
Meta Platforms, Inc.
Exhibit 1024

Page 001

/4
 THE SYSTEMS PROGRAMMING SERIES

2% = —S ey NN ~~ . 1
» 2 ; i ™ Ww X q

: “, |Md ee .

 i

‘(

}

a MhHy
2 fe f'sifieOhelstf

- ys, \ fe~

AN INTRODUCTION TO

DATABASE }..

uf {

\\NdNtiyyi
’

:’'

TYHA
rif!itFi
||

|

i4|/

battUy

 (Ihi

a
} j

\

1 iyiwit
iI
in

‘5
)||

my

Meta Platforms, Inc.
Exhibit 1024

Page 001

Meta Platforms, Inc.
Exhibit 1024

Page 002

C. J. Date

AN INTRODUCTION TO

Database

Systems

SIXTH

EDITION

vv Addison-Wesley Publishing Company
Reading, Massachusetts * Menlo Park, California * New York
Don Mills, Ontario * Wokingham, England * Amsterdam * Bonn
Sydney * Singapore ° Tokyo * Madrid * San Juan « Milan » ParisTEEEEETE EEET

Meta Platforms, Inc.
Exhibit 1024

Page 002

Meta Platforms, Inc.
Exhibit 1024

Page 003

DiGi.

This bookis in the

Addison-Wesley Systems Programming SerieseeystemsFrOgrammingseries

Consulting Editors: IBM Editorial Board

Manyofthe designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and Addison-
Wesley was aware of a trademark claim,the designations havebeenprintedin initial caps
orall caps.

The programsand applications presentedin this b
instructional value, They have beentested with c
particular purpose. The publisher doesnotoffer
doesit acceptany liabilities with respectto the

ook have been included fortheir
are, but are not guaranteed for any
any warranties or representations, nor

programsorapplications.

Library of Congress Cataloging-in-Publication Data
Date, C.J.

An introduction to database systems / C. J. Date. — 6th ed.
p. cm. — (The Systems programmingseries)

Includes bibliographical references and index.
ISBN 0-201-54329_xK

1. Database management. I. Title, Il. Series: Addison-Wesley
systems programmingseries.
QA76.9.D3D3659 1995
005.74—dc20

94-3187
CIP

Reprinted with corrections November, 1994

Copyright © 1995 by Addison-Wesley Publishing Company,Inc.
All rights reserved. No part of this publication may be reproduced,
transmitted, in any form, or by any means, electronic
otherwise, without the Prior written permission ofthAmerica.

Stored in a retrieval system,or
» mechanical, photocopying, recording, or

€ publisher. Printed in the United States of

ISBN 0-201-54329_x

23456789 10-DOC_98 97 96 95

This book is dedicated to my wife Lindy
and to the memory of my mother Rene

94

nd

1,

IETS

Meta Platforms, Inc.
Exhibit 1024

Page 003

Meta Platforms, Inc.
Exhibit 1024

Page 004

HEROPBe

= First, for obvious rea

||An Overview of
Database Management

1.1 An Introductory Example
A database System is essen. tially nothi
System. The database itself we more: than a computerized record.-can be regarded as a kind

Adding new, empty fi
Inserting new data int

a

; les to the database

a Retrieving data from
=z

a

=

0 existing files

Updating data in ex; aa ia
410 existing files

Deleting data from existing files
Removing existing fi
B tr

1 ;
£6EIAPLY ar otherwise, from the database

y wayofillustrati :file, called CELL. na :1g. 1.1 shows a very small a aaE AR, which ; database containingjust a single

W fina] remarks:
SONS, Computer

frequently referred to as tables eeT les such as CELLARjIn the
tables—see Section 1.6). relationalthan files (in fact, they are relational

Chapter 1 An Overview of Database Management 3

=

WINE PRODUCER YEAR BOTTLES READY
ls

Chardonnay a Buena Vista 92 iT: 94 |
Chardonnay Geyser Peak 92 5 94
Chardonnay Stonestreet 91 4 93
Jo. Riesling Jekel 93 1 94
Fumé Blane Ch. St. Jean 92 4 94
Fumé Blanc Robt. Mondavi or 2 93

Gewurztraminer Ch. St. Jean 93 3 94
Cab. Sauvignon Windsor 86 12 aE
Cab. Sauvignon Geyser Peak 89 I 97
Cab. Sauvignon Robt. Mondavi 88 12 99
Pinot Noir Gary Farrell 91 3 94
Pinot Noir Stemmler 88 3 95
Pinot Noir Dehlinger 90 2 93
Merlot Clos du Bois 89 9 95
Zinfandel Lytton Spring 89 9 98
Zinfandel Rafanelli 90 2 98

fe =| —

FIG. 1.1 The wine cellar database (CELLARfile)

m= Second,the rowsof such a table can be thoughtof as representing the records of
the file (sometimesreferred to explicitly as /ogical records, to distinguish them
from other kinds of records to be discussed later). Likewise, the columns can be

regarded as representing the fields of those logical records. In this book, wewill
tend to use the “record” and “field” terminology when we are talking about
database systems in general, the “row” and “column” terminology when weare
talking aboutrelational systems specifically. (Actually, when we get to our more
formal relational discussions in later parts of the book, we will switch to more
formal terms anyway.)

Retrieval:

SELECT WINE, BIN, PRODUCER
FROM CELLAR

WHERE READY = 95 ;

BIN|PRODUCER

Cab. Sauvignon 43|Windsor
Pinot Noir 51|Stemmler
Merlot 58|Clos du Bois

Meta Platforms, Inc.

992

-1994,

1994

and

‘d and

1993

ition,

2nt:

RQ
Exhibit 1024

Page 004

Meta Platforms, Inc.
Exhibit 1024

Page 005
4

inserting new data:

| INSERT
INTO

| ce (BIN, WINE, PRODUCER, YEAR, BOTTLES READALUES (53, ‘Pinot Noir', "Saintsbury'! 92, 1, se :
| ’ ' ')

Updating existing data: y

UPDATE CELLAR

| SET BOTTLES = 4
WHERE BIN = 3 ;

|

|} eeSe

| Deleting existing data: e
| DELETE

|
FROM CELLAR

| WHERE BIN = 2 ;
peeeeee

FIG, 1.3 INSERT, UPDATE, and DELETE examples

Originally an abbreviation for “
S

1.2 Whatisa Database System?
To repeatfr :om Section 1.]
keeping system: Seite database 5 St F 5: m; thatis,it j © system is basically a :tain information and to nikeeeeSystem whose aadgere

€ that information available onRerfa- [he informationconcemed can be anythjye ything that is d
organization the system is intended Sere. 0 be of significance to the individual or
assist in ri if 5 i gs in other words tha tothe general Pp OCeSssS O running the business of th ‘ is needed

£ 1 .So fa" and “information”
ipspea to distinguisheaeaEiReapeolestored in the database aE WO, usin “data”? :and “inf ; & data” to refer to thea anne values
amSees some user. The distinction is leaBeoebse valvesrelerable to makej ici Any
arbitrary differentiation peneee relevant, instead of relying on0essentially sim; a somewhatImilar terms.

Chapter 1 An Overview of Database Management

7 Database management system (DBMS) A107)

Database

Application
programs

End users

FIG. 1.4 Simplified picture of a database system

Fig. 1.4 shows a greatly simplified view of a database system. The figure is in-
tendedto illustrate the point that a database system involves four major components,
namely, data, hardware, software, and users. We consider these four components
briefly below. Later, of course, we will discuss each in much moredetail (except for the
hardware component, mostdetails of which are beyond the scope of this book).

Data

Database systems are available on machinesthat range all the way from quite small
micros (even portable PCs) to the largest mainframes. Needless to say, the facilities
provided by any given system are to some extent determined by the size and power of
the underlying machine.In particular, systems on large machines (“large systems’’)
tend to be multi-user, whereas those on smaller machines(“small systems”) tend to be
single-user. A single-user system is a system in whichat mostoneuser can access the
database at any given time; a multi-user system is a system in which many users can
access the database concurrently. As Fig. 1.4 suggests, we will normally assume the
latter case in this book, for generality, but in fact the distinctionis largely irrelevant so
far as most users are concerned: A major objective of most multi-user systemsis pre-
cisely to allow each individual user to behaveas if he or she were working with a
single-user system. Thespecial problems of multi-user systemsare primarily problems
that are internal to the system, notonesthatare visible to the user (see Part IV ofthis
book,especially Chapter 14).

Incidentally, it is usually convenient to assumefor the sake of simplicity that the
ie

192

1994,

1994

nd

'

d and

993

tion,

nt;

Meta Platforms, Inc.
Exhibit 1024

Page 005

Meta Platforms, Inc.
Exhibit 1024

Page 006

call
thi

pa
ex)

ter
is

S|
a
m
Ri

Part | Basic Conce
AG

eeon stored in the system is all held in a single database, and We will
In practice Bernee it does not materially affect any of our other disenl
ene an ae ere might be good reasons, even in a small system, wh aeete several distinct databases. We will touch eerie “ata
sonselsewhere in this book(e.g,, in Chapter2), feedsHose oe
eece the data in the database—atleast in a lar
eeeiared. AS we will see in Section 1,4, these two
ronment; and dataintegration,aleastcanesee; , at least, can be significant j

Seaceeare many additional *ibdtteeds al- te
ali nment. But first let us explaigrated” and “shared.” abe

&€ System—will be both
aspects, dataintegra;
eins in the “large” envi-

the small” Environment
be discussed later), even

mean bytheterms “inte.

ion

By integrated, w» We mean that the databseveral otherwise dict; ‘abase can be thought .or partly okadata files, with anyeeeof. For : AleEMPLOYEE file, giv; example, a £lven database might eCtain a

Chapter 1 An Overview of Database Management

(moreover, different users’ portions will overlap in many different ways). In other
words, a given database will be perceived by different users in a variety of different
ways.In fact, even when two users share the sameportion of the database, their views
ofthat portion mightdiffer considerably ata detailed level. This latter pointis discussed
morefully in Section 1.5 andin the next chapter.

