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Abstract

In the traditional mainframe-centered view, storage
devices are coupled to the system through complex I/O
channels. With the dramatic shift towards distributed com-
puting, and its associated client-server model of computa-
tion, storage facilities are now found attached to file
servers and distributed throughout the network. In this
paper, we discuss the underlying technology trends that
are leading to high performance network-based storage,
namely advances in networks, storage devices, and I/O
controller and server architectures. We describe a research
prototype, developed at Berkeley, that takes a new
approach to high performance computing based on net-
work-attached storage.

1. Introduction

The traditional mainframe-centered model of computing
can be characterized by small numbers of large-scale
mainframes, with shared storage devices attached via I/O
channel hardware. Today, we are experiencing a major
paradigm shift away from centralized mainframes to a dis-
tributed model of computation based on workstations,
computation servers, and storage servers connected via
high performance networks [Verity 90].

‘What makes this new paradigm possible is the rapid
development and acceptance of the client-server model of
computation. Perhaps the most successful application of
this concept is the widespread use of file servers in net-
works of computer workstations and personal computers.
Even a high-end workstation has rather limited capabilities
for data storage. A distinguished machine on the network,
customized either by hardware, software, or both, provides
a file service. It accepts network messages from client
machines containing open/close/read/write file requests
and processes these, transmitting the requested data back
and forth across the network.

This is in contrast to the pure distributed storage
model, in which the files are dispersed among the storage
on workstations rather than centralized in a server. The
advantages of a distributed organization are that resources
are placed near where they are needed, leading to better
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performance, and that the environment can be more auton-
omous because individual machines continue to perform
useful work even in the face of network failures. While
this has been the more popular approach over the last few
years, there has emerged a growing awareness of the
advantages of the centralized view. That is, every user sees
the same file system, independent of the machine they are
currently using. The view of storage is pervasive and
transparent. Further, it is much easier to administer a cen-
tralized system, to provide software updates and archival
back-ups. The resulting organization combines distributed
processing power with a centralized view of storage.

Technology developments in processors, networks,
and storage systems are affecting the relationship between
clients and servers. It is well known that processor perfor-
mance is increasing at an astonishing rate. One of
Amdahl’s famous laws equated one MIPS of processing
power with one megabit of I/O per second. Obviously
such processing rates far exceed anything that can be
delivered by existing server, network, or storage architec-
tures.

Unlike processor power, network technology
evolves at a slower rate, but when it advances, it does so in
order of magnitude steps. In the last decade we have
advanced from 3 Mbit/second Ethernet to 10 Mbit/second
Ethernet. We are now on the verge of a new generation of
network technology, based on fiber optic interconnect
(FDDI). This technology promises 100 Mbits per second,
and at least initially, it will move the server bottleneck
from the network to the server CPU or its storage system.
With more powerful processors available on the horizon,
the performance challenge is very likely to be in the stor-
age system, where a typical magnetic disk can service
thirty 8K byte I/Os per second and can sustain a data rate
in the range of 1 to 3 MBytes per second. And even faster
networks and interconnects, in the gigabit range, are now
commercially available [Anon 90].

To keep up with the advances in processors and net-
works, storage systems are also experiencing rapid
improvements. Magnetic disks have been doubling in stor-
age capacity once every three years. Unfortunately, the
random VO rate is improving only very slowly, due to
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mechanically-limited positioning delays. Since /O and
data rates are primarily disk actuator limited, a new stor-
age system approach called disk arrays addresses this
problem by replacing a small number of large format disks
by a very large number of small format disks [Katz 89].
Disk arrays maintain the high capacity of the storage sys-
tem, while enormously increasing the system’s disk actna-
tors and thus the aggregate I/0 and data rate.
The confluence of developments in processors, net-
“works, and storage offers the possibility of extending the
client-server model so effectively used in workstation
« environments to higher performance environments, which
integrate supercomputer, near supercomputers, worksta-
tions, and storage services on a very high performance net-
work. The technology is rapidly reaching the point where
it is possible to think in terms of diskless supercomputers
in much the same way as we think about diskless worksta-
tions. Thus, the network is emerging as the future “back-
plane” of high performance systems. The challenge is to
develop the new hardware and software architectures that
will be suitable for this world of network-based storage.
The emphasis of this paper is on the integration of
storage and network services. The rest of this paper is
organized as follows. In the next section, we review net-
work, channel, and backplane trends. Section 3 reviews
storage controller and file server architectures. We discuss
storage trends in Section 4. Section 5 describes a prototype
high performance network-attached I/O controller being
developed at Berkeley. Our summary, conclusions, and
suggestions for further research are found in Section 6.

