IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 39, NO.

1. JANUARY 1991 ’ 17

A Grammar Compiler for Connected Speech
Recognition

Michael K. Brown and Jay G. Wilpon, Senior Member, IEEE

Abstract—1t is well known that syntactic constraints, when applied
to speech recognition, greatly improve accuracy. However, until re-
cently, constructing an efficient grammar specification for use by a con-
nected word speech recognizer was performed by hand and has been a
tedious, time-consuming task prone to error. For this reason, very large
grammars have not appeared.

We describe a compiler for constructing optimized syntactic di-
graphs from easily written grammar specifications. These are written
in a language called grammar specification language (GSL). The com-
piler has a preprocessing (macroexpansion) phase, a parse phase, graph
code generation and compilation phases, and three optimization phases.
Digraphs can also be linked together by a graph linker to form larger
digraphs. Language complexity is analyzed in a statistics phase.

Heretofore, computer generated digraphs were often filled with re-
dundancies. Larger graphs were constructed and optimized by hand
in order to achieve the required efficiency. We demonstrate that the
optimization phase yields graphs with even greater efficiency than pre-
viously achieved by hand. We also discuss some preliminary speech
recognition results of applying these techniques to intermediate and
large graphs.

With the introduction of these tools it is now possible to provide a
speech recognition user with the ability to define new task grammars
in the field. GSL has been used by several untutored users with good
success. Experience with GSL indicates that it is a viable medium for
quickly and accurately defining grammars for use in connected speech
recognition systems.

I. INTRODUCTION

VER the past several years there have been many break-

throughs in the area of automatic speech recognition. As
the capabilities of connected word automatic speech recognition
systems have improved, the tasks to which they have been ap-
plied have also become more sophisticated [3]-[6], [8], [9],
[16], [20], [21]. Such tasks include a speech controlled robot
(SCR) [9], flight information and reservation retrieval (FIRL)
[17], naval resource management (DARPA-1000, developed by
Bolt, Beranek, and Newman) [20], and recognition of office
correspondence text [6]. These systems range in vocabulary size
from several tens of words to several thousand words [6], [20],
[21]. Because current acoustic pattern matching techniques are
not perfect, the above systems have had to augment their al-
gorithms with increased knowledge of the task syntax and se-
mantics. By combining these linguistic principles (which
constrain the language) with good acoustic recognition algo-
rithms, the overall accuracy of the speech recognition system
has improved dramatically.

One difficulty in building connected speech recognition sys-
tems with large vocabularies lies in specifying an efficient rep-
resentation of the syntax to be used. Without syntactic
constraints, connected speech recognition accuracy is often

Manuscript received March 3, 1989; revised November 30, 1989.
The authors are with AT&T Bell Laboratories, Murray Hill, NJ 07974.
IEEE Log Number 9040375.

poor. Syntactic constraints are, however, a two-edged sword.
While the syntax eliminates unwanted or impossible word com-
binations it also limits the language that the system can recog-
nize. It is clearly desirable to bulld very large syntactic
specifications.

Efficient syntactic specifications have been constructed in the
past by hand-coding digraphs (graphs with directed arcs) that
represent the state transitions in a finite state automaton or ma-
chine (FSM). To date all commonly known practical connected
speech recognition systems use FSM’s for grammar represen-
tation [14], [16], [20]. Automatic coding of syntactic con-
straints has been employed before [17], [18], [22] but hand op-
timization was needed to gain the necessary efficiency. The
automata, which are Moore machines [19], are used to con-
strain the effective vocabulary as the speech is being processed,
thereby saving considerable computation and eliminating non-
sensical phrases. An example of a fully hand-coded system is
FIRL [16]. The DARPA-1000 grammar [20] was partly hand
processed. The hand-coding of these graphs is a time-consum-
ing, tedious process prone to €rrors.

In our recent research on the speech controlled intelligent ro-
bor [8], the robot has an environment with dynamic syntactic
and semantic characteristics. That is, as the functionality im-
proves periodically the syntactic and semantic requirements of
the robot system change at regular intervals. Our first robot
grammar contained about 99 000 sentences with a 51-word vo-
cabulary. Today we are using our eleventh grammar containing
about 15 septillion (1.47 X 10?*) sentences with a 125-word
vocabulary (perplexity of 12.4). With such rapid development
it soon becomes clear that there is a real need for a grammar
compiler that can quickly and easily build the new graphs.

