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Turbo Decoding as an Instance of 
Pearl's "~elief Propagation" Algorithm 

Robert J. McEliece, Fellow, IEEE, David J. C. MacKay, and Jung-Fu Cheng 

Abstract-In this paper, we will describe the close connection 
between the now celebrated iterative turbo decoding algorithm 
of Berrou et aL and an algorithm that has been well known 
in the .artificial intelligence community for a decade, but which 
is relatively unknown to information theorists: Pearl's belief 
propagation algorithm. We shall see that if Pearl's algorithm is 
applied to the "belief network" of a parallel concatenation of 
two or more codes, the turbo decoding algorithm immediately 
results. Unfortunately, however, this belief diagram has loops, 
and Pearl only proved that his algorithm works when there 
are no loops, so an explanation of the excellent experimental 
performance of turbo decoding is still lacking. However, we shall 
also show that Pearl's algorithm can be used to routinely derive 
previously known iterative, but suboptimal, decoding algorithms 
for a number of other error-control systems, including Gallager's 
low-density parity-check codes, serially concatenated codes, and 
product codes. Thus, belief propagation provides a very attrac
tive general methodology for devising low-complexity iterative 
decoding algorithms for hybrid coded systems. 

Index Terms-Belief propagation, error-correcting codes, iter
ative decoding, Pearl's Algorithm, probabilistic inference, turbo 
codes. 

I. INTRODUCTION AND SUMMARY 

TURBO codes, which were introduced in 1993 by Berrou 
et al. [10], are the most exciting and potentially important 

development in coding theory in many years. Many of the 
structural properties of turbo codes have now been put on 
a firm theoretical footing [7], [18], [20], [21], [27], [45], and 
several innovative variations on the turbo theme have appeared 
[5], [8], [9], [12], [27], [48]. 

What is still lacking, however, is a satisfactory theoretical 
explanation of why the turbo decoding algorithm performs 
as well as it does. While we cannot yet announce a solution 
to this problem, we believe that the answer may come from 
a close study of Pearl's belief propagation algorithm, which 
is largely unknown to information theorists, but well known 
in the artificial intelligence community. (The first mention of 
belief propagation in a communications paper, and indeed the 

Manuscript received September 27, 1996; revised May 3, 1997. This work 
was supported by NSF Grant NCR-9505975, AFOSR Grant 5F49620-97-
I-0313, and a grant from Qualcomm, Inc. A portion of R. J. McEliece 's 
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The collaboration between D. J. C. MacKay and R. J. McEliece was begun at, 
and partially supported by, the Newton Institute for Mathematical Sciences, 
Cambridge, U.K. 
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J. -F. Cheng is with Salomon Brothers Inc., New York, NY 10048 USA. 
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paper that motivated this one, is that of MacKay and Neal 
[37]. See also [38] and [39].) 

In this paper, we will review the turbo decoding algorithm 
as originally expounded by Berrou et al. [10], but which 
was perhaps explained more lucidly in [3], [18], or [50]. 
We will then describe Pearl's algorithm, first in its natural 
"AI" setting, and then show that if it is applied to the "belief 
network" of a turbo code, the turbo decoding algorithm im
mediately results. Unfortunately, however, this belief network 
has loops, and Pearl's algorithm only gives exact answers 
when there are no loops, so the existing body of knowledge 
about Pearl's algorithm does not solve the central problem 
of turbo decoding. Still, it is interesting and su~gestive that 
Pearl's algorithm yields the turbo decoding algorithm so easily. 
Furthermore, we shall show that Pearl's algorithm can also be 
used to derive effective iterative decoding algorithms for a 
number of other error-control systems, including Gallager's 
low-density parity-check codes, the recently introduced low
density generator matrix codes, serially concatenated codes, 
and product codes. Some of these "BP" decoding algorithms 
agree with the ones previously derived by ad hoc methods, 
and some are new, but all prove to be remarkably effective. In 
short, belief propagation provides an attractive general method 
for devising low-complexity iterative decoding algorithms for 
hybrid coded systems. This is the message of the paper. (A 
similar message is given in the paper by Kschischang and 
Frey [33] in this issue.) 

Here is an outline of the paper. In Section u; we derive 
some simple but important results about, and introduce some 
compact notation for, "optimal symbol decision" decoding 
algorithms. In Section III, we define what we mean by a 
turbo code, and review the turbo decoding algorithm. Our 
definitions are deliberately more general than what has previ
ously appeared in the literature. In particular, our transmitted 
information is not binary, but rather comes from a q-ary 
alphabet, which means that we must deal with q-ary probability 
distributions instead of the traditional "log-likelihood ratios." 
Furthermore, the reader may be surprised to find no discussion 
of "interleavers," which are an essential component of all 
turbo-coding systems. This is because, as we will articulate 
fully in our concluding remarks, we believe that the inter
leaver's contribution is to make the turbo code a "good" code, 
but it has nothing directly to do with the fact that the turbo 
decoding algorithm is a good approximation to an optimal 
decoder. In Section IV, we change gears, and give a tutorial 
overview of the general probabilistic inference problem, with 
special reference to Bayesian belief networks. In Section V, 

0733-8716/98$10.00 © 1998 IEEE 
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U•(UJ, ... , U>) [-=-fuf--x_1_ .. u ::•(Y,1, Y<J 

Fig. 1. Codeword X = ( U, X 1 ) is transmitted over a memoryless channel 
and received as Y = (Y,, Yi) . 

we describe Pearl's BP algorithm, which can be defined on 
any belief network, and which gives an exact solution to the 
probabilistic inference problem when the belief network has 
no loops. In Section VI, we show that the -turbo decoding 
algorithm follows froJlT a routine application of Pearl's algo
rithm to the appropriate (loopy) belief network. In Section VII, 
we briefly sketch some other decoding algorithms that can be 
derived from BP considerations. Finally, in Section VIII, we 
summarize our findings and venture some conclusions. 

II. PRELIMINARIES 

In this section, we will describe a general class of q-ary 
systematic encoders, and derive the optimal symbol-by-symbol 

decoding rule for a memoryless channel. 
Let U = (U1, •••,Uk) beak-dimensional random vector of 

independent, but not necessarily equiprobable, symbols from 
a q-letter alphabet A, with Pr{Ui = a} = 7ri(a) , for a E A. 
The vector U represents information to be transmitted reliably 
over an unreliable channel. We suppose that U is encoded 
systematically, i.e., mapped into a codeword X of the form 

(2.1) 

where U is the "systematic" part and X 1 is the "nonsystem
atic" part of the codeword X . In the rest of the paper, we will 
sometimes call X 1 a codeword fragment. 

