CERTIFICATION

It is hereby certified that the attached copy is a true copy of the following documents contained in the file of International Application No. PCT/EP1999/000300, filed with the European Patent Office as receiving Office on 27 January 1999.

- RO/118 (Notification concerning documents transmitted) enclosing the fee calculation sheet (Annex to Form PCT/RO/101), Form PCT/RO/106, record copy of the international application (fax original) and confirmation copy of the international application;
- Notification of receipt of record copy (Form PCT/IB/301);
- Form RO/118 and a priority document;
- Form PCT/IB/304,
- Form PCT/RO/135;
- Form RO/118 and a priority document;
- International search report (Form PCT/ISA/210);
- Form PCT/IB/304;
- RO/118, letter from the applicant, replacement sheets and powers of attorney; and
- Form PCT/IPEA/415 and international preliminary examination report (IPER)
(Form PCT/IPEA/409).

By: The International Bureau

Fabienne Gateau
PCT Officer

INTELLECTUAL PROPERTY ORGANIZATION

PCT Legal and User Support Section
PCT Legal and User Relations Division
Date: September 23,2022

PATENT COOPERATION TREATY

From the RECEIVING OFFICE

NOTIFICATION CONCERNING

 DOCUMENTS TRANSMITTEDDate of mailing (day/month/year)

The receiving Office transmits herewith the following documents:

1. x
the record copy (Article 12(1)).
FAX
2. \square the search copy (Article 12(1)).
3.

 the purported international application (your request of \qquad) (Rule 20.7(iv)).
4.

the record copy and correction(s) not already transmitted in respect of the international application which has been considered withdrawn (Rule 29.1(a)(i)).
5. \square letter(s) of correction(s) or rectification(s) (Administrative Instructions, Section 325(b) and (c)).
6.
 substitute sheets (Administrative Instructions, Section 325(b) and (c)).
7. \square later submitted sheets (Administrative Instructions, Section 309(b)(iii), (c)(ii)).
8. later submitted drawings (Administrative Instructions, Section 310 (c)(iii), (d)(ii)).
9. X other document (s) :
\square letter(s) dated: \qquad .
\qquad separate/general power(s) of attorney.
$\begin{array}{ll}\square & \text { statem } \\ \square & \\ \end{array}$ priority document(s) (only for the IB).
x fee calculation sheet (only for the IB).
document(s) concerning the deposit of a microorganism or other biological material.
nucleotide and/or amino acid sequence listing(s) in computer readable form (only for the ISA).
earlier search(es) (only for the ISA).
Form PCT/RO/106.
Form PCT/RO/ \qquad -

CONFIRMATION COPY

This notification is sent to the addressee in its capacity as the International Bureau or the International Searching Authority.

From the RECEIVING OFFICE

To: Phelip, Bruno CABINET HARLE \& PHELIP 7, rue de Madrid F-75008 Paris FRANCE	INVITATION TO CORRECT DEFECTS IN THE INTERNATIONAL APPLICATION
(PCT Articles 3(4)(i) and 14(1) and Rule 26)	

1. X The applicant is hereby invited, within the ime limit indicated above, to correct, in the international application as filed, the defects specified on the attached

Annex A
x Annex B1 (text matter of the international application as filed)
x Annex C 1 (drawings of the international application as fled)

Additional observations (if necessary):

HOW TO CORRECT THE DEFECTS ?

Correction must be submitted by filing a replacement sheet embodying the correction and a letter accompanying the replacement sheet, which shall draw attention to the difference between the replaced sheet and the replacement sheet. A correction may be stated in a letter only if it is of such a nature that it can be transferred from the letter to the record copy without adversely affecting the clarity and direct reproducibility of the sheet onto which the correction is to be transferred (Rule 26.4).

ATTENTION

Failure to correct the defects will result in the international application being considered withdrawn by this receiving Office (see Rule 26.5 for further details).

A copy of this invitation and any attachments has been sent to the International Bureau
and the International Searching Authority.

Authorized officer
European Patent Office, P.B. 5818 Patentlaan 2
NL-2280 HV Rijswijk
-...,........
Authorized offor

The receiving Office has found the following defects in the international application as filed:

1. As to signature* of the international application (Rules 4.15 and 90.4), the request :
a.is not signed.
b. \qquad is not signed by all the applicants.
c.is not accompanied by the statement referred to in the check list in Box No. VIII of the request explaining the lack
d. X is signed by what appears to be an agent/common representative but
x the international application is not accompanied by a power of attorney appointing him.the power of attorney accompanying the international application was not signed by all the applicants.
e. \square other (specify):

All applicants must sign, including inventors if they are also applicants (e.g. where the United States of America is designated).
2. As to indications concerning the applicant, the request (Rules 4.4 and 4.5):
a. \square does not properly indicate the applicant's name (specify):
b.does not indicate the applicant's address.
c.does not properly indicate the applicant's address (specify)
d.does not indicate the applicant's nationality.
e.does not indicate the applicant's residence.
f.other (specify) :
3. As to the language of certain elements of the international application, other than the description and claims (Rules 12.1 (c) and $26.3 \operatorname{ter}(\mathrm{a})$ and (c)):
a.the request is not in a language which is both a language accepted by this receiving Office and a language of publication, which are: ENGLISH, FRENCH or GERMAN.
b.the text matter of the drawings is not in the language in which the international application is to be published, which is: ENGLISH.
c.

the abstract is not in the language in which the international application is to be published, which is: ENGLISH.
4. The tide of the invention:
a. \square is not indicated in Box No.I of the request (Rule 4.1(a)).
b.is not indicated at the top of the first sheet of the description (Rule 5.1(a)).
c. \square as appearing in Box No.I of the request is not identical with the title heading the description (Rule S.1(a)).

5 As to the abstract (Rule 8):
■
man:nmmatinnal amnlinatinn dnoc not enntain an abstract.

Further observations (if necessary)

X The applicant is hereby invited to confirm that the contents of the replacement sheets to be submitted in response to this invitation correspond exactly to that of the originally filed sheets.

This receiving Office has found that, with regard to the presentation of the drawings of the international application as filed, the physical requirements are not complied with to the extent that compliance therewith is necessary for:

1. X reasonably uniform international publication (Rules 11 and 26.3 (a)(i))(defects to be specified):

Sheets containing drawings:
a.the sheets do not admit of direct reproduction.
b.the sheets are not free from creases, cracks, folds.
c.one side of the sheets is not left unused.
the paper of the sheets is not flexible/strong/white/smooth/non-shiny/durable.
the drawings do not commence on a new sheet.
e.the sheets are not connected as prescribed (Rule 11.4(b))
the sheets are not $A 4$ size $(29.7 \mathrm{~cm} \times 21 \mathrm{~cm})$.
the minimum margins on the sheets are not as prescribed (top: 2.5 cm ; left side: 2.5 cm ; right side: 1.5 cm ; bottom: 1 cm).
the file reference number indicated on the sheets does not appear in the left-hand corner of the sheets, within
1.5 cm of the top of the sheets.
the file reference number exceeds the maximum of 12 characters.
the sheets are not free from frames around usable or used surfaces.
the sheets are not numbered in consecutive Arabic numerals (e.g. 1/3, 2/3, 3/3).
the sheet numbers are not centered at the top or bottom of the sheets.
the sheet numbers are in the margin (see h. above for the size of the margins).
the sheets contain alterations/overwritings/interlineations/too many erasures.
the sheets contain photocopy marks.
Drawings (Rule 11.13) :
a. x do not admit of direct reproduction.
b. \square contain unnecessary text matter.
c. contain words so placed as to prevent translation without interference with lines thereof.
d. are not executed in durable black color; the lines are not uniformly thick and well-defined.
e. \square contain cross-sections not properly hatched.
f. \square
would not be properly distinguishable in reduced reproduction.
g.
h.contain numbers, letters and reference lines lacking simplicity and clarity.
i. X contain lines drafted without the aid of drafting instruments.
j. \square contain disproportionate elements of a figure not necessary fur clarity.
k. contain numbers and letters of height less than 0.32 cm .
1.
contain letters not conforming to the Latin, and where customary, Greek alphabets.
contain figures on two or more sheets which form a single complete figure but which are not able to be assembled without concealing parts thereof.
contain figures which are not properly arranged and clearly separated.
contain different figures not numbered in consecutive Arabic numerals.
contain different figures not numbered independently of the numbering of the sheets.
are not restricted to reference signs mentioned in the description.
do not contain reference signs that are mentioned in the description.
contain the same feature denoted by different reference signs.
are not arranged in an upright position, clearly separated from one another.
are not presented sideways with the top of the figures at the left side of the sheets.

Further observations (if necessary):

Precautionary Designation Statement: In addition to the designations made above, the applicantalso makes under Rute 4.9(b) all other designations which would be permitted under the PCT excepr any designation(s) indicated in the Supplemental Box as being excluded from the scope of this statement. The applicant declares that those additional designations are subject to contirmation and that any designation which is not confirmed before the expiratiun of is uronths from the prioriry date is to be regarded as withdrawn by the applicant at the exdiration of that tirne limit. Confirmation of a dexiamation comsivts of the fifine of a notice sbeeffime that desionatiom and tha

Supplemental Box If the Supptemental Box t. nert used, this sheet showt nor be included in the request.

1. If, in any of the Boxes, the space is insufficient to furnish all the information" in stick case, write "Contimuation of Box $\lambda^{\circ} \mathrm{o}$ findicate the number of the Boxf andfurnish the information in the sume matiter us reguired accoriting to the captions of the Box in whicit the space was insuffisens, in partichiar
(i) ifmore vhan two persons are involvedas applicants andior invertors and no contumationsheet" is availabie: in such case, write "Coniinution of Box N'o. II" "andindicate for each additionalperson the same type of information as required in Box No. III. The country of the address indicatedit: this Boris the applicamt's State (that is. couniry) of residence ifno Sate of residence is indicated below.
(ii) If in Box No. II or in any of tite sub-boxes of Box No. III, the indicarion "the States indicated in the Supplemental Box" is checked: in such case, write "Continuation of Box Nio. II" or "Contimuation of Box No. III" or "Contimation of Bores No II and No. III" (us the case may be), indicare the name of the applicant(s) invofved and, next 10 (each) such name. the State(s) (and'or, where applicable. ARfPO, Eirasiap. European or OA $\overline{\text { P }}$ pavent) for the firposes of which the named person is applicant
(IIi) if, in Box Vo Il or in any of ihe sub-boxes of Bor No Ill, the inventor or the inventor/applicant is not inventor for the purgoses of oll designated Status or for tle purposes of the United Strtes of America: in such case, write "Continuation of Box No II" or Continuation of Box No. III" or "Continuation of Boxes No. II and No. Ill" (as the case may be), indicate the name of the
 the purposes of which the named person is inventor;
(iv) if. in addition to the agentis indicated in Bor No. IW, there are farther agents: in such case, write "Continuation of Box No. II" and indicate for each further agent the same npe of information as requiret in Box No. IV:
(v) tf in BoxNo V, the name of any State (or OAPl) is accompanied by the indication "patent of addition," or "cenificate of addition," or if, in Box No b' the name of the U'nuted Stites of Amersco is accompanied by an indication "continuation" or "continuation-in-part": in such case. write "Continuation of BoxNo. I" and the nome of each State involved (or OAPl). and after the name of each such State (or OAPI), the number of the parent titte or parent application and the date of grant of the pavent tille or filing
of the parent application:
(vi) if in Box No. Wi there are more than three eariier applications whose prioping is clalmedt in such case, write "Continuntion of Bor No. 17" and indicate for each additional eariier application the same ype of informetion as required in Box No. Wh:
(vit) if, in Bax No. 17, the earller application is an ARIPO application. in such cose, write "Continuation of Bidx No. IT", specify the number of the item corresponding to that earlier application and indicate as least one country party to the Paris Convention for the Protection of Industrial Property for which thut eartier appication was filed.
 the scope of ihat stalement in such case. write "Designutionts) exciuded from: precautionary designation statemert" and indicate the name or wo-letter code of each Siate so exchided.
2. fithe applicantslaims, in respect of any destgnated Office, the benefits of provisions of the national law concerning non-prejudicint disclosures or exceptionsto lack ofnovelsy: in such case. write "Sfatement concerning non-prejudiciaidisclasures or exceptions to lack of novelty" and furnish that statement below

Continuation of Box $n^{*} V$:
United States of America : Continuation-in-dart of PCT application N^{*} PCT/EP98/05383 (25.8.98).

1. Date of actual ;eceipt of the purported international appl:cation:		2. Drawing:received:\square not received
3. Corrected date of actual receipt due to later bu: timely received papers or drawings completung the purported international application:		
4. Date of timely receipt of the required corrections under PCT Aricle il(2):		
5. International Searching Authority (if two or more are compelent)	6 Transmittal of scarch cops delayed uncil search fec is paid.	

\qquad

$\therefore 0: 3+0: 3016: \# 引$

BACKGROUND OF THE INVENTION

1．Field of the Invention．

The present invention relates generally to an image processing system，and more particulariy to the use of a generic image processing system to detect drowsiness．

2．Description of the Related Art．

It is well known that a significant number of highway accidents result from drivers becoming drowsy or falling asleep，which results in many deaths and injuries． Drowsiness is also a problem in other fields，such as for airline pilots and power plant operators，in which great damage may result from failure to stay alert．

A number of different physical criteria may be used to establish when a person is drowsy，including a change in the duration and interval of eye blinking．Normally，the duration of blinking is about 100 to 200 ms when awake and about 500 to 800 ms when drowsy．The time interval between successive blinks is generally constant while awake，but varies within a relatively broad range when drowsy．

Numerous devices have been proposed to detect drowsiness of drivers．Such devices are shown，for example，in U．S．Patent Nos．5．841，354；5，813，99；
$5,689,241 ; 5,684,461 ; 5,682,144 ; 5,469,143 ; 5,402,109 ; 5,353,013 ; 5,195,606 ; 4,928,090 ;$ $4,555,697,4,485,375$ ；and $4,259,665$ ．In general，these devices fall into three categorics：$i)$ devices that detect movement of the head of the driver，e．g．，tilting；ii）devices that detect a physiological change in the driver，e．g．，altered heartbeat or breathing，and iii）devices that
detect a physical result of the driver falling aslecp. e.g., a reduced grip on the steering whecl. None of these devices is believed to have met with commercial success.

Commonly-owned PC: Γ Application Scrial Nos. PCT/FR97/01354 and PCT/EP98/05383 disclose a generfc image processing system that operates to localize objects in relative movement in an image and to determine the speed and direction of the objects in real-time. Each pixel of an image is smoothed using its own time constant. A binary value corresponding to the existence of a significant variation in the amplitude of the smoothed pixel from the prior frame, and the amplitude of the variation, are determined, and the time constant for the pixel is updated. For each particular pixel, two matrices are formed that include a subset of the pixcls spatially related to the particular pixel. The first matrix contains the binary valucs of the subset of pixels. The second matrix contains the amplitude of the variation of the subset of pixels. In the first matrix, it is determined whether the pixels along an oriented direction relative to the particular pixel have binary values representative of significant variation, and, for such pixels, it is determined in the second matrix whether the amplitude of these pixels varies in a known manner indicating movement in the oriented direction. In domains that include luminance, hue, saturation, speed, oriented direction, time constant, and x and y position, a histogram is formed of the values in the first and second matrices falling in user selected combinations of such domains. Using the histograms, it is determined whether there is an area having the characteristics of the selected combinations of domains.

It would be desirable to apply such a generic image processing system to detect the drowsiness of a person.

SUMMARY OF THE INVENIION

The present invention is a process of detecting a driver falling asleep in which an inage of the face of the driver is acquired. Pixels of the image having characleristics corresponding to characteristics. of at least one eye of the driver are selected and a histogram is formed of the selected pixels. The histogram is analyzed over time to identify each opening and closing of the cyc, and from the eye opening and closing information, chatacteristics indicative of a driver falling asleep arc determined.

In one embodiment, a sub-area of the image comprising the eye is determined prior to the step of selecting pixels of the image having characteristics conesponding to characteristics of an eye. In this embodiment, the step of selecting pixels of the image having characteristics of an eye involves selecting pixels within the sub-arca of the image. The step of identifying a sub-area of the image preferably involves identifying the head of the driver, or a facial characteristic of the driver, such as the driver's nostrils, and then identifying the sub-area of the image using an anthropomorphic model. The head of the driver may be identified by selecting pixels of the image having characteristics corresponding to edges of the head of the driver. Histograms of the selected pixels of the edges of the driver's head are projected onto ortiogonal axes. These histograms are then analyzed to identify the cdges of the driver's head.

The facial characteristic of the driver may be identified by selecting pixels of the image having characteristics corresponding to the facial characteristic. Histograms of the selected pixels of the facial characteristic are projected onto orthogonal axes. These histograms are then analyzed to identify the facial characreristic. If desired, the step of identifying the facial characteristic in the image involves searching sub-images of the image until the facial characteristic is found. In the case in which the facial characteristic is the
 $15: 27$.

nostrils of the driver, a histogram is formed of pixels having low luminance levels to detect the nostrils. To confirm detection of the nostrils, the histograms of the nostril pixels may be analyzed to determine whether the spacing between the nostrils is within a desired range and whether the dimensions of the nostrils fall within a desired range. In order to confirm the identification of the facial characteristic, an anthropomorphic model and the location of the facial characteristic are used to select a sub-area of the image containing a second facial characteristic. Pixels of the image having characteristics corresponding to the second facial characteristic are selected and a histograms of the selected pixels of the second facial chatacteristic are analyzed to confirm the identification of the first facial characteristic.

In order to determine openings and closings of the eyes of the driver, the step of selecting pixels of the image having characteristics corresponding to characteristics of an eye of the driver involves selecting pixels having low luminance levels corresponding to shadowing ol the eye. In this embodinent, the step analyzing the histogram over time to jdentify each opening and closing of the eye involves analyzing the shape of the eye shadowing to determine openings and closings of the eye. The histograms of shadowed pixels ate preferably projected onto orthogonal axes, and the step of analyzing the shape of the eye shadowing invoives analyzing the width and height of the shadowing.

An alternative method of determining openings and closings of the eyes of the driver involves selecting pixels of the image having characteristics of movement corresponding to blinking. In this cmbodiment, the step analyzing the histogram over time to identify each opening and closing of the eye involves analyzing the number of pixels in movement corresponding to blinking over time. The characteristics of a blinking eye are preferably selected from the group consisting of i) $\mathrm{DP}=1$. ii) CO indicative of a blinking
eyelid, iii) velocity indicative of a blinking cyetid, and iv) up and down movement indicative of a blinking eyelid.

An apparatus for detecting a driver falling asleep includes a sensor for acquiring an image of the face of the driver, a controller, and a histogram formation unit for forming a histogram on pixels having selected characteristics. The controller controls the histogram formation unit to select pixels of the image having characteristics corresponding to characteristics of at least one eye of the driver and to form a histogram of the selected pixels. The controller analyzes the histogram over time to identify each opening and closing of the eye, and determincs from the opening and closing information on the eye, characteristics indicative of the driver falling asleep.

In one embodiment, the controller interacts with the histogram formation unit to identify a sub-area of the image comprising the eye, and the controller controls the histogram formation unit to select pixels of the image having characteristics corresponding to characteristics of the eye only within the sub-area of the image. In order to select the sub-area of the image, the controller interacts with the histogram formation unit to identify the head of the driver in the image, or a facial characteristic of the driver, such as the driver's nostrils. The controller then identities the sub-area of the image using an anthropomorphic model. To identify the head of the driver, the histogram formation unit selects pixels of the image having characteristics corresponding to edges of the head of the driver and forms histograms of the selected pixels projected onto orthogonal axes. To identify a facial characteristic of the driver, the histogram formation unit selects pixels of the image having characteristics corresponding to the facial characteristic and forms histograms of the selected pixels projected onto orthogonal axes. The controller then analyzes the histograms of the selected pixels to identify the edges of the head of the driver or the facial characteristic, as the case
may be. If the facial characteristic is the nostrils of the driver, the histogram formation unit selects pixels of the image having low luminance levels corresponding to the luminance level of the nostrils. The controller may also analyze the histograms of the nostril pixels to determine whether the spacing between the nostrils is within a desired range and whether dimensions of the nostrils fall within a desired range. If desired, the controller may interact with the histogram formation unit to search sub-images of the image to identify the facial characteristic.

In order to verify identification of the facial characteristic, the controller uses an anthropomorphic model and the location of the facial characteristic to cause the histogram formation unit to select a sub-area of the image containing a second facial characteristic. The histogram formation unit selects pixels of the image in the sub-area having characteristics corresponding to the second facial characteristic and forms a histogram of such pixets. The controller then analyzes the histogram of the selected pixels corresponding to the second facial characteristic to identify the second facial characteristic and to thereby confirm the identification of the first facial characteristic.

In one cmbodiment, the histogram formation unit selects pixels of the inage having low luminance Icvely corrcsponding to shadowing of the cycs, and the controller then analyzes the shape of the cye shadowing to identify shapes corresponding to openings and closings of the eyc. The histogram formation unit preferably forms histograms of the shadowed pixels of the cye projected onto orthogonal axes, and the controller analyzes the width and height of the shadowing to determine openings and closings of the eye.

In an alternative embodiment, the histogram formation unit selects pixels of the image in movement corresponding to blinking and the controller analyzes the number of pixels in movement over time to determine openings and closings of the eye. The
characteristics of movement corresponding to blinking are preferably selected from the group consisting of i) $\mathrm{DP}=1$, ii) CO indicative of a blinking eyelid, iii) velocity indicative of a blinking eyelid, and iv) up and down movement indicative of a blinking eyelid.

If desired, the sensor may be integrally constructed with the controller and the histogram formation unit. The apparatus may comprise an alarm, which the controller operates upon detection of the driver falling asleep, and may comprise an illumination source. such as a source of IR radiation, with the sensor being adapted to view the driver when illuminated by the illumination source.

A rear-view mirror assembly comprises a rear-view mirror and the described apparatus for detecting driver drowsiness mounted to the rear-view mirror. In one embodiment, a bracket attaches the apparatus to the rear-view mirror. In an alternative embodiment, the rear-view mirror comprises a housing having an open side and an interior. The rear-view mirror is mounted to the open side of the housing, and is see-through from the interior of the housing to the exterior of the housing. The drowsiness detection apparatus is mounted interior 10 the housing with the sensor directed toward the rear-view mirror. If desired, a joint attaches the apparatus to the rear-view mirror assembly, with the joint being adapted to maintain the apparatus in a position facing the driver during adjustment of the nirror assembly by the driver. The rear-vicw mirror assembly may include a source of illumination directed toward the driver, with the sensor adapted to view the driver when illuminated by the source of illumination. The rear-vicw mirror assembly may also include an alarm, with the controller operating the alarm upon detection of the driver falling asieep. Also disclosed is a vehicle comprising the drowsincss detection device.

BRIEF DESCRIPIION OE IHE DRA WINGS

Fig. 1 is a diagrammatic illustration of the system according to the invention.

Fig. 2 is a block diagram of the temporal and spatial processing units of the invention.

Fig. 3 is a block diagram of the temporal processing unit of the invention.
Fig. 4 is a block diagram of the spatial processing unit of the invention.
Fig. 5 is a diagram showing the processing of pixels in accordance with the invention.

Fig. 6 illustrates the numerical values of the Freeman code used to determine movement direction in accordance with the invention.

Fig. 7 illustrates nested matrices as processed by the temporal processing unit.
Fig. 8 illustrates hexagonal matrices as processed by the temporal processing unit.

Fig. 9 illustrates reverse-L matrices as processed by the temporal processing unit.

Fig. 10 illustrates angular sector shaped matrices as processed by the temporal processing unit.

Fig. 11 is a block diagram showing the relationship between the temporal and spatial processing units, and the histogram formation units.

Fig. 12 is a block diagram showing the interrelationship between the various histogram formation units.

Fig. 13 shows the formation of a two-dimensional histogram of a moving area from two one-dimensional histograms.

Fig. 14 is a block diagram of an individual histogram formation unit.
Figs. 1.5A and 1.5R illustrate the use of a histogram formation unit to find the orientation of a line relative to an analysis axis.

Fig. 16 illustrates a one-dimensional histogram.
Fig. 17 illustrates the use of semi-graphic sub-matrices to selected desired areas of an image.

Fig. 18 is a side view illustrating a rear view mirror in combination with the drowsiness detection system of the invention.

Fig. 19 is a top view illustrating operation of a rear view mirror.
Fig. 20 is a schematic illustrating operation of a rear view mirror.
Fig. 21 is a cross-sectional top view illustrating a rear view mirror assembly incorporating the drowsiness detection system of the invention.

Fig. 22 is a partial cross-sectional top view illustrating a joint supporting the drowsiness detection system of the invention in the mirror assembly of Fig. 21.

Fig. 23 is a top view illustrating the relationship between the rear view mirror assembly of Fig. 21 and a driver.

Fig. 24 illustrates detection of the edges of the head of a person using the system of the invention.

Fig. 25 illustrates masking outside of the edges of the head of a person.
Fig. 26 illustrates masking outside of the eyes of a person.
Fig. 27 illustrates detection of the eyes of a person using the system of the invention.

Fig. 28 illustrates successive blinks in a three-dimensional orthogonal coordinate system.

Figs. 29A and 298 illustrate conversion of peaks and valleys of eye movement histograms to information indicative of blinking.

Fig. 30 is a flow diagram illustrating the usc of the system of the invention to detect drowsiness

Fig. 31 illustrates the use of sub-images to search a completc image.
Fig. 32 illustrates the use of the system of the invention to detect nostrils and to track eye movement.

Fig. 33 illustrates the use of the system of the invention to detect an open eye.
Fig. 34 illustrates the use of the system of the invention to detect a closed eye.
Fig. 35 is a flow diagram of an alternative method of detecting drowsiness.
Fig. 36 illustrates use of the system to detect a pupil.

DETALLED DESCRIPTION OR THE INVENTION

The present invention discloses an application of the generic image processing system disclosed in commonly-owned PCT Application Serial Nos. PCT/FR97/01354 and PCT/EP98/05383, the contents of which are incorporated herein by reference for detection of various criteria associated with the human eye, and especially to detection that a driver is falling aslecp while driveing a vehicle.

The apparatus of the invention is similar to that described in the aforementioned PCT Application Serial Nos. PCT/FR97/01354 and PCT/FP98/05383, which will be described herein for purposes of clarity. Referring to Figs. 1 and 10 , the generic image processing system 22 includes a spatial and temporal processing unit 11 in combination with a histogram formation unit 22a. Spatial and temporal processing unit 11 includes an input 12 that receives a digital video signal S originating from a vidco camera or other imaging device 13 which monitors a scene 13a. Imaging device 13 is preferably a conventional CMOS-type CCD camera, which for purposes of the presently-described invention is mounted on a vehicle facing the driver. It will be appreciated that when used in
non-vehicluar applications, the camera may be mounted in any desired fashion to detect the specific criteria of interest. It is also foreseen that any other appropriate sensor, e.g., ultrasound, IR, Radar, etc., may be used as the imaging device. Imaging device 13 may have a direct digital output, or an analog output that is converted by an A / D convertor into digital signal S. Imaging device 13 may also be integral with generic image processing system 22 , if desired.

While signal S may be a progressive signal, it is preferably composed of a succession of pairs of interlaced frames, TR_{1} and TR_{1}, and TR_{2} and TR_{2}^{\prime}, each consisting of a succession of horizontal scanned lines, e.g., $1_{11}, 1_{1.2}, \ldots, 1_{1.17}$ in TR_{1}, and ${ }_{2,1}$ in TR_{2}. Each line consists of a succession of pixels or image-points PI, e.g., $a_{1,1}, a_{1,2}$ and $a_{1,3}$ for linc $l_{1, ~} ;$ al $l_{17,1}$ and a $1_{17!2}$ for line $l_{117} ; a l_{1,1}$ and a_{12} for line $l_{2,1}$. Signal $S(P I)$ represents signal S composed of pixels PI.
$\mathrm{S}(\mathrm{PI})$ includes a frame synchronization signal (ST) at the beginning of each frame, a line synchronization signal (SL) at the beginning of each line, and a blanking signal (BL). Thus, $\mathrm{S}(\mathrm{PI})$ includes a succession frames, which are representative of the time domain, and within each frame, a series of lines and pixels, which are representative of the spatia! domain.

In the time domain, "successive frames" shall refer to successive frames of the same type (i.e., odd frames such as TR_{1} or even frames such as $\mathrm{TR}_{1}{ }_{1}$), and "successive pixels in the same position" shall denote successive values of the pixels (PI) in the same location in successive frames of the same type, e.g., $a_{1,1}$ of $l_{1,1}$ in frame T_{1} and $a_{1,1}$ of $l_{1,1}$ in the next corresponding frame TR_{2}

Spatial and temporal processing unit 11 generates outputs ZH and SR 14 to a data bus 23 (Fig. 11), which are preferably digital signals. Complex signal ZH comprises a
number of output signals generated by the system, preferably including signals indicating the existence and localization of an area or object in motion, and the speed V and the oriented direction of displacement DI of each pixel of the image. Also preferably output from the system is input digita! video signal S, which is delayed (SR) to make it synchronous with the output ZHI for the frame, taking into account the calculation time for the data in composite signal $Z H$ (one frame). The delayed signal $S R$ is used to display the image received by camera 13 on a monitor or television screen 10, which may also be used to display the information contained in composite signal $\angle \mathrm{H}$. Composite signal $Z \mathrm{H}$ may also be transmitted to a separate processing assembly 10a in which further processing of the signal may be accomplished.

Referring to Fig. 2, spatial and temporal processing unit 11 includes a first assembly 11a, which consists of a temporal processing unit 15 having an associated memory 16. a spatial processing unit 17 having a delay unit 18 and sequencing unit 19 , and a pixel clock 20, which generates a clock signal $H P$, and which serves as a clock for temporal processing unit 15 and sequencing unit 19. Clock pulses HP are generated by clock 20 at the pixel rate of the image, which is preferably 13.5 MHZ .

Fig. 3 shows the operation of temporal processing unit 15 , the function of which is to smooth the video signal and generate a number of outputs that are utilized by spatial processing unit 17. During processing, temporal processing unit 15 retricves from memory 16 the smoothed pixel values LI of the digital video signal from the immediately prior frame, and the values of a smoothing time constant CI for cach pixel. As used herein, LO and CO shall be used to denote the pixel values (L) and time constants (C) stored in memory 16 from temporal processing unit 15 , and LI and CI shall denote the pixel values (L) and time constants (C) respectively for such values retrieved from memory 16 for use by
temporal processing unit 15 . Temporal processing unit 15 generates a binary output signa! DP for each pixel, which identifies whether the pixel has undergone significant variation, and a digital signal CO , which represents the updated calculated value of time constant C .

Referring to Fig. $\cdot 3$, temporal processing unit 15 includes a first block 15 a which receives the pixcls PI of input video signal S. For each pixel PI, the temporal processing unit retrieves from memory 16 a smoothed value LI of this pixel from the immediately preceding conesponding frame, which was calculated by temporal processing unit 15 during processing of the immediately prior frame and stored in memory 16 as LO . Temporal processing unit 15 calculates the absolute value AB of the difference between each pixel valuc PI and LI for the same pixel position (for example $\mathrm{a}_{1,1}$, of $1_{1,1}$ in TR , and of $1_{1,1}$ in $T R_{2}$:

$$
\mathrm{AB}=|\mathrm{PI}|-\mathrm{L}| |
$$

Temporal processing unit 15 is controlled by clock signal HP from clock 20 in order to maintain synchronization with the incoming pixel stream. Test block 15b of temporal processing unit 15 receives signa! $A B$ and a threshold value $S E$. Threshold $S E$ may be constant, but preferably varies based upon the pixel value PI, and more preferably varies with the pixel value so as to form a gamma correction. Known means of varying SE to form a gamma correction is represented by the optional block 15 e shown in dashed lines. Test block 156 compares, on a pixel-by-pixel basis, digital signals AB and SE in order to determine a binary signal $D P$. If $A B$ exceeds threshold $S E$, which indicates that pixel value PI has undergone significant variation as compared to the smoothed value Ll of the same pixel in the prior frame, DP is set to " 1 " for the pixel under consideration. Otherwise, DP is set to " 0 " for such pixel.

When $\mathrm{DY}=1$, the difference between the pixel value PI and smoothed value LI of the same pixel in the prior frame is considered too great, and temporal processing unit 15 attempts to reduce this difference in subsequent frames by reducing the smoothing time constant C for that pixel. Conversely, if $D P=0$, temporal processing unit 15 attempts to increase this difference in subsequent frames by increasing the smoothing time constant C for that pixel. These adjustments to time constant C as a function of the value of $D P$ are made by block 15 c . If $\mathrm{DP}=1$, block 15 c reduces the time constant by a unit value U so that the new value of the time 7 constant CO equals the old value of the constant CI minus unit value U .

$$
\mathrm{CO}=\mathrm{CI}-\mathrm{U}
$$

If $D P=0$, block $15 c$ increases the time constant by a unit value U so that the new value of the time constant CO equals the old value of the constant Cl plus unit value U .

$$
\mathrm{CO}=\mathrm{CI}+\mathrm{U}
$$

Thus, tor each pixel, block 15 c receives the binary signal DP from test unit 15 b and time constant CI from memory 16 , adjusts CI up or down by unit value U , and generates a new time constant CO which is stored in memory 16 to replace time constant CI.

In a preferred embodiment, time constant C, is in the form 2°, where p is incremented or decremented by unit valuc U, which preferably equals I, in block $15 c$. Thus, if $D P=1$, block 15 c subtracts one (for the case where $U=1$) from p in the time constant $2^{1 \prime}$ which becomes $2^{\mathrm{p}-1}$. If $\mathrm{DP}=0$, block 15 c adds one to p in time constant 2°, which becomes 2^{p+1}. The choice of a time constant of the form 2^{p} facilitates calculations and thus simplifies the structure of block 150 .

Block 15 c includes several tests to ensure proper operation of the system.
First, CO must remain within delìned limits. In a preferred embodiment, CO must not become negative $(\mathrm{CO} \geq 0)$ and it must not exceed a limit $\mathrm{N}(\mathrm{CO} \leq \mathrm{N})$, which is preferably
seven. In the instance in which CI and CO are in the form 2^{p}, the upper limit N is the maximum valuc for p.

The upper limit N may be constant, but is preferably variable. An optional input unit 15 fincludes a register of memory that enables the user, or controller 42 to vary N . The consequence of increasing N is to increase the sensitivity of the system to detecting displacement of pixcls, whereas reducing N improves detection of high speeds. N may be made to depend on PI (N may vary on a pixel-by-pixel basis, if desired) in order to regulate the variation of $L O$ as a function of the lever of PI, i.e., $N_{i j t}=f\left(\mathrm{PI}_{\mathrm{ijf}}\right)$, the calculation of which is done in block 15f, which in this case would receive the value of PI from video camera 13.

Finally, a calculation block 15 d receives, for each pixel, the new time constant CO generated in block 15c, the pixel values PI of the incoming video signal S , and the smoothed pixel value I.I of the pixel in the previous frame from memory 16. Calculation block 15 d then calculates a new smoothed pixel value LO for the pixel as follows:

$$
\mathrm{LO}=\mathrm{II}+(\mathrm{PI}-\mathrm{LI}) / \mathrm{CO}
$$

If $\mathrm{CO}=2^{\prime \prime}$, then

$$
\mathrm{LO}=\mathrm{LI}+(\mathrm{PI}-\mathrm{LI}) / 2^{2 \infty}
$$

where "po", is the new value of p calculated in unit $15 c$ and which replaces previous value of "pi" in memory 16.

The purpose of the smoothing operation is to normalize variations in the value of each pixel PI of the incoming video signal for reducing the variation differences. For each pixel of the frame, temporal processing unit 15 retrieves Ll and CI from memory 16 , and generates new values $L O$ (new smoothed pixel value) and $C O$ (new time constant) that are stored in memory 16 to replace LI and CI respectively. As shown in Fig. 2, temporal
processing unit 15 transmits the CO and DP values for each pixel to spatial processing unit 17 through the delay unit 18 .

The capacity of memory 16 assuming that there are R pixels in a frame, and thercfore 2 K pixels per complete image, must be at least $2 \mathrm{R}(\mathrm{e}+\mathrm{f})$ bits, where e is the number of bits required to store a single pixel value LJ (preferably eight bits), and f is the number of bits required to store a single time constant Cl (preferably 3 bits). If each video image is composed of a single frame (progressive image), it is sufficient to use $\mathrm{R}(\mathrm{e}+\mathrm{t})$ bits rather than 2R(e+f) bits.

Spatial processing unit 17 is used to identify an area in relative movement in the images from camera 13 and to determine the speed and oriented direction of the movement. Spatial processing unit 17 , in conjunction with delay unit 18 , cooperates with a control unit 19 that is controlled by clock 20 , which generates clock pulse HP at the pixel frequency. Spatial processing unit 17 receives signals $D P_{i j}$ and $C O_{i j}$ (where i and j correspond to the x and y coordinates of the pixel) from temporal processing unit 15 and processes these signals as discussed below. Whereas temporal processing unit 15 processes pixels within each frame, spatial processing unit 17 processes groupings of pixels within the frames

Fig. 5 diagrammatically shows the temporal processing of successive corresponding frame sequences $\mathrm{TR}_{4}, \mathrm{TR}_{2}, \mathrm{TR}_{3}$ and the spatial processing in the these frames of a pixel PI with coordinates x, y, at times t_{1}, t_{2}, and t_{3}. A plane in Fig. 5 corresponds to the spatial processing of a frame, whereas the superposition of frames corresponds to the temporal processing of successive frames.

Signals $\mathrm{DP}_{\mathrm{ij}}$ and $\mathrm{CO}_{i \mathrm{i}}$ from temporal processing unit 15 are distributed by spatial processing unit 17 into a first matrix 21 containing a number of rows and columns much smaller than the number of lincs L of the frame and the number of pixels M per line.

Matrix 21 preferably includes $2 l+1$ lines along the y axis and $2 m+1$ columns along the x axis (in Cartesian coordinates), where l and m are small integer numbers. Advantagcously, l and m are chosen to be powers of 2 , where for example l is equal to 2^{a} and m is equal to 2^{b}, a and b being integer numbers of about 2 to 5 , for example. To simplify the drawing and the explanation, m will be taken to be equal to l (although it may be different) and $m=1=2^{3}=8$. In this case, matrix 21 will have $2 \times 8+1=17$ rows and 17 columns. Fig. 4 shows a portion of the 17 rows $Y_{0}, Y_{1}, \ldots Y_{15}, Y_{16}$, and 17 columns $X_{0}, X_{1}, \ldots X_{15}, X_{16}$ which form matrix 21.

Spatial processing unit 17 distributes into $1 \times m$ matrix 21 the incoming flows of $\mathrm{Dp}_{\mathrm{ij} 1}$ and $\mathrm{CO}_{\mathrm{jt}}$ from temporal processing unit 15. It will be appreciated that only a subset of all $\mathrm{DP}_{\mathrm{ijl}}$ and $\mathrm{CO}_{\mathrm{ijf}}$ values will be included in matrix 21 , since the frame is much larger, having I. lines and M pixels per row (c.g., 312.5 lines and 250.800 pixels), depending upon the TV standard used.

In order to distinguish the $\mathrm{L} \times \mathrm{M}$ matrix of the incoming video signal from the $I \times m$ matrix 21 of spatial processing unit 17 , the indices i and j will be used to represent the coordinates of the former matrix and the indices x and y will be used to represent the coordinates of the latter. At a given instant, a pixel with an instantaneous value $\mathrm{PI}_{\mathrm{ijt}}$ is characterized at the input of the spatial processing unit 17 by signals $\mathrm{DP}_{\mathrm{ijt}}$ and $\mathrm{CO}_{\mathrm{ijt}}$. The $(2 l+1) \times(2 m+1)$ matrix 21 is furmed by scanning each of the $L \times M$ matrices for 1$) P$ and CO.

In matrix 21 , each pixel is defined by a row number between 0 and 16 (inclusive), for rows Y_{0} to Y_{16} respectively, and a celumn number between 0 and 16 (inclusive), for columns X_{0} to X_{16} respectively, in the case in which $l=m=8$. In this case, matrix 21 will be a plane of $17 \times 17=: 289$ pixels.

In Fig. 4, elongated horizontal rectangles Y_{0} to Y_{10} (only four of which have been shown, i.e., Y_{0}, Y_{1}, Y_{15} and Y_{16}) and vertical lines $X_{(1)}$ to X_{10} (of which only four have been shown, i.e., X_{6}, X_{1}, X_{19} and X_{16}) illustrate matrix 21 with 17×17 image points or pixels having indices defined at the intersection of an ordinate row and an abscissa coiumn. For example, the P_{gg} is at the intersection of column 8 and row 8 as illustrated in Fig. 4 at position e, which is the center of matrix 21 .

In response to the HP and BL signals from clock 20 (Fig. 2), a rate control or sequencing unit 19: i) generates a line sequence signal SL at a frequency equal to the quotient of 13.5 MHZ (for an image with a corresponding number of pixels) divided by the number of columns per frame (for example 400) to delay unit 18 , ii) generates a frame signal SC, the frequency of which is equal to the quotient $13.5 / 400 \mathrm{MHZ}$ divided by the number of rows in the video image. for example 312.5, iii) and outputs the HP clock signal. Blanking signal BL is used to render sequencing unit 19 non-operational during synchronization signals in the input image.

A delay unit 18 carrics out the distrihution of portions of the I . x M matrix into matrix 21. Delay unit 18 receives the DP . CO , and incoming pixel $\mathrm{S}(\mathrm{PI})$ signals, and distributes these into matrix 21 using clock signal HP and line sequence and column sequence signals SL and SC.

In order to form matrix 21 from the incoming stream of DP and CO signals, the successive row, Y_{v} to Y_{16} for the DP and CO signals must be delayed as follows:
row Y_{0} - not delayed;
row Y_{1} - delayed by the duration of a frame line $T P$;
row Y_{2} - delayed by 2 TP ;
and 30 on until
row Y_{16} - delayed by 16 TP .
The successive delays of the duration of a frame row TP, are carried out in a cascade of sixteen delay circuits $\mathbf{r}_{1}, \mathbf{r}_{2}, \ldots \mathbf{r}_{16}$ that serve rows $Y_{1}, Y_{2} \ldots Y_{16}$, respectively, row Y_{0} being served directly by the DP and CO signals without any delay upon arriving from temporal processing unit 15 . All delay circuits $\mathbf{r}_{1}, \mathbf{r}_{2}, \ldots, \mathbf{r}_{18}$ may be built up by a delay line with sixteen outputs, the delay imposed by any section thereof between two successive outputs being constant and equal to TP.

Rate control unit 19 controls the scanning of the entire $\mathrm{L} \times \mathrm{M}$ frame matrix over matrix 21 . The circular displacement of pixels in a row of the frame matrix on the 17 x 17 matrix, for example from X_{0} to X_{16} on row Y_{0}, is dnne by a cascade of sixteen shift registers d on each of the 17 rows from Y_{0} to Y_{10} (giving a total of $16 \times 17=272$ shift registers) placed in each row between two successive pixel positions, namely the register d_{0}, between positions PI_{01} and PI_{01} register d_{02} between positions PL_{01}, and PI_{02}, etc. Each register imposes a delay TS equal to the time difference between two successive pixcls in a row or line, using column sequence signal SC . Because rows $l_{1}, l_{2} \ldots l_{17}$ in a frame ${ }^{\top} \mathrm{TR}_{1}$ (Fig. 1), for $\mathrm{S}(\mathrm{PI})$ and for DP and CO , reach delay unit 18 shifted by TP (complete duration of a row) one after the other, and delay unit 18 distributes them with gradually increasing delays of TP onto rows $Y_{0}, Y_{1} \ldots Y_{1}$, these rows display the $D P$ and $C O$ signals at a given tirne for rows $l_{1}, l_{2} \ldots$ l_{17} in the same frame portion. Similarly in a given row, e.g., l_{1}, successive pixel signals $\mathrm{a}_{1.1}$, $\mathrm{a}_{1,2} \ldots$ arrive shifted by TS and shift registers dimpose a delay also equal to TS. As a result, the pixels of the DP and CO signals in a given row Y_{0} to Y_{16} in matrix 21, are contemporary. i.e., they correspond to the same frame portion.

The signals representing the COs and DPs in matrix 21 are available at a given instant on the $16 \times 17=272$ outputs of the shift registers, as well as upstream of the registers
ahead of the 17 rows, ie., registers $d_{0!}, d_{1.1} \ldots d_{16.1}$, which makes a total of $16 \times 17+17=17$ $\times 17$ outputs for the 17×17 positions $P_{0.0}, P_{01} \ldots P_{8.8} \ldots P_{16.16}$.

In order to better understand the process of spatial processing, the system will be described with respect to a small matrix M3 containing 3 rows and 3 columns where the central element of the 9 elements thereof is pixel c with coordinates $x=8, y=8$ as illustrated below:

In matrix M3, positions a, b, c, d, f, g, h, i around the central pixel e correspond to eight oriented directions relative to the central pixel. The eight directions may be identified using the Freeman code illustrated in Fig. 6, the directions being coded 0 to 7 starting from the x axis, in steps of 45°. In the Freeman code, the eight possible oriented directions, may be represented by a 3 -bit number since $2^{3}=8$.

Considering matrix M3, the 8 directions of the Freeman code are as follows:

3	2	1
4	\underline{e}	0
5	6	7

Returning to matrix 21 having 17×17 pixels, a calculation unit 17 a examines at the same time various nested square second matrices centered on $\underline{\underline{e}}$, with dimensions $15 \times$ $15,13 \times 13,11 \times 11,9 \times 9,7 \times 7,5 \times 5$ and 3×3, within matrix 21 , the 3×3 matrix being the M.3 matrix mentioned above. Spatial processing unit 17 determines which matrix is the smallest in which pixels with $\mathrm{DP}=1$ are aligned along a straight line which determines the direction of movement of the aligned pixels.

For the aligned pixels in the matrix, the system determines if CO varies on each side of the central position in the direction of alignment, from +a in an oriented direction
and $-a$ in the opposite oriented direction, where $1<a<N$. For example, if positions g, e, and c of $M 3$ have values $-1,0,+1$, then a displacement exists in this matrix from right to left in the (oriented) direction 1 in the Freeman code (Fig. 6). However, positions g, e, and c must at the same time have $\mathrm{DP}=1$. The displacement speed of the pixels in motion is greater when the matrix, among the 3×3 to 15×15 nested matrices, in which CO varies from +1 or -1 between two adjacent positions along a direction is larger. For example, if positions \mathbf{g}, e , and c in the 9×9 matrix denoted M9 have values $-1,0,+1$ in oriented direction 1 , the displacement will be faster than for values $-1,0,+1$ in 3×3 matrix M3 (Fig. 7). The smallest matrix for which a line meets the test of $D P=1$ for the pixels in the line and CO varies on each side of the central position in the direction of alignment, from $+a$ in an oriented direction and -a in the opposite oriented direction, is chosen as the principal line of interest.

Within a given matrix, a greater value of $\pm \mathrm{CO}$ indicates slower movement. For example, in the smallest matrix, i.e., the 3×3 matrix, $\mathrm{CO}= \pm 2$ with $\mathrm{DPs}=1$ determines subpixel movement i.e. one half pixel per image, and $\mathrm{CO}= \pm 3$, indicates slower movement, i.e. one third of a pixel per image. In order to reduce the calculation power in the systern and to simplify the hardware, preferably only those values of CO which are symmetrical relative to the central pixel are considered.

Since CO is represented as a puwer or 2 in a preferred embodiment, an extended range of speeds may be identified using only a tew bits for CO, while still enabling identification of relatively low speeds. Varying speed may be detected because, for example $2,0,+2$ in positions $g: e, c$ in 3×3 matrix M 3 indicates a speed half as fast as the speed cortesponding to $1,0,+1$ for the same positions in matrix M 3 .

Two tests are preferably perfonned on the results to remove uncertainties. The first test chooses the strongest variation, in other words the highest time constant, if there are
variations of CO along several directions in one of the nested matrices. The sccond test arbitrarily chooses one of two (or more) directions along which the variation of CO is identical. for example by choosing the smallest value of the Freeman code, in the instance when identical lines of motion are directed in a single matrix in different directions. This usually arises when the actual direction of displacement is approximately between two successive coded directions in the Freeman code, for example between directions 1 and 2 corresponding to an (oriented) direction that can be denoted 1.5 (Fig. 6) of about 67.5° with the x axis direction (direction 0 in the Freeman code).

The scanning of an entire frame of the digital video signal Spreferably occurs in the following sequence. The first group of pixels considered is the first 17 rows or lines of the frame, and the first 17 columns of the frame. Subsequently, still for the first 17 rows of the frame, the matrix is moved column by column from the left of the frame to the right, as shown in Fig. 5, i.e., from portion TM_{1} at the extreme left, then TM_{2} offset by one column with respect to TM_{1}, until TM_{M} (where M is the number of pixels per frame line or row) at the extreme right. Once the firs: 17 row's have been considered for each column from left to right, the process is repeated for rows 2 to 18 in the frame. This process continues, shifting down one row at a time until the last group of lines at the bottom of the frame, i.e., lines L $16 \ldots \mathrm{~L}$ (where L is the number of lines per frame) are considered.

Spatial processing unit 17 generates the following output signals for each pixel: i) a signal V representing the displacement speed for the pixel, based upon the amplitude of the maximum variation of CO surrounding the pixel, the value of which may be, for example, represented by an integer in the range $0-7$ if the speed is in the form of a power of 2 , and therefore may be stored in 3 bits, ii) a signal DI representing the direction of displacement of the pixel, which is calculated from the direction of maximum variation, the
value of DI being also preferably represented by an integer in the range $0-7$ corresponding to the Freeman code, stored in 3 bits, iii) a binary validation signal VI. which indicates whether the result of the speed and oriented direction is valid, in order to be able to distinguish a valid output with $\mathrm{V}=0$ and $\mathrm{DI}=0$, from the lack of an output due to an incident, this signal being 1 for a valid output or 0 for an invalid output, iv) a time constant signal CO. stored in 3 bits, for example, and v) a delayed video signal $S R$ consisting of the input video signal S delayed in the delay unit 18 by 16 consccutive line durations TR and therefore by the duration of the distribution of the signal S in the 17×17 matrix 21 , in order to obtain a viden signal timed to matrix 21, which may be displayed on a television set or monitor. Also output are the clock signal HP, line sequence signal $S L$ and column sequence signal SC from control unit 19.

Nested hexagonal matrices (Fig 8) or an inverted L-shaped matrix (Fig. 9) may be substituted for the nested rectangular matrices in Figs. 4 and 7. In the case shown in Fig. 8, the nested matrices (in which only the most central matrices MRI and MR2 have been shown) are all centered on point MR0 which corresponds to the central point of matrices M3, M9 in Fig. 7. The advantage of a hexagonal matrix system is that it allows the use of oblique coordinate axes x_{3}, y_{2}, and a breakdown into triangles with identical sides, to carry out an isotropic speed calculation.

The matrix in Fig. 9 is composed of a single row (I_{u}) and a single column (C_{u}) starting from the central position $M R_{\Perp}$ in which the two signals $D P$ and $C O$ respectively are equal to " 1 " for DP and increase or decrease by one unit for CO , if movement occurs.

If movement is in the direction of the \times coordinate, the CO signal is identical in all positions (boxes) in column C_{u} and the binary signal DP is equal to 1 in all positions in row L_{u}, from the origin MR_{u}, with the value CO_{u}, up to the position in which CO is equal to $\mathrm{CO}_{u}+1$ or -1 inclusive. If movement is in the direction of the y coordinate, the CO signal is
identical in all positions (boxes) in row I_{w}, and the binary signal DP is equal to 1 in all positions in column C_{w}, from the origin MR_{u}. with the value CO_{v}, up to the position in which CO is equal to $\mathrm{CO}_{4},+1$ or -1 inclusive. If movement is oblique relative to the x and y coordinates, the binary signal DP is equal to 1 and CO is equal to CO_{4} in positions (boxes) of L_{u} and in positions (boxes) of C_{u}, the slope being determined by the perpendicular to the line passing through the two positions in which the signal CO_{u} changes by the value of one unit, the DP signal always being equal to 1 .

Fig. 9 shows the case in which $\mathrm{DP}=\mathrm{I}$ and CO_{u} changes value by one unit in the two specific positions $L_{u j}$ and $C_{u s}$ and indicates the corresponding slope P_{p}. In all cases, the displacement speed is a function of the position in which CO changes value by one unit. If $C O$ changes by one unit in L_{u} or C_{u} only, it corresponds to the value of the $C O$ variation position. If $C O$ changes by one unit in a position in L_{u} and in a position in C_{u}, the speed is proportional to the distance between MR_{u} and E_{x} (intersection of the line perpendicular to $\mathrm{C}_{\mathrm{u}^{-}}$ L_{u} passing through MR_{u}).

Fig. 10 shows an imaging device with sensors located at the intersections of concentric lines c and radial lines d that corrcspond to the rows and columns of a rectangular matrix imaging device. The operation of such an imaging device is controlled by a circular scanning sequencer. In this embodiment, angular sector shaped $\mathrm{n} \times \mathrm{n}$ matrices MC are formed, (a 3×3 matrix MC3 and a 5×5 matrix MC5 are shown) and except for sequencing differences, the matrices are processed identical to the square matrix embodiments discussed above.

As shown in Figs. 11-16, spatial and temporal processing unit 11 is used in connection with a histogram processor 22a for identifying objects within the input signal based upon user specified criteria for identifying such objects. A bus Z-Z (See Figs. 2, 11
and 12) transfers the output signals of spatial and temporal processing unit 11 to histogram processor 22a. Histogram processor 22a generates composite output signal ZH which contains information on the areas in relative movement in the scene.

Referring to Fig. 12, histogram processor 22a includes a bus 23 for communicating signals between the various components thereof, for receiving input commands from a controller 42 and for transmitting output signals to controller 42. Histogram formation and processing blocks $24-29$ receive the various input signals, i.e., delayed digital video signal SR, speed V, oriented directions (in Freeman code) DI, time constant $C O$, first axis $x(m)$ and second axis $y(m)$, which are discussed in detail below. The function of each histogram formation block is to enable a histogram to be formed for the domain associated with that block. For example, histogram formation block 24 receives the delayed digital video signal SR and enables a histogram to be formed for the luminance values of the video signal. Since the luminance of the signal will generally be represented by a number in the range of $0-255$, histogram formation block 24 is preferably a memory addressable with 8 bits, with cach memory location having a sufficient number of bits to correspond to the number of pixels in a frame.

Histogram formation block 25 receives speed signal V and enables a histogram to be formed for the various speeds present in a frame. In a preferred embodiment, the speed is an integer in the range $0-7$. Histogram formation block 25 is then preferably a memory addressable with 3 bits, with each memory location having a sufficient number of bits to correspond to the number of pixels in a frame.

Histogram formation block 26 receives oriented direction signal DI and enables a histogram to be formed for the oriented directions present in a frame. In a preferred embodiment, the oriented direction is an integer in the range $0-7$, corresponding to the

Freeman code. Histogram formation block 26 is then preferably a memory addressable with 3 bits, with each memory location having a sufficient number of bits to correspond to the number of pixels in a frame.

Histogram formation block 27 receives time constant signal CO and enables a histogram to be formed for the time constants of the pixels in a frame. In a preferred embodiment, the time constant is an integer in the range 0-7. Histogram formation block 27 is then preferably a memory addressable with 3 bits, with each memory location having a sufficient number of bits to correspond to the number of pixels in a frame.

Histogram formation blocks 28 and 29 receive the x and y positions respectively of pixels for which a histogram is to be formed, and form histograms for such pixels, as discussed in greater detail below. Histogram formation block 28 is preferably addressable with the number of bits corresponding to the number of pixels in a line, with each memory location having a sufficient number of bits to correspond to the number of lines in a frame, and histogram formation block 29 is prefcrably addressable with the number of bits corresponding to the number of lines in a frame, with each memory location having a sufficient number of bits to correspond to the number of pixels in a line.

Referring to Figs. 12 and 14, each of the histogram formation blocks 24-29 has an associated validation block 30-35 respectively, which generates a validation signal V1 - V6 respectively. In general, each of the histogram formation blocks $24-29$ is identical to the others and functions in the same manner. For simplicity, the invention will be described with respect to the operation of histogram formation block 25 , it being appreciated that the remaining histogram formation blocks operate in a like manner. Histogram formation block 25 includes a histogram forming portion 25a, which forms the histogram for that block, and a classifier $\mathbf{2 5 b}$, for selecting the criteria of pixels for which the histogrann is to be formed.

Histogram forming portion 25 a and classifier 25b operate under the control of computer software in an integrated circuit (not shown), to extract certain limits of the histograms generated by the histograin formation block, and to control operation of the various components of the histogram formation units.

Referting to Fig. 14, histogram forming portion 25 a includes a memory 100 , which is preferably a corventional digital memory. In the case of histogram formation block 25 which forms a histogram of speed, memory 100 is sized to have addresses 0.7 , each of which nay store up to the number of pixels in an image. Between frames, memory 100 is initiated, i.e., cleared of all memory, by setting init=1 in multiplexors 102 and 104. This has the effect, with respect to multiplexor 102 of selecting the " 0 " input, which is output to the Data In line of memory 100. At the same time, setting inif=1 causes multiplexor 104 to select the Counter input, which is output to the Address line of memory 100. The Counter input is connected to a counter (not shown) that counts through all of the addresses for memory 100 , in this case $0 \leq a d d r e s s \leq 7$. This has the effect of placing a zero in all memory addresses of memory 100. Memory 100 is preferably cleared during the blanking interval between each frame. After mennory 100 is cleared, the init line is set to zero, which in the case of multiplexor 102 results in the content of the Data line being sent to memory 100 , and in the case of multiplexor 104 results in the data from spatial processing unit 117 , i.e., the V data, being sent to the Address line of memory 100.

Classifier 25b enables only data having selected classification criteria to be considered further, meaning to possibly be included in the histograms formed by histogram formation blocks 24-29. For example, with respect to speed, which is preferably a value in the range of 0.7 , classifier $25 b$ may be set to consider only data within a particular speed category or categories, e.g., speed 1, speeds 3 or 5 , speed 3-6, etc. Classifier 25 b includes a
register 106 that enables the classification criteria to be set by the user, or by a separate computer program. By way of example, register 106 will include, in the case of speed, eight registers numbered 0.7 . By setting a register to " 1 ", e.g., register number 2, only data that meets the criteria of the selected class, e.g., speed 2, will result in a classification output of " 1 ". Expressed mathematically, for any given register in which $R(k)=b$, where k is the register number and b is the boolean value stored in the register:

$$
\text { Output= } \mathrm{R}(\operatorname{data}(\mathrm{~V}))
$$

So for a data point V of magnitude 2 , the output of classifier $25 b$ will be " 1 " only if $R(2)=1$. The classifier associated with histogram formation block 24 preferably has 256 registers, one register for each possible luminance value of the image. The classifier associated with histogram formation block 26 preferably has 8 registers, one register for each possible direction value. The classifier associated with histogram formation block 27 preferably has 8 registers, one register for each possible value of CO . The classifier associated with histogram formation block 28 preferably has the same number of registers as the number of pixels per line. Finally, the classifier associated with histogram formation block 29 preferably has the same number of registers as the number of lines per frame. The output of each classifier is communicated to each of the validation blocks $30-35$ via bus 23 , in the case of histogram formation blocks 28 an 29, through combination unit 36, which will be discussed further below.

Validation units 30-35 receive the classification information in parallel from all classification units in histogram formation blocks 24-29. Each validation unit generates a validation signal which is communicated to its associated histogram formation block 24 -
29. The validation signal determines, for each incoming pixel, whether the histogram formation block will utilize that pixel in forming it histogram. Referring again to Fig. 14,
which shows histogram formation block 25, validation unit 31 includes a register block 108 having a register associated with each histogram formation block, or more generally, a register associated with each data domain that the systern is capable of processing, in this case, luminance, speed, direction, CO , and x and y position. The content of each register in register block 108 is a binary value that may be set by a user or by a computer controller. Each validation unit receive via bus 23 the output of each of the classifiers, in this case numbered $0 \ldots \mathrm{p}$, keeping in mind that for any data domain, e.g., speed, the output of the classifier for that data domain will only be " 1 " if the particular data point being considered is in the class of the registers set to " 1 " in the classifier for that data domain. The validation signal from each validation unit will only be " 1 " if for each register in the validation unit that is set to " 1 ", an input of " 1 " is received from the classifier for the domain of that register. This may be expressed as follows:

$$
\text { out }=\left(i \bar{m}_{0}+\operatorname{Reg}\right) \cdot\left(i \bar{n}_{1}+\operatorname{Reg}_{1}\right) \ldots\left(i \bar{n}_{n}+\operatorname{Rcg}_{n}\right)\left(i n_{0}+i n_{l}+\ldots i n_{n}\right)
$$

where Reg_{0} is the register in the validation unit associated with input in_{0}. Thus, using the classifiers in combination with validation units $30-35$, the system may select for processing only data points in any selected classes within any selected domains. For example, the system may be used to detect only data points having speed 2, direction 4, and luminance 125 by setting each of the following registers to " 1 ": the registers in the validation units for speed, direction, and luminance, register 2 in the speed classifier, register 4 in the direction classifier, and register 125 in the luminance classifier. In order to form those pixels into a block, the registers in the validation units for the x and y directions would be set to " 1 " as well.

Reterring again to Fig. 13. validation signal V2 is updated on a pixel-by-pixel basis. If, for a particular pixel, validation sigual V2 is "1", adder 110 increments the output of memory 100 by one. If, for a particular pixel, validation signal V2 is " 0 ", adder 100 does not increments the output of memory. In any case, the output of adder 100 is stored in memory 100 at the address corresponding to the pixel being considered. For example, assuming that memory 100 is used to form a histogram of speed, which may be categorized as speeds $0-7$, and where memory 100 will include $0-7$ corresponding memory locations, if a pixel with speed 6 is received, the address input to multiplexor 104 through the data line will be 6 . Assuming that validation signal V2 is " 1 ", the content in memory at location 6 will be incremented. Over the course of an image, memory 100 will contain a histogram of the pixels for the image in the category associated with the memory. If, for a particular pixel, validation signal $V 2$ is " 0 " because that pixel is not in a category for which pixels are to be counted (e g., because that pixel does not have the correct direction, speed, or luminance), that pixel will not be used in forming the histogram.

For the histogram formed in memory 100, key characteristics for that histogram are simultaneously computed in a unit 112. Referring to Fig. 14, unit 112 inchudes memories for each of the key characteristics, which include the minimum (MIN) of the histogram, the maximum (MAX) of the histogram, the number of points (NBPTS) in the histogram, the position (POSRMAX) of the maximum of the histogram, and the number of points (RMAX) at the maximum of the histogram. These characteristics are determined in parallel with the formation of the histogram as follows:

For each pixel with a validation signal V2 of " 1 ":
(a) if the data value of the pixel < MIN (which is initially set to the maximum possible value of the histogram), then write data value in MIN ;
(b) if the data value of the pixel $>$ MAX (which is initially set to the mininum possible value of the histogram), then write data value in MAX;
(c) if the content of memory 100 at the address of the data value of the pixel $>$ RMAX (which is initially set to the minimum possible value of the histogram), then i) write data value in POSRMAX and ii) write the memory output in RMAX.
(d) increment NBPTS (which is initially set to zero).

At the completion of the formation of the hislogram in memory 100 at the end of each frame, unit 112 will contain important data characterizing the histogram. The histogram in each memory 100 , and the characteristics of the histogram in units 112 are read during the scanning spol of each frame by controller 42, and the memories 100 are cleared and units 112 are re-initialized for processing the next frame.

The system of the invention includes a semi-graphic masking finction to select pixcls to be considered by the system. Fig. 16 shows a typical image 53 consisting of pixels arranged in a $Q \times R$ matrix, which is divided into sub-matrices 51 each having a dimension of $s \times t$, wherein each $s \times t$ sub-matrix includes $s \times t$ number of pixels of the image. Each sub-matrix shown in Fig. 17 is a 3×4 matrix. In a preferred embodiment, $s=9$ and $t=12$, although any appropriate sub-matrix size may be used, if desired, including 1×1. Referring to Fig. 12, histogram processor 22 a includes a semi-graphic memory 50 , which includes a one-bit memory location corresponding to each $s \times t$ matrix. For any given sub-matrix 51 , the corresponding bit in memory 50 may be set to " 0 ", which has the cffect of ignoring all pixels in such sub-matrix 50, or may be set to " 1 " in which case all pixels in such sub-matrix will be considered in forming histograms. Thus, by using semi-graphic memory 50 , it is possible to limit those areas of the image to be considered during histogram formation. For example, when an image of a road taken by a camera facing forward on a vehicle is used to detect the
lanes of the road, the pixel information of the road at the farthest distances from the camera gencrally does not contain useful information. Accordingly, in such an application, the semigraphic memory is used to mask off the distant portions of the road by setting semi-graphic memory 50 to ignore such pixels. Alternatively, the portion of the road to be ignored may be masked by setting the system to track pixels only within a detection box that excludes the undesired arca of the screen, as discussed below.

In operation, for any pixel under consideration, an AND operation is run on the validation signa! for such pixel and the content of semi-graphic memory 50 for the submatrix in which that pixel is located. If the content of semi-graphic memory 50 for the submatrix in which that pixel is located contains " 0 ", the AND operation will yield a " 0 " and the pixel will be ignored, otherwise the pixel will be considered in the usual manner. It is foreseen that the AND operation may be run on other than the validation signal, with the same resultant functionality. Also, it ix foresecn that memory 50 may he a frame size memory, with each pixel being independently selectable in the semi-graphic memory. This would enable any desired pixels of the image to be considcred or ignored as desired. Semigraphic memory 50 is set by controller 42 via data bus 23 .