The grammar compiler has many of the components of any
computer language compiler. A preprocessing phase provides
file inclusion and macroexpansion. The compile phase parses
an easily written input specification and generates ‘‘code,”” i.e.,
a file containing numbers that indicate states and transitions.
The “‘code’” can then be read into a speech recognition program
to direct the acoustical processing. A three-stage optimization
phase improves the efficiency of the representation. There is
also provision for linking several graphs into a larger graph (this
relabels the states and branches of the graph, similar to relo-
cating code).

With the grammar compiler we can build a grammar in a few
hours that previously would have taken weeks to produce by
hand. One such example is the flight information and reserva-
tion retrieval (FIRL) grammar, part of the work in syntactic
constraints reported by Rabiner and Levinson [21]. This gram-
mar is represented by a graph originally containing 144 states,
497 branches, and 21 terminals. The original grammar was con-
structed (including debugging) by hand in several days, accord-
ing to the designer (Levinson [15]). This same grammar, with

1053-587X/91/0100-0017$01.00 © 1991 IEEE

DOC KET

_ ARM

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

18 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 39, NO. 1, JANUARY 1991

additions, was written for the grammar compiler and debugged
in a few hours.

Furthermore, the hand-coded grammar had errors that went
undetected for years. These residual errors were detected and
corrected by the first run of the optimizer described in Section
IV-A1l. The result of optimizing (deterministic finite automa-
ton conversion and phase I optimization only) the original
grammar was a graph containing 125 states, 559 branches, and
10 terminals. The complexity of the graph (language entropy,
see Section V) is unchanged, but the number of states needed
to represent it is reduced. There are many duplications in the
559 branches and after phase II optimization (Section IV-A2)
only 422 real branches remain. The remaining branches are
“‘null’” branches, representing state transitions without pro-
cessing any speech data. These null branches are used for con-
venience and efficiency to indicate optional or alternative paths
in the graphs. Since null branches are essentially cost free, it is
the real branches that we care about when determining process-
ing efficiency.

We will describe the input language in the following section.
The compiler will be discussed in Section III followed by a sec-
tion on graph construction and optimization. Section V de-
scribes computation of language entropy, some applications of
these grammars and the corresponding statistical results. We
then conclude in Section VI.

II. GRAMMAR SPECIFICATION LANGUAGE

The regular grammar for constraining speech input is speci-
fied in the language grammar specification language (GSL) by
a set of specification statements that contain representations of
patterns that are to be accepted. These patterns are compiled
into a FSM having one starting state (state 0) and one or more
terminal states. Any single statement having no special forms
can simply be written as an ordinary sentence. Each statement
must be terminated with a period, which by default, specifies a
terminal state unless overridden by a diversion (defined below).
In addition, intermediate accepting states can be specified in-
side a sentence using an asterisk. These states are optional ter-
minal states that may be used as a stopping -place or passed
through to reach some later terminal state. Comments are spec-
ified by a "#’. All text following the #’ to the end of the line is
ignored.

It is advantageous to consolidate many spoken sentence pos-
sibilities into a single input sentence since this yields a concise
specification and reduces the number of states required to rep-
resent the grammar, so the use of a disjunctive form is provided.
This form consists of a parenthetical list of phrase elements
separated by vertical bars. For example, ‘“find (an|another|the
next) object,”” produces the graph shown in Fig. 1 (in this and
all succeeding graphs double circles indicate terminal states).
These disjunctions can be nested arbitrarily deeply.

Disjunctions can contain a null element indicating that all of
the elements of the disjunction are optional. Two forms of the
null element are allowed: a) the ’[null]’ special form causes the
digraph generator to ‘‘wire’’ all of the necessary bypassing
branches of the graph to the required successor states without
using null branches, and b) the NULL-ARC form causes the
generation of true null branches (i.e., cost-free transitions to
another state). The first digraph form is usable by most past and
present connected speech recognizers. The second form is us-
able only by the newer recognizers and is a more efficient rep-
resentation.

