1 Composition	8	39008	1 (C) 4 30	- 1	1700	2003	613	2000	3900	310	300	250	1000	. 8		-
Fig. Building Fig. Fig		1	,	2	330.	3	3	<u>.</u>	200	8	2	270	G	62020	880	GEO.	
Fig. Fundament Fig. 2012 2012 2013 2014 2015		₹	-	05000	.0022	8	.003	210.	28.	.0065	9.0	.025	.025	.00025	8600	.035	8
Fig. Fig.		2	39017	.001	.0027	110.	.0054	.020	.0063	.013	810	.033	.030	.00025	410.	0. 440	8
Fine PRPR Cet No. Fig. 55182 10014 10011 1013 10015 10015 1014 1013 1015 101	9.2 Film, Insulated	2	22684	.0012	.0027	110.	.005	.020	.0063	.013	.018	033	930	.00025	1 0.	440.	8
Fig. Fig.		£	55182	4100.	1003	.013	.0061	.023	2/00.	410.	.021	960	.034	82000	910.	.050	.78
Hair, Power Part Power Part Power Part Power Part Power Part Power Part Power Part Power Part Power Part Power Part Power Part Part Power Part Part Power Part Part Power Part P		£	10509	4100.	.003	.013	1900	.023	2/00.	10.	.021	88	.03	.00028	910.	020	78
Fire Network R. Seboti 2022 2086 2011 2012 2043 2012 2043 2017 15 10 2011 2051 2018 201		8	11804	.012	.025	£.	.062	2	820.	₽.	6	7.	.32	0900	8 .	14	8.2
Witemound, Accumina RB 38005 0.085 0.18 1.10 0.45 1.15 1.17 30 38 28 0.0088 1.13 3.77 Witemound, Accumina RB 800 0.0085 0.18 1.10 0.45 1.15 1.17 30 3.8 2.8 0.0088 1.13 3.77 Witemound, Power, RB 38007 0.018		2	83401	.0023	9900	.031	.013	.055	.022	.043	720.	5	9	1100.	.055	5.	1.7
FWH 580 100 404 116 116 117 300 38 26 0068 13 37 FWH 38007 1014 201 116 201 216 136 136 136 26 0042 21 62 FHM 256 0.03 101 200 116 0.04 108 12 24 25 0040 119 56 FHM 38008 0.006 0.018 0.06 0.45 115 0.04 0.08 12 24 25 0.04 119 37 FHM 380015 0.05 0.18 0.06 0.45 115 0.04 0.08 12 24 25 0.04 13 37 FM 380015 0.05 0.14 1.1 1.6 2.1 1.2 24 1.0 24 1.0 24 1.0 24 25 1.0 1.0 24 1.0 24		E	38005	.0085	.018	₽.	.045	9 .	.15	.17	8	86	.26	8900	£.	37	wi
Wittencourd, Prover, Faye, 36007 3014 3015 316		2	8	.0085	.018	9.	.045	9	.15	.17	8	S,	92	9900	5.	.37	uri
Withoutound, Power, P		E	39007	.01	8.	9 .	.077	%	670	.	9 .	8	.42	.0042	12:	.62	•
Witney-bound Fight 39009 0.18 0.986 0.45 15 0.44 0.98 17 24 25 0.040 13 37 Witney-bound Fight 22649 0.085 3.2 1.4 7.1 1.6 7.1 1.9 1.0 2.7 2.4 0.25 0.30 1.3 3.4 Witney-bund Witney-bund Fight 22649 0.085 0.25 0.25 0.35 0.26 0.35 0.26 0.35 0.26 0.35 0.26 0.35 0.26 0.35 0.26 0.35		Ž	8	.013	.028	51.	0.00	7 2.	990	£1.	99	35	38	9000	2	8	9.6
Winewound, Proved Consistence FE 18646 0.056 0.14 0.15 1.6 0.44 0.08 1.12 2.4 2.5 0.040 1.13 3.14 Thermital Minewound, Variable FT 22648 0.055 0.25 0.55 0.14 0.71 1.6 0.71 1.9 1.0 2.7 2.4 0.02 1.3 3.4 Winewound, Variable FT 22708 0.025 0.025 0.055 0.15 0.16 0	₹	E	39009	0800	910	960	.045	.	0.44	980	57.	%	52	0400	<u>t.</u>	.37	5.5
Thermise Title 28644 Co65 32 14 77 16 77 16 77 19 10 27 24 032 13 34 Wirewound, Variable FIT 27208 Co25 Co55 3	¥	18646	0800	.018	960	.045	5.	440	.088	.12	25.	%	040	€.	37	5.5	
Wirewound, Variable FIT 39015 .025 .035 .16 .58 .16 .26 .35 .39 .11 .013 .32 1.6 Wirewound, Variable FIT 27208 .025 .035 .16 .26 .15 .39 .11 .013 .32 .16 Wirewound, Variable FR 129 .15 .31 .12 .54 .19 .28 .71 .98 .23 .16 .11 .33 Wirewound, Variable FR .22 .15 .31 .12 .54 .19 .28 .71 .98 .75 .79 .75<	F	Ē	23649	.065	.32	4.	۲.	1.6	۲.	6.	0.	2.7	2.4	.032	1.3	3.4	62
Witnewcund, Variable, PR RR 1223 (35) 3.5 16 58 16 58 16 58 16 58 16 58 16 58 16 35 59 11 013 52 16 17 33 Witnewcund, Variable, Procedian Witnewcund, Variable, PR RA 19 .15 31 1.2 5.4 1.9 28 7.1 9.8 20 17 33 Witnewcund, Variable, PR RA 39002 .15 .3 1.1 1.2 5.4 1.9 28 7.1 9.9 .075 7 7 Witnewcund, Variable, Processor RA 39002 .13 .1 .2 5.4 1.9 .2 7 7 .0 7 7 7 7 7 7 7 7 7 7 .0 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		Æ	38015	.025	.055	.35	9 .	85	91.	52	85	83	<u>1</u>	.013	35	1.6	7.
Witeworund, Variable, Post Seriormerision Witeworund, Variable, Post Seriormerision Witeworund, Variable, Post Seriormerision Witeworund, Variable, Post Seriormerision Witeworund, Variable, Post Seriormerision Witeworund, Variable, Post Seriormerision Witeworund, Variable, Post Seriormerision Witeworund, Variable, Post Seriormerision Witeworund, Variable, Post Seriormerision Witeworund, Variable Post Seriormerision Witeworund, Variable Post Seriormerision Witeworund, Variable Post Seriormerision Witeworund, Variable Post Seriormerision Witeworund, Variable Post Seriormerision Witeworund, Variable Post Seriormerision Witeworund, Variable Post Seriormerision Witeworund, Variable Post Seriormerision Witeworund, Variable Post Seriormerision Seriormerision Witeworund, Variable Post Seriormerision Serio		E	27208	.025		35	9.	85.	.16	92:	85	38	1.1	.013	83	1.6	24
Wite-record of Variables, Sample Cample Companied RA (19) 115 35 3.1 1.2 5.4 1.9 2.8 9.0 075 9.0 Wite-record of Variables, Sample classics of Variables (National Annales) FR 39002 1.15 3.3 1.1 5.4 1.9 2.8 9.0 0.75 9.0 9.0 0.75 9.0 9.0 0.75 9.0 9.0 0.75 9.0 9.0 0.75 9.0 9.0<		Æ	12934	.33	57.	7.0	5.9	12	3.5	5.3	7.1	8.	ន	91.	Ξ	g	510
Wilewound, Vehicles, Sample and Milewound, Vehicles, Sample and Vehicl		₹	65	.15		3.1	1.2	5.4	9.	2.8	•	•	0.0	370.	•	•	•
Wisewound, Variable Profession RAP (Auchieum)		ž	39002	.15	35	3.1	1.2	5.4	9.	8.	•	•	6	.075	•	•	•
Norwitzeround, National RJF 39035 .033 .10 .50 .21 .87 .19 .27 .52 .79 1.5 .017 .79 2.2 Norwitzeround, Norwitzeround, Norwitzeround, Norwitzeround, RJC 22297 .050 .11 1.1 .45 1.7 2.8 4.6 4.6 7.5 3.3 .025 1.5 4.7 Norwitzeround, RJC 23285 .048 .16 .76 .35 1.3 .39 .78 1.8 2.8 2.5 .021 1.2 3.7 Norwitzeround, RJC 23285 .048 .16 .76 .36 1.3 .36 .72 1.4 2.2 2.3 .024 1.2 3.4 Etablished Reliability Styles M. MIL-SPEC Lower .048		æ	8	.15		5.9	1.2	5.0	1.6	7.	•	•	7.6	920.		•	•
Norwinswound, Norwinshe		2	39035	.033		8	5.	78.	€.	.27	S,	8.	1.5	.017	62.	2.2	35
Composition, Variable RV 64 0.050 11 1.1 45 1.7 2.8 4.6 4.6 7.5 3.3 0.25 1.5 Norwitzeround		2	22097	.033	₽.	8	5.	.87	e .	72:	Ŗ,	8.	1.5	.017	6 /.	2.2	35
Norwitelecount Fig. 39023 .043 .15 .75 .35 1.3 .39 .78 1.8 2.8 2.5 .021 1.2 Variable Precision FMC 23285 .048 .16 .76 .36 1.3 .36 .72 1.4 2.2 2.3 .024 1.2 .14 .15 .15 .15 .15 .14 .15			2	050.		1	.45	1.7	8.8	₹.6	4.6	7.5	3.3	.025	1.5	4.7	87
Flant Variable RNC 22285 .048 .16 .76 .36 1.3 .36 .72 1.4 2.2 2.3 .024 1.2 .	Z	8	39023	.043	1 .	37.	.35	1.3	æ.	.78	8.	2.8	2.5	.021	1.2	3.7	3
1) * Not Normally used in this Environment 2) T _A = Default Component Ambient Temperature (*C) Ouality S R MIL-SPEC Ouality S 10 30 10 30	<u>u</u>	£	23285	.048		9/.	86.	1.3	.36	.72	4.	2.2	2.3	.024	1.2	9. 4	25
S February Styles M MrSPEC R P P 30 10 30 30 30 30 30 30 30 30 30 30 30 30 30		ued in this E xonent Amb	Invironment Hent Tempen	Eture (°C)													İ
S R P M MILSPEC						ı	Establishe	d Reliabilit	v Shiles					۲			
				₫,	Aller		æ	-		2	S IN	8		7			

