IMAGI: PROCXSSSING APPARATUS ANI MITHIOI)

luventor: Patrick Jirim

BAC'K(iROUNI) OIF TIII: INVINNTION

1. Ijcld of the Invention

The present invention relates gencrally to an image processing apparatus, and more particulanly to a method and apparatus for identifying and localizing an area in relative movement in a seene and determining the specd and oriented direction of the area in real time.

2. Description of the Reclated Art

The human or animal eye is the best known system for identifying and localizing an objeet in relative movement, and for decrmining its speex and dircction of movement. Various efforts have been made to mimic the function of the cye. One type of device for this purpose is referred to as an arificial retina, which is shown, for example, in Giocomo Indiveri el. al, Iroccodings of MicroNeuro, 1996, pp. 15-22 (auralog artificial rctina), and Pierte-Frangais Rücdii, Proccelings of MicroNcuro, 1990, pp. 23-29, (digital arificial retina which identifies the adges of an object). Howevel, very fast and higit cupacity memorics are feguired for these devices to operate in real time, and only limited information is obluined about the moving areas or objects observed Other examples of artificial relinas and similar devices are shown in U S. J'atenl Nos. $5,694,495$ and 5,712,729.

Another proposed mechad for delecting, objecis in an image is to store a frame from a vidco camcra or other observation sensor in a first fwo-dimensional menory. The frume is composed of a sequence of pixels representative of the scenc obscrved by the camera at time if $_{\text {. The video signal for the next frame, which represents the scene at time }}$ 1_{1}, is stored in a second two-dimensionhl memory. If an objoct has moved betwecu times i_{0} and t_{1}, the distance d by which the object, as represented by its pixcls, has moved in the seene between i_{1} and h_{p} is detemined. The displacement speed is then cqual to d / t, where

T- $\cdot l_{1} \cdot!_{0}$. Ibis type of system requires a very large memory capacily if it is used io obtain frecise apecd and oricned direction. Infomation for the movement of the obiget. Jhere is also a delay in obtaining the specd amd displacement ditection information comesponding to $t_{1} \cdot R$, where R is the time necessary for the calculations for the period $t_{2}-i_{1}$ sestem. These two disadvantages limit mplications of this type of system.

Another type of prior image processing system is shown in frencl fatent No. 2,611,003, of which the inventor hescof is also an inventor. This pasent telules 10 a method and apparatus for seal time processing of a sequenced data flow from the outout of a camera in order to perform data compression. 1 hislogram of sigmad levers fom, the camera is fomed using a fust seapuence classificution law. A repmesentative Gabsian function associatcd with the histogram js stored, and the maximum and minimum jevels are exiracted. The signal Jevels of the next sequence are compared with the signal ic els for the firse sequence using a fixed time constant identical for cach pixel. S shary elassifichlion signal is gencrated that characterizes the nexi scauenes with refercici ... :he classification law An auxiliary signal is gencrated from the binary sigua : in is represcmative of the duration and position of a mange of significan values fins:": the auxiliary signal is used to gencrute a signal localizing the range with the longest ana: nu, called the dominant range. These operations are fepated for subsequent sequenc:- . he sequenced signal.
 jarameters in the processed flow of sequenced data. In jarticular, the prosess i. wasale _or processing a digital video signal in order to extract and lowalize wi las: ane characteristic of al least one arca in the jmage. It is thus possible to classify, for sexanatic, brightness and/or chrominance levels of the signal and in characterize and lealazi an object in the image.
U.S. Jatent No. 5,488,430 delects and estimates a displacoment by selataty detcrmining horizontal and vertical changes of the observed arca. Difference signala are uscd to detcel movements from ight to lefl or from left to sight, or fromi top to betary or bottom to lop, in the horizontal and verical directions respectively. This is acennitsined by carrying out an IXXCLUSIVJ: OR function on horizontal/verifal difference sigimals and on france difference signals, und by using a satio of the sums of the horizomitiverical signals and the sums of frame difference signuls with respuet to a $\mathrm{K} \times 3$ window. Calcuiated values of the inage along othagonal horizontal and vertical directions are
$33148745456-\quad+44$ ध $392399+465: \# 7$
ased with an identical repectitive difference K in the orthogonal dircctions, this difference K being defined as a function of the displacement specds that are to be determined. The device deternincs the direction of movemen along each of the two orthogonal directions by applying a sct of calculation opcrations to the difference signtals, which reguires very complex computations. Alditional complex computations arc also necessary to oblinin the speed and oricnied direction of displacement (extraction of a seguare mot to oblain the amplitude of the speed, and calculation of the aretan function to obtain the oriented direction), starting from projections on the horizomtal and vertical axes. This deviec also does not smooth the pixel values using a time comstunt, cspecially a time constant that is variable for cach pixel, in order to compensate for excessively fast variations in the pixel values.
lïnally, Alberto Jomita Sales Represcmative. and Rokuve Ishii, "Hand Shape Ixtraction from a Scquence of J)jepitized Gray-Scale Imapes," Institute of Electrical and Jicetronics Enginecrs, Vol. 3, 1994, pp. 1925-1930, deteets movement by subtracting between successive images, and forming histograms based upon the shape of a humnn hand in order to extract the shape of a human hand in a digitized secne. The histogram analysis is based upon a gray scalc inheren to the human hand. It docs not include any means of forming histograms in the plane coordinates. The sole purpose of the methad is to delect the displacencen of a humen hand, for example, in order to replace the normal computer mousc by a hand, the movements of which arc identified to control a computer.