Disjunctions can obtain digraph diversions. Diversion regis-

DOCKET

_ ARM

Fig. 1.

State diagram for ‘‘find (an|another|the next) object.”

ters are provided that can be used to divert the current subpath
of the digrah from its normal flow to any place designated by
*@n,” where n is a number from 0 to 999. This is accomplished
by the use of a *&n’ form ("&n’ is like ‘‘go to @ n’’ where
’@n’ is a label). This mechanism can be used to generate cycles
in the grammar as well as allow creation of certain desirable
forms for some of our special purpose speech recognition hard-
ware. Note that statements in the grammar given below are ef-
fectively disjunctive elements (although they are handled
differently) and can be diverted to other statements or back into
themselves if desired. Diversion of a statement into itself can
result in the specification of a path in the digraph that never
terminates, however, so care must be exercised.

An explicit specification of the input grammar is given as
follows:

{(grammar) =

| (grammar) (statement)
(statement) = (toplist) ’
(toplist) = (phrase)

| <(phrase) *&n’
(phrase) = (e]ement)‘

| (phrase) {element)

| (phrase) **

| ’@n’(element)

| (phrase) ’@n’
(element) = {word)

| °C (disjunction) ’)’

| °C {phrase) *)’
(disjunction) = (list) ’|” (list)

| {disjunction) ’|* (list)
(list) = (toplist)

| ’[null]
{word) = [A-Z a-z-’-]

where the basic element is an arbitrary alphabetic word con-
sisting of any number of the indicated symbols. The only re-
striction on the location of asterisks is that they cannot appear
at the beginning of the statement since this would specify the
start state as an accepting state. An asterisk at the end of a sen-
tence is accepted, but redundant and thus has no real effect.
Diversion registers ("@n’) can be set anywhere. Digraph diver-
sions ("&n’) can only occur at the end of a subphrase. Note that,
unlike some earlier grammar specification methods (e.g., HAR-
PY’s BNF specification with ‘‘nonterminal intersection ambi-
guities’”) [17], GSL specifies completely unambiguous gram-
mars.

The input grammar specifications are initially processed by
the UNIX® m4 macro preprocessor (AT&T Bell Laboratories,
1986). Therefore, the grammar description may be augmented
with the macrofacilities provided by m4. In the grammars that

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

BROWN AND WILPON: GRAMMAR COMPILER FOR CONNECTED SPEECH RECOGNITION 19

have recently been developed, we have relied heavily on the
m4 macro define. The second argument of define is installed
as the replacement text of the macro whose name is the first
argument. If the replacement text contains a macro name it will
be recursively expanded. For example, using the statement de-
fine (ABC, Good Morning) causes the text Good Morning to
be inserted wherever the variable ABC exists. A toy example
of GSL without macros is shown in Fig. 7(a). An actual gram*
mar specification currently being used in our research, which
uses most of the features of the grammar compiler, appears in
Appendix I.

III. DiIGRAPH CONSTRUCTION

Digraphs are constructed by top-down parsing of the input
grammar. There are two forms of digraph construction. The first
form contains only real (nonnull) branches. To illustrate, let us
consider the following grammar specification:

define(N, [null])
@|blo(@|bloy@lblc|N[N).

The first line in this specification is a macro that causes each
instance of N’ in the grammar specification to be expanded to
’[null])’. The corresponding digraph is shown in Fig. 2(a). The
multiple branches between two states are shown as one branch
with multiple labels. In this case the null disjunction elements
result in alternate paths for each possible case. This unfortu-
nately causes the resulting digraph to be large.

The second digraph form is obtained by substituting NULL-
ARC for [null] in the first macrodefinition. The resulting di-
graph is shown in Fig. 2(b) (unlabeled branches are null). This
form is used with hidden Markov model based recognizers cur-
rently under research at AT&T Bell Laboratories [15]. A third
form, shown in Fig. 2(c), can be generated by conversion of
the graph in Fig. 2(a) to deterministic form (more about this in
Section IV).