MIL-HDBK-217F

					ð	Generic Fallure Rate, 3,	ilure Re	ie, λ. (F	allures/10	6 Hours	for C	pacitors						
Pages, By-Pass CP 228 2003	8	Part Type or Dielectric	SIĄIS		Env.→ GB TA (°C)→30	Q. 8	≩ ₹	2 €	\$5.₹	Arc 55	A FF 55	Se.	2 58	₹ 8	W 8	¥. ≈	3.50	ر ع 4
Particular Par	-	Paper, By-Pass	В	ĸ	.0036	2200.	683	810.	.055	25	80.	070	5	80.	8100.	170	12	2.2
Paycolface Corp. 1480	_	Paper, By-Pass	ర	12889	.003	7800.	.04	77	070	.035	.047	9	85	£.	.002	95	9	2.5
PupperPlant Firm CP 14157 COR 10041 COR 10041 COR 10041 COR 10041 COR 10041 COR 10041 COR 10041 COR 10041 COR 10041 COR 10041 COR 10041 COR 10042 COR 10041 COR 10041 COR 10042 COR 10042 COR	~	Paper/Plastic, Feed- through	8	11603	.0047	9600	140.	.034	£70.	.030	.040	7	£.	Ŧ.	.0024	950	9	2.7
Purposition Corp. 10072 Corp.		Paper/Plesto Film	8	14157	.0021	.0042	.017	010	030	8800	.013	.026	849	ş	0100	8	8	7
Mailand Proper/Pariety CPR 50022 0.029 0.029 0.029 0.014 0.11 0.12 0.12 0.059 0.029 0.029 0.021 0.014 0.12 0.029 0.029 0.021 0.029 0.029 0.021 0.029 0.021 0.029 0.029 0.021 0.029 0.029 0.021 0.029 0.029 0.021 0.029 0.029 0.021 0.029 0.029 0.021 0.029 0.029 0.021 0.029 0.029 0.021 0.029 0.021 0.029 0.021 0.029 0.021 0.029 0.021 0.029 0.021 0.029 0	6	Paper/Plastc Film	8	19978	.0021	.0042	710.	010.	030	8800	.013	920	849	4	0100.	8	963	=
Maintigue Player CFF 1812 CO2	4	Metalized Paper/Plestic	£	39022	.0029	9500:	.023	410.	.041	.012	810.	789.	990	8	4100.	032	88 0.	1.5
Michael Proper Plants CFF SSS14 COR1 COR2	4	Metalized Plastic	8	18312	.0029	9500.	620	410.	.041	210.	810.	760.	990:	990	\$ 100.	032	880.	1.5
Michalizad Plastic CH 51201 0.002 0.015 0.	2	Metalizad Paper/Plastic	₩	55514	.0041	.0083	.042	120	790	.026	0.48	980	=	5.	9050	2	 	25
MICA (Disperd or Mackad) GNR 39001 0.0055 0.015 0.0051 0.0051 0.0014 0.014 0.044 0.14 0.068 0.095 0.054 0.095 0.054 0.015 0.0055 0.015 0.0051 0.004 0.044 0.14 0.068 0.095 0.054 0.095 0.054 0.095 0.095 0.055 0.095	9	Metalized Plastic	₹	83421	.0023	.0092	.018	.012	.033	9600	410.	8	.050	3		980	0.	2
MICA (Digned) GM 5 10005 2015 2016 2024 214 2029 202	_	MICA (Dipped or Moldad)	8	39001	.0005	3100	280	98.	410.	8900	.0095	.054	990:	8	.00025	210	9 .	₩.
MICA (Budden) CP 10960 .018 .037 .18 .094 .21 .10 .14 .47 .90 .46 .0001 .25 .69 Class Correct (Budden) CP 22280 .00022 .00040 .0024 .0004 .0044 .0062 .005 .005 .005 .005 .0004 .0044 .0062 .005 .005 .005 .0001 .0001 .0001 .0001 Commit (Ban Purposs) CP 11272 .00032 .0004 .0014 .0014 .0014 .0042 .005 .0015 .0014 .	_	MICA (Dipped)	₹	2	.0005	3100	1300	4400	410.	.0068	.0095	.054	69 0.	150	.00025	210	940	€.
Charmet Clan. Purpose) CYT 22,289 .00032 .00049		MICA (Button)	8	10950	910.	.037	2	8	.31	01.	=	74.	S	\$.000	52	3	=
Commute (Gen. Purpose) CK 11272 .00032 .00096 .0059 .00094 .0004 .0004 .0004 .0009 .00094 .0004 .0009 .00094 .0009 .00094 .0009 .00094 .0009 .00094 .0009 .00094 .0009 .00094 .00099 .0	•	Glass	3	23289	.00032	96000	900	0028	700	.004	.0062	.035	546	8	.00016	9200.	080	8
Commit (Gan. Purpose) CK1 1015 .0036 .0074 .034 .019 .056 .015 .015 .015 .015 .014 .077 .0014 .049 .13		Glass	ઇ	11272	.00032	96000	6500	0028	4600 .	.0044	.0062	.035	85	80.	91000.	9200.	88	8
Committe (Gen. Purpose) CRR 200 .0036 .003 .014 .019 .056 .015 .015 .015 .015 .016 .0046 .007 .015 .015 .015 .015 .015 .015 .015 .015 .016 .00079 .017 .019 .005 .017 .015 .017 .014 .0049 .017 .016 .007 .015 .017 .016 .007 .015 .017 .014 .0049 .017 .006 .017 .018 .007 .015 .018 .007 .016 .007 .017 .015 .016 .007 .016 .007 .017 .016 .007 .017 .016 .007 .017 .018 .017 .018 .017 .018 .017 .009 .017 .011 .018 .017 .011 .017 .018 .018 .011 .011 .012 .011 .011 .012 .012 .011 .011 <	0	Cerumic (Gen. Purpose)	ð	11015	.0036	.0074	.03	010·	950	.015	.015	.032	9.	.077	4100.	94	5	2.3
Committed Composition CCR 56681 100078 10022 1013 10056 1023 1077 1015 1053 112 1.046 100039 1017 1065 1018	0	Cerumic (Gen. Purpose)	8	39014	.0036	4200	.03	910.	950	510.	.015	.032	87	720.	4100.	3	5.	23
Certantic Chip CCR 55681 .00078 .0022 .013 .0056 .023 .0077 .015 .053 .12 .046 .00039 .017 .068 .059 .059 .017 .059 .019 .011 .034 .057 .056 .00039 .017 .068 .0003 .017 .028 .0003 .017 .028 .0003 .017 .028 .0003 .019 .020	Ξ	Centuric (Temp. Comp.)	8	8	87000.	2200.	.013	9500	820	7200.	.015	.053	2	ş	.00039	710	996	89.
Tarrablum, Solid CSR 39003 .0016 .0039 .016 .0037 .028 .0031 .017 .013 .069 .028 .0031 .017 .013 .069 .029 .018 .017 .013 .069 .029 .11 .031 .061 .13 .29 .18 .0030 .089 .26 .26 .26 .26 .26 .26 .26 .27 .28 .24 .26 .12 .28 .13 .29 .18 .0030 .089 .26 .28 .28 .24 .20 .20	=	Cernuric Chip	8	55881	82000.	2200	.013	9500	.023	7200.	.015	.053	2	9	90000	710	.065	89
Tantalum, Non-Solid CLR 39006 CO61 CO13 CO69 CO39 CO39 CO14 CO14 CO15	2	Tantalum, Solid	3	39003	8100.	.0039	910.	7600.	.028	1600	.01	760	.057	.065	.00072	20	8	1.0
Terriblium, Non-Solid QL 3965 .0061 .013 .069 .039 .11 .031 .061 .13 .29 .18 .0030 .099 .26 .28 .24 .83 .73 .88 .43 .54 .20 .015 .49 1.7 .28 .24 .20 .015 .68 .28 .28 .24 .20 .015 .68 .28 .24 .20 .015 .68 .28 .20 .20 .015 .68 .28 .20 .	<u>.</u>	Tantatum, Non-Solid	5	39006	.006	.013	89	.039	Ę	160.	190:	<u>t.</u>	8,	₽.	.0030	68 0.	8	0.4
Aluminum Oxide CLR 39018 .024 .061 .42 .18 .59 .46 .55 2.1 2.6 1.2 .012 .49 1.7 Aluminum Oxide CE 62 .029 .081 .58 .24 .83 .73 .88 4.3 5.4 2.0 .015 .88 2.8 Variable, Cerrinc CV 81 .08 .27 1.2 .71 2.3 .69 1.1 6.2 .12 4.1 .032 1.9 5.9 Variable, Paton FC 1.409 .033 .15 .87 .30 .10 .17 9.9 .19 6.1 .032 .26 8.9 Variable, Namible, Namible, Namible in this Emitroconnect CC .23183 .0.4 1.3 6.7 3.6 1.0 5.9 90 .20 .20 . Variable, Namible, Namible in this Emitroconnect .5 .3 .3 .1 .3 .5 .7 .0	<u> </u>	Tertalum, Non-Solid	ಠ	3865	.006	610	89	030	Ę	160	.061	1.	83	≅ .	.0030	8 6	8	4.0
Number CE 62 .029 .061 .56 .24 .83 .73 .88 4.3 .54 .20 .015 .58 .28	<u> </u>	Aluminum Oxide	5	39018	.024	.	7.	8 F.	28,	\$	55	2.1	2.8	1.2	.012	97.	1.7	5
Variable, Cenemic CV 81 .08 27 1.2 .71 2.3 .69 1.1 6.2 12 4.1 .032 1.9 5.9 Variable, Paton FC 14409 .033 .13 .62 .31 .83 .21 .28 .22 .33 .22 .016 .93 .3.2 Variable, National Afficient of Anticonnect CD .23 .16 .87 .3.0 1.0 .17 9.9 19 6.1 .032 .2.6 8.9 NOTE: 1) * Not Normally used in this Environment CA 1.3 6.7 3.6 13 5.7 10 59 80 .20 . <t< td=""><td>5</td><th>Aluminum Dry</th><td>R</td><td>8</td><td>.020</td><td>180</td><td>85</td><td>7,</td><td>2</td><td>۲.</td><td>88</td><td>4.3</td><td>5.4</td><td>2.0</td><td>.015</td><td>89.</td><td>2.8</td><td>ĸ</td></t<>	5	Aluminum Dry	R	8	.020	180	8 5	7 ,	2	۲.	88	4.3	5.4	2.0	.015	89.	2.8	ĸ
Variable, Paton PC 14409 .033 .13 .62 .31 .83 .21 .28 .22 .33 .22 .016 .93 .32 Variable, Ar Trimmer GT 92 .080 .33 1.6 .87 3.0 1.0 1.7 9.9 19 6.1 .032 2.5 8.9 Variable, Vacuum CG 23163 0.4 1.3 6.7 3.6 10 5.7 10 56 90 23 .20 . NOTE: 1) * Not Normally used in this Emirorment *** *** 3.6 13 5.7 10 56 90 23 .20 . . AVIT. = Default Component Ambernt Temperature (***C) *** **	9	Variable, Ceramic	8	2	8.	27		۲.	2.3	69	1.	6.2	12	7.	.032	1.0	5.9	28
Variable, At Trimmer GT 82 .080 .33 1.6 .87 3.0 1.0 1.7 9.9 19 6.1 .032 2.5 8.9 Variable, Vacuum CG 23163 0.4 1.3 6.7 3.6 13 5.7 10 56 90 23 .20		Variable, Piston	8	4408	.033	.13	.6 2	٤	83	12.	.28	2.2	3.3	2.2	910.	8	3.2	37
Variable Vacuum CC 23163 0.4 1.3 6.7 3.6 13 5.7 10 56 80 23 .20 NOTE: 2) T _A = Default Component Arribert Temperature (°C) Country S R P M L MIL-SPEC Lower R.D. R.D. R.D. R.D. R.D. R.D. R.D. R.D. R.D.D.D.D.D.D.D.D.D.D.D.D.D.D.D.D.D.D.D	<u>8</u>	Variable, Air Trimmer	ь	8	8 80.	.33	1.6	78.	3.0	1.0	1.7	6.8	9	6.1	.032	2.5	8.9	8
1) * Not Normally used in this Environment 2) T _A = Delaut Component Antident Temperature (*C) 2) T _A = Delaut Component Antident Temperature (*C) Established Reliablity Styles Countilly S R P M L MIL:SPEC Lower **O 030 .10 .30 1.0 3.0 10	9	Variable, Vacuum	8	23183		1.3	6.7	3.6	5	5.7	10	28	8	83	8			:
S R P M L MIL-SPEC 030 .10 .30 1.0 3.0 3.0	ž		Compor	In this Er	Wronment ent Temperature	દ												
S RAIL OF STATES						-								1				
0.0 0.0 0.0 0.0 0.0					Ovality	S		mshed Heli	iceny Styles M	i	IN S	2	1					
					٥	020		8	e.	1	3.		2	Т				