We assume that the codeword X is transmitted over a 
noisy channel with transition probabilities p(ylx) ~f Pr{Y = 

ylX = x} , and received as Y = (Ys, Y1) , where Y s is 
the portion of Y corresponding to the systematic part of the 
codeword U , and Y 1 is the portion corresponding to the 
codeword fragment X 1. We assume further that the channel is 
memoryless, which implies that the conditional density factors 

according to the rule 

p(ylx) =p(ys, Y1lu,xi) 

= P(Ys lu)p(Y1lx1) (2.2) 

= (}]P(Ysi lui)) · P(Y1lxi) (2.3) 

where Ysi denotes the ith component of Ys· The situation is 
depicted in Fig. I. 

The decoding problem is to "infer" the values of the hidden 
. variables Ui based on the "evidence," viz. the observed values 

Ys and y1 of the variables Y s and Y1 , The optimal decision, 
i.e., the one that minimizes the probability of inferring an 
incorrect value for Ui, is the one based on the conditional prob
ability, or "belief," that the information symbol in question 
has a given value 

141 

(A communication theorist would use the term "a poste
riori probability," rather than "belief.") If ao is such that 

BELi (a0) > BELi(a) , for all a i- ao , the decoder infers that 
Ui = a0 • The following straightforward computation is central 
to our results. In this computation, and for the rest of the paper, 
we will use Pearl's o notation [44]. 

Definition 2.1: If x = (x1 , · · · ,xm) and y = (YI,· · · , Ym) 
are vectors of nonnegative real numbers, the notation 

x=oy 

means that X i = yif (Y:,f:=1 Yk), for i = 1, · · · , m. In 
other words, x is a probability vector whose components are 
proportional to those of y. (If f(x) and g(x ) are nonnegative 
real-valued functions defined on a finite set, the notation 
f( x ) = og(x ) is defined similarly.) 

Lemma 2.2: If the likelihood P(Ysi lui)1 is denoted by 
>-.i(ui) , then the belief BELi (a) defined in (2.4) is given by 

k 

BELi (a) = o L p(y1lx1) II >-.1(u1)1r1(u1) 
U :u, = a j=l 

k 

= o>-.i(a)1ri (a) L p(y1lx1) II >-.1(u1)1r1(u1). 
U : u , =a j=l 

# i 
(2.5) 

Proof' We have, by the definition (2.4), BELi(a) = 

Pr{Ui = alY = y}. Then 

Pr{Ui = alY = y} 
Pr{Y = y , Ui = a} 

Pr{Y = y} 
= o Pr{Y = y , Ui =a} (using the o notation) 

= Q I: p(y, u) 
U:ui = a 

= o L p(ylu) · p(u) 
U :ui = a 

k 

= 0 L P(Y1lx1)P(Ys lu) · II 1r1(u1) by (2.2) 
U: u , = a j=l 

k 

= o L P(Y1lx1) · II >-.1(u1)1r1(u1) by (2.3) 
U : u , = a j=l 

k 

= o >-.i (a)1ri (a) L p(y1lx1) II >-.1(u1)1r1(u1). 
U : u , =a j=l 

# i 

The last two lines of the above calculation are the assertions 

of the lemma. • 
We see from (2.5) that BELi (a) is the product of three 

terms. The first term, Ai (a) , might be called the systematic 
evidence term. The second term, 1r i (a) , takes into account the a 
priori distribution of Ui, Note that the effect of the systematic 
evidence is, in effect, to change the prior distribution of Ui 
from 1ri (a) to 01ri (a)>-.i (a). The third term, which is more 

BELi (a) ~f Pr{Ui = a!Ys = Ys, Y1 = yi}. 
1 If the encoder is not systematic, i.e., if the uncoded information symbols 

(2.4) U; are not transmitted, these likelihoods should all be set equal to one. 
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TABLE I 
UPDATE RULES FOR PEARL'S ALGORITHM (HERE, (v) = "1'J l'2 · · · l'n. IF V = ( 1'J. • • · • 11,.) 

Is A VECTOR OF REAL NUMBERS) 

quantity (at X) Type Update Rule 

1. µx(u) Au1 x · · · x Au M -+ RM < 1ru,x(u) > 
( 1 if X has no parents) 

2. Ax(x) Ax -+R < ..\y ,x(x) > 
{l if X has no children) 

3. 1rx(x) Ax-+ R :[;p(xlu)µx(u) 
u 

(p(x) if X has no parents) 
4. '"Yx(u) Au1 x · · · x Au M -+ R E Ax(x)p(xlu) 

X 

5. BELx{x) Ax -+R a · Ax(x)1rx(x) 
6. ..\x,u(u) Au1 x · · · x Au M -+ RM 1ru,x 0 '"Yx 

7. 1rX,Y; (x) Ax-+ RN 

complicated, takes into account the geometry of the code. 
Following [10], we will call this term the extrinsic term, and 
denote it by Ei (a). The extrinsic term is so important to what 
follows that we shall introduce a special notation for it. (This 
notation will also prove useful in Section V, where we shall 
use it to describe Pearl's algorithm-see Table I, line 6.) 

Thus, let A 1 , • • •, Ak be finite alphabets, let U ~ A 1 x 
• • • x Ak , and let R denote the set of real numbers. Let 
g = (g1, · · · , 9k) be a function mapping U into Rk. In 
other words, g is a vector of k real-valued functions, and if 
u = (u1 ,·· · ,uk) EU, then · 

Now, suppose that K(u) is a real-valued function defined on 
the set U , which we call a kernel. The K transform of g is 
the vector g' = (gi , · · · , g~) , where gi is defined by 

k 

g:(a) = L K(u) IT g1(u1). 
U:u i = a 

We summarize (2.6) by writing 

j=l 
#i 

g' =goK. 

(2.6) 

(2.7) 

Next, if/ and g are vector-valued functions as above, we de
fine their adjacent product h = Jg as a simple componentwise 
product, i.e., h = (h 1 , ··· , hk) , where 

hi(a) = fi(a)gi(a). (2.8) 

Using the circle and adjacent notation,2 we can express the 
result of Lemma 2.2 compactly. To do so, we take U = Ak, 
and define a kernel p( u) as 

2 We assume that "adjacent" takes precedence over "circle" in order to 
minimize the use of parentheses. 

1rx(x) · CT%1 Ay. x(x) 
i#-j ' t 

where the codeword fragment x 1 = x 1 (u) is a deterministic 
function of u. Then Lemma 2.2 can be summarized as follows: 

BEL= a..X1r(..X1r op) (2.9) 

where ..X(u) = (.X1(u1), · · ·, .Xk(uk)) and 1r(u) = (1r1(u1) , 
7rk(Uk)). 

III. SYSTEMATIC PARALLEL CONCATENATED 

(TuRBO) CODES 

In this section, we will define what we mean by a turbo code, 
and present a general version of the turbo decoding algorithm. 