Hardware

The hardwareportions of the system consist of:

m Thesecondary storage volumes—typically moving-head magnetic disks—thatare
used to hold the stored data, together with the associated I/O devices (disk drives,
etc.), device controllers, 1/O channels, and so forth; and

m The processor(s) and associated main memory that are used to support the execu-
tion of the database system software (see the next subsection below).
This book does not concern itself very greatly with the hardware portions of the

system,for the following reasons among others: First, these aspects form a majortopic
in their own right; second, the problems encountered in this area are not peculiar to
database systems; andthird, those problems have been very thoroughly investigated
and documented in numerousotherplaces.

Software

Betweenthe physical databaseitself (i.e., the data as actually stored) andthe users of
the system is a layer of software, the database manager (DB manager) or, more USU-
ally, database management system (DBMS).All requests from users for access to the
database are handled by the DBMS; thefacilities sketched in Section 1.1 for adding and
removingfiles(ortables), retrieving data from and updating data in suchfiles or tables,
and so forth,areall facilities provided by the DBMS. One general function provided by
the DBMSisthus the shielding of database users from hardware-level details (much
as programming-language systemsshield application programmers from hardware-
level details). In other words, the DBMSprovidesusers with a view of the databasethat
is elevated somewhat above the hardwarelevel, and supports user operations(such as
the SQL operationsdiscussedbriefly in Section 1.1) that are expressed in termsof that
higher-level view. Weshall discuss this function, and other functions of the DBMS, in
considerably more detail throughout the body ofthis book.

Note: The DBMSiseasily the most important software componentin the overall
system,but it is not the only one. Others include utilities, application development
tools, design aids, report writers, and so on. See Chapter 2 for further discussion.

Users

Weconsiderthree broad classes of users:

= First, there are the application programmers, whoare responsible for writing ap-

 on,
B

992

-1994,

Ww

1994

ind

4

d and

1993

tion,

‘nt:

Meta Platforms, Inc.

Exhibit 1024

Page 006

Meta Platforms, Inc.
Exhibit 1024

Page 007

Sa-————
ist

Jof
nie

pri
M,

fo)
an
ca

thi

ex

tei

is.
ul

Part! Bac:
ASIC Cy

"Cents
plication programsthat use the database, typically in a language
or PL/I or some more modern language such as C or Pascal. Thosea “OB9
ooueeoan the oe ways—retrieving existing information,inca Oper.
va berien changingexisting information. All of these aeeo
facies 4 issuing the appropriate request to the DBMS raAs
Seery* conventional batch applications, or they may be 4 a
is accessingthe databas es Isto SOpport an enduser(see the next Paragra ivi
selene e from an online workstation or terminal. M ae€ online variety, eee

The secondclassof user, then, is end users
online workstations or terminals. A given .
oneofthe online applications mentioned in t

ae Interact with the System from
user Can accessthe database Via

he previous Paragraph,or he or Ric

ably other operations) as wel]
Most systems: also provide additi aesnot issue explicit command Ea bia interfaces in which ests dosrr es S such

aoeeitems from a meny ree at all, but instead operate by
S-driven interf. In boxes onformal training in ITree to be easier to use for seesar maeee

Information Systemsiga Information Technology: the a © not havea
command-driven interf. ©nused with much the same meanin aaa a
tain amount of pastesaequery languages—do tend a ell
(obviously notas ee al T expertise, though Parhanehst O require a cer-
guagelike COBOL), THe eed 10write an application neeee

Program in a lan-a). Then again
more flexible than gain, a command-driven interface js likely to be: a4 menu- or form _typically provide certaj ___°rms-driven one, jfaces, €rtain functions that are * in that query languagesnot supported by those otherinter-

shown in Fj ;
in Fig. 1.4) is the database administrator orA function and—and the a ‘ ‘

deferred to Sections eaeoeSeege

The third class of user (not
DBA. Discussion of the DB
administrator function—js

° ajor aspects of a databas a
€as In somewhat more detail. i.

Chapter 1 An Overview of Database Management

1.3 What Is a Database?

Persistent Data

It is customary to refer to the data in a database as “persistent” (even though it might
not actually persist for very long!). By “persistent,” we mean to suggest that database
data differs in kind from other, more ephemeral, data, such as input data, outputdata,
control statements, work queues, software control blocks, intermediate results, and
more generally any data thatis transient in nature. Let us elaborate briefly on the terms
‘input data’ and “output data”:

“Input data”refers to information entering the system forthe very first time (typi-
cally from a terminal or workstation). Such information might cause a change to be
madeto the persistent data (it might becomepart ofthe persistent data), but itis not
initially part of the database as such.

= Similarly, “output data” refers to messages and results emanating from the system
(typically printed or displayed on a screen). Again, such information might be derived
from the persistent data, butit is not itself consideredto be part of the database.

Of course, the distinction between persistent and transient data is not a hard and
fast one—it depends to some extent on context(i-e., how the data is being used). How-
ever, assuming that the distinction does at least make someintuitive sense, we can now
give a slightly more precise definition of the term “database”:

uAdatabase consists of some collection of persistent data that is used by the appli-
cation systems of some given enterprise.

Theterm “enterprise” here is simply a convenient generic term for any reasonablyself-
contained commercial, scientific, technical, or other organization. An enterprise might
be a single individual (with a small private database), or a complete corporation or
similar large body (with a very large shared database), or anything in between. Here are
some examples:

1. A manufacturing company
2. A bank

3. A hospital

4. A university

5. A government department

Any enterprise must necessarily maintain a lot of data aboutits operation. This is
the “persistent data” referred to above. The enterprises just mentioned would typically
include the following amongtheirpersistent data:

1. Product data

2. Account data

3. Patient data

TUTTI TITTTT TTTee

ad

1994

and

‘4

‘d and

1993

tion,

‘nt:

Meta Platforms, Inc.
Exhibit 1024

Page 007

Meta Platforms, Inc.
Exhibit 1024

Page 008

See
co

sy}
ist
Jor
ni¢

pri
M)

fo}
an

ca

thi

FIG. 1, i i iG16 A simple entity/relationship (E/R) diagram

eo

10

4. Student data

5. Planning data

Note: Thefirst few editions of this book used the term ‘‘o
of “persistent data.” That earlier term reflected the original e
tems on operationalor production applications—i.e., routin
cations that were executed over and over again to support th
the enterprise (for example, an application to Support the dep
ina banking system). Nowthat databases are increasingly be
application as well—i.e., decision support applications—t

perationaldata”j
mphasis in datah
e, highly repetitive apny.
e day-to-day operatior, of
osit Or withdrawal Ofcash
Ing used for other kinds of

he term “Operational data”
Le ays often maintai :, one cont ain twodis-

aining operational data and one containing decision RipponOrdata. The decisi
cision support database frequently consists of summary information (n(eg.,

n Place
ase Sys.

Entities and Relationships

Warehouses
PEELE TTI TIT

L PLEEETSTLTTP ETETSTTTeeeeeeaeeee

Part | Basic Concene s

Chapter 1 An Overview of Database Management 11

It is important to understandthat, in addition to the basic entities themselves, there
will also be relationships linking those basic entities together. Such relationships are
represented by diamondsand connecting lines in Fig. 1.6. For example, there is a rela-
tionship (“SP”) between suppliers andparts: Each supplier supplies certain parts, and
conversely each part is supplied by certain suppliers (more accurately, each supplier
supplies certain kinds ofparts, each kind ofpart is supplied by certain suppliers). Sim-
ilarly, parts are used in projects, and conversely projects use parts (relationship PJ);
parts are stored in warehouses, and warehousesstore parts (relationship WP); and so
on. Notethat these relationships are all bidirectional—thatis, they can be traversed in
either direction. For example,relationship SP between suppliers and parts can be used
to answereitherof the following questions:

= Given a supplier, find the parts supplied by that supplier
= Givenapart, find the suppliers who supply that part

The significant point aboutthis relationship, and all of the others illustrated in the
figure, is that they are just as much a part of the data as are the basic entities. They
musttherefore be representedin the database, just like the basic entities. Later in this
book we will consider ways in which this can be done.

Incidentally, Fig. 1.6 is a simple example of whatis called (for obvious reasons) an
entity/relationship diagram (E/R diagram for short). In Chapter 12 we will consider
such diagramsin some detail.