Fig. 16 shows an example of the successive classes $C_{1}, C_{2} \ldots C_{n-1}, C_{n}$, each representing a particular velocity, for a hypothetical velocity histogram, with their being categorization for up to 16 velocities (15 are shown) in this example. Also shown is envelope 38, which is a smoothed representation of the histogram.

In order to locale the pusition of an object having user specified criteria within the image, histogram blocks 28 and 29 are used to generate histograms for the x and y positions of pixcls with the selected criteria. These are shown in lig. 13 as histograms along the x and y coordinates. These x and y data are output to moving area formation block 36
which combines the abscissa and ordinate information $\mathbf{x}(\mathrm{m})_{2}$ and $\mathrm{y}(\mathrm{m})_{2}$ respectively into a composite signal $x y(m)$ that is output onto bus 23. A sample composite histogram 40 is shown in Fig. 13. The various histograms and composite signal $x y(m)$ that are output to bus 23 are used to determine if there is a moving area in the image, to localize this area, and/or to determine its speed and oriented dircction. Because the area in relative movement may be in an observation plane along directions x and y which are not necessarily orthogonal, as discussed below with respect to Fig. 18, a data change block 37 may be used to conven the x and y data to orthogonal coordinates. Data change block 37 receives orientation signals $x(m)$, and $y(m)_{1}$ for $x(m)_{0}$ and $y(m)_{0}$ axes, as well as pixel clock signals HP, line sequence and column sequence signals SL and SC (these three signals being grouped together in bundle \mathbb{F} : in Figs. 2, 4, and 10) and generates the orthogonal $x(m)_{1}$ and $y(m)$, signals that are output to histogram formation blocks 28 and 29 respectively.

In urder to process pixels unly within a uscr-defined arca, the x-direction histogram formation unit 28 may be programmed to process pixels only in a class of pixels defined by boundaries, i.e. XMIN and XMAX. This is accomplished by setting the XMIN and XMAX values in a user-programmable memory in x-direction histogram formation unit 28 or in linear combination units 30-35. Any pixels outside of this class will not be processed. Similarly, y-dircction histogram formation unit 29 may be set to process pixels only in a class of pixels defined by boundaries YMIN and YMAX. This is accomplished by setting the YMIN and YMAX values in a user-programmable memory in y-direction histogram formation unit 29 or in linear combination units 30-35. Thus, the system can process pixels only in a defined rectangle by setting the XMIN and XMAX, and YMIN and YMAX values as desired. Of course, the classification criteria and validation criteria from the other histogram formation units may be set irl order to form histograms of only selected classes of
pixels in selected domains within the selected rectangular arca. The XMIN and XMAX memory locations have a sufficient number of bits to represent the maximum number of pixels in the x dimension of the image under consideration, and the YMIN and YMAX memory locations have a sufficient number of bits to represent the maximum number of pixels in the y dimension the image under consideration. As discussed further below, the x and y axes may be rotated in order to create histograms of projections along the rotated axes. In a preferred embodiment, the XMIN, XMAX, YMIN and YMAX memory locations have a sufficient number of bits to tepresent the maximum number of pixels along the diagonal of the image under consideration (the distance from "Origin" to "Stop" in Fig. 15). In this way, the system may be used to search within a user-defined rectangle along a user-defined rotated axis system.

In order for a pixel $\operatorname{PI}(a, b)$ to be considered in the formation of x and y direction histograms, whether on the orthogonal coordinate axes or along rotated axes, the conditions $\mathrm{XMIN}<a<\mathrm{XMAX}$ and $\mathrm{YMIN}<\mathrm{b}<\mathrm{YMAX}$ must be satisfied. The output of these tests may be ANDed with the validation signal so that if the conditions are not satisfied, a logical " 0 " is ANDed with the validation signal for the pixel under consideration, thereby avoiding consideration of the pixel in the formation of x and y direction histograms.

Fig. 13 diagrammatically represents the envelopes of histograms 38 and 39 , respectively in x and y coordinates, for velocity data. In this example, x_{M} and y_{M} represent the x and y coordinates of the maxima of the two histograms 38 and 39 , whereas l_{u} and l_{b} for the x axis and l_{c} and l_{d} for the y axis represent the limits of the range of significant or interesting speeds, l_{l} and l_{c} being the longer limits and l_{a} and l_{d} being the upper limited of the significant portions of the histograms. Limits l_{c}, l_{b}, l_{c} and l_{d} may be set by the user or by an
application program using the system, may be set as a ratio of the maximum of the histogram, e.g., $x_{M} / 2$, or may be set as otherwise desired for the particular application.

The verical lines L_{a} and L_{b} of abscissas l_{a} and l_{b} and the horizontal lines L_{c} and L_{v} of ordinals l_{c} and l_{d} form a rectangle that surrounds the cross hatched area 40 of significant speeds (for all x and y directions). A few smaller areas 41 with longer speeds, exist close to the main area 40 , and are typically ignored. In this example, all that is necessary to characterize the area with the largest variation of the parameter for the histogram, the speed V in this particular case, is to identify the coordinates of the limits l_{n}, l_{b}, l_{c} and l_{d} and the maxima X_{M} and Y_{M}, which may be readily derived for each histogram from memory 100, the data in units 112, and the $x y(m)$ data block.

Thus, the system of the invention generates in real time, histograms of each of the parameters being detected. Assuming that it were desired to identify an object with a speed of " 2 " and a direction of " 4 ", the validation units for speed and direction would be set to " 1 ", and the classifiers for speed " 2 " and direction " 4 " would be set to " 1 ". In addition, since it is desired to locatc the object(s) with this speed and dircciion on the video image, the validation signals for histogram formation blocks 28 and 29 , which correspond to the x and y coordinates, would be set to " 1 " as well. In this way, histogram formation blocks 28 and 29 would form histograms of only the pixels with the selected speed and direction, in real-time. Using the information in the histogram, and especially POSRMAX, the object with the greatest number of pixels at the selected speed and direction could be identified on the video image in real-time. More gencrally, the histogram formation blocks can localize objects in real-time meeting user-selected criteria, and may produce an output signal if an object is detected. Alternatively, the information may be transmitted, e.g., by wire, optical fiber or
radio relay for remote applications, to a control unit, such as unit 10a in Fig. 1, which may be near or remote from spatial and temporal processing unit 11.

While the system of the invention has been described with respect to formation of histograms using an orthogonal coordinate system defined by the horizontal and vertical axes of the video image, the system may be used to form histograms using non-orthogonal axes that are user-defined. Figs. 15A and 15B show a method of using rotation of the analysis axis to deterruine the orientation of certain points in an image, a method which may be used, for example to detect lines. In a preferred embodiment, the x-axis may be rotated in up to 16 different directions ($180^{\circ} 16$), and the y-axis may be independently rotated by up to 16 different directions. Rotation of the axes is accomplished using data line change block 37 which receives as an input the user-defined axes of rotation for each of the x any y axes, and which performs a Hough transform to convert the x and y coordinate values under consideration into the rotated coordinate axis system for consideration by the x and y histogram tormation units 28 and 29. The operation of conversion hetween courdinate systems using a Hough transform is known in the art. Thus, the user may select rotation of the x-coordinate system in up to 16 different directions, and may independently rotate the y ccordinate system in up to 16 different directions. Using the rotated coordinatc systems, the system may perform the functionality described above, including searching within userdefined rectangles (on the rotated axes), forming histograms on the rotated axes, and searching using velocity, direction, etc.

As discussed above, each histogram formation unit calculates the following values for its respective histogram.

MIN, MAX, NBPTS, RMAX, POSRMAX

Given that these values are calculated in real-time, the use of these values allows the system to rapidly identify lines on an image. While this may be accomplished in a number of different ways, one of the easier methods is to calculate R, where $R=N B P T S / R M A X$, i.e., the ratio of the number of points in the histogram to the number of points in the maximal linc. The smaller this ratio. i.e., the closer R approaches 1 , the more perpendicularly aligned the data points under consideration are with the scanning axis.

Fig. 15A shows a histogram of certain points under consideration, where the histogram is taken along the x-axis, i.e., projected down onto the x -axis. In this example, the ratio R, while not calculated, is high, and contains littie information about the orientation of the points under consideration. As the x-axis is rotated, the ratio R increases, until, as shown in Fig. 15B, at approximately 45° the ratio R would reach a maximum. This indicates that the points under consideration are most closely aligned perpendicular to the $45^{\circ} \mathrm{x}$-axis. In operation, on successive frames, or on the same frame if multiple x-direction histogram formation units are available, it is advantageous to calculate R at different angles, e.g., 33.75° and 57.25° (assuming the axes are limited to 16 degrees of rotation), in order to constantly ensure that R is at a minimum. For applications in which it is desirable to detect lines, and assuming the availability of 16 x -dircction histogram formation units, it is advantageous to carry out the calculation of R simultaneously along all possible axes to determine the angle with the minimum R to determine the direction of orientation of the line. Becausc the x and y axes may be rotated independently, the x and y histogram formation units are capable of simultaneously independently detecting lines, such as each side line of a road, in the same manner.

As discussed above, the system of the invention may be used to search for objects within a bounded area defined by XMIN, XMAX, YMIN and YMAX. Because
moving object may leave the bounded area the system preferably includes an anticipation function which enables XMIN, XMAX, YMIN and YMAX to be automatically modified by the system to compensate for the spced and direction of the target. This is accomplished by determining values for $\mathrm{O}-\mathrm{MVT}$, corresponding to orientation (direction) of movement of the target within the bounded area using the direction histogram, and I-MVT, corresponding to the intensity (velocity) of movement. Using these parameters, controller 42 may modify the values of XMIN, XMAX, YMIN and YMAX on a frame-by-frame basis to ensure that the target remains in the bounded box being searched. These parametcrs also enable the system to determine when a moving object, e.g., a line, that is being tracked based upon its axis of rotation, will be changing its axis of orientation, and enable the system to anticipate a new orientation axis in order to maintain a minimized value of R.

Referring to Fig. 12, a controller 42, which is preferably a conventional microprocessor-based controller, is used to control the various elements of the system and to enable user input of commands and controls, such as with a computer mouse and keyboard (not shown), or other input device. Components 11 a and 22a, and controller 42, are preferably formed on a single integrated circuit. Controller 42 is in communication with data bus 23 , which allows controller 42 to run a program to control various parameters that may be set in the system and to analyze the results. In order to select the criteria of pixels to be tracked, controller 42 may also directly control the following: i) content of each register in classifiers 25 , ii) the content of each register in validation units 31 , iii) the content of XMIN, XMAX, YMIN and YMAX, iv) the orientation angle of each of the x and y axes, and v) semi-graphic memory 50. Controller 42 may also retrieve i) the content of each memory 100 and ii) the content of registers 112 , in order to analyze the results of the histogram formation
process. In addition, in general controller 42 may access and cuntrol all data and parameters used in the system.

The system of the invention may be used to detect the driver of a vehicle falling asleep and to generate an alarm upon detection thereof. While numerous embodiments of the invention will be described, in general the system receives an image of the driver from a camera or the like and processes the image to detect one or more criteria of the eyes of the driver to deiemnine when the driver's eyes are open and when they are closed. As discussed above, a wide-awake person generally blinks at relatively regular intervals of about 100 to 200 ms . When a person becomes drowsy, the length of each eyc blink increases to approximately 500 to 800 ms , with the intervals between blinks being becoming longer and variable. Using the information on the opening and closing of the driver's eyes, the system measures the duration of each blink and/or the intervals between blinks to determine when the driver is falling asleep. This is possible because the vidco signal coming from the sensor in use, e.g., sensor 310 of Fig. 21, preferably generates 50 or 60 frames per second, i.e., a frame every 20 ms or 16.66 ms respectively. This makes it possible for the system, which processes each image in real time, to distinguish between blink lengths of 100 to 200 ms for an awake person from blink lengths of 500 to 800 ms for a drowsy person, i.e., a blink length of 5 to 10 frames for an awake person or a blink length of 25 to 40 frames for a drowsy person, in the case of a 50 frames per second video signal.

The system of the invention utilizes a viden camera or other sensor to receive images of the driver T in order to detect when the driver is falling asleep. While various methods of positioning the sensor shall be described, the sensor may generally bo position by any means and in any location that perrnits acquisition of a continuous image of the face of the driver when seated in the driver's seat. Thus, it is foreseen that sensor 10 may be mounted
to the vehicle or on the vehicle in any appropriate location, such as in or on the vehicle dashboard, steering whel, door, rear-view mirror, ceiling, etc., to cnable sensor 10 to view the facc of the driver. All upproprinte lens may be mounted oon the sensor 10 to give the sensor a wider view if reqired to see drivers of different sizes.

Figs. 18 and 19 show a conventional rear-view mirror arrangement in which a driver \mathbf{T} can see ahead along direction 301 and rearward (via rays 302a and 302b) through a rear-view mitror 303. Referring to Fig. 20, mirror 303 is attached to the vehicle body 305 through a connecting arm 304 which enables adjustment of vision axes 302a and 302b. Axes 302 a and 302 b are generally parallel and are oriented in the direction of the vehicle. Optical axis 306 , which is perpendicular to the face 303 a of mirror 303 . divides the angle formed by axes 302 a and 302 b into equal angles a and b. Axis 307 , which is perpendicular to axis 302 b and therefore generally parallel to the attachment portion of vehicle body 305 , defines an angle c between axis 307 and mirtor face 303a which is generally equal to angles a and b. A camera or sensor 310 is preferably mounted to the mirror by means of a bracket 299. The camera may be mounted in any desired position to enable the driver to have a clear view of the road while enabling sensor 310 to acquire images of the face of the driver. Bracket 299 may be an adjustable bracket, enabling the camera to bc faced in a desired direction, i.e., toward the driver, or may be at a fixed orientation such that when the mirror is adjusted by drivers of different sizes, the camera continues to acquire the face of the driver. The signal from the camera is communicated to the image processing system, which opcrates as described below, by means of lead wires or the like (not shown in Figs. 18-20).

Figs. 21 and 22 show a rear-view mirror assembly 308 in which sensor 310 is mounted interior to the mirror assembly. Mirror assembly 308 is adapted so that as assembly 308 is adjusted by a driver, sensor 310 remains directed toward the face of the driver. Rear-
view mirror assembly 308 includes a iwo-way mirror 309 having a face 309 a, movably oriented to provide a rear view to the driver. Sensor 310 , which is preferably an electronic mini-camera or MOS sensor with a built-in lens, is affixed to a bracket 311 , is oriented facing the driver using mechanical arrangement that enables sensor 310 to receive an image of the face of the driver when mirror 309 adjusted so that the driver has a rear view of the vehicle. The mechanical arrangement consists of a Cardan type mechanical joint, which causes automatic adjustment of the bracket 311 when the driver when the driver adjusts the rear view mirror so that the receiving face 310 a of sensor 310 receives the image of the face of the driver, i.e., optical axis 310 b remains aligned toward the head of the driver.

Bracket 311 includes rods 312 and 313 that are movably coupled together by a pivot pin 314a (Fig. 21) or a sleeve 314b (Fig. 22). Rod 312 is attached at one end to a mounting portion of the vehicle 305. A pivot pin 315, which preferably consists of a ball and two substantially hemispherical caps, facilitates movement of mirror assembly 308. Rod 312 extends through pivot pin 315, and attaches to rod 313 via a slecve 314 b or another pivot pin 314a. At one end, rod 313 rigidly supports bracket 311 on which sensor 310 is mounted. Rod 313 extends through clamp 316 of mirror assembly 308 via a hollow pivot 317 . Pivot 317 includes a ball having a channel therethrough in which rod 313 is engaged, and which rotates in substantially hemispherical caps supported by clamp 316. The joint constantly maintains a desired angle between mirror 309 and bracket 3 11, thereby permitting normal adjustment of rear-view mirror 309 while bracket 311 adjusts the direction of sensor 310 so that the face 310a of the sensor will receive an image of the face of the driver. If desired, it is foreseen that sensor 310 may be mounted interior to rear-view mirror assembly 308 at a fixed angle relative to the face 309 a of the mirror assembly, provided that sensor 310 is able to receive an image of the face of the driver when the mirror is adjusted to drivers of different sizes. A wide
angle lens inay be mounted to sensor 310 to better enable the sensor to be used under different adjustment circurnstances.

Sensor 310 is connected by means of one or more lead wires to image processor 319. which is preferably an image processing system of the type discussed above and is preferably in the form of an integrated circuit inside rear-view mirror assembly 308. In a preferred embodiment, image processing system 319 is integrally constructed with sensor 310. Alternatively, image processing system 319 may be located exterior to mirror assembly 308 by means of conventional lead wires. While controller 310 is preferably a microprocessor, it is foreseen that controller 310 may be an ASIC or simple controller designed to perform the functions specified herein, particularly if the system is embedded, e.g. contained in a mirror assembly or integral with a vehicle.

Electroluminescent diodes 320 may be incorporated in mirror assembly 308 to illuminate the face of the driver with infrared radiation when ambient light is insufficient for image processing system 319 to determine the blinking characteristics of the driver. When such diodes are in use, sensor 3 IU nust be of the type capatle of receiving infrared radiation. Illumination of electroluminescent diodes 320 may be controlled by controller 42 (Fig. 12) of image processing system 319, if desired. For example, controller 42 may illuminate electroluminescent diodes 320 in the event that the histograms generated hy inage processing system 319 do not contain sufficient useful information to detect the features of the driver's face required, e.g., NBPTS is below a threshold. Electroluminescent diodes 320 may be illuminated gradually, if desired, and may operate in connection with one or more photocells (not shown) that generate a signal as to the ambient lighting near the driver, and which may be used to control electroluminescent diodes 320, either alone or in combination with controller 42 or another control circuit. If desired, an IR or other source of EMF radiation
 IO: ises:-
may be used to illuminate the face of the driver at all times, provided that sensor 310 is compatible with the illumination source. This eliminates many problems that may be associated with the use of ambient lighting to detect drowsiness.

An optional alarm 322, which may be for example a buzer, bell or other notification means, may be activated by controller 42 upon detecting that the driver is falling asleep. All of the components contained in mirror assembly 308, and image processing system 319, are preferably powered by the electrical system of the vehicle.

Image processing system 319 monitors the alertness of the driver by detecting, in real time and on a continucus basis, the duration of the blinks of the driver's eyes and/or intervals between blinks, and by triggering alarm 322 to wake up the driver in the event the driver is detected falling asleep. Image processing system 319 receives an image of the face of the driver from sensor 310. The image may be of the complete face of the driver, or of a selected area of the driver's face that includes at least one eye of the driver. Image processing system 319 is capable of detecting numerous criteria that are associated with blinking eyes. These include any feature of the face that may be used to discern the closing of an eye, including detection of the pupil, retina, white, eyelids, skin adjacent to the eye, and others. The eye may also be detected by detecting either changes in the appearance of the eye when blinking or by detecting motion of the eyelid during blinking.

Referring to Fig. 30, as an initial step, the system of the invention preferahly detects the presence of a driver in the driver's seat (402). This may be accomplished in any number of ways, such as by an electrical weight sensor switch in the driver's seat or by interfacing with a signal generated by the vehicle indicating that the vehicle is in usc in motion, e.g. a speed sensor, a switch detecting that the vehicle is in gear, a switch detecting that closing of the seat belt, etc. Upon detection of such a signal, the system enters into a
search mode for detecting the driver's face or driver's eye(s). Alternatively, since the system is powered by the electrical system of the vehicle, and more preferably by a circuit of the electrical system that is powered only when the vehicle is turned on, the system turns on only when the engine is turned on, and enters into a search mode in which it operates until the face or eye(s) of the driver are detected. Upon detection of a driver in the vehicle (404), a Driver Present flag is set to " 1 " so that controller 42 is aware of the presence of the driver.

As an alternative method of detecting the presence of the driver, if sensor 10 is mounted in a manner that enables (or requires) that the sensor be adjusted toward the face of the driver prior to use, e.g., by adjustment of the rear-view mirror shown in Fig. 21, the system may activate an alarm until the sensor has acquired the face of the driver.

The driver may also be detected by using the image processing system to detect the driver entering the driver's sear. This assumes that the image processing system and sensor 10 are already powered when the driver enters the vehicle, such as by connecting the image processing system and sensor to a circuit of the vehicle electrical system that has constant power. Alternatively, the system may be powered upon detecting the vehicle door open, etc. When the driver enters the driver's seat, the image from sensor 10 will be characterized by many pixels of the image being in motion ($\mathrm{DP}=1$), with CO having a relatively high value, moving in a lateral direction away from the driver's door. The pixels will also have hue characteristics of skin. In this embodiment, in a mode in which the system is trying to detect the presence of the driver, controller 42 sets the validation units to detect movement of the driver into the vehicle by setting the histogram formation units to detect movement characteristic of a driver entering the driver's seat. Most easily, controller 42 may' set the validation units to detect $D P=1$, and analyze the histogram in the histogram formation
unit for DP to detect movement indicative of a person entering the vehicle, e.g., NBPTS exceeding a threshold.

Fig. 23 shows the field of view 323 of sensor 310 between directions 323 a and 32.3 b where the head I of the driver is within, and is preferably centered in, conical field 323. Field 323 may be kept relatively narrow, given that the movements of the head I of the driver during driving are limited. Limitation of field 23 improves the sensitivity of the system since the driver's face will be represented in the images received tiom sensor 10 by a greater number of pixels, which improves the histogram formation process discussed below.

In general the number of pixels in motion will depend upon the field of view of the sensor. The ratio of the number of pixels characteristic of a driver moving into the vehicle to the total number of pixels in a frame is a function of the size of the field of vision of the sensor. For a narrow field of view (a smaller angle between 323a and 323b in Fig. 23), a greater number, and possibly more than 50% of the pixels will be "in movement" as the driver enters the vehicle, and the threshold will be greater. For a wide field of view (a greater angle between 323a and 323b in Fig. 23), a smaller number of pixels will be "in movement" as the driver enters the vehicle. The threshold is set corresponding to the particular location and type of sensor, and based upon other characteristics of the particular installation of the system. If NBPTS for the DP histogram exceeds the threshold, the controller has detected the presence of the driver.

As discussed above, other characteristics of the driver entering the vehicle may be detected by the system, including a high CO , hue, direction, etc., in any combinations, as appropriate, to make the system more robust. For example, controller 42 may set the linear combination units of the direction histogram formation unit to detect pixels moving into the vehicle, may set the linear combination unit for CO to detect high values, and/or may ser the
linear combination unit for hue to detect hues characteristic of human skin. Controller 42. may then set the validation units to detect DP, CO, hue, and/or direction, as appropriate. The resultant histogram may then be analyzed to determine whether NBPTS exceeds a threshold, which would indicate that the driver has moved into the driver's seat. It is foreseen that characteristics other than NBPTS of the resultant histogram may be used to detect the presence of the driver, e.g., RMAX exceeding a threshold.

When the driver has been detected, i.e., the Driver Present flag has been set to " 1 ", the system detects the face of the driver in the video signal and eliminates from further processing those superfluous portions of the video signal above, below, and to the right and left of the head of the driver. In the image of the drivers head, the edges of the head are detected based upon movements of the head. The edges of the head will normally be characterized by $\mathbf{D P}=1$ due to differences in the luminance of the skin and the background, even due to minimal movements of the head while the head is still. Movement of the head may be further characterized by vertical movement on the top and bottom edges of the head, and left and right movement on the vertical edges of the head. The pixels of the head in movement will also be characterized by a hue corresponding to human skin and relatively slow movement as compared to eyelid movement for example. Controller 42 preferably sets the linear combination unit of $D P$ to detect $D P=1$ and sets the linear combination unit for direction to detect vertical and horizontal movement only (406). Optionally, the linear combination units for velocity and hue may be set to detect low velocities and human skin hues to make the system more robust. Also, the lincar combination unit for CO may be set to eliminate the very fast movements characteristic of eye blinking in order to prevent the eyes from being considered at this stage of processing during which the head is being detected. Finally, controller 42 sets the validation units for DP, direction, and x and y position to be
"on" (406). Optionally, the validation units for velocity, hue, and CO may be set "on" if these criteria are being detccted.

As illustrated in Fig. 24, the pixels having the selected characteristics are formed into histograms 324 x and 324 y along axes $\mathrm{O} x$ and $\mathrm{O} y$, i.e., horizontal and vertical projections, respectively. Slight movernents of the head of the driver having the characteristics selected are indicated as ripples $327 \mathrm{a}, 327 \mathrm{~b}, 327 \mathrm{c}$ and 327 d , which are shown in line form but which actually extend over a small area surrounding the periphery of the head. Peaks 325 a and $325 b$ of histogram $324 x$, and $325 c$ and $325 d$ of histogram $324 y$ delimit, by their respective coordinates $326 \mathrm{a}, 326 \mathrm{~b}, 326 \mathrm{c}$ and 326 d , a frame bounded by straight lines $Y a, Y \hbar, X c, X d$, which generally cortespond to the area in which the face V of the driver located. Controller 42 reads the histograms $324 x$ and $324 y$ from the histogram formation units, preferably during the blanking interval, and detects the locations of peaks 325a, 325b, 325c and $325 \mathrm{~d}(408)$. In order to ensure that the head has been identified, the distance between peaks 325 and $325 b$ and between peaks $325 b$ and 325 c are preferably tested to fall with a range corresponding to the normal ranges of human head sizes.

Once the location of coordinates $326 a, 326 b, 326 c$ and $326 d$ has been established, the area surrounding the face of the driver is masked from further processing (410). Referring to Fig. 25, this is accomplished by having controller 42 set XMIN, XMAX, YMIN and YMAX to correspond to $X c, X d, Y a$, and Yb respectively. This masks the crosshatched area surrounding face V from further consideration, which helps to climinate background movement from affecting the ability of the system to detect the cye(s) of the driver. Thus, for subsequent analysis, only pixels in central area Z , framed by the lines $X c$, $X d, Y a, Y h$ and containing face V are considered. As an alternative method of masking the area outside central arca Z, controller 42 may set the semi-graphic memory to mask off these
areas. As indicated above, the semi-graphic memory may be used to mask off selected pixels of the image in individual or small rectangular groups. Since head V is not rectangular, use of the semi-graphic memory enables better masking around the rounded edges of the face to better eliminate background pixels from further consideration.

The process of detecting the head of the driver and masking background areas is repeated at regular intervals, and preferably once every ten frames or less. It is foreseen that this process may be repeated every frame, if desired, particularly if more than one set of histogram formation units is available for use. Controller 42 may also compute average values over time for coordinates $326 a, 326 b, 326 c$ and $326 d$ and use these values to set mask coordinates $X c, X d, Y a, Y b$, if desired. This will establish a nearly fixed position for the frame over time.

Once the frame has been established, a Centered-Face flag is set to "l" (412), and controller 42 initiates the process of reducing the frame size to more closely surround the eyes of the driver. Referring to Fig. 26, in which frame Z denotes the area bounded by $Y a$, $Y b, X c, X d$ determined in the prior step, controller 42 initially uses the usual anthropomorphic rutiv between the zone of the eyes and the entire face for a human being, especially in the vertical direction, to reduce the area under consideration to cover a smaller zone Z ' bounded by lines $Y^{\prime} a, Y^{\prime} h, X^{\prime} c$ and $X^{\prime} d$ that includes the eyes U of the driver. Thus, the pixels in the outer cross-hatched area of Fig. 27 is eliminated from consideration and only the area within frame Z^{*} is further considered. This is accomplished by having controller 42 set XMIN, XMAX, YMIN and YMAX to correspond to $X^{\prime} c, X^{\prime} d, Y^{\prime} a$, and $Y^{\prime} b$ respectively (414). This masks the pixcls in the area outside Z^{\prime} from further consideration. Thus, for subsequent analysis, only pixels in area Z^{\prime} containing eyes U are considered. As an alternative method of masking the area outside arca Z^{\prime}, controller 42 may sct the semi-graphic memory to mask off
these areas．It is forescen that an anthropomorphic ratio may be used to set framc Z^{\prime} around only a single eye，with detection of blinking being generally the same as described belnw，but for one eye only．

Once the area Z^{\prime} is determined using the anthropomorphic ratio，a Rough Eye－ Centering flag is set to＂ 1 ＂（416），and controller 42 performs the step of analyzing the pixels within the area Z^{\prime} to identify movement of the eyelids．Movement of eyelids is characterized by criteria that include high speed vertical movement of pixels with the huc of skin．In general，within the area Z^{\prime} ，formation of histograms for $\mathrm{DP}=1$ may be sufficient to detect eyelid movement．This detection may be made more robust by detection of high values of CO ，by detection of vertical movement，by detection of high velocity，and by detection of hue As an alternative to detection of hue，movement of the pixels of the eye may be detected by detecting pixels with $\mathrm{DP}=1$ that do not have the hue of skin．This will enable detection of changes in the number of pixels associated with the pupil，retina，iris，etc．

Controller 42 sets the linear combination unit for DP to detect $\mathrm{DP}=1$ and sets the validation units for DP．and x and y position to be on（418）．Optionally，the linear combination units and validation units may be set to detect other critcria associated with eye movement，such as CO，velocity，and hue．Initially，controller 42 also sets XMIN，XMAX， YMIN and YMAX to correspond to $X^{\prime} c, X^{\prime} d, Y^{\prime} a$ ，and $Y^{\prime} b$ respectively．Referring to Fig．27， a histograin is formed of the selected criteria，which is analyzed by controller 42 （420）．If desired．a test is performed to ensure that the eyes have been detected．This test may，for example，consist of ensuring that NBTS in the histogram exceeds a threshold e．g．， 20% of the total number of pixels in the frame $Y^{\prime} a, Y^{\prime} b, X^{\prime} c, X^{\prime} d$ ．Once the eycs have been detected an Eye－Detected flag is set to＂ 1 ＂（422）

Fig. 27 illustrates histogram $28 x$ along axis $O x$ and histogram $28 y$ along axis Oy of the pixels with the selected criteria corresponding to the driver's eyelids, preferably DP-1 with vertical movement. Controller 42 analyzes the histogram and determines peaks 29a, 29b, 29c and 29d of the histogram. These peaks are used to determine horizontal lines $X^{\prime \prime} c$ and $X^{\prime \prime} d$ and vertical lines $Y^{\prime \prime} a$ and $Y^{\prime \prime} b$ which define an area of movement of the eyelids Z", the movements of the edges of which are indicated at 30a and 30b for one eye and 30c and 30 d for the other eye (424). The position of the frame bounded by $Y^{\prime \prime} a, Y^{\prime \prime} b, X^{\prime \prime} c, X^{\prime \prime} d$ is preferably determined and updated by time-averaging the values of peaks $29 \mathrm{a}, 29 \mathrm{~b}, 29 \mathrm{c}$ and 29d, preferably every ten frames or less. Once the eyes have been detected and frame $Z^{\prime \prime}$ has been established an Eye Centered flag is set to " 1 " (426) and only pixels within frame Z " are thereafter processed.

Controller 42 then determines the lengths of the eye blinks, and, if applicable, the time interval between successive blinks. Fig. 28 illustrates in a three-dimensional orthogonal coordinate system: $O Q$, which corresponds to the number of pixels in area $\mathrm{Z}^{\prime \prime}$ having the selected criteria; To, which corresponds to the time interval between successive blinks; and $\mathrm{O} \%$ which corresponds to the length of each blink. From this information, it is possible to determine when a driver is falling asleep. Two successive blinks Cl and C 2 are shown on Fig. 28.

Fig. 29A illustrates on curve C the variation over time of the number of pixels in each frame having the selected criteria, e.g., $\mathrm{DP}=1$, wherein successive peaks $\mathrm{P} 1, \mathrm{P} 2, \mathrm{P} 3$ correspond to successive blinks. This information is determined by controller 42 by reading NBPTS of the x and/or y histogram formation units. Alternatively, controller 42 may analyze the x and/or y histograms of the histogram formation units (Fig. 27) to detect peaks 29a and

29 b and/or 29c and 29d, which over time will exhibit graph characteristics similar to those shown in Fig. 29A.

Controller 42 analyzes the data in Fig. 29A over time to determine the location and timing of peaks in the graph (428). This may be done, for example, as shown in Fig. 29B, by converting the graph shown in Fig. 29A into a binary data stream, in which all pixels counts over a threshold are set to " 1 ", and all pixel counts below the threshold are set to " 0 " (vertical dashes 31), in order to convert peaks P1, P2. P3 to framed rectangles R1, R2 R3, respectively. Finally, Fig. 29B shows the lengths of each blink (5,6 , and 5 frames respectively for blinks $\mathrm{P} 1, \mathrm{P} 2$ and P 3) and the time intervals (14 and 17 frames for the intervals between blinks P 1 and P 2 , and P 2 and P 3 respectively). This information is determined by controller 42 through an analysis of the peak data over time.

Finally, controller 42 calculates the lengths of successive eye blinks and the interval between successive blinks (430). If the length of the blinks exceeds a threshold, e.g., 350 ms , a flag is set to " 1 " indicating that the blink threshold has been exceeded. If the time interval between successive blinks is found to vary significantly over time, a flag is set to " 1 " indicting a variable intervals between blinks. Upon setting the first flag, which indicates that the driver is blinking at a rate indicative of falling asleep, controller 42 triggers alarm 322 for waking up the driver. The second flag may be used either to generate an alarm in the same manner as with the first flag, or to reinforce the first flag to, for example, increase the alarm sound level.

Figs. 31-36 show an alternative method by which the generic image processing system may be used to detect a driver falling asleep. Initially, controller 42 is placed in a search mode (350), in which controller 42 is scans the image to detect one or more characteristics of the face, and preferably the nostrils of the nosc. Nostrils are generally

shadowed, and as such are usually defined by low luminance. Referring to Fig. 31, the area of the image is broken up into a number of sub-images 352 , in this case six, labeled A-F, which are sequentially analyzed by controller 42 to locate the nostrils. As shown, each of the sub-images 352 preferably overlaps each adjacent sub-image by an amount 353 equal to at least the normal combined width of the nostrils and the spacing therebetween to minimize the liketihood of missing the nostrils while in the search mode.

Controller 42 sets XMIN, XMAX, YMIN, and YMAX to correspond to the first sub-image $A(354)$. Controller 42 then sets the registers 106 in the luminance linear combination unit to detect low luminance levels (356). The actual luminance level selected will vary depending upon various factors, such as ambient lighting, time of day, weather conditions, etc. Keeping in mind that controller 42 is able to access the histogram calculated for luminance from histogram formation unit 24 , controller 42 may use a threshold or other desired technique to select the desired luminances to search for the nostrils, e.g., selecting the lowest 15% of luminance values for consideration, and may adapt the threshold as desired. Controller 42 also sets the validation units for luminance and x and y histogram on (358), thereby causing x and y histograms to be formed of the selected low luminance levels. Controller 42 then atraly\%es the x and y direction histograms to identify characteristics indicative of the nostrils, as discussed below (360). If nostrils are not identified (362) controller 42 repeats this process on the next sub-image, i.c., sub-image B, and each subsequent sub-image, until nostrils are identified, repeating the process starting with subimage A if required. Each sub-image is analyzed by controller 42 in a single frame. Accordingly, the nostrils may generally be acquired by the system in less than six frames. It is foreseen that additional sub-images may be used. if desired. It is also foreseen that the area in which the sub-images are searched may restricted to an area in which the nostrils are most
likely to be present, either as determined from past operation of the system, or by use of an anthropomorphic model. For example, the outline of the head of the driver may be determined as described above, and the nostril search may then be restricted to a small subarea of the image. It is also foreseen that the entire image may be search at once for the nostrils, if desired.

While the invention is being described with respect to identification of the nostrils as a starting point to locating the eyes, it is foreseen that any other facial characteristic, e.g., the nose, ears, eyebrows, mouth, etc., and combinations thereof, may be detected as a starting point for locating the eyes. These characteristics may be discerned from any characteristics capable of being searched by the system, including CO, DP, velocity, direction, luminance, hue and saturation. It is also foreseen that the system may locate the eyes directly, e.g., by simply searching the entire image for $\mathrm{DP}=1$ with vertical movement (or any other searchable characteristics of the eye), without the need for using another facial criteria as a starting point. In order to provide a decalled view of the ayo while ennobling detection of the head or other ficiel churneterstic of the driver, it to foresoon that mepante seasors may be used for each purpose.

Fig. 32 shows sample x and y histograms of a sub-image in which the nostrils are located. Nostrils are characterized by a peak 370 in the y-direction histogram, and two peaks 372 and 374 in the x-direction histogram. Confirmation that the nostrils have been identified may be accomplished in several ways. First, the histograms are analyzed to ensure that the characteristics of each histogram meets certain conditions. For example, NBPTS in each histogram should exceed a threshold associated with the normal number of pixels detectable for nostrils. Also, RMAX in the y histogram, and each peak of the x histogram should exceed a similar threshold. Second, the distance between nostrils d is fairly constant. The x histogram is analyzed by controller 42 and d is measured to ensure that it falls within a desired range. Finally, the width of a nostril is also fairly constant, although subject to
variation due to shadowing effects. Each of the x and y histograms is analyzed by controller 42 to ensure that the dimensions of each nostril fall within a desired range. If the nostrils are found by controller 42 to meet these criteria, the nostrils have been acquired and the search mode is ended. If the nostrils have not been acquired, the search mode is continued. Once the nostrils are accuired, the \times position of the center of the face (position $d / 2$ within the subimage under consideration) is determined, as is the y location of the nostrils in the image (POSRMAX of the y histogram) (364).

In the present example, only a single eye is analyzed to determine when the driver is falling asleep. In this case the shadow of the eye in the open and closed positions is used to determine from the shape of the shadow whether the eye is open or closed. As discussed above, for nighttime applications, the invention is preferably used in combination with a shortwave IR light source. For the presently described example, the IR light source is preferably positioned above the driver at a position to cast a shadow having a shape capable
 thanges of the diver rolative to tha smsor.
Referring to Fig. 32, having determined the location of the nostrils 272 of the driver having a center position X_{N}, Y_{N}, a search box 276 is established around an eye 274 of the driver (366). The location of search box 276 is set using an anthropomorphic model, wherein the spatial relationship between the eyes and nose of humans is known. Controller 42 sets XMIN, XMAX, YMIN, and YMAX to search within the area defined by search box 276. Controller 42 further scts the luminance and x and y direction histograms to be on, with the linear combination unit for luminance set to detect low histogram levels relative to the rest of the image, e.g., the lowest 15% of the luminance levels (368). As a confirmation of the detection of the nostrils or other facial feature being detected, search box 276, which is established around an eye 274 of the driver using an anthropomorphic model, may be
analyzed for characteristics indicative of an eye present in the search box. These characteristics may include, for example, a moving eyelid, a pupil, iris or cornea, a shape corresponding to an eye, a shadow corresponding to an eye, or any other indica indicative of an eye. Controller 42 sets the histogram formation units to detect the desired critcria. For example. Fig. 36 shows a sample histogram of a pupil 432 . in which the linear combination units and validation units are set to detcet pixels with very low luminance levels and high gloss that are characteristic of a pupil. The pupil may be verified by comparing the shapes of the x and y histograms to known characteristics of the pupil, which are generally symmetrical, keeping in mind that the symmetry may be affected by the angular relationship between the sensor and the head of the driver

Upon detection of the desired secondary facial criteria, identification of the nostrils is confirmed and detection of eye openings and closings is initiated. Alternatively, the criteria being detected to confirm identification of the nostrils may be eye blinking using the technique described bclow. If no blinking is detected in the search box, the search mode is reinitiated.

Blinking of the eye is detected during a tracking mode 400. In the tracking mode controller 42 sets XMIN, XMAX, YMIN, and YMAX to search within the area defined by search box 276 . Controller 42 further sets the luminance and x and y direction histograms to be on, with the linear combination unit for luminance set to detect low histogram levels relative to the rest of the image, e.g., the lowest 15% of the luminance levels (368), in order to detect shadowing of the eye. During the tracking mode, the system monitors the location of nostrils 272 to detect movement of the head. Upon detected movement of the head, and a resultant shift in the position of X_{N}, Y_{N}, search box 276 is shifted according to the anthropomorphic model to retain the search box over the eye of the driver.

Fig. 33 shows the shapes of the x and y histograms 376,378 with the eye open, and Fig. 34 shows the shapes of the x and y histograms 380,382 with the eye closed. The shapes of the shadows, and especially the shape of the shadow with the eye closed will vary depending upon the location of the camera and the location of the light source creating the shadow. e.g., the sun or the IR light source. In any case, the widrh $\mathrm{MAX}_{x}-\mathrm{MIN}_{\mathrm{r}}$ and the height MAX $_{y}-$ MIN $_{y}$ of each histogram will generally be significantly greater for an open eye than for a closed eye. Controller 42 analyzes the width and height of each histogram to determine when the eye is open and when it is closed (382). An open eye may be determined by any number of characteristics of the x and y histograms, including width MAX $_{x}-$ MIN $_{x}$ and height MAX $_{y}$ - MIN N_{v} exceeding thresholds, NBPTS of each histogram exceeding a threshold, RMAX of each histogram excecding a threshold, change in position of POSRMAX as compared to a closed eye, etc. Similarly, a closed eye may be determined by any number of characteristics of the x and y histograms, including width $\mathrm{MAX}_{\mathrm{x}}-\mathrm{MIN}_{\mathrm{x}}$ and height MAX, - MIN, being below thresholds, NBPTS of each histogram being below a threshold, RMAX of each histogram being below a threshold, change in postion of POSRMAX as compared to an open eye, etc., In a preferred embodiment, controller 42 calculates the width $\mathrm{MAX}_{4}-\mathrm{MIN}_{\mathrm{x}}$ and height MAX X_{y} - MIN N_{y} of cach histogram and utilizes thresholds to determine whether the eye is open or closed. If each width MAX $_{x}-$ MIN $_{x}$ and height MAX - MIN $_{y}$ exceed thresholds, the eye is determined to be open. If each of width MAX $_{x}-$ MIN $_{x}$ and height MAX $_{y}$ - MIN ${ }_{r}$ fall below thresholds (which may be different from the thresholds used to determine an open cyc), the eye is determined to be closed (384). MAX and MIN are preferably the MAX and MIN calculated in the histogram formation units. On the other hand, MAX and MIN may be other thresholds, e.g., the points on the histograms corresponding to RMAX/2 or some other threshold relative to RMAX.

Controller 42 analyzes the number of frames the cye is open and closed over time to determine the duration of each blink and/or the interval between blinks (386). Using this information, controller 42 determines whether the driver is drowsy (388). Upon . • determining that the driver is drowsy, controller 42 generates an alarm to awaken the driver (390) or another signal indicative that the driver is sleeping

Controller 42 constantly adapis operation of the system, especially in varying lighting levels. Controller 42 may detect varying lighting conditions by periodically monitoring the luminance histogram and adapting the gain bias of the sensor to maintain as broad a luminance spectrum as possible. Controller 42 may also adjust the thresholds that are used to determine shadowing, etc. to better distinguish eye and nostril shadowing from noise, e.g. shadowing on the side of the nose, and may also adjust the sensor gain to minimize this effect. If desired contro!ler 42 may cause the histogram formation units to form a histogram of the iris. This histogram may alsu be monitored for consistency, and the various thresholds used in the system adjusted as necessary.

It will be appreciated that while the invention has been described with respect to detection of the eyes of a driver using certain criteria, the invention is capable of detecting any criteria of the eyes using any possible measurable characteristics of the pixels, and that the characteristics of a driver falling asleep may be discerned from any other information in the histograms formed by the invention. Also, while the invention has been described with respect to detecting driver drowsiness, it is applicable to any application in which drowsiness is to be detected. More generally, although the present invention has been described with respect to certain embodiments and examples, variations exist that are within the scope of the invention as described in the following claims.

CLAIMS

1. A process of detecting a person falling asleep, the process comprising the steps of:
acquiring an image of the face of the person;
selecting pixels of the image having characteristics corresponding to characteristics of at least one eye of the person;
forming at least one histogram of the selected pixels;
analyzing the at least one histogram over time to identify each opening and closing of the eye; and
determining from the opening and closing information on the cye, characteristics indicative of a person falling asleep.
2. The process according to claim 1 further comprising the step of identifying a sub-area of the image comprising the at least one eye prior to the step of selecting pixels of the image having characteristics corresponding to characteristics of at least one eye, and wherein the step of selecting pixels of the image having characteristics corresponding to characteristics of at least one cyc comprises selecting pixels within the subarea of the image.
3. The process according to claim 2 wherein the step of identifying a subarea of the image comprising the at least one eye comprises the steps of:
identifying the head of the person in the image; and
identifying the sub-area of the image using an anthropomorphic model.
4. The process according to claim 3 wherein the step of identifying head of the person in the image comprises the steps of:
selecting pixels of the image having characteristics corresponding to edges of the head of the person;
forming histograms of the selected pixels projected onto orthogonal axes; and analyzing the histograms of the selected pixels to identify the edges of the head of the person.
5. The process according to claim 2 wherein the step of identifying a subarea of the image comprising the at least one eye comprises the steps of:
identifying the location of a facial characteristic of the person in the image;
and
identifying the sub-area of the image using an anthropomorphic modcl and the location of the facial characteristic.
6. The process according to claim 5 wherein the step of identifying the location of a facial characteristic of the person in the image comprises the steps of:
sclecting pixels of the image having characteristics corresponding to the facial characteristic;
forming histograms of the selected pixels projected onto orthogonal axes; and analyzing the histograms of the selected pixels to identify the position of the facial characteristic in the image.
7. The process according to claim 6 wherein the facial characteristic is the nostrils of the person, and wherein the step of selecting pixels of the image having characteristics corresponding to the facial characteristic comprises selecting pixels having low luminance levels.
8. The process according to claim 7 further comprising the step of analyzing the histograms of the nostril pixels to determine whether the spacing between the NYBOCSOT:231093 I
nostrils is within a desired range and whether the dimensions of the nostrils fall within a desired range.
9. The process according to claim 1 wherein:
the step of selecting pixels of the inage having characteristics corresponding to characteristics of at least one eye of the person comprises selecting pixels having low luminance levels corresponding to shadowing of the eye; and
wherein the step analyzing the at least one histogram over time to identify each opening and closing of the eye compriscs analyzing the shape of the eye shadowing to determine openings and closings of the eye.
10. The process according to claim 9 wherein the step of forming at least one histogram of the selected pixels comprises forming histograms of shadowed pixets of the eye projected onto orthogonal axes, and wherein the step of analyzing the shape of the eye shadowing comprises analyzing the width and height of the shadowing.
11. The process according to claim 1 wherein:
the step of selecting pixels of the image having characteristics corresponding to characteristics of at least one eye of the person comprises selecting pixels in movement corresponding to blinking; and
wherein the step analyzing the at least one histogram over time to identify each opening and closing of the eye comprises analyzing the number of pixels in movement over time to detcrmine openings and closings of the eye.
12. The process according to claim 11 wherein the step of selecting pixels of the image having characteristics corresponding to characteristics of at least onc cye of the person comprises selecting having characteristics selected from the group consisting of i)

$\mathrm{DP}=1$, ii) CO indicative of a blinking eyelid, iii) velocity indicative of a blinking eyelid, and iv) up and down movement indicative of a blinking eyelid.
13. The process according to claim 5 wherein the step of identifying a facial characteristic of the person in the image comprises the step of searching sub-images of the image to identify the facial characteristic.
14. The process according to claim 7 whercin the step of identifying a facial characteristic of the person in the inage comprises the step of searching sub-images of the image to identify the nostrils.
15. The process according to claim 13 wherein the facial characteristic is a first facial characteristic and further comprising the steps of:
using an anthropomorphic model and the location of the first facial characteristic to select a sub-area of the image containing a second facial characteristic; selecting pixels of the image having characteristics corresponding to the second facial characteristic; and
analyzing the histograms of the selected pixels of the second facial characteristic to confirm the identification of the first facial characteristic.
16. All apparatus for detecting a person falling asleep, the apparatus comprising:
a sensor for acquiring an image of the face of the person, the image comprising pixels corresponding to the eye of the person;
a controller; and .
a histogram formation unit for forming a histogram on pixels having selected characteristics,
the controller controlling the histogram formation unit to select pixels of the image having characteristics corresponding to characteristics of at least one eye of the person and to form a histogram of the selected pixels, the controller analyzing the histogram over time to identify each opening and closing of the eye, and determining from the opening and closing information on the eye, characteristics indicative of a person falling asleep.
17. The apparatus according to ciaim 16 wherein the controller interacts vith the histogram formation unit to identify a sub-area of the image comprising the at least one eye, and the controller controls the histogram formation unit to select pixels of the image having characteristics corresponding to characteristics of at least one eye only within the subarea of the image.
18. The apparatus nccording to claim 17 wherein:
the controller interacts with the histogram formation unit to identify the head of the person in the image; and
the controller identifies the sub-area of the image using an anthropomorphic model.
19. The apparatus according to claim 18 wherein:
the histogram formation unit selects pixels of the image having characteristics corresponding to edges of the head of the person and forms histograms of the selected pixels projected onto orthogonal axes; and the controller analyzes the histogranss of the selected pixels to identify the edges of the head of the person.
20. The apparatus according to claim 17 wherein:
the controller interacts with the histogram formation unit to identify the location of a facial characteristic of the person in the image; and

the controller identifies the sub-area of the image using an anthropomorphic model and the location of the facial characteristic.
21. The apparatus according to claim 20 wherein:
the histogram formation unit selects pixels of the image having characteristics corresponding to the facial characteristic and forms histograms of the sclected pixels projected onto orthogonal axes;
the controller analyzes the histograms of the selected pixels to identify the position of the facial characteristic in the image.
22. The apparatus according to claim 21 wherein the facial characteristic is the nostrils of the person, and wherein the histogram formation unit selects pixels of the image having low luminance levels corresponding to the luminance level of the nostrils.
23. The apparatus according to claim 22 wherein the controller analyzes the histograms of the nostril pixcls to determine whether the spacing between the nostrils is within a desired range and whether the dimensions of the nostrils fall within a desired range.
24. The apparatus according to claim 16 wherein:
the histogram formation unit selects pixels of the image having low luminance levels corresponding to shadowing of the eye; and
wherein the controller analyzes the shape of the eye shadowing to determine operings and closings of the eye.
25. The apparatus according to claim 24 wherein histogram formation unit forns histograms of shadowed pixe!s of the eye projected onto orthogonal axes, and wherein the controller analyzes the width and height of the shadowing to determine openings and closings of the eye.
26. The apparatus according to claim 16 wherein:
the histogram formation unit selects pixcls of the image in movement corresponding to blinking; and
the controller analyzes the number of pixels in movement over time to determine openings and closings of the eye.
27. The apparatus according to claim 26 wherein the histogram formation units selects pixels of the image having characteristics of movement corresponding to blinking, such characteristics being selected from the group consisting of i) $\mathrm{DP}=1$, ii) CO indicative of a blinking cyelid, iii) velocity indicative of a blinking eyelid, and iv) up and down movement indicative of a blinking eyelid.
28. The apparatus according to claim 20 wherein the controller interacts with the histogram formation unit to search sub-images of the image to identify the facial characteristic.
29. The apparatus according to claim 22 wherein the controller interacts with the histogram formation unit to search sub-images of the image to identify the nostrils.
30. The apparatus according to claim 28 wherein the facial characteristic is a first facial characteristic and further comprising:
the controller using an anthropomorphic model and the location of the first facial characteristic to cause the histogram formation unit to select a sub-area of the image containing a second facial characteristic, the histogram formation unit selecting pixels of the image in the sub-area having characteristics corresponding to the second facial characteristic and forming a histogram of such pixels; and
the controller analyzing the histogram of the selected pixels corresponding to the second facial characteristic to confirm the identification of the first facial characteristic.
31. The apparatus according to claim 16 wherein the sensor is integrally constructed with the controller and the histogram formation unit.
32. The apparatus according to claim 16 further comprising an alarm, the controller operating the alarm upon detection of the person falling asleep.
33. The apparatus according to claim 16 further comprising an illumination source. the sensor being adapted to vicw the person when illuminated by the illumination source.
34. The apparatus according to claim 33 wherein the illumination source is a source of IR radiation.
35. A rear-view mirror assembly for a vehicle which comprises:
a rear-vjew mirror; and
the apparatus according to claim 16 mounted to the rear-view mirror.
36. The rear-view mitror assembly according to claim 35 further comprising a bracket attaching the apparatus to the rear-view mirror.
37. The rear-view mirror assembly according to claim 35 further comprising a housing having an open side and an interior, the rear-view mirror being mounted to the open side of the housing, the rear view mirror being see-through from the interior of the housing to an exterior of the housing, the apparatus being mounted interior to the housing with the sensor directed toward the rear-view mirror.
38. The rear-view mirror assembly according to claim 37 further comprising a joint attaching the apparatus to the rear-view mirror assembly, the joint adapted to maintain the apparans in a position facing a driver of the vehicle during adjustment of the mirror assembly by the driver.
39. The rear-view mirror assembly according to claim $\mathbf{3 5}$ further comprising a source of illumination directed toward the person, the sensor being adapted to view the person when illuminated by the source of illurnination.
40. The rear-view mirror assembly according to claim 35 further comprising an alarm, the controller operating the alarm upon detection of the person falling asleep.
41. A rear-view mirror assembly which comprises:
a rear-view mirror; and
the apparatus according to claim 16, the sensor being mounted to the rear-view mirror, the controller and the histogram formation unit being located remote from the sensor.
42. A vehicle comprising the apparatus according to claim 16.
43. A process of detecting a feature of an eye, the process comprising the steps of:
acquiring an image of the face of the person, the image comprising pixels corresponding to the feature to be detected;
selccting pixels of the image having characteristics corresponding to the fcature to be detected;
forming at least one histogram of the selected pixels;
analyzing the at least one histogram over time to identify characteristics indicative of the feature to be detected.
44. The process according to claim 43 wherein the feature is the iris, pupil or comea.
45. An apparatus for detecting a feature of an eye, the apparatus comprising:
a sensor for acquiring an image of the eyc, the image comprising pixels corresponding to the feature to be detected;
a controller; and
a histogram formation unit for forming a histogram on pixels having selected characteristics,
the controller controlling the histogram formation unit to select pixcls of the image having characteristics corresponding to characteristics of at least one eye of the person and to form a histogram of the selected pixels, the controller analyzing the histogram over time to identify each opening and closing of the eye, and determining from the opening and closing information on the eye, characteristics indicative of a person falling asleep.

ABSTRACT OF THE DISCLOSURE

In a process of detecting a person falling asleep, an image of the face of the pursun is asquired. Pixcls of the image having characteristics corresponding to an we of the person are selected and a histogram is formed of the selected pixels. The histogram is analyzed over time to identify each opening and closing of the eye, and characteristics indicative of the person falling asleep are determined. A sub-area of the image including the eye may be determined by identifying the head or a facial characteristic of the person, and then identifying the sub-area using an anthropomorphic model. To determine openings and closings of the eyes, histograms of shadowed pixels of the eye are analyzed to determined the width and height of the shadowing, or histograms of movement corresponding to blinking are analyzed. An apparatus for detecting a person falling asleep includes a sensor for acquiring an image of the facc of the person, a cuntruller, und a histogram formation unit for forming a histogram on pixels having selected characteristics. Also disclosed is a rear-view mirror assembly incorporating the apparatus.

FIGURE 1


``` JAN 13 ' 99 18: 33 FR S8S 599 5TH FL 2128485245 TO 1109003046100002 P. 82
```

\qquad

``` \(2: 284 i 5245\)
```


FIC. 1
i.

FiG. 2


``` JAN 13 .99 18:33 FR 585599 5TH FL 12128485245 TO 1109003046180002 P. 04
```

```
                                    21284!5245
```

$\begin{array}{cc}\vdots & \\ \vdots \\ \vdots\end{array}$

FIG. 4

FIG. 6

15:45_JAN 13 ' 99 18:34 FR 585599 5TH FL 4128485245 TO 1109303046100082 F. 05

 $21284 \hat{\text { E }} 5245$FIG. 7

'

FIG. 8
$\dot{\alpha}$.

FIC. 11 JAN 13 ' 99 18:34 FR 585599 5TH FL $\quad 4128485245$ TO $11090 \pi 3046100002$ P. 0 ?

FIG. 12
is.
 JAN 13 ' 99 18:35 FR S8S 595 5TH FL. 1128485245 TO 1103003846180102 P. 88

2128485245

FTG. 13


```
    \ddots JAN 13'99 18:35 FR S8S 599 5TH FL \12 848 5245 T0 1109003045100002 P.09
        2128485245
```


FIC. 14


```
    JAN 13'99 18:35 FR S8S 599 5TH FL II12 848 5245 TO 11090%3046100082 P. 10


FIG. 15A

- \(\cdot\)
oviv: \(\qquad\)

 \(21284 \varepsilon 5245\)

\(\ddot{*}\).