MIL-HDBK-217F

	5	å		23	4.7	.	9	2	Ξ	2		•	88	Ę	3	•	•	•		•	•	•	•	•	•	240	8		-	. 5	98	8	2	ž		•		P. 7	, .	2 2
	ī	SS		9		1.2	,	Y	.073	Ť.		•	7.1	=	:	380	229	520		9	2	;	a	3	1 &	5	1		, a	ä	8	8	2.	Ç		ç		ų s	. 8	S .
	¥	đ.		053	=	.37	ę	7	%	90		•	1.7	8	ì	\$	210	99		3.5	=	. v	6	2 6	2 2	8.	6.0		925	3.7	8.2	=	. «	9.		9	? ?	p . C	; 6	.53 EE:
	J.	8		8100	9035	110	;	5	.00083	7100		1.6	380.	053	3	5.0	7.5	8		980	2	8	25	7	3	9	8,		900	074	=	28	0.57	8		3	į	§ 8	7000	, 20.
al Parts	A P	83		Ξ.	2	.82	8	8 5	.052	9		7.1	5.1	7.6	!	8	280	1040		7.0	8	12	•	ñ	. 2	9.2	2		970	8	5	25	2	8.2		6	; :	ş <u>a</u>	: 3	9.
nechanic	5	R		985	9	4 .	Ş	7	220.	3		3	12	\$!	X	375	8		21	8.7	2	23	5	=	ŧ	91		000	3.3	7.2	12	7	22.		2	:	5 5	. 2	5.1
Electror	25	2		041	180	35	ş	3 5	.016	680.		9	6.7	12	!	8	240	640		9.	6.2	9	2.1	-	5	4.0	=		.013	6	£.3	7.3	£.	8		8	3 8	280	5	88
tive and	¥	52		.037	.073	72.	8	97.	510.	8		7.1	1.2	1.8	<u> </u>	8	5	320		₹.	4.4	7	7.5	2.9	- -	7.6	9.5		910	2.7	5.9	5	0.	¥		8	÷	? =		2
lor Induc	Ş	15		.027	55.0	5	66	1 2	.	9. 23		7.1	8 /:	1.2		S	12	윮		Ξ	3.4	<u>_</u>	98	23	7.7	4.8	8.0		0.0	5.	3.3	S	2	7		9	5	8 9		2
Hours)	ž	45		98	£.	.45	2	! š	5	8		8.8	2.2	3.3		8	Ŕ	Ŕ		3.8	12	8.6	6.3	9.5	8	8 .	69		(820	4.3	9.5	9		1.6		8	2	; 2	8	2
Jres/10 ⁶	SN	4		910	.038	13	Ā	2	8	910		2.4	۶.	.		R	501	280		Ξ:	3.6	Ξ	8.	7.7	7.4	5.4	3.0		0800	1.2	5. 6	5.5	<u>=</u>	3 .		690	5,0	.035	012	69
(Felk	3	ŧ.		.049	.09	Ş.	9	2	3	946		3.3	1.5	22		뚕	乭	ŧ		2.	6.9	21	1.8	7	7	.	0.9		910.	27	5 0	읃	1.7	8		Ξ.	57	.055	.027	31
Bate,	ų.	\$		220	946	9 .	9	2	3	510.		2.4	8	S.		8	೪	8		8,	28.	8 7.	ន	8	: :	1.2	1 .5		0030	₹.	8	1.7	ន	.12		0.14	210	120	9500	=
Generic Failure Rate, $\lambda_{f g}$ (Failures/10 ⁶ Hours) for inductive and Electromechanical Parts	Env.→ GB	7, (*C)→30		.0035	1700.	8	028	7100	3	.0033		1.6	.00	Ξ.		9	15	\$.13	₹.	.13	F.	8	88.	₹.	S.		00.0	. 5	8.	8	Ŧ.	980		0.011	210.	.0054	9100.	.053
Ð	3		Г	1-21038	1-27	1-27	1.55631	C.15305	C-30010	C-15305				_					-							_				\$-8805	3 786	\$ 22710	C-80383	C-55629	1					
	Part Type		INDUCTIVE DEVICES	Low Power Pulse XFMR		High Pwr. Pulse and Pwr.		Fixed or		_	POTATING DEVICES	Motors	Synchros	Resolvers	ELAPSED TIME METERS	ETIM-AC	ETM-Invertor Driver	ETM-Commutator DC	RELAYS	General Purpose	Contactor, High Current	Latching	Page 1	Thermal, 61-metal	Meter Movement	Solid State	Hybrid and Solid State Time Delay	SWITCHES	Toggle or Pushbutton	Sensitive	Rotary Water	Thursday	Circuit Breaker, Thermal	Circuit Breaker,	CONNECTORS	Circular/Pack/Panel	Coexie	Printed Circuit Board	Connector IC Sockets	Interconnection Assembles (PCBs)
	Section	•		Ξ	=	Ξ	=	11.2	! ;	11.2		12.1	12.2	12.2			12.3	13.3		£.				13.1	13.1	13.2	13.2			2.2	14.3	•	2.5	2.5		15.1	15.1	5.2	15.3	16.1