The internal representation of the digraph is constructed in
part after each statement is parsed. Digraph branches are col-
lected into ‘‘from-state’’ structures. After all statements are
processed these from-state structures are relabeled (if diver-
sions are present), sorted and split into transition rules (state
connectivity sets in the graph), which are compiled into the di-
graph map file. A (generally small) list of terminal states is gen-
erated as the parse trees are searched. This list is ultimately
sorted uniquely (there often are redundancies) and the results
deposited in the digraph map file after the state transition rules.
A simple symbol table of vocabulary words is also maintained
on a hash table. Digraphs containing several thousand states can
be compiled in less than 30 s on a Sun3® workstation.

IV. DIGRAPH MINIMIZATION

The graphs constructed by the compile phase of the digraph
compiler are nondeterministic finite state automata (NFA) rep-
resentations and are generally suboptimal in number of states
and branches since the digraph is a direct translation of the input
specification, which may be poorly written. Here, NFA implies
that, given a particular state and symbol, the next state is not
uniquely defined. Redundant paths in the digraph cause unnec-
essary computation during the acoustic matching of input speech
since duplicate pattern templates will sometimes be compared
simultaneously while searching different parts of the digraph.

Fig. 2. (a) Digraph without null branches. (b) Digraph with null branches.
(c) DFA from Fig. 1(a).

This additional processing can make the difference between
achieving real-time performance or not.

For speech recognition, it is important to reduce the number
of branches, which represent word tokens, as much as possible.
Such reductions are achieved in three ways. First, a reduction
in the number of states removes redundant branches associated
with the redundant states. Second, redundant branches are ex-
amined directly and replaced by single branches using ‘‘null”’
branches for proper connection (and this process generally adds
states). The third phase eliminates redundant ‘‘null’’ branches
and, thus, removes some states. ‘

Two approaches to minimization are taken. The first attempts
to reduce the NFA directly by searching for isomorphic and
homeomorphic (isomorphic to a subset) subgraphs that can be
removed. The second approach relies on the fact that most of
our grammars can be represented as deterministic finite state
automata (DFA) that are no larger than the NFA. There is no
guarantee that the DFA will be as small as the NFA, for, in
general, an NFA with n states may grow to as large as 2" states
when converted to a DFA. An NFA optimizer is needed in these
cases. However, parts of speech (which are few in number) tend
to cluster around similar sets of successor states in the NFA,
i.e., verbs will all generally cause similar state transitions,
nouns will cause another set. The number of such sets (which
determines the number of DFA states) is generally smaller than
the number of NFA states in the union of sets. Thus the DFA
is often smaller than the NFA by a significant amount. Once
the DFA in obtained, well-known DFA minimization algo-
rithms that guarantee optimality can be applied [12].

A. NFA Reduction

Three digraph optimization phases are available to reduce re-
dundancies. There are, however, some redundancies that are
not removed. Much or all of the remaining redundancy can be
eliminated by modifying the input specification. In general, the
only way to guarantee that no redundant paths remain is to con-
vert the NFA into a DFA and apply a DFA minimization al-
gorithm. Frequently, however, direct application of the NFA
optimizer achieves the same results. The advantage of direct
application of the NFA optimizer is that a larger number of
states are not added to the graph, whereas, taking the alternative

DOCKET

_ ARM

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

20 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 39, NO. I, JANUARY 1991

approach of DFA conversion and reduction sometimes results
in a much larger number of states.

~ The first optimization phase identifies isomorphic or ho-
meomorphic subgraphs and eliminates them. The second opti-
mizer replaces duplicate subsets of branches with a single sub-
set and null branches connecting the original source states to
this subset. The third optimizer searches for strings of null
branches and replaces them with single null branches where
possible. All optimization phases are polynomial time algo-
rithms, however, phase one may take considerable time if the
graph is large. The optimization effort is quadratic in the num-
ber of states for phase one and linear in the number of branches
for phases two and three. Phase I optimization of large digraphs
may take many minutes of processing time. It is the only stage
that requires more than one minute of processing time for most
grammars (on a Sun 3 workstation, for exampie).

