
Page 1 of 15 SAMSUNG EXHIBIT 1006

~IEEE JOURNAL ON

SELECTED AREAS IN
COMMUNICATIONS
A PUBLICAT10N OF THE IEEE COMMUNICATIONS SOCIETY I
~RUARY 1998

VOLUME 16 NUMBER 2 ISACEM

FEB 2 3 1998

CONCATENATED CODING TECHNIQUES AND ITERATIVE DECODI
SAILING TOWARD CHANNEL CAPACITY

Guest Edltors-S. Benedetto, D. Divsalar, and J. Hagenauer

Guest Editorial S. Benedetto, D. Divsalar, and J. Hagenauer 137

PAPERS

Turbo Decoding as an Instance of Pearl 's "Belief Propagation" Algorithm
. R. J. McEliece, D. J. C. MacKay, and 1.-F. Cheng 140

Early Detection and Trelli s Splic ing: Reduced-Complexity Iterative Decoding 8 . J. Frey and F. R. Kschischang 153
Design and Analysis of Turbo Codes on Rayleigh Fading Channels E. K. Hall and S. G. Wilson 160
Symbol-by-Symbol MAP Decoding Algorithm for High-Rate Convolutional Codes That Use Reciprocal Dual Codes

..................... S. Riedel 175
Concatenated Decoding with a Reduced-Search BCJR Algorithm V. Franz and J. B. Anderson 186
Performance Evaluation of Superorthogonal Turbo Codes in AWGN and Flat Rayleigh Fading Channels

. P. Komulainen and K. Pehkonen 196
Bandwidth-Efficient Turbo Trelli s-Coded Modulation Using Punctured Component Codes . .. P. Robertson and T. Worz 206
Iterative Decoding of Compound Codes by Probability Propagation in Graphical Models

. F. R. Kschischang and 8 . J. Frey 219
Analysis, Design, and Iterative Decoding of Double Serially Concatenated Codes with Interleavers

. S. Benedetto, D. Divsalar, G. Montorsi, and F. Pollara 231
A Conceptual Framework for Understanding Turbo Codes G. Rattail 245
Mismatched Decoding of Intersymbol Interference Using a Parallel Concatenated Scheme

. K. Balachandran and J. B. Anderson 255
An Intuitive Justification and a Simplified Implementation of the MAP Decoder for Convolutional Codes

. A. J. Viterbi 260
Multiple Differential Detection of Parallel Concatenated Convolutional (Turbo) Codes in Correlated Fast Rayleigh Fading

. I. D. Marsland and P. T. Mathiopoulos 265
On Iterative Soft-Decision Decoding of Linear Binary Block Codes and Product Codes

. R. Lucas, M. Bossert, and M. Breitbach 276

(Continued on Back Cover)

Page 2 of 15

IEEE COMMUNICATIONS SOCIETY

Thi.'.' hdJ ul 1111~ro1 ul lhl' 11- Ll. C11111111u 111l,lllon, Soci«:t) t,:on"""" ot a ll Lcll'l:ommun1\.·at um ... md u<l ing LdcphonL'. te legraph). tan1m1k. an<l point-10- r,rnnt h." k \l ... inn. h)

l'k~trl1111.1i 1h..91. ll" pn•pag.111tm 11Klu<li 11g r.1J10 . \\1rc. ,u.:11J I. urulcrgroun<l , 1.:,,a, 1JI . an<l , uhma11nl· ,.:able, ; \.\ J \ Cgu1<lc,. cnmmun1catn111 .., atc ll11c,. and la,er, : 1n m~1nnl. ,1cnmaut i1.: al .

, p.1l t' . • 1nJ 11,i:U , talhlfl ,cr,11.:, . n..:pcatcr, . ,~1d1t1 rcl..1~1ng. ,1gnal , toragc:. an<l rc~cncration : tc:kuun munll:atum error tktcdu1n ~11u..l n urcl:l ton. 111ult1pk x. 1ng an<l t·arricr 1cthnu.1uc,.

(Olllllll1Tlh t11on ,\\lh.h ing ')'ICIH 1.t11a \ t)lll ll\Ull h:al i tHh: und commUllllJllon Lhl'Or")

In add1th111 tu the.: uOo,t: . th i .., Jot R\.\ I or Lhc ll .rl.. T RAV\\(.\110'-S Of\ C0~1\1 l '\ IC \ TIO '\ S contai n, pape r, pcrtatn111g to Jlhllog ant.I <l1g1tal , 1g. 11.1I pro1..:i: , , ing ,rn<l moUul Jt1011 .

• ,udio ,tnJ \llko 1..~111..: ,,J111~ tc1...h1114ul..',. thi: tlll'lll\ ~mu <lc,ign o l 1ran,m1tter, . n..'l"ci , i:r, . • int i rcpcatL· r, tor rommunil" ;.ttion, '"' opt k al :mJ , 0111 r mcdiJ. the <l ..: ,1g11 and ~in.t i}' " ol
c..:umputi:r LlHlllllLHl h.:atmn ') 'lcnh , Jnd th.: dc,t lnpmcn t of 1.:ommuni..:at1011 ,oll~;.1rl' C'or1l nht1t1011, ol theory cnhanl'mg thl' Lm<ler,1,inl.1111!! ol um1111un1Gtti on '}'lcm, .md tcc..: h111quc,
ar~ llh.:ludt,._·J . a, .ire..· d 1,l...'Ll\,101h 111 the ,(x:1J I 1rn p! kdt1un, ol the Jc, ..: lopmi:nt ol romrn u111 l'a t1011 tcl'hnolog) All mi: mhcr, ol the IFFE a rt: c lig1hlc tor m..: rnhcr, h1p in the Souct) upon
pa,mcnl nl the an nual S, ... 1cl) 111cmh.:"h1p kc nl \!1 IXI . ~k mtx-r, ma) rccc11c thi, JOl R"-\1 upon pay me nt ol an aud111 onal \!7 (XI I 'ilUX) m1al1. the IEf:E TRV, S-\ C ITIO\\

(" CO\l l ll ', I(,r,o,, uron r•) mCnl " ' an adu11,n1al S!7 IK) (','i() IM I 101al1. nr hoth ruhli r a111111 , upon j)J) ll1Cnl ol an auu11,on,1I \'i-1 IXI I 77 (XI l< ll,tl J. l·nr mtnrm.tl lllll 1111 111in1ng.

'A-l"lll.• 10 lhL' ll '. L~ al the ,uJJ11,..'" tlc..: ln\\ -\.f1 ml1t ·1 , ''!'"'' of 71011\at tu•n\/}oumal, arr .Jor prnnnal U\t' 011/\ .

\,\ 11. rR \',TIR . /)m'.-1111' 11/ .loumlll \

Virg 1111.1 kch

-B2 NL'\\ l-.11g 1nccnn!! BIJg
Blac·i,,,hu rg . VA 240 6 1 0350
h1ra111cr(!, , t. eJu

\ !\.1 Bl ~II

'-iSf·
420 I \\ ihon B,11ilc, urJ

Room I 17 '1
,\r'111gt1111 , \',\ 222 10

\\ . Ht
IHl\.1 RL' . I.ah lunch
Sau1r1L"r,1r,1".: 4
8801 Ru,ch l il11n '/H

S\\ ll1L'rland

IEEE COMI\tl '"I ICATIONS SOCIETY
JOU RNAL Editorial Board 1998

J-SAC Home Page VRL: http://gump.bellcore.com:5000

J F H ~,1 ,

Dcpl Lice Eng.
Co11rnrJ 1a Uni\ .

L. 8 Mil ~Tl I\ , Ldi{Ol'· l ll·Ch11•f
DL' pt. EIL'ct. and Cnmpu t. Eng .
l\.1 a,I Code ().107
Uni , . of C al1 fom1 a. SD
La Jo ll a , C ,\ 92091
mil , 1c111 (n ccc .uc,J .cdu

Senior Editor,
R R ~,1~', \\ .~\II

Tc llah ,

1455 De M a1\\onncu,c
\ 1nnl ~al Que bec

Ca nad ,1 fLlG IM 8

15 Sky lrnc Dm e
H a11-1ho rnc . NY 10532

I'< . M 1\1 \I C Il l 1'. T S R -l l'P•IPORT

rhc Brat.lie) Dept. E lec Fng.
61 5 Wh111c mo rc flail

S l I L. M(' DO'- I LIJ. tl l'< ,,,,..,. J-, tf i1111

Bc llrnrc . Rm. I A308R

+15 South Ired

Mo rri , 1m, n. NJ 07960- 1910
, uc(n t>cllcorc .co m

W H. T R-\',rFR

Depl. E l~c . Eng.
l!ni, of M1"o un -Ro ll a

Ro ll a . MO 6 54 0 1 0249

D. P. T ~YLOR

Dept. E & E Eng ineering
Univ. of C a 111c rhury

,\ r ,ld I .ahora1on c,
Bit.lg 101. Roo m A l l :i
I ~O P,trl -\1 c

Florham Park , NJ 079.12

Virg1ma Po ly tec h . 111 , 1 & S tate Uni, .
81.ick, hurg. VA 2-1(>6 1--0111

Pm a te Bag 4 800

C hmtc h urc h . Nc11 Zca lanJ

THE I STITL'TE Of ELECTRICAL AND ELECTRONICS ENG l"IEERS, INC.