``` JAN 13 ' 99 18: 35 FR 585599 STH FL LI2 8485245 to 1109043046100082 P. 12 \(2: 23485245\)
```




Fig. 21
i.,

i. .



Fig. 25


Fig. ${ }^{2} 6$


Fig. 27



```
- JAN 13 '99 18:37 FR S&S 599 5TH FL 1212 848 5245 TO 11090a3046100002 P. 16
2128485245
```



Fig. 28



Fig. 29


Fig. 30
$583788 . p \mathrm{pl}$




Fig. 35


```
 JAN 13'99 19:38 FR S&S 599 5TH FL L212 848 5245 TO 11050n3046100082 P. 21
 212848 5245
```


$\square$
FIG. 36
i.
$\stackrel{\square}{\square}$
i.,



## Box No．V DESIGNATION OF STATES

The following designations are hereby made under Rule 4．9（a）（mark the applicable check－boxes；at least one must be marked）：

## Regional Patent

（ AP ARIPO Patent：GH Ghana，GM Gambia，KE Kenya，LS Lesotho，MW Malawi，SD Sudan，SZ Swaziland，UG Uganda， ZW Zimbabwe，and any other State which is a Contracting State of the Harare Protocol and of the PCT
［D EA Eurasian Patent：AM Armenia，AZ Azerbaijan，BY Belarus，KG Kyrgyzstan，KZ Kazakhstan，MD Republic of Moldova，RU Russian Federation，TJ Tajikistan，TM Turkmenistan，and any other State which is a Contracting State of the Eurasian Patent Convention and of the PCT

## 酋 EP

 DK Denmark，ES Spain，FI Finland，FR France，GB United Kingdom，GR Greece，IE Ireland，IT Italy，LU Luxembourg． MC Monaco，NL Netherlands，PT Portugal，SE Sweden，and any other State which is a Contracting State of the European Patent Convention and of the PCTx OA OAPI Patent：BF Burkina Faso，BJ Benin，CF Central African Republic，CG Congo，CI Côte d＇Ivoire，CM Cameroon， GA Gabon，GN Guinea，ML Mali，MR Mauritania，NE Niger，SN Senegal，TD Chad，TG Togo，and any other State which is a member State of OAPI and a Contracting State of the PC＇ T （ifother kind ofprotection or treatment desired，specify on dotted line）

National Patent（if other kind of protection or treatment desired，specify on dotted line）

茴	AL Albania	区		Lesotho
区	AM Armenia	囚	LT	Lithuania
区	AT Austria	区	LU	Luxembourg
区	AU Australia	囚	LV	Latvia
团	AZ Azerbaijan	区	MD	Republic of Moldova
区	BA Bosnia and Herzegovina	区	MG	Madagascar
区	BB Barbados	囚	MK	The former Yugoslav
区	BG Bulgaria			
区	BR Brazil	$囚$	MN	Mongolia
区	BY Belarus	区	MW	Malawi
区	CA Canada	百	MX	Mexico
区	CH and LI Switzerland and Liechtenstein	■	NO	Norway
자	CN China	因	NZ	New Zealand
줒	CU Cuba	因	PL	Poland
図	CZ Czech Republic	囚	PT	Portugal
区	DE Germany	区	RO	Romania
区	DK Denmark	区	RU	Russian Federation
자	EE Estonia	＊	SD	Sudan
젖	ES Spain	囚	SE	Sweden
区	FI Finland	区	SG	Singapore
区	GB United Kingdom	区	SI	Slovenia
区	GE Georgia	区	SK	Slovakia
囚	GH Ghana	区	SL	Sierra Leone
囚	GM Gambia	区	TJ	Tajikistan
	－W－Gumburn	凶	TM	Turkmenistan
区	HR Croatia	区	TR	Turkey
囚	HU Hungary	兇	TT	Trinidad and Tobago
줒	ID Indonesia	回	UA	Ukraine
区	IL Israel	Q	UG	Uganda
区	IS Iceland	区	US	United States of Ame
	JP Japan			．．Part
区	KE Kenya	$\square$	UZ	Uzbekistan
凶	KG Kyrgyzstan	$\square$	VN	Viet Nam
区	KP Democratic People＇s Republic of Korea	$\square$	YU	Yugoslavia
		［		Zimbabwe
区	KR Republic of Korea	Check－boxes reserved for designating States（for the purposes of a national patent）which have become party to the PCT after issuance of this sheet：   INDE   ［X］GRANADA		
区	KZ Kazakhstan			
짖	LC Saint Lucia			
区	LK Sri Lanka			
［	LR Liberia			

Precautionary Designation Statement：In addition to the designations made above，the applicant also makes under Rule 4．9（b）all other designations which would be permitted under the PCT except any designation（s）indicated in the Supplemental Box as being excluded from the scope of this statement．The applicant declares that those additional designations are subject to confirmation and that any designation which is not confirmed before the expiration of 15 months from the priority date is to be regarded as withdrawn by the applicant

Shee! No.

## Supplemental Box

If the Supplemental Box is not used, this sheet should not be included in the request.

1. If. in any of the Boxes, the space is insufficient to furnish all the information: in such case, write "Continuation of Box $N$ No [indicate the number of the Box] and furnish the information in the same manner as required according to the captions of the Box in which the space was insufficient. in particular.
(i) if more than two persons are involved as applicants andorinventors and no "continuation sheet" is available: in such case, write "Continuation of Box No. III" and indicate for each additional person the same type of information as required in Box No. III. The country of the address indicated in this Box is the applicant's State (that is, country) of residence ifno State of residence is indicated below:
(ii) if. in Box No. Il or in any of the sub-bores of Box No. III. the indication "the States indicated in the Supplemental Box" is checked: in such case, write "Contimuation of Box No. II" or "Continuation of Box No. III" or "Continuation of Boxes No. II and No. III" (as the case may be), indicate the name of the applicant(s) involved and, next to (each) such name, the State(s) (andlor, where applicable, ARIPO. Eurasian, European or OAPI patent) for the purposes of which the named person is applicant:
(iii) if, in Box No. II or in any of the sub-boxes of Box No. III, the inventor or the inventorlapplicant is not inventor for the purposes of all designated States or for the purposes of the United States of America: in such case, write "Continuation of Box No. II" or "Continuation of Bor No. III" or "Continuation of Boxes No. II and No. III" (as the case may be), indicate the name of the inventor(s) and, next to (each) such name, the State(s) (and/or, where applicable, ARIPO, Eurasian. European or O.4PIpatent) for the purposes of which the named person is inventor;
(iv) if, in addition to the agent(s) indicated in Bor No. IV', there are further agents: in such case, write "Continuation of Box No. IV" and indicate for each further agent the same type of information as required in Box No. IV:
(v) if, in Box No. V', the name of any State (or OAPI) is accompanied by the indication "patent of addition," or "certificate of addition," or if. in Box No. V', the name of the United States of America is accompanied by an indication "continuation" or "continuation-in-part": in such case, write "Continuation of Box No. V" and the name of each State involved (or OAPI) and after the name of each such State (or OAPI), the number of the parent title or parent application and the date of grant of the parent title or fling of the parent application:
(vi) if, in Box No. I', there are more than three earlier applications whose priority is claimed: in such case, write "Continuation of Box No. 'I'" and indicate for each additional earlier application the same type of information as required in Bor No. V'].
(vii) if, in Box No. VI, the earlier application is an ARIPO application: in such case, write "Continuation of Box No. I'I", specify the number of the item corresponding to that earlier application and indicate at least one country party to the Paris Convention for the Protection of Industrial Property for which that earlier application was filed.
2. If. with regard to the precautionary designation statement contained in Box No. V. the applicant wishes to exclude any State(s) from the scope of that statement: in such case, write "Designation(s) excluded from precautionary designation statement" and indicate the name or two-letter code of each State so excluded.
3. If the applicant claims, in respect of any designated Office. the benefits of provisions of the national law concerning non-prejudicial disclosures or exceptions to lack of novelty": in such case, write "Statement concerning non-prejudicial disclosures or exceptions to lack of novelty" and furnish that statement below.
```
Continuation of Box n}\mp@subsup{n}{}{\circ}\textrm{V}\mathrm{ :
```

United States of America : Continuation-in-part of PCT application
$N^{\circ}$ PCT/EP98/05383 (25.8.98).
...



## METHOD AND APPARATUS FOR DETECTION OF DROWSINESS

Inventors: Dr. Patrick Pirim<br>Dr. Thomas

Binford

## BACKGROUND OF THE INVENTION

## 1. Field of the Invention.

The present invention relates generally to an image processing system, and more particularly to the use of a generic image processing system to detect drowsiness.

## 2. Description of the Related Art.

It is well known that a significant number of highway accidents result from drivers becoming drowsy or falling asleep, which results in many deaths and injuries. Drowsiness is also a problem in other fields, such as for airline pilots and power plant operators, in which great damage may result from failure to stay alert.

A number of different physical criteria may be used to establish when a person is drowsy, including a change in the duration and interval of eye blinking. Normally, the duration of blinking is about 100 to 200 ms when awake and about 500 to 800 ms when drowsy. The time interval between successive blinks is generally constant while awake, but varies within a relatively broad range when drowsy.

Numerous devices have been proposed to detect drowsiness of drivers. Such devices are shown, for example, in U.S. Patent Nos. 5, 841,354; 5,813,99;
$5,689,241 ; 5,684,461 ; 5,682,144 ; 5,469,143 ; 5,402,109 ; 5,353,013 ; 5,195,606 ; 4,928,090$; $4,555,697 ; 4,485,375$; and $4,259,665$. In general, these devices fall into three categories: i) devices that detect movement of the head of the driver, e.g., tilting; ii) devices that detect a physiological change in the driver, e.g., altered heartbeat or breathing, and iii) devices that
detect a physical result of the driver falling asleep, e.g., a reduced grip on the steering wheel.
None of these devices is believed to have met with commercial success.
Commonly-owned PCT Application Serial Nos. PCT/FR97/01354 and PCT/EP98/05383 disclose a generlc image processing system that operates to localize objects in relative movement in an image and to determine the speed and direction of the objects in real-time. Each pixel of an image is smoothed using its own time constant. A binary value corresponding to the existence of a significant variation in the amplitude of the smoothed pixel from the prior frame, and the amplitude of the variation, are determined, and the time constant for the pixel is updated. For each particular pixel, two matrices are formed that include a subset of the pixels spatially related to the particular pixel. The first matrix contains the binary values of the subset of pixels. The second matrix contains the amplitude of the variation of the subset of pixels. In the first matrix, it is determined whether the pixels along an oriented direction relative to the particular pixel have binary values representative of significant variation, and, for such pixels, it is determined in the second matrix whether the amplitude of these pixels varies in a known manner indicating movement in the oriented direction. In domains that include luminance, hue, saturation, speed, oriented direction, time constant, and x and y position, a histogram is formed of the values in the first and second matrices falling in user selected combinations of such domains. Using the histograms, it is determined whether there is an area having the characteristics of the selected combinations of domains.

It would be desirable to apply such a generic image processing system to detect the drowsiness of a person.

FOTMO9 / 0030

## SUMMARY OF THE INVENTION

The present invention is a process of detecting a driver falling asleep in which an image of the face of the driver is acquired. Pixels of the image having characteristics corresponding to characteristics.of at least one eye of the driver are selected and a histogram is formed of the selected pixels. The histogram is analyzed over time to identify each opening and closing of the eye, and from the eye opening and closing information, characteristics indicative of a driver falling asleep are determined.

In one embodiment, a sub-area of the image comprising the eye is determined prior to the step of selecting pixels of the image having characteristics corresponding to characteristics of an eye. In this embodiment, the step of selecting pixels of the image having characteristics of an eye involves selecting pixels within the sub-area of the image. The step of identifying a sub-area of the image preferably involves identifying the head of the driver, or a facial characteristic of the driver, such as the driver's nostrils, and then identifying the sub-area of the image using an anthropomorphic model. The head of the driver may be identified by selecting pixels of the image having characteristics corresponding to edges of the head of the driver. Histograms of the selected pixels of the edges of the driver's head are projected onto orthogonal axes. These histograms are then analyzed to identify the edges of the driver's head.

The facial characteristic of the driver may be identified by selecting pixels of the image having characteristics corresponding to the facial characteristic. Histograms of the selected pixels of the facial characteristic are projected onto orthogonal axes. These histograms are then analyzed to identify the facial characteristic. If desired, the step of identifying the facial characteristic in the image involves searching sub-images of the image until the facial characteristic is found. In the case in which the facial characteristic is the
nostrils of the driver, a histogram is formed of pixels having low luminance levels to detect the nostrils. To confirm detection of the nostrils, the histograms of the nostril pixels may be analyzed to determine whether the spacing between the nostrils is within a desired range and whether the dimensions of the nostrils fall within a desired range. In order to confirm the identification of the facial characteristic, an anthropomorphic model and the location of the facial characteristic are used to select a sub-area of the image containing a second facial characteristic. Pixels of the image having characteristics corresponding to the second facial characteristic are selected and a histograms of the selected pixels of the second facial characteristic are analyzed to confirm the identification of the first facial characteristic.

In order to determine openings and closings of the eyes of the driver, the step of selecting pixels of the image having characteristics corresponding to characteristics of an eye of the driver involves selecting pixels having low luminance levels corresponding to shadowing of the eye. In this embodiment, the step analyzing the histogram over time to identify each opening and closing of the eye involves analyzing the shape of the eye shadowing to determine openings and closings of the eye. The histograms of shadowed pixels are preferably projected onto orthogonal axes, and the step of analyzing the shape of the eye shadowing involves analyzing the width and height of the shadowing.

An alternative method of determining openings and closings of the eyes of the driver involves selecting pixels of the image having characteristics of movement corresponding to blinking. In this embodiment, the step analyzing the histogram over time to identify each opening and closing of the eye involves analyzing the number of pixels in movement corresponding to blinking over time. The characteristics of a blinking eye are preferably selected from the group consisting of i) $\mathrm{DP}=1$, ii) CO indicative of a blinking

THEP99/00300
eyelid, iii) velocity indicative of a blinking eyelid, and iv) up and down movement indicative of a blinking eyelid.

An apparatus for detecting a driver falling asleep includes a sensor for acquiring an image of the face of the driver, a controller, and a histogram formation unit for forming a histogram on pixels having selected characteristics. The controller controls the histogram formation unit to select pixels of the image having characteristics corresponding to characteristics of at least one eye of the driver and to form a histogram of the selected pixels. The controller analyzes the histogram over time to identify each opening and closing of the eye, and determines from the opening and closing information on the eye, characteristics indicative of the driver falling asleep.

In one embodiment, the controller interacts with the histogram formation unit to identify a sub-area of the image comprising the eye, and the controller controls the histogram formation unit to select pixels of the image having characteristics corresponding to characteristics of the eye only within the sub-area of the image. In order to select the sub-area of the image, the controller interacts with the histogram formation unit to identify the head of the driver in the image, or a facial characteristic of the driver, such as the driver's nostrils.

The controller then identifies the sub-area of the image using an anthropomorphic model. To identify the head of the driver, the histogram formation unit selects pixels of the image having characteristics corresponding to edges of the head of the driver and forms histograms of the selected pixels projected onto orthogonal axes. To identify a facial characteristic of the driver, the histogram formation unit selects pixels of the image having characteristics corresponding to the facial characteristic and forms histograms of the selected pixels projected onto orthogonal axes. The controller then analyzes the histograms of the selected pixels to identify the edges of the head of the driver or the facial characteristic, as the case
may be. If the facial characteristic is the nostrils of the driver, the histogram formation unit selects pixels of the image having low luminance levels corresponding to the luminance level of the nostrils. The controller may also analyze the histograms of the nostril pixels to determine whether the spacing between the nostrils is within a desired range and whether dimensions of the nostrils fall within a desired range. If desired, the controller may interact with the histogram formation unit to search sub-images of the image to identify the facial characteristic.

In order to verify identification of the facial characteristic, the controller uses an anthropomorphic model and the location of the facial characteristic to cause the histogram formation unit to select a sub-area of the image containing a second facial characteristic. The histogram formation unit selects pixels of the image in the sub-area having characteristics corresponding to the second facial characteristic and forms a histogram of such pixels. The controller then analyzes the histogram of the selected pixels corresponding to the second facial characteristic to identify the second facial characteristic and to thereby confirm the identification of the first facial characteristic.

In one embodiment, the histogram formation unit selects pixels of the image having low luminance levels corresponding to shadowing of the eyes, and the controller then analyzes the shape of the eye shadowing to identify shapes corresponding to openings and closings of the eye. The histogram formation unit preferably forms histograms of the shadowed pixels of the eye projected onto orthogonal axes, and the controller analyzes the width and height of the shadowing to determine openings and closings of the eye.

In an alternative embodiment, the histogram formation unit selects pixels of the image in movement corresponding to blinking and the controller analyzes the number of pixels in movement over time to determine openings and closings of the eye. The
characteristics of movement corresponding to blinking are preferably selected from the group consisting of i) $\mathrm{DP}=1$, ii) CO indicative of a blinking eyelid, iii) velocity indicative of a blinking eyelid, and iv) up and down movement indicative of a blinking eyelid.

If desired, the sensor may be integrally constructed with the controller and the histogram formation unit. The apparatus may comprise an alarm, which the controller operates upon detection of the driver falling asleep, and may comprise an illumination source, such as a source of IR radiation, with the sensor being adapted to view the driver when illuminated by the illumination source.

A rear-view mirror assembly comprises a rear-view mirror and the described apparatus for detecting driver drowsiness mounted to the rear-view mirror. In one embodiment, a bracket attaches the apparatus to the rear-view mirror. In an alternative embodiment, the rear-view mirror comprises a housing having an open side and an interior. The rear-view mirror is mounted to the open side of the housing, and is see-through from the interior of the housing to the exterior of the housing. The drowsiness detection apparatus is mounted interior to the housing with the sensor directed toward the rear-view mirror. If desired, a joint attaches the apparatus to the rear-view mirror assembly, with the joint being adapted to maintain the apparatus in a position facing the driver during adjustment of the mirror assembly by the driver. The rear-view mirror assembly may include a source of illumination directed toward the driver, with the sensor adapted to view the driver when illuminated by the source of illumination. The rear-view mirror assembly may also include an alarm, with the controller operating the alarm upon detection of the driver falling asleep. Also disclosed is a vehicle comprising the drowsiness detection device.

## BRIEF DESCRIPTION OF THE DRAWINGS

Fig. 1 is a diagrammatic illustration of the system according to the invention.

Fig. 2 is a block diagram of the temporal and spatial processing units of the invention.

Fig. 3 is a block diagram of the temporal processing unit of the invention.
Fig. 4 is a block diagram of the spatial processing unit of the invention.
Fig. 5 is a diagram showing the processing of pixels in accordance with the invention.

Fig. 6 illustrates the numerical values of the Freeman code used to determine movement direction in accordance with the invention.

Fig. 7 illustrates nested matrices as processed by the temporal processing unit.
Fig. 8 illustrates hexagonal matrices as processed by the temporal processing unit.

Fig. 9 illustrates reverse-L matrices as processed by the temporal processing unit.

Fig. 10 illustrates angular sector shaped matrices as processed by the temporal processing unit.

Fig. 11 is a block diagram showing the relationship between the temporal and spatial processing units, and the histogram formation units.

Fig. 12 is a block diagram showing the interrelationship between the various histogram formation units.

Fig. 13 shows the formation of a two-dimensional histogram of a moving area from two one-dimensional histograms.

Fig. 14 is a block diagram of an individual histogram formation unit.
Figs. 15A and 15B illustrate the use of a histogram formation unit to find the orientation of a line relative to an analysis axis.

Fig. 16 illustrates a one-dimensional histogram.
Fig. 17 illustrates the use of semi-graphic sub-matrices to selected desired areas of an image.

Fig. 18 is a side view illustrating a rear view mirror in combination with the drowsiness detection system of the invention.

Fig. 19 is a top view illustrating operation of a rear view mirror.
Fig. 20 is a schematic illustrating operation of a rear view mirror.
Fig. 21 is a cross-sectional top view illustrating a rear view mirror assembly incorporating the drowsiness detection system of the invention.

Fig. 22 is a partial cross-sectional top view illustrating a joint supporting the drowsiness detection system of the invention in the mirror assembly of Fig. 21.

Fig. 23 is a top view illustrating the relationship between the rear view mirror assembly of Fig. 21 and a driver.

Fig. 24 illustrates detection of the edges of the head of a person using the system of the invention.

Fig. 25 illustrates masking outside of the edges of the head of a person.
Fig. 26 illustrates masking outside of the eyes of a person.
Fig. 27 illustrates detection of the eyes of a person using the system of the invention.

Fig. 28 illustrates successive blinks in a three-dimensional orthogonal coordinate system.

Figs. 29A and 29B illustrate conversion of peaks and valleys of eye movement histograms to information indicative of blinking.

Fig. 30 is a flow diagram illustrating the use of the system of the invention to detect drowsiness.

Fig. 31 illustrates the use of sub-images to search a complete image.
Fig. 32 illustrates the use of the system of the invention to detect nostrils and to track eye movement.

Fig. 33 illustrates the use of the system of the invention to detect an open eye.
Fig. 34 illustrates the use of the system of the invention to detect a closed eye.
Fig. 35 is a flow diagram of an alternative method of detecting drowsiness.
Fig. 36 illustrates use of the system to detect a pupil.

## DETAILED DESCRIPTION OF THE INVENTION

The present invention discloses an application of the generic image processing system disclosed in commonly-owned PCT Application Serial Nos. PCT/FR97/01354 and PCT/EP98/05383, the contents of which are incorporated herein by reference for detection of various criteria associated with the human eye, and especially to detection that a driver is falling asleep while driveing a vehicle.

The apparatus of the invention is similar to that described in the aforementioned PCT Application Serial Nos. PCT/FR97/01354 and PCT/EP98/05383, which will be described herein for purposes of clarity. Referring to Figs. 1 and 10, the generic image processing system 22 includes a spatial and temporal processing unit 11 in combination with a histogram formation unit 22a. Spatial and temporal processing unit 11 includes an input 12 that receives a digital video signal S originating from a video camera or other imaging device 13 which monitors a scene 13a. Imaging device 13 is preferably a conventional CMOS-type CCD camera, which for purposes of the presently-described invention is mounted on a vehicle facing the driver. It will be appreciated that when used in

## T/E99 900300

non-vehicluar applications, the camera may be mounted in any desired fashion to detect the specific criteria of interest. It is also foreseen that any other appropriate sensor, e.g., ultrasound, IR, Radar, etc., may be used as the imaging device. Imaging device 13 may have a direct digital output, or an anałog output that is converted by an $\mathrm{A} / \mathrm{D}$ convertor into digital signal S. Imaging device 13 may also be integral with generic image processing system 22 , if desired.

While signal S may be a progressive signal, it is preferably composed of a succession of pairs of interlaced frames, $\mathrm{TR}_{1}$ and $\mathrm{TR}^{\prime}$, and $\mathrm{TR}_{2}$ and $\mathrm{TR}_{2}^{\prime}$, each consisting of a succession of horizontal scanned lines, e.g., $1_{1.1}, 1_{1.2}, \ldots, l_{1.17}$ in $\mathrm{TR}_{1}$, and ${ }_{2.1}$ in $\mathrm{TR}_{2}$. Each line consists of a succession of pixels or image-points PI, e.g., $a_{1.1}, a_{1.2}$ and $a_{1.3}$ for line $l_{1.1} ; a l_{17.1}$ and $a l_{17.22}$ for line $l_{1.17} ; \mathrm{l}_{1.1}$ and $a_{1.2}$ for line $l_{2.1}$. Signal $S(P I)$ represents signal $S$ composed of pixels PI.
$\mathrm{S}(\mathrm{PI})$ includes a frame synchronization signal (ST) at the beginning of each frame, a line synchronization signal (SL) at the beginning of each line, and a blanking signal (BL). Thus, $\mathrm{S}(\mathrm{PI})$ includes a succession frames, which are representative of the time domain, and within each frame, a series of lines and pixels, which are representative of the spatial domain.

In the time domain, "successive frames" shall refer to successive frames of the same type (i.e., odd frames such as $\mathrm{TR}_{1}$ or even frames such as $\mathrm{TR}_{1}{ }_{1}$ ), and "successive pixels in the same position" shall denote successive values of the pixels (PI) in the same location in successive frames of the same type, e.g., $a_{1,1}$ of $1_{1,1}$ in frame $\mathrm{TR}_{1}$ and $a_{1,1}$ of $1_{1.1}$ in the next corresponding frame $\mathrm{TR}_{2}$

Spatial and temporal processing unit 11 generates outputs ZH and SR 14 to a data bus 23 (Fig. 11), which are preferably digital signals. Complex signal ZH comprises a
number of output signals generated by the system, preferably including signals indicating the existence and localization of an area or object in motion, and the speed $V$ and the oriented direction of displacement DI of each pixel of the image. Also preferably output from the system is input digital video signal $S$, which is delayed (SR) to make it synchronous with the output ZH for the frame, taking into account the calculation time for the data in composite signal ZH (one frame). The delayed signal SR is used to display the image received by camera 13 on a monitor or television screen 10, which may also be used to display the information contained in composite signal ZH. Composite signal ZH may also be transmitted to a separate processing assembly 10 a in which further processing of the signal may be accomplished.

Referring to Fig. 2, spatial and temporal processing unit 11 includes a first assembly 11a, which consists of a temporal processing unit 15 having an associated memory 16 , a spatial processing unit 17 having a delay unit 18 and sequencing unit 19 , and a pixel clock 20 , which generates a clock signal HP , and which serves as a clock for temporal processing unit 15 and sequencing unit 19. Clock pulses HP are generated by clock 20 at the pixel rate of the image, which is preferably 13.5 MHZ.

Fig. 3 shows the operation of temporal processing unit 15 , the function of which is to smooth the video signal and generate a number of outputs that are utilized by spatial processing unit 17. During processing, temporal processing unit 15 retrieves from memory 16 the smoothed pixel values LI of the digital video signal from the immediately prior frame, and the values of a smoothing time constant CI for each pixel. As used herein, LO and CO shall be used to denote the pixel values ( L ) and time constants ( C ) stored in memory 16 from temporal processing unit 15 , and LI and CI shall denote the pixel values ( L ) and time constants (C) respectively for such values retrieved from memory 16 for use by
temporal processing unit 15 . Temporal processing unit 15 generates a binary output signal DP for each pixel, which identifies whether the pixel has undergone significant variation, and a digital signal CO , which represents the updated calculated value of time constant C .

Referring to Fig. $\cdot 3$, temporal processing unit 15 includes a first block 15a which receives the pixels PI of input video signal S. For each pixel PI, the temporal processing unit retrieves from memory 16 a smoothed value LI of this pixel from the immediately preceding corresponding frame, which was calculated by temporal processing unit 15 during processing of the immediately prior frame and stored in memory 16 as LO. Temporal processing unit 15 calculates the absolute value AB of the difference between each pixel value PI and LI for the same pixel position (for example $\mathrm{a}_{1,1}$, of $\mathrm{l}_{1,1}$ in $\mathrm{TR}_{1}$ and of $1_{1,1}$ in $\mathrm{TR}_{2}$ :

$$
\mathrm{AB}=|\mathrm{PI}-\mathrm{LI}|
$$

Temporal processing unit 15 is controlled by clock signal HP from clock 20 in order to maintain synchronization with the incoming pixel stream. Test block 15b of temporal processing unit 15 receives signal AB and a threshold value SE . Threshold SE may be constant, but preferably varies based upon the pixel value PI, and more preferably varies with the pixel value so as to form a gamma correction. Known means of varying SE to form a gamma correction is represented by the optional block 15 e shown in dashed lines. Test block 15 b compares, on a pixel-by-pixel basis, digital signals AB and SE in order to determine a binary signal $D P$. If $A B$ exceeds threshold $S E$, which indicates that pixel value PI has undergone significant variation as compared to the smoothed value LI of the same pixel in the prior frame, DP is set to " 1 " for the pixel under consideration. Otherwise, DP is set to " 0 " for such pixel.

When $\mathrm{DP}=1$, the difference between the pixel value PI and smoothed value LI of the same pixel in the prior frame is considered too great, and temporal processing unit 15 attempts to reduce this difference in subsequent frames by reducing the smoothing time constant C for that pixel. Conversèly, if $\mathrm{DP}=0$, temporal processing unit 15 attempts to increase this difference in subsequent frames by increasing the smoothing time constant C for that pixel. These adjustments to time constant C as a function of the value of DP are made by block 15 c . If $\mathrm{DP}=1$, block 15 c reduces the time constant by a unit value U so that the new value of the time 7 constant CO equals the old value of the constant CI minus unit value U .

$$
\mathrm{CO}=\mathrm{CI}-\mathrm{U}
$$

If $\mathrm{DP}=0$, block 15 c increases the time constant by a unit value U so that the new value of the time constant CO equals the old value of the constant Cl plus unit value U .

$$
\mathrm{CO}=\mathrm{Cl}+\mathrm{U}
$$

Thus, for each pixel, block 15 c receives the binary signal DP from test unit 15 b and time constant CI from memory 16 , adjusts CI up or down by unit value U , and generates a new time constant CO which is stored in memory 16 to replace time constant CI.

In a preferred embodiment, time constant $C$, is in the form $2^{p}$, where $p$ is incremented or decremented by unit value $U$, which preferably equals 1 , in block $15 c$. Thus, if $D P=1$, block 15 c subtracts one (for the case where $U=1$ ) from $p$ in the time constant $2^{p}$ which becomes $2^{p-1}$. If $\mathrm{DP}=0$, block 15 c adds one to p in time constant $2^{p}$, which becomes $2^{p+1}$. The choice of a time constant of the form $2^{p}$ facilitates calculations and thus simplifies the structure of block 15 c .

Block 15 c includes several tests to ensure proper operation of the system.
First, CO must remain within defined limits. In a preferred embodiment, CO must not become negative $(\mathrm{CO} \geq 0)$ and it must not exceed a limit $\mathrm{N}(\mathrm{CO} \leq \mathrm{N})$, which is preferably
seven. In the instance in which CI and CO are in the form $2^{p}$, the upper limit N is the maximum value for p .

The upper limit N may be constant, but is preferably variable. An optional input unit 15 f includes a register or memory that enables the user, or controller 42 to vary N . The consequence of increasing N is to increase the sensitivity of the system to detecting displacement of pixels, whereas reducing N improves detection of high speeds. N may be made to depend on PI ( N may vary on a pixel-by-pixel basis, if desired) in order to regulate the variation of LO as a function of the lever of PI, i.e., $N_{i \mathrm{itt}}=f\left(\mathrm{PI}_{\mathrm{ijt}}\right)$, the calculation of which is done in block 15f, which in this case would receive the value of PI from video camera 13.

Finally, a calculation block 15 d receives, for each pixel, the new time constant CO generated in block 15 c , the pixel values PI of the incoming video signal S , and the smoothed pixel value LI of the pixel in the previous frame from memory 16. Calculation block 15 d then calculates a new smoothed pixel value LO for the pixel as follows:

$$
\mathrm{LO}=\mathrm{LI}+(\mathrm{PI}-\mathrm{LI}) / \mathrm{CO}
$$

$$
\text { If } \mathrm{CO}=2^{p} \text {, then }
$$

$$
\mathrm{LO}=\mathrm{LI}+(\mathrm{PI}-\mathrm{LI}) / 2^{\mathrm{oo}}
$$

where "po", is the new value of $p$ calculated in unit 15 c and which replaces previous value of "pi" in memory 16.

The purpose of the smoothing operation is to normalize variations in the value of each pixel PI of the incoming video signal for reducing the variation differences. For each pixel of the frame, temporal processing unit 15 retrieves LI and CI from memory 16, and generates new values LO (new smoothed pixel value) and CO (new time constant) that are stored in memory 16 to replace LI and CI respectively. As shown in Fig. 2, temporal
processing unit 15 transmits the CO and DP values for each pixel to spatial processing unit 17 through the delay unit 18 .

The capacity of memory 16 assuming that there are R pixels in a frame, and therefore 2 R pixels per complete image, must be at least $2 R(e+f)$ bits, where $e$ is the number of bits required to store a single pixel value LI (preferably eight bits), and $f$ is the number of bits required to store a single time constant CI (preferably 3 bits). If each video image is composed of a single frame (progressive image), it is sufficient to use $R(e+f)$ bits rather than $2 R(e+f)$ bits.

Spatial processing unit 17 is used to identify an area in relative movement in the images from camera 13 and to determine the speed and oriented direction of the movement. Spatial processing unit 17 , in conjunction with delay unit 18 , cooperates with a control unit 19 that is controlled by clock 20, which generates clock pulse HP at the pixel frequency. Spatial processing unit 17 receives signals $\mathrm{DP}_{\mathrm{ij}}$ and $\mathrm{CO}_{\mathrm{ij}}$ (where i and j correspond to the x and y coordinates of the pixel) from temporal processing unit 15 and processes these signals as discussed below. Whereas temporal processing unit 15 processes pixels within each frame, spatial processing unit 17 processes groupings of pixels within the frames.

Fig. 5 diagrammatically shows the temporal processing of successive corresponding frame sequences $\mathrm{TR}_{1}, \mathrm{TR}_{2}, \mathrm{TR}_{3}$ and the spatial processing in the these frames of a pixel PI with coordinates $x, y$, at times $t_{1}, t_{2}$, and $t_{3}$. A plane in Fig. 5 corresponds to the spatial processing of a frame, whereas the superposition of frames corresponds to the temporal processing of successive frames.

Signals $\mathrm{DP}_{\mathrm{ij}}$ and $\mathrm{CO}_{\mathrm{ij}}$ from temporal processing unit 15 are distributed by spatial processing unit 17 into a first matrix 21 containing a number of rows and columns much smaller than the number of lines $L$ of the frame and the number of pixels $M$ per line.

Matrix 21 preferably includes $2 l+1$ lines along the y axis and $2 m+1$ columns along the x axis (in Cartesian coordinates), where $l$ and $m$ are small integer numbers. Advantageously, $l$ and $m$ are chosen to be powers of 2 , where for example $l$ is equal to $2^{\text {a }}$ and $m$ is equal to $2^{\text {b }}$, a and b being integer numbers of about $2^{\circ}$ to 5 , for example. To simplify the drawing and the explanation, $m$ will be taken to be equal to $l$ (although it may be different) and $m=l=2^{3}=8$. In this case, matrix 21 will have $2 \times 8+1=17$ rows and 17 columns. Fig. 4 shows a portion of the 17 rows $\mathrm{Y}_{0}, \mathrm{Y}_{1}, \ldots \mathrm{Y}_{15}, \mathrm{Y}_{16}$, and 17 columns $\mathrm{X}_{\mathrm{O}}, \mathrm{X}_{1}, \ldots \mathrm{X}_{15}, \mathrm{X}_{16}$ which form matrix 21.

Spatial processing unit 17 distributes into $1 \times m$ matrix 21 the incoming flows of $\mathrm{Dp}_{\mathrm{ijt}}$ and $\mathrm{CO}_{\mathrm{jt}}$ from temporal processing unit 15 . It will be appreciated that only a subset of all $\mathrm{DP}_{\mathrm{ijt}}$ and $\mathrm{CO}_{\mathrm{ij} \mathrm{t}}$ values will be included in matrix 21 , since the frame is much larger, having L lines and M pixels per row (e.g., 312.5 lines and 250-800 pixels), depending upon the TV standard used.

In order to distinguish the $\mathrm{L} \times \mathrm{M}$ matrix of the incoming video signal from the $I \times m$ matrix 21 of spatial processing unit 17 , the indices i and j will be used to represent the coordinates of the former matrix and the indices x and y will be used to represent the coordinates of the latter. At a given instant, a pixel with an instantaneous value $\mathrm{PI}_{\mathrm{ijt}}$ is characterized at the input of the spatial processing unit 17 by signals $\mathrm{DP}_{\mathrm{ijt}}$ and $\mathrm{CO}_{\mathrm{ij} t}$. The $(2 l+1) \times(2 m+1)$ matrix 21 is formed by scanning each of the $\mathrm{L} \times \mathrm{M}$ matrices for DP and CO.

In matrix 21 , each pixel is defined by a row number between 0 and 16 (inclusive), for rows $Y_{0}$ to $Y_{16}$ respectively, and a column number between 0 and 16 (inclusive), for columns $\mathrm{X}_{0}$ to $\mathrm{X}_{16}$ respectively, in the case in which $l=m=8$. In this case, matrix 21 will be a plane of $17 \times 17=289$ pixels.

In Fig. 4, elongated horizontal rectangles $Y_{0}$ to $Y_{16}$ (only four of which have been shown, i.e., $Y_{0}, Y_{1}, Y_{15}$ and $Y_{16}$ ) and vertical lines $X_{0}$ to $X_{16}$ (of which only four have been shown, i.e., $X_{0}, X_{1}, X_{15}$ and $X_{16}$ ) illustrate matrix 21 with $17 \times 17$ image points or pixels having indices defined at the intersection of an ordinate row and an abscissa column. For example, the $P_{88}$ is at the intersection of column 8 and row 8 as illustrated in Fig. 4 at position $\underline{\mathrm{e}}$, which is the center of matrix 21 .

In response to the HP and BL signals from clock 20 (Fig. 2), a rate control or sequencing unit 19: i) generates a line sequence signal SL at a frequency equal to the quotient of 13.5 MHZ (for an image with a corresponding number of pixels) divided by the number of columns per frame (for example 400) to delay unit 18, ii) generates a frame signal SC, the frequency of which is equal to the quotient $13.5 / 400 \mathrm{MHZ}$ divided by the number of rows in the video image, for example 312.5 , iii) and outputs the HP clock signal. Blanking signal BL is used to render sequencing unit 19 non-operational during synchronization signals in the input image.

A delay unit 18 carries out the distribution of portions of the $\mathrm{L} \times \mathrm{M}$ matrix into matrix 21 . Delay unit 18 receives the $\mathrm{DP}, \mathrm{CO}$, and incoming pixel $\mathrm{S}(\mathrm{PI})$ signals, and distributes these into matrix 21 using clock signal HP and line sequence and column sequence signals SL and SC.

In order to form matrix 21 from the incoming stream of DP and CO signals, the successive row, $\mathrm{Y}_{0}$ to $\mathrm{Y}_{16}$ for the DP and CO signals must be delayed as follows:
row $\mathrm{Y}_{0}$ - not delayed;
row $Y_{1}$ - delayed by the duration of a frame line TP;
row $\mathrm{Y}_{2}$ - delayed by 2 TP ;
and so on until
row $\mathrm{Y}_{16}$ - delayed by 16 TP .
The successive delays of the duration of a frame row TP, are carried out in a cascade of sixteen delay circuits $r_{1}, r_{2}, \ldots r_{16}$ that serve rows $Y_{1}, Y_{2} \ldots Y_{16}$, respectively, row $Y_{0}$ being served directly by the DP and CO signals without any delay upon arriving from temporal processing unit 15 . All delay circuits $r_{1}, r_{2}, \ldots \mathrm{r}_{16}$ may be built up by a delay line with sixteen outputs, the delay imposed by any section thereof between two successive outputs being constant and equal to TP.

Rate control unit 19 controls the scanning of the entire $\mathrm{L} \times \mathrm{M}$ frame matrix over matrix 21 . The circular displacement of pixels in a row of the frame matrix on the 17 x 17 matrix, for example from $X_{0}$ to $X_{16}$ on row $Y_{0}$, is done by a cascade of sixteen shift registers $d$ on each of the 17 rows from $Y_{0}$ to $Y_{16}$ (giving a total of $16 \times 17=272$ shift registers) placed in each row between two successive pixel positions, namely the register $d_{01}$ between positions $\mathrm{PI}_{00}$ and $\mathrm{PI}_{01}$ register $\mathrm{d}_{02}$ between positions $\mathrm{PI}_{01}$, and $\mathrm{PI}_{02}$, etc. Each register imposes a delay TS equal to the time difference between two successive pixels in a row or line, using column sequence signal SC. Because rows $l_{1}, l_{2} \ldots l_{17}$ in a frame $\mathrm{TR}_{1}$ (Fig. 1), for $\mathrm{S}(\mathrm{PI})$ and for DP and CO , reach delay unit 18 shifted by TP (complete duration of a row) one after the other, and delay unit 18 distributes them with gradually increasing delays of TP onto rows $Y_{0}, Y_{1} \ldots Y_{17}$, these rows display the DP and CO signals at a given time for rows $l_{1}, l_{2} \ldots$ $l_{17}$ in the same frame portion. Similarly in a given row, e.g., $l_{1}$, successive pixel signals $\mathrm{a}_{1.1}$, $a_{1.2} \ldots$ arrive shifted by TS and shift registers d impose a delay also equal to TS. As a result, the pixels of the DP and CO signals in a given row $\mathrm{Y}_{0}$ to $\mathrm{Y}_{16}$ in matrix 21, are contemporary, i.e., they correspond to the same frame portion.

The signals representing the COs and DPs in matrix 21 are available at a given instant on the $16 \times 17=272$ outputs of the shift registers, as well as upstream of the registers
ahead of the 17 rows, i.e., registers $d_{0.1}, d_{1,1}, d_{16.1}$, which makes a total of $16 \times 17+17=17$ $\times 17$ outputs for the $17 \times 17$ positions $P_{0.0}, P_{0.1}, \ldots P_{8.8} \ldots P_{16,16}$.

In order to better understand the process of spatial processing, the system will be described with respect to a small matrix M3 containing 3 rows and 3 columns where the central element of the 9 elements thereof is pixel $\underline{e}$ with coordinates $x=8, y=8$ as illustrated below:

$$
\begin{array}{lll}
\mathrm{a} & \mathrm{~b} & \mathrm{c} \\
\mathrm{~d} & \mathrm{e} & \mathrm{f}  \tag{M3}\\
\mathrm{~g} & \mathrm{~h} & \mathrm{i}
\end{array}
$$

In matrix M3, positions $a, b, c, d, f, g, h, i$ around the central pixel $e$ correspond to eight oriented directions relative to the central pixel. The eight directions may be identified using the Freeman code illustrated in Fig. 6, the directions being coded 0 to 7 starting from the x axis, in steps of $45^{\circ}$. In the Freeman code, the eight possible oriented directions, may be represented by a 3 -bit number since $2^{3}=8$.

Considering matrix M3, the 8 directions of the Freeman code are as follows:

3	2	1
4	$\underline{e}$	0
5	6	7

Returning to matrix 21 having $17 \times 17$ pixels, a calculation unit 17 a examines at the same time various nested square second matrices centered on $\underline{e}$, with dimensions 15 x $15,13 \times 13,11 \times 11,9 \times 9,7 \times 7,5 \times 5$ and $3 \times 3$, within matrix 21 , the $3 \times 3$ matrix being the M3 matrix mentioned above. Spatial processing unit 17 determines which matrix is the smallest in which pixels with $\mathrm{DP}=1$ are aligned along a straight line which determines the direction of movement of the aligned pixels.

For the aligned pixels in the matrix, the system determines if CO varies on each side of the central position in the direction of alignment, from +a in an oriented direction
and -a in the opposite oriented direction, where $\mathrm{l}<\mathrm{a}<\mathrm{N}$. For example, if positions g , e , and c of M3 have values $-1,0,+1$, then a displacement exists in this matrix from right to left in the (oriented) direction 1 in the Freeman code (Fig. 6). However, positions g, e, and c must at the same time have $\mathrm{DP}=1$. The displacement speed of the pixels in motion is greater when the matrix, among the $3 \times 3$ to $15 \times 15$ nested matrices, in which CO varies from +1 or -1 between two adjacent positions along a direction is larger. For example, if positions $\mathrm{g}, \mathrm{e}$, and c in the $9 \times 9$ matrix denoted M9 have values $-1,0,+1$ in oriented direction 1 , the displacement will be faster than for values $-1,0,+1$ in $3 \times 3$ matrix M3 (Fig. 7). The smallest matrix for which a line meets the test of $\mathrm{DP}=1$ for the pixels in the line and CO varies on each side of the central position in the direction of alignment, from +a in an oriented direction and -a in the opposite oriented direction, is chosen as the principal line of interest.

Within a given matrix, a greater value of $\pm \mathrm{CO}$ indicates slower movement. For example, in the smallest matrix, i.e., the $3 \times 3$ matrix, $\mathrm{CO}= \pm 2$ with $\mathrm{DPs}=1$ determines subpixel movement i.e. one half pixel per image, and $\mathrm{CO}= \pm 3$, indicates slower movement, i.e. one third of a pixel per image. In order to reduce the calculation power in the system and to simplify the hardware, preferably only those values of CO which are symmetrical relative to the central pixel are considered.

Since CO is represented as a power of 2 in a preferred embodiment, an extended range of speeds may be identified using only a few bits for CO , while still enabling identification of relatively low speeds. Varying speed may be detected because, for example $2,0,+2$ in positions $g, e, c$ in $3 \times 3$ matrix M3 indicates a speed half as fast as the speed corresponding to $1,0,+1$ for the same positions in matrix M3.

Two tests are preferably performed on the results to remove uncertainties. The first test chooses the strongest variation, in other words the highest time constant, if there are
variations of CO along several directions in one of the nested matrices. The second test arbitrarily chooses one of two (or more) directions along which the variation of CO is identical, for example by choosing the smallest value of the Freeman code, in the instance when identical lines of motion are ${ }^{\text {directed in a single matrix in different directions. This }}$ usually arises when the actual direction of displacement is approximately between two successive coded directions in the Freeman code, for example between directions 1 and 2 corresponding to an (oriented) direction that can be denoted 1.5 (Fig. 6) of about $67.5^{\circ}$ with the x axis direction (direction 0 in the Freeman code).

The scanning of an entire frame of the digital video signal S preferably occurs in the following sequence. The first group of pixels considered is the first 17 rows or lines of the frame, and the first 17 columns of the frame. Subsequently, still for the first 17 rows of the frame, the matrix is moved column by column from the left of the frame to the right, as shown in Fig. 5, i.e., from portion $\mathrm{TM}_{1}$ at the extreme left, then $\mathrm{TM}_{2}$ offset by one column with respect to $\mathrm{TM}_{1}$, until $\mathrm{TM}_{\mathrm{M}}$ (where M is the number of pixels per frame line or row) at the extreme right. Once the first 17 rows have been considered for each column from left to right, the process is repeated for rows 2 to 18 in the frame. This process continues, shifting down one row at a time until the last group of lines at the bottom of the frame, i.e., lines L 16 ... L (wherc L is the number of lines per frame) are considered.

Spatial processing unit 17 generates the following output signals for each pixel: i) a signal $V$ representing the displacement speed for the pixel, based upon the amplitude of the maximum variation of CO surrounding the pixel, the value of which may be, for example, represented by an integer in the range 0-7 if the speed is in the form of a power of 2 , and therefore may be stored in 3 bits, ii) a signal DI representing the direction of displacement of the pixel, which is calculated from the direction of maximum variation, the
value of DI being also preferably represented by an integer in the range $0-7$ corresponding to the Freeman code, stored in 3 bits, iii) a binary validation signal VL which indicates whether the result of the speed and oriented direction is valid, in order to be able to distinguish a valid output with $\mathrm{V}=0$ and $\mathrm{DI}=0$, from the lack of an output due to an incident, this signal being 1 for a valid output or 0 for an invalid output, iv) a time constant signal CO, stored in 3 bits, for example, and v) a delayed video signal SR consisting of the input video signal $S$ delayed in the delay unit 18 by 16 consecutive line durations TR and therefore by the duration of the distribution of the signal $S$ in the $17 \times 17$ matrix 21 , in order to obtain a video signal timed to matrix 21 , which may be displayed on a television set or monitor. Also output are the clock signal HP , line sequence signal SL and column sequence signal SC from control unit 19.

Nested hexagonal matrices (Fig 8) or an inverted L-shaped matrix (Fig. 9) may be substituted for the nested rectangular matrices in Figs. 4 and 7. In the case shown in Fig. 8, the nested matrices (in which only the most central matrices MRI and MR2 have been shown) are all centered on point MR0 which corresponds to the central point of matrices M3, M9 in Fig. 7. The advantage of a hexagonal matrix system is that it allows the use of oblique coordinate axes $\mathrm{x}_{2}, \mathrm{y}_{2}$, and a breakdown into triangles with identical sides, to carry out an isotropic speed calculation.

The matrix in Fig. 9 is composed of a single row $\left(L_{u}\right)$ and a single column $\left(C_{u}\right)$ starting from the central position $\mathrm{MR}_{\mathrm{u}}$ in which the two signals DP and CO respectively are equal to " 1 " for DP and increase or decrease by one unit for CO, if movement occurs.

If movement is in the direction of the x coordinate, the CO signal is identical in all positions (boxes) in column $\mathrm{C}_{\mathrm{u}}$, and the binary signal DP is equal to 1 in all positions in row $L_{u}$, from the origin $M R_{u}$, with the value $\mathrm{CO}_{u}$, up to the position in which CO is equal to $\mathrm{CO}_{u}+1$ or -1 inclusive. If movement is in the direction of the $y$ coordinate, the CO signal is
identical in all positions (boxes) in row $\mathrm{L}_{u}$, and the binary signal DP is equal to 1 in all positions in column $\mathrm{C}_{\mathrm{u}}$, from the origin $\mathrm{MR}_{\mathrm{u}}$, with the value $\mathrm{CO}_{\mathrm{u}}$, up to the position in which CO is equal to $\mathrm{CO}_{u},+1$ or -1 inclusive. If movement is oblique relative to the x and y coordinates, the binary signal DP is equal to 1 and CO is equal to $\mathrm{CO}_{u}$ in positions (boxes) of $L_{u}$ and in positions (boxes) of $C_{u}$, the slope being determined by the perpendicular to the line passing through the two positions in which the signal $\mathrm{CO}_{u}$ changes by the value of one unit, the DP signal always being equal to 1 .

Fig. 9 shows the case in which $\mathrm{DP}=\mathrm{I}$ and $\mathrm{CO}_{u}$ changes value by one unit in the two specific positions $L_{u 3}$ and $C_{u s}$ and indicates the corresponding slope $P_{p}$. In all cases, the displacement speed is a function of the position in which CO changes value by one unit. If $C O$ changes by one unit in $L_{u}$ or $C_{u}$ only, it corresponds to the value of the $C O$ variation position. If CO changes by one unit in a position in $L_{u}$ and in a position in $C_{u}$, the speed is proportional to the distance between $\mathrm{MR}_{u}$ and $\mathrm{E}_{\mathrm{x}}$ (intersection of the line perpendicular to $\mathrm{C}_{u}$ $\mathrm{L}_{u}$ passing through $\mathrm{MR}_{u}$ ).

Fig. 10 shows an imaging device with sensors located at the intersections of concentric lines c and radial lines d that correspond to the rows and columns of a rectangular matrix imaging device. The operation of such an imaging device is controlled by a circular scanning sequencer. In this embodiment, angular sector shaped $n \times n$ matrices $M C$ are formed, (a $3 \times 3$ matrix MC3 and a $5 \times 5$ matrix MC5 are shown) and except for sequencing differences, the matrices are processed identical to the square matrix embodiments discussed above.

As shown in Figs. 11-16, spatial and temporal processing unit 11 is used in connection with a histogram processor 22a for identifying objects within the input signal based upon user specified criteria for identifying such objects. A bus Z-Z (See Figs. 2, 11
and 12) transfers the output signals of spatial and temporal processing unit 11 to histogram processor 22a. Histogram processor 22a generates composite output signal ZH which contains information on the areas in relative movement in the scene.

Referring to Fig. 12, histogram processor 22a includes a bus 23 for communicating signals between the various components thereof, for receiving input commands from a controller 42 and for transmitting output signals to controller 42. Histogram formation and processing blocks 24-29 receive the various input signals, i.e., delayed digital video signal SR, speed V, oriented directions (in Freeman code) DI, time constant $C O$, first axis $x(m)$ and second axis $y(m)$, which are discussed in detail below. The function of each histogram formation block is to enable a histogram to be formed for the domain associated with that block. For example, histogram formation block 24 receives the delayed digital video signal SR and enables a histogram to be formed for the luminance values of the video signal. Since the luminance of the signal will generally be represented by a number in the range of $0-255$, histogram formation block 24 is preferably a memory addressable with 8 bits, with each memory location having a sufficient number of bits to correspond to the number of pixels in a frame.

Histogram formation block 25 receives speed signal V and enables a histogram to be formed for the various speeds present in a frame. In a preferred embodiment, the speed is an integer in the range $0-7$. Histogram formation block 25 is then preferably a memory addressable with 3 bits, with each memory location having a sufficient number of bits to correspond to the number of pixels in a frame.

Histogram formation block 26 receives oriented direction signal DI and enables a histogram to be formed for the oriented directions present in a frame. In a preferred embodiment, the oriented direction is an integer in the range $0-7$, corresponding to the

Freeman code. Histogram formation block 26 is then preferably a memory addressable with 3 bits, with each memory location having a sufficient number of bits to correspond to the number of pixels in a frame.

Histogram formation block 27 receives time constant signal CO and enables a histogram to be formed for the time constants of the pixels in a frame. In a preferred embodiment, the time constant is an integer in the range 0-7. Histogram formation block 27 is then preferably a memory addressable with 3 bits, with each memory location having a sufficient number of bits to correspond to the number of pixels in a frame.

Histogram formation blocks 28 and 29 receive the x and y positions respectively of pixels for which a histogram is to be formed, and form histograms for such pixels, as discussed in greater detail below. Histogram formation block 28 is preferably addressable with the number of bits corresponding to the number of pixels in a line, with each memory location having a sufficient number of bits to correspond to the number of lines in a frame, and histogram formation block 29 is preferably addressable with the number of bits corresponding to the number of lines in a frame, with each memory location having a sufficient number of bits to correspond to the number of pixels in a line.

Referring to Figs. 12 and 14, each of the histogram formation blocks 24-29 has an associated validation block 30-35 respectively, which generates a validation signal V1 - V6 respectively. In general, each of the histogram formation blocks $24-29$ is identical to the others and functions in the same manner. For simplicity, the invention will be described with respect to the operation of histogram formation block 25 , it being appreciated that the remaining histogram formation blocks operate in a like manner. Histogram formation block 25 includes a histogram forming portion 25 a, which forms the histogram for that block, and a classifier 25 b , for selecting the criteria of pixels for which the histogram is to be formed.

Histogram forming portion 25 a and classifier 25 b operate under the control of computer software in an integrated circuit (not shown), to extract certain limits of the histograms generated by the histogram formation block, and to control operation of the various components of the histogram formation units.

Referring to Fig. 14, histogram forming portion 25a includes a memory 100, which is preferably a conventional digital memory. In the case of histogram formation block 25 which forms a histogram of speed, memory 100 is sized to have addresses $0-7$, each of which may store up to the number of pixels in an image. Between frames, memory 100 is initiated, i.e., cleared of all memory, by setting init=1 in multiplexors 102 and 104. This has the effect, with respect to multiplexor 102 of selecting the " 0 " input, which is output to the Data In line of memory 100. At the same time, setting init=l causes multiplexor 104 to select the Counter input, which is output to the Address line of memory 100. The Counter input is connected to a counter (not shown) that counts through all of the addresses for memory 100 , in this case $\mathrm{O} \leq$ address $\leq 7$. This has the effect of placing a zero in all memory addresses of memory 100. Memory 100 is preferably cleared during the blanking interval between each frame. After memory 100 is cleared, the init line is set to zero, which in the case of multiplexor 102 results in the content of the Data line being sent to memory 100, and in the case of multiplexor 104 results in the data from spatial processing unit 117, i.e., the V data, being sent to the Address line of memory 100.

Classifier 25b enables only data having selected classification criteria to be considered further, meaning to possibly be included in the histograms formed by histogram formation blocks 24-29. For example, with respect to speed, which is preferably a value in the range of 0-7, classifier 25b may be set to consider only data within a particular speed category or categories, e.g., speed 1 , speeds 3 or 5, speed 3-6, etc. Classifier 25 b includes a
register 106 that enables the classification criteria to be set by the user, or by a separate computer program. By way of example, register 106 will include, in the case of speed, eight registers numbered $0-7$. By setting a register to " 1 ", e.g., register number 2, only data that meets the criteria of the selected class, e.g., speed 2, will result in a classification output of " 1 ". Expressed mathematically, for any given register in which $R(k)=b$, where $k$ is the register number and b is the boolean value stored in the register:

$$
\text { Output= } \mathrm{R}(\operatorname{data}(\mathrm{~V}))
$$

So for a data point $V$ of magnitude 2 , the output of classifier 25 b will be " 1 " only if $R(2)=1$. The classifier associated with histogram formation block 24 preferably has 256 registers, one register for each possible luminance value of the image. The classifier associated with histogram formation block 26 preferably has 8 registers, one register for each possible direction value. The classifier associated with histogram formation block 27 preferably has 8 registers, one register for each possible value of CO. The classifier associated with histogram formation block 28 preferably has the same number of registers as the number of pixels per line. Finally, the classifier associated with histogram formation block 29 preferably has the same number of registers as the number of lines per frame. The output of each classifier is communicated to each of the validation blocks 30-35 via bus 23 , in the case of histogram formation blocks 28 an 29, through combination unit 36, which will be discussed further below.

Validation units 30-35 receive the classification information in parallel from all classification units in histogram formation blocks 24-29. Each validation unit generates a validation signal which is communicated to its associated histogram formation block 24 29. The validation signal determines, for each incoming pixel, whether the histogram formation block will utilize that pixel in forming it histogram. Referring again to Fig. 14,
which shows histogram formation block 25, validation unit 31 includes a register block 108 having a register associated with each histogram formation block, or more generally, a register associated with each data domain that the system is capable of processing, in this case, luminance, speed, direction, CO , and x and y position. The content of each register in register block 108 is a binary value that may be set by a user or by a computer controller. Each validation unit receive via bus 23 the output of each of the classifiers, in this case numbered $0 \ldots \mathrm{p}$, keeping in mind that for any data domain, e.g., speed, the output of the classifier for that data domain will only be " 1 " if the particular data point being considered is in the class of the registers set to " 1 " in the classifier for that data domain. The validation signal from each validation unit will only be " 1 " if for each register in the validation unit that is set to " 1 ", an input of " 1 " is received from the classifier for the domain of that register. This may be expressed as follows:

$$
\text { out }=\left(i \overline{i n}_{0}+\operatorname{Reg}_{0}\right) \cdot\left(i n_{1}+\operatorname{Reg}_{1}\right) \ldots\left(i \overline{i n}_{n}+\operatorname{Reg}_{n}\right)\left(i n_{0}+i n_{1}+\ldots i n_{n}\right)
$$

where $\operatorname{Reg}_{0}$ is the register in the validation unit associated with input $\mathrm{in}_{0}$. Thus, using the classifiers in combination with validation units $30-35$, the system may select for processing only data points in any selected classes within any selected domains. For example, the system may be used to detect only data points having speed 2 , direction 4 , and luminance 12.5 by setting each of the following registers to " 1 ": the registers in the validation units for speed, direction, and luminance, register 2 in the speed classifier, register 4 in the direction classifier, and register 125 in the luminance classifier. In order to form those pixels into a block, the registers in the validation units for the x and y directions would be set to " 1 " as well.

Referring again to Fig. 13, validation signal V2 is updated on a pixel-by-pixel basis. If, for a particular pixel, validation signal V2 is " 1 ", adder 110 increments the output of memory 100 by one. If, for a particular pixel, validation signal V2 is " 0 ", adder 100 does not increments the output of memory. In any case, the output of adder 100 is stored in memory 100 at the address corresponding to the pixel being considered. For example, assuming that memory 100 is used to form a histogram of speed, which may be categorized as speeds 0-7, and where memory 100 will include $0-7$ corresponding memory locations, if a pixel with speed 6 is received, the address input to multiplexor 104 through the data line will be 6 . Assuming that validation signal V2 is " 1 ", the content in memory at location 6 will be incremented. Over the course of an image, memory 100 will contain a histogram of the pixels for the image in the category associated with the memory. If, for a particular pixel, validation signal V2 is " 0 " because that pixel is not in a category for which pixels are to be counted (e g., because that pixel does not have the correct direction, speed, or luminance), that pixel will not be used in forming the histogram.

For the histogram formed in memory 100, key characteristics for that histogram are simultaneously computed in a unit 112. Referring to Fig. 14, unit 112 includes memories for each of the key characteristics, which include the minimum (MIN) of the histogram, the maximum (MAX) of the histogram, the number of points (NBPTS) in the histogram, the position (POSRMAX) of the maximum of the histogram, and the number of points (RMAX) at the maximum of the histogram. These characteristics are determined in parallel with the formation of the histogram as follows:

For each pixel with a validation signal V2 of "1":
(a) if the data value of the pixel < MIN (which is initially set to the maximum possible value of the histogram), then write data value in MIN;
(b) if the data value of the pixel $>$ MAX (which is initially set to the minimum possible value of the histogram), then write data value in MAX;
(c) if the content of memory 100 at the address of the data value of the pixel $>$ RMAX (which is initially set to the minimum possible value of the histogram), then i ) write data value in POSRMAX and ii) write the memory output in RMAX.
(d) increment NBPTS (which is initially set to zero).

At the completion of the formation of the histogram in memory 100 at the end of each frame, unit 112 will contain important data characterizing the histogram. The histogram in each memory 100 , and the characteristics of the histogram in units 112 are read during the scanning spot of each frame by controller 42, and the memories 100 are cleared and units 112 are re-initialized for processing the next frame.

The system of the invention includes a semi-graphic masking function to select pixels to be considered by the system. Fig. 16 shows a typical image 53 consisting of pixels arranged in a $Q \times R$ matrix, which is divided into sub-matrices 51 each having a dimension of $s \times t$, wherein each $s \times t$ sub-matrix includes $s \times t$ number of pixels of the image. Each sub-matrix shown in Fig. 17 is a $3 \times 4$ matrix. In a preferred embodiment, $s=9$ and $t=12$, although any appropriate sub-matrix size may be used, if desired, including $1 \times 1$. Referring to Fig. 12, histogram processor 22a includes a semi-graphic memory 50 , which includes a one-bit memory location corresponding to each $s \times t$ matrix. For any given sub-matrix 51, the corresponding bit in memory 50 may be set to " 0 ", which has the effect of ignoring all pixels in such sub-matrix 50 , or may be set to " 1 " in which case all pixels in such sub-matrix will be considered in forming histograms. Thus, by using semi-graphic memory 50 , it is possible to limit those areas of the image to be considered during histogram formation. For example, when an image of a road taken by a camera facing forward on a vehicle is used to detect the
lanes of the road, the pixel information of the road at the farthest distances from the camera generally does not contain useful information. Accordingly, in such an application, the semigraphic memory is used to mask off the distant portions of the road by setting semi-graphic memory 50 to ignore such pixels. Alternatively, the portion of the road to be ignored may be masked by setting the system to track pixels only within a detection box that excludes the undesired area of the screen, as discussed below.

In operation, for any pixel under consideration, an AND operation is run on the validation signal for such pixel and the content of semi-graphic memory 50 for the submatrix in which that pixel is located. If the content of semi-graphic memory 50 for the submatrix in which that pixel is located contains " 0 ", the AND operation will yield a " 0 " and the pixel will be ignored, otherwise the pixel will be considered in the usual manner. It is foreseen that the AND operation may be run on other than the validation signal, with the same resultant functionality. Also, it is foreseen that memory 50 may be a frame size memory, with each pixel being independently selectable in the semi-graphic memory. This would enable any desired pixels of the image to be considered or ignored as desired. Semigraphic memory 50 is set by controller 42 via data bus 23 .

Fig. 16 shows an example of the successive classes $C_{1}, C_{2} \ldots C_{n-1}, C_{n}$, each representing a particular velocity, for a hypothetical velocity histogram, with their being categorization for up to 16 velocities ( 15 are shown) in this example. Also shown is envelope 38 , which is a smoothed representation of the histogram.

In order to locate the position of an object having user specified criteria within the image, histogram blocks 28 and 29 are used to generate histograms for the x and y positions of pixels with the selected criteria. These are shown in Fig. 13 as histograms along the x and y coordinates. These x and y data are output to moving area formation block 36
which combines the abscissa and ordinate information $\mathrm{x}(\mathrm{m})_{2}$ and $\mathrm{y}(\mathrm{m})_{2}$ respectively into a composite signal $\mathrm{xy}(\mathrm{m})$ that is output onto bus 23. A sample composite histogram 40 is shown in Fig. 13. The various histograms and composite signal $\mathrm{xy}(\mathrm{m})$ that are output to bus 23 are used to determine if there is a moving area in the image, to localize this area, and/or to determine its speed and oriented direction. Because the area in relative movement may be in an observation plane along directions x and y which are not necessarily orthogonal, as discussed below with respect to Fig. 18, a data change block 37 may be used to convert the x and $y$ data to orthogonal coordinates. Data change block 37 receives orientation signals $x(m)$, and $y(m)_{\text {, for }} x(m)_{0}$ and $y(m)_{0}$ axes, as well as pixel clock signals HP, line sequence and column sequence signals SL and SC (these three signals being grouped together in bundle F in Figs. 2, 4, and 10) and generates the orthogonal $x(m)_{1}$ and $y(m)_{1}$ signals that are output to histogram formation blocks 28 and 29 respectively.

In order to process pixels only within a user-defined area, the x -direction histogram formation unit 28 may be programmed to process pixels only in a class of pixels defined by boundaries, i.e. XMIN and XMAX. This is accomplished by setting the XMIN and XMAX values in a user-programmable memory in x-direction histogram formation unit 28 or in linear combination units 30-35. Any pixels outside of this class will not be processed. Similarly, y-direction histogram formation unit 29 may be set to process pixels only in a class of pixels defined by boundaries YMIN and YMAX. This is accomplished by setting the YMIN and YMAX values in a user-programmable memory in y-direction histogram formation unit 29 or in linear combination units 30-35. Thus, the system can process pixels only in a defined rectangle by setting the XMIN and XMAX, and YMIN and YMAX values as desired. Of course, the classification criteria and validation criteria from the other histogram formation units may be set in order to form histograms of only selected classes of
pixels in selected domains within the selected rectangular area. The XMIN and XMAX memory locations have a sufficient number of bits to represent the maximum number of pixels in the x dimension of the image under consideration, and the YMIN and YMAX memory locations have a sufficient number of bits to represent the maximum number of pixels in the y dimension the image under consideration. As discussed further below, the x and $y$ axes may be rotated in order to create histograms of projections along the rotated axes. In a preferred embodiment, the XMIN, XMAX, YMIN and YMAX memory locations have a sufficient number of bits to represent the maximum number of pixels along the diagonal of the image under consideration (the distance from "Origin" to "Stop" in Fig. 15). In this way, the system may be used to search within a user-defined rectangle along a user-defined rotated axis system.

In order for a pixel $\operatorname{PI}(a, b)$ to be considered in the formation of $x$ and $y$ direction histograms, whether on the orthogonal coordinate axes or along rotated axes, the conditions XMIN<a<XMAX and YMIN<b<YMAX must be satisfied. The output of these tests may be ANDed with the validation signal so that if the conditions are not satisfied, a logical " 0 " is ANDed with the validation signal for the pixel under consideration, thereby avoiding consideration of the pixel in the formation of x and y direction histograms.

Fig. 13 diagrammatically represents the envelopes of histograms 38 and 39, respectively in x and y coordinates, for velocity data. In this example, $\mathrm{x}_{\mathrm{M}}$ and $\mathrm{y}_{\mathrm{M}}$ represent the $x$ and $y$ coordinates of the maxima of the two histograms 38 and 39 , whereas $l_{u}$ and $l_{b}$ for the x axis and $l_{\mathrm{c}}$ and $l_{\mathrm{d}}$ for the y axis represent the limits of the range of significant or interesting speeds, $l_{\mathrm{a}}$ and $l_{\mathrm{c}}$ being the longer limits and $l_{\mathrm{b}}$ and $l_{\mathrm{d}}$ being the upper limited of the significant portions of the histograms. Limits $l_{\mathrm{a}}, l_{\mathrm{b}}, l_{\mathrm{c}}$ and $l_{\mathrm{d}}$ may be set by the user or by an
application program using the system, may be set as a ratio of the maximum of the histogram, e.g., $x_{M} / 2$, or may be set as otherwise desired for the particular application.

The vertical lines $L_{a}$ and $L_{b}$ of abscissas $l_{a}$ and $l_{b}$ and the horizontal lines $L_{c}$ and $L_{d}$ of ordinals $l_{c}$ and $l_{d}$ form a rectangle that surrounds the cross hatched area 40 of significant speeds (for all x and y directions). A few smaller areas 41 with longer speeds, exist close to the main area 40 , and are typically ignored. In this example, all that is necessary to characterize the area with the largest variation of the parameter for the histogram, the speed V in this particular case, is to identify the coordinates of the limits $l_{\mathrm{a}}, l_{0}$, $l_{c}$ and $l_{d}$ and the maxima $X_{M}$ and $Y_{M}$, which may be readily derived for each histogram from memory 100 , the data in units 112 , and the $\mathrm{xy}(\mathrm{m})$ data block.

Thus, the system of the invention generates in real time, histograms of each of the parameters being detected. Assuming that it were desired to identify an object with a speed of " 2 " and a direction of " 4 ", the validation units for speed and direction would be set to " 1 ", and the classifiers for speed " 2 " and direction " 4 " would be set to " 1 ". In addition, since it is desired to locate the object(s) with this speed and direction on the video image, the validation signals for histogram formation blocks 28 and 29, which correspond to the x and y coordinates, would be set to " 1 " as well. In this way, histogram formation blocks 28 and 29 would form histograms of only the pixels with the selected speed and direction, in real-time. Using the information in the histogram, and especially POSRMAX, the object with the greatest number of pixels at the selected speed and direction could be identified on the video image in real-time. More generally, the histogram formation blocks can localize objects in real-time meeting user-selected criteria, and may produce an output signal if an object is detected. Alternatively, the information may be transmitted, e.g., by wire, optical fiber or
radio relay for remote applications, to a control unit, such as unit 10a in Fig. 1, which may be near or remote from spatial and temporal processing unit 11.

While the system of the invention has been described with respect to formation of histograms using an orthogonal coordinate system defined by the horizontal and vertical axes of the video image, the system may be used to form histograms using non-orthogonal axes that are user-defined. Figs. 15A and 15B show a method of using rotation of the analysis axis to determine the orientation of certain points in an image, a method which may be used, for example to detect lines. In a preferred embodiment, the $x$-axis may be rotated in up to 16 different directions ( $180 \% 16$ ), and the $y$-axis may be independently rotated by up to 16 different directions. Rotation of the axes is accomplished using data line change block 37 which receives as an input the user-defined axes of rotation for each of the x any y axes, and which performs a Hough transform to convert the x and y coordinate values under consideration into the rotated coordinate axis system for consideration by the x and y histogram formation units 28 and 29. The operation of conversion between coordinate systems using a Hough transform is known in the art. Thus, the user may select rotation of the $x$-coordinate system in up to 16 different directions, and may independently rotate the $y$ coordinate system in up to 16 different directions. Using the rotated coordinate systems, the system may perform the functionality described above, including searching within userdefined rectangles (on the rotated axes), forming histograms on the rotated axes, and searching using velocity, direction, etc.

As discussed above, each histogram formation unit calculates the following values for its respective histogram.

MIN, MAX, NBPTS, RMAX, POSRMAX

Given that these values are calculated in real-time, the use of these values allows the system to rapidly identify lines on an image. While this may be accomplished in a number of different ways, one of the easier methods is to calculate $R$, where $R=$ NBPTS/RMAX, i.e., the ratio of the number of points in the histogram to the number of points in the maximal line. The smaller this ratio, i.e., the closer $R$ approaches 1 , the more perpendicularly aligned the data points under consideration are with the scanning axis.

Fig. 15A shows a histogram of certain points under consideration, where the histogram is taken along the $x$-axis, i.e., projected down onto the $x$-axis. In this example, the ratio $R$, while not calculated, is high, and contains little information about the orientation of the points under consideration. As the x -axis is rotated, the ratio R increases, until, as shown in Fig. 15B, at approximately $45^{\circ}$ the ratio R would reach a maximum. This indicates that the points under consideration are most closely aligned perpendicular to the $45^{\circ} \mathrm{x}$-axis. In operation, on successive frames, or on the same frame if multiple $x$-direction histogram formation units are available, it is advantageous to calculate R at different angles, e.g., $33.75^{\circ}$ and $57.25^{\circ}$ (assuming the axes are limited to 16 degrees of rotation), in order to constantly ensure that $R$ is at a minimum. For applications in which it is desirable to detect lines, and assuming the availability of 16 x -direction histogram formation units, it is advantageous to carry out the calculation of R simultaneously along all possible axes to determine the angle with the minimum $R$ to determine the direction of orientation of the line. Because the $x$ and $y$ axes may be rotated independently, the x and y histogram formation units are capable of simultaneously independently detecting lines, such as each side line of a road, in the same manner.

As discussed above, the system of the invention may be used to search for objects within a bounded area defined by XMIN, XMAX, YMIN and YMAX. Because
moving object may leave the bounded area the system preferably includes an anticipation function which enables XMIN, XMAX, YMIN and YMAX to be automatically modified by the system to compensate for the speed and direction of the target. This is accomplished by determining values for O-MVT, corresponding to orientation (direction) of movement of the target within the bounded area using the direction histogram, and I-MVT, corresponding to the intensity (velocity) of movement. Using these parameters, controller 42 may modify the values of XMIN, XMAX, YMIN and YMAX on a frame-by-frame basis to ensure that the target remains in the bounded box being searched. These parameters also enable the system to determine when a moving object, e.g., a line, that is being tracked based upon its axis of rotation, will be changing its axis of orientation, and enable the system to anticipate a new orientation axis in order to maintain a minimized value of $R$.

Referring to Fig. 12, a controller 42, which is preferably a conventional microprocessor-based controller, is used to control the various elements of the system and to enable user input of commands and controls, such as with a computer mouse and keyboard (not shown), or other input device. Components 11a and 22a, and controller 42, are preferably formed on a single integrated circuit. Controller 42 is in communication with data bus 23 , which allows controller 42 to run a program to control various parameters that may be set in the system and to analyze the results. In order to select the criteria of pixels to be tracked, controller 42 may also directly control the following: i) content of each register in classifiers 25 b, ii) the content of each register in validation units 31 , iii) the content of XMIN, XMAX, YMIN and YMAX, iv) the orientation angle of each of the $x$ and $y$ axes, and $v$ ) semi-graphic memory 50. Controller 42 may also retrieve i) the content of each memory 100 and ii) the content of registers 112 , in order to analyze the results of the histogram formation
process. In addition, in general controller 42 may access and control all data and parameters used in the system.

The system of the invention may be used to detect the driver of a vehicle falling asleep and to generate an alarm upon detection thereof. While numerous embodiments of the invention will be described, in general the system receives an image of the driver from a camera or the like and processes the image to detect one or more criteria of the eyes of the driver to determine when the driver's eyes are open and when they are closed. As discussed above, a wide-awake person generally blinks at relatively regular intervals of about 100 to 200 ms . When a person becomes drowsy, the length of each eye blink increases to approximately 500 to 800 ms , with the intervals between blinks being becoming longer and variable. Using the information on the opening and closing of the driver's eyes, the system measures the duration of each blink and/or the intervals between blinks to determine when the driver is falling asleep. This is possible because the video signal coming from the sensor in use, e.g., sensor 310 of Fig. 21, preferably generates 50 or 60 frames per second, i.e., a frame every 20 ms or 16.66 ms respectively. This makes it possible for the system, which processes each image in real time, to distinguish between blink lengths of 100 to 200 ms for an awake person from blink lengths of 500 to 800 ms for a drowsy person, i.e., a blink length of 5 to 10 frames for an awake person or a blink length of 25 to 40 frames for a drowsy person, in the case of a 50 frames per second video signal.

The system of the invention utilizes a video camera or other sensor to receive images of the driver T in order to detect when the driver is falling asleep. While various methods of positioning the sensor shall be described, the sensor may generally be position by any means and in any location that permits acquisition of a continuous image of the face of the driver when seated in the driver's seat. Thus, it is foreseen that sensor 10 may be mounted
to the vehicle or on the vehicle in any appropriate location, such as in or on the vehicle dashboard, steering wheel, door, rear-view mirror, ceiling, etc., to enable sensor 10 to view the face of the driver. An appropriate lens may be mounted oon the sensor 10 to give the sensor a wider view if reqired to see drivers of different sizes.

Figs. 18 and 19 show a conventional rear-view mirror arrangement in which a driver T can see ahead along direction 301 and rearward (via rays 302a and 302b) through a rear-view mirror 303. Referring to Fig. 20, mirror 303 is attached to the vehicle body 305 through a connecting arm 304 which enables adjustment of vision axes 302a and 302b. Axes 302 a and 302 b are generally parallel and are oriented in the direction of the vehicle. Optical axis 306 , which is perpendicular to the face 303 a of mirror 303 , divides the angle formed by axes 302 a and 302 b into equal angles a and b . Axis 307 , which is perpendicular to axis 302 b and therefore generally parallel to the attachment portion of vehicle body 305 , defines an angle c between axis 307 and mirror face 303a which is generally equal to angles $a$ and $b$. A camera or sensor 310 is preferably mounted to the mirror by means of a bracket 299. The camera may be mounted in any desired position to enable the driver to have a clear view of the road while enabling sensor 310 to acquire images of the face of the driver. Bracket 299 may be an adjustable bracket, enabling the camera to be faced in a desired direction, i.e., toward the driver, or may be at a fixed orientation such that when the mirror is adjusted by drivers of different sizes, the camera continues to acquire the face of the driver. The signal from the camera is communicated to the image processing system, which operates as described below, by means of lead wires or the like (not shown in Figs. 18-20).

Figs. 21 and 22 show a rear-view mirror assembly 308 in which sensor 310 is mounted interior to the mirror assembly. Mirror assembly 308 is adapted so that as assembly 308 is adjusted by a driver, sensor 310 remains directed toward the face of the driver. Rear-
view mirror assembly 308 includes a two-way mirror 309 having a face 309a, movably oriented to provide a rear view to the driver. Sensor 310, which is preferably an electronic mini-camera or MOS sensor with a built-in lens, is affixed to a bracket 311 , is oriented facing the driver using mechanical arrangement that enables sensor 310 to receive an image of the face of the driver when mirror 309 adjusted so that the driver has a rear view of the vehicle. The mechanical arrangement consists of a Cardan type mechanical joint, which causes automatic adjustment of the bracket 311 when the driver when the driver adjusts the rear view mirror so that the receiving face 310a of sensor 310 receives the image of the face of the driver, i.e., optical axis 310 b remains aligned toward the head of the driver.

Bracket 311 includes rods 312 and 313 that are movably coupled together by a pivot pin 314a (Fig. 21) or a sleeve 314b (Fig. 22). Rod 312 is attached at one end to a mounting portion of the vehicle 305. A pivot pin 315 , which preferably consists of a ball and two substantially hemispherical caps, facilitates movement of mirror assembly 308. Rod 312 extends through pivot pin 315 , and attaches to rod 313 via a sleeve 314 b or another pivot pin 314a. At one end, rod 313 rigidly supports bracket 311 on which sensor 310 is mounted. Rod 313 extends through clamp 316 of mirror assembly 308 via a hollow pivot 317. Pivot 317 includes a ball having a channel therethrough in which rod 313 is engaged, and which rotates in substantially hemispherical caps supported by clamp 316. The joint constantly maintains a desired angle between mirror 309 and bracket 311, thereby permitting normal adjustment of rear-view mirror 309 while bracket 311 adjusts the direction of sensor 310 so that the face 310a of the sensor will receive an image of the face of the driver. If desired, it is foreseen that sensor 310 may be mounted interior to rear-view mirror assembly 308 at a fixed angle relative to the face 309 a of the mirror assembly, provided that sensor 310 is able to receive an image of the face of the driver when the mirror is adjusted to drivers of different sizes. A wide
angle lens may be mounted to sensor 310 to better enable the sensor to be used under different adjustment circumstances.

Sensor 310 is connected by means of one or more lead wires to image processor 319, which is preferably an image processing system of the type discussed above and is preferably in the form of an integrated circuit inside rear-view mirror assembly 308. In a preferred embodiment, image processing system 319 is integrally constructed with sensor 310. Alternatively, image processing system 319 may be located exterior to mirror assembly 308 by means of conventional lead wires. While controller 310 is preferably a microprocessor, it is foreseen that controller 310 may be an ASIC or simple controller designed to perform the functions specified herein, particularly if the system is embedded, e.g. contained in a mirror assembly or integral with a vehicle.

Electroluminescent diodes 320 may be incorporated in mirror assembly 308 to illuminate the face of the driver with infrared radiation when ambient light is insufficient for image processing system 319 to determine the blinking characteristics of the driver. When such diodes are in use, sensor 310 must be of the type capable of receiving infrared radiation. Illumination of electroluminescent diodes 320 may be controlled by controller 42 (Fig. 12) of image processing system 319 , if desired. For example, controller 42 may illuminate electroluminescent diodes 320 in the event that the histograms generated by image processing system 319 do not contain sufficient useful information to detect the features of the driver's face required, e.g., NBPTS is below a threshold. Electroluminescent diodes 320 may be illuminated gradually, if desired, and may operate in connection with one or more photocells (not shown) that generate a signal as to the ambient lighting near the driver, and which may be used to control electroluminescent diodes 320 , either alone or in combination with controller 42 or another control circuit. If desired, an IR or other source of EMF radiation
may be used to illuminate the face of the driver at all times, provided that sensor 310 is compatible with the illumination source. This eliminates many problems that may be associated with the use of ambient lighting to detect drowsiness.

An optional alarm 322, which may be for example a buzzer, bell or other notification means, may be activated by controller 42 upon detecting that the driver is falling asleep. All of the components contained in mirror assembly 308, and image processing system 319 , are preferably powered by the electrical system of the vehicle.

Image processing system 319 monitors the alertness of the driver by detecting, in real time and on a continuous basis, the duration of the blinks of the driver's eyes and/or intervals between blinks, and by triggering alarm 322 to wake up the driver in the event the driver is detected falling asleep. Image processing system 319 receives an image of the face of the driver from sensor 310. The image may be of the complete face of the driver, or of a selected area of the driver's face that includes at least one eye of the driver. Image processing system 319 is capable of detecting numerous criteria that are associated with blinking eyes. These include any feature of the face that may be used to discern the closing of an eye, including detection of the pupil, retina, white, eyelids, skin adjacent to the eye, and others. The eye may also be detected by detecting either changes in the appearance of the eye when blinking or by detecting motion of the eyelid during blinking.

Referring to Fig. 30, as an initial step, the system of the invention preferably detects the presence of a driver in the driver's seat (402). This may be accomplished in any number of ways, such as by an electrical weight sensor switch in the driver's seat or by interfacing with a signal generated by the vehicle indicating that the vehicle is in use in motion, e.g., a speed sensor, a switch detecting that the vehicle is in gear, a switch detecting that closing of the seat belt, etc. Upon detection of such a signal, the system enters into a
search mode for detecting the driver's face or driver's eye(s). Alternatively, since the system is powered by the electrical system of the vehicle, and more preferably by a circuit of the electrical system that is powered only when the vehicle is turned on, the system turns on only when the engine is turned on, and enters into a search mode in which it operates until the face or eye(s) of the driver are detected. Upon detection of a driver in the vehicle (404), a Driver Present flag is set to " 1 " so that controller 42 is aware of the presence of the driver.

As an alternative method of detecting the presence of the driver, if sensor 10 is mounted in a manner that enables (or requires) that the sensor be adjusted toward the face of the driver prior to use, e.g., by adjustment of the rear-view mirror shown in Fig. 21, the system may activate an alarm until the sensor has acquired the face of the driver.

The driver may also be detected by using the image processing system to detect the driver entering the driver's seat. This assumes that the image processing system and sensor 10 are already powered when the driver enters the vehicle, such as by connecting the image processing system and sensor to a circuit of the vehicle electrical system that has constant power. Alternatively, the system may be powered upon detecting the vehicle door open, etc. When the driver enters the driver's seat, the image from sensor 10 will be characterized by many pixels of the image being in motion ( $\mathrm{DP}=1$ ), with CO having a relatively high value, moving in a lateral direction away from the driver's door. The pixels will also have hue characteristics of skin. In this embodiment, in a mode in which the system is trying to detect the presence of the driver, controller 42 sets the validation units to detect movement of the driver into the vehicle by setting the histogram formation units to detect movement characteristic of a driver entering the driver's seat. Most easily, controller 42 may set the validation units to detect $\mathrm{DP}=1$, and analyze the histogram in the histogram formation
unit for DP to detect movement indicative of a person entering the vehicle, e.g., NBPTS exceeding a threshold.

Fig. 23 shows the field of view 323 of sensor 310 between directions 323a and 323 b where the head T of the driver is within, and is preferably centered in, conical field 323. Field 323 may be kept relatively narrow, given that the movements of the head $T$ of the driver during driving are limited. Limitation of field 23 improves the sensitivity of the system since the driver's face will be represented in the images received from sensor 10 by a greater number of pixels, which improves the histogram formation process discussed below.

In general the number of pixels in motion will depend upon the field of view of the sensor. The ratio of the number of pixels characteristic of a driver moving into the vehicle to the total number of pixels in a frame is a function of the size of the field of vision of the sensor. For a narrow field of view (a smaller angle between 323a and 323b in Fig. 23), a greater number, and possibly more than $50 \%$ of the pixels will be "in movement" as the driver enters the vehicle, and the threshold will be greater. For a wide field of view (a greater angle between 323a and 323b in Fig. 23), a smaller number of pixels will be "in movement" as the driver enters the vehicle. The threshold is set corresponding to the particular location and type of sensor, and based upon other characteristics of the particular installation of the system. If NBPTS for the DP histogram exceeds the threshold, the controller has detected the presence of the driver.

As discussed above, other characteristics of the driver entering the vehicle may be detected by the system, including a high CO , hue, direction, etc., in any combinations, as appropriate, to make the system more robust. For example, controller 42 may set the linear combination units of the direction histogram formation unit to detect pixels moving into the vehicle, may set the linear combination unit for CO to detect high values, and/or may set the
linear combination unit for hue to detect hues characteristic of human skin. Controller 42 may then set the validation units to detect $\mathrm{DP}, \mathrm{CO}$, hue, and/or direction, as appropriate. The resultant histogram may then be analyzed to determine whether NBPTS exceeds a threshold, which would indicate that the driver has moved into the driver's seat. It is foreseen that characteristics other than NBPTS of the resultant histogram may be used to detect the presence of the driver, e.g., RMAX exceeding a threshold.

When the driver has been detected, i.e., the Driver Present flag has been set to " 1 ", the system detects the face of the driver in the video signal and eliminates from further processing those superfluous portions of the video signal above, below, and to the right and left of the head of the driver. In the image of the drivers head, the edges of the head are detected based upon movements of the head. The edges of the head will normally be characterized by $\mathrm{DP}=1$ due to differences in the luminance of the skin and the background, even due to minimal movements of the head while the head is still. Movement of the head may be further characterized by vertical movement on the top and bottom edges of the head, and left and right movement on the vertical edges of the head. The pixels of the head in movement will also be characterized by a hue corresponding to human skin and relatively slow movement as compared to eyelid movement for example. Controller 42 preferably sets the linear combination unit of DP to detect $\mathrm{DP}=1$ and sets the linear combination unit for direction to detect vertical and horizontal movement only (406). Optionally, the linear combination units for velocity and hue may be set to detect low velocities and human skin hues to make the system more robust. Also, the linear combination unit for CO may be set to eliminate the very fast movements characteristic of eye blinking in order to prevent the eyes from being considered at this stage of processing during which the head is being detected. Finally, controller 42 sets the validation units for DP , direction, and x and y position to be
"on" (406). Optionally, the validation units for velocity, hue, and CO may be set "on" if these criteria are being detected.

As illustrated in Fig. 24, the pixels having the selected characteristics are formed into histograms 324 x and 324 y along axes $\mathrm{O} x$ and $\mathrm{O} y$, i.e., horizontal and vertical projections, respectively. Slight movements of the head of the driver having the characteristics selected are indicated as ripples 327a, 327b, 327c and 327d, which are shown in line form but which actually extend over a small area surrounding the periphery of the head. Peaks 325a and 325b of histogram 324x, and 325c and 325d of histogram 324y delimit, by their respective coordinates 326a, 326b, 326c and 326d, a frame bounded by straight lines $Y a, Y b, X c, X d$, which generally correspond to the area in which the face V of the driver located. Controller 42 reads the histograms 324 x and 324 y from the histogram formation units, preferably during the blanking interval, and detects the locations of peaks $325 \mathrm{a}, 325 \mathrm{~b}, 325 \mathrm{c}$ and 325 d (408). In order to ensure that the head has been identified, the distance between peaks 325 a and 325 b and between peaks 325 b and 325 c are preferably tested to fall with a range corresponding to the normal ranges of human head sizes.

Once the location of coordinates 326a, 326b, 326c and 326d has been established, the area surrounding the face of the driver is masked from further processing (410). Referring to Fig. 25, this is accomplished by having controller 42 set XMIN, XMAX, YMIN and YMAX to correspond to $X c, X d, Y a$, and $Y b$ respectively. This masks the crosshatched area surrounding face V from further consideration, which helps to eliminate background movement from affecting the ability of the system to detect the eye(s) of the driver. Thus, for subsequent analysis, only pixels in central area Z, framed by the lines $X c$, $X d, Y a, Y b$ and containing face V are considered. As an alternative method of masking the area outside central area Z , controller 42 may set the semi-graphic memory to mask off these
areas. As indicated above, the semi-graphic memory may be used to mask off selected pixels of the image in individual or small rectangular groups. Since head $V$ is not rectangular, use of the semi-graphic memory enables better masking around the rounded edges of the face to better eliminate background pixels from further consideration.

The process of detecting the head of the driver and masking background areas is repeated at regular intervals, and preferably once every ten frames or less. It is foreseen that this process may be repeated every frame, if desired, particularly if more than one set of histogram formation units is available for use. Controller 42 may also compute average values over time for coordinates $326 \mathrm{a}, 326 \mathrm{~b}, 326 \mathrm{c}$ and 326 d and use these values to set mask coordinates $X c, X d, Y a, Y b$, if desired. This will establish a nearly fixed position for the frame over time.

Once the frame has been established, a Centered-Face flag is set to " 1 " (412), and controller 42 initiates the process of reducing the frame size to more closely surround the eyes of the driver. Referring to Fig. 26, in which frame Z denotes the area bounded by $Y a$, $Y b, X c, X d$ determined in the prior step, controller 42 initially uses the usual anthropomorphic ratio between the zone of the eyes and the entire face for a human being, especially in the vertical direction, to reduce the area under consideration to cover a smaller zone $Z$ ' bounded by lines $Y^{\prime} a, Y^{\prime} b, X^{\prime} c$ and $X^{\prime} d$ that includes the eyes $U$ of the driver. Thus, the pixels in the outer cross-hatched area of Fig. 27 is eliminated from consideration and only the area within frame $Z^{\prime}$ is further considered. This is accomplished by having controller 42 set XMIN, XMAX, YMIN and YMAX to correspond to $X^{\prime} c, X^{\prime} d, Y^{\prime} a$, and $Y^{\prime} b$ respectively (414). This masks the pixels in the area outside $Z^{\prime}$ from further consideration. Thus, for subsequent analysis, only pixels in area $Z^{\prime}$ containing eyes $U$ are considered. As an alternative method of masking the area outside area $\mathrm{Z}^{\prime}$, controller 42 may set the semi-graphic memory to mask off
these areas. It is foreseen that an anthropomorphic ratio may be used to set frame $\mathrm{Z}^{\prime}$ around only a single eye, with detection of blinking being generally the same as described below, but for one eye only.

Once the area $Z^{\prime}$ is determined using the anthropomorphic ratio, a Rough EyeCentering flag is set to " 1 " (416), and controller 42 performs the step of analyzing the pixels within the area $Z$ ' to identify movement of the eyelids. Movement of eyelids is characterized by criteria that include high speed vertical movement of pixels with the hue of skin. In general, within the area $\mathrm{Z}^{\prime}$, formation of histograms for $\mathrm{DP}=1$ may be sufficient to detect eyelid movement. This detection may be made more robust by detection of high values of CO, by detection of vertical movement, by detection of high velocity, and by detection of hue. As an alternative to detection of hue, movement of the pixels of the eye may be detected by detecting pixels with $\mathrm{DP}=1$ that do not have the hue of skin. This will enable detection of changes in the number of pixels associated with the pupil, retina, iris, etc.

Controller 42 sets the linear combination unit for DP to detect DP=1 and sets the validation units for DP , and x and y position to be on (418). Optionally, the linear combination units and validation units may be set to detect other criteria associated with eye movement, such as CO, velocity, and hue. Initially, controller 42 also sets XMIN, XMAX, YMIN and YMAX to correspond to $X^{\prime} c, X^{\prime} d, Y^{\prime} a$, and $Y^{\prime} b$ respectively. Referring to Fig. 27, a histogram is formed of the selected criteria, which is analyzed by controller 42 (420). If desired, a test is performed to ensure that the eyes have been detected. This test may, for example, consist of ensuring that NBTS in the histogram exceeds a threshold e.g., $20 \%$ of the total number of pixels in the frame $Y^{\prime} a, Y^{\prime} b, X^{\prime} c, X^{\prime} d$. Once the eyes have been detected an Eye-Detected flag is set to " 1 " (422).

Fig. 27 illustrates histogram $28 x$ along axis $O x$ and histogram $28 y$ along axis $O y$ of the pixels with the selected criteria corresponding to the driver's eyelids, preferably $\mathrm{DP}=1$ with vertical movement. Controller 42 analyzes the histogram and determines peaks $29 \mathrm{a}, 29 \mathrm{~b}, 29 \mathrm{c}$ and 29 d of the histogram. These peaks are used to determine horizontal lines $X " c$ and $X " d$ and vertical lines $Y " a$ and $Y " b$ which define an area of movement of the eyelids $Z$ ", the movements of the edges of which are indicated at 30 a and 30 b for one eye and 30 c and 30 d for the other eye (424). The position of the frame bounded by $Y$ " $a, Y$ " $b, X " c, X^{\prime \prime} d$ is preferably determined and updated by time-averaging the values of peaks 29a, 29b, 29c and 29d, preferably every ten frames or less. Once the eyes have been detected and frame $Z$ " has been established an Eye Centered flag is set to " 1 " (426) and only pixels within frame $Z$ " are thereafter processed.

Controller 42 then determines the lengths of the eye blinks, and, if applicable, the time interval between successive blinks. Fig. 28 illustrates in a three-dimensional orthogonal coordinate system: OQ, which corresponds to the number of pixels in area Z" having the selected criteria; To, which corresponds to the time interval between successive blinks; and Oz which corresponds to the length of each blink. From this information, it is possible to determine when a driver is falling asleep. Two successive blinks C 1 and C 2 are shown on Fig. 28.

Fig. 29A illustrates on curve $C$ the variation over time of the number of pixels in each frame having the selected criteria, e.g., $\mathrm{DP}=1$, wherein successive peaks $\mathrm{P} 1, \mathrm{P} 2, \mathrm{P} 3$ correspond to successive blinks. This information is determined by controller 42 by reading NBPTS of the x and/or y histogram formation units. Alternatively, controller 42 may analyze the x and/or y histograms of the histogram formation units (Fig. 27) to detect peaks 29a and

29 b and/or 29c and 29d, which over time will exhibit graph characteristics similar to those shown in Fig. 29A.

Controller 42 analyzes the data in Fig. 29A over time to determine the location and timing of peaks in the graph (428). This may be done, for example, as shown in Fig. 29B, by converting the graph shown in Fig. 29A into a binary data stream, in which all pixels counts over a threshold are set to " 1 ", and all pixel counts below the threshold are set to " 0 " (vertical dashes 31), in order to convert peaks P1, P2, P3 to framed rectangles R1, R2 R3, respectively. Finally, Fig. 29B shows the lengths of each blink (5, 6, and 5 frames respectively for blinks P1, P2 and P3) and the time intervals (14 and 17 frames for the intervals between blinks P1 and P2, and P2 and P3 respectively). This information is determined by controller 42 through an analysis of the peak data over time.

Finally, controller 42 calculates the lengths of successive eye blinks and the interval between successive blinks (430). If the length of the blinks exceeds a threshold, e.g., 350 ms , a flag is set to " 1 " indicating that the blink threshold has been exceeded. If the time interval between successive blinks is found to vary significantly over time, a flag is set to "1" indicting a variable intervals between blinks. Upon setting the first flag, which indicates that the driver is blinking at a rate indicative of falling asleep, controller 42 triggers alarm 322 for waking up the driver. The second flag may be used either to generate an alarm in the same manner as with the first flag, or to reinforce the first flag to, for example, increase the alarm sound level.

Figs. 31-36 show an alternative method by which the generic image processing system may be used to detect a driver falling asleep. Initially, controller 42 is placed in a search mode (350), in which controller 42 is scans the image to detect one or more characteristics of the face, and preferably the nostrils of the nose. Nostrils are generally
shadowed, and as such are usually defined by low luminance. Referring to Fig. 31, the area of the image is broken up into a number of sub-images 352 , in this case six, labeled A-F, which are sequentially analyzed by controller 42 to locate the nostrils. As shown, each of the sub-images 352 preferably overlaps each adjacent sub-image by an amount 353 equal to at least the normal combined width of the nostrils and the spacing therebetween to minimize the likelihood of missing the nostrils while in the search mode.

Controller 42 sets XMIN, XMAX, YMIN, and YMAX to correspond to the first sub-image A (354). Controller 42 then sets the registers 106 in the luminance linear combination unit to detect low luminance levels (356). The actual luminance level selected will vary depending upon various factors, such as ambient lighting, time of day, weather conditions, etc. Keeping in mind that controller 42 is able to access the histogram calculated for luminance from histogram formation unit 24 , controller 42 may use a threshold or other desired technique to select the desired luminances to search for the nostrils, e.g., selecting the lowest $15 \%$ of luminance values for consideration, and may adapt the threshold as desired. Controller 42 also sets the validation units for luminance and x and y histogram on (358), thereby causing x and y histograms to be formed of the selected low luminance levels. Controller 42 then analyzes the x and y direction histograms to identify characteristics indicative of the nostrils, as discussed below (360). If nostrils are not identified (362), controller 42 repeats this process on the next sub-image, i.e., sub-image $B$, and each subsequent sub-image, until nostrils are identified, repeating the process starting with subimage $A$ if required. Each sub-image is analyzed by controller 42 in a single frame. Accordingly, the nostrils may generally be acquired by the system in less than six frames. It is foreseen that additional sub-images may be used, if desired. It is also foreseen that the area in which the sub-images are searched may restricted to an area in which the nostrils are most
likely to be present, either as determined from past operation of the system, or by use of an anthropomorphic model. For example, the outline of the head of the driver may be determined as described above, and the nostril search may then be restricted to a small subarea of the image. It is also foreseen that the entire image may be search at once for the nostrils, if desired.

While the invention is being described with respect to identification of the nostrils as a starting point to locating the eyes, it is foreseen that any other facial characteristic, e.g., the nose, ears, eyebrows, mouth, etc., and combinations thereof, may be detected as a starting point for locating the eyes. These characteristics may be discerned from any characteristics capable of being searched by the system, including CO, DP, velocity, direction, luminance, hue and saturation. It is also foreseen that the system may locate the eyes directly, e.g., by simply searching the entire image for $\mathrm{DP}=1$ with vertical movement (or any other searchable characteristics of the eye), without the need for using another facial criteria as a starting point. In order to provide a detailed view of the eye while enabling detection of the head or other facial characteristic of the driver, it is foreseen that separate sensors may be used for each purpose.

Fig. 32 shows sample x and y histograms of a sub-image in which the nostrils are located. Nostrils are characterized by a peak 370 in the $y$-direction histogram, and two peaks 372 and 374 in the $x$-direction histogram. Confirmation that the nostrils have been identified may be accomplished in several ways. First, the histograms are analyzed to ensure that the characteristics of each histogram meets certain conditions. For example, NBPTS in each histogram should exceed a threshold associated with the normal number of pixels detectable for nostrils. Also, RMAX in the y histogram, and each peak of the x histogram should exceed a similar threshold. Second, the distance between nostrils $d$ is fairly constant. The x histogram is analyzed by controller 42 and $d$ is measured to ensure that it falls within a desired range. Finally, the width of a nostril is also fairly constant, although subject to
variation due to shadowing effects. Each of the x and y histograms is analyzed by controller 42 to ensure that the dimensions of each nostril fall within a desired range. If the nostrils are found by controller 42 to meet these criteria, the nostrils have been acquired and the search mode is ended. If the nostrils have not been acquired, the search mode is continued. Once the nostrils are acquired, the x position of the center of the face (position $d / 2$ within the subimage under consideration) is determined, as is the $y$ location of the nostrils in the image (POSRMAX of the $y$ histogram) (364).

In the present example, only a single eye is analyzed to determine when the driver is falling asleep. In this case the shadow of the eye in the open and closed positions is used to determine from the shape of the shadow whether the eye is open or closed. As discussed above, for nighttime applications, the invention is preferably used in combination with a shortwave IR light source. For the presently described example, the IR light source is preferably positioned above the driver at a position to cast a shadow having a shape capable of detected by the system. The anthropomorphic model is preferably adaptive to motion, to features of the driver, and to angular changes of the driver relative to the sensor.

Referring to Fig. 32, having determined the location of the nostrils 272 of the driver having a center position $X_{N}, Y_{N}$, a search box 276 is established around an eye 274 of the driver (366). The location of search box 276 is set using an anthropomorphic model, wherein the spatial relationship between the eyes and nose of humans is known. Controller 42 sets XMIN, XMAX, YMIN, and YMAX to search within the area defined by search box 276. Controller 42 further sets the luminance and $x$ and $y$ direction histograms to be on, with the linear combination unit for luminance set to detect low histogram levels relative to the rest of the image, e.g., the lowest $15 \%$ of the luminance levels (368). As a confirmation of the detection of the nostrils or other facial feature being detected, search box 276 , which is established around an eye 274 of the driver using an anthropomorphic model, may be
$\qquad$
analyzed for characteristics indicative of an eye present in the search box. These characteristics may include, for example, a moving eyelid, a pupil, iris or cornea, a shape corresponding to an eye, a shadow corresponding to an eye, or any other indica indicative of an eye. Controller 42 sets the histogram formation units to detect the desired criteria. For example, Fig. 36 shows a sample histogram of a pupil 432, in which the linear combination units and validation units are set to detect pixels with very low luminance levels and high gloss that are characteristic of a pupil. The pupil may be verified by comparing the shapes of the $x$ and $y$ histograms to known characteristics of the pupil, which are generally symmetrical, keeping in mind that the symmetry may be affected by the angular relationship between the sensor and the head of the driver.

Upon detection of the desired secondary facial criteria, identification of the nostrils is confirmed and detection of eye openings and closings is initiated. Alternatively, the criteria being detected to confirm identification of the nostrils may be eye blinking using the technique described below. If no blinking is detected in the search box, the search mode is reinitiated.

Blinking of the eye is detected during a tracking mode 400. In the tracking mode controller 42 sets XMIN, XMAX, YMIN, and YMAX to search within the area defined by search box 276. Controller 42 further sets the luminance and x and y direction histograms to be on, with the linear combination unit for luminance set to detect low histogram levels relative to the rest of the image, e.g., the lowest $15 \%$ of the luminance levels (368), in order to detect shadowing of the eye. During the tracking mode, the system monitors the location of nostrils 272 to detect movement of the head. Upon detected movement of the head, and a resultant shift in the position of $X_{N}, Y_{N}$, search box 276 is shifted according to the anthropomorphic model to retain the search box over the eye of the driver.

Fig. 33 shows the shapes of the x and y histograms 376,378 with the eye open, and Fig. 34 shows the shapes of the x and y histograms 380,382 with the eye closed. The shapes of the shadows, and especially the shape of the shadow with the eye closed will vary depending upon the location of the camera and the location of the light source creating the shadow, e.g., the sun or the IR light source. In any case, the width $\mathrm{MAX}_{x}-\mathrm{MIN}_{x}$ and the height MAX - MIN $_{y}$ of each histogram will generally be significantly greater for an open eye than for a closed eye. Controller 42 analyzes the width and height of each histogram to determine when the eye is open and when it is closed (382). An open eye may be determined by any number of characteristics of the $x$ and $y$ histograms, including width $M A X-\mathrm{MIN}_{x}$ and height MAX $_{y}-$ MIN $_{y}$ exceeding thresholds, NBPTS of each histogram exceeding a threshold, RMAX of each histogram exceeding a threshold, change in position of POSRMAX as compared to a closed eye, etc. Similarly, a closed eye may be determined by any number of characteristics of the $x$ and $y$ histograms, including width $M A X_{x}-$ MIN $_{x}$ and height MAX $_{y}$ - MIN ${ }_{y}$ being below thresholds, NBPTS of each histogram being below a threshold, RMAX of each histogram being below a threshold, change in postion of POSRMAX as compared to an open eye, etc., In a preferred embodiment, controller 42 calculates the width MAX $_{x}-$ MIN $_{x}$ and height MAX $_{y}$ - MIN ${ }_{y}$ of each histogram and utilizes thresholds to determine whether the eye is open or closed. If each width $\mathrm{MAX}_{x}-\mathrm{MIN}_{x}$ and height $\mathrm{MAX}_{y}-\mathrm{MIN}_{y}$ exceed thresholds, the eye is determined to be open. If each of width $\mathrm{MAX}_{x}-\mathrm{MIN}_{\mathrm{x}}$ and height MAX $_{y}$ - MIN ${ }_{y}$ fall below thresholds (which may be different from the thresholds used to determine an open eye), the eye is determined to be closed (384). MAX and MIN are preferably the MAX and MIN calculated in the histogram formation units. On the other hand, MAX and MIN may be other thresholds, e.g., the points on the histograms corresponding to RMAX/2 or some other threshold relative to RMAX.

FCTEP $99 / 00300$

Controller 42 analyzes the number of frames the eye is open and closed over time to determine the duration of each blink and/or the interval between blinks (386). Using this information, controller 42 determines whether the driver is drowsy (388). Upon determining that the driver is drowsy, controller 42 generates an alarm to awaken the driver (390) or another signal indicative that the driver is sleeping.

Controller 42 constantly adapts operation of the system, especially in varying lighting levels. Controller 42 may detect varying lighting conditions by periodically monitoring the luminance histogram and adapting the gain bias of the sensor to maintain as broad a luminance spectrum as possible. Controller 42 may also adjust the thresholds that are used to determine shadowing, etc. to better distinguish eye and nostril shadowing from noise, e.g. shadowing on the side of the nose, and may also adjust the sensor gain to minimize this effect. If desired controller 42 may cause the histogram formation units to form a histogram of the iris. This histogram may also be monitored for consistency, and the various thresholds used in the system adjusted as necessary.

It will be appreciated that while the invention has been described with respect to detection of the eyes of a driver using certain criteria, the invention is capable of detecting any criteria of the eyes using any possible measurable characteristics of the pixels, and that the characteristics of a driver falling asleep may be discerned from any other information in the histograms formed by the invention. Also, while the invention has been described with respect to detecting driver drowsiness, it is applicable to any application in which drowsiness is to be detected. More generally, although the present invention has been described with respect to certain embodiments and examples, variations exist that are within the scope of the invention as described in the following claims.

## CLAIMS

1. A process of detecting a person falling asleep, the process comprising the steps of:
acquiring an image of the face of the person;
selecting pixels of the image having characteristics corresponding to characteristics of at least one eye of the person;
forming at least one histogram of the selected pixels;
analyzing the at least one histogram over time to identify each opening and closing of the eye; and
determining from the opening and closing information on the eye, characteristics indicative of a person falling asleep.
2. The process according to claim 1 further comprising the step of identifying a sub-area of the image comprising the at least one eye prior to the step of selecting pixels of the image having characteristics corresponding to characteristics of at least one eye, and wherein the step of selecting pixels of the image having characteristics corresponding to characteristics of at least one eye comprises selecting pixels within the subarea of the image.
3. The process according to claim 2 wherein the step of identifying a subarea of the image comprising the at least one eye comprises the steps of:
identifying the head of the person in the image; and identifying the sub-area of the image using an anthropomorphic model.
4. The process according to claim 3 wherein the step of identifying head of the person in the image comprises the steps of:
selecting pixels of the image having characteristics corresponding to edges of the head of the person;
forming histograms of the selected pixels projected onto orthogonal axes; and analyzing the histograms of the selected pixels to identify the edges of thehead of the person.
5. The process according to claim 2 wherein the step of identifying a subarea of the image comprising the at least one eye comprises the steps of:
identifying the location of a facial characteristic of the person in the image; and
identifying the sub-area of the image using an anthropomorphic model and the location of the facial characteristic.
6. The process according to claim 5 wherein the step of identifying the location of a facial characteristic of the person in the image comprises the steps of: selecting pixels of the image having characteristics corresponding to the facial characteristic;
forming histograms of the selected pixels projected onto orthogonal axes; and analyzing the histograms of the selected pixels to identify the position of the facial characteristic in the image.
7. The process according to claim 6 wherein the facial characteristic is the nostrils of the person, and wherein the step of selecting pixels of the image having characteristics corresponding to the facial characteristic comprises selecting pixels having low luminance levels.
8. The process according to claim 7 further comprising the step of analyzing the histograms of the nostril pixels to determine whether the spacing between the
nostrils is within a desired range and whether the dimensions of the nostrils fall within a desired range.
9. The process according to claim 1 wherein:
the step of selecting pixels of the image having characteristics corresponding to characteristics of at least one eye of the person comprises selecting pixels having low luminance levels corresponding to shadowing of the eye; and
wherein the step analyzing the at least one histogram over time to identify each opening and closing of the eye comprises analyzing the shape of the eye shadowing to determine openings and closings of the eye.
10. The process according to claim 9 wherein the step of forming at least one histogram of the selected pixels comprises forming histograms of shadowed pixels of the eye projected onto orthogonal axes, and wherein the step of analyzing the shape of the eye shadowing comprises analyzing the width and height of the shadowing.
11. The process according to claim 1 wherein:
the step of selecting pixels of the image having characteristics corresponding to characteristics of at least one eye of the person comprises selecting pixels in movement corresponding to blinking; and
wherein the step analyzing the at least one histogram over time to identify each opening and closing of the eye comprises analyzing the number of pixels in movement over time to determine openings and closings of the eye.
12. The process according to claim 11 wherein the step of selecting pixels of the image having characteristics corresponding to characteristics of at least one eye of the person comprises selecting having characteristics selected from the group consisting of i)
$\mathrm{DP}=1$, ii) CO indicative of a blinking eyelid, iii) velocity indicative of a blinking eyelid, and iv) up and down movement indicative of a blinking eyelid.
13. The process according to claim 5 wherein the step of identifying a facial characteristic of the person in the image comprises the step of searching sub-images of the image to identify the facial characteristic.
14. The process according to claim 7 wherein the step of identifying a facial characteristic of the person in the image comprises the step of searching sub-images of the image to identify the nostrils.
15. The process according to claim 13 wherein the facial characteristic is a first facial characteristic and further comprising the steps of:
using an anthropomorphic model and the location of the first facial characteristic to select a sub-area of the image containing a second facial characteristic;
selecting pixels of the image having characteristics corresponding to the second facial characteristic; and
analyzing the histograms of the selected pixels of the second facial characteristic to confirm the identification of the first facial characteristic.
16. An apparatus for detecting a person falling asleep, the apparatus comprising:
a sensor for acquiring an image of the face of the person, the image comprising pixels corresponding to the eye of the person;
a controller; and .
a histogram formation unit for forming a histogram on pixels having selected characteristics,
the controller controlling the histogram formation unit to select pixels of the image having characteristics corresponding to characteristics of at least one eye of the person and to form a histogram of the selected pixels, the controller analyzing the histogram over time to identify each opening and closing of the eye, and determining from the opening and closing information on the eye, characteristics indicative of a person falling asleep.
17. The apparatus according to claim 16 wherein the controller interacts with the histogram formation unit to identify a sub-area of the image comprising the at least one eye, and the controller controls the histogram formation unit to select pixels of the image having characteristics corresponding to characteristics of at least one eye only within the subarea of the image.
18. The apparatus according to claim 17 wherein:
the controller interacts with the histogram formation unit to identify the head of the person in the image; and
the controller identifies the sub-area of the image using an anthropomorphic model.
19. The apparatus according to claim 18 wherein:
the histogram formation unit selects pixels of the image having characteristics corresponding to edges of the head of the person and forms histograms of the selected pixels projected onto orthogonal axes; and
the controller analyzes the histograms of the selected pixels to identify the edges of the head of the person.
20. The apparatus according to claim 17 wherein:
the controller interacts with the histogram formation unit to identify the location of a facial characteristic of the person in the image; and

## PCTV99/00300

the controller identifies the sub-area of the image using an anthropomorphic model and the location of the facial characteristic.
21. The apparatus according to claim 20 wherein:
the histogram formation unit selects pixels of the image having characteristics corresponding to the facial characteristic and forms histograms of the selected pixels projected onto orthogonal axes;
the controller analyzes the histograms of the selected pixels to identify the position of the facial characteristic in the image.
22. The apparatus according to claim 21 wherein the facial characteristic is the nostrils of the person, and wherein the histogram formation unit selects pixels of the image having low luminance levels corresponding to the luminance level of the nostrils.
23. The apparatus according to claim 22 wherein the controller analyzes the histograms of the nostril pixels to determine whether the spacing between the nostrils is within a desired range and whether the dimensions of the nostrils fall within a desired range.
24. The apparatus according to claim 16 wherein:
the histogram formation unit selects pixels of the image having low luminance levels corresponding to shadowing of the eye; and
wherein the controller analyzes the shape of the eye shadowing to determine openings and closings of the eye.
25. The apparatus according to claim 24 wherein histogram formation unit forms histograms of shadowed pixels of the eye projected onto orthogonal axes, and wherein the controller analyzes the width and height of the shadowing to determine openings and closings of the eye.
26. The apparatus according to claim 16 wherein:
the histogram formation unit selects pixels of the image in movement corresponding to blinking; and
the controller analyzes the number of pixels in movement over time to determine openings and closings of the eye.
27. The apparatus according to claim 26 wherein the histogram formation units selects pixels of the image having characteristics of movement corresponding to blinking, such characteristics being selected from the group consisting of i) $\mathrm{DP}=1$, ii) CO indicative of a blinking eyelid, iii) velocity indicative of a blinking eyelid, and iv) up and down movement indicative of a blinking eyelid.
28. The apparatus according to claim 20 wherein the controller interacts with the histogram formation unit to search sub-images of the image to identify the facial characteristic.
29. The apparatus according to claim 22 wherein the controller interacts with the histogram formation unit to search sub-images of the image to identify the nostrils.
30. The apparatus according to claim 28 wherein the facial characteristic is a first facial characteristic and further comprising:
the controller using an anthropomorphic model and the location of the first facial characteristic to cause the histogram formation unit to select a sub-area of the image containing a second facial characteristic, the histogram formation unit selecting pixels of the image in the sub-area having characteristics corresponding to the second facial characteristic and forming a histogram of such pixels; and
the controller analyzing the histogram of the selected pixels corresponding to the second facial characteristic to confirm the identification of the first facial characteristic.
31. The apparatus according to claim 16 wherein the sensor is integrally constructed with the controller and the histogram formation unit.
32. The apparatus according to claim 16 further comprising an alarm, the controller operating the alarm upon detection of the person falling asleep.
33. The apparatus according to claim 16 further comprising an illumination source, the sensor being adapted to view the person when illuminated by the illumination source.
34. The apparatus according to claim 33 wherein the illumination source is a source of IR radiation.
35. A rear-view mirror assembly for a vehicle which comprises: a rear-view mirror; and the apparatus according to claim 16 mounted to the rear-view mirror.
36. The rear-view mirror assembly according to claim 35 further comprising a bracket attaching the apparatus to the rear-view mirror.
37. The rear-view mirror assembly according to claim 35 further comprising a housing having an open side and an interior, the rear-view mirror being mounted to the open side of the housing, the rear view mirror being see-through from the interior of the housing to an exterior of the housing, the apparatus being mounted interior to the housing with the sensor directed toward the rear-view mirror.
38. The rear-view mirror assembly according to claim 37 further comprising a joint attaching the apparatus to the rear-view mirror assembly, the joint adapted to maintain the apparatus in a position facing a driver of the vehicle during adjustment of the mirror assembly by the driver.
39. The rear-view mirror assembly according to claim 35 further comprising a source of illumination directed toward the person, the sensor being adapted to view the person when illuminated by the source of illumination.
40. The rear-view mirror assembly according to claim 35 further comprising an alarm, the controller operating the alarm upon detection of the person falling asleep.
41. A rear-view mirror assembly which comprises:
a rear-view mirror; and
the apparatus according to claim 16 , the sensor being mounted to the rear-view mirror, the controller and the histogram formation unit being located remote from the sensor.
42. A vehicle comprising the apparatus according to claim 16.
43. A process of detecting a feature of an eye, the process comprising the steps of:
acquiring an image of the face of the person, the image comprising pixels corresponding to the feature to be detected;
selecting pixels of the image having characteristics corresponding to the feature to be detected;
forming at least one histogram of the selected pixels;
analyzing the at least one histogram over time to identify characteristics indicative of the feature to be detected.
44. The process according to claim 43 wherein the feature is the iris, pupil or cornea.
45. An apparatus for detecting a feature of an eye, the apparatus comprising:
a sensor for acquiring an image of the eye, the image comprising pixels corresponding to the feature to be detected;
a controller; and
a histogram formation unit for forming a histogram on pixels having selected characteristics,
the controller controlling the histogram formation unit to select pixels of the image having characteristics corresponding to characteristics of at least one eye of the person and to form a histogram of the selected pixels, the controller analyzing the histogram over time to identify each opening and closing of the eye, and determining from the opening and closing information on the eye, characteristics indicative of a person falling asleep.

## ABSTRACT OF THE DISCLOSURE

In a process of detecting a person falling asleep, an image of the face of the person is acquired. Pixels of the image having characteristics corresponding to an eye of the person are selected and a histogram is formed of the selected pixels. The histogram is analyzed over time to identify each opening and closing of the eye, and characteristics indicative of the person falling asleep are determined. A sub-area of the image including the eye may be determined by identifying the head or a facial characteristic of the person, and then identifying the sub-area using an anthropomorphic model. To determine openings and closings of the eyes, histograms of shadowed pixels of the eye are analyzed to determined the width and height of the shadowing, or histograms of movement corresponding to blinking are analyzed. An apparatus for detecting a person falling asleep includes a sensor for acquiring an image of the face of the person, a controller, and a histogram formation unit for forming a histogram on pixels having selected characteristics. Also disclosed is a rear-view mirror assembly incorporating the apparatus.

FIGURE 1


FIG. 1
$i$.

REPI arman


FIG. 2
$\therefore$.
i.
'



FIG. 4


FIG. 5


FIG. 6