Fig. 1.6 also illustrates a numberof other points:

1. Although mostofthe relationships in the diagram involve twotypesofentity—ce.,
they are binary relationships—itis by no means thecasethatall relationships must
necessarily be binary in this sense. In the example there is onerelationship (“SPJ”)
involving three types of entity (suppliers, parts, and projects)—a ternary relation-
ship. The intendedinterpretation is that certain suppliers supply certain parts to
certain projects. Note carefully that this ternary relationship (“suppliers supply
parts to projects’) is not equivalent, in general, to the combination of the three
binary relationships “suppliers supply parts,” “parts are used in projects,” and
“projects are supplied by suppliers.” For example, the statementthat

(a) Smith supplies monkey wrenchesto the Manhattan project

tells us more than the following three statements do:

(b) Smith supplies monkey wrenches,

(c) Monkey wrenchesare used in the Manhattan project, and

(d) The Manhattan projectis supplied by Smith

—wecannot(validly!) infer (a) knowing only (b), (c), and (d). More precisely, if
we know (b), (c), and (d), then we mightbe able to infer that Smith supplies mon-
key wrenches to someproject (say project Jz), that some supplier (say supplier Sx)
supplies monkey wrenchesto the Manhattan project, and that Smith supplies some
part (Say part Py) to the Manhattan project—but wecannotvalidly infer that S.x is
Smith or that Py is monkey. wrenchesor that Jz is the Manhattan project. False

EY

tion,
193

193

1992

[-1994,

, 1994

and

Q4

ed and

L993

lition,

ent:

189

Meta Platforms, Inc.
Exhibit 1024

Page 008

Meta Platforms, Inc.
Exhibit 1024

Page 009

 iAhaafocnt
i

cETit
aoph

petatehDsRammhe>fTet.——

1

inferences suchas these are examples of what is sometimes called th
trap. * Connection

2. The diagram also includes onerelationship (PP) involvin
(parts). The relationshiphereis thatcertain parts include
components(the so-calledbill-of-

4 componentof a hinge assembly

otherparts asj: ee S as imnmaterials relationship)—for example
, whichis also considered as

turn be a component of some higher-level part such asa lid. Nitea is oad
ship is still binary; it isj Is relat;; Just that the two types of entit ; Elation-tnamelyparts and parts, happento be oneandthe same. gees linked together,

3. In general, a given set of enti

entity

ediate
a Screw jg

and employees: One (EJ) rep
Jects, the other (MJ) represents the fact that employe

Note carefull ‘y that a relationshitakeas ourdefinitio onsiuip canbe regarded as an entity in its ;thena Telationshipees any object about which we oakto enee ‘ight. If we
house W8”is an enti ma ts the definition. For instance “part Pd j s prmation,1 i : 5 1 * P

the corresponding meinen we might well wish to record eomee
of the present ch - Moreover, there are definiteadvanta ation—e.g.,chapter) to be obtained Lynne naees vantages (beyondthe scope
tween entities and relationships.In this b foreoeecessary distinctions be-shipsas just eas ook,thereforeJust a special kind ofentity, ~~“6wall generally treat relation-

Properties

es; and'so on. Such oreneus oo Projects have priorities;Properties r eT- For example,the databasemight whePeepeeredntity typetoate cludearecord type S represent-CITY record type in turn might irepresenting type in turn mightinclude a field typethe “location”
Properties in turn might be rae

structure ofarbitrary complexity. For ex
sumably quite simple, consisting as it d
in the database by a simple ch
“floorplan” property, and that

.

ple in nature. o ce
ample weesthey might havean internal

oes ofjtisca upPlier location” property is pre-
aracter string. By pa name, and can berepresented

; ntrast, a warehouse might have a

oa mple” data types include n

Chapter 1 An Overview of Database Management 13

1.4 Why Database?

Why use a database system? What are the advantages? To some extent the answerto
these questions depends on whetherthe system in question is single- or multi-user (or
rather, to be more accurate, there are numerous additional advantagesin the multi-user
case). Let us consider the single-user case first.

Refer backto the wine cellar example onceagain (Fig. I.1), which we can regard
as typical of a single-user database. Now, that particular database is so small and so
simplethat the advantages might not be very immediately obvious. But imagine a sim-
ilar databasefora large restaurant, with a stock of perhaps thousandsofbottles and with
very frequent changesto that stock; or think of a liquor store, with again a very large
stock and with high turnoveronthatstock. (These would typically still be single-user
systems, incidentally, even though the databaseis larger.) The advantagesof a database
system overtraditional, paper-based methodsof record-keeping will perhaps be more
readily apparentin these examples. Here are someof them:

Compactness: No need for possibly voluminouspaperfiles.
Speed: The machine canretrieve and change data far faster than a humancan. In
particular, ad hoc, spur-of-the-moment queries (e.g., “Do we have more Zinfandel
than Pinot Noir?”) can be answered quickly without any need for time-consuming
manual orvisual searches.

m_ Less drudgery: Muchofthe sheer tedium of maintaining files by hand is elimi-
nated. Mechanicaltasks are alwaysbetter done by machines.

= Currency: Accurate, up-to-date informationis available on demandat any time.

The foregoing benefits apply with even more force in a multi-user environment, of
course, where the databaseis likely to be much larger and much more complex than in
the single-user case. However,there is one overriding additional advantage in such an
environment, namely as follows: The database system provides the enterprise with cen-
tralized controlofits data (which,as the reader should realize from Section 1.3, is one
of its most valuable assets). Such a situation contrasts sharply with that found in an
enterprise withouta database system, where typically each application has its own pri-
vate files—quite often its own private tapes and disks, too—sothat the data is widely
dispersed and mightthusbe difficult to control in any systematic way.

Data Administration and Database Administration

Let us elaboratealittle on this concept of centralized control. The conceptimpliesthat
(in an enterprise with a database system)there will be some identifiable person who has
this central responsibility for the data. That person is the data administrator (some-
times abbreviated DA) mentioned briefly at the end of Section 1.2. Given that(as indi-
cated above)the datais oneof the enterprise's mostvaluableassets,it is imperative that
there should be some person whounderstandsthe data, and the needs of the enterprise
with respectto the data, at a senior managementlevel. The data administrator is that

LEY

tion,
193

193

1992

1-1994,

]

5. 1994

| and

194

ted and

4

, 1993

dition,>

1ent:

Meta Platforms, Inc.
Exhibit 1024

Page 009

Meta Platforms, Inc.
Exhibit 1024

Page 010

14 Part! Basic ConcentS$

person. Thus,it is the data administrator’s job to decide whatdata should
the databasein the first place, andto establish policies for maintaining and d Bei
that data onceit has been stored. An example of such a policy would be o ce eh
whocan perform whatoperations on what data in what pifrumistances—in reatates
a data securitypolicy (see further discussion below), aers

Note carefully that the data administrator is a manager
he or she certainly does need to have some appreciation of t
systems at a technical level). The technical person respon
data administrator’s decisions is the

DBA). Thus, the DBA,unlike the data
the DBAisto create the actual database

nota technician (although
he capabilities of database

sible for implementi :Pe ting thees administrator (usually ric
administrator, 1s an /Tprofessional, The job of
and to imple :to enf ; : a plementthe technicalauieieesdecisions madebythe data administrator TheAaensuring that the system o : : 18 alsomvidin : perates with adequate pe .aeseeeof other related technical services. The DEAaeand for

typically be vetnetesSeoe technicalassistants (i.e., the BESacto,bil
SEES 1cébya tea ;for simplicity, however,it is See m ofseyeral people, notjust by one person)eae fp enient to assu ignindividual. Wewill discuss the DBA function in Rateis ‘ uaa2

apter 2.

le

Benefits of the Database Approach
Weclose this section by iden: tifying sthe notion ofcentralized con de netrol of the data.

Redundancycan be reduced.

Pecific advantages that accrue from
a

In nondatabase systems each
often lead to considerable redun
age space. For example, a perso
tion might both

applicati i i

sep ‘cationhasits own privatefiles. This fact can
y In stored data, with resultantStor waste in stor-nnel application and an education-re iacords applica-

15

Chapter 1 An Overview of Database Management

databaseis said to be inconsistent. Clearly, a database thatis in an inconsistentstate
is capable of supplying incorrect or contradictory informationto its users.

It should also be clearthat if the given fact is represented by a single entry (1.¢.,
if the redundancy is removed), then such an inconsistency cannot occur. Alterna-
tively, if the redundancy is not removedbut is controlled (by making it known to
the DBMS), then the DBMScould guarantee that the database is never inconsistent
as seen by the user, by ensuring that any change madeto either of the two entries
is automatically applied to the other one also. This process is known as propagat-
ing updates—where (as is usually the case) the term “update”is taken to include
all of the operations of insertion, deletion, and modification. Note, however, that
few commercially available systems today are capable of automatically propagat-
ing updates in this manner, that is, most current products do not support controlled
redundancyatall, except in certain special situations.
The data can be shared.

Wediscussed this point in Section 1.2, but for completeness we mention it
again here. Sharing means not only that existing applications can share the data in
the database, but also that new applications can be developed to operate against
that samestored data. In other words,it might be possible to satisfy the data re-
quirementsof new applications without having to create any additionalstored data.
Standards canbe enforced.

With central control of the database, the DBA (under the direction of the data
administrator) can ensurethatall applicable standards are observed in the represen-
tation of the data. Applicable standards might include any orall of the following:
corporate, installation, departmental, industry, national, and international stan-
dards. Standardizing data representationis particularly desirable as an aid to data
interchange, or migration of data between systems (this consideration is becoming
particularly important with the adventofdistributed processing technology—see
Section 2.12). Likewise, data naming and documentation standards are also very
desirable as an aid to data sharing and understandability.