Jn,1 1·11 811R1""•'- ~. l 'rnidt'/11
Kl ._,, TII R. Lu.IR. f' rn1d,·111 Ue<I

,-\ -.. t< "10 C. BA, 10,. \ ea,·1111:1·
BHI 11 ,\ . !: hi ,,n.1-... fr,·,111m·r

Officers
F RJ FI X)J I· 1\1 s,111,. v,, l' Prt•111/,•111. 1'11/1/i u,1 11111 A,-u,,1,e,

D l'- IIL R. Bt.:S lti"-1. Vice l're.1 u/ur1. Regum<1 I ,\c111 ·111t·1

, \ RI Ill R \ \' t\\ rn, , 17, ,, f'rl'l itl,•111. lct/11, <1//tJ!ltd 1\ c/11 1l i l'1·

L. J o 11 , R A!S J(J '\f .. Vi ce l're,id,•111. S1w ularc/1 " ""w11,111
LI.en D A . MORI I \. Vice Prt'.11d1·111. frch11irn l A,m ·i111•,

J OHN R . R I IM:.RT. Pl'l'\llll'III . It.L E USA

() \\Ill D. D111. 011 ,<1flr, 0 11 1\/011 Ill l////1//1 //11 / nl l //1/I \ '/e, '111 11 //lg\' /)11•1111111

1)11. Al (l (l RT! . H11111<111 R,•,0111'< t \

, \ 's II J1)-.;) J Fl RRARO. /'11/,/,.-,11111111

J1 1>1111 lio R,1~,. S1w1tlt11-d, , \ , tin11,•,
Cl n 11 -\ J A, J(t>\\\J(J , Rcg1mw/ \ c 111 ·111, ·1

f'I Tl R , \ I I\\ I\, {;t/llnl/11111<1 / , \ <111-Wn

Executive Staff
lh,111 .I S1 \I \f I 1ffllf/l•f l>irnlllr

RICH \RD D. SCH\\ IRl / . /Ju 1111t ·\\ 1\d111 111 i ,1n11io11
W THll\1 \\ St nu . f'm/l'\\ i // 1111 / \ c1in111·,
M -IR) \\ \Rl>-C Al I ,, . /c ,·l,11 ,ca/ Acll n//1'\
J o 11 , W J1\ J(J , . /11fi, r111a/1 /111 Te, l11 111//lg 1

IEEE Periodical\
Transactions/Journals Department

.\1<1/f /)//'l'Clor f- RA', /.,\PPI 11 I

Et/,tfl/'/ll l /) /rt'l (/1/ : V Ai I RII C A\I \ I ARATA

Pmdw 111111 /)1n'c/fl r : R <>B l RI S\1H l· J(

l ra11111c///111 1 M anager: G~ll S. F1 RE"-<"

U,•<1m1111 · 1'11h/11h ing Mw1u~t•r T1111 B o'sTR \UR

\1c111ag111g /-,'t/ i/ /11 '. GI R-111>1:SI I:' K ROi i'\

IH· I Jo i R'-Al I)'\ s, 11 CTI 1.t \Rf -I'> I' C O ~l\ll '' (110'\~ nss:--. 117' 1 X7 lh1 i, runl,,hcu lllllC 11111c, a \C.tl in JanLI.lr). l ·cntuJI) . ,\pnl MJ). June. Aup1'I. \cptcmh.:r. (kltolx'r .
• m\l Dcu mhcr h) lh hhtltu ti: 111 ~kt,._·111c..:al .mJ f·I \.. ron11., l ng11wcr,. Inc Rl.' , pon-..ih1 li1~ 101 thl.' L"ontcnh rc,h upon the Jlltho1, .m<l mH ll P' lll lht.• IEFf-__ the Sot.1i:1 ~1Cnunul , tir

111, mt<ct . U Eh Corpo rnte (>nke: 1-l'i Lu,1 -1 7 Stred . Nev. Y,,rl. , !\) IIKJl 7- 2W-l . IEEE OJ>eration, Center : .J..l 'i 11 ,,c, l anc. I' () B11, 11.1 I. 1'1',JIJ\\J) . !\J llhX'i~- 1111
, ,1 lt·lq1hon<·: 711 '1 ,) 0 IMII• • l'r ir e/Puhlicatlon lnfnm1atlon : lndl\ idu.11 «•rrc,· 11 ·1:F \ kmh.:r, $ 1(1.(Kl I lir>t cnp1 <>nl) I. nnnmcmh.: r, ~211 IKI per wp~ I N111c Adu . -1 .IKI ro,1agc

,llh.l h,111dhn,g 1.. hJljC to an~ order trom) 1.00 tu 5-~l.fKI. 1ndm.ling prcp;.rn.l 01Jl·r, .1 \1 crn hc: r and imnmcmhcr , uh,Ln pllo n pn c..:1.:, .i, ,11l.1hk upo n rc4uc,t A, all ,thle 1n miLrolid1L·
Jlhi 1111u 11ilm Cop}right Jnd Reprint Permi,,ion,: \ h,tradmg 1, pi:rmltlcd \\ 1th c..:rct..li t 10 the ,mirl.T I .1hranc, arc..· pe rm itted to phnll k..'Op~ to r pn,.1tt.' u": of patron, . pnl\ 1<lcJ

thC" 111· 1 •t,._·o p_~ f'l'. c.." 111J1c.11t.:J 111 the L"u,.k Jl th1..· no1to111 ol the l1r,t pag1..· i-. p,11d through the (·opyright Clcaram.:c- Cc ntt·r. 222 Ro,\.'.~ooJ Dn ,C' . Dall\ cr, . M .\ 0 1921 i-: or .ill other

1..np) 111 g... rr p11 11 t, nr n.: puh\11. ;.1tin11 pcrnw,,11,n , v.ntl~ 111 ('op)' ngh t, un<l P1..·1m1" 1on, Di:pan mcnt . 11:--1 [~ Publu.: a11on, AJ 1111111 , trJ t1on . •• :'i lluc, I .Jnc. P 0. Bn, 1 l\ l , P1 "·'•1La\\il ~. ~ J
OX85Ci -1 '\'\ I (·op) nght l'J'JX h) ·1 hi: l!htllU IL" ol l-: ln :1111..: al anJ Elcc..:trnnic..: , L ng 111ca,, IIK. All nghl "i rc":r\'cd . P..:nod1c..il , l'n, tagi: P,n<l dt r\/c~ York. NY and at aJU11 10nal 111.11 1mg

.. 11 1,·,· . Po, tma,ter: \ end Jtld,,-,., d 1.tng,-s 10 II I I J 111 R\ \I o, SI u <7 1 I) \R I -IS I~ C0\1\ll ' '< IC \TIO\S. IH:1-.. ~-1' lluc, l.anc. P 0. Do, I 1J I. !'"""''"'•')· '<J OHXS'i - 111 I
(i\l Rc..'J!I 1r.1l11 •n 1> _ 1~-c:;t,l41SH. PnntcJ 111 t S ,\

This material may be protected by Copyright law (Title 17 U.S. Code)

Page 3 of 15

140 IEEE JOURNAL ON SELECTED.AREAS IN COMMUNICATIONS, VOL. 16, NO. 2, FEBRUARY 1998

Turbo Decoding as an Instance of
Pearl's "~elief Propagation" Algorithm

Robert J. McEliece, Fellow, IEEE, David J. C. MacKay, and Jung-Fu Cheng

Abstract-In this paper, we will describe the close connection
between the now celebrated iterative turbo decoding algorithm
of Berrou et aL and an algorithm that has been well known
in the .artificial intelligence community for a decade, but which
is relatively unknown to information theorists: Pearl's belief
propagation algorithm. We shall see that if Pearl's algorithm is
applied to the "belief network" of a parallel concatenation of
two or more codes, the turbo decoding algorithm immediately
results. Unfortunately, however, this belief diagram has loops,
and Pearl only proved that his algorithm works when there
are no loops, so an explanation of the excellent experimental
performance of turbo decoding is still lacking. However, we shall
also show that Pearl's algorithm can be used to routinely derive
previously known iterative, but suboptimal, decoding algorithms
for a number of other error-control systems, including Gallager's
low-density parity-check codes, serially concatenated codes, and
product codes. Thus, belief propagation provides a very attrac
tive general methodology for devising low-complexity iterative
decoding algorithms for hybrid coded systems.

Index Terms-Belief propagation, error-correcting codes, iter
ative decoding, Pearl's Algorithm, probabilistic inference, turbo
codes.

I. INTRODUCTION AND SUMMARY

TURBO codes, which were introduced in 1993 by Berrou
et al. [10], are the most exciting and potentially important

development in coding theory in many years. Many of the
structural properties of turbo codes have now been put on
a firm theoretical footing [7], [18], [20], [21], [27], [45], and
several innovative variations on the turbo theme have appeared
[5], [8], [9], [12], [27], [48].

What is still lacking, however, is a satisfactory theoretical
explanation of why the turbo decoding algorithm performs
as well as it does. While we cannot yet announce a solution
to this problem, we believe that the answer may come from
a close study of Pearl's belief propagation algorithm, which
is largely unknown to information theorists, but well known
in the artificial intelligence community. (The first mention of
belief propagation in a communications paper, and indeed the

Manuscript received September 27, 1996; revised May 3, 1997. This work
was supported by NSF Grant NCR-9505975, AFOSR Grant 5F49620-97-
I-0313, and a grant from Qualcomm, Inc. A portion of R. J. McEliece 's
contribution was done while he was visiting the Sony Corporation in Tokyo.
The collaboration between D. J. C. MacKay and R. J. McEliece was begun at,
and partially supported by, the Newton Institute for Mathematical Sciences,
Cambridge, U.K.

R. J. McEliece is with the Department of Electrical Engineering, California
Institute of Technology, Pasadena, CA 91125 USA.

D. J. C. MacKay is with the Cavendish Laboratory, Department of Physics,
Darwin College, Cambridge University, Cambridge CB3 OHE U.K.

J. -F. Cheng is with Salomon Brothers Inc., New York, NY 10048 USA.
Publisher Item Identifier S 0733-8716(98)00170-X.

paper that motivated this one, is that of MacKay and Neal
[37]. See also [38] and [39].)

In this paper, we will review the turbo decoding algorithm
as originally expounded by Berrou et al. [10], but which
was perhaps explained more lucidly in [3], [18], or [50].
We will then describe Pearl's algorithm, first in its natural
"AI" setting, and then show that if it is applied to the "belief
network" of a turbo code, the turbo decoding algorithm im
mediately results. Unfortunately, however, this belief network
has loops, and Pearl's algorithm only gives exact answers
when there are no loops, so the existing body of knowledge
about Pearl's algorithm does not solve the central problem
of turbo decoding. Still, it is interesting and su~gestive that
Pearl's algorithm yields the turbo decoding algorithm so easily.
Furthermore, we shall show that Pearl's algorithm can also be
used to derive effective iterative decoding algorithms for a
number of other error-control systems, including Gallager's
low-density parity-check codes, the recently introduced low
density generator matrix codes, serially concatenated codes,
and product codes. Some of these "BP" decoding algorithms
agree with the ones previously derived by ad hoc methods,
and some are new, but all prove to be remarkably effective. In
short, belief propagation provides an attractive general method
for devising low-complexity iterative decoding algorithms for
hybrid coded systems. This is the message of the paper. (A
similar message is given in the paper by Kschischang and
Frey [33] in this issue.)