With the same setup as in Section II, suppose we have two 
systematic encodings of U 

C1: U - (U, X1) 

C2: U -(U,X2). 
One way to combine C1 and C2 into a single code is via the 
mapping 

which is called the parallel concatenation of C1 and C2 , or the 
turbo code formed by combining C1 and C2 : 

Once again, we assume that the codeword X is transmitted 
through a noisy channel with transition probabilities p(ylx). It 
is received as Y = (Y . ., Y 1, Y 2), where Y s is the component 
of Y corresponding to U , Y 1 is the component of Y corre
sponding to X 1 , and Y 2 is the component of Y corresponding 
to X 2 . We assume again that the channel is memoryless, which 
implies that the conditional density factors according to the 
rule 

p(ylx) = P(Ys, Y1 , Y2 lu, X1 , X2) 

.= P(Ys lu)p(y1 lx1 )P(Y2 lx2) (3.1) 

= (ft P(Ysi lui ) )P(Y1 lx1)P(Y2lx2), (3.2) 

The situation is as depicted in Fig. 2. 
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U=(UI, ... , Uk) Ys = (YsI, .. . , Ysk) 

Fig. 2. Generic "turbo code." The codeword X = ( U, X 1 , X 2 ) is trans
mitted over a memoryless channel and received as Y = (Y s, Y 1 , Y 1 ). 

By Lemma 2.2, the optimal decisions for the turbo code are 

based on the beliefs 

k 

BELi(a) = a L p(y1lx1)p(y2jx2) IT >-.1(u1)1r1(u1) 

U : u i =a 

k 

j=l 

· P(Y2lx2) IT >-.1(u1)1r1(u1). 
j=l 
#i 

(3.3) 

For simplicity, and in accordance with engineering practice, 

from now on we will assume that the a priori probability 

density of the U;'s is uniform, i.e., 'II' = (al,•••, al). With 

this assumption, using the notation introduced in Section II, 

(3.3) becomes3 

where the kernels P1 and P2 are defined by 

P1(u) =P(Y1lx1) 

P2(u) = P(Y2lx2)-

(3.4) 

(3.5) 

The celebrated "turbo decoding algorithm" [10], [50], [3] 

is an iterative approximation to the optimal beliefs in (3.3) 

or (3.4), whose performance, while demonstrably suboptimal 

[41], has nevertheless proved to be "nearly optimal" in an im

pressive array of experiments. The heart of the turbo algorithm 
is an iteratively defined sequence 'll'(m) of product probability 

densities on A k defined by 

w<0l =(al , .. •, al) (3.6) 

i.e., 'll'(o) is a list of k uniform densities on A, and form 2'.: 1 

if mis odd 
if mis even. 

Then the mth turbo belief vector is defined by 

BEL(m) = a,h·(m)'ll'(m-l). 

The general form of (3.7) is shown in Fig. 3. 

(3.7) 

(3.8) 

In a "practical" decoder, the decision about the information 

bits is usually made after a fixed number of iterations. (The 

hope that the limit of (3.8) will exist is, in general, a vain 

one since, in [41], several examples of nonconvergence are 

3 As we observed earlier, the effect of ~ is to change the prior distribution 
from 1r to ~ 1r. It follows that if there is a nonuniform prior 1r, it can be 
accounted for by replacing every occurrence of"~" in our formulas with ~'lr. 

YI ----
Ys ----- D1 

7t(2), 7t(4), 7t(6), . .. 

D2 

nO), n(3), n(5), ... 

----Y2 
----Ys ~--~ 

Fig. 3. Block diagram of turbo decoding procedure. 
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given.) If the decision is made after m iterations, the mth 

turbo decision is defined as 

u<ml = arg max BEL<m\a) . (3.9) 
i aEA ' 

We conclude this section by observing that, as we have 

stated it, the turbo algorithm [(3.7) and (3.9)] does not appear 

to be significantly simpler than the optimal algorithm (3.4) 

since (for example) (~ o p1 ) is not, in general, much easier 

to compute than (~ o p1p2 ). The following theorem, and the 

discussion that follows, shed light on this problem. 
Theorem 3.1: If the components of U are assumed to be 

independent, with Pr{Ui = ui} = 1r}m-1\ui), for i = 
1, • • • , k, then 

(m)( ) Pr{Ui = alYs, Yi} 1r a - a------- if m is odd 
i - \ · ( ) (m-1)( ) ' 

A i a 1ri a 
Pr{Ui = alYs, Y2} = a------- if mis even. (3.10) 

Ai(a)1r;m-l\a) ' 

Proof- We consider the case rr, odd, the proof for even 

m being essentially the same. By reasoning similar to that in 

Lemma 2.2, we find that 

Pr{Ui = a!Ys, Yi} 
k 

= L P(Y1lu) IT >-.1(u1)1rt- 1
l(u1). (3.11) 

U :u , =a j=l 

Ifwe divide both sides of (3.11) by >-.i(a)1rt- 1\a), we obtain 

k 

Pr{Ui = alYs,Yi} _ '°' ( I ) IT,·( ·) (m-1)( ·) 
(m-1) - ~ P Y1 U A3 U3 7rj U3 

Ai(a)1ri (a) U :u . =a j=l 
#i 

= ~'J('(m-1) O Pl· (3.12) 

Since by (3.7), w<m) = a~w(m-l) o p1 , the theorem follows. 

• 
The significance of Theorem 3.1 is that it tells us that the 

appropriate components of the vectors w<m) can be computed 

by a decoder for C1 (or C2) which is capable of computing the 

probabilities Pr{Ui = alYs, Yi}, based on an observation 

of the noisy codeword Y = (Y s , Y 1 ) , i.e., an optimal "soft" 

symbol decision decoder. The ith component of the message 

passed to the second decoder module is then 

7r(m1{a) = Pr{Ui = alYs, Yi} 
i ' · () (m-1)() 

Ai a 1ri a 
(3.13) 

which is the "extrinsic information" referred to earlier. 
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One of the keys to the success of turbo codes is to use com

ponent codes C1 and C2 for which a low-complexity soft bit de

cision algorithm exists. For example, the BCJR or "APP" de

coding algorithm [4] provides such an algorithm for any code, 

block or convolutional, that can be represented by a trellis.4 

As far as is known, a code with a low-complexity optimal 

decoding algorithm cannot achieve high performance, which 

means that individually, the codes C1 and C2 must be relatively 

weak. The brilliant innovation of Berrou et al. [10] was 

to devise a code of the type shown in Fig. 2, in which 

the individual codes C1 and C2 are indeed relatively weak 

(but have a low-complexity decoding algorithm), in such a 

way that that the overall code is very powerful. Roughly 

speaking, they accomplished this by making the encoder E 2 

identical to E 1 , except for a random permutation (accom

plished by the "interleaver") of the inputs. (The encoders were 

short-constraint-length systematic convolutional encoders with 

feedback.) However, since it is the object of this paper to 

study the decoding algorithm without regard to the resulting 

performance, we shall not discuss the constructive aspect of 

turbo codes further. 

