5

10

20

25

30

POT/EPGR/OESB3

1

IMAGE PROCESSING APPARATUS AND METHOD

Inventor: Patrick Pirim

BACKGROUND OF THE INVENTION

1. Rield of the Invention

The present invention relates generally to an image processing apparatus, and more particularly to a method and apparatus for identifying and localizing an area in relative movement in a scene and determining the speed and oriented direction of the area in real time.

15 2. Description of the Related Art

The human or animal eye is the best known system for identifying and localizing an object in relative movement, and for determining its speed and direction of movement. Various efforts have been made to mimic the function of the cyc. One type of device for this purpose is referred to as an artificial retina, which is shown, for example, in Giocomo Indiveri et. al, Proceedings of MicroNeuro, 1996, pp. 15-22 (analog artificial retina), and Pierre-François Rücdii, Proceedings of MicroNeuro, 1996, pp. 23-29, (digital artificial retina which identifies the edges of an object). However, very fast and high capacity memories are required for these devices to operate in real time, and only limited information is obtained about the moving areas or objects observed Other examples of artificial retinas and similar devices are shown in U S. Patent Nos. 5,694,495 and 5,712,729.

Another proposed method for detecting objects in an image is to store a frame from a video camera or other observation sensor in a first two-dimensional memory. The frame is composed of a sequence of pixels representative of the scene observed by the camera at time t_0 . The video signal for the next frame, which represents the scene at time t_1 , is stored in a second two-dimensional memory. If an object has moved between times t_0 and t_1 , the distance d by which the object, as represented by its pixels, has moved in the scene between t_1 and t_0 is determined. The displacement speed is then equal to d/T, where

POT/EPGE:07:83

 $T = t_1 - t_0$. This type of system requires a very large memory capacity if it is used to obtain precise speed and oriented direction. Information for the movement of the object. There is also a delay in obtaining the speed and displacement direction information corresponding to $t_1 + R$, where R is the time necessary for the calculations for the period $t_0 - t_1$ system. These two disadvantages limit applications of this type of system.

Another type of prior image processing system is shown in French Patent No. 2,611,063, of which the inventor hereof is also an inventor. This patent relates to a method and apparatus for real time processing of a sequenced data flow from the output of a camera in order to perform data compression. A histogram of signal levels from the camera is formed using a first sequence classification law. A representative Gaussian 10 function associated with the histogram is stored, and the maximum and minimum levels are extracted. The signal levels of the next sequence are compared with the signal levels for the first sequence using a fixed time constant identical for each pixel. A binary classification signal is generated that characterizes the next sequence with reference as the classification law An auxiliary signal is generated from the binary signal tar- is 15 representative of the duration and position of a range of significant values. Finally, the auxiliary signal is used to generate a signal localizing the range with the longest curst on, called the dominant range. These operations are repeated for subsequent sequences the sequenced signal.

20

25

30

5

This prior process enables data compression, keeping only interasting parameters in the processed flow of sequenced data. In particular, the process is capable of processing a digital video signal in order to extract and localize an least one characteristic of at least one area in the image. It is thus possible to classify, for example, brightness and/or chrominance levels of the signal and to characterize and localize an object in the image.

U.S. Patent No. 5,488,430 detects and estimates a displacement by separately determining horizontal and vertical changes of the observed area. Difference signals are used to detect movements from right to left or from left to right, or from top to bottom or bottom to top, in the horizontal and vertical directions respectively. This is accomplished by carrying out an EXCLUSIVF OR function on horizontal/vertical difference signals and on frame difference signals, and by using a ratio of the sums of the horizontal/vertical signals and the sums of frame difference signals with respect to a K x 3 window. Calculated values of the image along orthogonal horizontal and vertical directions are

5

10

15

20

25

3

used with an identical repetitive difference K in the orthogonal directions, this difference K being defined as a function of the displacement speeds that are to be determined. The device determines the direction of movement along each of the two orthogonal directions by applying a set of calculation operations to the difference signals, which requires very complex computations. Additional complex computations are also necessary to obtain the speed and oriented direction of displacement (extraction of a square root to obtain the amplitude of the speed, and calculation of the aretan function to obtain the oriented direction), starting from projections on the horizontal and vertical axes. This device also does not smooth the pixel values using a time constant, especially a time constant that is variable for each pixel, in order to compensate for excessively fast variations in the pixel values.

Finally, Alberto Tomita Sales Representative, and Rokuva Ishii, "Hand Shape Extraction from a Sequence of Digitized Gray-Scale Images," Institute of Electrical and Electronics Engineers, Vol. 3, 1994, pp. 1925-1930, detects movement by subtracting between successive images, and forming histograms based upon the shape of a human hand in order to extract the shape of a human hand in a digitized scene. The histogram analysis is based upon a gray scale inherent to the human hand. It does not include any means of forming histograms in the plane coordinates. The sole purpose of the method is to detect the displacement of a human hand, for example, in order to replace the normal computer mouse by a hand, the movements of which are identified to control a computer.

It would be desirable to have an image processing system which has a relatively simple structure and requires a relatively small memory capacity, and by which information on the movement of objects within an image can be obtained in real-time. It would also be desirable to have a method and apparatus for detecting movements that are not limited to the hand, but to any object (in the widest sense of the term) in a scene, and which does not use histograms based on the gray values of a hand, but rather the histograms of different variables representative of the displacement and histograms of plane coordinates. Such a system would be applicable to many types of applications requiring the detection of moving and non-moving objects.