2. Interconnect

2.1. Networks, Channels, Backplanes

Interconnect is a generic term for the “glue” that interfaces
the components of a computer system. Interconnect con-
sist of high speed hardware interfaces and the associated
logical protocols. The former consists of physical wires or
control registers. The latter may be interpreted by either
hardware or software. From the viewpoint of the storage
system, interconnect can be classified as high speed net-
works, processor-to-storage channels, or system back-
planes that provide ports to a memory system through
direct memory access techniques.

Networks, channels, and backplanes differ in terms
of the interconnection distances they can support, the
bandwidth and latencies they can achieve, and the funda-
mental assumptions about the inherent unreliability of data
transmission. While no statement we can make is univer-
sally true, in general, backplanes can be characterized by
parallel wide data paths, centralized arbitration, and are
oriented towards read/write “memory mapped” opera-
tions. That is, access to control registers is treated identi-
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cally to memory word access. Networks, on the other
hand, provide serial data, distributed arbitration, and sup-
port more message-oriented protocols. The latter require a
more complex handshake, usually involving the exchange
of high-level request and acknowledgment messages.
Channels fall between the two extremes, consisting of
wide datapaths of medium distance and often incorporat-
ing simplified versions of network-like protocols.

Networks typically span more than 1 km, sustain 10
Mbit/second (Ethernet) to 100 Mbit/second (FDDI) and
beyond, experience latencies measured in several ms, and
the network medium itself is considered to be inherenty
unreliable. Networks include extensive data integrity fea-
tures within their protocols, including CRC checksums at
the packet and message levels, and the explicit acknowl-
edgment of received packets.

Channels span small 10’s of meters, transmit at
anywhere from 4.5 MBytes/s (IBM channel interfaces) to
100 MBytes/second (HIPPI channels), incur latencies of
under 100 ps per transfer, and have medium reliability.
Byte parity at the individual transfer word is usually sup-
ported, although packet-level checksumming might also
be supported. )

Backplanes are about 1 m in length, transfer from
40 (VME) to over 100 (FutureBus) MBytes/second, incur
sub us latencies, and the interconnect is considered to be
highly reliable. Backplanes typically support byte parity,
although some backplanes (unfortunately) dispense with
parity altogether.

2.2. Communications Networks and Controllers

A network system is decomposed into multiple protocol
layers, from the application interface down to the method
of physical communication of bits on the network. Perfor-
mance measurements of network transmission services all
point out that the significant overbead is not protocol inter-
pretation. The culprits are memory system overheads due
to data movement and operating system overheads related
to context switches and data copying [Clark 89, Heatly 89,
Kanakia 90, Watson 87].

The network controller is the collection of hardware
and firmware that implements the interface between the
network and the host processor. It contains its own proces-
sor, memory mapped control registers, interface to the net-
work, and small memory to hold messages being
transmitted and received. The on-board processor, usually
in conjunction with VLSI components within the network
interface, implements the physical and link level protocols
of the network.