IV. BACKGROUND ON PROBABILISTIC INFERENCE, BAYESIAN 

BELIEF NETWORKS, AND PEARL'S ALGORITHM 

In this section, we will give a tutorial overview of the 

so-called probabilistic inference problem of the artificial in

telligence community, as well as a brief discussion of Pearl's 

algorithm, which solves the probabilistic inference problem in 

many important special cases. 
Thus, let X = {X1 , X2 , · • • , XN }5 be a set of N discrete 

random variables, where X; assumes values in the finite 

alphabet Ai . The joint density function 

p(x) =p(x1 ,x2,··•,xN) 

~f Pr{X1 =xi , ··· , XN = XN} 

is then a mapping from A1 x • • • x AN into the set of real 

numbers R. We assume that the marginal densities p(x; ) ~f 

Pr{ X ; = xi} are also known. The marginal density func

tion p(x; ) represents our a priori "belief' about the random 

variable X ;. Now, suppose that one or more of these random 

variables is measured or "observed." This means that there is 

a subset J ~ {l , 2, • • •, N} (the evidence set) such that, for all 

j E J, the random variable Xi is known to have a particular 

value, say ai. The evidence is then defined to be the event 

£={Xi = ai:j E J} . 

The fundamental probabilistic inference problem is to com

pute the updated beliefs, i.e., the a posteriori or conditional 

probabilities p(X;I£) , for all i f/. J. 
The brute force approach to computing p(X; I£) is to sum 

over all of the terms of p(x) which do not involve either 

4 As we shall see in Section JV, the BCJR algorithm itself, and the many 

variations of it, are themselves special cases of Pearl ' s algorithm. In this 

application, the algorithm is provably exac;t since the corresponding "belief' 
diagram has no loops. 

5 We have already used upper case X's to denote codeword components, 

for example, (2.1). We use upper case X ' s here to denote arbitrary random 
variables, and hope no confusion will occur. 

Fig. 4. Simple example of a DAG which represents a five-variable directed 

Markov field [see (4.4)) . This DAG is "loopy," with the vertices v 1, VJ, v4, 

and V5 forming a loop. 

i or J. To simplify notation, we assume i 
{m + 1, .. •, N}. Then we have 

p(X1 = al£) 

1, and J 

=o: L p(a,x2, .. ·,Xm,am+1, ... ,aN)- (4.1) 

If X; can assume q; different values, then computing the 

sum in (4.1) for each possible value of a requires q1q2 • • · qm 

additions, which is impractical unless m and the qi' s are very 

small numbers. 
The idea behind the "Bayesian belief network" approach 

[28], [ 51] to this inference problem is to exploit any "partial 

independencies" which may exist among the X;'s to simplify 

belief updating. The simplest case of this is when the random 

variables X 1 , • • • , X N are mutually independent, in which 

case the work in (4.1) can be avoided altogether since an 

observation of one such variable cannot affect our belief in 

another. More generally, the partial independencies can be 

described by a directed acyclic graph, or DAG. 
A DAG is a finite, directed graph, in which there are no 

directed cycles. For example, Fig. 4 shows a DAG with five 

vertices and five edges. Let us agree that if there is a directed 

edge a -+ b, then a will be called a "parent" of b, and b will 

be called a "child" of a. If the set of parents of a vertex v is 

denoted by pa( v) , then we can describe the graph of Fig. 4 

as follows: 

pa(v1) = 0 
pa(v2) = 0 
pa(v3) = {vi} 

pa(v4) = {v1 , v2} 

pa( V5) = { V3 , V4}. (4.2) 

If G is a DAG, and if X is a set of random variables in 

one-to-one correspondence with the vertices of G, the joint 

density function p(x) is said to factor according to G if 
N 

p(x1, .. · , xN) = Ilp(xilpa(xi)) (4.3) 

i=l 

where pa(x;) denotes a value assignment for the parents of X i . 

For example, a five-variable density function p(x1, .. ·, x5 ) 
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Ys! Ys2 Ysk 

Ut 

Yt 

Noisy information bits 
(visible) 

Information bits 
(hidden) 

Codeword Fragment 
(hidden) 

Noisy codeword 
Fragment 
(visible) 

Fig. 5. Bayesian network interpretation of the decoding problem. 

factors according to the graph of Fig. 4 if 

p(x 1, x2, x3, X4, xs ) 

= p(x 1 )p(x2)p(x3jx1 )p(x4 lx1 , x2 )p(xs jx3, X4 ). (4.4) 

A set of random variables X whose density functions factor 

according to a given DAG is called a directed Markov field 

[35], [32], [65]. For example, if G is a directed chain, then 

X is an ordinary Markov chain. A DAG, together with the 

associated random variables X , is called a Bayesian belief 

network, or Bayesian network for short [28]. 

At this point, we observe that the general coding framework 

of Fig. 1 can be represented as the Bayesian network shown 

in Fig. 5. From the decoder's viewpoint, the observed noisy 

information bits Ysi are probabilistic functions of the hidden 

information bits Ui. Similarly, the observed noisy codeword 

fragment Y 1 is a propabilistic function of the codeword 

X 1 , which in turn is a deterministic function of the hidden 

input bits. (Fig. 5 implies that the information bits U; are 

independent.) The decoder' s problem is thus to infer the values 

of the hidden variables Ui based on the evidence variables 

(Ys1, · · · , Ysk) and Y1. 
Bayesian networks can sometimes lead to considerable 

simplifications of the probabilistic inference problem. The 

most important of these simplifications, for our purposes, is 

Pearl's belief propagation algorithm. In the 1980' s, Kim and 

Pearl [31], [42]-[44] showed that if the DAG is a "tree," 

i.e., if there are no loops,6 then there are efficient distributed 

algorithms for solving the inference problem. If all of the 

alphabets Ai have the same size q, Pearl's algorithm solves the 

inference problem on trees with 0( N qe) computations, where 

e is the maximum number of parents of any vertex, rather than 

O(qm) , where mis the number of unknown random variables, 

which is required by the brute-force method. The efficiency 

of belief propagation on trees stands in sharp contrast to 

the situation for general DAG's since, in 1990, Cooper [16] 

showed that the inference problem in general DAG's is NP 

hard. (See also [17] and [53] for more on the NP hardness of 

probabilistic inference in Bayesian networks.) 

Since the network in Fig. 5 is a tree, Pearl's algorithm will 

. apply. However, the result is uninteresting: Pearl's algorithm 

applied to this Bayesian network merely gives an alternative 

derivation of Lemma 2.2. 

6 A "loop" is a cycle in the underlying undirected graph. For example, in 

the DAG of Fig. 4, v 1 - v4 - vs - v3 - v 1 is a loop. 
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1 1 1 1 1 
Fig. 6. Bayesian network for the "hidden Markov chain" problem. Here, 

X 1 , · · • , X N form a Markov chain, and Y1 , · · · , YN are noisy versions of 

X 1 , · • • , X N. The problem is to compute the conditional probabilities of the 

hidden variables X ; based in the "evidence" variables Y;. 