Here is an outline of the paper. In Section u; we derive
some simple but important results about, and introduce some
compact notation for, "optimal symbol decision" decoding
algorithms. In Section III, we define what we mean by a
turbo code, and review the turbo decoding algorithm. Our
definitions are deliberately more general than what has previ
ously appeared in the literature. In particular, our transmitted
information is not binary, but rather comes from a q-ary
alphabet, which means that we must deal with q-ary probability
distributions instead of the traditional "log-likelihood ratios."
Furthermore, the reader may be surprised to find no discussion
of "interleavers," which are an essential component of all
turbo-coding systems. This is because, as we will articulate
fully in our concluding remarks, we believe that the inter
leaver's contribution is to make the turbo code a "good" code,
but it has nothing directly to do with the fact that the turbo
decoding algorithm is a good approximation to an optimal
decoder. In Section IV, we change gears, and give a tutorial
overview of the general probabilistic inference problem, with
special reference to Bayesian belief networks. In Section V,

0733-8716/98$10.00 © 1998 IEEE

Page 4 of 15

McELIECE et al. : TURBO DECODING AS PEARL'S ALGORITHM

U•(UJ, ... , U>) [-=-fuf--x_1_ .. u ::•(Y,1, Y<J

Fig. 1. Codeword X = (U, X 1) is transmitted over a memoryless channel
and received as Y = (Y,, Yi) .

we describe Pearl's BP algorithm, which can be defined on
any belief network, and which gives an exact solution to the
probabilistic inference problem when the belief network has
no loops. In Section VI, we show that the -turbo decoding
algorithm follows froJlT a routine application of Pearl's algo
rithm to the appropriate (loopy) belief network. In Section VII,
we briefly sketch some other decoding algorithms that can be
derived from BP considerations. Finally, in Section VIII, we
summarize our findings and venture some conclusions.

II. PRELIMINARIES

In this section, we will describe a general class of q-ary
systematic encoders, and derive the optimal symbol-by-symbol

decoding rule for a memoryless channel.
Let U = (U1, •••,Uk) beak-dimensional random vector of

independent, but not necessarily equiprobable, symbols from
a q-letter alphabet A, with Pr{Ui = a} = 7ri(a) , for a E A.
The vector U represents information to be transmitted reliably
over an unreliable channel. We suppose that U is encoded
systematically, i.e., mapped into a codeword X of the form

(2.1)

where U is the "systematic" part and X 1 is the "nonsystem
atic" part of the codeword X . In the rest of the paper, we will
sometimes call X 1 a codeword fragment.

We assume that the codeword X is transmitted over a
noisy channel with transition probabilities p(ylx) ~f Pr{Y =

ylX = x} , and received as Y = (Ys, Y1) , where Y s is
the portion of Y corresponding to the systematic part of the
codeword U , and Y 1 is the portion corresponding to the
codeword fragment X 1. We assume further that the channel is
memoryless, which implies that the conditional density factors

according to the rule

p(ylx) =p(ys, Y1lu,xi)

= P(Ys lu)p(Y1lx1) (2.2)

= (}]P(Ysi lui)) · P(Y1lxi) (2.3)

where Ysi denotes the ith component of Ys· The situation is
depicted in Fig. I.

The decoding problem is to "infer" the values of the hidden
. variables Ui based on the "evidence," viz. the observed values

Ys and y1 of the variables Y s and Y1 , The optimal decision,
i.e., the one that minimizes the probability of inferring an
incorrect value for Ui, is the one based on the conditional prob
ability, or "belief," that the information symbol in question
has a given value

141

(A communication theorist would use the term "a poste
riori probability," rather than "belief.") If ao is such that

BELi (a0) > BELi(a) , for all a i- ao , the decoder infers that
Ui = a0 • The following straightforward computation is central
to our results. In this computation, and for the rest of the paper,
we will use Pearl's o notation [44].

Definition 2.1: If x = (x1 , · · · ,xm) and y = (YI,· · · , Ym)
are vectors of nonnegative real numbers, the notation

x=oy

means that X i = yif (Y:,f:=1 Yk), for i = 1, · · · , m. In
other words, x is a probability vector whose components are
proportional to those of y. (If f(x) and g(x) are nonnegative
real-valued functions defined on a finite set, the notation
f(x) = og(x) is defined similarly.)

Lemma 2.2: If the likelihood P(Ysi lui)1 is denoted by
>-.i(ui) , then the belief BELi (a) defined in (2.4) is given by

k

BELi (a) = o L p(y1lx1) II >-.1(u1)1r1(u1)
U :u, = a j=l

k

= o>-.i(a)1ri (a) L p(y1lx1) II >-.1(u1)1r1(u1).
U : u , =a j=l

i
(2.5)

Proof' We have, by the definition (2.4), BELi(a) =

Pr{Ui = alY = y}. Then

Pr{Ui = alY = y}
Pr{Y = y , Ui = a}

Pr{Y = y}
= o Pr{Y = y , Ui =a} (using the o notation)

= Q I: p(y, u)
U:ui = a

= o L p(ylu) · p(u)
U :ui = a

k

= 0 L P(Y1lx1)P(Ys lu) · II 1r1(u1) by (2.2)
U: u , = a j=l

k

= o L P(Y1lx1) · II >-.1(u1)1r1(u1) by (2.3)
U : u , = a j=l

k

= o >-.i (a)1ri (a) L p(y1lx1) II >-.1(u1)1r1(u1).
U : u , =a j=l

i

The last two lines of the above calculation are the assertions

of the lemma. •
We see from (2.5) that BELi (a) is the product of three

terms. The first term, Ai (a) , might be called the systematic
evidence term. The second term, 1r i (a) , takes into account the a
priori distribution of Ui, Note that the effect of the systematic
evidence is, in effect, to change the prior distribution of Ui
from 1ri (a) to 01ri (a)>-.i (a). The third term, which is more

BELi (a) ~f Pr{Ui = a!Ys = Ys, Y1 = yi}.
1 If the encoder is not systematic, i.e., if the uncoded information symbols

(2.4) U; are not transmitted, these likelihoods should all be set equal to one.

Page 5 of 15

142 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS. VOL. 16. NO. 2. FEBRUARY 1998

TABLE I
UPDATE RULES FOR PEARL'S ALGORITHM (HERE, (v) = "1'J l'2 · · · l'n. IF V = (1'J. • • · • 11,.)

Is A VECTOR OF REAL NUMBERS)

quantity (at X) Type Update Rule

1. µx(u) Au1 x · · · x Au M -+ RM < 1ru,x(u) >
(1 if X has no parents)

2. Ax(x) Ax -+R < ..\y ,x(x) >
{l if X has no children)

3. 1rx(x) Ax-+ R :[;p(xlu)µx(u)
u

(p(x) if X has no parents)
4. '"Yx(u) Au1 x · · · x Au M -+ R E Ax(x)p(xlu)

X

5. BELx{x) Ax -+R a · Ax(x)1rx(x)
6. ..\x,u(u) Au1 x · · · x Au M -+ RM 1ru,x 0 '"Yx

7. 1rX,Y; (x) Ax-+ RN

complicated, takes into account the geometry of the code.
Following [10], we will call this term the extrinsic term, and
denote it by Ei (a). The extrinsic term is so important to what
follows that we shall introduce a special notation for it. (This
notation will also prove useful in Section V, where we shall
use it to describe Pearl's algorithm-see Table I, line 6.)

Thus, let A 1 , • • •, Ak be finite alphabets, let U ~ A 1 x
• • • x Ak , and let R denote the set of real numbers. Let
g = (g1, · · · , 9k) be a function mapping U into Rk. In
other words, g is a vector of k real-valued functions, and if
u = (u1 ,·· · ,uk) EU, then ·

Now, suppose that K(u) is a real-valued function defined on
the set U , which we call a kernel. The K transform of g is
the vector g' = (gi , · · · , g~) , where gi is defined by

k

g:(a) = L K(u) IT g1(u1).
U:u i = a

We summarize (2.6) by writing

j=l
#i

g' =goK.

(2.6)

(2.7)

Next, if/ and g are vector-valued functions as above, we de
fine their adjacent product h = Jg as a simple componentwise
product, i.e., h = (h 1 , ··· , hk) , where

hi(a) = fi(a)gi(a). (2.8)

Using the circle and adjacent notation,2 we can express the
result of Lemma 2.2 compactly. To do so, we take U = Ak,
and define a kernel p(u) as

2 We assume that "adjacent" takes precedence over "circle" in order to
minimize the use of parentheses.

1rx(x) · CT%1 Ay. x(x)
i#-j ' t

where the codeword fragment x 1 = x 1 (u) is a deterministic
function of u. Then Lemma 2.2 can be summarized as follows:

BEL= a..X1r(..X1r op) (2.9)

where ..X(u) = (.X1(u1), · · ·, .Xk(uk)) and 1r(u) = (1r1(u1) ,
7rk(Uk)).

III. SYSTEMATIC PARALLEL CONCATENATED

(TuRBO) CODES

In this section, we will define what we mean by a turbo code,
and present a general version of the turbo decoding algorithm.

With the same setup as in Section II, suppose we have two
systematic encodings of U

C1: U - (U, X1)

C2: U -(U,X2).
One way to combine C1 and C2 into a single code is via the
mapping

which is called the parallel concatenation of C1 and C2 , or the
turbo code formed by combining C1 and C2 :

Once again, we assume that the codeword X is transmitted
through a noisy channel with transition probabilities p(ylx). It
is received as Y = (Y . ., Y 1, Y 2), where Y s is the component
of Y corresponding to U , Y 1 is the component of Y corre
sponding to X 1 , and Y 2 is the component of Y corresponding
to X 2 . We assume again that the channel is memoryless, which
implies that the conditional density factors according to the
rule

p(ylx) = P(Ys, Y1 , Y2 lu, X1 , X2)

.= P(Ys lu)p(y1 lx1)P(Y2 lx2) (3.1)

= (ft P(Ysi lui))P(Y1 lx1)P(Y2lx2), (3.2)

The situation is as depicted in Fig. 2.

Page 6 of 15

MCELIECE et al.: TURBO DECODING AS PEARL'S ALGORITHM

U=(UI, ... , Uk) Ys = (YsI, .. . , Ysk)

Fig. 2. Generic "turbo code." The codeword X = (U, X 1 , X 2) is trans
mitted over a memoryless channel and received as Y = (Y s, Y 1 , Y 1).

By Lemma 2.2, the optimal decisions for the turbo code are

based on the beliefs

k

BELi(a) = a L p(y1lx1)p(y2jx2) IT >-.1(u1)1r1(u1)

U : u i =a

k

j=l

· P(Y2lx2) IT >-.1(u1)1r1(u1).
j=l
#i

(3.3)

For simplicity, and in accordance with engineering practice,

from now on we will assume that the a priori probability

density of the U;'s is uniform, i.e., 'II' = (al,•••, al). With

this assumption, using the notation introduced in Section II,

(3.3) becomes3

where the kernels P1 and P2 are defined by

P1(u) =P(Y1lx1)

P2(u) = P(Y2lx2)-

(3.4)

(3.5)

The celebrated "turbo decoding algorithm" [10], [50], [3]

is an iterative approximation to the optimal beliefs in (3.3)

or (3.4), whose performance, while demonstrably suboptimal

[41], has nevertheless proved to be "nearly optimal" in an im

pressive array of experiments. The heart of the turbo algorithm
is an iteratively defined sequence 'll'(m) of product probability

densities on A k defined by

w<0l =(al , .. •, al) (3.6)

i.e., 'll'(o) is a list of k uniform densities on A, and form 2'.: 1

if mis odd
if mis even.