```
`~.JAN 13,99 18:34 FR S< 599 5TH FL \12 848 5245 TO 11090 446100002 P.05

FIG. 7

\[
\begin{aligned}
& \\
& \\
& \\
& \therefore . \\
& \therefore .
\end{aligned}
\]

FIG. 8

FIG. 11

FIG. 12

\section*{ 2128485245}

FIC. 14

\(\therefore\).

599 5TH FL
 2128485245

Fig. 21

Fig. 25

Fig. \({ }^{2} 6\)

Fig. 27

Fig. 28

Fig. 29

FIE. 31

FIG. 32

\section*{PATENT COOPERATION TREATY}

From the INTERNATIONAL BUREAU

\section*{PCT}

\section*{NOTIFICATION OF RECEIPT OF RECORD COPY}
(PCT Rule 24.2(a))

To:

PHELIP, Bruno
Cabinet Harle \& Phelip
7 , rue de Madrid
F-75008 Paris
FRANCE
\begin{tabular}{|c|c|}
\hline \begin{tabular}{c}
Date of mailing (day/month/year) \\
26 March 1999 (26.03.99)
\end{tabular} & IMPORTANT NOTIFICATION \\
\hline \begin{tabular}{c}
Applicant's or agent's file reference \\
048J PCT 361
\end{tabular} & \begin{tabular}{c}
International application No. \\
PCT/EP99/00300
\end{tabular} \\
\hline
\end{tabular}
```

The applicant is hereby notified that the International Bureau has received the record copy of the international application as
detailed below.
Name(s) of the applicant(s) and State(s) for which they are applicants:
HOLDING B.E.V. SA (for all designated States except US)
PIRIM, Patrick et al (all designated States)
International filing date : 15 January 1999 (15.01.99)
Priority date(s) claimed : 15 January 1998 (15.01.98)
Date of receip of the record conv 25 August 1998(25.08.98)
l}\begin{array}{l}{\mathrm{ Date of ineipt of the record copy my international Bureau }}
List of designated Offices
AP :GH,GM,KE,LS,MW,SD,SZ,UG,ZW
EA :AM,AZ,BY,KG,KZ,MD,RU,TJ,TM
EP :AT,BE,CH,CY,DE,DK,ES,FI,FR,GB,GR,IE,IT,LU,MC,NL,PT,SE
OA :BF,BJ,CF,CG,CI,CM,GA,GN,GW,ML,MR,NE,SN,TD,TG
National :AL,AM,AT,AU,AZ,BA,BB,BG,BR,BY,CA,CH,CN,CU,CZ,DE,DK,EE,ES,FI,GB,GD,GE,GH,
GM,HR,HU,ID,IL,IN,IS,JP,KE,KG,KP,KR,KZ,LC,LK,LR,LS,LT,LU,LV,MD,MG,MK,MN,MW,MX,NO,
NZ,PL,PT,RO,RU,SD,SE,SG,SI,SK,SL,TJ,TM,TR,TT,UA,UG,US,UZ,VN,YU,ZW

```

\section*{ATTENTION}

The applicant should carefully check the data appearing in this Notification. In case of any discrepancy between these data and the indications in the international application, the applicant should immediately inform the International Bureau.
In addition, the applicant's attention is drawn to the information contained in the Annex, relating to:
time limits for entry into the national phase
\(\square\) confirmation of precautionary designations
\(X\) requirements regarding priority documents
A copy of this Notification is being sent to the receiving Office and to the InternationalSearching Authority.
\begin{tabular}{|c|l|}
\hline \begin{tabular}{c}
The International Bureau of WIPO \\
34, chemin des Colombettes \\
1211 Geneva 20, Switzerland
\end{tabular} & Authorized officer: \\
Facsimile No. \((41-22) 740.14 .35\) & Catherine Massetti \\
\hline
\end{tabular}

\section*{INFORMATION ON TIME LIMITS FOR ENTERING THE NATIONAL PHASE}

The applicant is reminded that the "national phase" must be entered before each of the designated Offices indicated in the Notification of Receipt of Record Copy (Form PCT/IB/301) by paying national fees and furnishing translations, as prescribed by the applicable national laws.

The time limit for performing these procedural acts is \(\mathbf{2 0}\) MONTHS from the priority date or, for those designated States which the applicant elects in a demand for international preliminary examination or in a later election, 30 MONTHS from the priority date, provided that the election is made before the expiration of 19 months from the priority date. Some designated (or elected) Offices have fixed time limits which expire even later than \(\mathbf{2 0}\) or \(\mathbf{3 0}\) months from the priority date. In other Offices an extension of time or grace period, in some cases upon payment of an additional fee, is available.

In addition to these procedural acts, the applicant may also have to comply with other special requirements applicable in certain Offices. It is the applicant's responsibility to ensure that the necessary steps to enter the national phase are taken in a timely fashion. Most designated Offices do not issue reminders to applicants in connection with the entry into the national phase.

For detaited information about the procedural acts to be performed to enter the national phase before each designated Office, the applicable time limits and possible extensions of time or grace periods, and any other requirements, see the relevant Chapters of Volume II of the PCT Applicant's Guide. Information about the requirements for filing a demand for international preliminary examination is set out in Chapter IX of Volume I of the PCT Applicant's Guide.

GR and ES became bound by PCT Chapter II on 7 September 1996 and 6 September 1997, respectively, and may, therefore, be elected in a demand or a later election filed on or after 7 September 1996 and 6 September 1997, respectively, regardless of the filing date of the international application. (See second paragraph above.)

Note that only an applicant who is a national or resident of a PCT Contracting State which is bound by Chapter II has the right to file a demand for international preliminary examination.

\section*{CONFIRMATION OF PRECAUTIONARY DESIGNATIONS}

This notification lists only specific designations made under Rule 4.9(a) in the request. It is important to check that these designations are correct. Errors in designations can be corrected where precautionary designations have been made under Rule 4.9(b). The applicant is hereby reminded that any precautionary designations may be confirmed according to Rule 4.9(c) before the expiration of 15 months from the priority date. If it is not confirmed, it will automatically be regarded as withdrawn by the applicant. There will be no reminder and no invitation. Confirmation of a designation consists of the filling of a norlce specifying the designated State concerned (with an indication of the kind of protection or treatment desired) and the payment of the designation and confirmation fees. Confirmation must reach the receiving Office within the 15 -month time limit.

\section*{REQUIREMENTS REGARDING PRIORITY DOCUMENTS}

For applicants who have not yet complied with the requirements regarding priority documents, the following is recalled.

Where the priority of an earlier national, regional or international application is claimed, the applicant must submit a copy of the said earlier application, certified by the authority with which it was filed ("the priority document") to the receiving Office (which will transmit it to the International Bureau) or directly to the International Bureau, before the expiration of 16 months from the priority date, provided that any such priority document may still be submitted to the International Bureau before that date of international publication of the international application, in which case that document will be considered to have been received by the International Bureau on the last day of the 16 -month time limit (Rule 17.1 (a)).

Where the priority document is issued by the receiving Office, the applicant may, instead of submitting the priority document, request the receiving Office to prepare and transmit the priority document to the International Bureau. Such request must be made before the expiration of the 16 -month time limit and may be subjected by the receiving Office to the payment of a fee (Rule 17.1(b)).

If the priority document concerned is not submitted to the International Bureau or if the request to the receiving Office to prepare and transmit the priority document has not been made (and the corresponding fee, if any, paid) within the applicable time limit indicated under the preceding paragraphs, any designated State may disregard the priority claim, provided that no designated Office may disregard the priority claim concerned before giving the applicant an opportunity to furnish the priority document within a time limit which is reasonable under the circumstances.

Where several priorities are claimed, the priority date to be considered for the purposes of computing the \(\mathbf{1 6}\)-month time limit is the filing date of the earliest application whose priority is claimed.

\section*{From the RECEIVING OFFICE}

To:

The International Bureau of WIPO 34 , chemin des Colombettes

1211, Geneva 20 Switzerland

The receiving Office transmits herewith the following documents:
1.

the record copy (Article 12(1)).
2.the search copy (Article 12(1)).
3.the purported international application (your request of \(\qquad\) (Rule 20.7(iv)).
4.the record copy and correction(s) not already transmitted in respect of the international application which has been considered withdrawn (Rule 29.1(a)(i)).
5.letter(s) of correction(s) or rectification(s) (Administrative Instructions, Section 325(b) and (c)).
6.substitute sheets (Administrative Instructions, Section 325(b) and (c)).
7.later submitted sheets (Administrative Instructions, Section 309(b)(iii), (c)(ii)).
8.later submitted drawings (Administrative Instructions, Section 310 (c)(iii), (d)(ii)).
9.
 other document(s):
\(\square\) letter \((s)\) dated: \(\qquad\) .
\(\qquad\) separate/general power(s) of attorney.
statement(s) explaining lack of signature considered to be satisfactory by this receiving Office.
\(\qquad\) priority document(s) (only for the IB).
fee calculation sheet (only for the IB).
document(s) concerning the deposit of a microorganism or other biological material.
nucleotide and/or amino acid sequence listing(s) in computer readable form (only for the ISA).
earlier search(es) (only for the ISA).
Form PCT/RO/106.
Form PCT/RO \(\qquad\) .
\(\square\)
\(\qquad\) .
\(\qquad\) .

This notification is sent to the addressee in its capacity as the International Bureau or the International Searching Authority.
\begin{tabular}{|c|}
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Name and mailing address of the receiving Office \\
European Patent Office, P.B. 5818 Patentlaan 2 NL-2280 HV Rijswijk Tel. \((+31-70) 340-2040\), Tx. 31651 epo nl,
\end{tabular}} \\
\hline \\
\hline
\end{tabular}

Authorized officer

Office européen des brevets

\section*{Eurcpean Patent Office}

\section*{Attestation}

Die angehefteten Unterlagen stimmen mit der ursprünglich eingereichten Fassung der auf dem nächsten Blatt bezeichneten internationalen Patentanmeldung überein.

The attached documents are exact copies of the international patent application described on the following page, as originally filed.

Les documents fixes a cette attestation sont conformes à la version initialement déposée de la demande de brevet international specifiée à la page suivante.

Den Haag, den
The Hague,
La Haye, le
09. 02. 99

Der Präsident des Europäischen Patentamts Im Auttrag
For the President of the European Patent Office Le Président de l'Office européen des brevets p.o.
cfuc
R.L.R. Petter

Patentanmeldung Nr .
Patent application no.
Demande de brevet \(n^{\circ}\)
PCT/EP 98/05383

\section*{Blatt 2 der Bescheinigung \\ Sheet 2 of the certificate \\ Page 2 de l'attestation}

Anmeldung Nr.:
Application no.: \(\quad\) PCT/EP 98/05383
Demande \(\mathrm{n}^{\circ}\) :
Anmelder:
Applicant(s):
Demandeur(s):
1. HOLDING BEV S.A. - Luxemburg, Luxemburg
2. PIRIM, Patrick - Paris, France

Bezeichnung der Erfindung:
Title of the invention: Image processing apparatus and method
Titre de l'invention:

Anmeldetag:
Date of filing:
25 August 1998 (25.08.98)
Date de dépôt:
In Anspruch genommene Priorität(en)
Priority(ies) claimed
Priorité(s) revendiquée(s)
\begin{tabular}{lll}
Staat: & Tag: & Aktenzeichen: \\
State: & Date: & File no. \\
Pays: & Date: & Numéro de dépót:
\end{tabular}

Benennung von Vertragsstaaten : Siehe Formblatt PCT/RO/101 (beigefugt)
Designation of contracting states: See Form PCT/RO/101 (enclosed)
Désignation d'états contractants : Voir Formulaire PCT/RO/101 (ci-joint)
Bemerkungen:
Remarks:
Remarques:

\(: 25-8-983: 16: 47\)
\[
\begin{aligned}
& \because \hat{\because}
\end{aligned}
\]

\section*{IMAG]: PROC(ISSSING AlPARATUS ANI MITHIOJ)}

Inventor: Patrick Jirim

The prescnt invention relates gencrally to an image processing apparatus, and more particularly to a mothod and apparatus for identifying and localizing an area in relative movement in a seene and determining the specd and oriented dircetion of the area in real time.

\section*{2. Description of the Related Art}

The buman or amimal eye is the best known system for identifying and localizing an object in relative movemont, and for determining its specel and dircction of movement. Various cfforts have been made in mimic the function of the cye. One type of device for this purpose is referred to as an arificing retina, which is shown, for cxample, in Giocomo Indiveri et. al, Irocecdings of MicroNeuro, 1996, pp. 15-22 (analog artificial retina), and Pierre-François Rücdii, Proceclings of MicroNcuro, 1996, pp. 23-29, (digital artificial retina which identifies the edges of an object). Howeven, very fast and higi capacity memorics are reguired for these devices in operate in real time, and only fimited information is obluined about the moving areas or objects observed Other examples of artificial jelinas and similar devices are shown in U S.]'atent Nos. \(5,094,495\) and 5,712,72.9.

Another proposed method for delecting; objects in an image is to store a frame from a vidco camcra or other observation sensor in a first (wo-dimensional menory. The frume is composed of a sequence of pixels representative of the seanc obscived by the camera at time if. The video signal for the next frame, which represents the seene at time \(\mathfrak{t}_{1}\), is stored in a second two-dimensional memory. If an object has moved betwecu tines \(\mathfrak{i}_{\text {, }}\) and \(\mathfrak{t}_{1}\), the distance \(d\) by which the object, as represented by jts pixels, has moved in the secne between \(i_{1}\) and \(i_{11}\) is detemince. The dieplacement speed is then equal to \(d / I\), where

\(T=i_{1}-t_{0}\). This type of system fequires a very large memory capacity if it is used wo obtain precise specd and oricnot direction. Infomation for the movernent of the obicet. There is also a delay in obtaining, the sused and displacement ditection infomation comesponding to \(i_{1}, 1 \mathrm{R}\), where \(R\) is the time necessary for the cilculations for the period \(i_{i}-1\), sistem. Thest two disadvantages limit applications of this type of system.

Another type of prion image processing system is shown in ligench Jatom No. 2.611,063, of which the inventoi hacof is also an inventor. This patent sedras 10 a method and apparatus for real time processing of a sequenced data flow from the outaut of a camera in order to perform data compression. A histogram of signai leveis fem, the camera is fomed using a first seyuence classification law. A repucentative bansaian function associancd with the histogram is stored, and the maxinmm and mimmen levels are extracted. The signal levele of the next sequence are compared with the signal to els for the first sequence using a fixed time constamt identical for vaeh pixct abiary
 classification law An auxiliary sigual is gencrated from the binay sifoci sia is represchative of the duration and position of a range of significan vabes limi:, the anxiliary signal is used to gencrate a signal localizing the jange with the longes sam: on, called the dominant range. These operations are mepeated for subsequent sequenc: . he sequenced signal.

This prior process cnables data compression, kecping oniy inat.eng parameters in the processet flow of sequenced data. Jn jarticular, the proces i. same _ of processing a digital video signal in orror to extract and localice wian ane charactuistic of at least one area in the image. It is thus possible to classify, for axaraic, brightness and/or chrominance levels of the signal and 10 characterize and kesta an object in the image.
U.S. Jaten No. 5,488,430 deloels and estimates a displacement by seranaty detcrmining borizontal and vertical changes of the obsorved arca. Differcnec sigenat: ate used to deacel movemente from tight to lof or from left to sight, of frobii top to batime or boltom to top, in the borizontal and verticul directions respectively. Ihis is acemaitished by carrying oun an IEXCl, XSIVJ: OR function on horizontal/vertical difference sigemis and on frame difference sigunts, and by using a ratio of the sums of the horizontaliveritical signals and the sums of frame difference signals with respect to \(n \mathrm{~K} \times 3\) window. Calcuinted values of the inage nong orthogonal horizontal and vertical difections are
used with an identical repetitive difference K in the orthogonal directions, wis difference \(K\) being definced as a function of the displacement speceds that are to be determined. The device determines the direction of movement alony, each of the two orthogonal directions by applying a set of calculation operations to the difference signats, which reguires very complex computations Aclditional complex computations arc also necessary to oblain the speed and oriented direction of displacement (extraction of a sgourc mot to obtuin the amplitude of the speed, and calculation of the metan function to obtain the oriented direction), starting from projections on the horizomal ard vertical axes. This device also docs not smooth the pixcl valucs using a time comstam, especially a time constant that is variable for each pixel, in order to compensate for excessively fast vatiations in the pixel values.

Jinally, Alberto Tomita Sales Represcmative. and Rokuve Ishii, "Iland Shape Ixtuaction from a Scquence of Jjpitized Cray-Scale Images," Institute of Electrical and lijcetronics Engineers, Vol. 3, 1994, pp. 1925-1930, deteels movement by subtucting between successive imapes, and forming histograms based inon the shape of a human haud in order to extract the shaje of a human hand in a digitiocd secene. The histogram analysis is based upon a gray scale inherent to the human hand. It docs not inelude my means of forminge histograms in the plane coordinutes . The sole purpose of the method is to detect the displacement of a human hand, for cxample, in order to replace the normal computer mouse by a hand, the movements of which are identified to control a computer:

It would be desirable to have an image processing, systen which has a relatively ciapic structure and teguires a relatively small menowy onpacity, and by which information on the movement of objects within an image can be obtained in real-time. It would also be desirable to have a mellood and apparatus for detecting movements that are not limited to the hand, but to any object (in the widest sense of the term) in a sconc, and which does not use histograms based on the gray values of a hand, but rather the histograms of different variables representative of the displacement and histograms of planc coordinates. Such a system would be applicable to many types of applications requiring the detcction of moving, and non-moving objects.

\title{

}

\section*{SUMMAIRY OI:JIII JNVIENIION}

The present invontion is a process for identifying relative mevenem of an objec! in an input signal, the input sigurl having a succession of frames, cach frame having a succession of pixcls. for cach pixel of the injut signal, bre inpul signat is smoothed using a time constant for the pixel in order to generale a smootiod injul signal. Jor cach pixel in the smoothed input signal, a binary value corresponding to the existence of a signifieant variation in the amplitude of the pixel between the curren fame and the immediately previous smoothed input frame, and the amplitude of the vatjation: are determined.

Using the existence of a significant variation for a given pixd the ime constant for the pixel, which is to be usat in smoolhing, subsequent frames or the input sigrat, is modificd. 'The finic coustant is preferably in the form \(2^{1}\), and is biacsasei or decreascel by incroncnting, or decrementing. p. Jor cach paricular pixel of ar aput signal, two matrices are then formed: a first matrix comprising the binary watas of a subser of the pixels of the frame spatially yelated to the particular pixel; and a s. and matrix comprising the amplitude of the variation of the subse of the pixels of la: :"ame spatially related to the particular jixel. In the first matrix, it is detemince whe the particular pixel and the pixels alonge an oriented direction relative to the pantictia aixed have binary values of a particular value represcuting significant variation, and in. iuch pixels, \(i t\) is deletmined in the second matrix whether the amplitude of the pixels aios: the oriented dircelion relative to the particulat pixel varies in a known manal : :ancoibizg movement in the oriented ditection of the particular pixel and the pixcls aleng the orjented direction relative to the particular pixel. The amplinde of the variation of the pixels along the oriented direction deternines the velocity of movement of the pativula pixel and the pixels along the oricuted dircetion relative to the particular pixel.

In cach of one or mote domains, a histogram of the values distributat in the first mud second matrices falling in cach such domain is formed. For a parlicula: bomain, an area of significant variation is determinad from the histogran for that domain. llistograms of the atca of significant variation along coordinate axes are then formod. lirom these histograms, it is detcrmined whether there is an area in movement for the particular domain. The donams are preferably selectal from the group consisting of i)
luminance, ij) specd (V), iji) oriented direction (I)I), iv) time constant (CO), v) huc, vi) saturation, and vii) first axis (\(x(m)\)), and viii) second axis (\(y(m)\)).

In one embodiment, the first and sceond matrices are square matrices, with the same odd number of rows und colnmms, centered on the particular pixel. In this embodiment, the steps of determining in the first matrix whether the parlicular pixel and the pixels along an oricutcel direction relative to the particular pixel have binary values of "particular value repersenting, significumt variation, and the step of determining in the sccond marrix whether the amplitude signal varics in a predetermined criteria along an oriented dircetion relative to the particular pixel, comprise applying nested \(n \times n\) matrices, where n is odd, centered on the particular pixel to the pixels within cach of the first and sccond matrices. The process then includes the further step of determining the smallest nested matrix in which the amplitude signal varjes along an oriented direction around the parlicular pixel.

In an alternative embodiment, the first and second matrices are hoxagonal matrices centered on the particular pixel. In this embodiment, the steps of determining in the first matrix whether the particular pixel and the pixels along an oriented dircetion relutive to the particular pixel have binary valuas of a parlicular value representing significant variation, and the step of deternining in the second matrix whether the amplitude signal varies in a pretelemined criteria along an oricnted direction relative to the particular pixel, comprise applying, nested hexagonal matrices of varying size centered on the particular pixel to the pixcls within cach of the first and sccond matricos. The process then further includes detemenin!:eg the smallest nested matrix in which the amplitude sipual varics along an oriented direction around the particular pixel.