It would be desirable to have an image juncessing system which has a relativoly empile structure and teguires a relatively small menory cnjocity, and by which information on the movement of objects within an image can be oblainod in real-fime. It would also be desirable to have a mciliod and apparatus for detceling movements that are not limited to the hand, bul to ariy ohjoct (in the widest scase of the temm) in a sccuc, and which does not use histograms based on the gray values of a hand, but rather the histograms of different variables representative of the displacement was histograms of planc coordinates. Such a system would be applicable to many types of applications requing the detection of moving, and non-moving, objects.

SUMMARY OI jIIl: INVINTIION

The present invention is a process for identifying relative moventem of an objed in an input signal, the input signal having a succession of frames, cach frame having a succession of pixcls. lor cach pixel of the input signal, the input signal is smoothed using a time constand for the pixel in order to generate a smoolbed impul signal. Jor cach pixel in the smoothed input signal, a binary value corresponding to the existence of a significumt variation in the amplitude of the pixel betwen the current forme and the immedialcly previous smoothed input frame, and the amplitude of the vaitainh:, are determined.

Using the existence of a significant variation for a given pixd, the ime constant for the pixcl, which is to be usat in smoothing, subsequent frames of the input
 decreased by incrementing, or decrementing p. Jior cach panticular pixel of ta: apuat signal, two matrices ate then formod: a first matrix comprising the binary viat: of a subse of the pixels of the frame spatially related to the parlicular pixel; and a E . and matrix comprising the amplitude of the variation of the subset of the pixcls wf tit. "ame spatially related to the particular pixel. In the first matrix, it is detcrmincil whe: the particular pixel and the pixels along, an oriented direction relative to the panticu ir sixed bave binary values of a parlicular value represcnting significant vatiation, and ir. iuch pixels, it is determined in the second matrix whether the amplitude of the pixels ais:, the oriented dircetion relative to the particulat pixel varics in a known manel :nownitig movement in the oriented direction of the particular pixed and the pixek whes the oriented ditection relative to the particular pixel. The amplifude of the variation of the pixels along the oriented direction deternines the velocity of movencen of the partieular pixed and the pixels along the oricnted dircelion relative to the particular pixal.