A more profitable application of Pearl's algorithm is to 

the classic "hidden Markov chain" inference problem, where 

the appropriate Bayesian network is shown in Fig. 6. Here, 

the result is a linear-time exact solution which is function

ally identical to the celebrated "forward-backward algorithm" 

discovered in the 1960's and 1970' s.7 

For us, the important feature of Pearl's BP algorithm is that 

it can be defined for an arbitrary DAG which is not necessarily 

a tree, even though there is no guarantee that the algorithm will 

perform a useful calculation if there are loops in the DAG. 

We believe that the key to the success of turbo codes, and a 

potentially important research area for the AI community, is 

the experimentally observed fact that Pearl's algorithm works 

"approximately" for some loopy, i.e., nontree DAG' s.8 We 

shall explain the connection between turbo codes and BP in 

Section VI, after first describing the BP algorithm in detail in 

Section V. For now, as a preview of coming attractions, we 

present Fig. 7, which is a loopy Bayesian network appropriate 

for the turbo decoding problem. 9 

V. DETAILED DESCRIPTION OF PEARL'S ALGORITHM 

In this section, we will give a detailed functional description 

of Pearl's algorithm as described in [44, Ch. 4]. 

7 The forward-backward algorithm has a long and convoluted history that 

merits the attention of a science historian. It seems to have first appeared 

in the unclassified literature in two independent 1966 publications [6] , [11]. 

Soon afterwards, it appeared in papers on MAP detection of digital sequences 

in the presence of intersymbol interference (23]. It appeared explicitly as an 

algorithm for tracking the states of a Markov chain in the early 1970's [40], 

[4] (see also the survey papers [47] and [49]). A similar algorithm (in "min

sum" form) appeared in a 1971 paper on equalization [62]. The algorithm 

was connected to the optimization literature in 1987 [63]. All of this activity 

appears to have been completely independent of the developments in AI that 

led to Pearl' s algorithm! 
8Toere is an "exact" inference algorithm for an arbitrary DAG, developed 

by Lauritzen and Spiegelhalter [34], which solves the inference problem with 

O( Nc q1 ) computations, where N e is the number of cliques in the undirected 

triangulated "moralized" graph G,,. which can be derived from G, and J is 

the maximum number of vertices in any clique in G m. However, this proves 

not to be helpful in the turbo decoding problem since the appropriate DAG 

produces moralized graphs with huge cliques. For example, the turbo codes 

in [IO] have an associated G m with a clique of size 16384. 

9Our Fig. 7 should be compared to Wiberg (67, Fig. 2.5], which describes 

the ''Tanner graph" of a turbo code. The figures are similar, but there is 

a key difference. Wiberg incorporates the turbo code's interleaver, citing it 

(the interleaver) as necessary for ensuring that there are no short cycles in 

the graph. In our Fig. 7, on the other hand, there are many short cycles. It 

is our belief the presence of short cycles does not, at least in many cases, 

compromise the performance of the decoding algorithm, although it may 

degrade the quality of the code. We will expand on these remarks at the 

conclusion of the paper. 
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Ysi Ys2 Ys(k-1) 

Uf 

Xi 

YJ 

Ysk 
Noisy information bits 

(visible) 

Information bits 
(hidden) 

Codeword Fragments 
(hidden) 

Noisy codeword 
Fragments 
(visible) 

Fig. 7. Bayesian network interpretation of the turbo decoding problem. Note 

the presence of many loops, i.e. , U1 -> X 2 -> U2 -> X 1 -> U1. 

Pearl's belief propagation algorithm is a decentralized 

"message-passing" algorithm, in which there is a processor 

associated with each vertex of G. Each processor can 

communicate only with its parents and children. Furthermore, 

the processor associated with a variable X is assumed to 

"know" the conditional density function p(xlu) ~f Pr{X = 
xlU1 = u1 , · · ·,UM = UM}, where U1, ···,UM are the 

parents of X. (If X has no parents, this knowledge is assumed 

to be the marginal density function p(x) ~f Pr{X = x} .) 

Thus, the "local environment" of a node X is as shown in 

Fig. 8(a). 
When a processor is activated, it "reads" the messages 

received from each of its parents and children, updates its 

belief based on these messages, and then sends new messages 

back to its parents and children. 
The message a node X receives from its parent Ui , denoted 

7ru, ,x ( Ui) , is in the form of a list of probabilities ("7r" for 

"probability"), one for each value Ui E Au,. Informally, 

7l'u, ,x ( Ui) is the probability of the event Ui = ui , conditioned 

on the evidence in the tree already "known" to Ui . Similarly, 

the message X receives from its child Y; , denoted AY; ,x(x) , is 
in the form of a list of nonnegative real numbers (likelihoods: 

"A'' for "likelihood"), one for each value of x E Ax . 

Informally, A Y; ,x ( x) is the probability of the evidence Y1 
"knows," conditioned on the event X = x. For simplicity, 

we adopt a vector notation for these incoming messages 

1ru,x(u) ~r (7ru1 ,x(u1) , · · · , 7l'uM ,x(uM)) 

AY,x(x) ~ (AY, ,x(x) , · · ·, AyN,x(x)) . (5.1) 

The situation is summarized in Fig. 8(b). 

After X has been activated, the message that X passes to its 

child Y1, denoted 1l'X,Y; (x) , is a list of probabilities, one for 

each value of x . Roughly speaking, 1r x , Y; ( x) is the probability 

of the event X = x, given the evidence in the tree already 

"known" to X, which now includes any new evidence which 

may have been contained in the incoming messages. Similarly, 

the message that X passes to its parent Ui , denoted Ax,u, ( ui) , 
is the probability of the evidence it now knows about, given 

Parents of X 

Children of X 

(a) 

u 

7tu, x (u) i 
X 

'-v,x<x) i 
y 

(b) 

u 

i "'x. u(u) 

X 

i 7t X,Y (x) 

y 

(c) 

Fig. 8. Summary of Pearl's algorithm. (Boldface symbols denote random 
vectors; ordinary symbols represent random variables.) 

the event Ui = Ui . Again, we adopt a vector notation 

d f · 
Ax,u(u) ~ (Ax ,u1 (u1), .. · , Ax,uM(uM)) 

1rx,Y(x ) ~f (1rxy1 (x) , · · · , 1rx,YN (x)). (5.2) 

This situation is summarized in Fig. 8(c). 

Additionally, each node of the graph keeps track of a 

number of other quantities 

µx(u): Au, x · · · x AuM -+ R 

Ax(x): Ax-+ R 

1rx(x): Ax-+ R 

1x(u): Au, x · · · x AuM -+ R 

BELx(x): Ax-+ R. 
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TABLE II 

INITIALIZATION R ULES FOR PEARL'S ALGORITHM 

quantity (at X) initially ( evid.) initially (non. evid.) 