Then the mth turbo belief vector is defined by

BEL(m) = a,h·(m)'ll'(m-l).

The general form of (3.7) is shown in Fig. 3.

(3.7)

(3.8)

In a "practical" decoder, the decision about the information

bits is usually made after a fixed number of iterations. (The

hope that the limit of (3.8) will exist is, in general, a vain

one since, in [41], several examples of nonconvergence are

3 As we observed earlier, the effect of ~ is to change the prior distribution
from 1r to ~ 1r. It follows that if there is a nonuniform prior 1r, it can be
accounted for by replacing every occurrence of"~" in our formulas with ~'lr.

YI ----
Ys ----- D1

7t(2), 7t(4), 7t(6), . ..

D2

nO), n(3), n(5), ...

----Y2
----Ys ~--~

Fig. 3. Block diagram of turbo decoding procedure.

143

given.) If the decision is made after m iterations, the mth

turbo decision is defined as

u<ml = arg max BEL<m\a) . (3.9)
i aEA '

We conclude this section by observing that, as we have

stated it, the turbo algorithm [(3.7) and (3.9)] does not appear

to be significantly simpler than the optimal algorithm (3.4)

since (for example) (~ o p1) is not, in general, much easier

to compute than (~ o p1p2). The following theorem, and the

discussion that follows, shed light on this problem.
Theorem 3.1: If the components of U are assumed to be

independent, with Pr{Ui = ui} = 1r}m-1\ui), for i =
1, • • • , k, then

(m)() Pr{Ui = alYs, Yi} 1r a - a------- if m is odd
i - \ · () (m-1)() '

A i a 1ri a
Pr{Ui = alYs, Y2} = a------- if mis even. (3.10)

Ai(a)1r;m-l\a) '

Proof- We consider the case rr, odd, the proof for even

m being essentially the same. By reasoning similar to that in

Lemma 2.2, we find that

Pr{Ui = a!Ys, Yi}
k

= L P(Y1lu) IT >-.1(u1)1rt- 1
l(u1). (3.11)

U :u , =a j=l

Ifwe divide both sides of (3.11) by >-.i(a)1rt- 1\a), we obtain

k

Pr{Ui = alYs,Yi} _ '°' (I) IT,·(·) (m-1)(·)
(m-1) - ~ P Y1 U A3 U3 7rj U3

Ai(a)1ri (a) U :u . =a j=l
#i

= ~'J('(m-1) O Pl· (3.12)

Since by (3.7), w<m) = a~w(m-l) o p1 , the theorem follows.

•
The significance of Theorem 3.1 is that it tells us that the

appropriate components of the vectors w<m) can be computed

by a decoder for C1 (or C2) which is capable of computing the

probabilities Pr{Ui = alYs, Yi}, based on an observation

of the noisy codeword Y = (Y s , Y 1) , i.e., an optimal "soft"

symbol decision decoder. The ith component of the message

passed to the second decoder module is then

7r(m1{a) = Pr{Ui = alYs, Yi}
i ' · () (m-1)()

Ai a 1ri a
(3.13)

which is the "extrinsic information" referred to earlier.

Page 7 of 15

144 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 16. NO:-- 2, FEBRUARY 1998

One of the keys to the success of turbo codes is to use com

ponent codes C1 and C2 for which a low-complexity soft bit de

cision algorithm exists. For example, the BCJR or "APP" de

coding algorithm [4] provides such an algorithm for any code,

block or convolutional, that can be represented by a trellis.4

As far as is known, a code with a low-complexity optimal

decoding algorithm cannot achieve high performance, which

means that individually, the codes C1 and C2 must be relatively

weak. The brilliant innovation of Berrou et al. [10] was

to devise a code of the type shown in Fig. 2, in which

the individual codes C1 and C2 are indeed relatively weak

(but have a low-complexity decoding algorithm), in such a

way that that the overall code is very powerful. Roughly

speaking, they accomplished this by making the encoder E 2

identical to E 1 , except for a random permutation (accom

plished by the "interleaver") of the inputs. (The encoders were

short-constraint-length systematic convolutional encoders with

feedback.) However, since it is the object of this paper to

study the decoding algorithm without regard to the resulting

performance, we shall not discuss the constructive aspect of

turbo codes further.

IV. BACKGROUND ON PROBABILISTIC INFERENCE, BAYESIAN

BELIEF NETWORKS, AND PEARL'S ALGORITHM

In this section, we will give a tutorial overview of the

so-called probabilistic inference problem of the artificial in

telligence community, as well as a brief discussion of Pearl's

algorithm, which solves the probabilistic inference problem in

many important special cases.
Thus, let X = {X1 , X2 , · • • , XN }5 be a set of N discrete

random variables, where X; assumes values in the finite

alphabet Ai . The joint density function

p(x) =p(x1 ,x2,··•,xN)

~f Pr{X1 =xi , ··· , XN = XN}

is then a mapping from A1 x • • • x AN into the set of real

numbers R. We assume that the marginal densities p(x;) ~f

Pr{ X ; = xi} are also known. The marginal density func

tion p(x;) represents our a priori "belief' about the random

variable X ;. Now, suppose that one or more of these random

variables is measured or "observed." This means that there is

a subset J ~ {l , 2, • • •, N} (the evidence set) such that, for all

j E J, the random variable Xi is known to have a particular

value, say ai. The evidence is then defined to be the event

£={Xi = ai:j E J} .

The fundamental probabilistic inference problem is to com

pute the updated beliefs, i.e., the a posteriori or conditional

probabilities p(X;I£) , for all i f/. J.
The brute force approach to computing p(X; I£) is to sum

over all of the terms of p(x) which do not involve either

4 As we shall see in Section JV, the BCJR algorithm itself, and the many

variations of it, are themselves special cases of Pearl ' s algorithm. In this

application, the algorithm is provably exac;t since the corresponding "belief'
diagram has no loops.

5 We have already used upper case X's to denote codeword components,

for example, (2.1). We use upper case X ' s here to denote arbitrary random
variables, and hope no confusion will occur.

Fig. 4. Simple example of a DAG which represents a five-variable directed

Markov field [see (4.4)) . This DAG is "loopy," with the vertices v 1, VJ, v4,

and V5 forming a loop.

i or J. To simplify notation, we assume i
{m + 1, .. •, N}. Then we have

p(X1 = al£)

1, and J

=o: L p(a,x2, .. ·,Xm,am+1, ... ,aN)- (4.1)

If X; can assume q; different values, then computing the

sum in (4.1) for each possible value of a requires q1q2 • • · qm

additions, which is impractical unless m and the qi' s are very

small numbers.
The idea behind the "Bayesian belief network" approach

[28], [51] to this inference problem is to exploit any "partial

independencies" which may exist among the X;'s to simplify

belief updating. The simplest case of this is when the random

variables X 1 , • • • , X N are mutually independent, in which

case the work in (4.1) can be avoided altogether since an

observation of one such variable cannot affect our belief in

another. More generally, the partial independencies can be

described by a directed acyclic graph, or DAG.
A DAG is a finite, directed graph, in which there are no

directed cycles. For example, Fig. 4 shows a DAG with five

vertices and five edges. Let us agree that if there is a directed

edge a -+ b, then a will be called a "parent" of b, and b will

be called a "child" of a. If the set of parents of a vertex v is

denoted by pa(v) , then we can describe the graph of Fig. 4

as follows:

pa(v1) = 0
pa(v2) = 0
pa(v3) = {vi}

pa(v4) = {v1 , v2}

pa(V5) = { V3 , V4}. (4.2)

If G is a DAG, and if X is a set of random variables in

one-to-one correspondence with the vertices of G, the joint

density function p(x) is said to factor according to G if
N

p(x1, .. · , xN) = Ilp(xilpa(xi)) (4.3)

i=l

where pa(x;) denotes a value assignment for the parents of X i .

For example, a five-variable density function p(x1, .. ·, x5)

Page 8 of 15

MCELIECE et al.: TURBO DECODING AS PEARL' S ALGORITHM

Ys! Ys2 Ysk

Ut

Yt

Noisy information bits
(visible)

Information bits
(hidden)

Codeword Fragment
(hidden)

Noisy codeword
Fragment
(visible)

Fig. 5. Bayesian network interpretation of the decoding problem.

factors according to the graph of Fig. 4 if

p(x 1, x2, x3, X4, xs)

= p(x 1)p(x2)p(x3jx1)p(x4 lx1 , x2)p(xs jx3, X4). (4.4)

A set of random variables X whose density functions factor

according to a given DAG is called a directed Markov field

[35], [32], [65]. For example, if G is a directed chain, then

X is an ordinary Markov chain. A DAG, together with the

associated random variables X , is called a Bayesian belief

network, or Bayesian network for short [28].

At this point, we observe that the general coding framework

of Fig. 1 can be represented as the Bayesian network shown

in Fig. 5. From the decoder's viewpoint, the observed noisy

information bits Ysi are probabilistic functions of the hidden

information bits Ui. Similarly, the observed noisy codeword

fragment Y 1 is a propabilistic function of the codeword

X 1 , which in turn is a deterministic function of the hidden

input bits. (Fig. 5 implies that the information bits U; are

independent.) The decoder' s problem is thus to infer the values

of the hidden variables Ui based on the evidence variables

(Ys1, · · · , Ysk) and Y1.
Bayesian networks can sometimes lead to considerable

simplifications of the probabilistic inference problem. The

most important of these simplifications, for our purposes, is

Pearl's belief propagation algorithm. In the 1980' s, Kim and

Pearl [31], [42]-[44] showed that if the DAG is a "tree,"

i.e., if there are no loops,6 then there are efficient distributed

algorithms for solving the inference problem. If all of the

alphabets Ai have the same size q, Pearl's algorithm solves the

inference problem on trees with 0(N qe) computations, where

e is the maximum number of parents of any vertex, rather than

O(qm) , where mis the number of unknown random variables,

which is required by the brute-force method. The efficiency

of belief propagation on trees stands in sharp contrast to

the situation for general DAG's since, in 1990, Cooper [16]

showed that the inference problem in general DAG's is NP

hard. (See also [17] and [53] for more on the NP hardness of

probabilistic inference in Bayesian networks.)