30

RCV, VON EPA MURICIEN OG

5

10

15

 00 1 40/4040

TTO OF LODDA HOD - # 6

POT/EPGBJGES83

SUMMARY OF THE INVENTION

4

The present invention is a process for identifying relative movement of an object in an input signal, the input signal having a succession of frames, each frame having a succession of pixels. For each pixel of the input signal, the input signal is smoothed using a time constant for the pixel in order to generate a smoothed input signal. For each pixel in the smoothed input signal, a binary value corresponding to the existence of a significant variation in the amplitude of the pixel between the current frame and the immediately previous smoothed input frame, and the amplitude of the variation, are determined.

Using the existence of a significant variation for a given pixel, the time constant for the pixel, which is to be used in smoothing subsequent frames of the input signal, is modified. The time constant is preferably in the form 2^b, and is increased or decreased by incrementing or decrementing p. For each particular pixel of the reput signal, two matrices are then formed: a first matrix comprising the binary values of a

- subset of the pixels of the frame spatially related to the particular pixel; and a second matrix comprising the amplitude of the variation of the subset of the pixels of the frame spatially related to the particular pixel. In the first matrix, it is determined whether the particular pixel and the pixels along an oriented direction relative to the particular pixel
- 20 have binary values of a particular value representing significant variation, and fee such pixels, it is determined in the second matrix whether the amplitude of the pixels along the oriented direction relative to the particular pixel varies in a known manner innerating movement in the oriented direction of the particular pixel and the pixels along the oriented direction relative to the particular pixel. The amplitude of the variation of the

25 pixels along the oriented direction determines the velocity of movement of the particular pixel and the pixels along the oriented direction relative to the particular pixel.

In each of one or more domains, a histogram of the values distributed in the first and second matrices falling in each such domain is formed. For a particular domain, an area of significant variation is determined from the histogram for that domain.

30 Ilistograms of the area of significant variation along coordinate axes are then formed. From these histograms, it is determined whether there is an area in movement for the particular domain. The domains are preferably selected from the group consisting of i) 5

10

particular pixel.

POT/EPGRINERBS

5

luminance, ii) speed (V), iii) oriented direction (D1), iv) time constant (CO), v) hue, vi) saturation, and vii) first axis (x(m)), and viii) second axis (y(m)).

In one embodiment, the first and second matrices are square matrices, with the same odd number of rows and columns, centered on the particular pixel. In this embodiment, the steps of determining in the first matrix whether the particular pixel and the pixels along an oriented direction relative to the particular pixel have binary values of a particular value representing significant variation, and the step of determining in the second matrix whether the amplitude signal varies in a predetermined criteria along an oriented direction relative to the particular pixel have binary values of a content of the particular pixel to the particular pixel along an oriented direction relative to the particular pixel, comprise applying nested n x n matrices, where n is odd, centered on the particular pixel to the pixels within each of the first and second matrices. The process then includes the further step of determining the smallest nested matrix in which the amplitude signal varies along an oriented direction around the

In an alternative embodiment, the first and second matrices are hexagonal matrices centered on the particular pixel. In this embodiment, the steps of determining in the first matrix whether the particular pixel and the pixels along an oriented direction relative to the particular pixel have binary values of a particular value representing significant variation, and the step of determining in the second matrix whether the amplitude signal varies in a predetermined criteria along an oriented direction relative to

20 the particular pixel, comprise applying nested hexagonal matrices of varying size centered on the particular pixel to the pixels within each of the first and second matrices. The process then further includes determining the smallest nested matrix in which the amplitude signal varies along an oriented direction around the particular pixel.

In a still further embodiment of the invention, the first and second matrices

25 are inverted 1-shaped matrices with a single row and a single column. In this embodiment, the steps of determining in the first matrix whether the particular pixel and the pixels along an oriented direction relative to the particular pixel have binary values of a particular value representing significant variation, and the step of determining in the second matrix whether the amplitude signal varies in a predetermined criteria along an

30 oriented direction relative to the particular pixel, comprise applying nested n x n matrices, where n is odd, to the single line and the single column to determine the smallest matrix in which the amplitude varies on a line with the steepest slope and constant quantification.

DOCKET A L A R M

Explore Litigation Insights

Docket Alarm provides insights to develop a more informed litigation strategy and the peace of mind of knowing you're on top of things.

Real-Time Litigation Alerts

Keep your litigation team up-to-date with **real-time alerts** and advanced team management tools built for the enterprise, all while greatly reducing PACER spend.

Our comprehensive service means we can handle Federal, State, and Administrative courts across the country.

Advanced Docket Research

With over 230 million records, Docket Alarm's cloud-native docket research platform finds what other services can't. Coverage includes Federal, State, plus PTAB, TTAB, ITC and NLRB decisions, all in one place.

Identify arguments that have been successful in the past with full text, pinpoint searching. Link to case law cited within any court document via Fastcase.

Analytics At Your Fingertips

Learn what happened the last time a particular judge, opposing counsel or company faced cases similar to yours.

Advanced out-of-the-box PTAB and TTAB analytics are always at your fingertips.

API

Docket Alarm offers a powerful API (application programming interface) to developers that want to integrate case filings into their apps.

LAW FIRMS

Build custom dashboards for your attorneys and clients with live data direct from the court.

Automate many repetitive legal tasks like conflict checks, document management, and marketing.

FINANCIAL INSTITUTIONS

Litigation and bankruptcy checks for companies and debtors.

E-DISCOVERY AND LEGAL VENDORS

Sync your system to PACER to automate legal marketing.