Security restrictions can be applied.
Having complete jurisdiction over the database, the DBA (a) can ensure that

the only meansofaccessto the database is throughthe proper channels, and hence
(b) can define security rules to be checked whenever access is attempted to sensi-
tive data (again, under appropriate direction from the data administrator). Different
rules can be established for each type ofaccess(retrieve, insert, delete, etc.) to each
piece of information in the database. Note, however, that without such rules the
security of the data might actually be moreat risk than in a traditional (dispersed)
filing system;thatis, the centralized nature of a database system in a sense requires
that a good security system be in place also.
Integrity can be maintained.

The problem of integrity is the problem of ensuring that the data in the
databaseis accurate. Inconsistency between two entries that purport to represent

ae the same “fact” is an example oflack ofintegrity (see the discussion of this pointmaisaaeeerepesipipainpeepereepemasesseneniss

993

r
1992

11-1994,

1,
192

39,

194

ted and

dition,
2

nent:

Meta Platforms, Inc.
Exhibit 1024

Page 010

Meta Platforms, Inc.
Exhibit 1024

Page 011

aeeRA
=

Part! Basic Concenes

above); of course,that particular problem canarise onlyif redundancyexic. ;
stored data. Even if there is no redundancy, however, the database Richa ithe
tain incorrect information. For example, an employee might be shown EF a
worked 400 hours in the weekinstead of40, or as belonging to a eainent5‘i
no such departmentexists. Centralized control of the database canhelp in » ,a
such problems—insofaras they can be avoided—bypermitting the ace ance
trator to define (and the DBA to implement)integrity rules to be Rete pete
any data update operation is attempted. (Again weare using the te ae
eeto coverall of the operationsofinsertion, deletion, and hace,
nanceAeTeeRanes even more importantin a mlae
ail s te les" environment, precisely becau: |ase is shared. For without appropriate controls it would be Peecicicfo. One
user to update the database inco’ rectly, thereby generating bine” other i ing bad data andso “infect-eaeiTae of that data. It should also be mentioned Headaueeee nd to be somewhat weak in their support forinteerit :gh there have been somerecent improvements in this area a
Conflicting requirements can be balanced

€ the

“best for the enterprise.”
In storage that givesfast

For . *€xample, a representation can be chosen for the data
cost of poorer perform

access for the mosti i‘© most importantapplications iance for certain other sppleanene. oo
Most of the ad anta: i Ove are wever, one: V ges listed ab y iint : probabl; fairly obvious. Ho ver,

the others) need

laining i ; :’ T systemst P g its opposite. Appli-hichthe data is ead tobe data-dependent. Whatthis Sabie is

1

Chapter 1 An Overview of Database Management 7
quence as defined by that index, and the internal structure ofthe application will be
built around that knowledge.In particular, the precise form of the various data access
and exception-checking procedures within the application will depend very heavily on
details of the interface presented to the application by the data management software.
Wesay that an application such as the one in this example is data-dependent,

because it is impossible to changethe storage structure (how the data is physically
stored) or access technique(howit is accessed) without affecting the application, prob-
ably drastically. For instance, it would notbe possible to replace the indexedfile in the
example by a hash-addressedfile without making major modifications to the applica-
tion. Whatis more, the portions of the application requiring alteration in such a case are
precisely those portionsthat communicate withthe data management software; the dif-ficulties involved are quite irrelevant to the problem the application was originally writ-
ten to solve—i.e., they are difficulties introducedbythe nature of the data management
interface.In adatabase system, however,it would be extremely undesirable to allow applica-
tions to be data-dependent, for at least the following two reasons:

1. Different applications will need different views of the same data. For example,
supposethat before the enterprise introducesits integrated database, there are two
applications, A and B, each owningaprivate file that includes the field “customer
balance.” Suppose, however, that application A records this field in decimal,
whereasapplication B recordsit in binary. It will still be possible to integrate the
twofiles, and to eliminate the redundancy, provided the DBMSis ready and able
to perform all necessary conversions between the stored representation chosen
(which might be decimal or binary or somethingelse again) and the form in which
each application wishesto see it. For example,if it is decided to store the field in
decimal, then every accessby B will require a conversionto or from binary.

This is a fairly trivial example of the kind of difference that might exist in a
database system between the data as seen by a given application and the data as
physically stored. Many other possible differences will be consideredlater.

_ The DBA musthave the freedom to change the storage structure or access tech-
nique in response to changing requirements, without having to modify existing
applications. For example, new kindsof data might be addedto the database; new
standards might be adopted; application priorities (and therefore relative perfor-
mance requirements) might change; new types of storage device might become
available; andso on.If applications are data-dependent, such changes will typically
require corresponding changesto be made to programs, thus tying up programmer
effort that would otherwise be available for the creation of new applications.It is
still not uncommon,even today, to find that 25 percent or even moreofthe pro-
grammingeffort available in the installation is devotedto this kind of maintenance
activity—clearly a waste ofa scarce and valuable resource.

It followsthat the provision of data independenceis a major objective of database
systems. Data independence can be defined as the immunity of applications to

Saue:instoragestructure and access technique—whichimplies, of course, that the

993

ar;

1992

91-1994,

91,
992

89,

75, 1994

d and
55
994

noted and
5,

2

dition,
192

ment:

Meta Platforms, Inc.
Exhibit 1024

Page 011

Meta Platforms, Inc.
Exhibit 1024

Page 012

(
c

§

‘
]
1

|
]

 18 Part | Basic Concen,$

applications concerned do not depend on anyoneparticular Storage structy
technique. In Chapter 2, we describe an architecture for database systems a OT acces.
a basis for achieving the data independence objective. Before then ho a PTOVidex
considerin more detail some examples of the types of change that themee > let ys
to make, and that we might therefore wish applications to MISht Wish

Westart by defining three terms: storedfield, stored
to Fig.1.7).

be immuneto.

record, and storedfile (refer
=Astoredfield is the smallest unit of stored dat

contain many occurrences (or instances) of eac
For example, a database containing informatio
cludea stored field type called “
ofthis stored field for each kind

a. The database will, in genera
h of several types of Stored fiejq

n about parts would r
part number,” and there would be Re eein

€ OCcurrenceof part (screw, hinge,lid,etc.),

 Stored database

aiaotherJ filesss
"Parts" stored file PFILE

 Part part part Part
no. name color Weight

 two occurrences

of the “part”
stored record type

 Stored field Occurrences

 Part part Partno. Part

name color weight

FIG. 1.7 Stored fields, records, and files

Chapter 1 An Overview of Database Management 19

sAstored recordis a collection of related stored fields. Again we distinguish be-
tween type and occurrence. A stored record occurrence(or instance) consists of a
group of related stored field occurrences. For example, a stored record occurrence
in the “parts” Gatabase might consist of an occurrence of each of the following
stored fields: part number, part name,part color, and part weight. Wesay that the
database contains many occurrencesof the “part” stored record type (again, one
occurrence for each distinct kind ofpart).

As an aside, we note that it is commonto drop the qualifiers “type” and “oc-
currence” and to rely on context to indicate which is meant. Although there is a
slight risk of confusion, the practice is convenient, and we will adopt it ourselves
from time to time in this book.

a Finally, a storedfile is the collection of all occurrences of one type of stored re-
cord. Note: We deliberately ignore the possibility of a stored file containing more
than onetypeofstored record. This is another simplifying assumptionthat does not
materially affect any of our subsequentdiscussions.

Now, in nondatabase systemsit is usually the case that an application’s logical
recordis identical to some corresponding stored record. As we have already seen, how-
ever,this is not necessarily the case in a database system, because the DBA might need
to be able to make changesto the storage structure—thatis, to the stored fields, records,
and files—while the correspondinglogical structure does not change. For example, the
“part weight” field mentioned above mightbe stored in binary to economizeonstorage
space, whereas a given COBOLapplication might see it as a PICTUREitem (i.e., as a
character string). And later the DBA mightdecide for some reasonto changethe stored
representationofthatfield from binary to decimal, and yetstill allow the application to
see it in character form.

Asstated earlier, a difference such as this one, involving data type conversion on a
particular field on each access, is comparatively minor; in principle, however,the dif-
ference between whatthe application sees and whatis actually stored might be quite
considerable. To amplify this remark, wepresent belowalist of aspects of the database
storage structure that might be subjectto variation. The reader should consider in each
case what the DBMSwould have to doto protect an application from such variation
(and indeed whether such protection can always be achieved).

= Representation of numeric data

A numeric field might be stored in internal arithmetic form (e.g., in packed
decimal) or as a characterstring. Either way, the DBA must choose an appropriate
base (e.g., binary or decimal), scale (fixed or floating point), mode (real or com-
plex), and precision (numberofdigits). Any of these aspects might be changed to
improve performanceor to conform to a newstandardor for many other reasons.

m Representation of character data

A character string field might be stored using any of several distinct coded
charactersets or “forms-of-use” (e.g., ASCII, EBCDIC).

LEY

r

ition,
993

993

Yr
1992

)1-1994,

ot,
92

39,

89

‘5, 1994

d and

994

ited and

‘dition,
92

nent:

Meta Platforms, Inc.

Exhibit 1024

Page 012

Meta Platforms, Inc.
Exhibit 1024

Page 013

aU5

eeaea

20

Units for numeric data

The units in a numeric field might change—from inche
example, during a process of metrication.