Since the network in Fig. 5 is a tree, Pearl's algorithm will

. apply. However, the result is uninteresting: Pearl's algorithm

applied to this Bayesian network merely gives an alternative

derivation of Lemma 2.2.

6 A "loop" is a cycle in the underlying undirected graph. For example, in

the DAG of Fig. 4, v 1 - v4 - vs - v3 - v 1 is a loop.

145

1 1 1 1 1
Fig. 6. Bayesian network for the "hidden Markov chain" problem. Here,

X 1 , · · • , X N form a Markov chain, and Y1 , · · · , YN are noisy versions of

X 1 , · • • , X N. The problem is to compute the conditional probabilities of the

hidden variables X ; based in the "evidence" variables Y;.

A more profitable application of Pearl's algorithm is to

the classic "hidden Markov chain" inference problem, where

the appropriate Bayesian network is shown in Fig. 6. Here,

the result is a linear-time exact solution which is function

ally identical to the celebrated "forward-backward algorithm"

discovered in the 1960's and 1970' s.7

For us, the important feature of Pearl's BP algorithm is that

it can be defined for an arbitrary DAG which is not necessarily

a tree, even though there is no guarantee that the algorithm will

perform a useful calculation if there are loops in the DAG.

We believe that the key to the success of turbo codes, and a

potentially important research area for the AI community, is

the experimentally observed fact that Pearl's algorithm works

"approximately" for some loopy, i.e., nontree DAG' s.8 We

shall explain the connection between turbo codes and BP in

Section VI, after first describing the BP algorithm in detail in

Section V. For now, as a preview of coming attractions, we

present Fig. 7, which is a loopy Bayesian network appropriate

for the turbo decoding problem. 9

V. DETAILED DESCRIPTION OF PEARL'S ALGORITHM

In this section, we will give a detailed functional description

of Pearl's algorithm as described in [44, Ch. 4].

7 The forward-backward algorithm has a long and convoluted history that

merits the attention of a science historian. It seems to have first appeared

in the unclassified literature in two independent 1966 publications [6] , [11].

Soon afterwards, it appeared in papers on MAP detection of digital sequences

in the presence of intersymbol interference (23]. It appeared explicitly as an

algorithm for tracking the states of a Markov chain in the early 1970's [40],

[4] (see also the survey papers [47] and [49]). A similar algorithm (in "min

sum" form) appeared in a 1971 paper on equalization [62]. The algorithm

was connected to the optimization literature in 1987 [63]. All of this activity

appears to have been completely independent of the developments in AI that

led to Pearl' s algorithm!
8Toere is an "exact" inference algorithm for an arbitrary DAG, developed

by Lauritzen and Spiegelhalter [34], which solves the inference problem with

O(Nc q1) computations, where N e is the number of cliques in the undirected

triangulated "moralized" graph G,,. which can be derived from G, and J is

the maximum number of vertices in any clique in G m. However, this proves

not to be helpful in the turbo decoding problem since the appropriate DAG

produces moralized graphs with huge cliques. For example, the turbo codes

in [IO] have an associated G m with a clique of size 16384.

9Our Fig. 7 should be compared to Wiberg (67, Fig. 2.5], which describes

the ''Tanner graph" of a turbo code. The figures are similar, but there is

a key difference. Wiberg incorporates the turbo code's interleaver, citing it

(the interleaver) as necessary for ensuring that there are no short cycles in

the graph. In our Fig. 7, on the other hand, there are many short cycles. It

is our belief the presence of short cycles does not, at least in many cases,

compromise the performance of the decoding algorithm, although it may

degrade the quality of the code. We will expand on these remarks at the

conclusion of the paper.

Page 9 of 15

146 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 16, NO. 2, FEBRUARY 1998

Ysi Ys2 Ys(k-1)

Uf

Xi

YJ

Ysk
Noisy information bits

(visible)

Information bits
(hidden)

Codeword Fragments
(hidden)

Noisy codeword
Fragments
(visible)

Fig. 7. Bayesian network interpretation of the turbo decoding problem. Note

the presence of many loops, i.e. , U1 -> X 2 -> U2 -> X 1 -> U1.

Pearl's belief propagation algorithm is a decentralized

"message-passing" algorithm, in which there is a processor

associated with each vertex of G. Each processor can

communicate only with its parents and children. Furthermore,

the processor associated with a variable X is assumed to

"know" the conditional density function p(xlu) ~f Pr{X =
xlU1 = u1 , · · ·,UM = UM}, where U1, ···,UM are the

parents of X. (If X has no parents, this knowledge is assumed

to be the marginal density function p(x) ~f Pr{X = x} .)

Thus, the "local environment" of a node X is as shown in

Fig. 8(a).
When a processor is activated, it "reads" the messages

received from each of its parents and children, updates its

belief based on these messages, and then sends new messages

back to its parents and children.
The message a node X receives from its parent Ui , denoted

7ru, ,x (Ui) , is in the form of a list of probabilities ("7r" for

"probability"), one for each value Ui E Au,. Informally,

7l'u, ,x (Ui) is the probability of the event Ui = ui , conditioned

on the evidence in the tree already "known" to Ui . Similarly,

the message X receives from its child Y; , denoted AY; ,x(x) , is
in the form of a list of nonnegative real numbers (likelihoods:

"A'' for "likelihood"), one for each value of x E Ax .

Informally, A Y; ,x (x) is the probability of the evidence Y1
"knows," conditioned on the event X = x. For simplicity,

we adopt a vector notation for these incoming messages

1ru,x(u) ~r (7ru1 ,x(u1) , · · · , 7l'uM ,x(uM))

AY,x(x) ~ (AY, ,x(x) , · · ·, AyN,x(x)) . (5.1)

The situation is summarized in Fig. 8(b).

After X has been activated, the message that X passes to its

child Y1, denoted 1l'X,Y; (x) , is a list of probabilities, one for

each value of x . Roughly speaking, 1r x , Y; (x) is the probability

of the event X = x, given the evidence in the tree already

"known" to X, which now includes any new evidence which

may have been contained in the incoming messages. Similarly,

the message that X passes to its parent Ui , denoted Ax,u, (ui) ,
is the probability of the evidence it now knows about, given

Parents of X

Children of X

(a)

u

7tu, x (u) i
X

'-v,x<x) i
y

(b)

u

i "'x. u(u)

X

i 7t X,Y (x)

y

(c)

Fig. 8. Summary of Pearl's algorithm. (Boldface symbols denote random
vectors; ordinary symbols represent random variables.)

the event Ui = Ui . Again, we adopt a vector notation

d f ·
Ax,u(u) ~ (Ax ,u1 (u1), .. · , Ax,uM(uM))

1rx,Y(x) ~f (1rxy1 (x) , · · · , 1rx,YN (x)). (5.2)

This situation is summarized in Fig. 8(c).

Additionally, each node of the graph keeps track of a

number of other quantities

µx(u): Au, x · · · x AuM -+ R

Ax(x): Ax-+ R

1rx(x): Ax-+ R

1x(u): Au, x · · · x AuM -+ R

BELx(x): Ax-+ R.

Page 10 of 15

MCELIECE et al. : TURBO DECODING AS PEARL'S ALGORITHM 147

TABLE II

INITIALIZATION R ULES FOR PEARL'S ALGORITHM

quantity (at X) initially (evid.) initially (non. evid.)

(x = xo)

1. µx(u)

2. Ax(x)

3. 1rx(x) t5(x, xo)• { ~(~)* if X is a source node
otherwise

4. 'Yx(u) p(xolu) 1

5. BELx(x) t5(x, xo)• { ~(~)
if X is a source node
otherwise

6. >.x,u(u) { ~(~olu)* if M= 1 1
otherwise

7. 1rx,y(x) t5(x, xo)• { ~(~)
if X is a source node
otherwise

•Once initialized, these quantities never change.

The quantities µx(u), Ax(x), 1rx(x) , and 'Yx(u) have no

particular intrinsic significance, but the quantity BELx (x) is

the heart of the algorithm since, when the algorithm termi

nates, BELx(x) gives the value of the desired conditional

probability Pr{X = xi£}.
Here, then, is a complete description of Pearl's

algorithm. When the node X is activated, it "reads" its

incoming messages 1ru,x(u) and Ay,x(x) , and updates

µx(u), Ax(x) , 1rx(x) , 'Yx(u), BELx(x) , Ax,u(u) and

1r x y (x), in that order, using the update rules in Table I and

the ' initial values given in Table II. (In Table I, we use the

notation (v) = v1 v2 · · · Vn if v = (v1 , · · · , vn) is a vector

of real numbers.) A node can be activated only if all of

its incoming messages exist. Otherwise, the order of node

activation is arbitrary. Pearl proved that if the °DAG is a

tree, then after a number of iterations at most equal to the

diameter of the tree, each node will have correctly computed

its "belief," i.e., the probability of the associated random

variable, conditioned on all of the evidence in the tree, and

no further changes in the beliefs will occur. If the network is

not a tree, the algorithm has no definite termination point, but

in practice, the termination rule chosen is either to stop after

a predetermined number of iterations, or else to stop when

the computed beliefs cease to change significantly.

VI. TuRBO DECODING AS AN INSTANCE OF BP

In this section, we will show formally that if Pearl's BP

algorithm is applied to the belief network of Fig. 7, the result

is an algorithm which is identical to the "turbo decoding"

algorithm described in Section III. More precisely, we will

show that if the network of Fig. 7 is initialized using the rules

of Table II, and if the nodes are updated (using Table I) in

the order U , X 1 , U, X 2 , U, X 1 , • • • , the results are summarized

in Table III. In particular, the sequence of "beliefs" in the

TABLE III

PEARL'S ALGORITHM APPLIED TO THE BELIEF NETWORK OF FIG. 7

(NODES ARE ACTIVATED IN THE ORDER SHOWN IN THE FIRST COLUMN)

node activated BELu 11'u,x, 11'U,X, >.x,,u >.x,,u

(initial conditions) 1 1

u a >. a >. a>.
X1 " ,r(l)

u a).11'(1),r(O) Cl).,r(l)

X2
11'(2)

u (l).,r(2),r(I) (l).,r(2)

X1 11'(3)

u Cl).,r(3) 11'(2) (l).,r(3)

information symbols U will be

aA aA,r(ll,r(o) aA,rC2l,rC 1) aA,rC3l,rC2) .. .

' ' ' '
in agreement with (3.8).