The interaction between the network controller and
the host’s memory is depicted in Figure 1. Lists of blocks
containing packets to be sent and packets that have been
received are maintained in the host processor’s memory.
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independent fashion. For example, a disk drive is viewed

Network Controller Processor Memory R
List of request blocks| as a linear byte stream. . .
Node || -Control A SCSI channel can support up to 8 devices sharing
Processor] | Reg. VR || 41 | 5= e ted a common bus with an 8-bit wide datapath. In SCSI termi-
List of free blocks nology, the I/O controller counts as one of these devices,
.. and is called the host bus adapter (HBA). Burst transfers
List of receive blocks at 4 to 5 MBytes/second are widely available today. In
SCSI terminology, a device that requests service from
Data received another device is called the master or the initiator. The
Media DMA device that is providing the service is called the slave or
Peripheral Backplane Bus the target.

Figure 1: Network Controller/Processor Memory Interaction

The locations of buffers for these blocks are made known
to the network controller, and it will copy packets to and
from the request/receive block areas using direct memory
access (DMA) techniques. This means that the copy of
data across the peripheral bus is under the control of the
network controller, and does not require the intervention
of the host processor. The controller will interrupt the host
whenever a message has been received or sent.

While this presents a particularly clean interface
between the network controller and the operating system,
it points out some of the intrinsic memory system latencies
that reduce network performance. Consider a message that
will be transmitted to the network. First the contents of the
message are created within a user application. A call to the
operating system results in a process switch and a data
copy from the user’s address space to the operating sys-
tem’s area. A protocol-specific network header is then
appended to the data to form a packaged network message.
This must be copied one more time, to place the message
into a request block that can be accessed by the network
controller. The final copy is the DMA operation that
moves the message within the request block to memory
within the network controller.

2.3. Channel Architectures

Channels provide the logical and physical pathways
between I/O controllers and storage devices. They are
medium distance interconnect that carry signals in paral-
lel, usually with some parity technique to provide data
integrity. In this section, we will describe two alternative
channel organizations that characterize the low end and
high end respectively: SCSI (Small Computer System
Interface) and HIPPI (High Performance Parallel Inter-
face).

2.3.1. Small Computer System Interface

SCSI is the channel interface most frequently encountered
in small formfactor (5.25” diameter and smaller) disk
drives. SCSI treats peripheral devices in a largely device-
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SCSI provides a high-level message-based protocol
for communications among initiators and targets. While
this makes it possible to mix widely different kinds on
devices on the same channel, it does lead to relatively high
overheads. The protocol has been designed to allow initia-
tors to manage multiple simultaneous operations. Targets
are intelligent in the sense that they explicitly notify the
initiator when they are ready to transmit data or when they
need to throttle a transfer.

2.3.2. High Performance Parallel Interface

The High Performance Parallel Interface, HIPPI, was orig-
inally developed at the Los Alamos National Laboratory in
the mid-1980s as a high speed unidirectional (simplex)
point-to-point interface between supercomputers [Ohren-
stein 90]. Thus, two-way communications requires two
HIPPI channels, one for commands and write data (the
write channel) and one for status and read data (the read
channel). Data is transmitted at a nominal rate of 800
Mbits/second (32-bit wide datapath) or 1600 Mbit/second
(64-bit wide datapath) in each direction.

The physical interface of the HIPPI channel was
standardized in the late 1980s. Its data transfer protocol
was designed to be extremely simple and fast. The source
of the transfer must first assert a request signal to gain
access to the channel. A connection signal grants the chan-
nel to the source. However, the source cannot send until
the destination asserts ready. This provides a simple flow
control mechanism.

The minimum unit of data transfer is the burst. A
burst consists of 1 to 256 words (the width is determined
by the physical width of the channel; for a 32-bit channel,
a burst is 1024 bytes), sent as a continuous stream of
words, one per clock period. A burst is in progress as long
as the channel’s burst signal is asserted. When the burst
signal goes unasserted, a CRC (cyclic redundancy check)
word computed over the transmitted data words is sent
down the channel. Because of the way the protocol is
defined, when the destination asserts ready, it means that it
must be able to accept a complete burst.

Unfortunately, the Upper Level Protocol (ULP) for
performing operations over the channel is still under dis-
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cussion within the standardization committees. To illus-
trate the concepts involved in using HIPPI as an interface
to storage devices, we restrict our description to the pro-
posal to layer the IPI-3 Device Generic Command Set on
top of HIPPI, put forward by Maximum Strategies and
IBM Corporation [Maximum Strategies 90].