Data encoding

In somesituations it might be desirable to represent data in
values, For example,the “part color” ,
string ("Red™or “Blue” or “Green”

interpreted accordingto the coding scheme | = “Red? 2 =
Data materialization

In practice the logical field seen b

a difference betweenreal and v
Possibleto insert or modify an
Structure of Stored records

Twoexisting stored rec
Stored records

and

could be combined to form

field, which an application se
...), Might be stored as a sing

 Part! pa.;

SIC Cop,
“Rpts

S to centimete;. f‘, [Or

torage by Coded
€sSasa char

; le decima|
‘Blu bi]

acter

digit,

Yy an application will usually correspond |,
S we havealready seen, there mightbe dit.

, the process of materializ a-

it miOccurrenceofa virtualfield. ight notbe (directly)

ords mi i imight be combined into one. For example, the

Such a change
database system.It j

might occuras
implies that an appli

subsetof the correspond
cord would be invisible

Alternatively, a Single sto

Part Number|color|
could be broken down into

ing stored recor
to the application

record type
red record type mj

—thatis, certain field
IN question.

Precatahiise applications are broughtinto the
Cation’s logical record mightconsist of a

S in that stored re-

ght be split into two. Reversingthe

21
Chapter 1 An Overview of Database Management

Sucha split would allow less frequently used portionsofthe original record to
be stored on a slower device, for example. The implication is that an application’s
logical record mightcontain fields from several distinct stored records—thatis,it
would be a superset of any given oneofthose stored records.

Part Number

= Structure ofstored files

A givenstoredfile can be physically implementedin storage in a wide variety
of ways. For example, it might be entirely contained within a single storage volume

sk), or it might be spread across several volumes onseveraldiffer-(e.g., a single di
cording to theent device types; it might or might not be physically sequenced ac

values of somestored field; it might or might not be sequenced in one or more
additional ways by some other means, e.g., by one or more indexes or one or more
embeddedpointer chains (or both); it might or might not be accessible via hash-
addressing; the stored records might or might not be physically blocked (several
per physical record); and so on. But none of these considerations should affect
applications in any way(other than in performance, of course).
This concludesourlist of aspects of the storage structure that are subject to possi-

ble change. Thelist implies (among other things) that the database should be able to
grow without affecting existing applications; indeed, enabling the database to grow
withoutlogically impairing existing applicationsis probably the single most important
reason for requiring data independence in the first place. For example, it should be
possible to extend an existing stored record by the addition of new storedfields, repre-
senting,typically, further information concerning some existing type ofentity (e.g., a
“unit cost” field might be addedto the “part” stored record). Such new fields should
simply be invisible to existing applications. Likewise, it should be possible to add en-
tirely new types of stored record (and hence new storedfiles), again without requiring
any changeto existing applications; such records would typically represent new types
ofentity (e.g., a “supplier” record type could be addedto the “parts” database). Again,
such additions shouldbe invisible to existing applications.

Weclosethis section by noting that data independenceis not an absolute—differ-
ent systems provideit in different degrees. To putthis another way, few systems,if any,
provide no data independenceatall; it is just that some systemsare less data-indepen-
dent than others. Modern systemstend to be more data-independentthan older systems,
butthey are still not perfect, as we will see in someofthe chapters to come.

1.6 Relational Systems and Others

Almostall of the database products developedsince the late 1970s have been based on
whatis called the relational approach; what is more, the vast majority of database
research overthe last 25 years has also been based—albeit a little indirectly, in some

—_

LEY

-

lition,
993

993

Yr,

1992

91-1994,

91,
992

89,

189

75, 1994

d and
3,
994

ited and

24

2, 1993

4

‘dition,
92

ment:

Meta Platforms, Inc.
Exhibit 1024

Page 013

Meta Platforms, Inc.
Exhibit 1024

Page 014

22

Part| Basic Cone
cases—onthat approach.In fact, it is undeniable that the relational :
sents the dominanttrend in the marketplace today,and that the « fen pre
(see Part II of this book) is the single most important develo be Bonal Modep
history of the database field. For these reasons, plus the Addition ne poate CNlire
relational model is solidly based on certain aspects of ohana that the
provides an ideal vehicle for teaching the concepts and principles of and there fore
tems, the emphasis in this booki databasest? is very heavily on ASE Sys.

| tional approach. ie encuonal'systems ang the PaWhat then does i ?

possible to centaeaeet Hecate ceetuonal? It is unfortunat |2 : €stion fully at this early point j i ; Ely not1s possible and desirable to 3 ; Pp In our discussions: ho ;: : »0give a rough-and-ready answer, whi 7 1OWEver, jt: Se » WhiPrecise later. Briefly, a relational system is a system in which: chwe can make mor

1. The data is perceived by the useras tables and nothi .2. The operatorsat the user’s dis (othing but tables); and
posal(e.g., for data retrieval) are operators that gezen-

 re The reasonsuch systemsare called “relational”i
y Just a mathematical term for 4 table

terms “relation” and “table” can befurther discussion, eras
Asindicated, we wil], : ake the fi : a7later, but it will se 5 * me Toregoing definition consid

part (a) ofthe figureaeaepoeBie 1.8 provides anHeafadownversion of 4 single table, named CELLAR(jn fact its4cont sen of the CELLAR table from Fig. 1.1, reduced in aelfe€ if a little

2 s that the term “relation”is essen-
Or mostpractical purposes, indeed the

Synonymous. See Part II ofthis bookfor

D are in fact exampin Section 1.]
Wecan nowdistinoyj rlguish betweenrelatiAs alreadystated. th relational and nonrelati, the us : Onal syster of a relational System sees the data as ae pees AQUOWS.

system, €s, and nothing but

q.

 Chapter 1 An Overview of Database Management 23
LEY

a) Given table: CELLAR
Chardonnay 91 4
Fumé Blanc
Pinet Noir
Zinfandel

b) Operators (examples):

WINE

Chardonnay oe 4
Fumé Blanc 91 2

Chardonnay
Fumé Blanc
Pinot Noir
Zinfandel

1. Row subset: Result:

SELECT WINE, YEAR, BOTTLES
FROM CELLAR
WHERE YEAR > 90 ;

Result:

2. Column subset:

SELECT WINE, BOTTLES
FROM CELLAR ;

FIG. 1.8 Data structure and operatorsin a relational system (examples)

5, 1994

list, hierarchic, and network systems. Examplesof commercially available products
in these three categories include:

land

194
CA-DATACOM/DB,from Computer Associates International
Inc. (previously known as DATACOM/DB,from Applied
Data Research)

IMS, from IBM Corporation

CA-IDMS/DB, from Computer Associates International
Inc. (previously known as IDMS, from Cullinet Software
Inc.) !, 1993

Invertedlist: ted and

Hierarchic:

Network:

Thefirst relational products began to appear in the late 1970s and early 1980s. At 3
the time of writing (1993), there are well over 100—perhaps as many as 200—such
products commercially available, and those products run on just about every kind of
hardwareandsoftwareplatform imaginable. Examples of such products include DB2
from IBM Corporation; Rdb/VMSfrom Digital Equipment Corporation; ORACLE l
from Oracle Corporation; INGRESfrom the Ingres Division of The ASK Group Inc.; ae
SYBASEfrom Sybase Inc.; and many, many more. ye

Morerecently, research has proceeded on a variety of what might be called
“postrelational” systems, someof them based on upward-compatible extensionsto the al
original relational approach,others consisting of attempts at doing something entirely
different. We content ourselves for now with merely mentioning some of these more

Meta Platforms, Inc.
Exhibit 1024

Page 014

Meta Platforms, Inc.
Exhibit 1024

Page 015

a
Co

 Ph.pTceThabe,
lL

¢ "=aaa =
24 P

art | Basic Conc
Ent

recent approaches by name, without making any attemptat this point {
the names mean or whatthe researchersare trying to achieve: © €xplain What

Deductive DBMSs

Expert DBMSs
Extendable DBMSs

Object-oriented DBMSs

Semantic DBMSs

Universal relation DBMSs

In the case of object-orien ir - ted systems,in fact, some

aUSE GemStone from Servio Corporation, Shes: :on, and OpenODB from Hewlett-Packard Corporation Me. We

Ss begun to ap-
Object Design
will examin: i ne

ed systemsin particular—inlater Parts of

1.7. Summary

really just a special kind

1.1 Define the following terms:

25
Chapter 1 An Overview of Database Management

Exercises

menu-driven interface
multi-user system

online application
persistent data

binary relationship
command-driveninterface
concurrent access

data administration
database property
database system query language
data independence redundancy
DBA relationship
DBMS security
entity sharing
entity/relationship diagram stored field

stored fileforms-driveninterface

integration
integrity

1.2. Whatare the advantagesof using a database system?
1.3 Whatare the disadvantages of using a database system?

onal system’? Distinguish between relational

stored record

1.4 What do you understand by the term “Telati
and nonrelational systems.

1.5 Show the effects of the following SQLretrieval ope
Fig. 1.1.

(a) SELECT WINE, PRODUCER
FROM CELLAR

WHERE BIN = 72 ;

rations on the winecellar database of

(b) SELECT WINE, PRODUCER
FROM CELLAR
WHERE YEAR > 91 ;

(c) SELECT BIN, WINE, YEAR
FROM CELLAR
WHERE READY < 94 ;

(d) SELECT WINE, BIN, YEAR
FROM CELLAR

WHERE PRODUCER = 'Robt. Mondavi'
AND BOTTLES > 6 ;

1.6 Show theeffects of the following SQL update operations on the winecellar database of Fig. 1.1.

(a) INSERT
INTO CELLAR (BIN, WINE, PRODUCER, YEAR, BOTTLES, READY }

VALUES (90, 'Syrah', 'Meridian', 89, 12, 94)

(b) DELETE
FROM CELLAR
WHERE READY > 95 ;

(c) UPDATE CELLAR
SET BOTTLES = 5
WHERE BIN = 50 ;

LEY

ition,
193

1992

1-1994,

NM,
192

Sy

39

5, 1994

1 and

194

ited and

dition,
22 l

nent:

Meta Platforms, Inc.