Let us now verify the entries in Table III. First, we discuss

the necessary initializations. Because Ui is a source node (i.e.,

it has no. parents), and since we are assuming that the prior

distribution on the Ui 's is independent and uniform, by line 3

in Table II, the quantity 1ru, (Ui) is permanently set as follows:

1ru; (ui) = al (permanent). (6.1)

Since the Ysi' s are "direct evidence" nodes (i.e., evidence

nodes which have only one parent), by line 6 of Table II, the

message that Ysi sends the Ui is permanently set as follows:

AY,i,u;(ui) = p(y.;lui) = Ai(ui) (permanent) (6.2)

Since the nodes X 1 and X2 are not evidence nodes, by line

6 of Table II, the messages that they send to the U;' s are

Page 11 of 15

148 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 16, NO. 2, FEBRUARY 1998

initially set as follows:

>.x;,u,(ui) = 1 (temporary) (6.3)

which appears (in vector notation) in line 1 of Table III.
Now, we simultaneously activate the nodes U1 , •••,Uk,

Since Ui is a source node, it is not necessary to evaluate
µu,, "Yu, , or the >. messages. By line 2 of Table I

>.u,(ui) =AY,;,u.(u;) · >.x1 ,u.(ui) · >.x2 ,u.(u;) (6.4)

= >.i(ui) · 1 · 1 [by (6.2) and (6.3)]

=>.;(ui)- (6.5)

Similarly, by line 5 of Table I

BELu; (ui) = o:>.u, (u;) · 7ru, (ui) (6.6)

= o:>.i (u;) · 1 [by (6.1) and (6.5)]

= o:>.i(u;). (6.7)

In vector notation, (6.7) is equivalent to

BEL= o:A

which appears in line 2 of Table III.
The message U; sends to X 1 is, according to line 7, Table I

7ru,,x 1 (ui) =o:7ru; (u;) · >.Y,;,u.(u;) · >-x2 ,u,(u;) (6.8)

= o:1 · >.;(ui) · 1 [by (6.1), (6.2), (6.3)]

= o:>.i(ui) (6.9)

for i = 1, · · ·, k. In vector notation, (6.9) becomes

1ru,x, = o:A (6.10)

which also appears in line 2 of Table III. A similar calculation
gives 1ru,x

2
= o:A, which again appears in line 2 of Table III.

Next, we update X1. The quantities µx, (u) , BELx, (x1),
and 1r x

1
,U are not required since we do not update the

evidence node Y1 . Since Y1 is an evidence node, by line
6, Table II, the message)..y1 ,x1 (x1) is permanently fixed as
p(y1lx1). Thus, by line 2, Table I, >.x, (xi) is also fixed

>.x1 (xi)= P(Yilxi) (permanent). (6.11)

Next, we compute "Yx, (u) , using line 4 of Table I:

"Yx, (u) = LP(Y1lx1)p(x1lu).

Since X1 is a deterministic function of U, if follows that
p(x1lu) is equal to 1 for that value of u that produces the
code fragment x1 , i.e.,

"Yx,(u) =p(y1lx1(u))

= Pi (u) (permanent) (6.12)

where in 6.12 we have used the definition (3.5). Finally, we
update the messages Ax u, using line 6 of Table I

1,

Ax u =1ru X 0 "Yx, 1 , , .. 1

= o:A o p1 [by (6.10) and (6.12)]

= o:(A1r(o) o P1) [by (3.6)]

= 7r(l) [by (3.7)] (6.13)

which appears in line 3 of Table III.
Now, we update U again, using the definition (6.4), and the

previous values given in (6.2), (6.13), and (6.3)

(6.14)

TABLE IV
PEARL' S ALGORITHM APPLIED IN A SLIGHTLY DIFFERENT

WAY TO THE BELIEF NETWORK OF FIG. 7 (NODES ARE

ACTIVATED IN THE ORDER SHOWN IN THE FIRST COLUMN)

node activated BELu 11'U,X1 11'U,X2 ~x,,u ~x. ,u

(initially) 1 1
u a~ a~ a~

X1,X2 11'(1) 7r(l)

u a ~11'(l)7r (l) a~7r(l) 0~11'(1)

X1 , X2 7r(2) 11'(2)

u a ~11'(2)7r(2) °' ~11'(2) °' ~1r<2)

Similarly, using the definition (6.6), and the previous values
in (6.4) and (6.1)

BELi(u;) = o:>.;(u;)7rC1l(ui)

which, in vector notation, is

BELu = o:A1r(l)
= 0:A7r(l)7r(O)

in agreement with line 4 of Table III.
Next, we update 1ru X and 1ru X

, 1 , 2

7ru,,x 1 (ui) = 0:7ru, (ui) · Ay,,,u.(u;) · >.x2 ,u,(ui) [by (6.8)]

= o:1 · >.; (Ui) · 1 [by (6.1), (6.2), (6.3)]

(6.15)

and

7ru,,x 2 (u;) =o:7ru,(u;) · >.Y,;,u.(ui) · >.x, ,u,(ui) [like (6.8)]

= o:1 • >.i(u;) • 7rC1l(ui) [by (6.1), (6.2), (6.4)]

= o:>.;(ui) · 7rC1l(ui)- (6.16)

The values (6.15) and (6.16) are the ones given in line 4 of
Table ill. It is now a matter of routine to verify that the rest
of the values given in Table III are correct.

The order in which we chose to update the nodes in
Fig. 7 was arbitrary, and other orders give different algo
rithms. For example, it is easy to verify that the update
order U, X, U , X, • • • yields the results in Table IV, where
the sequences 1rCm) and 1rtCm) are defined by

and

7r(O) = ,;-(O) = (o:1, ... 'o:1)

7r(m) = { 0:A'lr(m-1) O Pl,
o:A1rCm-:-1) o P2 ,

-(m) -{ O:AJJ(m-l) 0 Pl ,
p - o:Ap(m-1) o P2,

if mis odd
if mis even

if mis even
if mis odd.

(6.17)

(6.18)

It would be interesting to experiment with this alternative ver
sion of the turbo decoding algorithm. (This "parallel update"
rule is, in fact, the rule used to derived the decoding algorithm
for multiple turbo codes, as discussed in Section VII.)

Page 12 of 15

MCELIECE et al.: TURBO DECODING AS PEARL' S ALGORITHM

Yst Ys2 Ysk

Ut

Noisy information bits
(visible)

Information bits
(hidden)

Codeword Fragments
(hidden)

Noisy codeword
· Fragments

(visible)

Fig. 9. Belief network appropriate for decoding a "multiple" turbo code, in
which there are _U code fragments .

VII. OTHER DECODING ALGORITHMS

DERIVED FROM BELIEF PROPAGATION

As we have seen in Sections IV and V, Pearl's algorithm
can be applied to any belief network, not just to one like Fig. 7.
It is a fruitful exercise to apply Pearl's algorithm to the belief
networks of a variety of hybrid coding schemes, to see what
results. In this section, we will briefly outline (without proofs)
what we _have discovered along these lines.

• Multiple Turbo Codes: As we have defined them, turbo
codes involve only two encodings of the information, as
shown in Fig. 2. However, several researchers (e.g., [19]) have
experimented with three or more parallel encodings. If there
are M parallel encodings, the appropriate belief network is
as shown in Fig. 9. Applying the BP algorithm to this belief
network; with the update order U , X , U , X , • • • , we obtain a
generalized turbo decoding algorithm which is identical to the
one employed successfully in [19].

• Gallager's Low-Density Parity-Check Codes: The earliest
suboptimal iterative decoding algorithm is that of Gallager,
who devised it as a method of decoding his "low-density
parity-check" codes [25], [26]. This algorithm was later gen
eralized and elaborated upon by Tanner [61] and Wiberg
[67] . But as MacKay and Neal [37]-[39] have pointed out,
in the first citation of belief propagation by coding theo
rists, Gallager's algorithm is a special kind of BP, with
Fig. 10 as the appropriate belief network. [In Fig. 10, X =
(X1 , · • • , Xn) is a codeword which satisfies the parity-check
equations HX = 0 . Y = "(Y1 , • • •, Yn) is a noisy version
of X. The "syndrome" S = (S 1 , • • • , Sr) is defined as
S = HX, which is perpetually "observed" to be (0, • • ·, O)] .
Although LDPC codes had largely been forgotten by cod
ing theorists until their rediscovery by MacKay and Neal,
simulations of Gallager' s original decoding algorithm made
with powerful modem computers show that their performance
is remarkably good, in many cases rivaling that of turbo
codes. More recently, Sipser and Spielman [57], [60] have
replaced the "random" parity-check martrices of Gallager and
MacKay-Neal with deterministic parity-check matrices with
desirable properties, based on "expander" graphs, and have
obtained even stronger results.

• Low-Density Generator Matrix Codes: Recently, Cheng
and McEliece have experimented with BP decoding on certain

Yt

Xt

0 0 0

Yo

Xn

Noisy codeword
(visible)

Codeword
(hidden)

Syndrome
(must be all

zeros)

149

Fig. IO. Belief network for decoding a Gallager "low-density parity-check"
code.

YJ Y2 Yk

•••
Ut Uz Uk

Noisy information bits
(visible)

Information bits
(hidden)

Check bits
(hidden)

Noisy check bits
(visible)

Fig. 11 . Belief network for decoding systematic, low-density generator
matrix codes.

systematic linear block codes with low-density generator
matrices [13]. (This same class of codes appeared earlier in
a paper by MacKay [36] in a study of modulo-2 arithmetic
inference problems, and in a paper by by Spielman [60] in
connection with "error reduction.") The decoding algorithm
devised by Cheng and McEliece was adapted from the one
described in the MacKay-Neal paper cited above, and the
results were quite good, especially at high rates. More recently,
Cheng [14], [15] used some of these same ideas to construct
a class of block codes which yield some remarkably efficient
multilevel coded modulations. Fig. 11 shows the belief net
work for low-density generator matrix codes used by McEliece
and Cheng.

• Serially Concatenated Codes: We have defined a turbo
code to be the parallel concatenation of two or more com
ponents codes. However, as originally defined by Forney
[22], concatenation is a serial operation. Recently, several
researchers [8], [9] have investigated the performance of
serially concatenated codes, with turbo-style decoding. This
is a nontrivial variation on the original turbo decoding idea,
and the iterative decoding algorithms in [8] and [9] differ so
significantly from the original Berrou et al. algorithm that they
must be considered an original invention. Still, these decoding
algorithms can be derived routinely from a BP viewpoint,
using the network of Fig. 12. Here, U is the information to
be encoded, X is the outer (first) encoding, Y is the inner
(second) encoding, and X is th~ noisy version of Y .