(x = xo) 

1. µx(u) 

2. Ax(x) 

3. 1rx(x) t5(x, xo)• { ~(~)* if X is a source node 
otherwise 

4. 'Yx(u) p(xolu) 1 

5. BELx(x) t5(x, xo)• { ~(~) 
if X is a source node 
otherwise 

6. >.x,u(u) { ~(~olu)* if M= 1 1 
otherwise 

7. 1rx,y(x) t5(x, xo)• { ~(~) 
if X is a source node 
otherwise 

•Once initialized, these quantities never change. 

The quantities µx(u), Ax(x), 1rx(x) , and 'Yx(u) have no 

particular intrinsic significance, but the quantity BELx ( x) is 

the heart of the algorithm since, when the algorithm termi

nates, BELx(x) gives the value of the desired conditional 

probability Pr{X = xi£}. 
Here, then, is a complete description of Pearl's 

algorithm. When the node X is activated, it "reads" its 

incoming messages 1ru,x(u) and Ay,x(x) , and updates 

µx(u), Ax(x) , 1rx(x) , 'Yx(u), BELx(x) , Ax,u(u) and 

1r x y ( x), in that order, using the update rules in Table I and 

the ' initial values given in Table II. (In Table I, we use the 

notation (v) = v1 v2 · · · Vn if v = ( v1 , · · · , vn) is a vector 

of real numbers.) A node can be activated only if all of 

its incoming messages exist. Otherwise, the order of node 

activation is arbitrary. Pearl proved that if the °DAG is a 

tree, then after a number of iterations at most equal to the 

diameter of the tree, each node will have correctly computed 

its "belief," i.e., the probability of the associated random 

variable, conditioned on all of the evidence in the tree, and 

no further changes in the beliefs will occur. If the network is 

not a tree, the algorithm has no definite termination point, but 

in practice, the termination rule chosen is either to stop after 

a predetermined number of iterations, or else to stop when 

the computed beliefs cease to change significantly. 

VI. TuRBO DECODING AS AN INSTANCE OF BP 

In this section, we will show formally that if Pearl's BP 

algorithm is applied to the belief network of Fig. 7, the result 

is an algorithm which is identical to the "turbo decoding" 

algorithm described in Section III. More precisely, we will 

show that if the network of Fig. 7 is initialized using the rules 

of Table II, and if the nodes are updated (using Table I) in 

the order U , X 1 , U, X 2 , U, X 1 , • • • , the results are summarized 

in Table III. In particular, the sequence of "beliefs" in the 

TABLE III 

PEARL'S ALGORITHM APPLIED TO THE BELIEF NETWORK OF FIG. 7 

(NODES ARE ACTIVATED IN THE ORDER SHOWN IN THE FIRST COLUMN) 

node activated BELu 11'u,x, 11'U,X, >.x,,u >.x,,u 

(initial conditions) 1 1 

u a >. a >. a>. 
X1 " ,r(l) 

u a ).11'(1),r(O) Cl ).,r(l) 

X2 
11'(2) 

u (l ).,r(2),r(I) (l ).,r(2) 

X1 11'(3) 

u Cl ).,r(3) 11'(2) (l ).,r(3) 

information symbols U will be 

aA aA,r(ll,r(o) aA,rC2l,rC 1) aA,rC3l,rC2) .. . 

' ' ' ' 
in agreement with (3.8). 

Let us now verify the entries in Table III. First, we discuss 

the necessary initializations. Because Ui is a source node (i.e., 

it has no. parents), and since we are assuming that the prior 

distribution on the Ui 's is independent and uniform, by line 3 

in Table II, the quantity 1ru, ( Ui) is permanently set as follows: 

1ru; (ui) = al (permanent). (6.1) 

Since the Ysi' s are "direct evidence" nodes (i.e., evidence 

nodes which have only one parent), by line 6 of Table II, the 

message that Ysi sends the Ui is permanently set as follows: 

AY,i,u;(ui) = p(y.;lui) = Ai(ui) (permanent) (6.2) 

Since the nodes X 1 and X2 are not evidence nodes, by line 

6 of Table II, the messages that they send to the U;' s are 
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initially set as follows: 

>.x;,u,(ui) = 1 (temporary) (6.3) 

which appears (in vector notation) in line 1 of Table III. 
Now, we simultaneously activate the nodes U1 , •••,Uk, 

Since Ui is a source node, it is not necessary to evaluate 
µu,, "Yu, , or the >. messages. By line 2 of Table I 

>.u,(ui) =AY,;,u.(u;) · >.x1 ,u.(ui) · >.x2 ,u.(u;) (6.4) 

= >.i(ui) · 1 · 1 [by (6.2) and (6.3)] 

=>.;(ui)- (6.5) 

Similarly, by line 5 of Table I 

BELu; ( ui) = o:>.u, ( u;) · 7ru, ( ui) (6.6) 

= o:>.i ( u;) · 1 [by (6.1) and (6.5)] 

= o:>.i(u;). (6.7) 

In vector notation, (6.7) is equivalent to 

BEL= o:A 

which appears in line 2 of Table III. 
The message U; sends to X 1 is, according to line 7, Table I 

7ru,,x 1 (ui ) =o:7ru; (u;) · >.Y,;,u.(u;) · >-x2 ,u,(u;) (6.8) 

= o:1 · >.;(ui) · 1 [by (6.1), (6.2), (6.3)] 

= o:>.i(ui) (6.9) 

for i = 1, · · ·, k. In vector notation, (6.9) becomes 

1ru,x, = o:A (6.10) 

which also appears in line 2 of Table III. A similar calculation 
gives 1ru,x

2 
= o:A, which again appears in line 2 of Table III. 

Next, we update X1. The quantities µx, (u) , BELx, (x1), 
and 1r x 

1 
,U are not required since we do not update the 

evidence node Y1 . Since Y1 is an evidence node, by line 
6, Table II, the message )..y1 ,x1 (x1 ) is permanently fixed as 
p(y1lx1). Thus, by line 2, Table I, >.x, (xi) is also fixed 

>.x1 (xi)= P(Yilxi) (permanent). (6.11) 

Next, we compute "Yx, (u) , using line 4 of Table I: 

"Yx, (u) = LP(Y1lx1)p(x1lu). 