Exhibit 1024

Page 015

Meta Platforms, Inc.
Exhibit 1024

Page 016

26
(d) UPDATE CELLAR

eos BOTTLES = BOTTLES + 2 Chapter 1 An Overview of Database Management 27 EY
(WHERE BIN = 50 ; ;

¢ 1.7 Write SQL statements to perform the following operations on the Winecellar datab (c) Sat* : E: ad as 4 9
s (a) Retrieve bin number, nameof wine, and numberof bottles for all Geyser Pe k aE cate 93
i (b) Retrieve bin numberand nameofwineforal] wines for which ther, nes areere
J bottles in stock. € are morethan five penOee OEE 7
5 (c) Retrieve bin numberforall red wines. (d) ‘ya" 1

(d) Add three bottles to bin number30. WINE BIN|YEAR ee; 88
(e) Remove all Chardonna Cab. Sauvignon 48 py from stock.

] (f) Add an entry for a new case (12 bottles) of Gary Farrell Merlot: b; 1.6 (a) Row for bin 80 addedto the CELLARtable. :
91, ready in 96, €rlot: bin number 35, year (b) Rowsfor bins 45,48, 64, and 72 deleted from the CELLARtable. 92

1.8 Suppose you ' : . , in 50 has numberofbottlessetto S.
i a SejaaSe music Collection consisting of CDs and/or LPs and/ ieee for Pin mr
(a saeaeaes 0 build a database that will let you find which recordings Fe ic popeame as (c):
{ Grime’ ae rkeeate or conductor(¢.g., Simon Rattle) or recoc pe for 1.7 (a) SELECT BIN, WINE, BOTTLES ‘ork (€.g., Beethoven’s Fifth) or or peo Chur sOl; che ; FROM CELLAI

| seerae concerto) or chambergroup(e g., the Rear:npeo) or kind of work BeeeME"chica sy Geyser Peak". 7{ Ship diagram |i : i pee €t). Draw an entity/relat;| P clagram like that of Fig. 1.6 for this database. entity/relation- (b) SELECT BIN, WINE fe)
FROM CELLAR

1 5 .

Answers to S WHERE BOTTLES >5;ele 7' cted Exercises (c) SELECT BIN Lee
| 1.1 We make o k FROM CELLAR 5, 1994ne remark here: = 'Cab. S ignon'

term database when te}ealaesales brochures, €tc., very frequently use the Le ee = ee eae | and
dor Y"s database by a factor of two to one”) oe vendor X° S database outperformedven- OR WINE = ‘Zinfandel’ 04
very common. Caveatlector. "ous Usageis sloppy, and deprecated, but very, ue Bear ova

1.3 Some disadvantages areasfoll ORM ete ch ; oat ‘ ted and
aS . : Seas There is no shortcut answerto this question, because “color of wine” is not explicitly re-

ecurity might be compromised (without good controls) cordedin the database.® Integn i :

grity might be compromised (without good controls) (d) UPDATE CELLAR
= Additional hardware might be required SET ees BOTTLES + 3 f
= Perfo : a WHERE BIN = 30 ;

s be overhead mightbe Significant (e) aoa
= Successful operation is crucial (th SueTePe € enterprise might be high] : FROM CELLAR
a The system is likely to be complex (though oa ¥ vulnerableto failure) WHERE WINE = ‘Chardonnay’ ; 3

the user) gh such complexity should be concealed from
1.5 (a) (f) INSERT

INTO CELLAR (BIN, WINE, PRODUCER, YEAR, BOTTLES, READY)ere PRODUCER VALUES (55, ‘Merlot', ‘Gary Farrell’, 91, 2Gane|

||Zinfandel|Retanena
| (b) dition,

| [wine[prepuce] A
| | Chardonnay nent:

Chardonnay
Jo. Riesling
Fumé Blanc

Gewurztraminer

Buena Vista
Geyser Peak
Jekel

Ch. St. Jean
Ch. Ste Jean

Meta Platforms, Inc.
Exhibit 1024

Page 016

Meta Platforms, Inc.
Exhibit 1024

Page 017

29 LEY

Chapter 2 An Architecture for a Database System

| 2|An Archi :BernanleValaemaneyMth8Nit eee ition,| n rc itecture for (individual user views) 993

a Database System is
| r,

| Conceptual level 1992
i (community user view)| 11-1994,

ir 1,

I 21 P 192IF . ur Internal level| | Po (storage view) 19,
| | . Weare now inaposit; <

| In presenting dicheone to introduce an architecture for a AAG FIG. 2.1 The three levels of the architecture S
| | Subsequent chapters, sae 'S fo provide a framework on whi ee... ae) | . Such a framework j ch we canbuild in| concepts and for explaining theLefor describing general database = The externallevelis the oneclosest to the users—i.e., it is the one concerned with 89

\ a claim that every system can neatly be s :PSHE database systems—but we do the way the data is viewedby individualusers; anda : ;

ie phe ¥ suggest that this matin aa this particular framework,nor = The conceptuallevelis a “level of indirection” between the other two.| if ork. “Small” . : €cture provi ; e. architecture. Howse:wae 'N particular, will probably ee ee the only possible If the external level is concerned with individual user views, then the conceptual 5, 1994
| i tional or otherwise) a : architecture in question does seemaeees ofthe level is concerned with a community user view. In other words, there will be many d and, posed by the ANSI/SP sonably well; Moreover,it is in broad eeesystems (rela- distinct external views, each consisting of a more orless abstract representation of is| I called ANSI/SPARC ae Study Group on Data Base M agreement with that pro- some portion ofthe total database, and there will be precisely one conceptual view, oat
) the ANS/SPARC ahitecture—see references [2. 1-2 -nagement Systems(the so- consisting ofa similarly abstract representation ofthe databaseinits entirety. (Remem- ited and| cateaeas cein every detail, howeves -2]). We choosenotto follow ber that mostusers will not be interested in the total database, but only in somere-. , ficeiae nal preliminary remark The material of th stricted portionofit.) Likewise, there will be precisely one internal view, representing

| ‘i abateae fundamental to a full appreciatio : 1s chapter (and the preceding the total database as physically stored. Note: When we describe some representation as| dry, andit do abase systems However,it is also so n of the structure and capabilities abstract here, we merely meanthatit involves user-oriented constructs such as logical y
| . eee es tend to involve a large numberofpense abstract, and hencerather recordsandfields instead of machine-oriented constructs such asbits and bytes.} as Agee reader. In laterparts of nen ncepts and terms that are probably An example will help to make these ideas clearer. Fig. 2.2 shows the conceptual 2, 1993
q preferjust i a thus perhaps more Immediate] gas will find material that is much view,the corresponding internal view, and two corresponding external views (one foroF eBa es give the present chapter a “once oi Lae You mighttherefore a PL/I user and one for a COBOLuser),all for a simple personnel database. Ofcourse, 3| Ria ieee sections more carefullylater as aes pene reading for now, and to the example is completely hypothetical—it is not intended to resemble any actual sys-| Hi pics at hand. ¥ become moredirectly relevantto tem—and manyirrelevantdetails have deliberately been omitted.
i) Weexplain the exampleas follows.
| 2 es : 2\ -2 The Thr m At the conceptuallevel, the database contains information concerning an ently| ee eed| v Levels of the Architecture type called EMPLOYEE. Each individual EMPLOYEE occurrence has an oe| The ANSUSPARC : ; EMPLOYEENUMBER(six characters), a DEPARTMENT_NUMBER(four e
i eatiel aides architecture is dividedinto three level] characters), and a SALARY(five decimal digits). ment:W ; external levels (see Fig. 2 1.B €vels, knownas theinternal. con-1 mi The fnieraal -41). Broadly speaking: r = Atthe internal level, employees are represented by a stored record type calledt ae Bg level is the one closest to physical ee STORED_EMP,twenty bytes long. STORED_EMPcontains fourstored fields: aiM with the waythe data is physically stored: storage—i.e., it is the one con- six-byte prefix (presumably containing control information such asflags or point- ?; ers), and three data fields corresponding to the three properties of employees.In n,1989

Meta Platforms, Inc.
Exhibit 1024

Page 017

Meta Platforms, Inc.
Exhibit 1024

Page 018

—

| External (PL/I)

01 EMPc.

02 EMPNO PIc x(6).
_ 02 DEPTNO Pic x(4).

 2 EMP# CHAR(6),
2 SAL FIXED BIN(31);

EMPLOYEE_NUMBER CHARAVEE] ‘HARACTER (6DEPARTMENTNUMBER CHARACTER a
SALARY ‘NUMERIC (5)

STORED_EMP LENGTH=20

use: TYPE=BYTE (6), OFFSET=0
TYPE=BYTE(6),OFFSET,= rE(6) , OPFSET=6, INDEX=ae TYPE=BYTE (4) , OFFSET=13 fees”
TYPE=FULLWORD, OFFSET=16

FIG.2.2 An example of the three levels

addition, STOREDEMP Te
called EMPX, whosedefinition is not shown

= The PL/I user has
an external view ofth. \

represented by a PL/I record containing tw database j
interest to this user and have therefo f ee

cords are indexed on the EMP# field by an index

in which each employee is
ee Is (department numbersare of no

7 omitted from the view). The record

been omitted). The reco
tion in accordance with

(this time, salaries haverd t i
Ype 1s defined by an ordinary COBOLrecord descrip-the normal COBOL rules,

Fig. 2.2. See Section 2.6.
Now,i

system:

Chapter 2 An Architecture for a Database System

31

a First, the conceptuallevel in such a system will definitely be relational, in the sense
that the objects visibleatthat level will be relationaltables (also, the operators will
be relational operators,i.e., operators that work on suchtables, such as the row-
and column-subsetting operators discussed briefly in Section 1.6).