E: 1) * Not normally used in this environment
 Z) T_A = Default Component Ambient Temperature (*C)

MIL-HDBK-217F

APPENDIX A: PARTS COUNT

			Generic	Generic Fellure Rate, Ag	Rate, A	e (Fellu	108/106	Hours) f	(Failures/10 ⁶ Hours) for Miscellaneous Parts	leneous	Parts					
Section	Part Type Dielectric	j S	Env.→ GB	-	g ≅	ž	حٍ	٧	AIF	3	ځ	P	J.	*	3	5
•]			1 _A (*C)→30	ş	45	₽	45	52	55	R	R	23	8	€.	, 82 , 83	, 8
	SINGLE CONNECTIONS															
17.1	Hand Solder, w/o Wrapping		.0026	.0052	910.	010	80	010	910.	910.	120.	8	.0013	220	983	
17.1	Hand Solder, w/Wrapping		41000.	.00028	86000	95000	3100.	95000	.00084	.000 48000	100	2200	70000	.0013	400	0.50
17.1	Crinp		92000:	.00052	81.0	0100	.0028	910	9100.	9100.	.0021	96.	.00013	6200	.0062	=
17.1	Pew		.000050	001000	.000350	.0002000	000550	000500	000000	000000	000400	00000	.000025	.000450	001200	.021000
17.1	Solderless Wrap		.0000035	700000	.000025	410000.	60000	410000	.000021	.000021	000028	950000	.0000018	.000031	.0000	5100.
17.1	Clip Termination		.00012	.00024	9000	97000	.0013	.00048	27000.	.00072	96000	9100	90000	1100	928	950
-2-	Reflow Solder		690000	.000138	.000483	.000276	.000759	.000276	.000414	414000	.000552	100	000035	000621	001856	8080
	METERS, PANEL															
6	18.1 DC Arrenater or Voltmater	M-10304	0.09	0.36	23	Ξ	8.2	2.5	3.8	5.2	9.	5.4	0.099	5.4	×××	¥ Ž
=	AC Ammeter or Voltmeter	M-10304	0.15	0.61	3.8	1.8	5.4	4.3	6.4	8.8	=	9.5	0.17	9.5	¥	¥
<u>=</u>	Overtz Crystals	C-3086	.032	968	.32	81.	15	38	3 5.	٤.	æ	7.	910.	42	5	و
8	20.1 Lamps, Incandescent, AC		3.8	7.8	2	52	ڥ	92	16	5	ន	õ	2.7	æ	ន	ŝ
8	Lamps, Incandescent, DC		13	92	38	8	55	51	5	3	1	2	0	ĭ	1	2
	ELECTHONIC FLTERS															
21.1	Ceramic-Fernite	F-15733	.022	0.044	£.	980	8	£.	8,	7.	84	₹.	810.	<u>.</u>	8	5.6
21.1	Discrete LC Comp.	F-15733	21.	.24	.72	84	5	2	1.1	1.3	9.1	1.3	980	8 ;	8.	7
21.1	Discrete LC & Crystal Comp.	F-18327	.27	.54	1.6		2.4	1.9	2.4	3.0	3.5	3.0	.22	9.1	Ţ	8
ğ	FUSES		010	020	90	050	=	8	12	.15	85.	8 1.	88	₽.	2	23

MIL-HDBK-217F

APPENDIX A: PARTS COUNT

	TO FACTOR TOF USB WITH SHOTE	Section 11-22 Devices		
Section #	Part Type	Established Reliability	MIL-SPEC	Non-MIL
11.1, 11.2	Inductive Devices	.25*	1.0	10
12.1, 12.2, 12.3	Rotating Devices	N/A	N/A	A/A
13.1	Relays, Mechanical	09.	3.0	0.6
13.2	Relays, Solid State and Time Delay (Hybrid &	N/A	1.0	4
	Solid State)			
14.1, 14.2	Switches, Toggle, Pushbutton, Sensitive	N/A	1.0	20
14.3	Switches, Rotary Wafer	N/A	1.0	50
14.4	Switches, Thumbwheel	N/A	1.0	10
14.5	Circuit Breakers, Thermal	N/A	1.0	8.4
15.1, 15.2, 15.3	Connectors	N/A	1.0	2.0
16.1	Interconnection Assemblies	N/A	1.0	2.0
17.1	Connections	N/A	N/A	N/A
18.1	Meters, Panel	N/A	1.0	3.4
19.1	Quartz Crystals	N/A	1.0	2.1
20.1	Lamps, incandescent	N/A	N/A	NA VA
21.1	Electronic Filters	N/A	1.0	2.9
22.1	Fuses	N/A	N/A	N/A

* Category applies only to MIL-C-39010 Coils.

MIL-HDBK-217F

Section	Part Type	Default Parameters for Discrete	Paramete	101 81 101 101 101 101 101 101 101 101 1	Discrete	ñ	anduct T	Comments
*				į	ا د	X	<u> </u>	215
5.0	MICROCIRCUITS	¥	I Defaults p	All Defaults provided with $\lambda_{\rm g}$ Table	hλg Tabl	•		
6.1	DIODES General Purpose Analog	.0038		54.	0.			Voltana Strass = 7 Matelluraricelly Booded
6.1	Switching	.001		.42	0.1			Contacts Voltage Stress = .7, Metallurgically Bonded
6.1	Fast Recovery Power Rectifier	690		.42	1.0			Contacts Voltage Stress = .7, Metallurgically Bonded
6.1	Transient Suppressor/Varistor Power Rectifier	.003		0.4.	0.0			Contacts Metallurgically Bonded Contacts Voltage Stress = 7, Metallurgically Bonded
6.1	Voltage Ref/Reg. (Avalenche &	.002		1.0	1.0			Contacts Metallurgically Bonded Contacts
6.2	Current Regulator Si Impatt (≤ 35 GHz)	.0034		1.0	0.1	0	0	Metallurgically Bonded Contacts
6.2.2	n/Bulk Eff	.0023				0.0	0.0	
6.2 6.2	Schottky Barrier and Point Contact	.0081		1.0	0.1	0.0	5.0	Rated Power = 1000W
6.2	(200 MAZ S requency S 33 GHZ) Varactor Thyristor/SCR	.0025		2.5	1.0		1.0	Multiplier Application Voltage Stress = .7, Rated Forward Current = 1 Amp
6.3	TRANSISTORS NPN/PNP (f < 200 MHz)	.00074		12.		02:	1:	Voltage Stress = .5, Switching Application, Rated
6.3	Power NPN/PNP (1 < 200 MHz)	.00074		3 5.		5 .	5.5	Power = .5W Voltage Stress = .8, Linear Application, Rated
0 0 0 4 0 0	SI FET (1 < 400 MHz) SI FET (1 > 400 MHz) Gada FET (0 > 100 mMx)	.060 .060	•	c		02:		Power = 100W MOSFET, Small Signal Switching MOSFET
6.8	GaAs FET (P > 100 mW)	.13	2: 0:			5 6		Low Noise Application, 1 ≤ f ≤ 10 GHz, Input and Output Matching CW Application, 5 GHz, 1W Average Cutour Double
0 4 10 4	Unijunction BE 1 cu Males Bisolar	.0083		ç			;	Input and Output Matching
0.0	(f > 200 MHz, P < 1W)	<u> </u>	90			,		Voltage Stress = .7, Rated Power = .5W
;		8		.		<u>.</u>		1 GHz, 100W, T J = 130°C for all Environments, Voltage Stress = .45, Gold Metallization Pulsed Application, 20% Duty Factor, Pulse Width = 5ms, Input and Outout Matching