In a still further cmbodiment of the invention, the first and second matrices are inveried J-slaped matrices wilh a single row and a single colunnn. In this cnibodiment, the steps of determining in the first matrix whecher the parlicular jixel and the pixels along an oriented dircection relative to the particular pixel have binary values of a particular value representing siguificant variation, and the step of dectermining in the second matrix whether the amplitude sigual varics in a predecenined criteria along, an oriented direction relative to the parlicular pixcl, comprise applying nestici \(n \times 11\) matrices, where \(n\) is odd, to the single line and the single column to determine the smallest matrix in which the amplitude vartes on a line with the stecpest slope and constant guantification.

If desired, successive decreasing portions of frames of the input signat may be considered using a Mallat time-scale algorithm, and the largest of these portions, which provides displacement, specel and oricntation indications compatibie with the value of \(p\), is sclected.

In a process of smoothing an input signal, for cacl pixcl of the inpur signai, i) the pixel is smonthed using a lime constun (C()) for that pixcl, therchy generaing a smoothed pixel value (I.O), ii) it is determincol whether (here exists a significant variation between such pixel and the same pixel in a previous frame, and iii) the time constand (CO) for such pixel to be used in smoothing the pixel in subscqueme fiames of the input signel is modificd based upon the existence or non-existence of a significant variation.

The step of determining the existence of a significant vatiation for a given pixel preferably comprises determining whether the absolute value of the differene (A B) between the given pixel value (P 1) and the value of sucl pixcl in a smoothat prod inme (1 ,) excceds in threshold (St). The step of smoothing the injut sigin? promahly comprises, for cach pixel, i) modifying the time consian (CO) for pixcl suct bawat : mon
 a smonthed value for the pixel (1.()) as follows:
\[
J O=1 /+\frac{m]}{C O}
\]

Time constam (CO) is preferably in the form \(2^{\prime \prime}\), and \(\mu\) is incremencd in the cvent that \(\triangle B<S E\) and decremented in the cvent Al3?SS.

In this process, the sysiem gencrates an output signal comprising, for cach pixel, a binary value (I)P) indicating the existence or non-existence of a significant variation, and the value of the time constant (CO). The binary valucs (1)P') and the time constunts (CO) are preferably stored in a memory sized to coricspond to the frame sizc.
^ proccos for identifying an area in relative movenent in and inpui signal includes the stens of:
generating a first array indicative of the exisconce of sipnificant variaion in the magnitude of cach pixel between a current fiame and a prior frame;
generating a second array indicative of the magnitude of significant variation of cach pixel betwece the cumen frame and a prion frame;
cstablishing a first moving, matrix comered on a pixel unfler consideration and comprising pixcle spatially related to the pixel under consideration, the first moving matrix traversing the first array for consideration of cach pixel of the cument frame; and determining whether the pixel under consideration and each pixel of the pixels spatially related to the pixel under consideration along an orionted direction relative therelo within the first matrix are a particular value rejresenting the prosence of significant variation, and if so, cstablishing, in a second matrix within the first matrix, centered on the pixel under consideration, and decermining whether the amplitude of the pixels in the second matrix spatially related to the pixel under consideration along an oriented dircelion relative thercto are indicative of movemem along such oriented direction, the amplitude of the variation along the oriented direction being indiative of the velocity of movement, the size of the sccond matrix being varied to identify the matrix size mosi indicalive of movement.

The process further comprises, in at least one domain sclected from the group consisting of j) luminance, ii) spead (V), iii) oricutcd direction (ID1), iv) time constant (\((\mathrm{CO})\), v) huc, vi) saturation, and vii) frrst axis (\(x(1 n)\)), and viii) sccond uxis (\(y(m)\)), and \(i x\)) data characteriycd by external inputs, forming a first histogram of the vilues in such domain for pixels indicative of movement along an oriented direction relative to the pixed unicr consideration. If desired, for the pixels in the first histogram, histograms of the position of such pixels along, coordinatc axes may be formed, and from such histograms, an arca of the image mecting criteria of the at least onc domain may be delcrmined.

A precess for identifying pixels in minput signal in ous of a pintality of classes ju one of a plurality of domains comprises, on a frame-by-frame basis;
for cach pixel of the input signal, analyring the pixcl and providing an output sigual for cach domain containing information to idensify each domain in which the pixel is classifica:
providing a classificer for cach domain, the classificr enabling classification of pixels within each donain to sclecled classes within the domain;
providing a validation sigual for the domains, the validation signal solecting. one or more of the plurality of domains for processing; and
forming a histogram for pixels of the output signal within the elasses selected by the clussifice within cach domain selected by the validation signa!.

The process further includes the stejs of forming histograms along condinate axes for the pixels within the classes selceted by the classifier within cach domein selceled by the validation signal, and forming a composite signal corresponding to the spatial position of such pixcls within the france. Jixels falling wilhin limits \(l_{3}, l_{10}, l_{\mathrm{c}}, l_{\mathrm{d}}\) in the histograms along the coordinate axes are then identificd, and a composite signal from the pixels falling within these limits is formed.

A process for identifying the velocity of movement of an area of an input signal comprisos:
for cach particular pixel of the input signal, forming a first mative comprising binary values indicating the existence or mon-existence of a significant variation in the amplitude of the pixel signal befwecn the current frane and a prior frame foy a subset of the pixels of the frame epatially related to such particular pixel, and a second matrix comprising the ampliude of such variation;
delermining in the first matrix wheller the particulat pixel and the pixels along an oriented dircetion relnive to the particular pixel have binary valucs of a particular valuc representing, significant vatiation, and, for such pixels, determinings in the sccond matrix whether the amplitudes of the pixels along an oriented dircction telative to the particular pixel vary in a knows matner indieating movement of the pixel and the pixels along an oriented direction relative to the partieular pixci, the: amplitude of the variation along the oriented divection detcmithing: the velocity of movemen! of the particular pixel.

A process for jdentifying a non-moving, area jn un inpul signal compriscs:
forming histograms along coordinate axes for pixcls of the inpur signal wihout significant varintion betwecn the current frame and a prjor frame; and
forming a composite signal corresponding, to the spatial position of such pixcls within the frame.

An apparatus for identifying relative movement in an inpul signal comprises:
means for smothing the input signal using a time constant for cach pixel, thereby gencrating a smooused infun sigunl;
moans for detcrmining for each pixel in the smoodjed jupul signal a binary value comesponding to the existence of a significant valiation in the amplitude of the pixel signal between the curfent frame and the immeriately previous smoothed input frame, and for determining the amplitude of the variation;
means for using the cxistence of a significant variation for a given pixel to modify the time comstant for the pixel to be used in smoothing subseguent frames of the input signal;
means for forming, a first matrix comprising the binary values of a subset of the pixels of the frame suatially related to cach particulat pixel, and for forming a second matrix comprising the amplifude of the variation of the subsel of the pixels of the frame spatially related to such parlicular pixcl;
means for determining in the first matrix a particular area in which the binary value for each pixel is a particular value representing significant vaviation, and, for such particular area, for detcmining in the second matrix whether the amplitude varics along an oricuted direction relative to the particular pixel in a known manner indicating movement of the pixel in the orjented direction, the amplitude of the variation along the oriented direction determining the velocity of movement of the pixel.

An apparatus for smoothing an input signal comprises:
micans for smoolling cheh pixcl of the input signal using a time constant (CO) for such pixel, thereby gencrating, al smoothed pixel value (I.O);
moans for determining the existence of a significant variation for a given pixel, and modifying the time constant (CO) for the pixel to be used in smoothing the pixel in subseguent frames of the input sigual basco upon the existence of such significant variation.

An apparalue for identifying an area in relative movement in an injut sigual comprises:
means for gencrating; a first amay iudicative of the existence of significant variation in the magnitude of cach pixel belween a current frame and a prior frame:
means for gencrating a second array indicative of the magnitude of significant variation of cach pixel between the current frame and a prior frame;
means for cstablishing a first moving matrix centerex on a pixcl under consideration and comprising pixels spatially relnted to the pixel under consideration, the first moving matrix traversing the first array for consideration of each pixel of the current frame;
means for determining, whether the pixel under consideration and pach pixel along in oriented direction rolative to the pixel under consideration within the first matrix is a particular value representing the presence of sigmificam variation, and if so, for

cstablishing, a secomd matrix within the first matrix, eentered on the pixel wnder consideration, and for delermining, whether the amplitude of the pixels in the secend matrix are indicative of movement along; an oriented direction rolative to the pixel under consideration, the amplitude of the variation along the oriented dircation being indicative of the velocily of movement, the size of the second matrix being valicd in identify the matrix size most indichtive of movement.

An apparatus for identifying pixcls in an ingut signal in one of a pionality of classes in one of a plurality of domains comprises:
means for malyzing cach pixel of the input signal and for providitis as ouput signal for cach domain containing information to idemafy each domain in which the pixc) is classified;
a classifier for exch domain, the classifier classifying pixcls wite. weth domain in selected classes within the domain;
a lincar combination unit for cach domain, the lincal combantai : nit generating, a validations signal for the domain, the validation signal sciccting owe .ars of the plurality of domains for processing; and
means for forming a histogram for pixds of the cu!put signt white the classes selected by the dassifier within cach domain selected by the validation seat

An apparatus for identifying the velocity of movement of an arca or wh aut signal comprises:
means for detcrmining for cach pixel in the input sigmal a busay :ius contesponding to the existoner of a significant variation in the amplitude of the pael signal between the current frame and the immedialoly previous smonthed inpiti it anc. and for determining the amplitude of the variation,
means for forming, for cach particula pixel of the inpul sigual, a ins :adtax comprising the binary values of a subsel of the pixels spatially related to such particiolar pixel, and a second matrix comprising the amplitude of the variation of the subswi of the pixcls spatially rclated to such particular pixel; and
means for delemining in the first matrix whether for a particular pixis, and other pixels along an oriented direction relative to the particular pixel, the binary valac for cach pixel is a particulat valuc representing significant variation, and, for such particulat pixel and other pixels, detcrmining in the second matrix whether the amplitude varies along an oriented dircelion relative to the particular pixel in a known manner indicating
movement of the pixel and the other pixcls, the aimplitude of the variation stong the oriented direction detcrmining the velocity of movement of the pixel and the other pixels.

An apparalus for identifying a non-moving area in an input signal comprises:
means for forming histograms along, coordinate axes for pixals of a current frame without a significant variation from such pixcls in a prior frame; and
means for forming a composite signal corresponding to the spatial position of such pixels within the frame.

\section*{}

Fig. 1 is a diagrammatic illustration of the system according to the invention.
Fig. 2 is a block dingrum of the temporal and spatial processing units of the invention.

Fig. 3 is a block diagram of the lemporal processing unit of the invention.
lig. 4 is a block diagram of the spatial prooessing unit of the invention.
Fig. 5 is a diagram showing the processing of pixels in accordance with the invention.

Fig. 6 illustrates the mumerical values of the Freeman code used to detennine movement direction in accordanes with the invention.
lig. 7 illustrates two nestad matrices as processed by the temporal processing, unit.

Jig. 8 illustrutes hexagonal matrices as processed by the temporai processing unil.

Jig. 9 illusitrates reverse-] matrices as processed by the temporal processing unit.
ligg.9a illustrates angular sector shaped matrices as processed by the icmportl processing unit.

Jig. 10 is a block diagram showing the relationship between the temporal and spatial processing units, and the histogram formation units.
lig. 11 is a block diagram showing the inkerrelationship beeween the various histogram formation units.

Fig. 12 shows the formation of a two-dimensional histogratm of a moving area from two one-dimensional histograms.

lig. 13 is a block dagram of an individual histogram formation unit.
Fig. 14 illustrates the use of the classifict for finding, an alignment of points relative to the direction of an analysis axis.

Fig. 14a illustrates a onc-dimensional histogram.
lige. 15 illustrates the use of the system of the invention for video conferencing.

Fig. 16 is a top view of the system of the invention for video-conferencing.
lig. 17 is a diagram illustrating histograms forned on the shaje of the heed of a participant in a video comferenec.

Fig. 18 illustrates the system of the invention eliminating binocusaty information in a video conferencing, application.
liig. 19 is a block diagram showing lese of the system of the :nventer for larget tracking.

Fig. 20 is an illustration of the systen of the invention solecti: \(x_{E}\), in inc ior tracking.

Figs. 21-2.3 illuatrate the system of the ifvention iocking on to a sel: ed maget.

Irig. 24 illustrates the processing of the systen: usinge a Mallat diazam:

\section*{}

The present invemion is a method and apparatus for detection of riside movement or non-moveraent of an area within an image. Relative movement, as wed herein, means movemen of an arca, which may be an "object" in the broadest sense or the term, c.e., a person, a portion of a person, or any animals or inanimate object, in: an approximutcly motionless enviromment, of approximate immobility of an acia in an enviromment that is at least partially ini movemon.

Referring to fig. 1, image processing system 11 includes in inpit 12 tiat recejves a digital video signal \(\$\) originating fiom a vidis camera or other inaging deveo 13 which monitors a seme 13 a. Jmagiag deviec 13 is preferably a conventional (MOS type (CD) camera. It is, however, forescon that the syitem of the invention may be used with any appropriatc scusor c. \&., , ultrasound, IR, Kadar, tactile array, cic., that generates
iिt/EPGE:0538
an output in the form of an array of information cons sponding io information observed by the imaging deviec. maging device 13 may have a dircel digital output, on an analog output that is convertod by m \(A / 1\) converior into digital signal \(S\).

While sipnal \(S\) may bo a progressive signal, in a preferred embediment, in which imaging device 13 is a conventional video camera, signal \(S\) is composed of a succession of pairs of interlaced frames, ' TR ; and ' TR ', and \(\mathrm{TR}_{2}\), and ' \(\mathrm{JR}^{2}\), each consisting of a succession of horizontal scanned lines, c.g., \(l_{1,1}, l_{1,7}, \ldots, l_{1,1}\) in \(7 R_{1}\), and \(l_{2,1}\) in \(\mathrm{J}_{2}\) Each line consisis of a succession of pixels or image-poinst \({ }_{1}\) l, c.g., \(H_{1,2}, a_{1,}\), and \(a_{1,2}\) for linc \(l_{1,1 ;}\) al \(l_{1,1}\) and \(a 1_{2,2}\) for line \(l_{1,1}\); \(8 l_{1,1}\) and \(a_{1,2}\) for line \(l_{2,4}\). Signal \(S(P 1)\) represents signal \(S\) composed of pixcis Pl.

As known in the art, \(S\left({ }^{(11)}\right.\)) includes a frame synchronization signal (ST) at the beginning of cach frame, a line synchronization signal (SJ.) at the beginning of cach line, and \& blanking signal (131). Thms, \(S(P 1)\) inchates a succession frames, which are represcmative of the time domain, and within cach frame, a scrics of lines and pixels, which are representative of the spatial domain.

In the time domain, "successive frames" shall refer to suceessive frames of the sume type (i. c. , odd frames such as \(\mathrm{TR}_{1}\), or cven frames such as ' TR '), and "successive pixels in the same position" shall denote sucecssive values of the pixels (IP) in the same location in successive frames of the sume type, c. \(\mathfrak{q}\)., at, of \(\mathrm{I}_{1,1}\) in frame \(\mathrm{JR}_{1}\) and \(\mathrm{a}_{1,1}\) of \(\mathrm{I}_{1,1}\) in the next corresponding, frame ' TR .

Image processing sysicm 11 gencrates ollpuls ZII and SR 14, which are preferably digital signals. Complex e:pra! t!y comprises a number of ouppu signals gencrated by the system, preferally including signals indicating, the existence and localization of an area or object in motion, and the spece \(V\) and the oriented dirccion of displacement DJ of pixels of the image. Nlso output from the systen, if desired, is injut digital video signal S , which is delayed (SK) to make it synchronous witl) the output \(/ H\) for the frame, taking into account the calculation time for the data in composite signal 'Il (one frame). The delayed signal SR is used to display the image received by camcra 13 on a monitor or celevision screcil 10, which may also be used to display the information containeil in compositc signal \% \% J. Composite signal \%/f] may also be transmituced to a separate processing assembly 10 n in which further procossing of the signal may be accomplished.

Keferring (o liig. 2, image processing systosin 11 includes a first assembly 11 a, which consists of a temporal processing unit 15 having an associated memory 16 , a spatial processing unit 17 having, a delay unit 18 and scqucjeing unit 19, and a pixel clock 20 , which generates a clock signal HP, and which somes as a clock for tomporbl processing unit 15 and sequencing unit 19. Clock pulses J1P are generated by clock 20 at the pixel rate of the image, which is preferably 13.5 Mll 2 .

Fig. 3 shows the operation of temporal processing unit 15, the function of which is to smooth the videc sigmal and gemetate a muber of outputs that are mitived by spatial processing, unit 17. Ibwring procossing, temporal processing unit 15 retrieves from memory 16 the smoothed pixel valucs 1 IJ of the digital viden sigual from the immediatiy prior frame, and the values of a smooihing time constam Cl for cach pixel A: uscd horcin, \(1 . O\) and \(C O\) shall be used to denote the pixel values (L) and time constants (O)
 pixel values (I) and time constants (C) respectively for such valucs retrewe tiom memory 16 for use by temporat processing imit 15 . Tanjoral processime tias: is gencrates a binary output sigual inf for cach pixel, which identifics whether the pias: as undergone significant variation, and a digital signal CO , which represents the unt: iod calculated value of time constant \(C\).

Referring to Fig. 3, icmporal procossinge 'unit 15 includes a firse boos. 5a Which receives the pixels l'l of imput video signal S. For cach pixel Pl, the temeat al processing unit retrieves from memory 10 a smoothed value ld of this pixe! fios ine immediately preceding. corrosponding, frame. whith was calculated by anmat processing unit 15 durine: processing of the immefiately prior frame and sicie: in memory 16 as \(1 . O\). Tomporal procossing unit 15 a-Hleulates the absolute value \(A B\) of the difference between each pixe) value \(\mathrm{P}^{1}\) and 1 l for the sume pixel position (for examole \(\mathrm{a}_{1,1}\), of \(\mathrm{I}_{1,1}\) in \(\mathrm{JR}_{1}\) and of \(\mathrm{J}_{1,2}\) in \(\mathrm{IK}_{2}\) :

\section*{\(A B|P| A|\mid\)}

Tcmporal processing, uit 15 is controllad by clock signal If from dack. 20 in order to maintain synchronization with the incoming, pixel stream. Test block 15t of temporal processing umit is recesives signal AB and à thesolold value Sle. 'threstiod Sl:
may be constant, but preferably varies based upon the pixel value ['], and more preferably varies with the pixcl value so as to form a gamme corrcction. Known means of varying, SR to form a gamma correction is icpresented by the piptional block 15 c shown in dashed lincs. Test block 15b compares, on a pixel-by-pixel pasis, digityl signals Al3 und SI? in order to detcrmine a binary signal IDP. If Als exceeds threshold SH, which indicates that pixel value PI has undergone significant variation as fompared to the smoothed value 3.d of the same pixel in the prior frame, 1 IP is set to " for the pixel under consideration. Otherwise, DP is sel to " 0 " for such pixel.

When \(\mathrm{DP}=1\), the difference between the; pixel value \(]^{\prime}\) and smoothed valuc 1] of the same pixel in the prior frame is considered too great, and temporal processing unit 15 attempts to reduce this difference in subsequent frames by reducing the smoothing lime constan (for that pixcl. Conversely, if 1)]: 0 , temporal processing unit 15 attempts to increase lhis difference in subscousent frames by increasing, the smoothing, time consiant (: for that pixel. These adjustments to dume constant (C as a function of the valuc of DP' are made by block 15 c . If JJ \(=1\), block 15 Sc reduces the time constant by a unit value \(U\) so that the new value of the time consiant CO equals the ofd value of the constant Cl minus unit valuc U):
\[
\mathrm{CO}=(3]-1)
\]

If IPP \(=0\), block 15 c increases the time constant by a unit value U se that the
 U.
\(\mathrm{CO}=(\mathrm{I}+\mathrm{V})\)

Thus, for each pixel, block 15 c teceives the binary signal jJj from test unit 15 b and time constant Cl from memory 16 , adjusis \(C\) (up or clown by unit value \(U\), and gencrates a new time constant (\(C\)) which is stored in memory 16 to replace time constant CI.

In a preferred embodiment, time constan \(C\), is in the form \(2^{\prime \prime}\), where \(p\) is incremented or decremented by unit value U , which preferably equals 1 , in block 15 c . Thus, if 1) \(=1\), block 15 c subtracts one (for the cas: where \(U=1\)) from \(p\) in the time

and gencrates new values 1.0 (now smoothed pixel valuc) and CO (new time constam) that are storal in memory 10 to replace 1.1 and C. respectively. As shown in lig. 2, demporal processing min 15 tumsmits the \(C O\) and por values for cach pixel to spatial prucessing unit 17 dirough the delay unit 18.

The capacity of memory 16 assuming, that there arc \(R\) pixels in a frame, and thereforc 2R pixels per conplate image, musi be H lenst \(2 \mathrm{R}(\mathrm{e} \cdot 1 \mathrm{n})\) bils, where e is the number of bits reguircd to store a single pixed value If (preferably eight bitc), and \(f\) is the number of bits required to store a single fime constant (C (prefcrably 3 bits). If each viden image is composed of a single frame (progressive imape), it is sufficient to use R (c+ \(\mathfrak{n}\)) bits rather than \(2 \mathrm{k}(\mathrm{c} 1 \cdot \mathrm{f})\) bitk.

Spatial processing unit 17 is used to idendify an arca in redative movemen in the images from camera 13 and to determine the specel and orianted dircetion of the movement. Spalial processing mit 17, in comjunction with delay unit 18 , cooperatcs with a control unit 19 that is controiled by clock 20 , whith generates clock julse 17 f at the pixel ficquency. Spatial processing, unit 17 recejves signals j) \(P_{i j}\) and \(\mathrm{CO}_{\mathrm{il}}\) (where i and j corrcspond to the x and y coordinates of the pixel) from (emporal processinge unit 15 and processes these signals as discussed bekow. Whetas iemporal processing unit 15 processes pixels within cach fiame, sputial processiag mit 17 processes groupings of pixels within the frames.

Fig. 5 diagrammatically shows the temporal processing of suecessive comesponding frame sequences \(T \mathrm{RK}_{\mathrm{j}}, 7 \mathrm{~K}\), , \(\mathrm{J}^{\prime} \mathrm{R}_{2}\) and the spatial processing in the these
 corresponds to the spatial processing of a fiame, whercas the superyosition of frames corresponds to the temporal processing of successive frames.

Signals 1\()_{i j}\) and \(\mathrm{CO}_{1 j}\) from temporal propessing unit 15 are distributed by spatial processing unit 17 into a first matrix 2.1 comaining a number of rows and columns much smatlec than the number of lincs 1 . of the frame and the number of pixels \(M\) per line. Matrix 21 preferably includes \(21+1\) lines along pe \(y\) axis and \(2 m+1\) columns along the \(x\) axis (in Cartesian coordinales), where 1 and \(m\) are sma! integer numbers. Advantagenusly, 1 and m are chosen to be powers or 2 , where for example 1 is equal to \(2^{2}\) and \(m\) is cqual to \(2^{\text {b }}\), a and b being integer numbers of about 2 to 5 , for example. To simplity the drawing and the explanation, m will be thken to be cqual tol (although it may be different) and \(m=1: 2^{3} \cdot 8\). In this casc, matrix 21 will have \(2 \times 8 \cdot 1=17\) rows and

\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{4}{*}{}} \\
\hline & \\
\hline & \\
\hline & \\
\hline
\end{tabular}

\(A\) method and apparatus for localizing ant wea in cclative movemem and for determining, the speat and direction thereof in real the is disclosed. Each pixel of an imge is smoothed using its own time constant. A binary valuc corresponding to the existence of a siguificamt variation in the amplitude of the smootlicel pixel from the prion frame, and the amplitude of the variation, are detemined, and the time constan for the pisel is updated. For cach particular pixel, wo matrix:s ane formed that include a antsed of the pixels spatially related to the particular pixel. The inst matix contaits ile batiary valucs of the subse of pixels. The second matrix congains the amplitude of ite vaction of the subset of pixcle. In the first matrix, it is detepminal whethe: the pixits athe an oriented discetion relative to the particular pixel haye binary values repromation of significant variation, and, for such pixols, it is decmined in the seconci mates whether the amplitude of these pixels vaties in a known mimose indicatinge movembi. : the

 whether there is an arca having the characteristies of oic particular domain. The at ins include luminance, huc, saturation, snead (V), oriented dircetion (1)f), time .an ant (CO), first axis (\(\mathrm{x}(\mathrm{m})\)), and second axis \((\mathrm{y}(\mathrm{m})\)).

Figure 4.

vig. 2

FJG. 11

FIG. 12

Fig. 15

Fig. 24

From the INTERNATIONAL BUREAU

\section*{NOTIFICATION CONCERNING SUBMISSION OR TRANSMITTAL OF PRIORITY DOCUMENT}
(PCT Administrative Instructions, Section 411)
\begin{tabular}{|l|l|}
\hline \begin{tabular}{c}
Date of mailing (day/month/year) \\
20 April 1999 (20.04.99)
\end{tabular} & \\
\hline \begin{tabular}{c}
Applicant's or agent's file reference \\
O48J PCT 361
\end{tabular} & \begin{tabular}{c}
IMPORTANT NOTIFICATION
\end{tabular} \\
\hline \begin{tabular}{c}
International application No. \\
PCT/EP99/00300
\end{tabular} & \begin{tabular}{c}
International filing date (day/month/year) \\
15 January 1999 (15.01.99)
\end{tabular} \\
\hline \begin{tabular}{c}
International publication date (day/month/year) \\
Not yet published
\end{tabular} & \begin{tabular}{c}
Priority date (day/month/vear) \\
15 January 1998 (15.01.98)
\end{tabular} \\
\hline \begin{tabular}{l}
Applicant \\
HOLDING B.E.V. SA et al
\end{tabular} \\
\hline
\end{tabular}

HOLDING B.E.V. SA et al
1. The applicant is hereby notified of the date of receipt (except where the letters "NR" appear in the right-hand column) by the International Bureau of the priority document(s) relating to the earlier application(s) indicated below. Unless otherwise indicated by an asterisk appearing next to a date of receipt, or by the letters "NR", in the right-hand column, the priority document concerned was submitted or transmitted to the International Bureau in compliance with Rule 17.1(a) or (b).
2. This updates and replaces any previously issued notification concerning submission or transmittal of priority documents.
3. An asterisk(") appearing next to a date of receipt, in the right-hand column, denotes a priority document submitted or transmitted to the International Bureau but not in compliance with Rule 17.1 (a) or (b). In such a case, the attention of the applicant is directed to Rule 17.1 (c) which provides that no designated Office may disregard the priority claim concerned before giving the applicant an opportunity, upon entry into the national phase, to furnish the priority document within a time limit which is reasonable under the circumstances.
4. The letters "NR" appearing in the right-hand column denote a priority document which was not received by the International Bureau or which the applicant did not request the receiving Office to prepare and transmit to the International Bureau, as provided by Rule 17.1 (a) or (b), respectively. In such a case, the attention of the applicant is directed to Rule 17.1 (c) which provides that no designated Office may disregard the priority claim concerned before giving the applicant an opportunity, upon entry into the national phase, to furnish the priority document within a time limit which is reasonable under the circumstances.
\begin{tabular}{clcc}
\multicolumn{1}{c}{ Priority date } & Priority application No. & \begin{tabular}{c}
Country or regional Office \\
or PCT receiving Office
\end{tabular} & \begin{tabular}{c}
Date of receipt \\
of priority document
\end{tabular} \\
15 Janu \(1998(15.01 .98)\) & \(98 / 00378\) & FR & \begin{tabular}{c}
NR
\end{tabular} \\
25 Augu \(1998(25.08 .98)\) & PCT/EP98/05383 & EP & 15 Apri 1999 (15.04.99)
\end{tabular}
\begin{tabular}{|c}
The International Bureau of WIPO \\
34, chemin des Colombettes \\
1211 Geneva 20. Switzerland
\end{tabular}
Authorized officer
Marc Salzman
Telephone No. (41-22) 338.83.38

From the RECEIVING OFFICE

NOTIFICATION OF DATE OF RECEIPT OF PRIORITY DOCUMENT OR OF PRIORITY APPLICATION NUMBER
(PCT Administrative Instructions, Section 323 (a),(b) and (c))
\begin{tabular}{|c|ll|}
\hline \begin{tabular}{c}
Applicant's or agent's file reference \\
048J PCT 361
\end{tabular} & \begin{tabular}{l}
Date of mailing \\
(day/month/year)
\end{tabular} & 27 A1AY 1939 \\
\hline \begin{tabular}{c}
International application No. \\
PCT/ EP 99/00300
\end{tabular} & \begin{tabular}{l}
International filing date \\
(day/month/year)
\end{tabular} & \(15 / 01 / 1999\) \\
\hline \begin{tabular}{c}
Applicant \\
HOLDING B.E.V. SA
\end{tabular} & \\
\hline
\end{tabular}
1. \(X\) This receiving Office hereby gives notice of the receipt of the priority document(s) identified below on :
\[
\text { 18. } 05.99
\]
2.This receiving Office hereby gives notice of the receipt of a request (made under Rule 17.1 (b)) to prepare and transmit to the International Bureau the priority document(s) identified below on :

Identification of the priority document(s):

Priority date
15. 01.98

Priority application No.
9800378

Country or regional Office \begin{tabular}{c}
or PCT receiving Office \\
\(F R\) \\
\hline
\end{tabular}

\section*{PATENT COOPERATION TREATY}

From the RECEIVING OFFICE

9 Э 100300
NOTIFICATION CONCERNING DOCUMENTS TRANSMITTED

The receiving Office transmits herewith the following documents:
1. \(\square\) the record copy (Article 12(1)).
2.the search copy (Article 12(1)).
3. \(\square\) the purported international application (your request of \(\qquad\)) (Rule 20.7(iv)).
4.the record copy and corrections) not already transmitted in respect of the international application which has been considered withdrawn (Rule 29.1(a)(i)).
5.letter (s) of corrections) or rectifications) (Administrative Instructions, Section 325(b) and (c)).
6.substitute sheets (Administrative Instructions, Section 325(b) and (c)).
7.later submitted sheets (Administrative Instructions, Section 309(b)(iii), (c)(ii)).
8.later submitted drawings (Administrative Instructions, Section 310(c)(iii), (d)(ii)).
9.
 other document (s):

\(\square\)letter (s) dated: \(\qquad\) .
\(\qquad\) separate/general power (s) of attorney.statements) explaining lack of signature considered to be satisfactory by this receiving Office.
\(\square\) priority documents) (only for the IB).
fee calculation sheet (only for the (B).
document (s) concerning the deposit of a microorganism or other biological material.
nucleotide and/or amino acid sequence listings) in computer readable form (only for the IS A).
earlier searches) (only for the IS A).
Form PCT/RO/106
Form PCT/RO/ \(\qquad\) .
\(\qquad\) -
\(\qquad\) -.

This notification is sent to the addressee in its capacity as the International Bureau or the International Searching Authority.
\begin{tabular}{|rl}
\hline Name and mailing address of the receiving Office \\
\hline (7)) \begin{tabular}{l}
European Patent Office, P.B. 5818 Patendaan 2 \\
NL-2280 HV Rijswijk \\
Tel. \((+31-70) 340-2040, T x .31651\) ep nl,
\end{tabular}
\end{tabular}

Authorized officer

Le Directeur général de l'Institut national de la propriété industrielle certifie que le document ci-annexé est la copie certifiée conforme d'une demande de titre de propriété industrielle déposée à l'Institut.

Fait à Paris, le
12 MAI 1999

BREVET D'INVENTION, CERTIFICAT D'UTILITÉ Code de la propriété intellectuelle-Livre VI

No 55-13:

\section*{requete en délivrance}
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
DATE DE REMISE DES PIĖCES \\
15 秋 1998 \\
no dennegistrement national \(00378^{-}\) \\
DÉpartement de ofpot \\
date de dêpõt \\
15 JAN. 1998
\end{tabular} & \begin{tabular}{l}
Nom et adresse du demandeur ou du mandataire A QUI LA CORRESPONDANCE DOIT ETRE ADRESSÉE \\
CABINET HARLE ET PHELIP \\
21 Rue De La Rochefoucauld 75009 PARIS
\end{tabular} \\
\hline \begin{tabular}{l}
2 DEMANDE Nature du titre de proprieté industrielle \\
X. brevet d'invention \(\quad\) demande divisionnaire \\
certificat ơutilite \(\quad \square\) ranslormation d'une demande de brevet europeen \\
Établissement du rapport de recherche \(\qquad\)
\(\qquad\) \\
Le demandeur. personne physique, requiert le paiement echelonné de la redevance \\
Titre de Pimention (200 caracteres maximum) \\
océdé et dispositif pour surveiller conducteur d'un véhicule automobile, tendance éventuelle à l'endormissemen
\end{tabular} & \begin{tabular}{l}

certuicat dutulite \(\mathrm{n}^{\circ}\) \\
date
non \\
en continu l'état de vigilance du fin de détecter et prévenir une de celui-ci.
\end{tabular} \\
\hline \begin{tabular}{l}
3 DEMANDEUR (S) \\
- SIREN
\(\square\) \\
Nom et prénoms (souligner le nom patronymique) ou dénomination \\
1/ CARLUS MAGNUS LIMITED \\
2/ PIRIM Patrick
\end{tabular} & Forme juridique \\
\hline
\end{tabular}

Téléphone : 0153045304 Télécopie : 0142935930 - Résenè à riNPI
Nationalite (s) \(1 /\) GIBRALTAR \(2 /\) FRANCE

Adresse (s) complete (s)
\(2 /\) FRANCE

1/ Victoria House
in Street
GIBRALTAR

2/ 56, rue Patay
FRANCE
75013 PARIS

\(N^{\circ} D^{\prime} E N R E G I S T R E M E N T\) NATIONAL

tirre de linvention :

Procédé et dispositif pour surveiller en continu l'état de vigilance du conducteur d'un véhicule automobile, afin de détecter et prévenir une tendance éventuelle à l'endormissement de celui-ci.

LE(S) SOUSSIGNE(S)
1/ CARLUS MAGNUS LIMITED
2/ PIRIM Patrick

DÉSIGNE(NT) EN TANT QU'INVENTEUR(S) (indiquer nom, prénoms, adresse et souligner le nom patronymique) :
PIRIM Patrick
56, rue Patay
75013 PARIS

NOTA : A titre exceptionnel, le nom de l'inventeur peut être suivi de celui de la sociêté à laquelle il appartient (société d'appartenance) lorsque celle-ci est différente de la société déposante ou titulaire.

Date et signature (s) du (des) demandeur (s) ou du mandataire

PARIS,
LE 15 JANVIER 1998

MICHELET Alain
C.P.I. bm (92-1176 i)

Cabinet HARLE ET PHELIP
\(\qquad\)

DOCUMENT COMPORTANT DES MODIFICATIONS
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{PAGE(S) DE LA DESCRIPTION OU DES REVENDICATIONS OU PLANCHE(S) DE DESSIN} & \multirow{2}{*}{R.m. \({ }^{\text {- }}\)} & \multirow[t]{2}{*}{DATE
DE LA
CORRESPONDANCE} & \multirow[t]{2}{*}{TAMPON DATEUR DU CORRECTEUR} \\
\hline Modifiée(s) & Supprimée(s) & Ajoutée(s) & & & \\
\hline 7,17,29-24 & 25 & & & 30-06-98 & \(18 \mathrm{MAl} \mathrm{1998-CN}\) \\
\hline pl 1/5-5/5. & & pl 6/6 & & \(\}\) & \% \\
\hline & & & & & \\
\hline
\end{tabular}

La présente invention a pour objet un procédé et un dispositif pour surveiller en continu l'état de vigilance du conducteur d'un véhicule automobile, afin de détecter et prévenir une tendance éventuelle à l'endormissement de celui-ci.

On sait qu'une proportion non négligeable, sinon importante, des accidents sur route résultent de l'endormissement, total ou partiel (somnolence), du conducteur d'un véhicule automobile (auto particulière, auto utilitaire, camionnette, camion), avec pour résultat de nombreux morts et blessés.

On voit donc l'intérêt, humain et économique, à éviter l'endormissement d'un conducteur en provoquant une alarme, notamment sonore, dès que celui-ci tend à s'assoupir, afin de l'éveiller.

Pour détecter la tendance à l'endormissement d'un conducteur, on a proposé sur un véhicule automobile
- d'une part, de détecter la variation de l'actionnement du volant par un conducteur qui tend à s'endormir et
- d'autre part, de détecter la variation des déplacements verticaux des paupières d'un conducteur qui tend à s'endormir.

La présente invention met en œuvre une détection du second type (surveillance des déplacements des paupières) et elle est basée sur une constatation physiologique, à savoir la modification de la durée des clignements des yeux, ainsi qu'éventuellement des intervalles de temps entre deux clignements successifs, donc la cadence des clignements, lorsqu'une personne passe de l'état éveillé à l'état de somnolence précédant l'endormissement de celui-ci : la durée des clignements d'œil d'une personne est de l'ordre de 100 à 200 ms (millisecondes) lorsqu'elle est éveillée et de l'ordre de 500 à 800 ms lorsqu'elle somnole, tandis que l'intervalle de temps séparant deux clignements successifs, qui est sensiblement constant à l'état éveillé, varie dans une plage relativement large à l'état somnolent. C'est la variation de la durée des clignements qui est essentiellement mise en œuvre dans le cadre de l'invention.

Le procédé et le dispositif selon l'invention décèlent l'augmentation de la durée des clignements des yeux du conducteur et déclenchent une alarme, sonore ou autre, lorsque cette durée dépasse un seuil déterminé, compris en particulier entre 200 et 500 ms , par exemple égal à 350 ms , ce seuil étant éventuellement modifiable en fonction de la physiologie du conducteur.

Dans la demande de brevet français \(\mathrm{N}^{\circ} 96.09420\) déposée le 26 juillet 1996 et la demande de brevet international (P.C.T.) PCT/FR97/01354 déposée le 22 juillet 1997, en invoquant la priorité de ladite demande de brevet français, l'inventeur de ces deux demandes étant également l'inventeur de la présente invention, on a décrit un procédé et un dispositif, fonctionnant en temps réel, pour le repérage et la localisation d'une zone en mouvement relatif dans une scène, ainsi que pour la détermination de la vitesse et de la direction du déplacement.

Parmi les applications envisagées de ce procédé et ce dispositif, on a décrit, dans lesdites demandes de brevet, la mise en œuvre de ceux-ci pour l'observation et la surveillance d'une zone constituée par la tête d'un conducteur automobile, afin de détecter et prévenir l'endormissement de celui-ci.

Selon cette application particulière des procédé et dispositif desdites demandes de brevet :
- on produisait un signal vidéo représentatif, en temps réel, des images successives des yeux du conducteur;
- on traitait ce signal vidéo pour, successivement et en continu,
- détecter, dans l'image des yeux de ce conducteur, les déplacements verticaux des paupières représentatifs du clignement de celles-ci ;
- déterminer la cadence de ces déplacements verticaux et
- repérer les cadences inférieures à un certain seuil, qui correspond sensiblement à la cadence de clignement à l'état éveillé du conducteur; et
- on déclenchait une alarme en cas de franchissement de ce seuil vers le bas par lesdites cadences, afin d'éveiller le conducteur.

La présente invention a pour objet des perfectionnements aux procédé et dispositif des demandes de brevet précitées, en ce qui concerne leur application à la surveillance d'un conducteur automobile, afin de détecter sa tendance éventuelle à l'endormissement.

L'invention a tout d'abord pour objet un procédé pour surveiller en continu l'état de vigilance du conducteur d'un véhicule automobile, afin de détecter et prévenir une tendance éventuelle à l'endormissement de celui-ci,
qui consiste
- à produire un signal vidéo représentatif, en temps réel, des images successives d'au moins le visage du conducteur ;
- à traiter ce signal, successivement et en continu, pour
- détecter, dans ce signal, la portion correspondant effectivement à l'image de la tête du conducteur,
- déterminer la valeur d'un paramètre relatif au clignement des paupières, qui se modifie notablement lors du passage de l'état éveillé à l'état somnolent du conducteur de part et d'autre d'un seuil, et
- repérer, en temps réel, le franchissement, par la valeur de ce paramètre, de ce seuil représentatif du passage de l'état éveillé à l'état somnolent du conducteur ; et
- à déclencher, en réponse au franchissement de ce seuil, une alarme apte à réveiller le conducteur ;
et qui est caractérisé en ce que
- d'une part, le signal vidéo est produit en utilisant un capteur optoélectronique solidaire d'un rétroviseur du véhicule automobile et ayant son axe optique de réception des rayons lumineux dirigé vers la tête du conducteur lorsque le rétroviseur est correctement orienté; et
- d'autre part, le traitement dudit signal vidéo consiste, après avoir détecté la présence du conducteur à sa place, à, successivement et en continu,
- détecter, à partir dedit signal vidéo, les déplacements horizontaux du conducteur, afin de cadrer le visage de celui-ci dans les trames correspondantes successives du signal vidéo,
- détecter, à partir dudit signal vidéo, les déplacements verticaux dans le visage, ainsi cadré, du conducteur, afin de cadrer les yeux de celui-ci,
- déterminer, à partir dudit signal vidéo, les durées successives des clignements des yeux, ainsi cadrés, de celui-ci, ces durées constituant le dit paramètre,
- comparer ces durées successives des clignements, ainsi déterminées, à un seuil représentatif du passage de l'état éveillé à l'état somnolent du conducteur, et
- déclencher, lorsque les durées de clignement dépassent vers le haut ledit seuil, une alarme apte réveiller le conducteur.
Avantageusement ledit capteur est placé dans le boîtier du rétroviseur derrière la glace de celui-ci qui est constituée par un miroir sans tain.

De préférence, on détecte la présence du conducteur à sa place en déterminant le nombre de pixels correspondants dans les trames successives de même nature du signal vidéo pour lesquels un déplacement significatif est détecté et en comparant ce nombre au nombre total de pixels par trame du signal vidéo, afin de déterminer si le rapport entre le
nombre de pixels représentant un déplacement et le nombre total de pixels par trame dépasse un seuil représentatif du passage de l'absence de conducteur à sa place à la présence d'un conducteur à sa place.

Le procédé peut, dans des modes de réalisation préférés, comprendre en outre une ou plusieurs des caractéristiques suivantes:
- entre les phases de détection des déplacements horizontaux, afin de cadrer le visage du conducteur, et de détection des déplacements verticaux, afin de cadrer les yeux de celui-ci, on prévoit une phase de cadrage large des yeux en se limitant à une portion du visage cadré englobant les yeux et leur environnement immédiat, par application du rapport anthropométrique entre ladite portion et le visage entier d'une personne;
- simultanément à la phase de détermination des durées de clignement des yeux, on prévoit une phase de détermination des intervalles de temps séparant deux clignements successifs de ceux-ci et on déclenche une alarme renforcée dès que ces intervalles de temps présentent une irrégularité qui dépasse un seuil déterminé ;
- on réactualise en continu les données concernant au moins un des paramètres suivants : déplacements horizontaux, déplacements verticaux, durées des clignements des yeux, intervalles entre clignements successifs, afin de perfectionner les approximations des valeurs normales de ces paramètres pour le conducteur effectivement présent et à l'état éveillé ;
- les différentes phases successives du procédé sont réalisées au moyen de programmes informatiques successifs portant sur le traitement des valeurs successives des pixels correspondants des trames de même nature du signal vidéo obtenu à partir dudit capteur.

La présente invention a également pour objet un dispositif pour surveiller en continu l'état de vigilance du conducteur d'un véhicule automobile, afin de détecter et prévenir une tendance éventuelle à l'endormissement de celui-ci, qui met en œuvre le procédé susvisé et qui est caractérisé en ce qu'il comprend, en combinaison :
- un capteur optoélectronique, qui, en combinaison avec une électronique associée, élabore, en réponse à la réception de rayons lumineux, un signal vidéo à trames de même nature, ou correspondantes, successives, ledit capteur étant solidaire d'un rétroviseur du véhicule et ayant son axe optique de réception des rayons lumineux dirigé vers la tête du conducteur lorsque le rétroviseur est correctement orienté ;
- des moyens pour détecter la présence du conducteur à sa place dans le véhicule, et pour élaborer un signal de présence ;
- des moyens, activés par ce signal de présence, pour détecter, à partir dudit signal vidéo, les déplacements horizontaux de dit conducteur, afin de cadrer le visage de celui-ci dans les trames correspondantes successives de même nature dudit signal vidéo, et pour élaborer un signal de fin de cadrage de visage ;
- des moyens, activés par ledit signal de fin de cadrage du visage, pour détecter, à partir de la portion des trames successives de même nature dudit signal vidéo correspondant au cadrage du visage, les déplacements verticaux dans le visage, ainsi cadré, du conducteur, afin de cadrer les yeux de celui-ci dans ladite portion des trames de ce signal, et pour élaborer un signal de fin de cadrage des yeux du conducteur ;
- des moyens, activés par ledit signal de fin de cadrage des yeux, pour déterminer, à partir de la portion des trames successives de même nature dudit signal vidéo correspondant au cadrage des yeux, les durées successives des clignements des yeux du conducteur ;
- des moyens pour comparer ces durées successives des clignements, ainsi déterminées, à un seuil représentatif du passage de l'état éveillé à l'état somnolent du conducteur ; et
- des moyens pour déclencher, lorsque les durées des clignements dépassent ledit seuil, une alarme apte à réveiller le conducteur.

Avantageusement, dans ledit dispositif, ledit capteur est placé dans le boîtier du rétroviseur derrière le miroir de celui-ci, qui est un miroir sans tain.

De préférence, lesdits moyens pour détecter la présence du conducteur à sa place et pour élaborer un signal de présence sont constitués par des moyens pour déterminer le nombre de pixels dans les trames successives de même nature dudit signal vidéo pour lesquels un déplacement significatif est détecté, des moyens pour comparer ledit nombre au nombre total de pixels par trame du signal vidéo, afin de déterminer si le rapport entre le nombre de pixels correspondant à un déplacement et le nombre total de pixels par trame dépasse un seuil représentatif du passage de l'état d'absence de conducteur à sa place à l'état de présence d'un conducteur à sa place.

Le dispositif peut, dans des modes de réalisation préférés, comprendre en outre un ou plusieurs des moyens suivants, à savoir:
- des moyens, activés par ledit signal de fin de cadrage du visage, pour sélectionner, dans ladite portion des trames successives dudit signal vidéo correspondant au cadrage du
visage, une portion réduite correspondant à un cadrage large, ou grossier, des yeux du conducteur englobant les yeux et leur environnement immédiat par application du rapport anthropométrique entre ledit cadrage large et le visage entier d'une personne et des moyens pour élaborer un signal de fin de cadrage large des yeux, ce signal activant lesdits moyens pour détecter les déplacements verticaux dans le visage du conducteur ; - des moyens, fonctionnant en parallèle avec lesdits moyens pour déterminer les durées successives des clignements des yeux et donc activés par ledit signal de fin de cadrage des yeux, pour déterminer les intervalles de temps séparant deux clignements successifs et pour déclencher une alarme renforcée dès que ces intervalles de temps présentent une irrégularité qui dépasse un seuil déterminé ;
- des moyens pour réactualiser en continu les données concernant au moins un des paramètres suivants : déplacements horizontaux, déplacements verticaux, durées des clignements des yeux, intervalles entre clignements successifs, afin de perfectionner les approximations des valeurs normales du paramètre impliqué pour le conducteur effectivement présent et à l'état éveillé.

Avantageusement l'ensemble capteur - unité électronique de traitement est réalisé comme décrit et illustré dans les deux demandes de brevet susmentionnées.

L'invention a également pour objet, à titre de produit industriel nouveau, un rétroviseur de véhicule automobile, caractérisé en ce que son miroir est constitué par une glace sans tain et en ce qu'il comporte, derrière cette glace, un capteur optoélectronique qui coopère avec une unité électronique telle que décrite dans la demande de brevet français \(\mathrm{N}^{\circ} 96.09420\) déposée le 26 juillet 1996 et la demande de brevet international (P.C.T.) PCT/FR97/01354 déposée le 22 juillet 1997, cette unité étant également disposée à l'intérieur du rétroviseur et étant apte à déclencher un dispositif d'alarme dès que ladite unité détermine que les mouvements verticaux des paupières d'une personne regardant la face avant de ladite glace correspondent à une durée des clignements des yeux qui dépasse un seuil prédéterminé inclus dans l'intervalle temporel compris entre la durée des clignements d'une personne éveillée et celle d'une personne qui somnole.

De préférence ledit rétroviseur porte au moins une diode électroluminescente au moins dans l'infra-rouge qui est activée au moins losque la luminosité ambiante devient insuffisante pour éclairer le visage du conducteur, ledit capteur optoélectronique étant sensible, entre autres, aux radiations infra-rouges émises par ladite diode.

On va décrire maintenant un mode de réalisation préféré d'un dispositif selon l'invention, mettant en cuvre le procédé selon l'invention, ainsi que certaines variantes de celui-ci, avec référence aux dessins annexés, sur lesquels :

Les figures 1 et 2 sont des vues, respectivement de coté et par-dessus, illustrant schématiquement la tête d'un conducteur de véhicule automobile et ses axes de vision vers l'avant et vers l'arrière.

La figure 3 illustre schématiquement la disposition classique du miroir d'un rétroviseur intérieur dans un véhicule automobile et les différents axes de vision du conducteur, cette figure correspondant à l'état de la technique.

Les figures 4 et 5 représentent respectivement l'ensemble et les articulations d'un rétroviseur avec le capteur optoélectronique et son électronique associée dans le cadre de l'invention.

La figure 6 illustre le champ du capteur optoélectronique prévu dans le rétroviseur des figures 4 et 5 .

Les figures 7 et 8 représentent la manière de cadrer le visage du conducteur en place.

Les figures 9 et 10 représentent la manière de cadrer les yeux du conducteur en place.

Les figures 11 et 12 sont relatives à la mesure de la durée des clignements des yeux du conducteur et des intervalles temporels séparent deux clignements successifs.

En se référant tout d'abord aux figures 1 à 6 , on va commencer la description détaillée du mode de réalisation préféré de l'invention par celle du dispositif optique et mécanique avec le capteur optoélectronique (micro-caméra vidéo ou capteur MOS avec lentille incorporée) et son ensemble électronique associé, constitué essentiellement par une ou plusieurs puces, qui transforme l'image captée par le capteur en un signal vidéo qui est traité afin de détecter une tendance à l'endormissement du conducteur en place, observé par ledit capteur.

En effet l'invention utilise essentiellement la variation de la durée des clignements des yeux d'une personne lors du passage de l'état éveillé à l'état somnolent ou assoupi de celle-ci : une personne éveillée cligne, à intervalles relativement réguliers, des paupières, et donc des cils, en 100 à 200 ms environ, tandis que la durée des clignements de cette personne à l'état somnolent passe à 500 à 800 ms environ, les intervalles entre clignements augmentant et étant variables.

Dans le signal vidéo en provenance du capteur optoélectronique à 50 ou 60 trames correspondantes (de même nature) par seconde, on réalise une détection toutes les 20 ms ou \(16,66 \mathrm{~ms}\) respectivement, ce qui permet de distinguer facilement des durées de 100 à 200 ms ou de 500 à 800 ms (5 à 10 trames pour l'état éveillé ou au contraire 25 à 40 trames pour l'état somnolent dans le cas de 50 trames de même nature par seconde) et donc de distinguer l'état éveillé de l'état somnolent ou assoupi d'une personne.

Pour une utilisation d'une telle distinction dans le cas du conducteur d'un véhicule automobile, il est désirable de visualiser au mieux la face du conducteur, c'est-à-dire de diriger l'axe optique d'entrée ou réception dudit capteur vers le visage de celui-ci. Le moyen prévu dans le mode de réalisation préféré de l'invention consiste à profiter du fait qu'un conducteur dirige le rétroviseur de son véhicule vers son visage de manière qu'il ait une vue vers l'arrière du véhicule par réflexion sur le miroir du rétroviseur.

On rappelle, avec référence aux figures 1 à 3 , le fonctionnement des rétroviseurs classiques logés à l'intérieur d'un véhicule en position centrale, en étant fixés, avec possibilité d'ajustement de l'orientation de leur miroir, sur une portion de la carrosserie à l'intérieur du véhicule.

Les figures schématiques 1 et 2 monłrent, vue de coté et de dessus respectivement, la tête \(T\) d'un conducteur qui peut observer la rue ou route sur laquelle se trouve son véhicule, d'une part, devant lui (flèche 1) et, d'autre part, derrière lui (flèches \(2 a\) et \(2 b\)) grâce au miroir 3 du rétroviseur convenablement orienté. Lesdites flèches \(1,2 a, 2 b\) représentent le parcours des rayons lumineux, \(2 b\) correspondant au rayon réfléchi sur le miroir 3.

En considérant maintenant la figure schématique 3, qui représente le miroir 3 du rétroviseur, miroir fixé par un bras 4 sur une portion 5 de la carrosserie à l'intérieur du véhicule, avec possibilité d'orientation, on retrouve les axes de visée ou flèches \(1,2 a, 2 b\) des figures 1 et 2 . On peut noter que les axes ou flèches 1 et \(2 b\) sont parallèles et sont dirigés suivant la direction de la rue ou de la route.

Sur cette figure 3, on a également représenté, mais en traits interrompus, l'axe optique 6 perpendiculaire à la face \(3 a\) du miroir 3 d'un rétroviseur intérieur qui divise l'angle formé par les directions \(2 a\) et \(2 b\) en deux moitiés égales (angles \(a\) et \(b\) égaux) d'après les lois de la réflexion, et l'axe 7 perpendiculaire à l'axe \(2 b\) et donc parallèle à la portion de support 5 , l'angle \(c\) entre les directions 7 et \(3 a\) étant égal aux angles \(b\) et \(a\).

Ces principes de fonctionnement des rétroviseurs intérieurs étant rappelés, on va maintenant avec référence aux figures 4 et 5 , exposer le montage mécanique permettant de diriger effectivement l'axe optique d'entrée du capteur optoélectronique vers le visage du conducteur en place, en profitant du fait que le miroir 3 d'un rétroviseur est orienté par le conducteur en place, lorsque cela n'est pas déjà le cas, pour que l'axe \(2 a\) de visée par le conducteur soit dirigé vers la tête \(T\) de celui-ci. En effet, si l'axe optique d'entrée du capteur est effectivement dirigé vers la face de conducteur, le signal vidéo produit par celui-ci contiendra les informations nécessaires pour déterminer la durée des clignements des yeux de celui-ci.

Tout d'abord dans le cadre du mode de réalisation préféré de l'invention, le rétroviseur 8 comprend, contrairement au rétroviseurs classiques, une glace sans tain 9 (figure 4) dont la face \(9 a\) dirigée vers le conducteur joue le même rôle que la face \(3 a\) du miroir 3 d'un rétroviseur classique (figure 3), mais qui permet à un capteur 10 (constitué par une micro-caméra électronique ou un capteur MOS à lentille incorporée), porté par un support 11 (tournant avec le miroir sans tain 9), de recevoir au moins l'image du visage du conducteur en place lorsque le miroir sans tain 9 (avec le rétroviseur 8) est convenablement orienté par le conducteur pour percevoir la, rue ou la route derrière lui ou est déjà ainsi orienté (comme c'est le cas pour le miroir classique 3 de la figure 3).

L'articulation mécanique type Cardan, illustrée sur les figures 4 et 5 (cette demière figure étant une vue plus détaillée d'une portion de la figure 4), permet l'orientation automatique correcte du support 11 , avec le capteur 10 , par le conducteur lorsqu'il règle son rétroviseur ou lorsque celui-ci est déjà réglé, et donc de la face réceptrice \(10 a\) du capteur 10 pour qu'elle reçoive l'image du visage du conducteur en place, son axe optique d'entrée \(10 b\) étant dirigé vers la tête du conducteur en place du fait de l'angle entre le miroir 9 et le support 11 du capteur 10.

A cet effet l'articulation pour le support 11 comprend deux tiges 12 et 13 articulées librement entre elles par une rotule \(14 a\) (figure 4) ou un manchon \(14 b\) (figure 5.). La tige 12 est fixée à une portion 5 de la carrosserie par une de ses extrémités et traverse le boîtier du rétroviseur 8 grâce à la rotule 15 (constituée par une bille et deux calottes sensiblement hémisphériques) avant de pénétrer par son autre extrémité dans le manchon \(14 b\) ou être fixée à la rotule \(14 a\), tandis que la tige 13 porte rigidement, à une extrémité, le support 11 du capteur 10 et traverse l'étrier 16 du rétroviseur 8 grâce à une rotule creuse 17 (à bille traversée par un canal dans lequel est engagée la tige 13 et tournant dans deux calottes
sensiblement hémisphériques portées par l'étrier 16) avant de rejoindre par son autre extrémité la rotule 14 a ou le manchon \(14 b\).

Une telle articulation, qui maintient en permanence un angle approprié entre le miroir 9 et le support 11, permet à la fois l'orientation habituelle du rétroviseur intérieur par le conducteur et l'orientation du support 11 du capteur 10 pour que la face \(10 a\) de ce capteur reçoive l'image d'au moins le visage du conducteur en place lorsque le rétroviseur est convenablement orienté.

Le capteur optoélectronique 10 débite par un conducteur 18 dans une unité électronique d'analyse 19 (avantageusement constituée par un boîtier à puce ou puces logé à l'intérieur du rétroviseur 8) le signal vidéo qu'il élabore à partir de l'image qu'il reçoit sur sa face \(10 a\).

On peut prévoir des diodes électroluminescentes 20 pour émettre, en direction du conducteur en place, lorsque le rétroviseur est correctement orienté, un rayonnement infrarouge apte à éclairer au moins le visage de conducteur en place, lorsque la lumière d'ambiance (\(y\) compris celle du tableau de bord) est insuffisante pour le fonctionnement correct du capteur 10 , qui dans ce cas doit être sensible au rayonnement infrarouge, et de son unité électronique 19 ; l'excitation, éventuellement progressive, de ces diodes est, par exemple, contrôlée par l'unité électronique 19 grâce à une cellule photoélectrique (non représentée) ou en réponse à des signaux de pixels (dans le signal vidéo) d'intensité insuffisante (comme représenté schématiquement par le conducteur 21).

L'alarme activée, en cas d'endormissement du conducteur, par l'unité électronique 19 est illustrée schématiquement en 22 sur le figure 4 , sur laquelle on n'a pas illustré les alimentations du capteur 10 , de l'unité électronique 19 et des diodes 20 , pour simplifier cette figure.

L'unité 19 pourrait, en variante, être disposée hors du boîtier du rétroviseur.
On va maintenant exposer le traitement, dans l'unité électronique d'analyse 19, du signal vidéo issu du capteur optoélectronique 10 (à micro-caméra électronique ou capteur MOS avec lentille incorporée suivie d'une unité électronique), ce signal vidéo comportant une succession de trames correspondantes (de même nature) à la cadence de 50 ou 60 telles trames par seconde (soit les trames paires ou bien impaires dans le cas d'un signal à deux trames entrelacées par image, soit les trames uniques dans le cas d'un signal à une seule trame par image); ce traitement a pour objet de réaliser la surveillance de la vigilance du conducteur en place en déterminant, en temps réel et en continu, la durée des clignements
de ses yeux et en déclenchant, en cas de tendance du conducteur à l'endormissement (révélée par la variation de cette durée), un signal d'alarme apte à éveiller celui-ci.

Le procédé et le dispositif, selon la présente invention mettant en œuvre, pour repérer et localiser une zone en mouvement (à savoir successivement le conducteur, son visage et ses yeux, en particulier ses paupières) et déterminer la direction et éventuellement la vitesse de ce mouvement, le procédé et le dispositif selon les demandes de brevet susvisées, dont les descriptions sont incorporées dans la présente description détaillée par référence, il est utile de résumer le processus décrit dans ces demandes de brevet.

Dans ces demandes, le signal vidéo (produit par une caméra vidéo ou autre capteur), qui comprend une succession de trames de même nature (constituées par les trames correspondantes, soit paires, soit impaires, dans le cas d'un système vidéo à deux trames entrelacées par image, soit les trames successives dans le cas d'un système vidéo à trame unique par image), est traité pour successivement
- déduire, des variations de la valeur ou intensité de chaque pixel entre une trame et la trame correspondante antérieure,
- d'une part, un signal binaire, noté \(D P\), dont les deux valeurs possibles sont représentatives, l'une, d'une variation significative de la valeur du pixel et, l'autre, d'une non-variation significative de cette valeur, valeurs notées par exemple «l» et «0» respectivement, et
- d'autre part, un signal numérique, noté \(C O\), à nombre réduit de valeurs possibles, ce signal étant représentatif de la grandeur de cette variation de la valeur du pixel ;
- répartir suivant une matrice, par roulement, des valeurs de ces deux signaux \(D P\) et \(C O\) pour une même trame qui défile à travers la matrice; et
- déduire, de cette répartition matricielle, le déplacement recherché et ses paramètres (localisation, direction et vitesse).

Cette dernière opération de détection du déplacement met en préférence en œuvre, selon ces demandes de brevet précitées,
- la formation d'histogrammes, suivant deux axes, par exemple \(O x\) et \(O y\) orthogonaux, d'au moins les signaux \(D P\) et \(C O\), répartis matriciellement dans l'opération précédente, et
- le repérage, dans chacun des histogrammes relatifs à \(D P\) et \(C O\), d'un domaine de variation significative de \(C O\) avec simultanément \(D P=« 1 »\).

La présente invention, réalise successivement, par mise en œuvre du procédé et dispositif selon les demandes de brevet précitées, dont on vient de résumer le processus,
- dans une phase préliminaire, la détection de la présence d'un conducteur en place;
- dans une première phase, le cadrage du visage du conducteur dans les trames de même nature, ou correspondantes, successives du signal vidéo;
- dans une deuxième phase, le cadrage des yeux du conducteur à l'intérieur du cadrage du visage ;
- dans une troisième phase, la détermination des durées successives des clignements des yeux du conducteur, et éventuellement la détermination des intervalles de temps séparant deux clignements successifs ;
- dans une quatrième phase, la comparaison des durées des clignements à un certain seuil, avec génération d'un signal d'alarme apte à éveiller le conducteur dès que cette comparaison révèle le dépassement vers le haut de ce seuil par cette durée, et éventuellement la comparaison des variations temporelle des intervalles de temps entre deux clignements successifs à un autre seuil, avec génération d'un signal d'alarme renforcé dès que cette comparaison révèle le dépassement vers le haut de ce dernier seuil.

On va décrire maintenant plus en détail la réalisation de chacune de ces cinq phases par le procédé et le dispositif selon l'invention.

La phase préliminaire, qui détecte la présence d'un conducteur en place et amorce la première phase de cadrage du visage, est déclenchée par un contacteur actionné manuellement ou autrement, notamment par mise en œuvre des procédé et dispositif des demandes de brevet précitées; elle commence effectivement avec le réglage du rétroviseur pour orienter la face avant \(9 a\) du miroir sans tain 9 de celui-ci (figure 4) vers le conducteur afin qu'il aperçoive dans ce miroir la rue ou route derrière lui, au cas il y a besoin d'un tel réglage.

La figure 6 illustre, entre les directions \(23 a\) et \(23 b\), le champ 23 du capteur 10, la tête \(T\) du conducteur devant se trouver, du fait du réglage du rétroviseur intérieur 8 , tel que décrit avec référence aux figures 4 et 5 , à l'intérieur et dans la zone centrale de ce champ conique 23. Ce champ peut être relativement étroit, étant donné que les déplacements de la tête \(T\) du conducteur au cours de la conduite sont limités (sauf rares exceptions); la limitation du champ améliore la sensibilité du dispositif étant donné que l'image du visage du conducteur, qui est reçue par la face \(10 a\) du capteur correctement orienté en même
temps que le miroir 9 , occupe alors une place relativement importante dans les trames du signal vidéo ; elle est donc représentée par un nombre de pixels qui est une fraction notable du nombre total des pixels par trame.

Sur la figure 6 on retrouve les directions ou rayons lumineux \(1,2 a\) et \(2 b\) de la figure 3.

La mise en place du conducteur est avantageusement détectée par les déplacements de sa tête, en particulier de son visage, pour venir en position de conduite, par mise en œuvre du procédé et du dispositif selon les deux demandes de brevet précitées qui permettent de détecter les déplacements, comme rappelé brièvement ci-dessus.

En fait l'arrivée du conducteur à sa place et le déplacement de sa tête \(T\) en résultant sont révélés par le nombre important de pixels du signal vidéo pour lesquels le signal binaire \(D P\) a la valeur «1» correspondant à une variation significative de la valeur du pixel entre deux trames correspondantes successives et le signal numérique \(C O\) a une valeur relativement élevée.

Le rapport du nombre de tels pixels (avec \(D P\) et \(C O\) ayant les valeurs définies cidessus) au nombre total de pixels d'une trame, lors de la mise en place du conducteur, dépend de la dimension du champ de vision du capteur de part et d'autre de la tête \(T\) en place pour la conduite. En cas de champ de vision étroit (angle réduit entre \(23 a\) et \(23 b\) figure 6), on peut considérer par exemple, que si plus de la moitié des pixels «en déplacement» d'une trame ont un \(D P\) et un \(C O\) avec les valeurs sus-avancées, il y a mise en place du conducteur. On peut alors considérer un seuil de \(50 \%\) entre le nombre de pixels «en déplacement» et le nombre total de pixels d'une trame et dans ce cas la phase préliminaire se termine par la production, lorsque ce seuil est dépassé vers le haut, d'un drapeau «1» de présence qui amorce la suite du traitement du signal vidéo, en commençant par la première phase. Bien entendu le seuil retenu pour le déclenchement du drapeau «1» peut être différent de \(50 \%\), en tenant compte du champ de vision du capteur 10.