= Second,a given external view will typically either be relational also, or else some-
thing very closetoit; forexample, the PL/I and COBOL record declarationsof Fig.
2.2 can be regardedas, respectively, the PL/I and COBOLequivalents of the dec-
laration of a relational table in a relational system. Nore: In passing we should
mentionthe pointthat the term “external view” (usually abbreviated to just “view”)
unfortunately has a rather specific meaningin relational contextsthat is not identi-
cal to the meaningascribedto it in this chapter. See Chapter 3 for an explanation
ofthe relational meaning.

Third, the internal level will nor be “relational,” because the objects at that level
will not be just (stored) relational tables—instead, they will be the same kinds of
object foundatthe internallevelof any other kind of system (stored records, point-
ers, indexes, hashes,etc.). In fact, relational theory as such has nothing whatsoever
to say aboutthe internallevel; it is, to repeat from Chapter 1, concerned with how
the database looksto the user.

Wenowproceed to examine thethree levels of the architecture in considerably
more detail, starting with the external level. Fig. 2.3 (overleaf) shows the major com-
ponents ofthe architecture andtheir interrelationships. That figure will be referenced
repeatedly throughoutthe remainderof this chapter.

2.3 The External Level

The externallevelis the individual user level. As explained in Chapter 1, a given user
can be either an application programmeroran enduserof any degree of sophistication.
The DBAis an important special case. (Unlike other users, however, the DBA will
need to be interested in the conceptual and internal levels also. See the next two sec-
tions.)

Each user has a languageathisor her disposal:

m Forthe application programmer, that language will be either one of the conven-
tional programming languages such as C, COBOL,or PL/I, or else a proprietary
languagethat is specific to the system in question. Such proprietary languages are
often called “fourth generation” languages (4GLs), on the (very informal!) grounds
that (a) machine code, assembler language, and languages such as COBOLcan be
regardedasthree earlier language “generations,” and (b) the proprietary languages
Tepresent the samekind of improvementover“third generation” languagesas those
languages did over assembler language.

m Forthe end user, the language will be either a query language or some special-
purpose language, perhaps forms- or menu-driven, tailored to that user’s require-
ments and supported by someonline application program (see Section 1.2).

LEY

ition,
993

993

r

1992

71-1994,

91,
992

89,

189

75, 1994

d and
S,
994

noted and
5,

94

2, 1993

bh

<dition,
192

ment:
Meta Platforms, Inc.

Exhibit 1024

Page 018

Meta Platforms, Inc.
Exhibit 1024

Page 019

me

oo

: Begm| 2 SORa ea 2= jr ec AZa
2) o& Oni

°
=x

ExternalviewBUserB2 Hostlanguage +DSL

External/conceptual mappingB

=r chal2 s
© = ®D OE =

ies ee > 7 BsoO a> LUG o c oue} CW * a S © £
| $° = —9 2
en es sc &5 2 oo as= = S 20> ®

2 ° ae ©
og S 8 ary

D 3 oO c)a oO 0
w| 3 So Oo 0
<q} 54 x os a= cw = = = o@ oS a mswn aa & ty 2 0 oO
=) “ect > = = BE ao a = oo

ae c = occ Ly co
a oa

En &oo wua

a| 2
<| & a<
oO] oonw i aa
>| a 25 eso wu a E

ZI meee Sco<Sen= nmep

SeoODOCco~~ o

oo 8 2SS Ss FIG.2.3Detailedsystemarchitecturebythe database administrator (DBA)andmaintained *UserinterfaceSchemasand mappingsbuilt

JO

33
Chapter 2 An Architecture for a Database System

ing about all such languages is that they will
include a data sublanguage—i.e., a subset of the total languagethat is concernedspe-
cifically with database objects and operations. The data sublanguage (abbreviated DSL
in Fig. 2.3) is said to be embeddedwithin the corresponding host language. The host
languageis responsible for providing various nondatabasefacilities, such as local (tem-
porary) variables, computational operations, if-then-else logic, and so on. A given sys-
tem might support any number of host languages and any numberofdata sublanguages;
however, one particular data sublanguage that is supported by almost all current sys-
temsis the language SQLdiscussed very briefly in Chapter 1. Most such systems allow
SQLto be used both interactively (as a standalone query language) and also embedded
in other languagessuch as C and COBOL.See Chapter 8 for further discussion.

Now,althoughit is convenientfor architectural purposesto distinguish between
the data sublanguage andits containing host language, the two might in fact be indis-
tinguishable so far as the user +s concerned: indeed,it is preferable from the user’s point
of view if they are indistinguishable. If they are, or if they can be separated only with
difficulty, we say the two are tightly coupled. If they are clearly and easily separable,
then wesay theyare loosely coupled. Most systems today support loose coupling only.
A tightly coupled system would provide a more uniform set offacilities for the user, but
obviously involves more effort on the part of the system designers and developers
(which presumably accounts for the status quo); however,thereis evidence to suggest
that there will or may be a gradual movement toward more tightly coupled systems
over the next few years.

In principle, any give

For our purposes, the important th

n data sublanguage is really a combination ofat least two
subordinate languages—adatadefinition language (DDL), which supports the defini-
tion or declaration of database objects, and a data manipulation language (DML),
which supports the manipulation or processing of such objects. For example, consider
the PL/I user ofFig. 2.2 in Section 2.2. The data sublanguagefor that user consists of
those PL/I featuresthat are used to communicate with the DBMS:

mw The DDLportion consists of those declarative constructs of PL/I that are needed to
declare database objects—the DECLARE (DCL)statementitself, certain PL/I data
types, possibly special extensionsto PL/I to support new objects that are not han-
dled by existing PL/I.

= The DMLportion consists of those executable statements of PL/I that transfer in-
formationto and from the database—again,possibly including special new statements.

Note: Current PL/I doesnotin fact include any specific database featuresat all. The
“DML.”statementsin particular are typically just calls to the DBMS(thoughthosecalls
might be syntactically disguised in some manner to make themalittle more user-
friendly; see, e.g., the discussion of embedded SQLin Chapter8). This is because PL/I
systems, like most other systems today, currently provide only very loose coupling
betweenthe data sublanguageandits host.

To return to the architecture: We havealreadyindicated thatan individualuserwill
generally be interested only in someportion of the total database; moreover,that user’s
view ofthat portion will generally be somewhat abstract when compared with the way

LEY

ition,
193

993

1992

11-1994,

89

5, 1994

dand

194

ited and

‘dition,
92

ment:

Meta Platforms, Inc.
Exhibit 1024

Page 019

Meta Platforms, Inc.
Exhibit 1024

Page 020

—.o.o..~tr.=*=_ —ieee= peersitcarnAEPE.Po.

 —_—===.

34

Part | Basic Cone
7 Tl os ’ 7 T :the data is physically stored. The ANSI/SPARCterm foranin Y

external view. An external view is thus the contentof the database a WIS an
: S Seen by éparticular user(that is, to that lew i.aaah user the external view is the database), Bipey.. Owenel Department mightregard the databa Sample, g

dividual User’s yjt Cw

| S€ as a collect; :mentreco ! Blige :be hie oYcee, plus a collection of employee record occurrenc oo depa.W , epa are of the supplier and part record occurrencessark S, and mighChasing Department. ‘ ¥ usersin the Py,
In general, then, an external view consists of man

types of externalrecord (not necessarily the samethi
data sublanguage is definedin termsofexternal rec ‘
Operation will retrieve external record Scoutieaceas

Y occurrences ofeach of many
8 aS a stored record). The , Iser’: 5

ds; for example, a DML relrieyp
hot stored record Occurre

tion IS represented at the external
meansnae mation to be represented in other

4 | - Pra system using such alterna;ZitsBei 8 Sucnh alternative
sus amareataeOS n this section will require suitable

7 ome conceptual and interna] levels also(see

Ways as well, e.g., in the form of‘
methods, the definitions and ex
modification, Analo
Sections 2.4 and 2.5

Incidentally we; »WECan nowsee thatthe term “laciealin Chapter | actual] “tered nt logical record” iwill generall ly referred to an external record. From thi eePoin
E Y avoid the term “logical record? om tis point forward,in fact, we

_Hach external view is defined b

“Pe, the employee extmplo tga IF ernal record typeshen ehAeplusa five-dijgit fabciinal
d the underlying conce ©inition of the mapping between: ; t rg OT a gsPing later, in Section 26. nal shema(See the next section), We

a Six-characte
Salary field, and so on, In addition, ‘
the external schema an
will considerthat map

2.4 The Conceptual Level 7

AY particular user. Broadly
data “as it really is,” rather

Xample) the particular lan-

: is intend :than as users are forcedto see j nded to be a View ofthesee itb .

guage or hardware they might be “4a Constraints of (for e
The conce iPtual view consists of 1

ceptual recor i Momaed. For example, it might consist oPaee
ton of employee recor, see
Plus a collection ofaesSnees Pl

Pn

of many typesof con-
; of departmplier record occurrences partment record

La 4 PTVETT Qk 1) BPG 1 BD TEE aeeaeee

ORE

Chapter 2 An Architecture for a Database System 35

ceptual record is not necessarily the same as either an external record,on the one hand,
or a stored record,on the other.