MIL-HDBK-217F

		Default Parameters for Discrete Semiconductors	Param	eters	for Dis	crete	Semico	nducto	e 2
Section *	Part Type	Ą	ЯŢ	Α M	TM TS TC TA	ပ္	π _A	뜐	Comments
1.0.0.0	OPTO-ELECTRONICS Photodetector Opto-Isolator Emitter	.0055 .013							Phototransistor Phototransistor, Single Device LED
	Alphanumeric Display Laser Diode, GaAs/Al GaAs	.0030 3.23			1.0 (πp)		11:		7 Character Segment Display GaAs/Al GaAs, Hermetic, for Environments with T _J > 75°C, assume T _J = 75°C,
6.13	Laser Diode, In/GaAs/in GaAsP	5.65			1.0 (πp)		77.		Forward Peak Current = .5 Amps ($r_{\rm f}$ = .62) Duty Cycle = .6, Pr/Pe = .5 ($r_{\rm p}$ = 1) GaAs/A GaAs, Hermetic, for Environments with T _J > 75°C, assume T _J = 75°C,
									Forward Peak Current = .5 Amps (n ₁ = .62) Duty Cycle = .6, Pr/Ps = .5 (n _P = 1)

MIL-HDBK-217F

stors	*TAPS Comments	Day Chase F 411 char	PWT, Organs = 15, 1M ohm	Par Street 5 1N cha	Par Strate S 1M cha	Par Street 5 1 Lobs	Par Strate 5 1M cha	Charles on A constant of the c	Pwr. Stress = .5, To a Ta + 28°C. 10 Film Registrors	Pwr Stress = 5.100K ohms	Pwr Stress = 5 100K ohms	Par Stress 5 5K obes DWD 84	Par Street 5 5K obses 1980	Pwr. Stress = .5, Norinductively Wound, 5K ohm, RER 56	Pwr. Stress = .5, MIL-R-18546, Char. N, 5K ohm, RE75	Disk Tyde		O PW. Street D. 3 Tage Valence Street R.				D PW. Stress = .5, 3 Tabe, Voltage Stress = .5	Unanclosed (x _c = 1)				Pwr. Stress = .5, 200K ohm, 3 Taps, Voltage Stress = .5	0 Pwr. Stress = .5, 200K ohm, 3 Taps, Voltage Stress = .5
Default Parameters for Resistors		\mid										-					_	-		0.1	_	-				- 1.0		1.0
=	- <u>-</u> -	L															-	-				6.			_			0.1
Param	፝ Έ		==	=	=	=	=	10	:	1.7	1.7	- -	0.	=	=		1.4	7	4.	4.	1.4	-		5.		1.2		1.2
Default	MIL-R-SPEC	39008	=	39017	22684	55182	10509	11804	83401	39005	83	39007	58	39009	18546	23648	39015	27208	12934	65	39002	22		39035	25097	\$	39023	23285
	Style	ğ	8	5	권	ž	æ	8	ĸ	2	82	H.	Æ	£	#	Æ	E	늄	Œ	₹	ž	<u>&</u>		2	2	€;	<u>g</u>	¥C
	Part Type	Composition	Composition	Film, Insulated	Film, Insulated	FIM. RN (F. CO'N)	Ē	Film, Power	Fixed, Network	Wirewound, Accurate	Wirewound, Accurate	Wirewound, Power	Wirewound, Power	Wirewound, Power, Chassis	Wirewound, Power, Chassis Mounted	Thermistor	Wirewound, Variable	Wirewound, Variable	Wirewound, Variable, Precision	Wirewound, Variable, Semionacision	Wirewound, Semiprecialon	Wirewound, Variable, Power		Norwirewound, Variable	Norwirewound, Variable	Composition, Variable	Norwitewound, Variable Precision	Film, Variable
	Section *	9.1	1.6	9.5	9.5	9.5	9.5	9.3	7 .6	9.5	9.5	9.6	9.6	9.7	9.7	8.6	6.6	6.6	9 .	9.11	9.11	9.12		9.13	9.13	4 1		9.15

MIL-HDBK-217F

Default Parameters for Capacitors	L	MIL-C-SPEC TCV	25 1.0 125 Voltace Stream E 15.1F	12889 1.0 85	11693 1.0 125	14157 1.0 125	0.1 87661	39022 1.0 125	18312 1.0	55514 1.0 125	83421 1.0 1.25	38001	5 1.0	10950 1.0 150	23269 1.0 125	11272 1.0	11015 1.0 125	39014 1.0 125	1.0	55681	38003 1.0		39006 1.0 125 Voltage Stress = .5, Foll, Hermetto, 20 µF, r _n = 1	3965 1.0 125	39018 1.3 125	62 1.3 85	180	14409	92	23183 85
ltors			Volta	Votes			4 5	5 2	100	1 cal	a delo	Volta	Voltage	Voltac	Voltac	Voltac	Voltag	Voltag	Voltag	Voltag	Voltag	resista	Voltag	Voltag	Volta		5 2	2 2	Votago	Voltage
or Capac	emo.	Rating	2	8	53	<u> </u>	ম	<u> </u>	Z	₹	ম	<u> </u>	<u> 18</u>	ž.	<u> </u>	<u>73</u>	<u>5</u>	2	ĸ	Ķ	2		125	125	125	88	, g	3 52	ន	æ
rameters		ئر در	1.0	1.0	0:	1.0	0:	0.	0.1	0.	0.	0.1	0.	0.	0.	<u>.</u>	0.	0.	0.	0.	0.		0.	0.	6.	6.1				
Default Par		MIL-C-SPEC	25	12889	11693	14157	19978	39022	18312	55514	83421	39001	10	10950	23269	11272	11015	38014	ଛ	25681	38003		30006	3965	39018	62	-	14409	85	23183
		Style	8	<u></u> 5	8	ğ	8	£	ક	Æ	₹	8	₹	8	£	ઠ	ð	8	8	38	<u> </u>		5	ರ	5	ଞ	ર્ડ -	8	ნ	8
	Part Type or	Diefectric	Paper, By-Pass	Paper, By-Pass	Paper/Plastic, Feed-through	Paper/Plastic Film	Paper/Plastic Film	Metallized Paper/Plastic	Metallized Plastic/Plastic	Metallized Paper/Plastic	Metalitzed Plastic	MICA (Dipped or Molded)	MICA (Dipped)	MICA (Button)	50 00	Gless	Ceramic (Gen. Purpose)	Ceramic (Gen. Purpose)	Ceramic (Temp. Comp.)		rangeum, cord		Tantalum, Non-Solid	Tantalum, Non-Solid	Aluminum Oxide	Aluminum Dry	Variable, Ceramic	Variable, Piston	Variable, Air Trimmer	Variable, Vacuum
	Section	*	10.1	<u>5</u>	10.2	10.3	10.3	10.4	10.4	10.5	10.6	10.7	10.7	801	6.0	10.9	2.5	2:0		= \$	2	!	10.13	10.13	10.14	10.15	10.16	10.17	8.03	10.19