• Product Codes: A number of researchers have been
successful with turbo-style decoding of product codes in two or
more dimensions [46], [48], [54], [27]. In a product code, the

Page 13 of 15

150 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS. VOL. 16. NO. 2. FEBRUARY 1998

Information bits
(hidden)

Outer codeword
Xn (hidden)

Inner codeword
(hidden)

Noisy inner codeword
(visible)

Fig. 12. Belief network for decoding a pair of serially concatenated codes.

information is arranged in an M-dimensional array, and then
encoded separately in each dimension. Thus, the appropriate
belief network is like the ones in Figs. 7 and 9 (a product
code, is, by definition, systematic). We have experimented
with "BP" decoding of product codes, and obtained results
similar to those in the cited references. However, in this case,
it appears that the BP algorithms differ in some small details
from turbo-style decoding, and we are currently investigating
this phenomenon.

• "Tail-Biting" Convolutional Codes: The class of "tail
biting" convolutional codes introduced by Solomon and van
Tilborg [56] is a natural candidate for BP decoding. Briefly,
a tail-biting convolutional code is a block code formed by
truncating the trellis of a conventional convolutional code and
then pasting the ends of the trellis together. If the parent
convolutional code is an (n , k) code, and if the truncation
depth is N , the resulting tail-biting code is an (Nn, Nk) block
code.

In Fig. 13, we show a belief diagram for a tail-biting code
where the truncation depth is N = 5. Assuming as above that
the parent convolutional code is an (n , k) code, then in Fig. 13,
the U;'s are k-bit information words, and the X;'s are n-bit
codeword segments. The Yi' s are the observed noisy versions
of the X;'s . The nodes intermediate between the information
words and the codeword segments are pairs of encoder states.
For a given encoder state pair (S;_2 , S;_ 1) and information
word U;, the encoder rules (deterministically) produce the next
pair of codeword states (S;- 1 , S;) and the next codeword
segment X;. If it were not for the "tail-biting" edge from
(Sn-l, Sn) to (Sn, So), this belief net would be without loops
and would represent an ordinary convolutional code. If, then,
the BP algorithm were applied, the result would be identical
to the BCJR APP decoding algorithm. 10

If we were to apply Pearl's algorithm to the belief diagram
of Fig. 13, we would obtain an iterative decoding algorithm for
the tail-biting code. To our knowledge, no one has done exactly
that, but Wiberg [67] has applied his algorithm to the Tanner

10 Jn this connection, we should note that Wiberg [67] has observed that
his algorithm, when applied to a Tanner graph similar to Fig. 13 (less the
tail-biting edge), also implies the BCJR algorithm. The "min-sum" form
of Wiberg's algorithm, when applied to the same graph, is closely related
to Viterbi' s algorithm. Incidentally, there is a "min-sum" version of Pearl ' s
algorithm described in (44, Ch. 5], called "belief revision," which does the
same thing.

X5

YJ Yz Y5

Fig. 13. Belief network for decoding a tail-biting convolutional code, illus
trated for a truncation length of JV = 5.

graph of a tail-biting code with good success, and functionally,
these two approaches yield virtually identical algorithms.
Forney [24] has also discussed the iterative decoding of tail
biting codes using the Tanner-Wiberg approach.

VIII. CONCLUDING REMARKS

We have shown that Pearl's algorithm provides a systematic
method for devising low-complexity, suboptimal iterative de
coding algorithms for a wide variety of error-control systems.
Although there is as yet no guarantee that these algorithms will
give useful results, the great body of experimental work done
in the "turbo-code" literature suggests that the performance is
likely to be very good.

One of the most interesting historical aspects of the turbo de
coding problem is how often in the past inventors of decoding
algorithms have hit upon a "BP"-like algorithm. The earliest,
almost clairvoyant, occurrence is in the papers of Gallager
[25], [26]. Later, Tanner [61], realizing the importance of
Gallager' s construction, made an important generalization of
low-density parity check codes, and of Gallager's iterative
decoding algorithm. With hindsight, especially in view of
the recent work of Wiberg [67], it is now evident that both
Viterbi's algorithm [64], [23] and the BCJR algorithm [4] can
be viewed as a kind of belief propagation. Irideed, Wiberg
[66], [67] has generalized Gallager's algorithm still further,
to the point that it now resembles Pearl's algorithm very
closely. (In particular, Wiberg shows that his algorithm can
be adapted to produce both the Gallager-Tanner algorithm
and the turbo decoding algorithm.) Finally, having noticed the
similarity between the Gallager-Tanner-Wiberg algorithm and
Pearl's algorithm, Aji and McEliece [1], [2], relying heavily
on the post-Pearl improvements and simplifications in the BP
algorithm [29], [30], [52], [58], [59] have devised a simple
algorithm for distributing information on a graph that is a
simultaneous generalization of both algorithms, and which
includes several other classic algorithms, including Viterbi'. s
algorithm (which is already subsumed by Wiberg's algorithm
in "min-sum" form) and the FFT. It is natural to predict
that this algorithm or one of its close relatives will soon

Page 14 of 15

MCELIECE et al.: TURBO DECODING AS PEARL'S ALGORITHM

become a standard tool for scientists in communications, signal

processing, and related fields.
We conclude with our view of "why" turbo coding is so

successful. We believe that there are two, separable, essential

contributing factors.
First: The presence of the pseudorandom interleavers be

tween the component codes ensures that the resulting overall

code behaves very much like a long random code, and by

Shannon's theorems, a long random code is likely to be "good"

in the sense of having the potential, with optimal decoding,

to achieve performance near channel capacity. But optimal

decoding would be impossibly complex. This brings us to the

second essential factor.
Second: We believe that there are general uhdiscovered the

orems about the performance of belief propagation algorithms

on loopy DAG's. These theorems, which may have nothing

directly to do with coding or decoding, will show that in some

sense BP "converges with high probability to a near-optimum

value" of the desired belief on a class of loopy DAG's that

includes most or all of the diagrams in Figs. 7, 9, and 10-13

of this paper. If such theorems exist, they will no doubt find

applications in realms far beyond information theory.

ACKNOWLEDGMENT

The authors wish to thank P. Smyth for apprising them

about the "post-Pearl" developments in the belief propagation

algorithm, and one of the referees for supplying them with

much of the history of the forward-backward algorithm that

appears in Section IV.

REFERENCES

[I] S. Aji and R. J. McEliece, "A general algorithm for distributing

information on a graph," in Proc. 1997 IEEE Int. Symp. Inform. Theory,

Ulm, Germany, June 1997, p. 6.
[2] --, "The generalized distributive law," in Proc. 4th Int. Symp. Com

mun. Theory Appl. , Ambleside, U.K. , July 1997, pp. 135-146. Revised

version available from http://www.systems.caltech.edu/EE/Faculty/rjm.
[3] J. Andersen, "The TURBO coding scheme," unpublished manuscript

distributed at 1994 JEEE Int. Symp. Inform. Theory, Trondheim, Norway,

June 1994.
[4] L. R. Bahl, J. Cocke, F. Jelinek, and J. Raviv, "Optimal decoding of

linear codes for minimizing symbol error rate," IEEE Trans. Inform.

Theory, vol. IT-20, pp. 284-287, Mar. 1974.
[5] A. S. Barbulescu and S. S. Pietrobon, "Interleaver design for three

dimensional turbo-codes," in Proc. /995 IEEE Int. Symp. Inform. Theory,

Whistler, B.C., Canada, Sept. 1995, p. 37.
[6] L. E. Baum and T. Petrie, "Statistical inference for .probabilistic func

tions of finite state Markov chains," Ann. Math. Statist., vol. 37, pp.

1554-1563, 1966.
[7] S. Benedetto and G. Montorsi, "Unveiling turbo codes: Some results

on parallel concatenated coding schemes," IEEE Trans. Inform. Theory,

vol. 42, pp. 409-428, Mar. 1996.
[8] --, "Serial concatenation of block and convolutional codes," Elec

tron. Lett., vol. 32, pp. 887-888, May 1996.
[9] S. Benedetto, G. Montorsi, D. Divsalar, and F. Pollara, "Serial concate

nation of interleaved codes: Performance analysis, design, and iterative

decoding," JPL TDA Progr. Rep., vol. 42-126, Aug. 1996.
[JO] G. Berrou, A. Glavieux, and P. Thitimajshima, "Near Shannon limit

error-correcting coding: Turbo codes," in Proc. /993 Int. Conf Com

mun., Geneva, Switzerland, May 1993, pp. 1064-1070.
[I I] R. W. Chang and J. C. Hancock, "On receiver structures for channels

having memory," IEEE Trans. Inform. Theory, vol. IT-12, pp. 463-468,

Oct. 1966.
[12] J.-F. Cheng and R. J. McEliece, "Unit memory Hamming turbo codes,"

in Proc. /995 IEEE Int. Symp. Inform. Theory, Whistler, B.C., Canada,
Sept. 1995, p. 33.

151

[13] --, "Near capacity codecs for the Gaussian channel based on low

density generator matrices," submitted to 1996 Allerton Conf.-
[14] J.-F. Cheng, "On the construction of efficient multilevel coded modula

tions," submitted to the 1997 IEEE Int. Symp. Inform. Theory.
[15] --, "Iterative decoding," Ph.D dissertation, Caltech, Pasadena, CA,

Mar. 1997.
[16] G. Cooper, "The computational complexity of probabilistic inference

using Bayesian belief networks," Artif. Intel/., vol. 42, pp. 393-405,

1990.
[17] P. Dagum and M. Luby, "Approximating probabilistic inference in

Bayesian belief networks is NP-hard," Artif. lnte/1. , vol. 60, pp. 141-153,

1993.
[18] D. Divsalar and F. Pollara, "Turbo codes for deep-space communica

tions," TDA Progr. Rep., vol. 42-120, pp. 29-39, Feb. 15, 1995.
[19] --, "Multiple turbo codes for deep-space communications," TDA

Progr. Rep. vol. 42-121, pp. 66--77, May 15, 1995.
[20] D. Divsalar, S. Dolinar, R. J. McEliece, and F. Pollara, "Transfer

function bounds on the performance of turbo codes," TDA Progr. Rep.

vol. 42-122, pp. 44-55, July 15, 1995.
[21] D. Divsalar and R. J. McEliece, "Effective free distance of turbo-codes,"

Electron. Lett., vol. 32, pp. 445-446, Feb. 1996.
[22] G. D. Forney, Jr., Concatenated Codes. Cambridge, MA: MIT Press,

1966.
[23] --, "The Viterbi algorithm," Proc. IEEE, vol. 63, pp. 268-278, Mar.

1973.
[24] __ , "The forward-backward algorithm" in Proc. 34th Allerton Conf.