In each of one or mone domains, a histogram of the values distributat in the first fud second mutrices falling in cuch such domain is formed. For a paricula domain, an area of significant variation is determined from the histogram for that domain. Jlistograms of the arca of significant variation along coordinate axes are then formad. lirom these histograms, it is felemmed whether there is an area in movement for the parlicular domain. The domans are preferably selected from the group consisting of i)

Juminanec, ij) specd (V), iji) oriented direction (I)1), iv) time constant (CO), v) hue, vi) saturation, and vii) first axis ($x(m)$), and viii) second axis ($y(n)$).

In oue cmbodiment, the first and sceond matrices are square matrices, with the same odd number of rows and columus, centered on the particular pixel. In this embodiment, the steps of detcrmining in the firsi matrix whether the particular pixel and the pixcls along an oricntel direction selative to the particular pixel have binary values of a particular value representing siguificant variation, and the siop of determining in the sccond matrix whether the amplifude signal varies in a predelermined crictria along an oriented dircetion relative to the particular pixel, comprise applying nested in x in matrices, where n is odd, centered on the particular pixel to the pixels within cach of the first and sccond matrices. The process then includes the further step of determining the smallest nested matrix in which the amplitude signal varies along an orimned direction around the jarliculas pixel.

In an ulternative embodinent, the first and second matrices arc hexugonal matrices centercd on the particular pixel. In this embodiment, the staps of detemining in the first matrix whether the paricular pixel and the pixels along an oriented direction relative to the particular pixel have binary valucs of a particular value representing significant variation, and the step of deternining in the second matrix whether the amplitude sigual varies in a prodectermined criteria along an oricnted direction relative io the particular pixel, comprisc applying nested hexagonal matrices of varying size centercd on the parlicular pixel to the pixcls willin cach of the first and sceond matrices. The process then further ineludes detenmin!:!e ! the smallest nested matrix in which the aniplitude sieval varics along an oriented direction around the particular pixcl.

In a still further cmbodiment of the invention, the first and secind matrices are inverted l-shaped matrices with a single row and a single column. In this embodiment, the steps of decermining in the first matrix whecher the parlicular pixel and the pixels along an oriented direction relative to the particular pixel have binary' values of a particular value representing siguvificant variation, and the slep of determining in the sccond matrix whether the amplitude sigual variss in a predecterminel critcria along an oriented direction telative to the parlicular pixcl, comprise applying, nested $n \times n$ matrices, where $n 1$ is odd, to the single line and the single column to determine the smallest matiox in which the amplitude varies on a line with the steqpest slope and constant guantificalion.

DOCKET
 A LARM

Explore Litigation

 InsightsDocket Alarm provides insights to develop a more informed litigation strategy and the peace of mind of knowing you're on top of things.

Real-Time Litigation Alerts

Keep your litigation team up-to-date with real-time alerts and advanced team management tools built for the enterprise, all while greatly reducing PACER spend.

Our comprehensive service means we can handle Federal, State, and Administrative courts across the country.

Advanced Docket Research

With over 230 million records, Docket Alarm's cloud-native docket research platform finds what other services can't. Coverage includes Federal, State, plus PTAB, TTAB, ITC and NLRB decisions, all in one place.

Identify arguments that have been successful in the past with full text, pinpoint searching. Link to case law cited within any court document via Fastcase.

Analytics At Your Fingertips

Learn what happened the last time a particular judge, opposing counsel or company faced cases similar to yours.

Advanced out-of-the-box PTAB and TTAB analytics are always at your fingertips.

API

Docket Alarm offers a powerful API (application programming interface) to developers that want to integrate case filings into their apps.

LAW FIRMS

Build custom dashboards for your attorneys and clients with live data direct from the court.

Automate many repetitive legal tasks like conflict checks, document management, and marketing.

FINANCIAL INSTITUTIONS

Litigation and bankruptcy checks for companies and debtors.

E-DISCOVERY AND LEGAL VENDORS

Sync your system to PACER to automate legal marketing.