En variante, le drapeau «1» de présence amorçant la première phase peut être produit par une commande externe à l'unité électronique 19, mais déclenchant celle-ci, par exemple provoquée par l'actionnement de la clé de contact, le bouclage de la ceinture de sécurité du conducteur ou le fléchissement du siège du conducteur sous son poids.

Lorsque la présence du conducteur a été révélée et le drapeau «1» de présence généré, la première phase de traitement du signal vidéo peut commencer. Elle consiste, comme indiqué précédemment, à cadrer le visage du conducteur dans le signal vidéo en
éliminant les portions superflues, en haut, en bas, à droite et à gauche de la tête dans l'image perçue par le détecteur 10 .

A cet effet, par mise en œuvre du procédé et du dispositif selon l'invention, ce sont les déplacements horizontaux, c'est-à-dire de la droite vers la gauche et inversement, qui sont détectés, car la tête d'un conducteur a tendance à se déplacer horizontalement plutôt que verticalement, c'est-à-dire de haut en bas et inversement.

On extrait, donc, du flot des données représentées dans les trames correspondantes successives du signal vidéo, un signal de déplacement horizontal, en position, sens et éventuellement vitesse, grâce à la matrice roulante des valeurs de \(D P\) et \(C O\), et on l'analyse par sélection suivant deux axes de coordonnées privilégiés, par exemple les axes classiques Ox et \(\mathrm{O} y\) des coordonnées cartésiennes, par mise en œuvre des moyens de formation d'histogrammes des demandes de brevet précitées.

La comptabilisation, en fin de trames, des pixels représentatifs d'un déplacement horizontal permet de détecter des pics de déplacement le long des bords du visage, pour lesquels les variations de luminosité, donc de valeur de pixel, sont les plus importantes, aussi bien en projection horizontale suivant \(O x\) qu'en projection verticale suivant \(O y\) par exemple.

Ceci est illustré sur la figure 7 sur laquelle on a représenté les axes \(O x\) et \(O y\), ainsi que les histogrammes \(24 x\), suivant \(O x\), et \(24 y\), suivant \(O y\), c'est-à-dire en projection horizontale et verticale respectivement.

Les pics \(25 a\) et \(25 b\), de l'histogramme \(24 x\), et \(25 c\) et \(25 d\), de l'histogramme \(24 y\), délimitent, par leur coordonnés respectives \(26 a, 26 b, 26 c, 26 d\), un cadre limité par les droites \(Y a, Y b, X c, X d\) qui renferme le visage \(V\) du conducteur entouré par les ondulations respectives \(27 a, 27 b, 27 c, 27 d\) qui illustrent les légers mouvements du conducteur dans les zones de plus grande variation des intensités des pixels, lors de ses mouvements.

Le repérage des coordonnées \(26 a, 26 b, 26 c\) et \(26 d\), correspondant aux quatre pics \(25 a, 25 b, 25 c\) et \(25 d\) des deux histogrammes \(24 x\) et \(24 y\), permet donc de mieux définir et cadrer l'emplacement du visage \(V\) du conducteur dans la zone \(Z\) et d'éliminer, pour la suite du traitement du signal vidéo, les portions supérieure, inférieure, de droite et de gauche par rapport au cadre \(X c, X d, Y a, Y b\), comme illustré sur la figure 8 par des zones hachurées encadrant le visage \(V\), ce qui permet d'accroître la précision, et éventuellement la cadence, de l'analyse portant sur la zone centrale \(Z\), non hachurée, encadrée par les droites \(X c, X d\), \(Y a, Y b\) et contenant le visage \(V\).

Cette opération de cadrage du visage entier est renouvelée à intervalles réguliers, par exemple toutes les dix trames du signal vidéo, et les valeurs moyennes (au cours du temps) des coordonnées \(26 a, 26 b, 26 c, 26 d\), sont déterminées, en redéfinissant le cadre, légèrement variable, mais relativement stable, \(X c, X d, Y a, Y b\) autour du visage \(V\). On constate donc que la position dudit cadre (avec la zone limitée pour l'analyse ultérieure) est très robuste, c'est-à-dire stable au cours du temps.

Un nouveau drapeau «1» de visage cadré est produit après établissement du cadrage du visage \(V\) du conducteur.

La production de ce drapeau déclenche la deuxième phase, qui consiste à réduire encore plus le cadre du traitement, à savoir à celui des yeux du conducteur.

Cette deuxième phase comporte, de préférence, une opération préliminaire consistant à utiliser, dans l'unité électronique 19, le rapport anthropométrique habituel entre la zone des yeux et l'ensemble du visage chez un être humain, notamment dans le sens vertical, la zone des yeux occupant seulement une portion limitée du visage entier.

L'unité électronique 19 détermine alors, dans cette opération préliminaire, par ratio un cadre \(Z^{\prime}\) plus limité, incluant les yeux \(U\) du conducteur, dans le cadre précédent \(Z\) du visage \(V\), limité par \(Y a, Y b, X c, X d\), ce cadre \(Z^{\prime}\) étant, comme illustré sur la figure 9 défini par les droites \(Y^{\prime} a, Y^{\prime} b, X^{\prime} c\) et \(X^{\prime} d\) à l'intérieur du cadre \(Y a, Y b, X c, X d\) (zone \(Z\)).

On élimine ainsi les zones hachurées externes (simples hachures) sur la figure 9 pour ne conserver que le cadre \(Z^{\prime}\), ce qui facilite le cadrage définitif des yeux dans la deuxième phase et augmente sa précision et la vitesse de sa détermination.

Après la fin de cette opération préliminaire si elle existe, ce qui génère un drapeau «1» de cadrage grossier des yeux, ou directement après la première phase de traitement, c'est-à-dire respectivement en réponse à l'apparition du drapeau «1» de cadrage grossier des yeux ou du drapeau «l» de visage cadré respectivement, l'unité électronique 19 effectue la deuxième phase de cadrage effectif plus serré des yeux du conducteur en détectant, dans la matrice des \(D P\) et \(C O\), les emplacements de pixels pour lesquels \(D P=1\) et \(C O\) présente une valeur élevée, notamment pour des déplacements dans le sens vertical du fait que les paupières clignent de haut en bas et inversement.

Lorsque le nombre de tels emplacements de pixels atteint un certain seuil dans le cadre \(Y^{\prime} a, Y^{\prime} b, X^{\prime} c, X^{\prime} d\) (zone \(Z^{\prime}\)) dans le cas où l'opération préliminaire est prévue ou dans le cadre \(Y a, Y b, X c, X d\) (zone \(Z\)) en l'absence d'une telle opération préliminaire, ce seuil étant par exemple de \(20 \%\) par rapport au nombre total de pixels dans le cadre \(Y^{\prime} a, Y^{\prime} b, X^{\prime} c\),
\(X^{\prime} d\) dans le premier cas et de \(10 \%\) par rapport au nombre total de pixels dans le cadre \(Y a\), \(Y b, X c, X d\) dans le second cas, un drapeau «l» de cadrage fin des yeux est généré ; ce drapeau indique en fait que les paupières du conducteur sont actives, car il est provoqué par les clignements des yeux du conducteur ; mouvements dans le sens vertical repérés de la même manière que les déplacements horizontaux du visage du conducteur dans la première phase.

Sur la figure 10 on a illustré le cadre éventuel \(Y^{\prime} a, Y^{\prime} b, X^{\prime} c, X^{\prime} d\), définissent la zone \(Z\) ' de cadrage grossier des yeux du conducteur, ainsi que les histogrammes \(28 x\) selon l'axe Ox et \(28 y\) suivant l'axe \(O y\) des déplacements verticaux des paupières du conducteur, c'est-à-dire des pixels de la matrice révélant, par leur \(D P\) et leur \(C O\), de tels déplacements. Ces histogrammes \(28 x\) et \(28 y\), qui correspondent aux histogrammes \(24 x\) et \(24 y\) des déplacements horizontaux du visage du conducteur, illustrés sur la figure 7, déterminent, par leurs pics \(29 a, 29 b, 29 c, 29 d\), des droites horizontales \(X^{\prime \prime} c\) et \(X^{\prime \prime} d\) et des droites verticales \(Y^{\prime \prime} a\) et \(Y^{\prime \prime} b\) définissant, à l'intérieur de la zone \(Z^{\prime}\), une zone \(Z\) " qui encadre les yeux du conducteur dont les déplacements des bords sont indiqués en \(30 a\) et \(30 b\) pour un œil et \(30 c\) et \(30 d\) pour l'autre œil.

La position du cadre \(Y^{\prime \prime} a, Y^{\prime} b, X^{\prime \prime} c, X^{\prime \prime} d\) est réactualisée par détermination des valeurs moyennes au cours du temps, par exemple toutes les dix trames, des coordonnées des pics \(29 a, 29 b, 29 c, 29 d\) et, à partir de la production du drapeau «1» de cadrage fin des yeux, ce sont seulement les pixels compris dans le cadre limité de la zone \(Z^{\prime \prime}\) qui sont traités dans la troisième phase déclenchée par ce drapeau (la zone \(Z^{\prime \prime}\) étant figurée en blanc sur la figure 9).

Dans cette troisième phase sont déterminées les durées des clignements des yeux, et éventuellement les intervalles de temps séparant deux clignements successifs, en perfectionnant l'analyse des déplacements verticaux des paupières dans la zone \(Z^{\prime \prime}\) par traitement dans l'unité électronique 19 des portions des trames successives du signal vidéo correspondant à cette zone \(Z^{\prime \prime}\), ce qui permet une grande précision.

Sur la figure 11 on a illustré dans un système de coordonnées suivant trois directions orthogonales entre elles, à savoir \(O Q\) sur laquelle on a porté \(C O\), c'est-à-dire les intensités de la variation de la valeur de pixel, correspondant au mouvement vertical des paupières, Ot sur laquelle on a porté les intervalles de temps entre deux clignements successifs et \(O z\) sur laquelle on a porté les durées des clignements, donc trois paramètres
différents permettant de déterminer le passage de l'état éveillé à l'état endormi du conducteur. Deux clignements successifs \(C_{I}\) et \(C_{2}\) sont représentés sur la figure 11 .

La figure 12 illustre par la courbe \(C\), sur la portion (a), la variation, dans le temps suivant Ot du nombre de pixels par trame en mouvement vertical significatif (pour lesquels \(D P=1\) et \(C O\) a une valeur relativement importante), les pics successifs \(P_{1}, P_{2}, P_{3}\) du nombre de pixels en mouvement correspondant à des clignements.

Les trames correspondantes successives relatives à la courbe \(C\) sont représentées, schématiquement et en partie, sur la portion (b) de la figure 12, par des traits verticaux, tels que 31, dont les pics \(P_{1}, P_{2}, P_{3}\) sont encadrés par des rectangles \(R_{1}, R_{2}, R_{3}\) respectivement, les deux portions (a) et (b) de la figure 12 étant disposées, l'une sous l'autre, en synchronisme temporel. Sur cette figure 12 on a représenté enfin les durées des clignements \((5,6,5)\) et les intervalles de temps \((14,17)\) entre clignements successifs, en nombre de trames, valeurs qui correspondent à l'état éveillé du conducteur.

L'unité électronique 19, dans cette troisième phase, calcule les durées successives des clignements des yeux et les intervalles de temps successifs entre deux clignements consécutifs et fait une analyse statistique bi-dimensionnelle entre les durées successives des clignements et les intervalles entre clignements. Elle établit si les durées des clignements dépassent un certain seuil, par exemple 350 ms , et dans ce cas déclenchent un drapeau «1» de seuil de clignement dépassé et éventuellement si les intervalles de temps entre deux clignements successifs sont relativement constants ou au contraire significativement variables dans le temps, et dans le second cas déclenchent un drapeau «1» d'intervalles entre clignements variables.

Le premier drapeau sert à déclencher une alarme, sonore par exemple, apte à réveiller le conducteur, tandis que le second drapeau renforce l'alarme, par exemple en augmentant le niveau sonore.

L'ordinogramme annexé (page suivante) résume les différentes phases successives.
Le dialogue avec l'extérieur est réalisé, de préférence en mode série (CAN - VAN).
Le rétroviseur des figures 4 et 5 convient aussi bien pour un conducteur occupant le siège gauche que le siège droit, pour les pays à conduite à droite, et peut éventuellement être un rétroviseur extérieur, notamment du côté du conducteur.

Comme il va de soi, l'invention n'est pas limitée au mode de réalisation préféré décrit et illustré, ni à ses variantes mentionnées ci-dessus; l'invention englobe au contraire

On va décrire maintenant un mode de réalisation préféré d'un dispositif selon l'invention, mettant en œuvre le procédé selon l'invention, ainsi que certaines variantes de celui-ci, avec référence aux dessins annexés, sur lesquels :

Les figures 1 et 2 sont des vues, respectivement de coté et par-dessus, illustrant schématiquement la tête d'un conducteur de véhicule automobile et ses axes de vision vers l'avant et vers l'arrière.

La figure 3 illustre schématiquement la disposition classique du miroir d'un rétroviseur intérieur dans un véhicule automobile et les différents axes de vision du conducteur, cette figure correspondant à l'état de la technique.

Les figures 4 et 5 représentent respectivement l'ensemble et les articulations d'un rétroviseur avec le capteur optoélectronique et son électronique associée dans le cadre de l'invention.

La figure 6 illustre le champ du capteur optoélectronique prévu dans le rétroviseur des figures 4 et 5 .

Les figures 7 et 8 représentent la manière de cadrer le visage du conducteur en place.

Les figures 9 et 10 représentent la manière de cadrer les yeux du conducteur en place.

Les figures 11 et 12 sont relatives à la mesure de la durée des clignements des yeux du conducteur et des intervalles temporels séparent deux clignements successifs.

La figure 13 représente l'ordinogramme des phases successives de fonctionnement.
En se référant tout d'abord aux figures 1 à 6 , on va commencer la description détaillée du mode de réalisation préféré de l'invention par celle du dispositif optique et mécanique avec le capteur optoélectronique (micro-caméra vidéo ou capteur MOS avec lentille incorporée) et son ensemble électronique associé, constitué essentiellement par une ou plusieurs puces, qui transforme l'image captée par le capteur en un signal vidéo qui est traité afin de détecter une tendance à l'endormissement du conducteur en place, observé par ledit capteur.

En effet l'invention utilise essentiellement la variation de la durée des clignements des yeux d'une personne lors du passage de l'état éveillé à l'état somnolent ou assoupi de celle-ci : une personne éveillée cligne, à intervalles relativement réguliers, des paupières, et donc des cils, en 100 à 200 ms environ, tandis que la durée des clignements de cette personne à l'état somnolent passe à 500 à 800 ms environ, les intervalles entre clignements augmentant et étant variables.
différents permettant de déterminer le passage de l'état éveillé à l'état endormi du conducteur. Deux clignements successifs \(C_{1}\) et \(C_{2}\) sont représentés sur la figure 11 .

La figure 12 illustre par la courbe \(C\), sur la portion (a), la variation, dans le temps suivant \(O t\) du nombre de pixels par trame en mouvement vertical significatif (pour lesquels \(D P=1\) et \(C O\) a une valeur relativement importante), les pics successifs \(P_{1}, P_{2}, P_{3}\) du nombre de pixels en mouvement correspondant à des clignements.

Les trames correspondantes successives relatives à la courbe \(C\) sont représentées, schématiquement et en partie, sur la portion (\(b\)) de la figure 12, par des traits verticaux, tels que 31, dont les pics \(P_{1}, P_{2}, P_{3}\) sont encadrés par des rectangles \(R_{1}, R_{2}, R_{3}\) respectivement, les deux portions (a) et (b) de la figure 12 étant disposées, l'une sous l'autre, en synchronisme temporel. Sur cette figure 12 on a représenté enfin les durées des clignements \((5,6,5)\) et les intervalles de temps \((14,17)\) entre clignements successifs, en nombre de trames, valeurs qui correspondent à l'état éveillé du conducteur.

L'unité électronique 19, dans cette troisième phase, calcule les durées successives des clignements des yeux et les intervalles de temps successifs entre deux clignements consécutifs et fait une analyse statistique bi-dimensionnelle entre les durées successives des clignements et les intervalles entre clignements. Elle établit si les durées des clignements dépassent un certain seuil, par exemple 350 ms , et dans ce cas déclenchent un drapeau «1» de seuil de clignement dépassé et éventuellement si les intervalles de temps entre deux clignements successifs sont relativement constants ou au contraire significativement variables dans le temps, et dans le second cas déclenchent un drapeau «1» d'intervalles entre clignements variables.

Le premier drapeau sert à déclencher une alarme, sonore par exemple, apte à réveiller le conducteur, tandis que le second drapeau renforce l'alarme, par exemple en augmentant le niveau sonore.

L'ordinogramme annexé à titre de planche 6 (figure 13) résume les différentes phases successives.

Le dialogue avec l'extérieur est réalisé, de préférence en mode série (CAN - VAN).
Le rétroviseur des figures 4 et 5 convient aussi bien pour un conducteur occupant le siège gauche que le siège droit, pour les pays à conduite à droite, et peut éventuellement être un rétroviseur extérieur, notamment du côté du conducteur.

Comme il va de soi, l'invention n'est pas limitée au mode de réalisation préféré décrit et illustré, ni à ses variantes mentionnées ci-dessus; l'invention englobe au contraire
les modifications, variantes et perfectionnement entrant dans le cadre des définitions de l'invention données dans le préambule et les revendications jointes.

\section*{ORGANIGRAMME DE L'INVENTION}

\section*{REVENDICATIONS}
1. Procédé pour surveiller en continu l'état de vigilance du conducteur d'un véhicule automobile, afin de détecter et prévenir une tendance éventuelle à l'endormissement de celui-ci, qui consiste
- à produire un signal vidéo représentatif, en temps réel, des images successives d'au moins le visage du conducteur ;
- à traiter ce signal, successivement et en continu, pour
- détecter, dans ce signal, la portion correspondant effectivement à l'image de la tête du conducteur,
- déterminer la valeur d'un paramètre relatif au clignement des paupières, qui se modifie notablement lors du passage de l'état éveillé à l'état somnolent du conducteur de part et d'autre d'un seuil, et
- repérer, en temps réel, le franchissement, par la valeur de ce paramètre, de ce seuil représentatif du passage de l'état éveillé à l'état somnolent du conducteur; et
- à déclencher, en réponse au franchissement de ce seuil, une alarme apte à réveiller le conducteur ;
et qui est caractérisé en ce que
- d'une part, le signal vidéo est produit en utilisant un capteur optoélectronique solidaire d'un rétroviseur du véhicule automobile et ayant son axe optique de réception des rayons lumineux dirigé vers la tête du conducteur lorsque le rétroviseur est correctement orienté; et
- d'autre part, le traitement dudit signal vidéo consiste, après avoir détecté la présence du conducteur à sa place, à, successivement et en continu,
- détecter, à partir dudit signal vidéo, les déplacements horizontaux du conducteur, afin de cadrer le visage de celui-ci dans les trames correspondantes successives du signal vidéo,
- détecter, à partir dudit signal vidéo, les déplacements verticaux dans le visage, ainsi cadré, du conducteur, afin de cadrer les yeux de celui-ci,
- déterminer, à partir dudit signal vidéo, les durées successives des clignements des yeux, ainsi cadrés, de celui-ci, ces durées constituant le dit paramètre, seuil représentatif du passage de l'état éveillé à l'état somnolent du conducteur, et
déclencher, lorsque les durées de clignement dépassent vers le haut le dit seuil, une alarme apte réveiller le conducteur.
2. Procédé selon la revendication 1, caractérisé en ce que ledit capteur est placé dans le boîtier du rétroviseur derrière la glace de celui-ci qui est constituée par un miroir sans tain.
3. Procédé selon la revendication 1 ou 2 , caractérisé en ce qu'on détecte la présence du conducteur à sa place en déterminant le nombre de pixels correspondants dans les trames successives de même nature du signal vidéo pour lesquels un déplacement significatif est détecté et en comparant ce nombre au nombre tọtal de pixels par trame du signal vidéo, afin de déterminer si le rapport entre le nombre de pixels représentant un déplacement et le nombre total de pixels par trame dépasse un seuil représentatif du passage de l'absence de conducteur à sa place à la présence d'un conducteur à sa place.
4. Procédé selon la revendication 1,2 , ou 3 caractérise en ce qu'entre les phases de détection des déplacements verticaux, afin de cadrer les yeux de celui-ci, on prévoit une phase de cadrage large des yeux en se limitant à une portion du visage cadré englobant les yeux et leur environnement immédiat, par application du rapport anthropométrique entre ladite portion et le visage entier d'une personne.
5. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce, simultanément à la phase de détermination des durées des clignements des yeux, on prévoit une phase de détermination des intervalles de temps séparant deux clignements successifs de ceux-ci et on déclenche une alarme renforcée dès que ces intervalles de temps présentent une irrégularité qui dépasse un seuil déterminé.
6. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce qu'on réactualise en continu les données concernant au moins un des paramètres suivants: déplacements horizontaux, déplacements verticaux, durées des clignements des yeux, intervalles entre clignements successifs, afin de perfectionner les approximations des

\section*{REVENDICATIONS}
1. Procédé pour surveiller en continu l'état de vigilance du conducteur d'un véhicule automobile, afin de détecter et prévenir une tendance éventuelle à l'endormissement de celui-ci,
qui consiste
- à produire un signal vidéo représentatif, en temps réel, des images successives d'au moins le visage du conducteur;
- à traiter ce signal, successivement et en continu, pour
- détecter, dans ce signal, la portion correspondant effectivement à l'image de la tête du conducteur,
- déterminer la valeur d'un paramètre relatif au clignement des paupières, qui se modifie notablement lors du passage de l'état éveillé à l'état somnolent du conducteur de part et d'autre d'un seuil, et
- repérer, en temps réel, le franchissement, par la valeur de ce paramètre, de ce seuil représentatif du passage de l'état éveillé à l'état somnolent du conducteur; et
- à déclencher, en réponse au franchissement de ce seuil, une alarme apte à réveiller le conducteur ; et qui est caractérisé en ce que
- d'une part, le signal vidéo est produit en utilisant un capteur optoélectronique solidaire d'un rétroviseur du véhicule automobile et ayant son axe optique de réception des rayons lumineux dirigé vers la tête du conducteur lorsque le rétroviseur est correctement orienté; et
- d'autre part, le traitement dudit signal vidéo consiste, après avoir détecté la présence du conducteur à sa place, à, successivement et en continu,
- détecter, à partir dudit signal vidéo, les déplacements horizontaux du conducteur, afin de cadrer le visage de celui-ci dans les trames correspondantes successives du signal vidéo,
- détecter, à partir dudit signal vidéo, les déplacements verticaux dans le visage, ainsi cadré, du conducteur, afin de cadrer les yeux de celui-ci,

\section*{FEULLLE ANAHT RECTHEGATiúa}
- déterminer, à partir dudit signal vidéo, les durées successives des clignements des yeux, ainsi cadrés, de celui-ci, ces durées constituant le dit paramètre, seuil représentatif du passage de l'état éveillé à l'état somnolent du conducteur, et
- déclencher, lorsque les durées de clignement dépassent vers le haut le dit seuil, une alarme apte réveiller le conducteur.
2. Procédé selon la revendication 1 , caractérisé en ce que ledit capteur est placé dans le boîtier du rétroviseur derrière la glace de celui-ci qui est constituée par un miroir sans tain.
3. Procédé selon la revendication 1 ou 2 , caractérisé en ce qu'on détecte la présence du conducteur à sa place en déterminant le nombre de pixels correspondants dans les trames successives de même nature du signal vidéo pour lesquels un déplacement significatif est détecté et en comparant ce nombre au nombre total de pixels par trame du signal vidéo, afin de déterminer si le rapport entre le nombre de pixels représentant un déplacement et le nombre total de pixels par trame dépasse un seuil représentatif du passage de l'absence de conducteur à sa place à la présence d'un conducteur à sa place.
4. Procédé selon la revendication 1,2 , ou 3 caractérise en ce qu'entre les phases de détection des déplacements horizontaux, afin de cadrer le visage du conducteur, et de détection des déplacements verticaux, afin de cadrer les yeux de celui-ci, on prévoit une phase de cadrage large des yeux en se limitant à une portion du visage cadré englobant les yeux et leur environnement immédiat, par application du rapport anthropométrique entre ladite portion et le visage entier d'une personne.
5. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce, simultanément à la phase de détermination des durées des clignements des yeux, on prévoit une phase de détermination des intervalles de temps séparant deux clignements successifs de ceux-ci et on déclenche une alarme renforcée dès que ces intervalles de temps présentent une irrégularité qui dépasse un seuil déterminé.
6. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce qu'on réactualise en continu les données concernant au moins un des paramètres suivants: déplacements horizontaux, déplacements verticaux, durées des clignements des yeux, intervalles entre clignements successifs, afin de perfectionner les approximations des
valeurs normales de ces paramètres pour le conducteur effectivement présent et à l'état éveillé.
7. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que les différentes phases successives du procédé sont réalisées au moyen de programmes informatiques successifs portant sur le traitement des valeurs successives des pixels correspondants des trames de même nature du signal vidéo obtenu à partir dudit capteur.
8. Dispositif pour surveiller en continu l'état de vigilance du conducteur d'un véhicule automobile, afin de détecter et prévenir une tendance éventuelle à l'endormissement de celui-ci, qui met en œuvre le procédé selon l'une quelconque des revendications 1 à 7 et qui est caractérisé en ce qu'il comprend, en combinaison :
- un capteur optoélectronique (10), qui, en combinaison avec une électronique associée (19), élabore, en réponse à la réception de rayons lumineux, un signal vidéo à trames de même nature, ou correspondantes, successives, ledit capteur étant solidaire d'un rétroviseur (8) du véhicule et ayant son axe optique (10 b) de réception des rayons lumineux dirigé vers la tête (\(T\)) du conducteur lorsque le rétroviseur est correctement orienté ;
- des moyens pour détecter la présence du conducteur à sa place dans le véhicule, et pour élaborer un signal de présence ;
- des moyens, activés par ce signal de présence, pour détecter, à partir dudit signal vidéo, les déplacements horizontaux de dit conducteur, afin de cadrer le visage (V) de celui-ci dans les trames successives de même nature dudit signal vidéo, et pour élaborer un signal de fin de cadrage de visage ;
- des moyens, activés par ledit signal de fin de cadrage du visage, pour détecter, à partir de la portion des trames successives de même nature dudit signal vidéo correspondant au cadrage du visage, les déplacements verticaux dans le visage, ainsi cadré, du conducteur, afin de cadrer les yeux (U) de celui-ci dans ladite portion des trames de ce signal, et pour élaborer un signal de fin de cadrage des yeux du conducteur;
- des moyens, activés par ledit signal de fin de cadrage des yeux, pour déterminer, à partir de la portion des trames successives de même nature dudit signal vidéo correspondant au cadrage des yeux, les durées successives des clignements des yeux du conducteur ;
- des moyens pour comparer ces durées successives des clignements, ainsi déterminées, à un seuil représentatif du passage de l'état éveillé à l'état somnolent du conducteur; et
- des moyens pour déclencher, lorsque les durées des clignements dépassent ledit seuil, une alarme (22) apte à réveiller le conducteur.
9. Dispositif selon la revendication 8, caractérisé en ce que ledit capteur (10) est placé dans le boîtier du rétroviseur (8) derrière le miroir de celui-ci, qui est un miroir (9) sans tain.
10. Dispositif selon la revendication 8 ou 9,caractérisé en ce que lesdits moyens pour détecter la présence du conducteur à sa place et pour élaborer un signal de présence sont constitués par des moyens pour déterminer le nombre de pixels dans les trames successives de même nature dudit signal vidéo pour lesquels un déplacement significatif est détecté, des moyens pour comparer ledit nombre au nombre total de pixels par trame du signal vidéo, afin de déterminer si le rapport entre le nombre de pixels correspondant à un déplacement et le nombre total de pixels par trame dépasse un seuil représentatif du passage de l'état d'absence de conducteur à sa place à l'état de présence d'un conducteur à sa place.
11. Dispositif selon la revendication 8,9 ou 10 , caractérisé en ce qu'il comprend en outre des moyens, activés par ledit signal de fin de cadrage du visage, pour sélectionner, dans ladite portion des trames successives dudit signal vidéo correspondant au cadrage du visage, une portion réduite correspondant à un cadrage large, ou grossier, des yeux du conducteur englobant les yeux et leur environnement immédiat par application du rapport anthropométrique entre ledit cadrage large et le visage entier d'une personne et des moyens pour élaborer un signal de fin de cadrage large des yeux, ce signal activant lesdits moyens pour détecter les déplacements verticaux dans le visage du conducteur.
12. Dispositif selon l'une quelconque des revendications précédantes, caractérisé en ce qu'il comporte des moyens, fonctionnant en parallèle avec lesdits moyens pour déterminer les durées successives des clignements des yeux et donc activés par ledit signal de fin de cadrage des yeux, pour déterminer les intervalles de temps séparant deux clignements successifs et pour déclencher une alarme renforcée dès que ces intervalles de temps présentent une irrégularité qui dépasse un seuil déterminé.
13. Dispositif selon l'une quelconque des revendications précédantes, caractérisé en ce qu'il comporte des moyens pour réactualiser en continu les données concernant au
moins un des paramètres suivants: déplacements horizontaux, déplacements verticaux, durées des clignements des yeux, intervalles entre clignements successifs, afin de perfectionner les approximations des valeurs normales du paramètre impliqué pour le conducteur effectivement présent et à l'état éveillé.
14.Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce que l'ensemble capteur opto-électronique (10) - unité électronique (19) produit un signal vidéo comportant une succession de trames correspondantes de même nature à succession de lignes constituées par une succession de pixels et traite ledit signal vidéo pour successivement:
- déduire, des variations de la valeur ou intensité de chaque pixel entre une trame et la trame correspondante antérieure,
- d'une part, un signal binaire, noté \(D P\), dont les deux valeurs possibles sont représentatives, l'une, d'une variation significative de la valeur du pixel et, l'autre, d'une non-variation significative de cette valeur, et
- d'autre part, un signal numérique, noté \(C O\), à nombre réduit de valeurs possibles, ce signal étant représentatif de la grandeur de cette variation de la valeur du pixel;
- répartir suivant une matrice, par roulement, des valeurs de ces deux signaux \(D P\) et \(C O\) pour une même trame qui défile à travers la matrice; et - déduire, de cette répartition matricielle, le déplacement recherché et ses paramètres de localisation et de direction.
15.Rétroviseur de véhicule automobile, caractérisé en ce que son miroir est constitué par une glace sans tain (9) et en ce qu'il comporte, derrière cette glace, un capteur avec optoélectronique (10) qui coopère avec une unité électronique (19) également disposée à l'intérieur du rétroviseur et en ce que l'ensemble capteur opto-électronique (10) - unité électronique (19) produit un signal vidéo comportant une succession de trames correspondantes de même nature à succession lignes constituées par une succession de pixels et traite ledit signal vidéo pour successivement: - déduire, des variations de la valeur ou intensité de chaque pixel entre une trame et la trame correspondante antérieure,
- d'une part, un signal binaire, noté \(D P\), dont les deux valeurs possibles sont représentatives, l'une, d'une variation significative de la valeur du pixel et,
- d'autre part, un signal numérique, noté \(C O\), à nombre réduit de valeurs possibles, ce signal étant représentatif de la grandeur de cette variation de la valeur du pixel;
- répartir suivant une matrice, par roulement, des valeurs de ces deux signaux \(D P\) et \(C O\) pour une mème trame qui défile à travers la matrice;
- déduire, de cette répartition matricielle, le déplacement recherché et ses paramètres de localisation et de direction; et
- déclencher un dispositif d'alarme (22) dès que ladite unité détermine que les mouvements verticaux des paupières d'une personne regardant la face avant (9a) de ladite glace correspondent à une durée des clignements des yeux qui dépasse un seuil prédéterminé inclus dans l'intervalle temporel compris entre la durée des cliquements d'une personne éveillée et celle d'une personne qui somnole.
16.Rétroviseur de véhicule automobile selon la revendication 15 , caractérisé en ce qu'il porte en outre au moins une diode (20) électroluminescente au moins dans l'infra-rouge qui est activée au moins lorsque la luminosité ambiante devient insuffisante pour éclairer le visage du conducteur et en ce que ledit capteur optoélectronique (10) est sensible, entre autres, aux radiations infrarouges émises par ladite diode.

Fig. 4

Fig. 8

Fig. 9

Fig. 10
\[
5 / 5
\]

Fig. 11

(a)

Fig. 12

Fig. 4

Fig. 6

Fig. 7

Fig. 8

Fig. 9

Fig. 10

Fig. 11

(a)
(b)

Fig. 12

\section*{6/6}

Fig. 13

\section*{REVENDICATIONS}
1. Procédé pour surveiller en continu l'état de vigilance du conducteur d'un véhicule automobile, afin de détecter et prévenir une tendance éventuelle à l'endormissement de celui-ci, qui consiste
- à produire un signal vidéo représentatif, en temps réel, des images successives d'au moins le visage du conducteur ;
- à traiter ce signal, successivement et en continu, pour
- détecter, dans ce signal, la portion correspondant effectivement à l'image de la tête du conducteur,
- déterminer la valeur d'un paramètre relatif au clignement des paupières, qui se modifie notablement lors du passage de l'état éveillé à l'état somnolent du conducteur de part et d'autre d'un seuil, et
- repérer, en temps réel, le franchissement, par la valeur de ce paramètre, de ce seuil représentatif du passage de l'état éveillé à l'état somnolent du conducteur; et
- à déclencher, en réponse au franchissement de ce seuil, une alarme apte à réveiller le conducteur ;
et qui est caractérisé en ce que
- d'une part, le signal vidéo est produit en utilisant un capteur optoélectronique solidaire d'un rétroviseur du véhicule automobile, dimensionné et disposé pour recevoir essentiellement l'image du visage du conducteur en place sur son siège et ayant son axe optique de réception des rayons lumineux dirigé vers la tête du conducteur lorsque le rétroviseur est correctement orienté ; et
- d'autre part, le traitement dudit signal vidéo consiste, après avoir détecté la présence du conducteur à sa place, à successivement et en continu ,
- détecter, à partir d'une analyse des pixels en déplacement entre deux trames successives de même nature dudit signal vidéo, les déplacements horizontaux du conducteur, afin de cadrer le visage de celui-ci dans les trames correspondantes successives du signal vidéo,
- détecter, à partir d'une analyse des pixels en déplacement entre deux trames successives de même nature dudit signal vidéo, les déplacements verticaux dans le visage, ainsi cadré, du conducteur, afin de cadrer les yeux de celui-ci,
- déterminer, à partir d'une analyse des pixels en déplacement entre deux trames successives de même nature dudit signal vidéo, les durées successives des clignements des yeux, ainsi cadrés, de celui-ci, ces durées constituant le dit paramètre,
- comparer ces durées successives des clignements, ainsi déterminées, à un seuil représentatif du passage de l'état éveillé à l'état somnolent du conducteur, et
- déclencher, lorsque les durées de clignement dépassent vers le haut le dit seuil, une alarme apte réveiller le conducteur.
2. Procédé selon la revendication 1 , caractérisé en ce que ledit capteur est placé dans le boîtier du rétroviseur derrière la glace de celui-ci qui est constituée par un miroir sans tain, l'axe optique de réception (2a) dudit capteur étant symétrique à un axe (2b) orienté dans le plan vertical médian dudit véhicule, par rapport à un axe (6) orthogonal au dit miroir sans tain
3. Procédé selon la revendication 1 ou 2 , caractérisé en ce qu'on détecte la présence du conducteur à sa place en déterminant le nombre de pixels correspondants dans les trames successives de même nature du signal vidéo pour lesquels un déplacement significatif est détecté et en comparant ce nombre au nombre total de pixels par trame du signal vidéo, afin de déterminer sì le rapport entre le nombre de pixels représentant un déplacement et le nombre total de pixels par trame dépasse un seuil représentatif du passage de l'absence de conducteur à sa place à la présence d'un conducteur à sa place.
4. Procédé selon la revendication 1,2 , ou 3 caractérise en ce qu'entre les phases de détection des déplacements horizontaux, afin de cadrer le visage du conducteur, et de détection des déplacements verticaux, afin de cadrer les yeux de celui-ci, on prévoit une phase de cadrage large des yeux en se limitant à une portion du visage cadré englobant les yeux et leur environnement immédiat, par application du rapport anthropométrique entre ladite portion et le visage entier d'une personne.
5. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce, simultanément à la phase de détermination des durées des clignements des yeux, on prévoit une phase de détermination des intervalles de temps séparant deux clignements
successifs de ceux-ci et on déclenche une alarme renforcée dès que ces intervalles de temps présentent une irrégularité qui dépasse un seuil déterminé.
6. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce qu'on réactualise en continu les données concernant au moins un des paramètres suivants : déplacements horizontaux,-déplacements verticaux, durées des clignements des yeux, intervalles entre clignements successifs, afin de perfectionner les approximations des valeurs normales de ces paramètres pour le conducteur effectivement présent et à l'état éveillé.
7. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que les différentes phases successives du procédé sont réalisées au moyen de programmes informatiques successifs portant sur le traitement des valeurs successives des pixels correspondants des trames de même nature du signal vidéo obtenu à partir dudit capteur.
8. Dispositif pour surveiller en continu l'état de vigilance du conducteur d'un véhicule automobile, afin de détecter et prévenir une tendance éventuelle à l'endormissement de celui-ci, qui met en œuvre le procédé selon l'une quelconque des revendications 1 à 7 et qui est caractérisé en ce qu'il comprend, en combinaison :
a) un capteur optoélectronique (10), qui, en combinaison avec une électronique associée (19), élabore, en réponse à la réception de rayons lumineux, un signal vidéo à trames de même nature, ou correspondantes, successives, ledit capteur étant solidaire d'un rétroviseur (8) du véhicule automobile et dimensionné et disposé pour recevoir essentiellement l'image du visage du conducteur en place sur son siège et ayant son axe optique (10 b) de réception des rayons lumineux dirigé vers la tête (T) du conducteur lorsque le rétroviseur est correctement orienté ; et
b) au moins d'un circuit intégré comportant
- des moyens pour détecter la présence du conducteur à sa place dans le véhicule, et pour élaborer un signal de présence ;
- des moyens, activés par ce signal de présence, pour détecter, à partir d'une analyse des pixels en déplacement entre deux trames successives de même nature dudit signal vidéo, les déplacements horizontaux de dit conducteur, afin de cadrer le visage (V) de celui-ci dans les trames successives de même nature dudit signal vidéo, et pour élaborer un signal de fin de cadrage de visage;
```

Documents rejus
10: de-01-99
Non examinés par
I'I.N.P.I.

```
- des moyens, activés par ledit signal de fin de cadrage du visage, pour détecter, à partir d'une analyse des pixels en déplacement entre deux trames successives de même nature de la portion des trames successives de même nature dudit signal vidéo correspondant au cadrage du visage, les déplacements verticaux dans le visage, ainsi cadré, du conducteur, afin de cadrer les yeux (U) de celui-ci dans ladite portion des trames de ce signal, et pour élaborer un signal de fin de cadrage des yeux du conducteur;
- des moyens, activés par ledit signal de fin de cadrage des yeux, pour déterminer, à partir d'une analyse des pixels en déplacement entre deux trames successives de même nature de la portion des trames successives de même nature dudit signal vidéo correspondant au cadrage des yeux, les durées successives des clignements des yeux du conducteur ;
- des moyens pour comparer ces durées successives des clignements, ainsi déterminées, à un seuil représentatif du passage de l'état éveillé à l'état somnolent du conducteur; et
- des moyens pour déclencher, lorsque les durées des clignements dépassent ledit seuil, une alarme (22) apte à réveiller le conducteur.
9. Dispositif selon la revendication 8 , caractérisé en ce que ledit capteur (10) est placé dans le boîtier du rétroviseur (8) derrière le miroir de celui-ci, qui est un miroir (9) sans tain, ledit capteur (10) étant porté par une première extrémité d'une première tige (13) traversant, à travers une rotule (17), un étrier (16) porté par le boitier du rétroviseur (8), à l'intérieur de celui-ci, la seconde extrémité de cette tige (13) étant articulée librement, au moyen d'un joint (\(14 \mathrm{a}, 14 \mathrm{~b}\)), à la première extrémité d'une seconde tige (12) traversant, à travers une rotule (15), le boitier du rétroviseur (8), tandis que la seconde extrémité de ladite seconde tige (12) est fixée à la carrosserie du véhicule (en 5) au dessus du pare-brise, de manière que l'axe optique de réception (2a) du dit capteur soit symétrique à un axe (2b) orienté dans le plan vertical médian dudit véhicule, par rapport à un axe orthogonal (6) au dit miroir sans tain.
10. Dispositif selon la revendication 8 ou 9,caractérisé en ce que lesdits moyens pour détecter la présence du conducteur à sa place et pour élaborer un signal de présence sont constitués par des moyens pour déterminer le nombre de pixels dans les trames successives de même nature dudit signal vidéo pour lesquels un déplacement significatif est détecté, des moyens pour comparer ledit nombre au nombre total de
pixels par trame du signal vidéo, afin de déterminer si le rapport entre le nombre de pixels correspondant à un déplacement et le nombre total de pixels par trame dépasse un seuil représentatif du passage de l'état d'absence de conducteur à sa place à l'état de présence d'un conducteur à sa place.
11. Dispositif selon la revendication 8,9 ou 10 , caractérisé en ce qu'il comprend en outre des moyens, activés par ledit signal de fin de cadrage du visage, pour sélectionner, dans ladite portion des trames successives dudit signal vidéo correspondant au cadrage du visage, une portion réduite correspondant à un cadrage large, ou grossier, des yeux du conducteur englobant les yeux et leur environnement immédiat par application du rapport anthropométrique entre ledit cadrage large et le visage entier d'une personne et des moyens pour élaborer un signal de fin de cadrage large des yeux, ce signal activant lesdits moyens pour détecter les déplacements verticaux dans le visage du conducteur.
12. Dispositif selon l'une quelconque des revendications 8 à 11, caractérisé en ce qu'il comporte des moyens, fonctionnant en parallèle avec lesdits moyens pour déterminer les durées successives des clignements des yeux et donc activés par ledit signal de fin de cadrage des yeux, pour déterminer les intervalles de temps séparant deux clignements successifs et pour déclencher une alarme renforcée dès que ces intervalles de temps présentent une irrégularité qui dépasse un seuil déterminé.
13. Dispositif selon l'une quelconque des revendications 8 à 12 , caractérisé en ce qu'il comporte des moyens pour réactualiser en continu les données concernant au moins un des paramètres suivants: déplacements horizontaux, déplacements verticaux, durées des clignements des yeux, intervalles entre clignements successifs, afin de perfectionner les approximations des valeurs normales du paramètre impliqué pour le conducteur effectivement présent et à l'état éveillé.
14. Dispositif selon l'une quelconque des revendications 8 à 13 , caractérisé en ce que ledit ensemble capteur opto-électronique(10) - unité électronique (19) produit un signal vidéo comportant une succession de trames correspondantes de même nature à succession de lignes constituées par une succession de pixels et traite le dit signal video pour successivement :
- déduire, des variations de la valeur ou intensité de chaque pixel entre une trame et la trame correspondante antérieure,
- d'une part, un signal binaire, noté DP, dont les deux valeurs possibles sont représentatives, l'une, d'une variation significative de la valeur du pixel et, l'autre, d'une non-variation significative de cette valeur, et
- d'autre part, un signal numérique, noté CO, à nombre réduit de valeurs possibles, ce signal étant représentatif de la grandeur de cette variation de la valeur du pixel ;
- répartir suivant une matrice, par roulement, des valeurs de ces deux signaux DP et CO pour une même trame qui défile à travers la matrice; et
- déduire, de cette répartition matricielle, le déplacement recherché et ses paramètres de localisation et de direction.
15. Dispositif selon l'ure quelconque des revendications 8 à 14 , caractérisé en ce que ledit capteur (10), ladite électronique associée (19) et ledit circuit intégré sont constituées par une puce électronique (chip) disposée à l'intérieur du boitier du rétroviseur (8).
16. Rétroviseur de véhicule automobile, caractérisé en ce que şon miroir est constitué par une glace sans tain (9) et en ce qu'il comporte, derrière cette glace, un capteur optoélectronique (10) qui coopère avec une unité électronique (19), produit un signal vidéo comportant une succession de trames correspondantes de même nature à succession de lignes constitué par une succession de pixels et traite le dit signal video pour successivement :
- déduire, des variations de la valeur ou intensité de chaque pixel entre une trame et la trame correspondante antérieure,
- d'une part, un signal binaire, noté DP, dont les deux valeurs possibles sont représentatives, l'une, d'une variation significative de la valeur du pixel et, l'autre, d'une non-variation significative de cette valeur,et
- d'autre part, un signal numérique, noté CO, à nombre réduit de valeurs possibles, ce signal étant représentatif de la grandeur de cette variation de la valeur du pixel ;
- répartir suivant une matrice, par roulement, des valeurs de ces deux signaux DP et CO pour une même trame qui défile à travers la matrice;
- déduire, de cette répartition matricielle, le déplacement recherché et ses paramètres de localisation et de direction; et
- déclencher un dispositif d'alarme (22) dès que ladite unité détermine que les mouvements verticaux des paupières d'une personne regardant la face avant (9a) de ladite glace correspondent à une durée des clignements des yeux qui dépasse un seuil
prédéterminé inclus dans l'intervalle temporel compris entre la durée des clignements d'une personne éveillée et celle d'une personne qui somnole..
17. Rétroviseur de véhicule automobile selon la revendication 16 , caractérisé en ce que ledit capteur (10)), ladite électronique associée (19) et ledit circuit intégré sont constituées par une puce électronique (chip) disposée à l'intérieur du boitier du rétroviseur (8).
18. Rétroviseur de véhicule automobile selon la revendication 16 ou 17, caractérisé en ce qu'il porte en outre au moins une diode (20) électroluminescente au moins dans l'infrarouge qui est activée au moins lorsque la luminosité ambiante devient insuffisante pour éclairer le visage du conducteur et en ce que ledit capteur optoélectronique (10) est sensible entre autres, aux radiations infra-rouges émises par ladite diode.
valeurs normales de ces paramètres pour le conducteur effectivement présent et à l'état éveillé.
7. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que les différentes phases successives du procédé sont réalisées au moyen de programmes informatiques successifs portant sur le traitement des valeurs successives des pixels correspondants des trames de même nature du signal vidéo obtenu à partir dudit capteur.
8. Dispositif pour surveiller en continu l'état de vigilance du conducteur d'un véhicule automobile, afin de détecter et prévenir une tendance éventuelle à l'endormissement de celui-ci, qui met en œuvre le procédé selon l'une quelconque des revendications 1 à 7 et qui est caractérisé en ce qu'il comprend, en combinaison :
- un capteur optoélectronique (10), qui, en combinaison avec une électronique associée (19), élabore, en réponse à la réception de rayons lumineux, un signal vidéo à trames de même nature, ou correspondantes, successives, ledit capteur étant solidaire d'un rétroviseur (8) du véhicule et ayant son axe optique (10b) de réception des rayons lumineux dirigé vers la tête (T) du conducteur lorsque le rétroviseur est correctement orienté;
- des moyens pour détecter la présence du conducteur à sa place dans le véhicule, et pour élaborer un signal de présence ;
- des moyens, activés par ce signal de présence, pour détecter, à partir dudit signal vidéo, les déplacements horizontaux de dit conducteur, afin de cadrer le visage (V) de celui-ci dans les trames successives de même nature dudit signal vidéo, et pour élaborer un signal de fin de cadrage de visage ;
- des moyens, activés par ledit signal de fin de cadrage du visage, pour détecter, à partir de la portion des trames successives de même nature dudit signal vidéo correspondant au cadrage du visage, les déplacements verticaux dans le visage, ainsi cadré, du conducteur, afin de cadrer lës yeux (U) de celui-ci dans ladite portion des trames de ce signal, et pour élaborer un signal de fin de cadrage des yeux du conducteur ;
- des moyens, activés par ledit signal de fin de cadrage des yeux, pour déterminer, à partir de la portion des trames successives de même nature dudit signal vidéo correspondant au cadrage des yeux, les durées successives des clignements des yeux du conducteur ;
- des moyens pour comparer ces durées successives des clignements, ainsi déterminées, à un seuil représentatif du passage de l'état éveillé à l'état somnolent du conducteur; et
- des moyens pour déclencher, lorsque les durées des clignements dépassent ledit seuil, une alarme (22) apte à réveiller le conducteur.
9. Dispositif selon la revendication 8, caractérisé en ce que ledit capteur (10) est placé dans le boîtier du rétroviseur (8) derrière le miroir de celui-ci, qui est un miroir (9) sans tain.
10. Dispositif selon la revendication 8 ou 9,caractérisé en ce que lesdits moyens pour détecter la présence du conducteur à sa place et pour élaborer un signal de présence sont constitués par des moyens pour déterminer le nombre de pixels dans les trames successives de même nature dudit signal vidéo pour lesquels un déplacement significatif est détecté, des moyens pour comparer ledit nombre au nombre total de pixels par trame du signal vidéo, afin de déterminer si le rapport entre le nombre de pixels correspondant à un déplacement et le nombre total de pixels par trame dépasse un seuil représentatif du passage de l'état d'absence de conducteur à sa place à l'état de présence d'un conducteur à sa place.
11. Dispositif selon la revendication 8,9 ou 10, caractérisé en ce qu'il comprend en outre des moyens, activés par ledit signal de fin de cadrage du visage, pour sélectionner, dans ladite portion des trames successives dudit signal vidéo correspondant au cadrage du visage, une portion réduite correspondant à un cadrage large, ou grossier, des yeux du conducteur englobant les yeux et leur environnement immédiat par application du rapport anthropométrique entre ledit cadrage large et le visage entier d'une personne et des moyens pour élaborer un signal de fin de cadrage large des yeux, ce signal activant lesdits moyens pour détecter les déplacements verticaux dans le visage du conducteur.
12. Dispositif selon l'une quelconque des revendications précédantes, caractérisé en ce qu'il comporte des moyens, fonctionnant en parallèle avec lesdits moyens pour déterminer les durées successives des clignements des yeux et donc activés par ledit signal de fin de cadrage des yeux, pour déterminer les intervalles de temps séparant deux clignements successifs et pour déclencher une alarme renforcée dès que ces intervalles de temps présentent une irrégularité qui dépasse un seuil déterminé.
13. Dispositif selon l'une quelconque des revendications précédantes, caractérisé en ce qu'il comporte des moyens pour réactualiser en continu les données concernant au
moins un des paramètres suivants: déplacements horizontaux, déplacements verticaux, durées des clignements des yeux, intervalles entre clignements successifs, afin de perfectionner les approximations des valeurs normales du paramètre impliqué pour le conducteur effectivement présent et à l'état éveillé.
14.Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce que l'ensemble capteur opto-électronique (10) - unité électronique (19) produit un signal vidéo comportant une succession de trames correspondantes de même nature à succession de lignes constituées par une succession de pixels et traite ledit signal vidéo pour successivement:
- déduire, des variations de la valeur ou intensité de chaque pixel entre une trame et la trame correspondante antérieure,
- d'une part, un signal binaire, noté \(D P\), dont les deux valeurs possibles sont représentatives, l'une, d'une variation significative de la valeur du pixel et, l'autre, d'une non-variation significative de cette valeur, et
- d'autre part, un signal numérique, noté \(C O\), à nombre réduit de valeurs possibles, ce signal étant représentatif de la grandeur de cette variation de la valeur du pixel;
- répartir suivant une matrice, par roulement, des valeurs de ces deux signaux
\(D P\) et \(C O\) pour une même trame qui défile à travers la matrice; et
- déduire, de cette répartition matricielle, le déplacement recherché et ses paramètres de localisation et de direction.
15.Rétroviseur de véhicule automobile, caractérisé en ce que son miroir est constitué par une glace sans tain (9) et en ce qu'il comporte, derrière cette glace, un capteur avec optoélectronique (10) qui coopère avec une unité électronique (19) également disposée à l'intérieur du rétroviseur et en ce que l'ensemble capteur opto-électronique (10) - unité électronique (19) produit un signal vidéo comportant une succession de trames correspondantes de même nature à succession lignes constituées par une succession de pixels et traite ledit signal vidéo pour successivement:
- déduire, des variations de la valeur ou intensité de chaque pixel entre une trame et la trame correspondante antérieure,
- d'une part, un signal binaire, noté \(D P\), dont les deux valeurs possibles sont représentatives, l'une, d'une variation significative de la valeur du pixel et,
- d'autre part, un signal numérique, noté \(C O\), à nombre réduit de valeurs possibles, ce signal étant représentatif de la grandeur de cette variation de la valeur du pixel;
- répartir suivant une matrice, par roulement, des valeurs de ces deux signaux \(D P\) et \(C O\) pour une même trame qui défile à travers la matrice;
- déduire, de cette répartition matricielle, le déplacement recherché et ses paramètres de localisation et de direction; et
- déclencher un dispositif d'alarme (22) dès que ladite unité détermine que les mouvements verticaux des paupières d'une personne regardant la face avant (9a) de ladite glace correspondent à une durée des clignements des yeux qui dépasse un seuil prédéterminé inclus dans l'intervalle temporel compris entre la durée des cliquements d'une personne éveillée et celle d'une personne qui somnole.
16. Rétroviseur de véhicule automobile selon la revendication 15 , caractérisé en ce qu'il porte en outre au moins une diode (20) électroluminescente au moins dans l'infra-rouge qui est activée au moins lorsque la luminosité ambiante devient insuffisante pour éclairer le visage du conducteur et en ce que ledit capteur optoélectronique (10) est sensible, entre autres, aux radiations infrarouges émises par ladite diode.

INTERNATIONAL SEARCH REPORT
(PCT Article 18 and Rules 43 and 44)
\begin{tabular}{|l|c|c}
\hline Applicant's or agent's file reference & FOR FURTHER \\
048J PCT 361 & \begin{tabular}{l}
see Notification of Transmittal of International Search Report \\
(Form PCT/ISA/220) as well as, where applicable, item 5 below.
\end{tabular} \\
\hline International application No. & International filing date (day/month/year) & (Earliest) Priority Date (day/month/year) \\
PCT/EP 99/00300 & \(15 / 01 / 1999\) & \(15 / 01 / 1998\) \\
\hline
\end{tabular}

Applicant

\section*{HOLDING B.E.V. SA et al.}

This International Search Report has been prepared by this International Searching Authority and is transmitted to the applicant according to Article 18. A copy is being transmitted to the International Bureau.

This International Search Report consists of a total of \(\qquad\) 2 sheets.
X It is also accompanied by a copy of each prior art document cited in this report.
1. Basis of the report
a. With regard to the language, the international search was carried out on the basis of the international application in the language in which it was filed, unless otherwise indicated under this item.
the international search was carried out on the basis of a translation of the international application furnished to this Authority (Rule 23.1(b)).
b. With regard to any nucleotide and/or amino acid sequence disclosed in the international application, the international search was carried out on the basis of the sequence listing :

contained in the international application in written form.
filed together with the international application in computer readable form.
furnished subsequently to this Authority in written form.
furnished subsequently to this Authority in computer readble form.
the statement that the subsequently furnished written sequence listing does not go beyond the disclosure in the international application as filed has been furnished.the statement that the information recorded in computer readable form is identical to the written sequence listing has been furnished
2.Certain claims were found unsearchable (See Box I).
Unity of invention is lacking (see Box II)
4. With regard to the title,
\(X\) the text is approved as submitted by the applicant.
\(\square\) the text has been established by this Authority to read as follows:
5. With regard to the abstract,

X the text is approved as submitted by the applicant
the text has been established, according to Rule \(38.2(\mathrm{~b})\), by this Authority as it appears in Box III. The applicant may, within one month from the date of mailing of this international search report, submit comments to this Authority.
6. The figure of the drawings to be published with the abstract is Figure No.

as suggested by the applicant.
X] None of the figures.
because the applicant failed to suggest a figure.
because this figure better characterizes the invention.

\begin{tabular}{|c|c|c|c|c|c|}
\hline Patent document cited in search report & & Publication
date & \multicolumn{2}{|r|}{Patent family member(s)} & Publication date \\
\hline WO 9805002 & A & 05-02-1998 & FR & 2751772 A & 30-01-1998 \\
\hline & & & \(A U\) & 3775397 A & 20-02-1998 \\
\hline & & & EP & 0912964 A & 06-05-1999 \\
\hline DE 19715519 & A & 06-11-1997 & JP & 9277849 A & 28-10-1997 \\
\hline & & & FR & 2747346 A & 17-10-1997 \\
\hline & & & US & 5786765 A & 28-07-1998 \\
\hline WO 9701246 & A & 09-01-1997 & AU & 6480896 A & 22-01-1997 \\
\hline
\end{tabular}

From the INTERNATIONAL BUREAU

\section*{PCT}

\section*{NOTIFICATION CONCERNING SUBMISSION OR TRANSMITTAL OF PRIORITY DOCUMENT}
(PCT Administrative Instructions, Section 411)
\begin{tabular}{|l|l|}
\hline \begin{tabular}{c}
Date of mailing (day/month/year) \\
07 June 1999 (07.06.99)
\end{tabular} & \\
\hline \begin{tabular}{c}
Applicant's or agent's file reference \\
048J PCT 361
\end{tabular} & \begin{tabular}{c}
IMPORTANT NOTIFICATION \\
15 January 1999 (15.01.99)
\end{tabular} \\
\hline \begin{tabular}{l}
International application No. \\
PCT/EP99/00300
\end{tabular} & \begin{tabular}{c}
Priority date (day/month/year) \\
15 January 1998 (15.01.98)
\end{tabular} \\
\hline \begin{tabular}{l}
International publication date (day/month/year) \\
Not yet published
\end{tabular} & \\
\hline \begin{tabular}{l}
Applicant \\
HOLDING B.E.V. SA et al
\end{tabular} & \\
\hline
\end{tabular}
1. The applicant is hereby notified of the date of receipt (except where the letters "NR" appear in the right-hand column) by the International Bureau of the priority document(s) relating to the earlier application(s) indicated below. Unless otherwise indicated by an asterisk appearing next to a date of receipt, or by the letters " \(N R\) ", in the right-hand column, the priority document concerned was submitted or transmitted to the International Bureau in compliance with Rule 17.1 (a) or (b).
2. This updates and replaces any previously issued notification concerning submission or transmittal of priority documents.
3. An asterisk(*) appearing next to a date of receipt, in the right-hand column, denotes a priority document submitted or transmitted to the International Bureau but not in compliance with Rule 17.1 (a) or (b). In such a case, the attention of the applicant is directed to Rule 17.1 (c) which provides that no designated Office may disregard the priority claim concerned before giving the applicant an opportunity, upon entry into the national phase, to furnish the priority document within a time limit which is reasonable under the circumstances.
4. The letters "NR" appearing in the right-hand column denote a priority document which was not received by the International Bureau or which the applicant did not request the receiving Office to prepare and transmit to the International Bureau, as provided by Rule 17.1 (a) or (b), respectively. In such a case, the attention of the applicant is directed to Rule 17.1 (c) which provides that no designated Office may disregard the priority claim concerned before giving the applicant an opportunity, upon entry into the national phase, to furnish the priority document within a time limit which is reasonable under the circumstances.
\begin{tabular}{|c|c|c|c|}
\hline Priority date & Priority application No. & Country or regional Office or PCT receiving Office & Date of receipt of priority document \\
\hline nu 1998 (15.01.98) & 98/00378 & FR & 18 May 1999 (18.05.99) \\
\hline ugu 1998 (25.08.98) & PCT/EP98/05383 & EP & 15 Apri 1999 (15.04.99) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline The International Bureau of WIPO 34, chemin des Colombettes 1211 Geneva 20, Switzerland & \begin{tabular}{l}
Authorized officer \\
Catherine Massetti
\end{tabular} \\
\hline Facsimile No. (41-22) 740.14.35 & Telephone No. (41-22) 338.83 .38 \\
\hline
\end{tabular}

From the RECEIVING OFFICE
\(\left.\begin{array}{|l|}\text { To: } \\ \text { Them International Bureau of WIPO } \\ \text { 34, chemin des Colombettes } \\ \text { 121, Geneva 20 } \\ \text { Switzerland }\end{array}\right\}\)

\section*{250}

\section*{Date of mailing \\ (day/month/year) \\ 09 JUL 1999}

The receiving Office transmits herewith the following documents:
1. \(\qquad\) the record copy (Article 12(1)).
2.the search copy (Article 12(1)).
3. \(\square\) the purported international application (your request of \(\qquad\)) (Rule 20.7(iv)).
4.the record copy and correction(s) not already transmitted in respect of the international application which has been considered withdrawn (Rule 29.1(a)(i)).
5.

letter(s) of correction(s) or rectification(s) (Administrative Instructions, Section 325(b) and (c)).
6. 77
substitute sheets (Administrative Instructions, Section 325(b) and (c)).
7. \(\square\)
later submitted sheets (Administrative Instructions, Section 309(b)(iii), (c)(ii)).
8.later submitted drawings (Administrative Instructions, Section 310(c)(iii), (d)(ii)).
9.

other document(s):
X letter(s) dated: 08. 06. 99
\(x\) separate/general power (s) of attorney. statement(s) explaining lack of signature considered to be satisfactory by this receiving Office.
___ priority document(s) (only for the IB).
fee calculation sheet (only for the IB).
document(s) concerning the deposit of a microorganism or other biological material.
nucleotide and/or amino acid sequence listing(s) in computer readable form (only for the ISA).
earlier search(es) (only for the ISA).
Form PCT/RO/106.
Form PCT/RO/ \(\qquad\) -

\(\qquad\) -.

This notification is sent to the addressee in its capacity as the International Bureau or the International Searching Authority.

European Patent Office, P.B. 5818 Patentlaan 2 NL-2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31651 epo nl, Fax: \((+31-70) 340-3016\)

Authorized officer

PCT
POWER OF ATTORNEY
(for an international application filed under the Patent Co-operation Treaty)
(РСT Rule 90.4)
PCT/EP \(99 / 00300\)
The undersigned applicant(s) (Names should be indicated as they appear in the request) :
PIRIM Patrick
56 rue Patay
75013 PARIS
France
hereby appoints (appoint) the following persons as: \(\mathbb{x}\) agent \(\square\) common representative

\section*{Name and address}
(Farnily name followed by given name; for legal entlty, full officlal designation. The address must Inciude postal code and name of country).
```

PHELIP Bruno
LE BRUSQUE Maurice

```

\section*{RELIGIEUX Bernard}
``` MICHELET Alain
```

LE BIHAN Jean-Michel
c/o Cabinet HARLE \& PHELIP - 7, rue de Madrid - 75008 PARIS - FRANCE
to represent the undersigned before : $\quad \mathbf{x}$ all the competent International Authorities
[\boldsymbol{x}) the international Searching Authority only
区 the international Preliminary Examining Authority only
in connection with the International application identified below
Title of the invention : Method and apparatus for detection of drowsiness.
Applicant's or agent's file reference : 048J PCT 361
International application number (if already available) : PCT/EP99/00300
filed with the following office - EUROPEAN PATENT OFFICE - as receiving Office and to make or receive payments on behalf of the undersigned.

Signature of the applicant(s) (where there are several applicants, each of them must sign; next to each signature, indicate the name of the person signing and the capacity in which the person signs, If such capactiy is not obvious from reading the request or this power) :

PIRIM Patrick

```
,2 Fewior IJ
```

```
,2 Fewior IJ
```

Date :

PCT

POWER OF ATTORNEY
(for an international application filed under the Patent Co-operation Treaty)
WIPO PCT
(PCT Rule 90.4)

The undersigned applicant(s) (Names should be indicated as they appear in the request) :
HOLDING B.E.V. SA
69 route d'Esch
LUXEMBURG
hereby appoints (appoint) the following persons as : $\begin{aligned} & \text { agent } \square \text { common representative }\end{aligned}$

Name and address

Family name followed by given name; for legal entty, full officlal designation. The address must include postal code and name of country)

PHELIP Bruno RELIGIEUX Bernard

LE BRUSQUE Maurice MICHELET Alain
LE BIHAN Jean-Michel
c/o Cabinet HARLE \& PHELIP - 7, rue de Madrid - 75008 PARIS - FRANCE
to represent the undersigned before: $\boxed{\otimes}$ all the competent International Authorities
x the International Searching Authority only
[\mathbf{x} the International Preliminary Examining Authority only
in connection with the International application identified below
Title of the invention : Method and apparatus for detection of drowsiness.
Applicant's or agent's file reference : 048J PCT 361
International application number (if already available) : PCT/EP99/00300
filed with the following office - EUROPEAN PATENT OFFICE - as receiving Office and to make or receive payments on behalf of the undersigned.