Since X1 is a deterministic function of U, if follows that 
p(x1lu) is equal to 1 for that value of u that produces the 
code fragment x1 , i.e., 

"Yx,(u) =p(y1lx1(u)) 

= Pi ( u) (permanent) (6.12) 

where in 6.12 we have used the definition (3.5). Finally, we 
update the messages Ax u, using line 6 of Table I 

1, 

Ax u =1ru X 0 "Yx, 1 , , .. 1 

= o:A o p1 [by (6.10) and (6.12)] 

= o:(A1r(o) o P1) [by (3.6)] 

= 7r(l) [by (3.7)] (6.13) 

which appears in line 3 of Table III. 
Now, we update U again, using the definition (6.4), and the 

previous values given in (6.2), (6.13), and (6.3) 

(6.14) 

TABLE IV 
PEARL' S ALGORITHM APPLIED IN A SLIGHTLY DIFFERENT 

WAY TO THE BELIEF NETWORK OF FIG. 7 (NODES ARE 

ACTIVATED IN THE ORDER SHOWN IN THE FIRST COLUMN) 

node activated BELu 11'U,X1 11'U,X2 ~x,,u ~x. ,u 

(initially) 1 1 
u a~ a~ a~ 

X1,X2 11'(1) 7r(l) 

u a ~11'(l)7r (l) a~7r(l) 0~11'(1) 

X1 , X2 7r(2) 11'(2) 

u a ~11'(2)7r(2) °' ~11'(2) °' ~1r<2) 

Similarly, using the definition (6.6), and the previous values 
in (6.4) and (6.1) 

BELi(u;) = o:>.;(u;)7rC1l(ui) 

which, in vector notation, is 

BELu = o:A1r(l) 
= 0:A7r(l)7r(O) 

in agreement with line 4 of Table III. 
Next, we update 1ru X and 1ru X 

, 1 , 2 

7ru,,x 1 (ui) = 0:7ru, (ui) · Ay,,,u.(u;) · >.x2 ,u,(ui) [by (6.8)] 

= o:1 · >.; ( Ui) · 1 [by (6.1), (6.2), (6.3)] 

(6.15) 

and 

7ru,,x 2 (u;) =o:7ru,(u;) · >.Y,;,u.(ui) · >.x, ,u,(ui) [like (6.8)] 

= o:1 • >.i(u;) • 7rC1l(ui) [by (6.1), (6.2), (6.4)] 

= o:>.;(ui) · 7rC1l(ui)- (6.16) 

The values (6.15) and (6.16) are the ones given in line 4 of 
Table ill. It is now a matter of routine to verify that the rest 
of the values given in Table III are correct. 

The order in which we chose to update the nodes in 
Fig. 7 was arbitrary, and other orders give different algo
rithms. For example, it is easy to verify that the update 
order U, X, U , X, • • • yields the results in Table IV, where 
the sequences 1rCm) and 1rtCm) are defined by 

and 

7r(O) = ,;-(O) = (o:1, ... 'o:1) 

7r(m) = { 0:A'lr(m-1) O Pl, 
o:A1rCm-:-1) o P2 , 

-(m) -{ O:AJJ(m-l) 0 Pl , 
p - o:Ap(m-1) o P2, 

if mis odd 
if mis even 

if mis even 
if mis odd. 

(6.17) 

(6.18) 

It would be interesting to experiment with this alternative ver
sion of the turbo decoding algorithm. (This "parallel update" 
rule is, in fact, the rule used to derived the decoding algorithm 
for multiple turbo codes, as discussed in Section VII.) 
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Yst Ys2 Ysk 

Ut 

Noisy information bits 
(visible) 

Information bits 
(hidden) 

Codeword Fragments 
(hidden) 

Noisy codeword 
· Fragments 

(visible) 

Fig. 9. Belief network appropriate for decoding a "multiple" turbo code, in 
which there are _U code fragments . 

VII. OTHER DECODING ALGORITHMS 

DERIVED FROM BELIEF PROPAGATION 

As we have seen in Sections IV and V, Pearl's algorithm 
can be applied to any belief network, not just to one like Fig. 7. 
It is a fruitful exercise to apply Pearl's algorithm to the belief 
networks of a variety of hybrid coding schemes, to see what 
results. In this section, we will briefly outline (without proofs) 
what we _have discovered along these lines. 

• Multiple Turbo Codes: As we have defined them, turbo 
codes involve only two encodings of the information, as 
shown in Fig. 2. However, several researchers (e.g., [19]) have 
experimented with three or more parallel encodings. If there 
are M parallel encodings, the appropriate belief network is 
as shown in Fig. 9. Applying the BP algorithm to this belief 
network; with the update order U , X , U , X , • • • , we obtain a 
generalized turbo decoding algorithm which is identical to the 
one employed successfully in [ 19]. 

• Gallager's Low-Density Parity-Check Codes: The earliest 
suboptimal iterative decoding algorithm is that of Gallager, 
who devised it as a method of decoding his "low-density 
parity-check" codes [25], [26]. This algorithm was later gen
eralized and elaborated upon by Tanner [ 61] and Wiberg 
[67] . But as MacKay and Neal [37]-[39] have pointed out, 
in the first citation of belief propagation by coding theo
rists, Gallager's algorithm is a special kind of BP, with 
Fig. 10 as the appropriate belief network. [In Fig. 10, X = 
(X1 , · • • , Xn) is a codeword which satisfies the parity-check 
equations HX = 0 . Y = "(Y1 , • • •, Yn) is a noisy version 
of X. The "syndrome" S = ( S 1 , • • • , Sr) is defined as 
S = HX, which is perpetually "observed" to be (0, • • ·, O)] . 
Although LDPC codes had largely been forgotten by cod
ing theorists until their rediscovery by MacKay and Neal, 
simulations of Gallager' s original decoding algorithm made 
with powerful modem computers show that their performance 
is remarkably good, in many cases rivaling that of turbo 
codes. More recently, Sipser and Spielman [57], [60] have 
replaced the "random" parity-check martrices of Gallager and 
MacKay-Neal with deterministic parity-check matrices with 
desirable properties, based on "expander" graphs, and have 
obtained even stronger results. 

• Low-Density Generator Matrix Codes: Recently, Cheng 
and McEliece have experimented with BP decoding on certain 

Yt 

Xt 

0 0 0 

Yo 

Xn 

Noisy codeword 
(visible) 

Codeword 
(hidden) 

Syndrome 
(must be all 

zeros) 

149 

Fig. IO. Belief network for decoding a Gallager "low-density parity-check" 
code. 

YJ Y2 Yk 

••• 
Ut Uz Uk 

Noisy information bits 
(visible) 

Information bits 
(hidden) 

Check bits 
(hidden) 

Noisy check bits 
(visible) 

Fig. 11 . Belief network for decoding systematic, low-density generator 
matrix codes. 

systematic linear block codes with low-density generator 
matrices [13]. (This same class of codes appeared earlier in 
a paper by MacKay [36] in a study of modulo-2 arithmetic 
inference problems, and in a paper by by Spielman [60] in 
connection with "error reduction.") The decoding algorithm 
devised by Cheng and McEliece was adapted from the one 
described in the MacKay-Neal paper cited above, and the 
results were quite good, especially at high rates. More recently, 
Cheng [14], [15] used some of these same ideas to construct 
a class of block codes which yield some remarkably efficient 
multilevel coded modulations. Fig. 11 shows the belief net
work for low-density generator matrix codes used by McEliece 
and Cheng. 