A logical unit of data, sent from a source to a desti-
nation, is called a packet. A packet is a sequence of bursts.
A special channel signal delineates the start of a new
- packet. Packets consist of a header, a ULP (Upper Layer
> Protocol) data set, and fill. The ULP data consists of a
command/response field and read/write data field.

Packets fall into three types: command, response, ot
data-only. A command packet can contain a header burst
with an IPI-3 device command, such as read or write, fol-
lowed by multiple data bursts if the command is a write. A
response packet is similar. It contains an IPI-3 responsc
within a header burst,” followed by data bursts if the
response is a read transfer notification. Data-only packets
contain header bursts without command or response fields.

Consider a read operation over a HIPPI channel
using the IPI-3 protocol. On the write-channel, the slave
peripheral device receives a header burst containing a
valid read command from the master host processor. This
causes the slave to initiate its read operation. When data is
available, the slave must gain access to the read-channel.
When the master is ready to receive, the slave will trans-
mit its response packet. If the response packet contains a
transfer notification status, this indicates that the slave is
ready to transmit a stream of data. The master will pulse a
ready signal to receive subsequent data bursts.

2.4. Backplane Architecture

Backplanes are designed to interconnect processors, mem-
ory, and peripheral controllers (such as network and disk
controllers). They are relatively wide, but short distance.
The short distances make it possible to use fast, central-
ized arbitration techniques and to perform data transfers at
a higher clock rate. Backplane protocols make use of
addresses and read/write operations, rather than the more
message-oriented protocols to be found on networks and
channels.

The most dramatic differences are in the intercon-
pect width and the maximum bus width. In general, chan-
pel interconnects are narrow and long distance while
backplanes are wide but short distance.

Howeverz, some of the distinctions are being to blur. The
SCSI channel has many of the attributes of a bus, Future-
Bus has certain aspects that make it behave more like a
channel than a bus, and nobody could describe a 64-bit
HIPPI channel as being narrow! For example, let’s consid-
er FutureBus in a little more detail. The bus supports dis-
tributed arbitration, asynchronous signaling (that is, no
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global clocks), single source/muliple destination “broad-
cast” messages, and request/acknowledge split bus transac-
tions [Borrill 84]. The latter are very much like SCSI
disconnect/reconnect phases. A host issues a read request
message to a memory or /O controller, and then detaches
from the bus. Later on, the memory sends a response mes-
sage to the host, containing the requested data.

3. Storage Controllers and File Servers
3.1. /O Data Flow

Figure 2 shows the various interfaces across which a typi-
cal I/O request must flow. The actual flow of data starts at
the /O device. In the following discussion, we will
assume that the device is an intelligent magnetic disk for
something like a SCSI interface and that we are consider-
ing a read operation. The mechanical portion of the disk
drive is called the head/disk assembly, or HDA. The con-
trol and interface to the outside world is provided by an
embedded controller.

Data moves across a bit-serial interface from the
disk signal processing electronics to track buffers associ-
ated with the embedded controller. The amount of memory
associated with the track buffers varies from 32 KBytes to
256 KBytes. Since the typical track on today’s small form-
factor disks is in the range of 32 K — 64 KBytes, a typical
embedded controller can buffer more than one track.

The interface between the embedded controller and
the host is provided by an /O controller (a host bus
adapter, or HBA). It couples the host peripheral bus to the
disk channel interface. Data is staged into buffers within
the HBA, from which they are copied out via direct mem-
ory access techniques to the host’s memory. The typical
size of I/O controller buffers is in the range of 1 to 4
MBytes.