Signature of the applicant(S) (where there are several applicants, each of them must sign; next to each signature, indicate the name of the person signing and the capacity in which the person signs, if such capacty is not obvious from reading the request or this power) :

Date:

14 Fq́V 1999

PCT

POWER OF ATTORNEY
(for an international application filed under the Patent Co-operation Treaty)
(РСт Rule 90.4)

PCT/LE 99 / OU3 00

The undersigned applicant(s) (Names should be indicated as they appear in the request) :
BINFORD Thomas
16012 Flintlock Road
CUPERTINO California 95014
United States of America
hereby appoints (appoint) the following persons as : \mathbb{x} agent \square common representative
Name and address
(Family name followed by given name; for legal entity, full offcial designation. The address must Include postal code and name of country).
PHELIP Bruno RELIGIEUX Bernard
LE BRUSQUE Maurice
LE BIHAN Jean-Michel
c/o Cabinet HARLE \& PHELIP - 7, rue de Madrid - 75008 PARIS - FRANCE
to represent the undersigned before: \mathbb{x} all the competent International Authoritiles
© \boldsymbol{x} the International Searching Authority only
(x) the International Preliminary Examining Authority only
in connection with the International application identified below
Title of the invention : Method and apparatus for detection of drowsiness.
Applicant's or agent's file reference : 048J PCT 361
International application number (if already available) : PCT/EP99/00300
filed with the following office - EUROPEAN PATENT OFFICE - as receiving Office and to make or receive payments on behalf of the undersigned.

Signature of the applicant(s) (where there are several applicants, each of them must slgn; next to each slgnature, Indicate the name of the person slgning and the capacity in which the person signs, if such capacity is not obvious from reading the request or thls power) :

Date: 13th April 1999

METHOD AND APPARATUS FOR DETECTION OF DROWSINESS

BACKGROUND OF THE INVENTION

1. Field of the Invention.

The present invention relates generally to an image processing system, and more particularly to the use of a generic image processing system to detect drowsiness.

1.Description of the Related Art.

It is well known that a significant number of highway accidents result from drivers becoming drowsy or falling asleep, which results in many deaths and injuries. Drowsiness is also a problem in other fields, such as for airline pilots and power plant operators, in which great damage may result from failure to stay alert.

A number of different physical criteria may be used to establish when a person is drowsy, including a change in the duration and interval of eye blinking. Normally, the duration of blinking is about 100 to 200 ms when awake and about 500 to 800 ms when drowsy. The time interval between successive blinks is generally constant while awake, but varies within a relatively broad range when drowsy.

Numerous devices have been proposed to detect drowsiness of drivers. Such devices are shown, for example, in U.S. Patent Nos. 5,841,354; 5,813,99; $5,689,241 ; 5,684,461 ; 5,682,144 ; 5,469,143 ; 5,402,109 ; 5,353,013 ; 5,195,606 ;$ $4,928,090 ; 4,555,697 ; 4,485,375$; and $4,259,665$. In general, these devices fall into three categories: i) devices that detect movement of the head of the driver, e.g., tilting; ii) devices that detect a physiological change in the driver, e.g., altered heartbeat or breathing, and iii) devices that detect a physical result of the driver falling asleep, e.g., a reduced grip on the steering wheel. None of these devices is believed to have met with commercial success.

Commonly-owned PCT Application Serial Nos. PCT/FR97/01354 and PCT/EP98/05383 disclose a generic image processing system that operates to localize
objects in relative movement in an image and to determine the speed and direction of the objects in real-time. Each pixel of an image is smoothed using its own time constant. A binary value corresponding to the existence of a significant variation in the amplitude of the smoothed pixel from the prior frame, and the amplitude of the variation, are determined, and the time constant for the pixel is updated. For each particular pixel, two matrices are formed that include a subset of the pixels spatially related to the particular pixel. The first matrix contains the binary values of the subset of pixels. The second matrix contains the amplitude of the variation of the subset of pixels. In the first matrix, it is determined whether the pixels along an oriented direction relative to the particular pixel have binary values representative of significant variation, and, for such pixels, it is determined in the second matrix whether the amplitude of these pixels varies in a known manner indicating movement in the oriented direction. In domains that include luminance, hue, saturation, speed, oriented direction, time constant, and x and y position, a histogram is formed of the values in the first and second matrices falling in user selected combinations of such domains. Using the histograms, it is determined whether there is an area having the characteristics of the selected combinations of domains.

It would be desirable to apply such a generic image processing system to detect the drowsiness of a person.

SUMMARY OF THE INVENTION

The present invention is a process of detecting a driver falling asleep in which an image of the face of the driver is acquired. Pixels of the image having characteristics corresponding to characteristics of at least one eye of the driver are selected and a histogram is formed of the selected pixels. The histogram is analyzed over time to identify each opening and closing of the eye, and from the eye opening and closing information, characteristics indicative of a driver falling asleep are determined.

In one embodiment, a sub-area of the image comprising the eye is determined prior to the step of selecting pixels of the image having characteristics corresponding to characteristics of an eye. In this embodiment, the step of selecting pixels of the image having characteristics of an eye involves selecting pixels within the sub-area of the image. The step of identifying a sub-area of the image preferably involves identifying the head of
the driver, or a facial characteristic of the driver, such as the driver's nostrils, and then identifying the sub-area of the image using an anthropomorphic model. The head of the driver may be identified by selecting pixels of the image having characteristics corresponding to edges of the head of the driver. Histograms of the selected pixels of the edges of the driver's head are projected onto orthogonal axes. These histograms are then analyzed to identify the edges of the driver's head.

The facial characteristic of the driver may be identified by selecting pixels of the image having characteristics corresponding to the facial characteristic. Histograms of the selected pixels of the facial characteristic are projected onto orthogonal axes. These histograms are then analyzed to identify the facial characteristic. If desired, the step of identifying the facial characteristic in the image involves searching sub-images of the image until the facial characteristic is found. In the case in which the facial characteristic is the nostrils of the driver, a histogram is formed of pixels having low luminance levels to detect the nostrils. To confirm detection of the nostrils, the histograms of the nostril pixels may be analyzed to determine whether the spacing between the nostrils is within a desired range and whether the dimensions of the nostrils fall within a desired range. In order to confirm the identification of the facial characteristic, an anthropomorphic model and the location of the facial characteristic are used to select a sub-area of the image containing a second facial characteristic. Pixels of the image having characteristics corresponding to the second facial characteristic are selected and a histograms of the selected pixels of the second facial characteristic are analyzed to confirm the identification of the first facial characteristic.

In order to determine openings and closings of the eyes of the driver, the step of selecting pixels of the image having characteristics corresponding to characteristics of an eye of the driver involves selecting pixels having low luminance levels corresponding to shadowing of the eye. In this embodiment, the step analyzing the histogram over time to identify each opening and closing of the eye involves analyzing the shape of the eye shadowing to determine openings and closings of the eye. The histograms of shadowed pixels are preferably projected onto orthogonal axes, and the step of analyzing the shape of the eye shadowing involves analyzing the width and height of the shadowing.

An alternative method of determining openings and closings of the eyes of the driver involves selecting pixels of the image having characteristics of movement corresponding to blinking. In this embodiment, the step analyzing the histogram over time to identify each opening and closing of the eye involves analyzing the number of pixels in movement corresponding to blinking over time. The characteristics of a blinking eye are preferably selected from the group consisting of i) DP=1, ii) CO indicative of a blinking eyelid, iii) velocity indicative of a blinking eyelid, and iv) up and down movement indicative of a blinking eyelid.

An apparatus for detecting a driver falling asleep includes a sensor for acquiring an image of the face of the driver, a controller, and a histogram formation unit for forming a histogram on pixels having selected characteristics. The controller controls the histogram formation unit to select pixels of the image having characteristics corresponding to characteristics of at least one eye of the driver and to form a histogram of the selected pixels. The controller analyzes the histogram over time to identify each opening and closing of the eye, and determines from the opening and closing information on the eye, characteristics indicative of the driver falling asleep.

In one embodiment, the controller interacts with the histogram formation unit to identify a sub-area of the image comprising the eye, and the controller controls the histogram formation unit to select pixels of the image having characteristics corresponding to characteristics of the eye only within the sub-area of the image. In order to select the sub-area of the image, the controller interacts with the histogram formation unit to identify the head of the driver in the image, or a facial characteristic of the driver, such as the driver's nostrils. The controller then identifies the sub-area of the image using an anthropomorphic model. To identify the head of the driver, the histogram formation unit selects pixels of the image having characteristics corresponding to edges of the head of the driver and forms histograms of the selected pixels projected onto orthogonal axes. To identify a facial characteristic of the driver, the histogram formation unit selects pixels of the image having characteristics corresponding to the facial characteristic and forms histograms of the selected pixels projected onto orthogonal axes. The controller then analyzes the histograms of the selected pixels to
identify the edges of the head of the driver or the facial characteristic, as the case may be. If the facial characteristic is the nostrils of the driver, the histogram formation unit selects pixels of the image having low luminance levels corresponding to the luminance level of the nostrils. The controller may also analyze the histograms of the nostril pixels to determine whether the spacing between the nostrils is within a desired range and whether dimensions of the nostrils fall within a desired range. If desired, the controller may interact with the histogram formation unit to search sub-images of the image to identify the facial characteristic.

In order to verify identification of the facial characteristic, the controller uses an anthropomorphic model and the location of the facial characteristic to cause the histogram formation unit to select a sub-area of the image containing a second facial characteristic. The histogram formation unit selects pixels of the image in the sub-area having characteristics corresponding to the second facial characteristic and forms a histogram of such pixels. The controller then analyzes the histogram of the selected pixels corresponding to the second facial characteristic to identify the second facial characteristic and to thereby confirm the identification of the first facial characteristic.

In one embodiment, the histogram formation unit selects pixels of the image having low luminance levels corresponding to shadowing of the eyes, and the controller then analyzes the shape of the eye shadowing to identify shapes corresponding to openings and closings of the eye. The histogram formation unit preferably forms histograms of the shadowed pixels of the eye projected onto orthogonal axes, and the controller analyzes the width and height of the shadowing to determine openings and closings of the eye.

In an alternative embodiment, the histogram formation unit selects pixels of the image in movement corresponding to blinking and the controller analyzes the number of pixels in movement over time to determine openings and closings of the eye. The characteristics of movement corresponding to blinking are preferably selected from the group consisting of i) $\mathrm{DP}=1$, ii) CO indicative of a blinking eyelid, iii) velocity indicative of a blinking eyelid, and iv) up and down movement indicative of a blinking eyelid.

If desired, the sensor may be integrally constructed with the controller and the histogram formation unit. The apparatus may comprise an alarm, which the controller operates upon detection of the driver falling asleep, and may comprise an illumination source, such as a source of IR radiation, with the sensor being adapted to view the driver when illuminated by the illumination source.

A rear-view mirror assembly comprises a rear-view mirror and the described apparatus for detecting driver drowsiness mounted to the rear-view mirror. In one embodiment, a bracket attaches the apparatus to the rear-view mirror. In an alternative embodiment, the rear-view mirror comprises a housing having an open side and an interior. The rear-view mirror is mounted to the open side of the housing, and is seethrough from the interior of the housing to the exterior of the housing. The drowsiness detection apparatus is mounted interior to the housing with the sensor directed toward the rear-view mirror. If desired, a joint attaches the apparatus to the rear-view mirror assembly, with the joint being adapted to maintain the apparatus in a position facing the driver during adjustment of the mirror assembly by the driver. The rear-view mirror assembly may include a source of illumination directcd toward the driver, with the sensor adapted to view the driver when illuminated by the source of illumination. The rear-view mirror assembly may also include an alarm, with the controller operating the alarm upon detection of the driver falling asleep. Also disclosed is a vehicle comprising the drowsiness detection device.

BRIEF DESCRIPTION OF THE DRAWINGS

Fig. 1 is a diagrammatic illustration of the system according to the invention.
Fig. 2 is a block diagram of the temporal and spatial processing units of the invention.

Fig. 3 is a block diagram of the temporal processing unit of the invention.
Fig. 4 is a block diagram of the spatial processing unit of the invention.
Fig. 5 is a diagram showing the processing of pixels in accordance with the invention.

Fig. 6 illustrates the numerical values of the Freeman code used to determine movement direction in accordance with the invention.

Fig. 7 illustrates nested matrices as processed by the temporal processing unit.
Fig. 8 illustrates hexagonal matrices as processed by the temporal processing unit.

Fig. 9 illustrates reverse-L matrices as processed by the temporal processing unit.

Fig. 10 illustrates angular sector shaped matrices as processed by the temporal processing unit.

Fig. 11 is a block diagram showing the relationship between the temporal and spatial processing units, and the histogram formation units.

Fig. 12 is a block diagram showing the interrelationship between the various histogram formation units.

Fig. 13 shows the formation of a two-dimensional histogram of a moving area from two one-dimensional histograms.

Fig. 14 is a block diagram of an individual histogram formation unit.
Figs. 15A and 15B illustrate the use of a histogram formation unit to find the orientation of a line relative to an analysis axis.

Fig. 16 illustrates a one-dimensional histogram.
Fig. 17 illustrates the use of semi-graphic sub-matrices to selected desired areas of an image.

Fig. 18 is a side view illustrating a rear view mirror in combination with the drowsiness detection system of the invention.

Fig. 19 is a top view illustrating operation of a rear view mirror.
Fig. 20 is a schematic illustrating operation of a rear view mirror.
Fig. 21 is a cross-sectional top view illustrating a rear view mirror assembly incorporating the drowsiness detection system of the invention.

Fig. 22 is a partial cross-sectional top view illustrating a joint supporting the drowsiness detection system of the invention in the mirror assembly of Fig. 21.

Fig. 23 is a top view illustrating the relationship between the rear view mirror assembly of Fig. 21 and a driver.

Fig. 24 illustrates detection of the edges of the head of a person using the system of the invention.

Fig. 25 illustrates masking outside of the edges of the head of a person.
Fig. 26 illustrates masking outside of the eyes of a person.
Fig. 27 illustrates detection of the eyes of a person using the system of the invention.

Fig. 28 illustrates successive blinks in a three-dimensional orthogonal coordinate system.

Figs. 29A and 29B illustrate conversion of peaks and valleys of eye movement histograms to information indicative of blinking.

Fig. 30 is a flow diagram illustrating the use of the system of the invention to detect drowsiness.

Fig. 31 illustrates the use of sub-images to search a complete image.
Fig. 32 illustrates the use of the system of the invention to detect nostrils and to track eye movement.

Fig. 33 illustrates the use of the system of the invention to detect an open eye.
Fig. 34 illustrates the use of the system of the invention to detect a closed eye.
Fig. 35 is a flow diagram of an alternative method of detecting drowsiness.
Fig. 36 illustrates use of the system to detect a pupil.

DETAILED DESCRIPTION OF THE INVENTION

The present invention discloses an application of the generic image processing system disclosed in commonly-owned PCT Application Serial Nos. PCT/FR97/01354 and PCT/EP98/05383, the contents of which are incorporated herein by reference for detection of various criteria associated with the human eye, and especially to detection that a driver is falling asleep while driving a vehicle.

The apparatus of the invention is similar to that described in the aforementioned PCT Application Serial Nos. PCT/FR97/01354 and PCT/EP98/05383, which will be described herein for purposes of clarity. Referring to Figs. 1 and 10, the generic image processing system 22 includes a spatial and temporal processing unit 11 in combination with a histogram formation unit 22a. Spatial and temporal processing unit 11 includes an input 12 that receives a digital video signal S originating from a video camera or other imaging device 13 which monitors a scene 13a. Imaging device 13 is preferably a
conventional CMOS-type CCD camera, which for purposes of the presently-described invention is mounted on a vehicle facing the driver. It will be appreciated that when used in non-vehicular applications, the camera may be mounted in any desired fashion to detect the specific criteria of interest. It is also foreseen that any other appropriate sensor, e.g., ultrasound, IR, Radar, etc., may be used as the imaging device. Imaging device 13 may have a direct digital output, or an analog output that is converted by an A/D converter into digital signal S. Imaging device 13 may also be integral with generic image processing system 22 , if desired.

While signal S may be a progressive signal, it is preferably composed of a succession of pairs of interlaced frames, TR_{1} and TR_{1}^{\prime} and TR_{2} and $\mathrm{TR}^{\prime}{ }_{2}$, each consisting of a succession of horizontal scanned lines, e.g., $1_{1.1}, l_{1.2}, \ldots, l_{1.17}$ in T_{1}, and 2.1 in T_{2}. Each line consists of a succession of pixels or image-points PI, e.g., $a_{1.1}, a_{1.2}$ and $a_{1.3}$ for line $l_{1.1} ; \mathrm{l}_{17.1}$ and $a l_{17.22}$ for line $l_{1.17} ; \mathrm{al}_{1.1}$ and $\mathrm{a}_{1.2}$ for line $\mathrm{l}_{2.1}$. Signal $\mathrm{S}(\mathrm{PI})$ represents signal S composed of pixels PI.
$\mathrm{S}(\mathrm{PI})$ includes a frame synchronization signal (ST) at the beginning of each frame, a line synchronization signal (SL) at the beginning of each line, and a blanking signal (BL). Thus, $\mathrm{S}(\mathrm{PI})$ includes a succession frames, which are representative of the time domain, and within each frame, a series of lines and pixels, which are representative of the spatial domain.

In the time domain, "successive frames" shall refer to successive frames of the same type (i.e., odd frames such as TR_{1} or even frames such as $\mathrm{TR}^{\prime}{ }_{1}$), and "successive pixels in the same position" shall denote successive values of the pixels (PI) in the same location in successive frames of the same type, e.g., $a_{1.1}$ of $l_{1.1}$ in frame TR_{1} and $a_{1.1}$ of $l_{1.1}$ in the next corresponding frame TR_{2}

Spatial and temporal processing unit 11 generates outputs ZH and SR 14 to a data bus 23 (Fig. 11), which are preferably digital signals. Complex signal ZH comprises a number of output signals generated by the system, preferably including signals indicating the existence and localization of an area or object in motion, and the speed V and the oriented direction of displacement DI of each pixel of the image. Also preferably output from the system is input digital video signal S, which is delayed (SR) to make it
synchronous with the output ZH for the frame, taking into account the calculation time for the data in composite signal ZH (one frame). The delayed signal SR is used to display the image received by camera 13 on a monitor or television screen 10 , which may also be used to display the information contained in composite signal ZH. Composite signal ZH may also be transmitted to a separate processing assembly 10a in which further processing of the signal may be accomplished.

Referring to Fig. 2, spatial and temporal processing unit 11 includes a first assembly 11a, which consists of a temporal processing unit 15 having an associated memory 16 , a spatial processing unit 17 having a delay unit 18 and sequencing unit 19 , and a pixel clock 20 , which generates a clock signal HP, and which serves as a clock for temporal processing unit 15 and sequencing unit 19. Clock pulses HP are generated by clock 20 at the pixel rate of the image, which is preferably 13.5 MHZ .

Fig. 3 shows the operation of temporal processing unit 15 , the function of which is tọ smooth the video signal and generate a number of outputs that are utilized by spatial processing unit 17. During processing, temporal processing unit 15 retrieves from memory 16 the smoothed pixel values LI of the digital video signal from the immediately prior frame, and the values of a smoothing time constant CI for each pixel. As used herein, LO and CO shall be used to denote the pixel values (L) and time constants (C) stored in memory 16 from temporal processing unit 15 , and LI and CI shall denote the pixel values (L) and time constants (C) respectively for such values retrieved from memory 16 for use by temporal processing unit 15 . Temporal processing unit 15 generates a binary output signal DP for each pixel, which identifies whether the pixel has undergone significant variation, and a digital signal CO , which represents the updated calculated value of time constant C.

Referring to Fig. 3, temporal processing unit 15 includes a first block 15a which receives the pixels PI of input video signal S. For each pixel PI, the temporal processing unit retrieves from memory 16 a smoothed value LI of this pixel from the immediately preceding corresponding frame, which was calculated by temporal processing unit 15 during processing of the immediately prior frame and stored in memory 16 as LO. Temporal processing unit 15 calculates the absolute value AB of the difference between
each pixel value PI and LI for the same pixel position (for example $a_{1.1}$, of $1_{1.1}$ in TR_{1} and of $\mathrm{I}_{1.1}$ in TR_{2} :

$$
\mathrm{AB}=\mid \mathrm{PI}-\mathrm{LI}
$$

Temporal processing unit 15 is controlled by clock signal HP from clock 20 in order to maintain synchronization with the incoming pixel stream. Test block 15 b of temporal processing unit 15 receives signal AB and a threshold value SE . Threshold SE may be constant, but preferably varies based upon the pixel value PI, and more preferably varies with the pixel value so as to form a gamma correction. Known means of varying SE to form a gamma correction is represented by the optional block 15 e shown in dashed lines. Test block 15 b compares, on a pixel-by-pixel basis, digital signals AB and SE in order to determine a binary signal DP . If AB exceeds threshold SE , which indicates that pixel value PI has undergone significant variation as compared to the smoothed value LI of the same pixel in the prior frame, DP is set to " 1 " for the pixel under consideration. Otherwise, DP is set to " 0 " for such pixel.

When $\mathrm{DP}=1$, the difference between the pixel value PI and smoothed value LI of the same pixel in the prior frame is considered too great, and temporal processing unit 15 attempts to reduce this difference in subsequent frames by reducing the smoothing time constant C for that pixel. Conversely, if $\mathrm{DP}=0$, temporal processing unit 15 attempts to increase this difference in subsequent frames by increasing the smoothing time constant C for that pixel. These adjustments to time constant C as a function of the value of DP are made by block 15 c . If $\mathrm{DP}=1$, block 15 c reduces the time constant by a unit value U so that the new value of the time constant $C O$ equals the old value of the constant CI minus unit value U .
$\mathrm{CO}=\mathrm{CI}-\mathrm{U}$
If $\mathrm{DP}=0$, block 15 c increases the time constant by a unit value U so that the new value of the time constant CO equals the old value of the constant Cl plus unit value U .

$$
\mathrm{CO}=\mathrm{CI}+\mathrm{U}
$$

Thus, for each pixel, block 15 c receives the binary signal DP from test unit 15 b and time constant CI from memory 16, adjusts CI up or down by unit value U , and

0
generates a new time constant CO which is stored in memory 16 to replace time constant CI.

In a preferred embodiment, time constant C, is in the form 2^{p}, where p is incremented or decremented by unit value U, which preferably equals 1 , in block 15 c. Thus, if $\mathrm{DP}=1$, block 15 c subtracts one (for the case where $\mathrm{U}=1$) from p in the time constant 2^{p} which becomes 2^{p-1}. If $\mathrm{DP}=0$, block 15 c adds one to p in time constant 2^{p}, which becomes $2^{\mathrm{P}+1}$. The choice of a time constant of the form 2^{P} facilitates calculations and thus simplifies the structure of block 15 c .

Block 15 c includes several tests to ensure proper operation of the system. First, CO must remain within defined limits. In a preferred embodiment, CO must not become negative $(\mathrm{CO} \geq 0)$ and it must not exceed a limit $\mathrm{N}(\mathrm{CO} \leq \mathrm{N})$, which is preferably seven. In the instance in which CI and CO are in the form 2^{p}, the upper limit N is the maximum value for p.

The upper limit N may be constant, but is preferably variable. An optional input unit 15 f includes a register of memory that enables the user, or controller 42 to vary N . The consequence of increasing N is to increase the sensitivity of the system to detecting displacement of pixels, whereas reducing N improves detection of high speeds. N may be made to depend on PI (N may vary on a pixel-by-pixel basis, if desired) in order to regulate the variation of LO as a function of the lever of PI, i.e., $\mathrm{N}_{\mathrm{ijt}}=\mathrm{f}\left(\mathrm{PI}_{\mathrm{ij}}\right)$, the calculation of which is done in block 15 f , which in this case would receive the value of PI from video camera 13.

Finally, a calculation block 15 d receives, for each pixel, the new time constant CO generated in block 15 c , the pixel values PI of the incoming video signal S , and the smoothed pixel value LI of the pixel in the previous frame from memory 16. Calculation block 15 d then calculates a new smoothed pixel value LO for the pixel as follows:

$$
\mathrm{LO}=\mathrm{LI}+(\mathrm{PI}-\mathrm{LI}) / \mathrm{CO}
$$

If $\mathrm{CO}=2^{\mathrm{P}}$, then

$$
\mathrm{LO}=\mathrm{LI}+(\mathrm{PI}-\mathrm{LI}) / 2^{\mathrm{po}}
$$

where "po", is the new value of p calculated in unit 15 c and which replaces previous value of "pi" in memory 16.

The purpose of the smoothing operation is to normalize variations in the value of each pixel PI of the incoming video signal for reducing the variation differences. For each pixel of the frame, temporal processing unit 15 retrieves LI and CI from memory 16, and generates new values LO (new smoothed pixel value) and CO (new time constant) that are stored in memory 16 to replace LI and CI respectively. As shown in Fig. 2, temporal processing unit 15 transmits the CO and DP values for each pixel to spatial processing unit 17 through the delay unit 18 .

The capacity of memory 16 assuming that there are R pixels in a frame, and therefore $2 R$ pixels per complete image, must be at least $2 R(e+f)$ bits, where e is the number of bits required to store a single pixel value LI (preferably eight bits), and f is the number of bits required to store a single time constant CI (preferably 3 bits). If each video image is composed of a single frame (progressive image), it is sufficient to use $R(e+f)$ bits rather than $2 R(e+f)$ bits.

Spatial processing unit 17 is used to identify an area in relative movement in the images from camera 13 and to determine the speed and oriented direction of the movement. Spatial processing unit 17, in conjunction with delay unit 18 , co-operates with a control unit 19 that is controlled by clock 20, which generates clock pulse HP at the pixel frequency. Spatial processing unit 17 receives signals $\mathrm{DP}_{\mathrm{ij}}$ and $\mathrm{CO}_{\mathrm{ij}}$ (where i and j correspond to the x and y coordinates of the pixel) from temporal processing unit 15 and processes these signals as discussed below. Whereas temporal processing unit 15 processes pixels within each frame, spatial processing unit 17 processes groupings of pixels within the frames.

Fig. 5 diagrammatically shows the temporal processing of successive corresponding frame sequences $\mathrm{TR}_{1}, \mathrm{TR}_{2}, \mathrm{TR}_{3}$ and the spatial processing in the these frames of a pixel PI with coordinates x, y, at times t_{1}, t_{2}, and t_{3}. A plane in Fig. 5 corresponds to the spatial processing of a frame, whereas the superposition of frames corresponds to the temporal processing of successive frames.

Signals $\mathrm{DP}_{\mathrm{ij}}$ and $\mathrm{CO}_{\mathrm{ij}}$ from temporal processing unit 15 are distributed by spatial processing unit 17 into a first matrix 21 containing a number of rows and columns much smaller than the number of lines L of the frame and the number of pixels M per line.

Matrix 21 preferably includes $2 l+1$ lines along the y axis and $2 m+1$ columns along the x axis (in Cartesian coordinates), where l and m are small integer numbers. Advantageously, l and m are chosen to be powers of 2 , where for example l is equal to $2^{\text {a }}$ and m is equal to 2^{b}, a and b being integer numbers of about 2 to 5 , for example. To simplify the drawing and the explanation, m will be taken to be equal to l (although it may be different) and $m=1=2^{3}=8$. In this case, matrix 21 will have $2 \times 8+1=17$ rows and 17 columns. Fig. 4 shows a portion of the 17 rows $Y_{0}, Y_{1}, \ldots Y_{15}, Y_{16}$, and 17 columns $X_{0}, X_{1}, \ldots X_{15}, X_{16}$ which form matrix 21.

Spatial processing unit 17 distributes into $1 \times m$ matrix 21 the incoming flows of $\mathrm{Dp}_{\mathrm{ijt}}$ and $\mathrm{CO}_{\mathrm{jt}}$ from temporal processing unit 15 . It will be appreciated that only a subset of all $\mathrm{DP}_{\mathrm{ijt}}$ and $\mathrm{CO}_{\mathrm{ijt}}$ values will be included in matrix 21 , since the frame is much larger, having L lines and M pixels per row (e.g., 312.5 lines and 250-800 pixels), depending upon the TV standard used.

In order to distinguish the $\mathrm{L} \times \mathrm{M}$ matrix of the incoming video signal from the $I \mathrm{x}$ m matrix 21 of spatial processing unit 17 , the indices i and j will be used to represent the coordinates of the former matrix and the indices x and y will be used to represent the coordinates of the latter. At a given instant, a pixel with an instantaneous value $\mathrm{PI}_{\mathrm{ij}}$ is characterized at the input of the spatial processing unit 17 by signals $\mathrm{DP}_{\mathrm{ijt}}$ and $\mathrm{CO}_{\mathrm{ijt}}$. The $(2 l+1) \times(2 m+1)$ matrix 21 is formed by scanning each of the $\mathrm{L} \times \mathrm{M}$ matrices for DP and CO .

In matrix 21 , each pixel is defined by a row number between 0 and 16 (inclusive), for rows Y_{o} to Y_{16} respectively, and a column number between 0 and 16 (inclusive), for columns X_{0} to X_{16} respectively, in the case in which $l=m=8$. In this case, matrix 21 will be a plane of $17 \times 17=289$ pixels.

In Fig. 4, elongated horizontal rectangles Y_{0} to Y_{16} (only four of which have been shown, i.e., $Y_{0,} Y_{1}, Y_{15}$ and Y_{16}) and vertical lines X_{0} to X_{16} (of which only four have been shown, i.e., X_{0}, X_{1}, X_{15} and X_{16}) illustrate matrix 21 with 17×17 image points or pixels having indices defined at the intersection of an ordinate row and an abscissa column. For example, the P_{88} is at the intersection of column 8 and row 8 as illustrated in Fig. 4 at position e, which is the center of matrix 21.

In response to the HP and BL signals from clock 20 (Fig. 2), a rate control or sequencing unit 19: i) generates a line sequence signal SL at a frequency equal to the quotient of 13.5 MHZ (for an image with a corresponding number of pixels) divided by the number of columns per frame (for example 400) to delay unit 18, ii) generates a frame signal SC, the frequency of which is equal to the quotient $13.5 / 400 \mathrm{MHZ}$ divided by the number of rows in the video image, for example 312.5, iii) and outputs the HP clock signal. Blanking signal BL is used to render sequencing unit 19 non-operational during synchronization signals in the input image.

A delay unit 18 carries out the distribution of portions of the $\mathrm{L} \times \mathrm{M}$ matrix into matrix 21. Delay unit 18 receives the DP, CO, and incoming pixel $\mathrm{S}(\mathrm{PI})$ signals, and distributes these into matrix 21 using clock signal HP and line sequence and column sequence signals SL and SC.

In order to form matrix 21 from the incoming stream of DP and CO signals, the successive row, Y_{0} to Y_{16} for the DP and CO signals must be delayed as follows:
row Y_{0} - not delayed;
row Y_{1} - delayed by the duration of a frame line TP;
row Y_{2} - delayed by 2 TP;
and so on until
row Y_{16} - delayed by 16 TP .
The successive delays of the duration of a frame row TP, are carried out in a cascade of sixteen delay circuits $r_{1}, r_{2}, \ldots r_{16}$ that serve rows $Y_{1}, Y_{2} \ldots Y_{16}$, respectively, row Y_{0} being served directly by the DP and CO signals without any delay upon arriving from temporal processing unit 15 . All delay circuits $\mathrm{r}_{1}, \mathrm{r}_{2}, \ldots \mathrm{r}_{16}$ may be built up by a delay line with sixteen outputs, the delay imposed by any section thereof between two successive outputs being constant and equal to TP.

Rate control unit 19 controls the scanning of the entire L x M frame matrix over matrix 21. The circular displacement of pixels in a row of the frame matrix on the 17 x 17 matrix, for example from X_{0} to X_{16} on row Y_{0}, is done by a cascade of sixteen shift registers d on each of the 17 rows from Y_{0} to Y_{16} (giving a total of $16 \times 17=272$ shift registers) placed in each row between two successive pixel positions, namely the register
d_{01} between positions PI_{00} and PI_{01} register d_{02} between positions PI_{01}, and PI_{02}, etc. Each register imposes a delay TS equal to the time difference between two successive pixels in a row or line, using column sequence signal SC. Because rows $l_{1}, l_{2} \ldots l_{17}$ in a frame TR_{1} (Fig. 1), for $\mathrm{S}(\mathrm{PI})$ and for DP and CO , reach delay unit 18 shifted by TP (complete duration of a row) one after the other, and delay unit 18 distributes them with gradually increasing delays of TP onto rows $\mathrm{Y}_{0}, \mathrm{Y}_{1} \ldots \mathrm{Y}_{17}$, these rows display the DP and CO signals at a given time for rows $l_{1}, l_{2} \ldots I_{17}$ in the same frame portion. Similarly in a given row, e.g., l_{1}, successive pixel signals $a_{1.1}, a_{1.2} \ldots$ arrive shifted by TS and shift registers d impose a delay also equal to TS. As a result, the pixels of the DP and CO signals in a given row Y_{0} to Y_{16} in matrix 21, are contemporary, i.e., they correspond to the same frame portion.

The signals representing the COs and DPs in matrix 21 are available at a given instant on the $16 \times 17=272$ outputs of the shift registers, as well as upstream of the registers ahead of the 17 rows, i.e., registers $d_{0.1}, d_{1.1} \ldots d_{16.1}$, which makes a total of $16 x$ $17+17=17 \times 17$ outputs for the 17×17 positions $P_{0.0,} P_{0.1}, \ldots P_{8.8} \ldots P_{16.16}$.

In order to better understand the process of spatial processing, the system will be described with respect to a small matrix M3 containing 3 rows and 3 columns where the central element of the 9 elements thereof is pixel \underline{e} with coordinates $x=8, y=8$ as illustrated below:

$$
\begin{array}{lll}
a & b & c \\
d & e & f \tag{M3}\\
g & h & i
\end{array}
$$

In matrix M3, positions $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{f}, \mathrm{g}, \mathrm{h}, \mathrm{i}$ around the central pixel \underline{e} correspond to eight oriented directions relative to the central pixel. The eight directions may be identified using the Freeman code illustrated in Fig. 6, the directions being coded 0 to 7 starting from the x axis, in steps of 45 -. In the Freeman code, the eight possible oriented directions, may be represented by a 3 -bit number since $2^{3}=8$.

Considering matrix M3, the 8 directions of the Freeman code are as follows:

3	2	1
4	e	0
5	6	7

Returning to matrix 21 having 17×17 pixels, a calculation unit 17 a examines at the same time various nested square second matrices centered on \mathbf{e}, with dimensions $15 \times$ $15,13 \times 13,11 \times 11,9 \times 9,7 \times 7,5 \times 5$ and 3×3, within matrix 21 , the 3×3 matrix being the M3 matrix mentioned above. Spatial processing unit 17 determines which matrix is the smallest in which pixels with $\mathrm{DP}=1$ are aligned along a straight line which determines the direction of movement of the aligned pixels.

For the aligned pixels in the matrix, the system determines if CO varies on each side of the central position in the direction of alignment, from +a in an oriented direction and -a in the opposite oriented direction, where $1<a<N$. For example, if positions g, e, and c of M 3 have values $-1,0,+1$, then a displacement exists in this matrix from right to left in the (oriented) direction 1 in the Freeman code (Fig. 6). However, positions g, e, and c must at the same time have $\mathrm{DP}=1$. The displacement speed of the pixels in motion is greater when the matrix, among the 3×3 to 15×15 nested matrices, in which CO varies from +1 or -1 between two adjacent positions along a direction is larger. For example, if positions g , e , and c in the 9×9 matrix denoted M9 have values $-1,0,+1$ in oriented direction 1 , the displacement will be faster than for values $-1,0,+1$ in 3×3 matrix M3 (Fig. 7). The smallest matrix for which a line meets the test of $D P=1$ for the pixels in the line and CO varies on each side of the central position in the direction of alignment, from +a in an oriented direction and -a in the opposite oriented direction, is chosen as the principal line of interest.

Within a given matrix, a greater value of $\AA C O$ indicates slower movement. For example, in the smallest matrix, i.e., the 3×3 matrix, $\mathrm{CO}=\AA 2$ with $\mathrm{DPs}=1$ determines subpixel movement i.e. one half pixel per image, and $\mathrm{CO}=\AA 3$, indicates slower movement, i.e. one third of a pixel per image. In order to reduce the calculation power in the system and to simplify the hardware, preferably only those values of CO which are symmetrical relative to the central pixel are considered.

Since $\mathbf{C O}$ is represented as a power of 2 in a preferred embodiment, an extended range of speeds may be identified using only a few bits for CO, while still enabling identification of relatively low speeds. Varying speed may be detected because, for example $-2,0,+2$ in positions $\mathrm{g}, \mathrm{e}, \mathrm{c}$ in 3×3 matrix M 3 indicates a speed half as fast as the speed corresponding to $1,0,+1$ for the same positions in matrix M3.

Two tests are preferably performed on the results to remove uncertainties. The first test chooses the strongest variation, in other words the highest time constant, if there are variations of CO along several directions in one of the nested matrices. The second test arbitrarily chooses one of two (or more) directions along which the variation of CO is identical, for example by choosing the smallest value of the Freeman code, in the instance when identical lines of motion are directed in a single matrix in different directions. This usually arises when the actual direction of displacement is approximately between two successive coded directions in the Freeman code, for example between directions 1 and 2 corresponding to an (oriented) direction that can be denoted 1.5 (Fig. 6) of about 67.5- with the x axis direction (direction 0 in the Freeman code).

The scanning of an entire frame of the digital vidco signal S preferably occurs in the following sequence. The first group of pixels considered is the first 17 rows or lines of the frame, and the first 17 columns of the frame. Subsequently, still for the first 17 rows of the frame, the matrix is moved column by column from the left of the frame to the right, as shown in Fig. 5, i.e., from portion TM_{1} at the extreme left, then TM_{2} offset by one column with respect to TM_{1}, until TM_{M} (where M is the number of pixels per frame line or row) at the extreme right. Once the first 17 rows have been considered for each column from left to right, the process is repeated for rows 2 to 18 in the frame. This process continues, shifting down one row at a time until the last group of lines at the bottom of the frame, i.e., lines $L-16 \ldots \mathrm{~L}$ (where L is the number of lines per frame) are considered.

Spatial processing unit 17 generates the following output signals for each pixel: i) a signal V representing the displacement speed for the pixel, based upon the amplitude of the maximum variation of CO surrounding the pixel, the value of which may be, for example, represented by an integer in the range $0-7$ if the speed is in the form of a
power of 2 , and therefore may be stored in 3 bits, ii) a signal DI representing the direction of displacement of the pixel, which is calculated from the direction of maximum variation, the value of DI being also preferably represented by an integer in the range 0 7 corresponding to the Freeman code, stored in 3 bits, iii) a binary validation signal VL which indicates whether the result of the speed and oriented direction is valid, in order to be able to distinguish a valid output with $\mathrm{V}=0$ and $\mathrm{DI}=0$, from the lack of an output due to an incident, this signal being 1 for a valid output or 0 for an invalid output, iv) a time constant signal CO, stored in 3 bits, for example, and v) a delayed video signal SR consisting of the input video signal S delayed in the delay unit 18 by 16 consecutive line durations TR and therefore by the duration of the distribution of the signal S in the 17 x 17 matrix 21 , in order to obtain a video signal timed to matrix 21 , which may be displayed on a television set or monitor. Also output are the clock signal HP, line sequence signal SL and column sequence signal SC from control unit 19.

Nested hexagonal matrices (Fig 8) or an inverted L-shaped matrix (Fig. 9) may be substituted for the nested rectangular matrices in Figs. 4 and 7. In the case shown in Fig. 8, the nested matrices (in which only the most central matrices MRI and MR2 have been shown) are all centered on point MR0 which corresponds to the central point of matrices M3, M9 in Fig. 7. The advantage of a hexagonal matrix system is that it allows the use of oblique coordinate axes $\mathrm{x}_{\mathrm{a}}, \mathrm{y}_{\mathrm{a}}$, and a breakdown into triangles with identical sides, to carry out an isotropic speed calculation.

The matrix in Fig. 9 is composed of a single row (L_{u}) and a single column (C_{u}) starting from the central position $M R_{u}$ in which the two signals $D P$ and CO respectively are equal to " 1 " for DP and increase or decrease by one unit for CO , if movement occurs.

If movement is in the direction of the x coordinate, the CO signal is identical in all positions (boxes) in column C_{u}, and the binary signal DP is equal to 1 in all positions in row L_{u}, from the origin $M R_{u}$, with the value CO_{u}, up to the position in which CO is equal to $\mathrm{CO}_{u}+1$ or -1 inclusive. If movement is in the direction of the y coordinate, the CO signal is identical in all positions (boxes) in row L_{u}, and the binary signal DP is equal to 1 in all positions in column C_{u}, from the origin MR_{u}, with the value CO_{u}, up to the
position in which CO is equal to $\mathrm{CO}_{u},+1$ or -1 inclusive. If movement is oblique relative to the x and y coordinates, the binary signal DP is equal to 1 and CO is equal to CO_{u} in positions (boxes) of L_{u} and in positions (boxes) of C_{u}, the slope being determined by the perpendicular to the line passing through the two positions in which the signal CO_{u} changes by the value of one unit, the DP signal always being equal to 1 .

Fig. 9 shows the case in which $\mathrm{DP}=\mathrm{I}$ and CO_{u} changes value by one unit in the two specific positions $L_{u 3}$ and $C_{u s}$ and indicates the corresponding slope P_{P}. In all cases, the displacement speed is a function of the position in which CO changes value by one unit. If CO changes by one unit in L_{u} or C_{u} only, it corresponds to the value of the CO variation position. If CO changes by one unit in a position in L_{u} and in a position in C_{u}, the speed is proportional to the distance between MR_{u} and E_{x} (intersection of the line perpendicular to $\mathrm{C}_{\mathrm{u}}-\mathrm{L}_{\mathrm{u}}$ passing through MR_{u}).

Fig. 10 shows an imaging device with sensors located at the intersections of concentric lines c and radial lines d that correspond to the rows and columns of a rectangular matrix imaging device. The operation of such an imaging device is controlled by a circular scanning sequencer. In this embodiment, angular sector shaped n x n matrices MC are formed, (a 3×3 matrix MC3 and a 5×5 matrix MC5 are shown) and except for sequencing differences, the matrices are processed identical to the square matrix embodiments discussed above.

As shown in Figs. 11-16, spatial and temporal processing unit 11 is used in connection with a histogram processor 22a for identifying objects within the input signal based upon user specified criteria for identifying such objects. A bus Z-Z (See Figs. 2, 11 and 12) transfers the output signals of spatial and temporal processing unit 11 to histogram processor 22a. Histogram processor 22a generates composite output signal ZH which contains information on the areas in relative movement in the scene.

Referring to Fig. 12, histogram processor 22a includes a bus 23 for communicating signals between the various components thereof, for receiving input commands from a controller 42 and for transmitting output signals to controller 42. Histogram formation and processing blocks 24-29 receive the various input signals, i.e., delayed digital video signal SR , speed V , oriented directions (in Freeman code) DI, time
constant CO, first axis $x(m)$ and second axis $y(m)$, which are discussed in detail below. The function of each histogram formation block is to enable a histogram to be formed for the domain associated with that block. For example, histogram formation block 24 receives the delayed digital video signal SR and enables a histogram to be formed for the luminance values of the video signal. Since the luminance of the signal will generally be represented by a number in the range of $0-255$, histogram formation block 24 is preferably a memory addressable with 8 bits, with each memory location having a sufficient number of bits to correspond to the number of pixels in a frame.

Histogram formation block 25 receives speed signal V and enables a histogram to be formed for the various speeds present in a frame. In a preferred embodiment, the speed is an integer in the range 0-7. Histogram formation block 25 is then preferably a memory addressable with 3 bits, with each memory location having a sufficient number of bits to correspond to the number of pixels in a frame.

Histogram formation block 26 receives oriented direction signal DI and enables a histogram to be formed for the oriented directions present in a frame. In a preferred embodiment, the oriented direction is an integer in the range $0-7$, corresponding to the Freeman code. Histogram formation block 26 is then preferably a memory addressable with 3 bits, with each memory location having a sufficient number of bits to correspond to the number of pixels in a frame.

Histogram formation block 27 receives time constant signal CO and enables a histogram to be formed for the time constants of the pixels in a frame. In a preferred embodiment, the time constant is an integer in the range 0-7. Histogram formation block 27 is then preferably a memory addressable with 3 bits, with each memory location having a sufficient number of bits to correspond to the number of pixels in a frame.

Histogram formation blocks 28 and 29 receive the x and y positions respectively of pixels for which a histogram is to be formed, and form histograms for such pixels, as discussed in greater detail below. Histogram formation block 28 is preferably addressable with the number of bits corresponding to the number of pixels in a line, with each memory location having a sufficient number of bits to correspond to the number of lines in a frame, and histogram formation block 29 is preferably addressable with the
number of bits corresponding to the number of lines in a frame, with each memory location having a sufficient number of bits to correspond to the number of pixels in a line.

Referring to Figs. 12 and 14, each of the histogram formation blocks 24-29 has an associated validation block 30-35 respectively, which generates a validation signal V1 - V6 respectively. In general, each of the histogram formation blocks 24-29 is identical to the others and functions in the same manner. For simplicity, the invention will be described with respect to the operation of histogram formation block 25 , it being appreciated that the remaining histogram formation blocks operate in a like manner. Histogram formation block 25 includes a histogram forming portion 25a, which forms the histogram for that block, and a classifier 25 b , for selecting the criteria of pixels for which the histogram is to be formed. Histogram forming portion 25a and classifier 25b operate under the control of computer software in an integrated circuit (not shown), to extract certain limits of the histograms generated by the histogram formation block, and to control operation of the various components of the histogram formation units.

Referring to Fig. 14, histogram forming portion 25a includes a memory 100 , which is preferably a conventional digital memory. In the case of histogram formation block 25 which forms a histogram of speed, memory 100 is sized to have addresses 0-7, each of which may store up to the number of pixels in an image. Between frames, memory 100 is initiated, i.e., cleared of all memory, by setting init $=1$ in multiplexors 102 and 104. This has the effect, with respect to multiplexor 102 of selecting the " 0 " input, which is output to the Data In line of memory 100. At the same time, setting init=1 causes multiplexor 104 to select the Counter input, which is output to the Address line of memory 100. The Counter input is connected to a counter (not shown) that counts through all of the addresses for memory 100 , in this case $\mathrm{O} \leq$ address ≤ 7. This has the effect of placing a zero in all memory addresses of memory 100. Memory 100 is preferably cleared during the blanking interval between each frame. After memory 100 is cleared, the init line is set to zero, which in the case of multiplexor 102 results in the content of the Data line being sent to memory 100, and in the case of multiplexor 104 results in the data from spatial processing unit 117 , i.e., the V data, being sent to the Address line of memory 100.

Classifier 25b enables only data having selected classification criteria to be considered further, meaning to possibly be included in the histograms formed by histogram formation blocks 24-29. For example, with respect to speed, which is preferably a value in the range of $0-7$, classifier 25 b may be set to consider only data within a particular speed category or categories, e.g., speed 1 , speeds 3 or 5, speed 3-6, etc. Classifier 25 b includes a register 106 that enables the classification criteria to be set by the user, or by a separate computer program. By way of example, register 106 will include, in the case of speed, eight registers numbered 0-7. By setting a register to " 1 ", e.g., register number 2 , only data that meets the criteria of the selected class, e.g., speed 2, will result in a classification output of " 1 ". Expressed mathematically, for any given register in which $R(k)=b$, where k is the register number and b is the boolean value stored in the register:

$$
\text { Output= } R(\operatorname{data}(V))
$$

So for a data point V of magnitude 2, the output of classifier 25 b will be " 1 " only if $R(2)=1$. The classifier associated with histogram formation block 24 preferably has 256 registers, one register for each possible luminance value of the image. The classifier associated with histogram formation block 26 preferably has 8 registers, one register for each possible direction value. The classifier associated with histogram formation block 27 preferably has 8 registers, one register for each possible value of CO. The classifier associated with histogram formation block 28 preferably has the same number of registers as the number of pixels per line. Finally, the classifier associated with histogram formation block 29 preferably has the same number of registers as the number of lines per frame. The output of each classifier is communicated to each of the validation blocks $30-35$ via bus 23, in the case of histogram formation blocks 28 an 29 , through combination unit 36, which will be discussed further below.

Validation units 30-35 receive the classification information in parallel from all classification units in histogram formation blocks 24-29. Each validation unit generates a validation signal which is communicated to its associated histogram formation block 24 - 29. The validation signal determines, for each incoming pixel, whether the histogram formation block will utilize that pixel in forming it histogram. Referring again to Fig. 14,
which shows histogram formation block 25 , validation unit 31 includes a register block 108 having a register associated with each histogram formation block, or more generally, a register associated with each data domain that the system is capable of processing, in this case, luminance, speed, direction, CO , and x and y position. The content of each register in register block 108 is a binary value that may be set by a user or by a computer controller. Each validation unit receive via bus 23 the output of each of the classifiers, in this case numbered $0 \ldots \mathrm{p}$, keeping in mind that for any data domain, e.g., speed, the output of the classifier for that data domain will only be " 1 " if the particular data point being considered is in the class of the registers set to " 1 " in the classifier for that data domain. The validation signal from each validation unit will only be " 1 " if for each register in the validation unit that is set to " 1 ", an input of " 1 " is received from the classifier for the domain of that register. This may be expressed as follows:

$$
o u t=\left(\overline{i n}_{0}+\operatorname{Reg}_{0}\right) \cdot\left(\overline{(i n}_{1}+\operatorname{Reg}_{1}\right) \ldots\left(\overline{i n}_{n}+\operatorname{Reg}_{n}\right)\left(i n_{0}+i n_{1}+\ldots i n_{n}\right)
$$

where Reg $_{0}$ is the register in the validation unit associated with input in_{0}. Thus, using the classifiers in combination with validation units 30-35, the system may select for processing only data points in any selected classes within any selected domains. For example, the system may be used to detect only data points having speed 2, direction 4, and luminance 125 by setting each of the following registers to " 1 ": the registers in the validation units for speed, direction, and luminance, register 2 in the speed classifier, register 4 in the direction classifier, and register 125 in the luminance classifier. In order to form those pixels into a block, the registers in the validation units for the x and y directions would be set to " 1 " as well.

Referring again to Fig. 13, validation signal V2 is updated on a pixel-by-pixel basis. If, for a particular pixel, validation signal V2 is " 1 ", adder 110 increments the output of memory 100 by one. If, for a particular pixel, validation signal V2 is " 0 ", adder 100 does not increments the output of memory. In any case, the output of adder 100 is stored in memory 100 at the address corresponding to the pixel being considered. For example, assuming that memory 100 is used to form a histogram of speed, which may be categorized as speeds $0-7$, and where memory 100 will include $0-7$ corresponding memory locations, if a pixel with speed 6 is received, the address input to
multiplexor 104 through the data line will be 6 . Assuming that validation signal V2 is " 1 ", the content in memory at location 6 will be incremented. Over the course of an image, memory 100 will contain a histogram of the pixels for the image in the category associated with the memory. If, for a particular pixel, validation signal V2 is " 0 " because that pixel is not in a category for which pixels are to be counted (e g., because that pixel does not have the correct direction, speed, or luminance), that pixel will not be used in forming the histogram.

For the histogram formed in memory 100, key characteristics for that histogram are simultaneously computed in a unit 112. Referring to Fig. 14, unit 112 includes memories for each of the key characteristics, which include the minimum (MIN) of the histogram, the maximum (MAX) of the histogram, the number of points (NBPTS) in the histogram, the position (POSRMAX) of the maximum of the histogram, and the number of points (RMAX) at the maximum of the histogram. These characteristics are determined in parallel with the formation of the histogram as follows:

For each pixel with a validation signal V2 of " 1 ":
(a) if the data value of the pixel < MIN (which is initially set to the maximum possible value of the histogram), then write data value in MIN;
(b) if the data value of the pixel $>$ MAX (which is initially set to the minimum possible value of the histogram), then write data value in MAX;
(c) if the content of memory 100 at the address of the data value of the pixel $>$ RMAX (which is initially set to the minimum possible value of the histogram), then i) write data value in POSRMAX and ii) write the memory output in RMAX.
(d) increment NBPTS (which is initially set to zero).

At the completion of the formation of the histogram in memory 100 at the end of each frame, unit 112 will contain important data characterizing the histogram. The histogram in each memory 100, and the characteristics of the histogram in units 112 are read during the scanning spot of each frame by controller 42, and the memories 100 are cleared and units 112 are re-initialized for processing the next frame.

The system of the invention includes a semi-graphic masking function to select pixels to be considered by the system. Fig. 16 shows a typical image 53 consisting of

PCT/EP $99 / 0030$

pixels arranged in a $\mathrm{Q} \times \mathrm{R}$ matrix, which is divided into sub-matrices 51 each having a dimension of $s \times t$, wherein each $s \times t$ sub-matrix includes $s \times t$ number of pixels of the image. Each sub- matrix shown in Fig. 17 is a 3×4 matrix. In a preferred embodiment, $s=9$ and $t=12$, although any appropriate sub-matrix size may be used, if desired, including 1×1. Referring to Fig. 12, histogram processor 22a includes a semi-graphic memory 50 , which includes a one-bit memory location corresponding to each $\boldsymbol{s} \times \boldsymbol{t}$ matrix. For any given sub-matrix 51 , the corresponding bit in memory 50 may be set to " 0 ", which has the effect of ignoring all pixels in such sub-matrix 50 , or may be set to " 1 " in which case all pixels in such sub-matrix will be considered in forming histograms. Thus, by using semi-graphic memory 50 , it is possible to limit those areas of the image to be considered during histogram formation. For example, when an image of a road taken by a camera facing forward on a vehicle is used to detect the lanes of the road, the pixel information of the road at the farthest distances from the camera generally does not contain useful information. Accordingly, in such an application, the semi- graphic memory is used to mask off the distant portions of the road by setting semi-graphic memory 50 to ignore such pixels. Alternatively, the portion of the road to be ignored may be masked by setting the system to track pixels only within a detection box that excludes the undesired area of the screen, as discussed below.

In operation, for any pixel under consideration, an AND operation is run on the validation signal for such pixel and the content of semi-graphic memory 50 for the submatrix in which that pixel is located. If the content of semi-graphic memory 50 for the sub-matrix in which that pixel is located contains " 0 ", the AND operation will yield a " 0 " and the pixel will be ignored, otherwise the pixel will be considered in the usual manner. It is foreseen that the AND operation may be run on other than the validation signal, with the same resultant functionality. Also, it is foreseen that memory 50 may be a frame size memory, with each pixel being independently selectable in the semi-graphic memory. This would enable any desired pixels of the image to be considered or ignored as desired. Semi-graphic memory 50 is set by controller 42 via data bus 23 .

Fig. 16 shows an example of the successive classes $C_{1}, C_{2} \ldots C_{n-1}, C_{n}$, each representing a particular velocity, for a hypothetical velocity histogram, with their being
categorization for up to 16 velocities (15 are shown) in this example. Also shown is envelope 38 , which is a smoothed representation of the histogram.

In order to locate the position of an object having user specified criteria within the image, histogram blocks 28 and 29 are used to generate histograms for the x and y positions of pixels with the selected criteria. These are shown in Fig. 13 as histograms along the x and y coordinates. These x and y data are output to moving area formation block 36 which combines the abscissa and ordinate information $x(m)_{2}$ and $y(m)_{2}$ respectively into a composite signal $\mathrm{xy}(\mathrm{m})$ that is output onto bus 23. A sample composite histogram 40 is shown in Fig. 13. The various histograms and composite signal $x y(m)$ that are output to bus 23 are used to determine if there is a moving area in the image, to localize this area, and/or to determine its speed and oriented direction. Because the area in relative movement may be in an observation plane along directions x and y which are not necessarily orthogonal, as discussed below with respect to Fig. 18, a data change block 37 may be used to convert the x and y data to orthogonal coordinates. Data change block 37 receives orientation signals $x(m)_{1}$ and $y(m)_{1}$ for $x(m)_{0}$ and $y(m)_{0}$ axes, as well as pixel clock signals HP , line sequence and column sequence signals SL and SC (these three signals being grouped together in bundle F in Figs. 2, 4, and 10) and generates the orthogonal $x(m)_{1}$ and $y(m)_{1}$ signals that are output to histogram formation blocks 28 and 29 respectively.

In order to process pixels only within a user-defined area, the x-direction histogram formation unit 28 may be programmed to process pixels only in a class of pixels defined by boundaries, i.e. XMIN and XMAX. This is accomplished by setting the XMIN and XMAX values in a user-programmable memory in x-direction histogram formation unit 28 or in linear combination units 30-35. Any pixels outside of this class will not be processed. Similarly, y-direction histogram formation unit 29 may be set to process pixels only in a class of pixels defined by boundaries YMIN and YMAX. This is accomplished by setting the YMIN and YMAX values in a user-programmable memory in y-direction histogram formation unit 29 or in linear combination units 30-35. Thus, the system can process pixels only in a defined rectangle by setting the XMIN and XMAX, and YMIN and YMAX values as desired. Of course, the classification criteria
and validation criteria from the other histogram formation units may be set in order to form histograms of only selected classes of pixels in selected domains within the selected rectangular area. The XMIN and XMAX memory locations have a sufficient number of bits to represent the maximum number of pixels in the x dimension of the image under consideration, and the YMIN and YMAX memory locations have a sufficient number of bits to represent the maximum number of pixels in the y dimension the image under consideration. As discussed further below, the x and y axes may be rotated in order to create histograms of projections along the rotated axes. In a preferred embodiment, the XMIN, XMAX, YMIN and YMAX memory locations have a sufficient number of bits to represent the maximum number of pixels along the diagonal of the image under consideration (the distance from "Origin" to "Stop" in Fig. 15). In this way, the system may be used to search within a user-defined rectangle along a user-defined rotated axis system.

In order for a pixel $\operatorname{PI}(\mathrm{a}, \mathrm{b})$ to be considered in the formation of x and y direction histograms, whether on the orthogonal coordinate axes or along rotated axes, the conditions XMIN<a<XMAX and YMIN<b<YMAX must be satisfied. The output of these tests may be ANDed with the validation signal so that if the conditions are not satisfied, a logical " 0 " is ANDed with the validation signal for the pixel under consideration, thereby avoiding consideration of the pixel in the formation of x and y direction histograms.

Fig. 13 diagrammatically represents the envelopes of histograms 38 and 39, respectively in x and y coordinates, for velocity data. In this example, x_{M} and y_{M} represent the x and y coordinates of the maxima of the two histograms 38 and 39 , whereas l_{a} and l_{b} for the x axis and l_{c} and l_{d} for the y axis represent the limits of the range of significant or interesting speeds, l_{a} and l_{c} being the longer limits and l_{b} and l_{d} being the upper limited of the significant portions of the histograms. Limits l_{a}, l_{b}, l_{c} and l_{d} may be set by the user or by an application program using the system, may be set as a ratio of the maximum of the histogram, e.g., $\mathrm{x}_{\mathrm{M}} / 2$, or may be set as otherwise desired for the particular application.

The vertical lines L_{a} and L_{b} of abscissas l_{a} and l_{b} and the horizontal lines L_{c} and L_{d} of ordinals l_{c} and l_{d} form a rectangle that surrounds the cross hatched area 40 of significant speeds (for all x and y directions). A few smaller areas 41 with longer speeds, exist close to the main area 40 , and are typically ignored. In this example, all that is necessary to characterize the area with the largest variation of the parameter for the histogram, the speed V in this particular case, is to identify the coordinates of the limits l_{a}, l_{b}, l_{c} and l_{d} and the maxima X_{M} and Y_{M}, which may be readily derived for each histogram from memory 100 , the data in units 112 , and the $\mathrm{xy}(\mathrm{m})$ data block.

Thus, the system of the invention generates in real time, histograms of each of the parameters being detected. Assuming that it were desired to identify an object with a speed of " 2 " and a direction of " 4 ", the validation units for speed and direction would be set to " 1 ", and the classifiers for speed " 2 " and direction " 4 " would be set to " 1 ". In addition, since it is desired to locate the object(s) with this speed and direction on the video image, the validation signals for histogram formation blocks 28 and 29, which correspond to the x and y coordinates, would be set to " 1 " as well. In this way, histogram formation blocks 28 and 29 would form histograms of only the pixels with the selected speed and direction, in real-time. Using the information in the histogram, and especially POSRMAX, the object with the greatest number of pixels at the selected speed and direction could be identified on the video image in real-time. More generally, the histogram formation blocks can localize objects in real-time meeting user-selected criteria, and may produce an output signal if an object is detected. Alternatively, the information may be transmitted, e.g., by wire, optical fiber or radio relay for remote applications, to a control unit, such as unit 10a in Fig. 1, which may be near or remote from spatial and temporal processing unit 11.

While the system of the invention has been described with respect to formation of histograms using an orthogonal coordinate system defined by the horizontal and vertical axes of the video image, the system may be used to form histograms using nonorthogonal axes that are user-defined. Figs. 15A and 15B show a method of using rotation of the analysis axis to determine the orientation of certain points in an image, a method which may be used, for example to detect lines. In a preferred embodiment, the
x-axis may be rotated in up to 16 different directions ($180 \% 16$), and the y-axis may be independently rotated by up to 16 different directions. Rotation of the axes is accomplished using data line change block 37 which receives as an input the user-defined axes of rotation for each of the x any y axes, and which performs a Hough transform to convert the x and y coordinate values under consideration into the rotated coordinate axis system for consideration by the x and y histogram formation units 28 and 29. The operation of conversion between coordinate systems using a Hough transform is known in the art. Thus, the user may select rotation of the x-coordinate system in up to 16 different directions, and may independently rotate the y-coordinate system in up to 16 different directions. Using the rotated coordinate systems, the system may perform the functionality described above, including searching within user-defined rectangles (on the rotated axes), forming histograms on the rotated axes, and searching using velocity, direction, etc.

As discussed above, each histogram formation unit calculates the following values for its respective histogram.

MIN, MAX, NBPTS, RMAX, POSRMAX

Given that these values are calculated in real-time, the use of these values allows the system to rapidly identify lines on an image. While this may be accomplished in a number of different ways, one of the easier methods is to calculate R, where R $=$ NBPTS/RMAX, i.e., the ratio of the number of points in the histogram to the number of points in the maximal line. The smaller this ratio, i.e., the closer R approaches 1 , the more perpendicularly aligned the data points under consideration are with the scanning axis.

Fig. 15A shows a histogram of certain points under consideration, where the histogram is taken along the x -axis, i.e., projected down onto the x -axis. In this example, the ratio R, while not calculated, is high, and contains little information about the orientation of the points under consideration. As the x -axis is rotated, the ratio R increases, until, as shown in Fig. 15B, at approximately 45° the ratio R would reach a maximum. This indicates that the points under consideration are most closely aligned perpendicular to the $45^{\circ} \mathrm{x}$-axis. In operation, on successive frames, or on the same
frame if multiple x-direction histogram formation units are available, it is advantageous to calculate R at different angles, e.g., 33.75° and 57.25° (assuming the axes are limited to 16 degrees of rotation), in order to constantly ensure that R is at a minimum. For applications in which it is desirable to detect lines, and assuming the availability of 16 x - direction histogram formation units, it is advantageous to carry out the calculation of \mathbf{R} simultaneously along all possible axes to determine the angle with the minimum R to determine the direction of orientation of the line. Because the x and y axes may be rotated independently, the x and y histogram formation units are capable of simultaneously independently detecting lines, such as each side line of a road, in the same manner.

As discussed above, the system of the invention may be used to search for objects within a bounded area defined by XMIN, XMAX, YMIN and YMAX. Because moving object may leave the bounded area the system preferably includes an anticipation function which enables XMIN, XMAX, YMIN and YMAX to be automatically modified by the system to compensate for the speed and direction of the target. This is accomplished by determining values for O-MVT, corresponding to orientation (direction) of movement of the target within the bounded area using the direction histogram, and I-MVT, corresponding to the intensity (velocity) of movement. Using these parameters, controller 42 may modify the values of XMIN, XMAX, YMIN and YMAX on a frame-by-frame basis to ensure that the target remains in the bounded box being searched. These parameters also enable the system to determine when a moving object, e.g., a line, that is being tracked based upon its axis of rotation, will be changing its axis of orientation, and enable the system to anticipate a new orientation axis in order to maintain a minimized value of R.

Referring to Fig. 12, a controller 42, which is preferably a conventional microprocessor-based controller, is used to control the various elements of the system and to enable user input of commands and controls, such as with a computer mouse and keyboard (not shown), or other input device. Components 1la and 22a, and controller 42 , are preferably formed on a single integrated circuit. Controller 42 is in communication with data bus 23 , which allows controller 42 to run a program to control
various parameters that may be set in the system and to analyze the results. In order to select the criteria of pixels to be tracked, controller 42 may also directly control the following: i) content of each register in classifiers 25 b , ii) the content of each register in validation units 31, iii) the content of XMIN, XMAX, YMIN and YMAX, iv) the orientation angle of each of the x and y axes, and v) semi-graphic memory 50 . Controller 42 may also retrieve i) the content of each memory 100 and ii) the content of registers 112 , in order to analyze the results of the histogram formation process. In addition, in general controller 42 may access and control all data and parameters used in the system.

The system of the invention may be used to detect the driver of a vehicle falling asleep and to generate an alarm upon detection thereof. While numerous embodiments of the invention will be described, in general the system receives an image of the driver from a camera or the like and processes the image to detect one or more criteria of the eyes of the driver to determine when the driver's eyes are open and when they are closed. As discussed above, a wide-awake person generally blinks at relatively regular intervals of about 100 to 200 ms . When a person becomcs drowsy, the length of each eye blink increases to approximately 500 to 800 ms , with the intervals between blinks being becoming longer and variable. Using the information on the opening and closing of the driver's eyes, the system measures the duration of each blink and/or the intervals between blinks to determine when the driver is falling asleep. This is possible because the video signal coming from the sensor in use, e.g., sensor 310 of Fig. 21, preferably generates 50 or 60 frames per second, i.e., a frame every 20 ms or 16.66 ms respectively. This makes it possible for the system, which processes each image in real time, to distinguish between blink lengths of 100 to 200 ms for an awake person from blink lengths of 500 to 800 ms for a drowsy person, i.e., a blink length of 5 to 10 frames for an awake person or a blink length of 25 to 40 frames for a drowsy person, in the case of a 50 frames per second video signal.