MIL-HDBK-217F

	Default P	arameters for	Induc	tive a	nd Elec	Default Parameters for Inductive and Electromechanical Parts
Section	Part Type	MIL-SPEC	ပ္န	ZCYC	발	Comments
17.1	INDUCTIVE Low Pwr. Pulsed, XFMR	MIL-T-21038				Max. Bated Terro. = 130°C. AT = 10
1.1	Audio XFMR	MIL-T-27				Max Balad Tame = 130°C AT = 10
#: #:	High Pwr. Pulse and Pwr. XFMR, Filter	MIL-T-27				Max. Rated Temp. = 130°C. AT = 30
1.1	RF Transformers	MIL-T-55631				Max. Rated Temp. = 130°C. AT = 10
11.2	RF Coils, Fixed or Molded	MIL-C-15305	-			Max. Rated Temp. = 125°C. AT = 10
11.2	RF Coils, Variable	MIL-C-15305	~			Max. Rated Temp. = 125%; AT = 10
12.1	ROTATING DEVICES Motors					t = 15 000 builts (Assumed Benjacent Time)
12.2	Synchros					T _F = T _A + 40, Size 10 · 16, 3 Brushes
12.2	Resolvers					T _F = T _A + 40, Size 10 - 16, 3 Brushes
12.3	Elapsed Time Meters (ETM) ETM-AC					Op. Temp/Rated Temp. = .5 (fr. = .5)
12.3	ETM-Inverter Driver					Op. Temp/Rated Temp. = .5 (π. = .5)
12.3	ETM-Commutater DC					Op. Temp/Rated Temp. = .5 (rr = .5)
13.1	RELAYS General Purpose		3	-	5 0	Max. Rated Temp. = 125°C , DPDT, MIL-SPEC, 10 Cycles/Hour,
						4 Amp., General Purpose, Balanced Armature, Resistive Load,
13.1	Contactor, High Current		ю		ب	s = .5 Max. Rated Temp. = 125°C, DPDT, MIL-SPEC, 10 Cycles/Hour,
13.1	Latching		ю		بي	Max. Rated Temp. = 125°C, MilSPEC, 4 Amp., Mercury Wetted, 10 Cytes/Hour, DPDT, Resistive Load, s = .5
13.1	Reed		-	α.	ø	Max. Rated Temp. = 85°C, MtL-SPEC, Signal Current, Dry Reed, 20 Cycles/Hour, SPST, Reelstive Load, s = .5
13.1	Thermal Bi-Metal		-	-	5	Max. Rated Temp. = 125°C, MIL-SPEC, BI-Metal, 10 Cycles/Hour, SPST, Inductive Load, 5 Amp., s = .5
13.1	Meter Movement		-	-	6	Max. Rated Temp. = 125°C, MIL.SPEC, Polarized Mater Movement, 10 Cydes.Hour, SPST, Resistive Load, s = .5
13.2	Solid State	MIL-R-28750				No Defaults
; 	Time Delay Hybrid and Solid State	MIL-R-83726		1		No Defaults

APPENDIX A: PARTS COUNT

		Default Parameters for Inductive and Electromechanical Parts	ameters	for Inc	luctive	and El	ectrom	echani	
CODOM **	Part Type	MILSPEC	g.	υ ^π	3	^π cyc	بگ	κ _α	Commante
14.1	SWITCHES Toggle & Pushbutton		.00045		1.5	1.0	1.48		Snap-action, MIL-SPEC, s 1 Cycle/Hour,
14.2	Sensitive	MIL-S-8805	.10			1.0	1.48		Hesistive Load, Current Stress = .5, DPST Actuation Differential > .002 inches, 1 Active
14.3	Rotary Wafer	MIL-S-3786	.0074			30	1.48		Contact, MIL-SPEC, s 1 Cycle/Hour, Resistive Load, Current Stress = .5 MIL-SPEC, Resistive Load, Current Stress = .5
14.4	Thumbwheel	MIL-S-22710	.38			0.	1.48		30 Cycles/Hour, 24 Active Contact MIL-SPEC, Resistive Load, .Current Stress = .5, s
14.5	Circuit Breaker, Thermal	MIL-C-83383	.038	1.0	3.0				1 Cycle/Hour, 6 Active Contacts 3PST, Not Used as a Power On/Off Switch
14.5	Circuit Breaker, Magnetic	MIL-C-55629	.020	1.0	3.0				3PST, Not Used as a Power On/Off Switch
15.	CONNECTORS Circular/Rack/Panel							7.4	To = TA + 10°C, Insert Material B, 3 Mating/
									Unmating Cycles per 1000 Hours, 40 Active Contacts, MIL-SPEC _{TE}
	Coaxia							4.	T _o = T _A + 5°C, Insert Material C, 3 Mating/ Unmating Cycles per 1000 Hours, 2 Active Contacts, MIL-SPEC π.
15.2	Printed Circuit Board							7.4	To = TA + 10°C, 3 Mating/Unmating Cycles per 1000 Hours 40 Arthus Pins Mill SDEC =
15.3	IC Sockets		.00042					9.4	24 Active Contacts
16.1	Interconnection Assembles (PCBs)		.000041						Printed Wiling Assembly, 1000 Wave Soldered Functional PTHs, 3 Circuit Planes, No Hand Soldering, 7 _E

MIL-HDBK-217F

		Default Parameters for Miscellaneous Parts	meters	101 E	iscellar	eous Parts
Section	Part Type	MIL-SPEC	Ą	ů,	πА	Comments
17.1	Connections					No Defaults
18.1	Meters, Panel					No Defaults
19.1	Quartz Crystals	MIL-C-3098	.032			50 MHz
20.1	LAMPS, INCANDESCENT AC Applications		5.4	.72	-	Rated Voltage 28 Volts, Utilization Rate .5, Alternating Current
20.1	DC Applications		5.4	.72	6.	Rated Voltage 28 Volts, Utilization Rate. 5, Direct Current
21.1	ELECTRONIC FL TERS Ceramic-Ferrite	MIL-F-15733	.022			MIL-SPEC
21.1	Discrete LC Comp	MIL-F-15733	.12			MIL-SPEC
21.1	Discrete LC & Crystal Comp.	MIL-F-18327	.27			MIL-SPEC
22.1	FUSES		.010			

APPENDIX B: VHSIC/VHSIC-LIKE AND VLSI CMOS (DETAILED MODEL)

This appendix contains the detailed version of the VHSIC/VLSI CMOS model contained in Section 5.3. It is provided to allow more detailed device level design trade-offs to be accomplished for predominate failure modes and mechanisms exhibited in CMOS devices. Reference 30 should be consulted for a detailed derivation of this model.

VHSIC/VHSIC-LIKE FAILURE RATE MODEL

 $\lambda_{P}(t) = \lambda_{OX}(t) + \lambda_{MET}(t) + \lambda_{HC}(t) + \lambda_{CON}(t) + \lambda_{PAC} + \lambda_{ESD} + \lambda_{MIS}(t)$

λ_p(t) = Predicted Failure Rate as a Function of Time

 $\lambda_{OX}(t)$ = Oxide Failure Rate

 $\lambda_{MET}(t)$ = Metallization Failure Rate

 $\lambda_{HC}(t)$ = Hot Carrier Failure Rate

 $\lambda_{CON}(t)$ = Contamination Failure Rate

λ_{PAC} = Package Failure Rate

 λ_{ESD} = EOS/ESD Failure Rate

 $\lambda_{MIS}(t)$ = Miscellaneous Failure Rate

The equations for each of the above failure mechanism failure rates are as follows:

OXIDE FAILURE RATE EQUATION

$$\lambda_{\text{OX}} (\text{in F/10}^6) = \frac{\text{A A}_{\text{TYPEOX}}}{\text{A}_{\text{R}}} \left(\frac{\text{D}_{0_{\text{OX}}}}{\text{D}_{\text{R}}} \right) \left[(.0788 \, \text{e}^{-7.7 \, \text{t}_0}) \, (\text{A}_{\text{ToX}}) \, (\text{e}^{-7.7 \, \text{AT}_{\text{OX}} \text{t}}) \right] \\ + \frac{.399}{(\text{t+1}_0)\sigma_{\text{OX}}} \exp \left(\frac{-.5}{\sigma_{\text{OX}}^2} \, \left(\, \text{In} \, \left(\text{t+t}_0 \right) - \, \text{In} \, \, \text{t}_{50_{\text{OX}}} \right)^2 \right) \right]$$

A = Total Chip Area (in cm²)

A_{TYPEox} = .77 for Custom and Logic Devices, 1.23 for Memories and Gate Arrays

APPENDIX B: VHSIC-VHSIC-LIKE AND VLSI CMOS (DETAILED MODEL)

OXIDE FAILURE RATE EQUATION (CONTINUED)

 $A_R = .21 \text{ cm}^2$

 D_{0ox} = Oxide Defect Density (If unknown, use $\left(\frac{x_0}{x_s}\right)^2$ where $x_0 = 2 \mu m$ and x_s is the feature size of the device)

 $D_{R} = 1 \text{ Defect/cm}^2$

t₀ = Effective Screening Time

= (Actual Time of Test (in 10^6 hrs.)) * (A $_{T_{OX}}$ (at junction screening temp.) (in °K))*

A_{Tox} = Temperature Acceleration Factor, = $\exp\left[\frac{-.3}{8.617 \times 10^{-5}} \left(\frac{1}{T_J} - \frac{1}{298}\right)\right]$ (where T_J = T_C + θ_{JC} P (in °K))

....1 1.

 $A_{Vox} = e^{-192 \left(\frac{1}{E_{ox}} - \frac{1}{2.5}\right)}$

E_{ox} = Maximum Power Supply Voltage V_{DD}, divided by the gate oxide thickness (in MV/cm)

 $t_{50_{OX}} = \frac{1.3x10^{22} (QML)}{AT_{OX} AV_{OX}}$ (in 10⁶ hrs.)

(QML) = 2 if on QML, .5 if not.