1) Phase I Optimization: The digraph reduction algorithm
identifies five types of digraph redundancy. There are additional
redundancy types that are not detected. Common forward and
retrograde isomorphic subgraphs, homeomorphic subgraphs,
and redundant production paths and branches are found. Retro-
grade forms are simply those obtained from the graph by re-
versing the sense of direction of the digraph branches. The five
types are illustrated in Fig. 3. In this diagram the start state is
labeled O and the terminal state is 1. A trivial example of a
forward isomorphic redundancy is the subgraphs connected be-
tween states 8-1 and 10-1. Redundant branches are connected
between states 7 and 8. The subgraph of states 2-9-10-1 is ho-
meomorphic to the subgraph of states 2-7-8-1. A retrograde iso-
morphic equivalence occurs at states 0-3 and 0-5. Redundant
productions occur for states 3-4-2 and 5-6-2. In this case either
the 3b4 or the 6d2 branch can be removed without altering the
grammar.

The basic framework of the algorithm for identifying these
redundancies is an extension of a well-known algorithm for DFA
minimization. See, for example [12, p. 70] or [13, p. 302].
Additional capability has been added to identify retrograde and
homeomorphic subgraphs as well as other redundant branching
patterns. The algorithm identifies state pairs that have common
descendants or descendants that cannot be distinguished by lan-
guage accepted by the automaton. In this case, however, we are
working with an NFA that contains the various types of redun-
dancies illustrated in Fig. 3.

The basic DFA algorithm consists of marking state pairs in a
table when it is known or can be shown that the two states are
distinct, i.e., identical word sequences do not lead to the same
states. Each state pair is considered only once so the table is a
triangular matrix. Initially all pairs of states consisting of one
terminal (accepting) and one nonterminal state are marked.
Then, for each unmarked state pair, the production rules are
commonly applied at each state and if all of the resulting state
pairs are not marked in the table then a pointer back to the cur-
rent state pair is attached from each resulting state pair. If any
of the resulting state pairs are marked in the table then the cur-
rent state pair is also marked, along with any state pairs pointed
to by this state pair and, recursively, any state pairs pointed to
by the marked state pairs. After all state pairs have been pro-
cessed in this manner, the remaining unmarked state pairs are
isomorphically indistinguishable. An inductive proof for the
DFA algorithm is given by Hopcroft and Ullman [12].

To see how the algorithm works consider first a state pair
consisting of terminal state p and nonterminal state g, desig-
nated (p, ¢q). Let the set of sentence segments that can be found

DOC KET

_ ARM

Start Terminal

Fig. 3. Example state digram.

from the start state to state p be designated S,, and from the
start state to state g be designated S,. We can only combine p
and g if both are terminal (accepting) states or both are nonter-
minal states or if §, = S, since any other combinations would
allow additional sentences to be accepted or eliminate sen-
tences. That is, to merge p and q either S, and S, must both be
entirely accepted as complete sentences or neither can be en-
tirely accepted unless §, = §,, in which case they are accepted
if either p or g are terminal states. Since the algorithm cannot
tell if §, = S, all terminal/nonterminal state pairs must be
marked as distinguishable without further knowledge. This is
equivalent to taking the safest approach; if we cannot prove that
p and g are equivalent we must assume that they are not. Later
we will show that these states can also be combined in an NFA
when retrograde isomorphisms are identified.

Now consider an unmarked state pair (p, q). Let the set of
symbols for which a transition exists at any state be defined by
the alphabet L. Let the descendant of state p be r = é(p, x),
where § is a transition rule, when input x € I is applied at state
p, and let the descendant of g be s = 8(q, x). Assume state pair
(r, s) is marked. Then the set of sentence segments or language
from r to a terminal state is distinguishable from the language
from s to a terminal state. Call these L, and L, respectively.
Then the composition xL, is a longer sentence segment from p
to a terminal state and likewise for xL; from g to a terminal
state. But, since (r, s) is marked, xL, # xL,, the states in (p,
q) are distinguishable and must also be marked. If (7, s) is not
marked then we assume until proven otherwise that L, = L, and
xL, = xL,. If the descendants are unmarked for all x € T then
a pointer to (p, q) is attached from all D = {(r, s) | r = 8(p,
x), s = 8(q, x), x € £}. The trivially indistinguishable case
occurs when 8(p, x) = 6(q, x) for all x € L. If at any future
time any one or more members of D should prove to be distin-
guishable, either by direct inspection or via pointers from other

‘state pairs, then (p, g) will also be distinguishable and will be

marked. Thus, any state pairs that remain unmarked after all
state pairs have been exhaustively considered are indistinguish-
able up to an isomorphism.