Commun., Contr. , Computing , Allerton, IL, Oct. 1996.
[25] R. G. Gallager, "Low-density parity-check codes," IRE Trans. lnfonn.

Theory, vol. IT-8, pp. 21-28, Jan. 1962.
[26] --, Low-Density Parity-Check Codes. Cambridge, MA: MIT

Press, 1963.
[27] J. Hagenauer, E. Offer, and L. Papke, "Iterative decoding of binary

block and convolutional codes," IEEE Trans. Inform. Theory vol. 42,

pp. 429-445, Mar. 1996.
[28] D. Heckerman and M. P. Wellman, "Bayesian networks," Commun.

ACM, vol. 38, pp. 27-30, 1995.
[29] F. V. Jensen, S. L. Lauritzen, and K. G. Olesen, "Bayesian updating

in recursive graphical models by local computations," Computational

Statist. Quart. , vol. 4, pp. 269- 282, 1990.
[30] F. V. Jensen, An Introduction to Bayesian Networks. New York:

Springer-Verlag, 1996.
[31] J. H. Kim and J. Pearl, "A computational model for combined causal

and diagnostic reasoning in inference systems," in Proc. 8th Int. Joint

Conf Al (IJCA/83) , Karlsruhe, Germany, pp. 190-193.
[32] R. Kindermann and J. L. Snell , Markov Random Fields and their

Applications. Providence, RI: American Mathematical Society, 1980.
[33] F. R. Kschischang and B. J. Frey, "Iterative decoding of compound

codes by probability propagation in graphical models, this issue, pp.

219-230.
[34] S. L. Lauritzen and D. J. Spiegelhalter, "Local computations with

probabilities on graphical structures and their application to expert

systems," J. Roy. Statist. Soc., Ser. 8 , vol. 50, pp. 157-224, 1988.
[35] S. L. Lauritzen, A. P. Dawid, B. N. Larsen, and H.-G. Leimer,

"Independence properties of directed Markov fields ," Networks, vol. 20,

pp. 491- 505, 1990.
[36] D. J. C. MacKay, "A free energy minimization framework for infer

ence problems in modulo 2 arithmetic," in Fast Software Encryption ,

B. Preneel, Ed. Berlin, Germany: Springer-Verlag Lecture Notes in

Computer Science, vol. 1008, 1995, pp. 179-195.
[37] D. J. C. MacKay and R. Neal, "Good codes based on very sparse

matrices," in Proc. 5th /MA Conf. Cryptography and Coding, C. Boyd,

Ed. Berlin, Germany: Springer Lecture Notes in Computer Science,

vol. 1025, 1995, pp. 100-111.
[38] D. J. C. MacKay, "Good error-correcting codes based on very sparse

matrices," submitted to IEEE Trans. Inform. Theory. Preprint available

from http://wol.ra.phy.cam.ac. uk.
[39] D. J. C. MacKay and R. M. Neal , "Near Shannon limit performance of

low density parity check codes," Electron. Lett., vol. 32, pp. 1645-1646,

Aug. 1996. Reprinted in Electron. Lett., vol. 33, pp. 457-458, Mar. 1997.
[40] P. L. McAdam, L. Welch, and C. Weber, "M.A.P. bit decoding of

convolutional codes," in Abstr. Papers, /972 IEEE Int. Symp. Inform.

Theory, Asilomar, CA, Jan. 1972, p. 90.
[41] R. J. McEliece, E. R. Rodemich, and J-F. Cheng, "The turbo decision

algorithm," in Proc. 33rd Allerton Conf Commun., Contr. , Computing ,

Oct. 1995, pp. 366--379.
[42] J. Pearl, "Reverend Bayes on inference engines: A distributed hierar

chical approach," in Proc. Conf Nat. Conf Al, Pittsburgh, PA. 1982,

pp. 133-136.

Page 15 of 15

152 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 16, NO. 2, FEBRUARY 1998

[43] __ , "Fusion, propagation, and structuring in belief networks," Artif.

Intel/., vol. 29, pp. 241-288, 1986.
(44] --, Probabilistic Reasoning in Intelligent Systems: Networks of

Plausible Inference. San Mateo, CA: Morgan Kaufmann, 1988.
[45] L. C. Perez, J. Seghers, and D. J. Costello, Jr., " A distance spectrum

interpretation of turbo codes," IEEE Trans. Inform. Theory, vol. 42, pp.

1698-1709, Nov. 1996.
[46] A. Picart and R. Pyndiah, "Performance of turbo decoded product codes

used in multilevel coding," in Proc. IEEE ICC'96, Dallas, TX, June
1996.

[47] A. M. Poritz, "Hidden Markov models: A guided tour," in Proc. /988

IEEE Int. Conf Acoust. , Speech, Signal Processing. New York: IEEE
Press, vol. I, pp. 7-13.

[48] R. Pyndiah, A. Glavieux, A. Picart, and S. Jacq, "Near optimum decod
ing of product codes," in Proc. IEEE GLOBECOM'94, San Francisco,
CA, Nov. 1994, vol. I, pp. 339-343.

[49] L. Rabiner, "A tutorial on hidden Markov models and selected ap
plications in speech recognition," Proc. IEEE, vol. 77, pp. 257- 285,
1989.

[50] P. Robertson, "Illuminating the structure of code and decoder of parallel
and concatenated recursive systematic (Turbo) codes," in Proc. IEEE

GLOBECOM 1994, pp. 1298-1303.
[51] R. D. Shachter, "Probabilistic inference and influence diagrams," Oper.

Res., vol. 36, pp. 589-604, 1988.
[52] G. R. Shafer and P. P. Shenoy, "Probability propagation," Ann. Mat.

Artif. Intel/., vol. 2, pp. 327-352, 1990.
(53] S. E. Shimony, "Finding MAPS for belief networks is NP-hard," Artif.

Intel/., vol. 68, pp. 399-4 JO, 1994.
(54] J. Seghers, "On the free distance of turbo codes and related product

codes," Ph.D. dissertation, Swiss Fed. Inst. Technol., Zurich, Switzer
land, Aug. 1995, Final Rep., Diploma Project SS 1995.

(55] P. Smyth, D. Heckerman, and M. Jordan, "Probabilistic independence
networks for hidden Markov probability models," Neural Computation,

accepted for publication.
(56] G. Solomon and H. C. A. van Tilborg, "A connection between block

and convolutional codes," SIAM J. Appl. Math., vol. 37, pp. 358-369,
Oct. 1979.

[57] M. Sipser and D. A. Spielman, "Expander codes," IEEE Trans. Inform.

Theory, vol. 42, pp. 1710-1722, Nov. 1996.
[58] D. J. Spiegelhalter and S. L. Lauritzen, "Sequential updating of condi

tional probabilities on directed graphical structures," Networks, vol. 20,
pp. 579~5. 1990.

[59] D. J. Spiegelhalter, A. P. Dawid, S. L. Lauritzen, and R. G. Cowell ,
"Bayesian analysis in expert systems," Statist. Sci., vol. 8, pp. 219- 283,
1993.

[60] D. A. Spielman, "Linear-time encodable and decodable error-corecting
codes." IEEE Trans. Inform. Theory, vol. 42, pp. 1723-1731, Nov.
1996.

(61] R. M. Tanner, "A recursive approach to low complexity codes," IEEE

Trans. Inform. Theory, vol. IT-27, pp. 533-547, Sept. 1981.
[62] G. Ungerboeck, "Nonlinear equalization of binary signals in Gaussian

noise," IEEE Trans. Commun. Technol., vol. COM-19, pp. 1128, Dec.
1971.

[63] S. Verdu and H. V. Poor, "Abstract dynamic programming models
under commutativity conditions," SIAM J. Contr. Optimiz., vol. 25, pp.
990-1006, July 1987.

[64] A. J. Viterbi, "Error bounds for convolutional codes and an asymptot
ically optimum decoding algorithm," IEEE Trans. Inform. Theory, vol.
IT-13, pp. 260-269, Apr. 1967.

[65] J. Whittaker, Graphical Models in Applied Multivariate Statistics.

Chichester, U.K.: Wiley, 1990.

[66] N. Wiberg, H.-A. Loeliger, and R. Kotter, "Codes and iterative decoding
on general graphs," Europ. Trans. Telecommun. vol. 6, pp. 513-526,
Sept.-Oct. 1995.

[67] N. Wiberg, "Codes and decoding on general graphs," Linkoping Studies
in Sci. and Technol. , dissertations no. 440. Linkoping, Sweden, 1996.

Robert J. McEliece (M'70-SM '81-F'84) was born
in Washington, DC, in 1942. He received the B.S.
and Ph.D. degrees in mathematics from the Califor
nia Institute of Technology, Pasadena, in 1964 and
1967, respectively, and attended Trinity College,
Cambridge University, U.K., during 1964-1965.

From 1963 to 1978, he was employed by the
California Institute of Technology's Jet Propulsion
Laboratory, where he was Supervisor of the Infor
mation Processing Group from 1971 to 1978. From
1978 to 1982, he was a Professor of Mathematics

and Research Professor at the Coordinated Science Laboratory, University of

Illinois, Urbana-Champaign. Since 1982, he has been on the faculty at Caltech,

where he is now the Allen E. Puckett Professor of Electrical Engineering.
Since 1990, he has also served as Executive Officer for Electrical Engineering

at Caltech. He has been a regular consultant in the Communications Research

Section of Caltech's Jet Propulsion Laboratory since 1978. His research
interests include deep-space communication, communication networks, coding

theory, and discrete mathematics.

David J. C. MacKay was born in Stoke on Trent,
U.K., on April 22, 1967. Following his education
at Newcastle-under-Lyme School and Trinity Col
lege, Cambridge, he received the Ph.D. degree in
computation and neural systems from the California
Institute of Technology, Pasadena, in 1991 .

He is now a Lecturer in the Department of
Physics, Cambridge University and a Fellow of
Darwin College, Cambridge. His interests include
the construction and implementation of hierarchical
Bayesian models that discover patterns in data, the

development of probablistic methods for neural networks, and the design and

decoding of error correcting codes.

Jung-Fu Cheng was born in Taipei, Taiwan, in
March 1969. He received the B.S. and M.S. degrees
in electrical engineering from National Taiwan Uni
versity, Taipei, Taiwan, in 1991 and 1993, respec
tively, and the Ph.D. degree in electrical engineering
with a subject minor in social science from the
California Institute of Technology, Pasadena, in
1997.

His academic research interests focused on coding
and communications theory. Since July 1997, he has
been employed as a Research Analyst in the Fixed

Income Research Department of Salomon Brothers, Inc., New York, NY.