 $\sigma_{\rm OX}$ = Sigma obtained from test data of oxide failures from the same or similar process. If not available, use a $\sigma_{\rm OX}$ value of 1.

t = time (in 10⁶ Hours)

APPENDIX B: VHSIC/VHSIC-LIKE AND VLSI CMOS (DETAILED MODEL)

METAL FAILURE RATE EQUATION

$$\lambda_{\text{MET}} = \left[\frac{A A_{\text{TYPEMET}}}{A_{\text{R}}} \frac{D_{0\text{MET}}}{D_{\text{R}}} \left(.00102 \text{ e}^{-1.18 \text{ t}_0} \right) (A_{\text{TMET}}) (e^{-1.18 \text{ A}_{\text{TMET}}}) \right] \\ + \left[\frac{.399}{(t + t_0) \sigma_{\text{MET}}} \exp \left(\frac{-.5}{\sigma_{\text{MET}}^2} \left(\ln (t + t_0) - \ln t_{50 \text{MET}} \right)^2 \right) \right]$$

A = Total Chip Area (in cm²)

A = .88 for Custom and Logic Devices, 1.12 for Memory and Gate Arrays

 $A_{\rm p}$ = .21 cm²

 D_{0MET} = Metal Defect Density (If unknown use $(\frac{X_0}{X_S})^2$ where $X_0 = 2$ μm and X_S is the feature size of the device)

 $D_{D} = 1 \text{ Defect/cm}^2$

A_{T_{MET}} = Temperature Acceleration Factor

$$= \exp\left[\frac{-.55}{8.617 \times 10^{-5}} \left(\frac{1}{T_{J}} - \frac{1}{298}\right)\right] \left(T_{J} = T_{CASE} + \theta_{JC}P \quad (in \, ^{\circ}K)\right)$$

 t_0 = Effective Screening Time (in 10⁶ hrs.)

= A_{TMET} (at Screening Temp. (in °K)) • (Actual Screening Time (in 10⁶ hrs))

$$t_{50_{MET}} = (QML) \frac{.388 \cdot (Metal Type)}{J^2 A_{T_{MET}}}$$
 (in 10⁶ hrs.)

(QML) = 2 if on QML, .5 if not.

Metal Type = 1 for Al, 37.5 for Al-Cu or for Al-Si-Cu

J = The mean absolute value of Metal Current Density (in 10⁶ Amps/cm²)

 σ_{MET} = sigma obtained from test data on electromigration failures from the same or a similar process. If this data is not available use σ_{MET} = 1.

t = time (in 10⁶ hrs.)

APPENDIX B: VHSIC-VHSIC-LIKE AND VLSI CMOS (DETAILED MODEL)

HOT CARRIER FAILURE RATE EQUATION

$$\lambda_{HC} = \frac{.399}{(t+t_0)\sigma_{HC}} \exp\left[\frac{-.5}{\sigma_{HC}^2} \left(\ln (t+t_0) - \ln t_{50} + C \right)^2 \right]$$

$$t_{50_{HC}} = \frac{(QML)3.74 \times 10^{-5}}{A_{T_{HC}}} {\binom{l_{sub}}{l_d}}^{-2.5}$$

(QML) = 2 if on QML, .5 if not

$$A_{T_{HC}} = exp \left[\frac{.039}{8.617 \text{x} 10^{-5}} \left(\frac{1}{T_J} - \frac{1}{298} \right) \right] \text{ (where } T_J = T_C + \theta_{JC} P \text{ (in °K))}$$

Id = Drain Current at Operating Temperature. If unknown use $I_d = 3.5 e^{-.00157 T_J (in °K)}$ (mA)

 l_{sub} = Substrate Current at Operating Temperature. If unknown use $l_{sub} = .0058 e^{-.00689} T_J (in °K) (mA)$

 σ_{HC} = sigma derived from test data, if not available use 1.

t₀ = A_{THC} (at Screening Temp.(in °K)) • (Test Duration in 10⁶ hours)

 $t = time (in 10^6 hrs.)$

CONTAMINATION FAILURE RATE EQUATION

$$\lambda_{CON}$$
 = .000022 e -.0028 t₀ $A_{T_{CON}}$ e -.0028 $A_{T_{CON}}$ t

$$A_{TCON} = \exp\left[\frac{-1.0}{8.617 \times 10^{-5}} \left(\frac{1}{T_J} - \frac{1}{298}\right)\right] \text{ (where } T_J = T_C + \theta_{JC}P \text{ (in °K)})$$

t₀ = Effective Screening Time

A_{Tcon} (at screening junction temperature (in °K)) • (actual screening time in 10⁶ hrs.)

t = time (in 10^6 hrs.)

B-4

APPENDIX B: VHSIC/VHSIC-LIKE AND VLSI CMOS (DETAILED MODEL)

PACKAGE FAILURE RATE EQUATION

 $\lambda_{PAC} = (.0024 + 1.85 \times 10^{-5} \text{ (#Pins)}) \pi_E \pi_Q \pi_{PT} + \lambda_{PH}$

 π_E = See Section 5.10

 $\pi_{\rm Q}$ = See Section 5.10

Package Type Factor (Π_{PT})

Package Type	П ^Ы
DIP Pin Grid Array Chip Carrier (Surface Mount Technology)	1.0 2.2 4.7

 λ_{PH} = Package Hermeticity Factor

 λ_{PH} = 0 for Hermetic Packages

$$\lambda_{PH} = \frac{.399}{t\sigma_{PH}} exp \left[\frac{-.5}{\sigma_{PH}^2} \left(ln(t) - ln(t_{50PH}) \right)^2 \right]$$
 for plastic packages

$$t_{50_{PH}} = 86 \times 10^{-6} \exp \left[\frac{.2}{8.617 \times 10^{-5}} \left(\frac{1}{T_A} - \frac{1}{298} \right) \right] \exp \left[\frac{2.96}{RH_{EFF}} \right]$$

T_A = Ambient Temp. (in °K)

$$RH_{eff} = (DC)(RH) \left[e^{5230} \left(\frac{1}{T_J} - \frac{1}{T_A} \right) \right] + (1-DC)(RH) \text{ where } T_J = T_C + \theta_{JC}P \text{ (in °K)}$$
(for example, for 50% Relative Humidity, use RH = .50)

 $\sigma_{PH} = .74$

t = time (in 10^6 hrs.)

APPENDIX B: VHSIC-VHSIC-LIKE AND VLSI CMOS (DETAILED MODEL)

EOS/ESD FAILURE RATE EQUATION

$$\lambda_{EOS} = \frac{-\ln (1 - .00057 e^{-.0002 V_{TH}})}{.00876}$$

V_{TH} = ESD Threshold of the device using a 100 pF, 1500 ohm discharge model

MISCELLANEOUS FAILURE RATE EQUATION

$$\lambda_{MIS} = (.01 e^{-2.2 t_0}) (A_{TMIS}) (e^{-2.2 A_{TMIS} t})$$

A_{TMIS} = Temperature Acceleration Factor

$$= \exp\left[\frac{-.423}{8.6317 \times 10^{-5}} \left(\frac{1}{T_{J}} - \frac{1}{298}\right)\right]$$

where
$$T_J = T_C + \theta_{JC}P$$
 (in °K)

t_o = Effective Screening Time

= A_{TMIS} (at Screening Temp. (in °K)) * Actual Screening Time (in 10⁶ hours)

 $t = time (in 10^6 hrs.)$

APPENDIX C: BIBLIOGRAPHY

Publications listed with "AD" numbers may be obtained from:

National Technical Information Service 5285 Port Royal Road Springfield, VA 22151 (703) 487-4650

U.S. Defense Contractors may obtain copies from:

Defense Technical Information Center Cameron Station - FDA, Bldg. 5 Alexandria, VA 22304-6145 (703) 274-7633

Documents with AD number prefix with the letter "B" or with the suffix "L": These documents are in a "Limited Distribution" category. Contact the Defense Technical Information Center for ordering procedures.

Copies of MIL-STDS's, MIL-HDBK's, and specifications are available from:

Standardization Document Order Desk 700 Robins Ave. Building 4, Section D Philadelphia, PA 19111-5094 (215) 697-2667

The year of publication of the Rome Laboratory (RL) (formerly Rome Air Development Center (RADC)) documents is part of the RADC (or RL) number, e.g., RADC-TR-88-97 was published in 1988.

- 1. "Laser Reliability Prediction," RADC-TR-75-210, AD A016437.
- 2. "Reliability Model for Miniature Blower Motors Per MIL-B-23071B," RADC-TR-75-178, AD A013735.
- 3. "High Power Microwave Tube Reliability Study," FAA-RD-76-172, AD A0033612.
- 4. "Electric Motor Reliability Model," RADC-TR-77-408, AD A050179.
- "Development of Nonelectronic Part Cyclic Failure Rates," RADC-TR-77-417, AD A050678.

This study developed new failure rate models for relays, switches, and connectors.

"Passive Device Failure Rate Models for MIL-HDBK-217B," RADC-TR-77-432, AD A050180.