The host’s memory is coupled to the processor via a
high speed cache memory. The connection to the /O con-
trollers is through a slower speed peripheral bus. Direct
memory access operations copy data from the controller’s
buffers to operating system buffers in main memory.
Before the data can be used by the application, it inay need

Application Address Space
Memory-to-Memory Copy
OS Buffers (>10 MByte)
DMA over Peripheral Bus
HBA Buffers (1 M - 4 MBytes)
Xfer over Disk Channel
Track Buffers (32K - 256KBytes)

Xfer over Serial Interface

1/O Device

Figure 2: /O Data Flow
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Peripheral Bus (VME, FutureBus, etc.)
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Host [ Peripheral Bus Interface/DMA]
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l I Memory
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I ROM
Host
Proc:sor [ /O Channel Interface |
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Figure 3: Internal Organization of an I/O Controller

to be copied once again, to stage it into a portion of the
memory address space that is accessible to the application.
Note that the same memory and operating system over-
heads that limit network performance also affect I/O per-
formance. This is critically important in file and storage
servers, where both the I/O and network traffic must be
routed through the memory system bottleneck.

3.2. Internal Organization of I/O Controller

Figure 3 shows the internal organization of a typical high
performance host bus adapter I/O controller. Interestingly
enough, it is not very different in its internal architecture
from the network controller of Figure 1. Usually imple-
mented on a single printed circuit board, the controller
contains a microprocessor, a modest amount of memory
dedicated to buffers and run-time data structures, a ROM
to hold the controller firmware, a DMA/peripheral bus
interface, and an I/O channel interface.

The system interface is also similar to a network
controller. Request blocks containing I/O commands and
data are organized into as a linked list in the host memory.
The host writes to a memory-mapped command register
within the I/O controller to initiate an operation. Using
DMA techniques, the controller fetches the request blocks
into its own memory. The on-board microprocessor
unpackages the I/O commands and write data, and sends
these over the I/O channel interface. Status and read data
are repackaged into response blocks that are copied back
to reserved buffers in the host memory. The host can
choose whether the 1/O controller will interrupt the host
whenever an operation has been completed.

The controller of Figure 3 is notable because of its
support for direct memory access. Some lower
performance controllers require that commands and data
be written a word (or half word) at a time to memory-
mapped controller registers over the peripheral bus. Since
a typical command block can be 16 to 32 bytes in length,
simply downloading a command may take tens of
microseconds, requiring a good deal of host processor
intervention.

In implementing a high performance file service on a
network, a critical relationship exists between the network
and I/O controller architectures. The network interface and
the VO controller must be coupled by a high performance
interconnect and memory system.

3.3. File Server Architecture

In this subsection, we examine the flow of a network-
based I/O request as it arrives at the network interface,
through the file server’s hardware and software, to the
storage devices and back again to the network.

Figure 4 shows the hardware/software architecture
of a conventional workstation-based file server. A data
read request arrives at the Ethernet controller. The network
messages are copied from the network controller to the
server’s primary memory. Control passes through the soft-
ware levels of the network driver and protocol interpreta-
tion to process the request. At the file system level, to
avoid unnecessary disk accesses, the server’s primary
memory is interrogated to determine if the requested data
has already been cached from disk.

If the request cannot be satisfied from the file cache,
the file system will issue a request to the disk controller.
The retrieved data is then staged by the disk controller
from the I/O device to the primary memory along the
backplane bus. Usually it must be copied (at least) one
more time, into templates for the response network mes-
sages. The software path returns through the file system,
protocol processing, and network drivers. The network
response messages are transmitted from the memory out
through the network interface.

There are two key problems with this architecture.
First, there is the long instruction path associated with pro-
cessing a network-based I/O request. Second, as we have
already seen, the memory system and the backplane bus
form a serious performance bottleneck. Data must flow
from disk to memory to network, passing through the
memory and along the backplane several times. In general,
the architecture has not been specialized for fast process-
ing between the network and disk interfaces. We will
examine some approaches that address this limitation in

Single Processor File Server

Kernel NFS Protocol & File Processing
TCP/IP Protocols i}: Unix File System
Ethernet{: ™ Disk Manager = Frimary
oo rverft e Driver || Memory
: I
NFS Backplane Bus N Y
Request Disk
eq Controller m

Figure 4: Conventional File Server Architecture
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