In our case we have an NFA, i.e., there may be more than
one path for a particular symbol from a given state. For an NFA
the set of symbols for which a transition exists at any state p is
defined by the possibly null alphabet E,. Now we are not only
interested in isomorphic redundancies but also homeomorphic
redundancies, i.e., a graph G isomorphic to a subgraph of graph
H. Identifying such homeomorphisms requires looking both
forward and backward (retrograde) from a state in the digraph.
The set of symbols accepted in each direction from a subset
state must be a subset of the set of symbols accepted in the
corresponding direction by the superset state. Such state pairs
can be found by expanding the state table to a square matrix of
doublets consisting of a forward mark and a retrograde mark.
Let the row index indicate the subset state p and the column

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

BROWN AND WILPON: GRAMMAR COMPILER FOR CONNECTED SPEECH RECOGNITION 21

index indicate the superset state ¢ (i.e., L, C L,). Terminal/
nonterminal state pairs are marked in the forward table for sub-
set states (but not in the retrograde table). Pairs are not marked
for terminal states that are not subset states, i.e., only rows in
the mark table are initially marked (see Table I). Then, for each
state pair (p, ¢), with descendants r = 6(p, x), and s = 6(q,
x), x € L, (note that, in general, r and s may be multiply de-
fined), if £, C L and all D = {(r, s) | r = &(p, x), s = &(q,
x), x € L, } are unmarked, then create a pointer to (p, ¢) from
each member of D. If (r, s) is marked or L, ¢ I, then mark
(p, q) and recursively mark all state pairs pointed to by (p, q).

Similarly, for each state pair (p, ¢) with ancestors (m, n) the

algorithm is applied with the sense of direction in the digraph-

reversed. The argument is a straightforward extension of the
previous argument. The forward and retrograde mark tables can
be treated separately since we are looking for subgraphs ex-
tending in only one direction at a time. With the additional pro-
vision that an improper subset of the alphabet can be accepted
at each state, the argument in the forward direction is essen-
tially unchanged. Thus, we are looking for an isomorphism in
a subgraph attached to one of the states. Unmarked state pairs
(p, ¢) in the forward part of the table indicate that p is ho-
meomorphically (perhaps isomorphically) equivalent to g in the
forward direction. Forward isomorphic equivalence is identified
when the forward mark table is unmarked in both symmetric
elements of the matrix. That is, £, C £, and L, C L, which
can only mean £, = I, and the states are indistinguishable. No
forward isomorphic equivalence will exist between a terminal
and nonterminal state since one of the two symmetric elements
has been marked initially.

Similarly, retrograde isomorphic equivalence is identified
when symmetric elements in the retrograde mark table remain
unmarked. However, in the retrograde isomorphic case the ter-
minal states may be indistinguishable from nonterminal states
because if p is a terminal state and g is not a terminal state, and
if language L, from the start state is accepted then L, is also
accepted since, by isomorphic equivalence, L, = L,.

When both the forward and retrograde parts of any state pair
element of the mark table matrix are simultaneously unmarked,
then a homeomorphic subgraph exists between indistinguish-
able state pairs and the entire homeomorphic subgraph can be
removed without altering the language. Homeomorphic equiv-
alence can occur if the subset state p is nonterminal and the
superset state g is terminal (i.e., L, C L,) but not if p is ter-
minal and g is nonterminal. To see this consider the language
from the start state to p designated L, and to g designated L,
where L, C L,. If g is terminal then L, is an accepted language
since the superset L, = L, + (L, — L,) is accepted. However,
if p is terminal and g is nonterminal then L, — L, is not in the
accepted language and p cannot be equivalent to g.