This study developed new failure rate models for resistors, capacitors and inductive devices.

- 7. "Quantification of Printed Circuit Board Connector Reliability," RADC-TR-77-433, AD A049980.
- 8. "Crimp Connection Reliability," RADC-TR-78-15, AD A050505.
- 9. "LSI/Microprocessor Reliability Prediction Model Development," RADC-TR-79-97, AD A068911.
- 10. "A Redundancy Notebook," RADC-TR-77-287, AD A050837.
- 11. "Revision of Environmental Factors for MIL-HDBK-217B," RADC-TR-80-299, AD A091837.

C-1

APPENDIX C: BIBLIOGRAPHY

- 12. "Traveling Wave Tube Failure Rates," RADC-TR-80-288, AD A096055.
- 13. "Reliability Prediction Modeling of New Devices," RADC-TR-80-237, AD A090029.

This study developed failure rate models for magnetic bubble memories and charge-coupled memories.

- 14. "Failure Rates for Fiber Optic Assemblies," RADC-TR-80-322, AD A092315.
- 15. "Printed Wiring Assembly and Interconnection Reliability," RADC-TR-81-318, AD A111214.

This study developed failure rate models for printed wiring assemblies, solderless wrap assemblies, wrapped and soldered assemblies and discrete wiring assemblies with electroless deposited plated through holes.

- "Avionic Environmental Factors for MIL-HDBK-217," RADC-TR-81-374, AD B064430L.
- 17. "RADC Thermal Guide for Reliability Engineers," RADC-TR-82-172, AD A118839.
- 18. "Reliability Modeling of Critical Electronic Devices," RADC-TR-83-108, AD A135705.

This report developed failure rate prediction procedures for magnetrons, vidicions, cathode ray tubes, semiconductor lasers, helium-cadmium lasers, helium-neon lasers, Nd: YAG lasers, electronic filters, solid state relays, time delay relays (electronic hybrid), circuit breakers, I.C. Sockets, thumbwheel switches, electromagnetic meters, fuses, crystals, incandescent lamps, neon glow lamps and surface acoustic wave devices.

"Impact of Nonoperating Periods on Equipment Reliability," RADC-TR-85-91, AD A158843.

This study developed failure rate models for nonoperating periods.

20. "RADC Nonelectronic Reliability Notebook," RADC-TR-85-194, AD A163900.

This report contains failure rate data on mechanical and electromechanical parts.

21. "Reliability Prediction for Spacecraft," RADC-TR-85-229, AD A149551.

This study investigated the reliability performance histories of 300 Satellite vehicles and is the basis for the halving of all model $\pi_{\rm F}$ factors for MIL-HDBK-217E to MIL-HDKB-217E, Notice 1.

- "Surface Mount Technology: A Reliability Review," 1986, Available from Reliability Analysis Center, PO Box 4700, Rome, NY 13440-8200, 800-526-4802.
- "Thermal Resistances of Joint Army Navy (JAN) Certified Microcircuit Packages," RADC-TR-86-97, AD B108417.
- 24. "Large Scale Memory Error Detection and Correction," RADC-TR-87-92, AD B117765L.

This study developed models to calculate memory system reliability for memories incorporating error detecting and correcting codes. For a summary of the study see 1989 IEEE Reliability and Maintainability Symposium Proceedings, page 197, "Accounting for Soft Errors in Memory Reliability Prediction."

 "Reliability Analysis of a Surface Mounted Package Using Finite Element Simulation," RADC-TR-87-177, AD A189488.

C-2

APPENDIX C: BIBLIOGRAPHY

- 26. "VHSIC Impact on System Reliability," RADC-TR-88-13, AD B122629.
- "Reliability Assessment of Surface Mount Technology," RADC-TR-88-72, AD A193759.
- "Reliability Prediction Models for Discrete Semiconductor Devices," RADC-TR-88-97, AD A200529.

This study developed new failure rate prediction models for GaAs Power FETS, Transient Suppressor Diodes, Infrared LEDs, Diode Array Displays and Current Regulator Diodes.

- 29. "Impact of Fiber Optics on System Reliability and Maintainability," RADC-TR-88-124, AD A201946.
- 30. "VHSIC/VHSIC Like Reliability Prediction Modeling," RADC-TR-89-171, AD A214601.

This study provides the basis for the VHSIC model appearing in MIL-HDBK-217F, Section 5.

31. "Reliability Assessment Using Finite Element Techniques," RADC-TR-89-281, AD A216907.

This study addresses surface mounted solder interconnections and microwire board's plated-thru-hole (PTH) connections. The report gives a detailed account of the factors to be considered when performing an FEA and the procedure used to transfer the results to a reliability figure-of-merit.

32. "Reliability Analysis/Assessment of Advanced Technologies," RADC-TR-90-72, ADA 223647.

This study provides the basis for the revised microcircuit models (except VHSIC and Bubble Memories) appearing in MIL-HDBK-217F, Section 5.

- "Improved Reliability Prediction Model for Field-Access Magnetic Bubble Devices," AFWAL-TR-81-1052.
- 34. "Reliability/Design Thermal Applications," MIL-HDBK-251.

7.0

- 35. "NASA Parts Application Handbook," MIL-HDBK-978-B (NASA). This handbook is a five volume series which discusses a full range of electrical, electronic and electromechanical component parts. It provides extensive detailed technical information for each component part such as: definitions, construction details, operating characteristics, derating, failure mechanisms, screening techniques, standard parts, environmental considerations, and circuit application.
- "Nonelectronic Parts Reliability Data 1991," NPRD-91.
 This report contains field failure rate data on a variety of electrical, mechanical, electromechanical and microwave parts and assemblies (1400 different part types). It is available from the Reliability Analysis Center, PO Box 4700, Rome, NY 13440-8200, Phone: (315) 337-0900.

Custodians:

Army - CR Navy - EC Air Force - 17 Preparing Activity: Air Force - 17

Project No. RELI-0064

.

APPENDIX C: BIBLIOGRAPHY

Review Activities:

Army - MI, AV, ER
Navy - SH, AS, OS
Air Force - 11, 13, 14, 15, 18,
19, 99

User Activities:

Army - AT, ME, GL Navy - CG, MC, YD, TD Air Force - 85

SEC et al. v. MRI SEC Exhibit 1016.203 IPR 2023-00199

I	Download	ded from http	://www.eve	rvspec.com

INSTRUCTIONS: In a continuing effort to make our standardization documents better, the DoD provides this form for use in submitting comments and suggestions for improvements. All users of military standardization documents are invited to provide suggestions. This form may be detached, folded along the lines indicated, taped along the loose edge (DO NOT STAPLE), and mailed. In block 5, be as specific as possible about particular problem areas such as wording which required interpretation, was too rigid, restrictive, loose, ambiguous, or was incompatible, and give proposed wording changes which would alleviate the problems. Enter in block 5 any remarks not related to a specific paragraph of the document. If block 7 is filled out, an acknowledgement will be mailed to you within 30 days to let you know that your comments were received and are being considered.

NOTE: This form may not be used to request copies of documents, nor to request weivers, deviations, or clarification of specification requirements on current contracts. Comments submitted on this form do not constitute or imply authorization to waive any portion of the referenced document(s) or to amend contractual requirements.

(Fold along this line)

(Fold along this line)


DEPARTMENT OF THE AIR FORCE RL/ERSS Griffiss AFB, NY 13441-5700

OFFICIAL BUSINESS
PENALTY FOR PRIVATE USE \$300

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 73236 WASHINGTON D.C.
POSTAGE WILL BE PAID BY THE DEPARTMENT OF THE AIR FORCE

Rome Laboratory ATTN: RL/ERSS Griffiss AFB, NY 13441-5700 NO POSTAGE NECESSARY IF MAILED IN THE UNITED STATES

Γ	STANDARDIZATION DOCUMENT IMPROVEMENT PROPOSAL (See Instruction - Reverse Side)			
1.	DOCUMENT NUMBER 2. DO	CUMENT TITLE		
30	MIL-HDBK-217F NAME OF SUBMITTING ORGANIZATION	Reliability Prediction of Electronic Equipment 4. TYPE OF ORGANIZATION (Mark one)		
-	. NAME OF SUBMITTING ONGANIZATION	VENDOR		
		USER		
T	ADDRESS (Street, City, State, ZIP Code)	MANUFACTURER		
		OTHER (Specify):		
5.	PROBLEM AREAS a Paragraph Number and Wording:			
	•			
	b. Recommended Wording:			
	•			
	c. Reason/Rationale for Recommendation:			
6.	REMARKS			
	NAME OF SUBMITTER (Last, First, MI) - Optional	b. WORK TELEPHONE NUMBER (Include Area Code) - Optional		
Ġ.	MAILING ADDRESS (Street, City, State, ZIP Code) - Optional	8. DATE OF SUBMISSION (YY/MM/DD)		

DD FORM 1426

PREVIOUS EDITION IS OBSOLETE