• Serially Concatenated Codes: We have defined a turbo 
code to be the parallel concatenation of two or more com
ponents codes. However, as originally defined by Forney 
[22], concatenation is a serial operation. Recently, several 
researchers [8], [9] have investigated the performance of 
serially concatenated codes, with turbo-style decoding. This 
is a nontrivial variation on the original turbo decoding idea, 
and the iterative decoding algorithms in [8] and [9] differ so 
significantly from the original Berrou et al. algorithm that they 
must be considered an original invention. Still, these decoding 
algorithms can be derived routinely from a BP viewpoint, 
using the network of Fig. 12. Here, U is the information to 
be encoded, X is the outer (first) encoding, Y is the inner 
(second) encoding, and X is th~ noisy version of Y . 

• Product Codes: A number of researchers have been 
successful with turbo-style decoding of product codes in two or 
more dimensions [46], [48], [54], [27]. In a product code, the 
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Information bits 
(hidden) 

Outer codeword 
Xn (hidden) 

Inner codeword 
(hidden) 

Noisy inner codeword 
(visible) 

Fig. 12. Belief network for decoding a pair of serially concatenated codes. 

information is arranged in an M-dimensional array, and then 
encoded separately in each dimension. Thus, the appropriate 
belief network is like the ones in Figs. 7 and 9 (a product 
code, is, by definition, systematic). We have experimented 
with "BP" decoding of product codes, and obtained results 
similar to those in the cited references. However, in this case, 
it appears that the BP algorithms differ in some small details 
from turbo-style decoding, and we are currently investigating 
this phenomenon. 

• "Tail-Biting" Convolutional Codes: The class of "tail
biting" convolutional codes introduced by Solomon and van 
Tilborg [56] is a natural candidate for BP decoding. Briefly, 
a tail-biting convolutional code is a block code formed by 
truncating the trellis of a conventional convolutional code and 
then pasting the ends of the trellis together. If the parent 
convolutional code is an ( n , k) code, and if the truncation 
depth is N , the resulting tail-biting code is an (Nn, Nk) block 
code. 

In Fig. 13, we show a belief diagram for a tail-biting code 
where the truncation depth is N = 5. Assuming as above that 
the parent convolutional code is an ( n , k) code, then in Fig. 13, 
the U;'s are k-bit information words, and the X;'s are n-bit 
codeword segments. The Yi' s are the observed noisy versions 
of the X;'s . The nodes intermediate between the information 
words and the codeword segments are pairs of encoder states. 
For a given encoder state pair (S;_2 , S;_ 1 ) and information 
word U;, the encoder rules (deterministically) produce the next 
pair of codeword states (S;- 1 , S;) and the next codeword 
segment X;. If it were not for the "tail-biting" edge from 
( Sn-l, Sn) to (Sn, So), this belief net would be without loops 
and would represent an ordinary convolutional code. If, then, 
the BP algorithm were applied, the result would be identical 
to the BCJR APP decoding algorithm. 10 

If we were to apply Pearl's algorithm to the belief diagram 
of Fig. 13, we would obtain an iterative decoding algorithm for 
the tail-biting code. To our knowledge, no one has done exactly 
that, but Wiberg [67] has applied his algorithm to the Tanner 

10 Jn this connection, we should note that Wiberg [67] has observed that 
his algorithm, when applied to a Tanner graph similar to Fig. 13 (less the 
tail-biting edge), also implies the BCJR algorithm. The "min-sum" form 
of Wiberg's algorithm, when applied to the same graph, is closely related 
to Viterbi' s algorithm. Incidentally, there is a "min-sum" version of Pearl ' s 
algorithm described in (44, Ch. 5], called "belief revision," which does the 
same thing. 

X5 

YJ Yz Y5 

Fig. 13. Belief network for decoding a tail-biting convolutional code, illus
trated for a truncation length of JV = 5. 

graph of a tail-biting code with good success, and functionally, 
these two approaches yield virtually identical algorithms. 
Forney [24] has also discussed the iterative decoding of tail
biting codes using the Tanner-Wiberg approach. 

VIII. CONCLUDING REMARKS 

We have shown that Pearl's algorithm provides a systematic 
method for devising low-complexity, suboptimal iterative de
coding algorithms for a wide variety of error-control systems. 
Although there is as yet no guarantee that these algorithms will 
give useful results, the great body of experimental work done 
in the "turbo-code" literature suggests that the performance is 
likely to be very good. 

One of the most interesting historical aspects of the turbo de
coding problem is how often in the past inventors of decoding 
algorithms have hit upon a "BP"-like algorithm. The earliest, 
almost clairvoyant, occurrence is in the papers of Gallager 
[25], [26]. Later, Tanner [61], realizing the importance of 
Gallager' s construction, made an important generalization of 
low-density parity check codes, and of Gallager's iterative 
decoding algorithm. With hindsight, especially in view of 
the recent work of Wiberg [67], it is now evident that both 
Viterbi's algorithm [64], [23] and the BCJR algorithm [4] can 
be viewed as a kind of belief propagation. Irideed, Wiberg 
[66], [67] has generalized Gallager's algorithm still further, 
to the point that it now resembles Pearl's algorithm very 
closely. (In particular, Wiberg shows that his algorithm can 
be adapted to produce both the Gallager-Tanner algorithm 
and the turbo decoding algorithm.) Finally, having noticed the 
similarity between the Gallager-Tanner-Wiberg algorithm and 
Pearl's algorithm, Aji and McEliece [1], [2], relying heavily 
on the post-Pearl improvements and simplifications in the BP 
algorithm [29], [30], [52], [58], [59] have devised a simple 
algorithm for distributing information on a graph that is a 
simultaneous generalization of both algorithms, and which 
includes several other classic algorithms, including Viterbi'. s 
algorithm (which is already subsumed by Wiberg's algorithm 
in "min-sum" form) and the FFT. It is natural to predict 
that this algorithm or one of its close relatives will soon 
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become a standard tool for scientists in communications, signal 

processing, and related fields. 
We conclude with our view of "why" turbo coding is so 

successful. We believe that there are two, separable, essential 

contributing factors. 
First: The presence of the pseudorandom interleavers be

tween the component codes ensures that the resulting overall 

code behaves very much like a long random code, and by 

Shannon's theorems, a long random code is likely to be "good" 

in the sense of having the potential, with optimal decoding, 

to achieve performance near channel capacity. But optimal 

decoding would be impossibly complex. This brings us to the 

second essential factor. 
Second: We believe that there are general uhdiscovered the

orems about the performance of belief propagation algorithms 

on loopy DAG's. These theorems, which may have nothing 

directly to do with coding or decoding, will show that in some 

sense BP "converges with high probability to a near-optimum 

value" of the desired belief on a class of loopy DAG's that 

includes most or all of the diagrams in Figs. 7, 9, and 10-13 

of this paper. If such theorems exist, they will no doubt find 

applications in realms far beyond information theory. 
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