The system of the invention utilizes a video camera or other sensor to receive images of the driver T in order to detect when the driver is falling asleep. While various methods of positioning the sensor shall be described, the sensor may generally be

position by any means and in any location that permits acquisition of a continuous image of the face of the driver when seated in the driver's seat. Thus, it is foreseen that sensor 10 may be mounted to the vehicle or on the vehicle in any appropriate location, such as in or on the vehicle dashboard, steering wheel, door, rear-view mirror, ceiling, etc., to enable sensor 10 to view the face of the driver. An appropriate lens may be mounted on the sensor 10 to give the sensor a wider view if required to see drivers of different sizes.

Figs. 18 and 19 show a conventional rear-view mirror arrangement in which a driver T can see ahead along direction 301 and rearward (via rays 302a and 302b) through a rear-view mirror 303. Referring to Fig. 20, mirror 303 is attached to the vehicle body 305 through a connecting arm 304 which enables adjustment of vision axes 302a and 302b. Axes 302a and 302b are generally parallel and are oriented in the direction of the vehicle. Optical axis 306, which is perpendicular to the face 303a of mirror 303, divides the angle formed by axes 302a and 302b into equal angles a and b. Axis 307 , which is perpendicular to axis 302 b and therefore generally parallel to the attachment portion of vehicle body 305 , defines an angle c between axis 307 and mirror face 303 a which is generally equal to angles a and b. A camera or sensor 310 is preferably mounted to the mirror by means of a bracket 299 . The camera may be mounted in any desired position to enable the driver to have a clear view of the road while enabling sensor 310 to acquire images of the face of the driver. Bracket 299 may be an adjustable bracket, enabling the camera to be faced in a desired direction, i.e., toward the driver, or may be at a fixed orientation such that when the mirror is adjusted by drivers of different sizes, the camera continues to acquire the face of the driver. The signal from the camera is communicated to the image processing system, which operates as described below, by means of lead wires or the like (not shown in Figs. 18-20).

Figs. 21 and 22 show a rear-view mirror assembly 308 in which sensor 310 is mounted interior to the mirror assembly. Mirror assembly 308 is adapted so that as assembly 308 is adjusted by a driver, sensor 310 remains directed toward the face of the driver. Rear-view mirror assembly 308 includes a two-way mirror 309 having a face 309a, movably oriented to provide a rear view to the driver. Sensor 310, which is preferably an electronic mini-camera or MOS sensor with a built-in lens, is affixed to a
bracket 311 , is oriented facing the driver using mechanical arrangement that enables sensor 310 to receive an image of the face of the driver when mirror 309 adjusted so that the driver has a rear view of the vehicle. The mechanical arrangement consists of a Cardan type mechanical joint, which causes automatic adjustment of the bracket 311 when the driver when the driver adjusts the rear view mirror so that the receiving face 310a of sensor 310 receives the image of the face of the driver, i.e., optical axis 310 b remains aligned toward the head of the driver.

Bracket 311 includes rods 312 and 313 that are movably coupled together by a pivot pin 314a (Fig. 21) or a sleeve 314b (Fig. 22). Rod 312 is attached at one end to a mounting portion of the vehicle 305. A pivot pin 315, which preferably consists of a ball and two substantially hemispherical caps, facilitates movement of mirror assembly 308. Rod 312 extends through pivot pin 315, and attaches to rod 313 via a sleeve 314 b or another pivot pin 314a. At one end, rod 313 rigidly supports bracket 311 on which sensor 310 is mounted. Rod 313 extends through clamp 316 of mirror assembly 308 via a hollow pivot 317. Pivot 317 includes a ball having a channel therethrough in which rod 313 is engaged, and which rotates in substantially hemispherical caps supported by clamp 316. The joint constantly maintains a desired angle between mirror 309 and bracket 311 , thereby permitting normal adjustment of rear-view mirror 309 while bracket 311 adjusts the direction of sensor 310 so that the face 310a of the sensor will receive an image of the face of the driver. If desired, it is foreseen that sensor 310 may be mounted interior to rear-view mirror assembly 308 at a fixed angle relative to the face 309a of the mirror assembly, provided that sensor 310 is able to receive an image of the face of the driver when the mirror is adjusted to drivers of different sizes. A wide angle lens may be mounted to sensor 310 to better enable the sensor to be used under different adjustment circumstances.

Sensor 310 is connected by means of one or more lead wires to image processor 319, which is preferably an image processing system of the type discussed above and is preferably in the form of an integrated circuit inside rear-view mirror assembly 308. In a preferred embodiment, image processing system 319 is integrally constructed with sensor 310. Alternatively, image processing system 319 may be located exterior to mirror
assembly 308 by means of conventional lead wires. While controller 310 is preferably a microprocessor, it is foreseen that controller 310 may be an ASIC or simple controller designed to perform the functions specified herein, particularly if the system is embedded, e.g. contained in a mirror assembly or integral with a vehicle.

Electroluminescent diodes 320 may be incorporated in mirror assembly 308 to illuminate the face of the driver with infrared radiation when ambient light is insufficient for image processing system 319 to determine the blinking characteristics of the driver. When such diodes are in use, sensor 310 must be of the type capable of receiving infrared radiation. Illumination of electroluminescent diodes 320 may be controlled by controller 42 (Fig. 12) of image processing system 319, if desired. For example, controller 42 may illuminate electroluminescent diodes 320 in the event that the histograms generated by image processing system 319 do not contain sufficient useful information to detect the features of the driver's face required, e.g., NBPTS is below a threshold. Electroluminescent diodes 320 may be illuminated gradually, if desired, and may operate in connection with one or more photocells (not shown) that generate a signal as to the ambient lighting near the driver, and which may be used to control electroluminescent diodes 320 , either alone or in combination with controller 42 or another control circuit. If desired, an IR or other source of EMF radiation may be used to illuminate the face of the driver at all times, provided that sensor 310 is compatible with the illumination source. This eliminates many problems that may be associated with the use of ambient lighting to detect drowsiness.

An optional alarm 322, which may be for example a buzzer, bell or other notification means, may be activated by controller 42 upon detecting that the driver is falling asleep. All of the components contained in mirror assembly 308, and image processing system 319 , are preferably powered by the electrical system of the vehicle.

Image processing system 319 monitors the alertness of the driver by detecting, in real time and on a continuous basis, the duration of the blinks of the driver's eyes and/or intervals between blinks, and by triggering alarm 322 to wake up the driver in the event the driver is detected falling asleep. Image processing system 319 receives an image of the face of the driver from sensor 310. The image may be of the complete face of the
driver, or of a selected area of the driver's face that includes at least one eye of the driver. Image processing system 319 is capable of detecting numerous criteria that are associated with blinking eyes. These include any feature of the face that may be used to discern the closing of an eye, including detection of the pupil, retina, white, eyelids, skin adjacent to the eye, and others. The eye may also be detected by detecting either changes in the appearance of the eye when blinking or by detecting motion of the eyelid during blinking.

Referring to Fig. 30, as an initial step, the system of the invention preferably detects the presence of a driver in the driver's seat (402). This may be accomplished in any number of ways, such as by an electrical weight sensor switch in the driver's seat or by interfacing with a signal generated by the vehicle indicating that the vehicle is in use in motion, e.g., a speed sensor, a switch detecting that the vehicle is in gear, a switch detecting that closing of the seat belt, etc. Upon detection of such a signal, the system enters into a search mode for detecting the driver's face or driver's eye(s). Alternatively, since the system is powered by the electrical system of the vehicle, and more preferably by a circuit of the electrical system that is powered only when the vehicle is turned on, the system turns on only when the engine is turned on, and enters into a search mode in which it operates until the face or eye(s) of the driver are detected. Upon detection of a driver in the vehicle (404), a Driver Present flag is set to " 1 " so that controller 42 is aware of the presence of the driver.

As an alternative method of detecting the presence of the driver, if sensor 10 is mounted in a manner that enables (or requires) that the sensor be adjusted toward the face of the driver prior to use, e.g., by adjustment of the rear-view mirror shown in Fig. 21, the system may activate an alarm until the sensor has acquired the face of the driver.

The driver may also be detected by using the image processing system to detect the driver entering the driver's seat. This assumes that the image processing system and sensor 10 are already powered when the driver enters the vehicle, such as by connecting the image processing system and sensor to a circuit of the vehicle electrical system that has constant power. Alternatively, the system may be powered upon detecting the vehicle door open, etc. When the driver enters the driver's seat, the image from sensor

10 will be characterized by many pixels of the image being in motion ($\mathrm{DP}=1$), with CO having a relatively high value, moving in a lateral direction away from the driver's door. The pixels will also have hue characteristics of skin. In this embodiment, in a mode in which the system is trying to detect the presence of the driver, controller 42 sets the validation units to detect movement of the driver into the vehicle by setting the histogram formation units to detect movement characteristic of a driver entering the driver's seat. Most easily, controller 42 may set the validation units to detect $\mathrm{DP}=1$, and analyze the histogram in the histogram formation unit for DP to detect movement indicative of a person entering the vehicle, e.g., NBPTS exceeding a threshold.

Fig. 23 shows the field of view 323 of sensor 310 between directions 323a and 323 b where the head T of the driver is within, and is preferably centered in, conical field 323. Field 323 may be kept relatively narrow, given that the movements of the head T of the driver during driving are limited. Limitation of field 23 improves the sensitivity of the system since the driver's face will be represented in the images received from sensor 10 by a greater number of pixels, which improves the histogram formation process discussed below.

In general the number of pixels in motion will depend upon the field of view of the sensor. The ratio of the number of pixels characteristic of a driver moving into the vehicle to the total number of pixels in a frame is a function of the size of the field of vision of the sensor. For a narrow field of view (a smaller angle between 323a and 323b in Fig. 23), a greater number, and possibly more than 50% of the pixels will be "in movement" as the driver enters the vehicle, and the threshold will be greater. For a wide field of view (a greater angle between 323a and 323b in Fig. 23), a smaller number of pixels will be "in movement" as the driver enters the vehicle. The threshold is set corresponding to the particular location and type of sensor, and based upon other characteristics of the particular installation of the system. If NBPTS for the DP histogram exceeds the threshold, the controller has detected the presence of the driver.

As discussed above, other characteristics of the driver entering the vehicle may be detected by the system, including a high $\mathbf{C O}$, hue, direction, etc., in any combinations, as appropriate, to make the system more robust. For example, controller 42 may set the
linear combination units of the direction histogram formation unit to detect pixels moving into the vehicle, may set the linear combination unit for CO to detect high values, and/or may set the linear combination unit for hue to detect hues characteristic of human skin. Controller 42 may then set the validation units to detect DP, CO, hue, and/or direction, as appropriate. The resultant histogram may then be analyzed to determine whether NBPTS exceeds a threshold, which would indicate that the driver has moved into the driver's seat. It is foreseen that characteristics other than NBPTS of the resultant histogram may be used to detect the presence of the driver, e.g., RMAX exceeding a threshold.

When the driver has been detected, i.e., the Driver Present flag has been set to " 1 ", the system detects the face of the driver in the video signal and eliminates from further processing those superfluous portions of the video signal above, below, and to the right and left of the head of the driver. In the image of the drivers head, the edges of the head are detected based upon movements of the head. The edges of the head will normally be characterized by $\mathrm{DP}=1$ due to differences in the luminance of the skin and the background, even due to minimal movements of the head while the head is still. Movement of the head may be further characterized by vertical movement on the top and bottom edges of the head, and left and right movement on the vertical edges of the head The pixels of the head in movement will also be characterized by a hue corresponding to human skin and relatively slow movement as compared to eyelid movement for example. Controller 42 preferably sets the linear combination unit of DP to detect $\mathrm{DP}=1$ and sets the linear combination unit for direction to detect vertical and horizontal movement only (406). Optionally, the linear combination units for velocity and hue may be set to detect low velocities and human skin hues to make the system more robust. Also, the linear combination unit for CO may be set to eliminate the very fast movements characteristic of eye blinking in order to prevent the eyes from being considered at this stage of processing during which the head is being detected. Finally, controller 42 sets the validation units for DP, direction, and x and y position to be "on" (406). Optionally, the validation units for velocity, hue, and CO may be set "on" if these criteria are being detected.

As illustrated in Fig. 24, the pixels having the selected characteristics are formed into histograms $324 x$ and $324 y$ along axes $\mathrm{O} x$ and $\mathrm{O} y$, i.e., horizontal and vertical projections, respectively. Slight movements of the head of the driver having the characteristics selected are indicated as ripples $327 \mathrm{a}, 327 \mathrm{~b}, 327 \mathrm{c}$ and 327 d , which are shown in line form but which actually extend over a small area surrounding the periphery of the head. Peaks 325a and 325b of histogram 324x, and 325c and 325d of histogram $324 y$ delimit, by their respective coordinates 326a, 326b, 326c and 326d, a frame bounded by straight lines $Y a, Y b, X c, X d$, which generally correspond to the area in which the face V of the driver located. Controller 42 reads the histograms 324 x and $324 y$ from the histogram formation units, preferably during the blanking interval, and detects the locations of peaks $325 \mathrm{a}, 325 \mathrm{~b}, 325 \mathrm{c}$ and 325 d (408). In order to ensure that the head has been identified, the distance between peaks 325a and 325b and between peaks 325 b and 325 c are preferably tested to fall with a range corresponding to the normal ranges of human head sizes.

Once the location of coordinates $326 \mathrm{a}, 326 \mathrm{~b}, 326 \mathrm{c}$ and 326 d has been established, the area surrounding the face of the driver is masked from further processing (410). Referring to Fig. 25, this is accomplished by having controller 42 set XMIN, XMAX, YMIN and YMAX to correspond to $X c, X d, Y a$, and $Y b$ respectively. This masks the cross- hatched area surrounding face V from further consideration, which helps to eliminate background movement from affecting the ability of the system to detect the eye(s) of the driver. Thus, for subsequent analysis, only pixels in central area Z, framed by the lines $X c, X d, Y a, Y b$ and containing face V are considered. As an alternative method of masking the area outside central area Z, controller 42 may set the semi-graphic memory to mask off these areas. As indicated above, the semi-graphic memory may be used to mask off selected pixels of the image in individual or small rectangular groups. Since head V is not rectangular, use of the semi-graphic memory enables better masking around the rounded edges of the face to better eliminate background pixels from further consideration.

The process of detecting the head of the driver and masking background areas is repeated at regular intervals, and preferably once every ten frames or less. It is foreseen
that this process may be repeated every frame, if desired, particularly if more than one set of histogram formation units is available for use. Controller 42 may also compute average values over time for coordinates 326a, 326b, 326c and 326d and use these values to set mask coordinates $X c, X d, Y a, Y b$, if desired. This will establish a nearly fixed position for the frame over time.

Once the frame has been established, a Centered-Face flag is set to " 1 " (412), and controller 42 initiates the process of reducing the frame size to more closely surround the eyes of the driver. Referring to Fig. 26, in which frame Z denotes the area bounded by $Y a, Y b, X c, X d$ determined in the prior step, controller 42 initially uses the usual anthropomorphic ratio between the zone of the eyes and the entire face for a human being, especially in the vertical direction, to reduce the area under consideration to cover a smaller zone Z^{\prime} bounded by lines $Y^{\prime} a, Y^{\prime} b, X^{\prime} c$ and $X^{\prime} d$ that includes the eyes U of the driver. Thus, the pixels in the outer cross-hatched area of Fig. 27 is eliminated from consideration and only the area within frame Z^{\prime} is further considered. This is accomplished by having controller 42 set XMIN, XMAX, YMIN and YMAX to correspond to $X^{\prime} c, X^{\prime} d, Y^{\prime} a$, and $Y^{\prime} b$ respectively (414). This masks the pixels in the area outside Z ' from further consideration. Thus, for subsequent analysis, only pixels in area Z^{\prime} containing eyes U are considered. As an alternative method of masking the area outside area Z^{\prime}, controller 42 may set the semi-graphic memory to mask off these areas. It is foreseen that an anthropomorphic ratio may be used to set frame Z^{\prime} around only a single eye, with detection of blinking being generally the same as described below, but for one eye only.

Once the area Z^{\prime} is determined using the anthropomorphic ratio, a Rough EyeCentering flag is set to " 1 " (416), and controller 42 performs the step of analyzing the pixels within the area Z^{\prime} to identify movement of the eyelids. Movement of eyelids is characterized by criteria that include high speed vertical movement of pixels with the hue of skin. In general, within the area Z ', formation of histograms for $\mathrm{DP}=1$ may be sufficient to detect eyelid movement. This detection may be made more robust by detection of high values of CO , by detection of vertical movement, by detection of high velocity, and by detection of hue. As an alternative to detection of hue, movement of the

pixels of the eye may be detected by detecting pixels with $\mathrm{DP}=1$ that do not have the hue of skin. This will enable detection of changes in the number of pixels associated with the pupil, retina, iris, etc.

Controller 42 sets the linear combination unit for DP to detect $\mathrm{DP}=1$ and sets the validation units for DP, and x and y position to be on (418). Optionally, the linear combination units and validation units may be set to detect other criteria associated with eye movement, such as CO, velocity, and hue. Initially, controller 42 also sets XMIN, XMAX, YMIN and YMAX to correspond to $X^{\prime} c, X^{\prime} d, Y^{\prime} a$, and $Y^{\prime} b$ respectively. Referring to Fig. 27, a histogram is formed of the selected criteria, which is analyzed by controller 42 (420). If desired, a test is performed to ensure that the eyes have been detected. This test may, for example, consist of ensuring that NBTS in the histogram exceeds a threshold e.g., 20% of the total number of pixels in the frame $Y^{\prime} a, Y^{\prime} b, X^{\prime} c$, $X^{\prime} d$. Once the eyes have been detected an Eye-Detected flag is set to " 1 " (422).

Fig. 27 illustrates histogram $28 x$ along axis $O x$ and histogram $28 y$ along axis $O y$ of the pixels with the selected criteria corresponding to the driver's eyelids, preferably DP $=1$ with vertical movement. Controller 42 analyzes the histogram and determines peaks 29a, 29b, 29c and 29d of the histogram. These peaks are used to determine horizontal lines $X " c$ and $X " d$ and vertical lines $Y " a$ and $Y " b$ which define an area of movement of the eyelids $Z^{\prime \prime}$, the movements of the edges of which are indicated at 30a and 30 b for one eye and 30 c and 30 d for the other eye (424). The position of the frame bounded by $Y " a, Y " b, X^{" c}, X " d$ is preferably determined and updated by time-averaging the values of peaks $29 \mathrm{a}, 29 \mathrm{~b}, 29 \mathrm{c}$ and 29 d , preferably every ten frames or less. Once the eyes have been detected and frame $Z^{\prime \prime}$ has been established an Eye Centered flag is set to " 1 " (426) and only pixels within frame Z " are thereafter processed.

Controller 42 then determines the lengths of the eye blinks, and, if applicable, the time interval between successive blinks. Fig. 28 illustrates in a three-dimensional orthogonal coordinate system: OQ , which corresponds to the number of pixels in area $\mathrm{Z}^{\prime \prime}$ having the selected criteria; To, which corresponds to the time interval between successive blinks; and Oz which corresponds to the length of each blink. From this
information, it is possible to determine when a driver is falling asleep. Two successive blinks C1 and C2 are shown on Fig. 28.

Fig. 29A illustrates on curve C the variation over time of the number of pixels in each frame having the selected criteria, e.g., $\mathrm{DP}=1$, wherein successive peaks $\mathrm{P} 1, \mathrm{P}$ 2, P3 correspond to successive blinks. This information is determined by controller 42 by reading NBPTS of the x and/or y histogram formation units. Alternatively, controller 42 may analyze the x and/or y histograms of the histogram formation units (Fig. 27) to detect peaks 29 a and 29 b and/or 29c and 29d, which over time will exhibit graph characteristics similar to those shown in Fig. 29A.

Controller 42 analyzes the data in Fig. 29A over time to determine the location and timing of peaks in the graph (428). This may be done, for example, as shown in Fig. 29B, by converting the graph shown in Fig. 29A into a binary data stream, in which all pixels counts over a threshold are set to " 1 ", and all pixel counts below the threshold are set to " 0 " (vertical dashes 31), in order to convert peaks P1, P2, P3 to framed rectangles R1, R2 R3, respectively. Finally, Fig. 29B shows the lengths of each blink (5, 6, and 5 frames respectively for blinks P1, P2 and P3) and the time intervals (14 and 17 frames for the intervals between blinks P1 and P2, and P2 and P3 respectively). This information is determined by controller 42 through an analysis of the peak data over time.

Finally, controller 42 calculates the lengths of successive eye blinks and the interval between successive blinks (430). If the length of the blinks exceeds a threshold, e.g., 350 ms , a flag is set to " 1 " indicating that the blink threshold has been exceeded. If the time interval between successive blinks is found to vary significantly over time, a flay is set to " 1 " indicting a variable intervals between blinks. Upon setting the first flag, which indicates that the driver is blinking at a rate indicative of falling asleep, controller 42 triggers alarm 322 for waking up the driver. The second flag may be used either to generate an alarm in the same manner as with the first flag, or to reinforce the first flag to, for example, increase the alarm sound level.

Figs. 31-36 show an alternative method by which the generic image processing system may be used to detect a driver falling asleep. Initially, controller 42 is placed in a search mode (350), in which controller 42 is scans the image to detect one or more
characteristics of the face, and preferably the nostrils of the nose. Nostrils are generally shadowed, and as such are usually defined by low luminance. Referring to Fig. 31, the area of the image is broken up into a number of sub-images 352 , in this case six, labelled A-F, which are sequentially analyzed by controller 42 to locate the nostrils. As shown, each of the sub-images 352 preferably overlaps each adjacent sub-image by an amount 353 equal to at least the normal combined width of the nostrils and the spacing therebetween to minimize the likelihood of missing the nostrils while in the search mode.

Controller 42 sets XMIN, XMAX, YMIN, and YMAX to correspond to the first sub-image A (354). Controller 42 then sets the registers 106 in the luminance linear combination unit to detect low luminance levels (356). The actual luminance level selected will vary depending upon various factors, such as ambient lighting, time of day, weather conditions, etc. Keeping in mind that controller 42 is able to access the histogram calculated for luminance from histogram formation unit 24, controller 42 may use a threshold or other desired technique to select the desired luminances to search for the nostrils, e.g., selecting the lowest 15% of luminance values for consideration, and may adapt the threshold as desired. Controller 42 also sets the validation units for luminance and x and y histogram on (358), thereby causing x and y histograms to be formed of the selected low luminance levels. Controller 42 then analyzes the x and y direction histograms to identify characteristics indicative of the nostrils, as discussed below (360). If nostrils are not identified (362), controller 42 repeats this process on the next sub-image, i.e., sub-image B, and each subsequent sub-image, until nostrils are identified, repeating the process starting with sub-image A if required. Each sub-image is analyzed by controller 42 in a single frame. Accordingly, the nostrils may generally be acquired by the system in less than six frames. It is foreseen that additional sub-images may be used, if desired. It is also foreseen that the area in which the sub-images are searched may restricted to an area in which the nostrils are most likely to be present, either as determined from past operation of the system, or by use of an anthropomorphic model. For example, the outline of the head of the driver may be determined as described above, and the nostril search may then be restricted to a small sub- area of the
image. It is also foreseen that the entire image may be search at once for the nostrils, if desired.

While the invention is being described with respect to identification of the nostrils as a starting point to locating the eyes, it is foreseen that any other facial characteristic, e.g., the nose, ears, eyebrows, mouth, etc., and combinations thereof, may be detected as a starting point for locating the eyes. These characteristics may be discerned from any characteristics capable of being searched by the system, including CO, DP, velocity, direction, luminance, hue and saturation. It is also foreseen that the system may locate the eyes directly, e.g., by simply searching the entire image for $\mathrm{DP}=1$ with vertical movement (or any other searchable characteristics of the eye), without the need for using another facial criteria as a starting point. In order to provide a detailed view of the eye while enabling detection of the head or other facial characteristic of the driver, it is foreseen that separate sensors may be used for each purpose.

Fig. 32 shows sample x and y histograms of a sub-image in which the nostrils are located. Nostrils are characterized by a peak 370 in the y-direction histogram, and two peaks 372 and 374 in the x-direction histogram. Confirmation that the nostrils have been identified may be accomplished in several ways. First, the histograms are analyzed to ensure that the characteristics of each histogram meets certain conditions. For example, NBPTS in each histogram should exceed a threshold associated with the normal number of pixels detectable for nostrils. Also, RMAX in the y histogram, and each peak of the x histogram should exceed a similar threshold. Second, the distance between nostrils d is fairly constant. The x histogram is analyzed by controller 42 and d is measured to ensure that it falls within a desired range. Finally, the width of a nostril is also fairly constant, although subject to variation due to shadowing effects. Each of the x and y histograms is analyzed by controller 42 to ensure that the dimensions of each nostril fall within a desired range. If the nostrils are found by controller 42 to meet these criteria, the nostrils have been acquired and the search mode is ended. If the nostrils have not been acquired, the search mode is continued. Once the nostrils are acquired, the x position of the center of the face (position $d / 2$ within the sub- image under consideration) is
determined, as is the y location of the nostrils in the image (POSRMAX of the y histogram) (364).

In the present example, only a single eye is analyzed to determine when the driver is falling asleep. In this case the shadow of the eye in the open and closed positions is used to determine from the shape of the shadow whether the eye is open or closed. As discussed above, for night-time applications, the invention is preferably used in combination with a short-wave IR light source. For the presently described example, the IR light source is preferably positioned above the driver at a position to cast a shadow having a shape capable of detected by the system. The anthropomorphic model is preferably adaptive to motion, to features of the driver, and to angular changes of the driver relative to the sensor.

Referring to Fig. 32, having determined the location of the nostrils 272 of the driver having a center position X_{N}, Y_{N}, a search box 276 is established around an eye 274 of the driver (366). The location of search box 276 is set using an anthropomorphic model, wherein the spatial relationship between the eyes and nose of humans is known. Controller 42 sets XMIN, XMAX, YMIN, and YMAX to search within the area defined by search box 276. Controller 42 further sets the luminance and x and y direction histograms to be on, with the linear combination unit for luminance set to detect low histogram levels relative to the rest of the image, e.g., the lowest 15% of the luminance levels (368). As a confirmation of the detection of the nostrils or other facial feature being detected, search box 276 , which is established around an eye 274 of the driver using an anthropomorphic model, may be analyzed for characteristics indicative of an eye present in the search box. These characteristics may include, for example, a moving eyelid, a pupil, iris or cornea, a shape corresponding to an eye, a shadow corresponding to an eye, or any other indica indicative of an eye. Controller 42 sets the histogram formation units to detect the desired criteria. For example, Fig. 36 shows a sample histogram of a pupil 432, in which the linear combination units and validation units are set to detect pixels with very low luminance levels and high gloss that are characteristic of a pupil. The pupil may be verified by comparing the shapes of the x and y histograms to known characteristics of the pupil, which are generally symmetrical, keeping in mind
that the symmetry may be affected by the angular relationship between the sensor and the head of the driver.

Upon detection of the desired secondary facial criteria, identification of the nostrils is confirmed and detection of eye openings and closings is initiated. Alternatively, the criteria being detected to confirm identification of the nostrils may be eye blinking using the technique described below. If no blinking is detected in the search box, the search mode is reinitiated.

Blinking of the eye is detected during a tracking mode 400. In the tracking mode controller 42 sets XMIN, XMAX, YMIN, and YMAX to search within the area defined by search box 276. Controller 42 further sets the luminance and x and y direction histograms to be on, with the linear combination unit for luminance set to detect low histogram levels relative to the rest of the image, e.g., the lowest 15% of the luminance levels (368), in order to detect shadowing of the eye. During the tracking mode, the system monitors the location of nostrils 272 to detect movement of the head. Upon detected movement of the head, and a resultant shift in the position of X_{N}, Y_{N}, search box 276 is shifted according to the anthropomorphic model to retain the search box over the eye of the driver.

Fig. 33 shows the shapes of the x and y histograms 376,378 with the eye open, and Fig. 34 shows the shapes of the x and y histograms 380,382 with the eye closed. The shapes of the shadows, and especially the shape of the shadow with the eye closed will vary depending upon the location of the camera and the location of the light source creating the shadow, e.g., the sun or the IR light source. In any case, the width MAX ${ }_{\mathbf{x}}$ MIN_{x} and the height $\mathrm{MAX}_{y}-\mathrm{MIN}_{y}$ of each histogram will generally be significantly greater for an open eye than for a closed eye. Controller 42 analyzes the width and height of each histogram to determine when the eye is open and when it is closed (382). An open eye may be determined by any number of characteristics of the x and y histograms, including width $\mathrm{MAX}_{\mathrm{x}}-\mathrm{MIN}_{\mathrm{x}}$ and height MAX M_{y} - MIN exceeding thresholds, NBPTS of each histogram exceeding a threshold, RMAX of each histogram exceeding a threshold, change in position of POSRMAX as compared to a closed eye, etc. Similarly, a closed eye may be determined by any number of characteristics of the x
and y histograms, including width $\mathrm{MAX}_{x}-\mathrm{MNN}_{\mathrm{x}}$ and height $\mathrm{MAX}_{\mathrm{y}}-\mathrm{MNN}_{\mathrm{y}}$ being below thresholds, NBPTS of each histogram being below a threshold, RMAX of each histogram being below a threshold, change in position of POSRMAX as compared to an open eye, etc., In a preferred embodiment, controller 42 calculates the width $\mathrm{MAX}_{\mathrm{x}}$ - MIN_{x} and height $\mathrm{MAX}_{\mathrm{y}}-\mathrm{MIN}_{\mathrm{y}}$ of each histogram and utilizes thresholds to determine whether the eye is open or closed. If each width $\mathrm{MAX}_{x}-\mathrm{MIN}_{\mathrm{x}}$ and height MAX MIN_{y} exceed thresholds, the eye is determined to be open. If each of width $\mathrm{MAX}_{\mathrm{x}}$ $\mathrm{MIN}_{\mathrm{x}}$ and height $\mathrm{MAX}_{\mathrm{y}}-\mathrm{MIN}_{\mathrm{y}}$ fall below thresholds (which may be different from the thresholds used to determine an open eye), the eye is determined to be closed (384). MAX and MIN are preferably the MAX and MIN calculated in the histogram formation units. On the other hand, MAX and MIN may be other thresholds, e.g., the points on the histograms corresponding to RMAX/2 or some other threshold relative to RMAX.

Controller 42 analyzes the number of frames the eye is open and closed over time to determine the duration of each blink and/or the interval between blinks (386). Using this information, controller 42 determines whether the driver is drowsy (388). Upon determining that the driver is drowsy, controller 42 generates an alarm to awaken the driver (390) or another signal indicative that the driver is sleeping.

Controller 42 constantly adapts operation of the system, especially in varying lighting levels. Controller 42 may detect varying lighting conditions by periodically monitoring the luminance histogram and adapting the gain bias of the sensor to maintain as broad a luminance spectrum as possible. Controller 42 may also adjust the thresholds that are used to determine shadowing, etc. to better distinguish eye and nostril shadowing from noise, e.g. shadowing on the side of the nose, and may also adjust the sensor gain to minimize this effect. If desired controller 42 may cause the histogram formation units to form a histogram of the iris. This histogram may also be monitored for consistency, and the various thresholds used in the system adjusted as necessary.

It will be appreciated that while the invention has been described with respect to detection of the eyes of a driver using certain criteria, the invention is capable of detecting any criteria of the eyes using any possible measurable characteristics of the pixels, and that the characteristics of a driver falling asleep may be discerned from any other information in the histograms formed by the invention. Also, while the invention
has been described with respect to detecting driver drowsiness, it is applicable to any application in which drowsiness is to be detected. More generally, although the present invention has been described with respect to certain embodiments and examples, variations exist that are within the scope of the invention as described in the following claims.

CLAIMS

1. A process of detecting a person falling asleep, the process comprising the steps of:

acquiring an image of the face of the person; selecting pixels of the image having characteristics corresponding to characteristics of at least one eye of the person;
forming at least one histogram of the selected pixels;
analyzing the at least one histogram over time to identify each opening and closing of the eye; and
determining from the opening and closing information on the eye, characteristics indicative of a person falling asleep.
2. The process according to claim 1 further comprising the step of identifying a sub-area of the image comprising the at least one eye prior to the step of selecting pixels of the image having characteristics corresponding to characteristics of at least one eye, and wherein the step of selecting pixels of the image having characteristics corresponding to characteristics of at least one eye comprises selecting pixels within the sub-area of the image.
3. The process according to claim 2 wherein the step of identifying a sub- area of the image comprising the at least one eye comprises the steps of:
identifying the head of the person in the image; and
identifying the sub-area of the image using an anthropomorphic model.
4. The process according to claim 3 wherein the step of identifying head of the person in the image comprises the steps of:
selecting pixels of the image having characteristics corresponding to edges of the head of the person;
forming histograms of the selected pixels projected onto orthogonal axes; and
analyzing the histograms of the selected pixels to identify the edges of the head of the person.
5. The process according to claim 2 wherein the step of identifying a sub- area of the image comprising the at least one eye comprises the steps of:
identifying the location of a facial characteristic of the person in the image; and
identifying the sub-area of the image using an anthropomorphic model and the location of the facial characteristic.
6. The process according to claim 5 wherein the step of identifying the location of a facial characteristic of the person in the image comprises the steps of:
selecting pixels of the image having characteristics corresponding to the facial characteristic;
forming histograms of the selected pixels projected onto orthogonal axes; and
analyzing the histograms of the selected pixels to identify the position of the facial characteristic in the image.
7. The process according to claim 6 wherein the facial characteristic is the nostrils of the person, and wherein the step of selecting pixels of the image having characteristics corresponding to the facial characteristic comprises selecting pixels having low luminance levels.
8. The process according to claim 7 further comprising the step of analyzing the histograms of the nostril pixels to determine whether the spacing between the nostrils is within a desired range and whether the dimensions of the nostrils fall within a desired range.
9. The process according to claim 1 wherein:
the step of selecting pixels of the image having characteristics corresponding to characteristics of at least one eye of the person comprises selecting pixels having low luminance levels corresponding to shadowing of the eye; and
wherein the step analyzing the at least one histogram over time to identify each opening and closing of the eye comprises analyzing the shape of the eye shadowing to determine openings and closings of the eye.
10. The process according to claim 9 wherein the step of forming at least one histogram of the selected pixels comprises forming histograms of shadowed pixels of the eye projected onto orthogonal axes, and wherein the step of analyzing the shape of the eye shadowing comprises analyzing the width and height of the shadowing.
11. The process according to claim 1 wherein:
the step of selecting pixels of the image having characteristics corresponding to characteristics of at least one eye of the person comprises selecting pixels in movement corresponding to blinking; and
wherein the step analyzing the at least one histogram over time to identify each opening and closing of the eye comprises analyzing the number of pixels in movement over time to determine openings and closings of the eye.
12. The process according to claim 11 wherein the step of selecting pixels of the image having characteristics corresponding to characteristics of at least one eye of the person comprises selecting having characteristics selected from the group consisting of i) $\mathrm{DP}=1$, ii) CO indicative of a blinking eyelid, iii) velocity indicative of a blinking eyelid, and iv) up and down movement indicative of a blinking eyelid.
13. The process according to claim 5 wherein the step of identifying a facial characteristic of the person in the image comprises the step of searching sub-images of the image to identify the facial characteristic.
14. The process according to claim 7 wherein the step of identifying a facial characteristic of the person in the image comprises the step of searching sub-images of the image to identify the nostrils.
15. The process according to claim 13 wherein the facial characteristic is a first facial characteristic and further comprising the steps of:
using an anthropomorphic model and the location of the first facial characteristic to select a sub-area of the image containing a second facial characteristic;
selecting pixels of the image having characteristics corresponding to the second facial characteristic; and
analyzing the histograms of the selected pixels of the second facial characteristic to confirm the identification of the first facial characteristic.
16. An apparatus for detecting a person falling asleep, the apparatus comprising:
a sensor for acquiring an image of the face of the person, the image comprising pixels corresponding to the eye of the person;
a controller; and
a histogram formation unit for forming a histogram on pixels having selected characteristics,
the controller controlling the histogram formation unit to select pixels of the image having characteristics corresponding to characteristics of at least one eye of the person and to form a histogram of the selected pixels, the controller analyzing the histogram over time to identify each opening and closing of the eye, and determining from the opening and closing information on the eye, characteristics indicative of a person falling asleep.
17. The apparatus according to claim 16 wherein the controller interacts with the histogram formation unit to identify a sub-area of the image comprising the at least one eye, and the controller controls the histogram formation unit to select pixels of the image having characteristics corresponding to characteristics of at least one eye only within the sub-area of the image.
18. The apparatus according to claim 17 wherein:
the controller interacts with the histogram formation unit to identify the head of the person in the image; and
the controller identifies the sub-area of the image using an anthropomorphic model.
19. The apparatus according to claim 18 wherein:
the histogram formation unit selects pixels of the image having characteristics corresponding to edges of the head of the person and forms histograms of the selected pixels projected onto orthogonal axes; and
the controller analyzes the histograms of the selected pixels to identify the edges of the head of the person.
20. The apparatus according to claim 17 wherein:
the controller interacts with the histogram formation unit to identify the location of a facial characteristic of the person in the image; and
the controller identifies the sub-area of the image using an anthropomorphic model and the location of the facial characteristic.
21. The apparatus according to claim 20 wherein:
the histogram formation unit selects pixels of the image having characteristics corresponding to the facial characteristic and forms histograms of the selected pixels projected onto orthogonal axes;
the controller analyzes the histograms of the selected pixels to identify the position of the facial characteristic in the image.
22. The apparatus according to claim 21 wherein the facial characteristic is the nostrils of the person, and wherein the histogram formation unit selects pixels of the image having low luminance levels corresponding to the luminance level of the nostrils.
23. The apparatus according to claim 22 wherein the controller analyzes the histograms of the nostril pixels to determine whether the spacing between the nostrils is within a desired range and whether the dimensions of the nostrils fall within a desired range.
24. The apparatus according to claim 16 wherein:
the histogram formation unit selects pixels of the image having low luminance levels corresponding to shadowing of the eye; and
wherein the controller analyzes the shape of the eye shadowing to determine openings and closings of the eye.
25. The apparatus according to claim 24 wherein histogram formation unit forms histograms of shadowed pixels of the eye projected onto orthogonal axes, and wherein the controller analyzes the width and height of the shadowing to determine openings and closings of the eye.
26. The apparatus according to claim 16 wherein:
the histogram formation unit selects pixels of the image in movement corresponding to blinking; and
the controller analyzes the number of pixels in movement over time to determine openings and closings of the eye.
27. The apparatus according to claim 26 wherein the histogram formation units selects pixels of the image having characteristics of movement corresponding to blinking, such characteristics being selected from the group consisting of i) $\mathrm{DP}=1$, ii) CO indicative of a blinking eyelid, iii) velocity indicative of a blinking eyelid, and iv) up and down movement indicative of a blinking eyelid.
28. The apparatus according to claim 20 wherein the controller interacts with the histogram formation unit to search sub-images of the image to identify the facial characteristic.
29. The apparatus according to claim 22 wherein the controller interacts with the histogram formation unit to search sub-images of the image to identify the nostrils.
30. The apparatus according to claim 28 wherein the facial characteristic is a first facial characteristic and further comprising:
the controller using an anthropomorphic model and the location of the first facial characteristic to cause the histogram formation unit to select a sub-area of the image containing a second facial characteristic, the histogram formation unit selecting pixels of the image in the sub-area having characteristics corresponding to the second facial characteristic and forming a histogram of such pixels; and
the controller analyzing the histogram of the selected pixels corresponding to the second facial characteristic to confirm the identification of the first facial characteristic.
31. The apparatus according to claim 16 wherein the sensor is integrally constructed with the controller and the histogram formation unit.
32. The apparatus according to claim 16 further comprising an alarm, the controller operating the alarm upon detection of the person falling asleep.
33. The apparatus according to claim 16 further comprising an illumination source, the sensor being adapted to view the person when illuminated by the illumination source.
34. The apparatus according to claim 33 wherein the illumination source is a source of IR radiation.
35. A rear-view mirror assembly for a vehicle which comprises:
a rear-view mirror; and the apparatus according to claim 16 mounted to the rear-view mirror.
36. The rear-view mirror assembly according to claim 35 further comprising a bracket attaching the apparatus to the rear-view mirror.
37. The rear-view mirror assembly according to claim 35 further comprising a housing having an open side and an interior, the rear-view mirror being mounted to the open side of the housing, the rear view mirror being see-through from the interior of the housing to an exterior of the housing, the apparatus being mounted interior to the housing with the sensor directed toward the rear-view mirror.
38. The rear-view mirror assembly according to claim 37 further comprising a joint attaching the apparatus to the rear-view mirror assembly, the joint adapted to maintain the apparatus in a position facing a driver of the vehicle during adjustment of the mirror assembly by the driver.
39. The rear-view mirror assembly according to claim 35 further comprising a source of illumination directed toward the person, the sensor being adapted to view the person when illuminated by the source of illumination.
40. The rear-view mirror assembly according to claim 35 further comprising an alarm, the controller operating the alarm upon detection of the person falling asleep.
41. A rear-view mirror assembly which comprises:
a rear-view mirror; and
the apparatus according to claim 16 , the sensor being mounted to the rear-view mirror, the controller and the histogram formation unit being located remote from the sensor.
42. A vehicle comprising the apparatus according to claim 16.
43. A process of detecting a feature of an eye, the process comprising the steps of:
acquiring an image of the face of the person, the image comprising pixels corresponding to the feature to be detected;
selecting pixels of the image having characteristics corresponding to the feature to be detected;
forming at least one histogram of the selected pixels;
analyzing the at least one histogram over time to identify characteristics indicative of the feature to be detected.
44. The process according to claim 43 wherein the feature is the iris, pupil or cornea.
45. An apparatus for detecting a feature of an eye, the apparatus comprising:
a sensor for acquiring an image of the eye, the image comprising pixels corresponding to the feature to be detected;
a controller; and
a histogram formation unit for forming a histogram on pixels having selected characteristics,
the controller controlling the histogram formation unit to select pixels of the image having characteristics corresponding to characteristics of at least one eye of the person and to form a histogram of the selected pixels, the controller analyzing the histogram over time to identify each opening and closing of the eye, and determining from the opening and closing information on the eye, characteristics indicative of a person falling asleep.

ABSTRACT OF THE DISCLOSURE

In a process of detecting a person falling asleep, an image of the face of the person is acquired. Pixels of the image having characteristics corresponding to an eye of the person are selected and a histogram is formed of the selected pixels. The histogram is analyzed over time to identify each opening and closing of the eye, and characteristics indicative of the person falling asleep are determined. A sub-area of the image including the eye may be determined by identifying the head or a facial characteristic of the person, and then identifying the sub-area using an anthropomorphic model. To determine openings and closings of the eyes, histograms of shadowed pixels of the eye are analyzed to determined the width and height of the shadowing, or histograms of movement corresponding to blinking are analyzed. An apparatus for detecting a person falling asleep includes a sensor for acquiring an image of the face of the person, a controller, and a histogram formation unit for forming a histogram on pixels having selected characteristics. Also disclosed is a rear-view mirror assembly incorporating the apparatus.

FIGURE 1

FIG. 1

FIG. 2

FIG. 3

PCT/EP $99 / 0030 \mathrm{C}$

FIG. 4

FIG. 6
FIG. 5 4/20

FIG. 7

FIG. 8

FIG. 10

FIG. 12

FIG. 13

FIG. 16

FIG. 14

FIG. 15A

FIG. 15B

10/20

FIG. 17

11/20

Fig. 21

Fig. 23

Fig. 24

Petitioner LG Ex-1028, 0399

Fig. 26

Fig. 27

Fig. 28

(a)

Fig. 29

FIG. 30

FIG. 31

FIG. 32

FIG. 33

FIG. 34

FIG. 35

FIG. 36

The International Bureau of WIPO
34, chemin des Colombettes
CH-1211 Geneva 20
Switzerland
NOTIFICATION CONCERNING DOCUMENTS TRANSMITTED

Date of mailing
(day/month/year) $\quad 17.02 .2000$

International application No: PCT/EP99/00300

This International Preliminary Examining Authority transmits herewith the following documents:
1.demand (Rule 61.1(a)).
2. \boxtimes copy of the international preliminary examination report and its annexes (Rule 71.1).
3. \square \qquad other documents (specify):

Name und mailing address of the IPEA/	Authorized officer
European Patent Office D-80298 Munich Tal 11080 ク200- n Tr. 522656 anmil H	Röhner, M

(PCT Article 36 and Rule 70)

Applicant's or agent's file reference O48J PCT 361	FOR FURTHER ACTION	See Notification of Transmittal of International Preliminary Examination Report (Form PCT/IPEA/416)
International application No	International filing date (day/month/year)	Priority date (day/month/year)
PCT/EP99/00300	$15 / 01 / 1999$	$15 / 01 / 1998$

International Patent Classification (IPC) or national classification and IPC
G08B21/00

Applicant

HOLDING B.E.V. SA et al.

1. This international preliminary examination report has been prepared by this International Preliminary Examining Authority and is transmitted to the applicant according to Article 36.
2. This REPORT consists of a total of 7 sheets, including this cover sheet.
\boxtimes This report is also accompanied by ANNEXES, i.e. sheets of the description, claims and/or drawings which have been amended and are the basis for this report and/or sheets containing rectifications made before this Authority (see Rule 70.16 and Section 607 of the Administrative Instructions under the PCT).

These annexes consist of a total of 11 sheets.
3. This report contains indications relating to the following items:

I	\boxtimes	Basis of the report
II	\boxtimes	Priority
III	\square	Non-establishment of opinion with regard to novelty, inventive step and industrial applicability
IV	\square	Lack of unity of invention
V	\boxtimes	Reasoned statement under Article 35(2) with regard to novelty, inventive step or industrial applicability;
	citations and explanations suporting such statement	
VI	\boxtimes Certain documents cited	
VII	\boxtimes	Certain defects in the international application
VIII	\boxtimes	Certain observations on the international application

INTERNATIONAL PRELIMINARY EXAMINATION REPORT

I. Basis of the report

1. This report has been drawn on the basis of (substitute sheets which have been furnished to the receiving Office in response to an invitation under Article 14 are referred to in this report as "originally filed" and are not annexed to the report since they do not contain amendments.):

Description, pages:

2-57 as originally filed
1,1a as received on $\quad 15 / 01 / 2000$ with letter of $\quad 11 / 01 / 2000$

Claims, No.:
1-39 as received on 15/01/2000 with letter of \quad 11/01/2000

Drawings, sheets:

$1 / 20-20 / 20 \quad$ as originally filed
2. The amendments have resulted in the cancellation of:the description, pages:the claims,
Nos.:
\square the drawings,
sheets:
3.This report has been established as if (some of) the amendments had not been made, since they have been considered to go beyond the disclosure as filed (Rule 70.2(c)):
4. Additional observations, if necessary:

II. Priority

1.This report has been established as if no priority had been claimed due to the failure to fumish within the prescribed time limit the requested:copy of the earlier application whose priority has been claimed.translation of the earlier application whose priority has been claimed.

INTERNATIONAL PRELIMINARY EXAMINATION REPORT

2.This report has been established as if no priority had been claimed due to the fact that the priority claim has been found invalid.
Thus for the purposes of this report, the international filing date indicated above is considered to be the relevant date.
3. Additional observations, if necessary:
see separate sheet
V. Reasoned statement under Article 35(2) with regard to novelty, inventive step or industrial applicability; citations and explanations supporting such statement

1. Statement

Novelty (N)	Yes:	Claims	$1-39$
	No:	Claims	
Inventive step (IS)	Yes:	Claims	$1-39$
	No:	Claims	
	Yes:	Claims	$1-39$
	No:	Claims	

2. Citations and explanations
see separate sheet
VI. Certain documents cited
3. Certain published documents (Rule 70.10)
and / or
4. Non-written disclosures (Rule 70.9)
see separate sheet
VII. Certain defects in the international application

The following defects in the form or contents of the international application have been noted:

INTERNATIONAL PRELIMINARY

VIII. Certain observations on the international application

The following observations on the clarity of the claims, description, and drawings or on the question whether the claims are fully supported by the description, are made:
see separate sheet

1. The following documents will be referred to in this report;

D1 WO 98/05002 [Carlus Magnus Ltd.] Published 05.02.1998; filed 22.07.1997.

D2 DE-A-19 715519 [MITSUBISHI]
D3 WO-A-97/01246 [STEED]

The examiner is of the opinion that the priorities claimed are validly claimed.
Document D1 is published after the first claimed priority, P1 (FR 60 048) of the application but before the second claimed priority, P2 (PCT EP 98/05383).

As such D1 constitutes prior art within the sense of Rule 64.1 PCT with regard to subject matter which is not covered by the priority document P 1 . The document D1 could constitute a national/regional prior right as indicated in Rule 64.3 PCT, however this is for information of the applicant only and is beyond the scope of the International Examination.
2. In the following discussion, the patentability of the claims will be examined with regard to the requirements of the PCT. In particular, the claims will be examined for novelty, as defined in Art. 33(2) PCT, and for inventive step, as defined in Art. 33(3) PCT. In addition other aspects, such as clarity requirements of Art. 6 PCT, may be discussed as appropriate.

2.1 Conciseness of the claims.

Art. 6 PCT requires that the claims of the application are concise. This applies not only to individual claims but the overall set of claims, see Guidelines PCT Section IV-III-5.

In the present case the examiner is of the opinion that the independent claims 1 , $3,7,9,14,39$ constitute an unreasonably large number of independent claims which could better be claimed in the form of one or two claims per category with the remaining features claimed as independent claims.

EXAMINATION REPORT - SEPARATE SHEET

2.2 Independent Claims, Claims 1,3,7,9,14,39

Claims $1,3,7,9,14,39$ all differ from the prior art in that they include at least one identification of a sub area of an image using an anthropomorphic model of one kind or another.

The closest prior art to the application is considered to be that disclosed in D2. Whilst D2 discloses for example at col. 3, lines 19-33 to monitor an area of the face including the eyes, there is not disclosed in D2 to "identify" a sub area of an image including the eyes or the corresponding method of "selecting pixels" of the image having characteristics corresponding to a facial characteristic using an anthropomorphic model (claims 1,3) or one of the kinds of anthropomorphic models given in the other independent claims.

The examiner is of the opinion that it the person skilled in the art, presented with the teaching of D2 alone or in combination with other available prior art would not arrive at the subject matter of "identifying" a sub area or "selecting pixels" based on the models given, rather it would appear from the teaching of D2 that the apparatus only looks at the eyes and then monitors movement. Whilst the blinking rate is compared to an anthropomorphic model in D2 this is for the purpose of recognising drowsiness of the driver and not to identify a particular area of the face.
2.3 The remaining dependent claims would appear to be allowable under Art. 33(3) PCT since they refer to allowable claims.
2.4 Clarity of the claims, Art. 6 PCT.

In order to satisfy the requirements of Rule 6.2 B reference signs in the claims should be placed in parenthesis. This applies to all references including "V", page 52, first line.

Conversely, the examiner notes that other expressions placed in brackets are likely to be interpreted as being references falling under Rule 6.2B. In the case of the expression " $(328 x)$ or (328y) etc.", appearing in claims $1,2,3,7$ and 9 the

INTERNATIONAL PRELIMINARY Intemational application No. PCT/EP99/00300 EXAMINATION REPORT - SEPARATE SHEET

claims are rendered unclear. The claims should have been clarified to remove these terms from brackets.

The terms "DP" and "CO" in claims 10 and 23 are not defined in the claims and therefore render the scope of these claims unclear, Art. 6 PCT.
3. In the following section, certain defects in the International Application will be noted.

The description should have been brought into conformity with the claims placed on file in accordance with the Rule 51 a iii PCT.

BACKGROUND OF THE INVENTION

1. Field of the Invention.

The present invention relates generally to an image processing system, and more particularly to the use of a generic image processing system to detect drowsiness.

1.Description of the Related Art.

It is well known that a significant number of highway accidents result from drivers becoming drowsy or falling asleep, which results in many deaths and injuries. Drowsiness is also a problem in other fields, such as for airline pilots and power plant operators, in which great damage may result from failure to stay alert.

A number of different physical criteria may be used to establish when a person is drowsy, including a change in the duration and interval of eye blinking. Normally, the duration of blinking is about 100 to 200 ms when awake and about 500 to 800 ms when drowsy. The time interval between successive blinks is generally constant while awake, but varies within a relatively broad range when drowsy.

Numerous devices have been proposed to detect drowsiness of drivers. Such devices are shown, for example, in U.S. Patent Nos. 5,841,354; 5,813,99; $5,689,241 ; 5,684,461 ; 5,682,144 ; 5,469,143 ; 5,402,109 ; 5,353,013 ; 5,195,606 ;$ $4,928,090 ; 4,555,697 ; 4,485,375$; and 4,259,665. In general, these devices fall into three categories: i) devices that detect movement of the head of the driver, e.g., tilting; ii) devices that detect a physiological change in the driver, e.g., altered heartbeat or breathing, and iii) devices that detect a physical result of the driver falling asleep, e.g., a reduced grip on the steering wheel. None of these devices is believed to have met with commercial success.

The German patent application DE-19715515 and the corresponding French patent application FR-2.747.346 disclose an apparatus and a process of evaluation of drowsiness level of a driver using a video camera placed near the feet of the driver and a processing unit for the camera image with a software detecting the blinks of the eyes determining the time gap between the beginning and the end of the blink. More particularly, a unit 10 of the processor realizes :

- a memorization of the video image and its treatment, so as to determine an area comprising the driver's eyes,
- the detection of the time gap between the closing of the driver eyelids and their full opening and
- a treatment in a memory 11 and a processor 22 in combination with unit 10 to calculate a ratio of slow blink apparition.

The object of the international patent application published WO-97/01246 is a security system comprising a video camera placed within the rear-view mirror of a car and a video screen remotely disposed for the analysis of what is happening in the car and around it , as well as of what happened due to the recording of the output video signal of the camera. This is in fact a concealed camera (within the rear-view mirror), so that it is imperceptible to vandals and thieves and which observes a large scope including the inside of the car and its surroundings, the record allowing one to know later what has happened in this scope (page 6, lines 13 to 19), this is not a detector whose effective angle is strictly limited to the car driver face in order to detect its eventual drowsiness and to make him awake.

Commonly-owned PCT Application Serial Nos. PCT/FR97/01354 and PCT/EP98/05383 disclose a generic image processing system that operates to localize

EP $0099003 C$

CLAIMS

1. A process of detecting a person falling asleep, the process comprising the steps of:
acquiring an image of the face (V) of the person;
selecting pixels of the image having characteristics corresponding to characteristics of at least one eye of the person;
forming at least one histogram (328 x) of the selected pixels;
analyzing the at least one histogram (328 x) over time to identify each opening and closing of the eye; and
determining from the opening and closing information on the eye, characteristics indicative of a person falling asleep;
identifying a sub-area of the image comprising the at least one eye prior to the step of selecting pixels of the image having characteristics corresponding to characteristics of at least one eye, this step of selecting pixels comprising selecting pixels within the sub-area of the image, comprising the steps of:
identifying the head of the person in the image; and
identifying the sub-area of the image using an anthropomorphic model.
2. The process according to claim 1 wherein the step of identifying head of the person in the image comprises the steps of:
selecting pixels of the image having characteristics corresponding to edges of the head of the person;
forming histograms (328x, 328y) of the selected pixels projected onto orthogonal axes; and
analyzing the histograms of the selected pixels to identify the edges of the head of the person.
3. The process of detecting a person falling asleep, the process

comprising the steps of:
acquiring an image of the face V of the person;
selecting pixels of the image having characteristics corresponding to characteristics of at least one eye of the person;
forming at least one histogram (328x) of the selected pixels; analyzing the at least one histogram over time to identify each opening and closing of the eye; and
determining from the opening and closing information on the eye, characteristics indicative of a person falling asleep;
identifying a sub-area of the image comprising the at least one eye prior to the step of selecting pixels of the image having characteristics corresponding to characteristics of at least one eye, and wherein the step of selecting pixels of the image having characteristics corresponding to characteristics of at least one eye comprises selecting pixels within the sub-area of the image;
identifying the location of a facial characteristic of the person in the image; and
identifying the sub-area of the image using an anthropomorphic model and the location of the facial characteristic.
4. The process according to claim 3 wherein the step of identifying the location of a facial characteristic of the person in the image comprises the steps of:
selecting pixels of the image having characteristics corresponding to the facial characteristic;
forming histograms of the selected pixels projected onto orthogonal axes; and
analyzing the histograms of the selected pixels to identify the position of the facial characteristic in the image.
5. The process according to claim 4 wherein the facial characteristic is the nostrils of the person, and wherein the step of selecting pixels of the image having characteristics corresponding to the facial characteristic comprises selecting
pixels having low luminance levels.
6. The process according to claim 5 further comprising the step of analyzing the histograms of the nostril pixels to determine whether the spacing between the nostrils is within a desired range and whether the dimensions of the nostrils fall within a desired range.
7. The process of detecting a person falling asleep, the process comprising the steps of:
acquiring an image of the face (V) of the person;
selecting pixels of the image having characteristics corresponding to characteristics of at least one eye of the person;
forming at least one histogram (328 x) of the selected pixels;
analyzing the at least one histogram over time to identify each opening and closing of the eye; and
determining from the opening and closing information on the eye, characteristics indicative of a person falling asleep;
the step of selecting pixels of the image having characteristics corresponding to characteristics of at least one eye of the person comprises selecting pixels having low luminance levels corresponding to shadowing of the eye; and
wherein the step analyzing the at least one histogram over time to identify each opening and closing of the eye comprises analyzing the shape of the eye shadowing to determine openings and closings of the eye.
8. The process according to claim 7 wherein the step of forming at least one histogram of the selected pixels comprises forming histograms of shadowed pixels of the eye projected onto orthogonal axes, and wherein the step of analyzing the shape of the eye shadowing comprises analyzing the width and height of the shadowing.
9. The process of detecting a person falling asleep, the process comprising the steps of:

acquiring an image of the face V of the person;
selecting pixels of the image having characteristics corresponding to characteristics of at least one eye of the person;
forming at least one histogram (328 x) of the selected pixels;
analyzing the at least one histogram over time to identify each opening and closing of the eye; and
determining from the opening and closing information on the eye, characteristics indicative of a person falling asleep;
the step of selecting pixels of the image having characteristics corresponding to characteristics of at least one eye of the person comprises selecting pixels in movement corresponding to blinking; and
wherein the step analyzing the at least one histogram over time to identify each opening and closing of the eye comprises analyzing the number of pixels in movement over time to determine openings and closings of the eye.
10. The process according to claim 9 wherein the step of selecting pixels of the image having characteristics corresponding to characteristics of at least one eye of the person comprises selecting having characteristics selected from the group consisting of i) $\mathrm{DP}=1$, ii) CO indicative of a blinking eyelid, iii) velocity indicative of a blinking eyelid, and iv) up and down movement indicative of a blinking eyelid.
11. The process according to claim 3 wherein the step of identifying a facial characteristic of the person in the image comprises the step of searching subimages of the image to identify the facial characteristic.
12. The process according to claim 5 wherein the step of identifying a facial characteristic of the person in the image comprises the step of searching subimages of the image to identify the nostrils.
13. The process according to claim 11 wherein the facial characteristic is a first facial characteristic and further comprising the steps of:
using an anthropomorphic model and the location of the first facial
characteristic to select a sub-area of the image containing a second facial characteristic;
selecting pixels of the image having characteristics corresponding to the second facial characteristic; and
analyzing the histograms of the selected pixels of the second facial characteristic to confirm the identification of the first facial characteristic.
14. An apparatus for detecting a person falling asleep, the apparatus comprising:
a sensor for acquiring an image of the face of the person, the image comprising pixels corresponding to the eye of the person;
a controller, and
a histogram formation unit for forming a histogram on pixels having selected characteristics,
the controller controlling the histogram formation unit to select pixels of the image having characteristics corresponding to characteristics of at least one eye of the person and to form a histogram of the selected pixels, the controller analyzing the histogram over time to identify each opening and closing of the eye, and determining from the opening and closing information on the eye, characteristics indicative of a person falling asleep;
the controller interacting with the histogram formation unit to identify a sub-area of the image comprising the at least one eye, and the controller controls the histogram formation unit to select pixels of the image having characteristics corresponding to characteristics of at least one eye only within the sub-area of the image;
the controller interacting with the histogram formation unit to identify the head of the person in the image; and
the controller identifies the sub-area of the image using an anthropomorphic model.
15. The apparatus according to claim 14 wherein:

the histogram formation unit selects pixels of the image having characteristics corresponding to edges of the head of the person and forms histograms of the selected pixels projected onto orthogonal axes; and
the controller analyzes the histograms of the selected pixels to identify the edges of the head of the person.
16. The apparatus according to claim 14 wherein:
the controller interacts with the histogram formation unit to identify the location of a facial characteristic of the person in the image; and
the controller identifies the sub-area of the image using an anthropomorphic model and the location of the facial characteristic.
17. The apparatus according to claim 16 wherein:
the histogram formation unit selects pixels of the image having characteristics corresponding to the facial characteristic and forms histograms of the selected pixels projected onto orthogonal axes;
the controller analyzes the histograms of the selected pixels to identify the position of the facial characteristic in the image.
18. The apparatus according to claim 17 wherein the facial characteristic is the nostrils of the person, and wherein the histogram formation unit selects pixels of the image having low luminance levels corresponding to the luminance level of the nostrils.
19. The apparatus according to claim 18 wherein the controller analyzes the histograms of the nostril pixels to determine whether the spacing between the nostrils is within a desired range and whether the dimensions of the nostrils fall within a desired range.
20. The apparatus according to claim 14 wherein:
the histogram formation unit selects pixels of the image having low luminance levels corresponding to shadowing of the eye; and
wherein the controller analyzes the shape of the eye shadowing to determine openings and closings of the eye.

21. The apparatus according to claim 20 wherein histogram formation unit forms histograms of shadowed pixels of the eye projected onto orthogonal axes, and wherein the controller analyzes the width and height of the shadowing to determine openings and closings of the eye.
22. The apparatus according to claim 14 wherein:
the histogram formation unit selects pixels of the image in movement corresponding to blinking; and
the controller analyzes the number of pixels in movement over time to determine openings and closings of the eye.
23. The apparatus according to claim 22 wherein the histogram formation units selects pixels of the image having characteristics of movement corresponding to blinking, such characteristics being selected from the group consisting of i) $\mathrm{DP}=1$, ii) CO indicative of a blinking eyelid, iii) velocity indicative of a blinking eyelid, and iv) up and down movement indicative of a blinking eyelid.
24. The apparatus according to claim 16 wherein the controller interacts with the histogram formation unit to search sub-images of the image to identify the facial characteristic.
25. The apparatus according to claim 18 wherein the controller interacts with the histogram formation unit to search sub-images of the image to identify the nostrils.
26. The apparatus according to claim 24 wherein the facial characteristic is a first facial characteristic and further comprising:
the controller using an anthropomorphic model and the location of the first facial characteristic to cause the histogram formation unit to select a subarea of the image containing a second facial characteristic, the histogram formation unit selecting pixels of the image in the sub-area having characteristics corresponding to the second facial characteristic and forming a histogram of such pixels; and
the controller analyzing the histogram of the selected pixels
corresponding to the second facial characteristic to confirm the identification of the first facial characteristic.
27. The apparatus according to claim 14 wherein the sensor is integrally constructed with the controller and the histogram formation unit.
28. The apparatus according to claim 14 further comprising an alarm, the controller operating the alarm upon detection of the person falling asleep.
29. The apparatus according to claim 14 further comprising an illumination source, the sensor being adapted to view the person when illuminated by the illumination source.
30. The apparatus according to claim 29 wherein the illumination source is a source of IR radiation.
31. A rear-view mirror assembly for a vehicle which comprises:
a rear-view mirror; and
the apparatus according to claim 14 mounted to the rear-view mirror.
32. The rear-view mirror assembly according to claim 31 further comprising a bracket attaching the apparatus to the rear-view mirror.
33. The rear-view mirror assembly according to claim 31 further comprising a housing having an open side and an interior, the rear-view mirror being mounted to the open side of the housing, the rear view mirror being seethrough from the interior of the housing to an exterior of the housing, the apparatus being mounted interior to the housing with the sensor directed toward the rear-view mirror.
34. The rear-view mirror assembly according to claim 33 further comprising a joint attaching the apparatus to the rear-view mirror assembly, the joint adapted to maintain the apparatus in a position facing a driver of the vehicle during adjustment of the mirror assembly by the driver.
35. The rear-view mirror assembly according to claim 31 further comprising a source of illumination directed toward the person, the sensor being

adapted to view the person when illuminated by the source of illumination.
36. The rear-view mirror assembly according to claim 31 further comprising an alarm, the controller operating the alarm upon detection of the person falling asleep.
37. A rear-view mirror assembly which comprises:
a rear-view mirror; and
the apparatus according to claim 14, the sensor being mounted to the rear-view mirror, the controller and the histogram formation unit being located remote from the sensor.
38. A vehicle comprising the apparatus according to claim 14.
39. A process of detecting a feature of an eye, the process comprising the steps of:
acquiring an image of the face of the person, the image comprising pixels corresponding to the feature to be detected;
selecting pixels of the image having characteristics corresponding to the feature to be detected;
forming at least one histogram of the selected pixels;
analyzing the at least one histogram over time to identify characteristics indicative of the feature to be detected.
said feature being the iris, pupil or cornea.