Redundant production paths-can be identified from the mark
table when the forward element of (p, ¢) and the retrograde
element of (g, p) are both unmarked. In this case, a forward
homeomorphism exists from p and a retrograde homeomorph-
ism exists from g. Then branches common to the subset graph
from p forward can be removed from the superset graph, or
branches common to the subset graph from g backward can be
removed but only one of these sets can be removed. For ex-
ample, in Fig. 3 we can remove the 3b4 branch or the 6d2 branch
and not reduce the accepted language because ‘‘abd...’" is rep-
resented twice between indistinguishable state pairs. Redundant
branches such as 7h8 are, of course, trivially removed by
checking uniqueness at each state.

TABLE I
MaRrK TABLE AND STATISTICS FOR GRAPH IN FIG. 3

Optimizing...
Starting with 16 branches, 12 rules and 11 nodes.
Node 7 is nonterminal accepting state in digraph

Mark table before search (backward, forward):

00 00 00 00 00 00 00 00 00 00 00
01 00 01 01 01 01 01 00 01 01 01
00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00
01 00 01 01 01 01 01 00 01 01 01
00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00

Mark table after search (backward, forward):

00 01 01 01 01 01 01 01 01 01 01
11 00 11 11 11 11 11 10 11 11 11
11 11 00 11 11 11 11 i1l 11 11 11
11 11 11 00 11 01 i1 11 11 11 11
11 11 11 11 00 11 10 11 11 11 11
11 11 11 0t 11 00 11 11 11 11 11
11 11 11 11 0t 11 00 11 11 11 11
11 11 11 11 11 11 11 00 11 11 11
11 11 11 11 11 11 11 11 00 11 10
i1 11 11 11 11 11 11 00 11 00 11
11 11 11 11 11 11 11 11 00 11 00

Branch reduction possible for nodes 4 and 6

Isomorphic reduction: relabeling node 8 to 10
Homeomorphic reduction: relabeling node 9 to 7
Retrograde isomorphic reduction: relabeling node 3 to 5

There were 1 isomorphic, 1 homeomorphic, and 1 retrograde
isomorphic reductions.
Optimized digraph contains 11 branches, 8 rules and 8 nodes.

The mark table for the grammar of Fig. 3 is shown in Table
I along with some statistics output by the optimizer. The rows
and columns represent states O through 10 from top to bottom
and from left to right. In each doublet the first digit is the mark
for retrograde and the second digit is the mark for forward pro-
ductions. Initially only the forward elements of rows 1 and 7
(the terminal states) are marked when paired with nonterminal
states. After marking all distinguishable state pairs the mark
table contains patterns that indicate the type of reduction pos-
sible. Note that state pair (8, 10) could have been reduced on
either isomorphic or homeomorphic grounds.

2) Phase Il Optimization: The second phase of optimization
identifies intersections of sets of branches connected to a par-
ticular state from various other states. For example, consider
the subgraph of Fig. 4. The subgraph contains 12 branches from
states 2, 3, and 4 to state 1. Branch A is present in all three
sets. Branch B appears only from states 2 and 4, C only from 2
and 3, D only from 3 and 4. Branches E, F, and G occur only
once each. Fig. 5 illustrates the from-state sets, set intersections
and the resulting digraph with null (unlabeled) branches. Even
though the resulting subgraph contains four more states and four
additional branches, only seven of the branches cost any rec-
ognition processing time and there is only one instance of each
branch type.

3) Phase Il Optimization: Null arcs are added to the graph
in two phases of the processing by the grammar compiler, the
compile phase, and the second optimization phase. Because of
this it is possible to have unnecessary sequences of null arcs.
Furthemore, the grammar specification written by the program-

DOC KET

_ ARM

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Nsights

Real-Time Litigation Alerts

g Keep your litigation team up-to-date with real-time
alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research

With over 230 million records, Docket Alarm’s cloud-native
O docket research platform finds what other services can't.
‘ Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips

° Learn what happened the last time a particular judge,

/ . o
Py ,0‘ opposing counsel or company faced cases similar to yours.

o ®
Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

-xplore Litigation

Docket Alarm provides insights to develop a more
informed litigation strategy and the peace of mind of

knowing you're on top of things.

API

Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS

Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND

LEGAL VENDORS

Sync your system to PACER to
automate legal marketing.

WHAT WILL YOU BUILD? @ sales@docketalarm.com 1-866-77-FASTCASE