Note: It should be pointed outthat there might well be other ways of representing
data at the conceptual level—ways,thatis, that do not involve recordsas suchatall, and
hence might be preferable in some respects for that very reason [2.7]. For example,
instead of dealing in terms of“conceptualrecords,” it might be preferable to consider
entities, and perhaps relationships too, in some more direct fashion. However, such
considerations are beyondthe scopeofthis early partof the book. See Chapters 12 and
22-25 for further discussion.

The conceptual view is defined by means of the conceptual schema, which in-
cludes definitionsof each of the various conceptual record types (again, refer to Fig. 2.2
for a simple example). The conceptual schemais written using another data definition
language, the conceptual DDL. If data independenceis to be achieved, then those con-
ceptual DDL definitions must not involve any considerations of storage structure or
access technique—they must be definitions of information content only. Thus there
mustbe no reference in the conceptual schemato storedfield representations, stored
record sequence, indexing, hash-addressing, pointers, or any other storage and access
details. If the conceptual schemais made truly data-independent in this way, then the
external schemas, which are defined in terms of the conceptual schema(see Section
2.6), will a fortiori be data-independenttoo.

The conceptualview, then, is a view ofthe total database content, and the concep-
tual schemais a definition of that view. However, it would be misleading to suggest
that the conceptual schemais nothing more thana set of definitions muchlike the sim-
ple record definitions found in (e.g.) a COBOL program today. The definitions in the
conceptual schemaareintendedto include a great many additional features, such as the
security and integrity rules mentioned in Chapter 1. Some authorities would go so far
as to suggest that the ultimate objective of the conceptual schema is to describe the
complete enterprise—notjust its data per se, but also how that data is used: how it
flows from pointto point within the enterprise, whatit is used for at each point, what
audit or othercontrols are to be applied at each point, and so on[2.3]. [t must be em-
phasized, however, that no system today actually supports a conceptuallevel of any-
thing approaching this degree of comprehensiveness; in most existing systems, the
“conceptual schema”isreally little more than a simple unionofall individual external
schemas,with the addition of certain security and integrity rules. But it seemsclear that
systemsof the future will eventually be far more sophisticated in their support of the
conceptuallevel.

2.5 The Internal Level

Thethird levelof the architectureis the internallevel. The internal view is a low-level

representation of the entire database; it consists of many occurrencesof each of many
types of internalrecord.“Internal record” is the ANSI/SPARCterm forthe construct
that we havebeencalling a stored record (and wewill continueto use this latter term).

LEY

ition,
193

393

1992

'1-1994,

89

5, 1994

dand

994

ited and

M4

2, 1993

?

‘dition,
g2

ment:

L989

Meta Platforms, Inc.
Exhibit 1024

Page 020

Meta Platforms, Inc.
Exhibit 1024

Page 021

36
Pa ;

tl Basic Conceps5

The internal viewis thus still at one remove from the physical |
deal in termsofphysical records—also called blocks or a . aah
specific considerations such as cylinderortrack sizes Pe th:
effectively assumes an infinite linear address Space; Seiso
ate to physical storage are highly system-specific and

generalarchitecture.

eonae view 1s described by meansof the internal
€ variousstored record types butalso specifies whatj

ince it does
—Norwith any

words, the intern
f how that addres
are deliberately (

not

device.
al View
5 Space

Milted

schema, Which no
ndexes exist, how Stored
ds are in, and so on (once
ema is Written using yet

‘In this book we will nor.6

storage stru Pca yet Stored database”jFage structure definition”in place of “internal & in pice of “internal view" Bailema.’g +

{ only

ee situations, application pro-
‘ Te (see Section 2.1 1)—mightbe
er than at the external level. Need-

An external/
conceptual Mappi- Ping defjexternal view and the conceptual et eee

tween these twolevels are similar to th
and the stored database. Fo .
record namescan be ch

rT

In general theaence between a particular‘ ifferen
Se that can exist be ces that can exist be-

Tr example, fields Petween the conceptual view
can have different data types, field and

n be combined into a single

* The block or i ii Page is the unify 1.6. i]
and main memory ina single Sonne coca oe nou ctiat

Orageaccess, Typicei Beeeee between secondary storage
are IK, 2K, or 4K bytes (K = 1024=).

Chapter 2 An Architecture for a Database System 37

time; any numberofusers can share a given external view; different external views can
overlap.

Incidentally, most systems permit the definition of one external view to be ex-
pressed in terms of others(in effect, via an external/external mapping), rather than
always requiring an explicit definition ofthe mappingto the conceptual level—a useful
feature if several external viewsare rather similar to one another. Relational systemsin
particular typically do provide such a capability.

2.7. The Database Administrator

As explained in Chapter1, the data administrator is the person who makesthestrategic
and policy decisions regardingthe data of the enterprise, and the database administrator
(DBA) is the person who provides the necessary technical support for implementing
those decisions. Thus, the DBAis responsible for the overall controlof the system at a
technical level. We can now describe some ofthe functions of the DBAinalittle more
detail. In general, those functions will include the following.

m Defining the conceptual schema

It is the data administrator’s job to decide exactly what information is to be
held in the database—in other words,to identify the entities ofinterest to the enter-
prise andto identify the information to be recorded aboutthose entities. This pro-
cess is usually referred to as logical—sometimes conceptual—iatabase design.
Once the data administrator has thus decided the contentof the database at an ab-
stract level, the DBA will then create the corresponding conceptual schema,using
the conceptual DDL. The object (compiled) form of that schemawill be used by
the DBMSin respondingto access requests. The source (uncompiled)form will act
as areference documentforthe users of the system.

(In practice, matters will rarely be as clearcut as the foregoing remarks sug-
gest. In somecases, the data administrator will create the conceptual schema di-
rectly. In others, the DBA will do the logical design.)

= Defining the internal schema

The DBA mustalso decide how the data is to be represented in the stored
database. This processis usually referred to as physical database design. Having
done the physical design, the DBA must then create the corresponding storage
structure definition (i.e., the internal schema), using the internal DDL.In addition,
he or she mustalso define the associated mapping betweenthe internal and concep-
tual schemas.In practice, either the conceptual DDLor the internal DDL—most
likely the former—will probably include the meansfor defining that mapping, but
the two functions (creating the schema, defining the mapping) should beclearly
separable. Like the conceptual schema, the internal schema and corresponding
Mappingwill exist in both source and object form.

= Liaising with users

ile, It is the business of the DBAtoliaise with users, to ensure that the data they

SLEY

'T

dition,
1993

1993

er,

), 1992

991-1994,

991,
1992

989,

1g5,

QR9

1s,
3

75 : l go4

‘ed and
ns,
1994

ented and
ns,

994

52, 1993

993

92

Edition,
992

rement:
0

1,
89

‘gn,
; 1989

Meta Platforms, Inc.
Exhibit 1024

Page 021

Meta Platforms, Inc.
Exhibit 1024

Page 022

 38

Part | Basic Co
"cents

require is available, and to write (or help the users write) the nece

39

nsibilities, ie componentPELELULELUTTIVTTTTTTITTY TTT Ty Ty Ty Th Tr .! ein ease? ee ve ; | PETey r PEAT nT PETIT Erne . ee

LEY

schemas, using the applicable external DDL. (As already ment; Ssary EXtery Chapter 2 An Architecture for a Database System +
tem might support several distinct external DDL I Begcda Bive :
tweenany given external schema and the concent eeoe the Mapping 2.8 The Database ManagementSystem dition,
In practice, the external DDLwill probably Fits if eSAl80 be define dles all ac
mapping, but once again the schema and fhe mab Gi € means for SPecifying a The database management system (DBMS) is the software that handles all accessto
Each external schema and correspond; Pping should be clearly separ oe the database. Conceptually, what happensis the following. 1993
objectform. rhe Mapping will exist in both sourcean 1. A userissues an access request, using some particular data sublanguage (typically er,

ei 1, 1992
isteree.Ce user liaison function include consulting o ee : F aeee it 191-1994
Paiaeng ec nical education, assisting with problem d n APPlication 2. The DBMSintercepts that request and analyzesIt. . ’»andsimilar system-related professional servi etermination and 3. The DBMSinspects,in turn, the external schemafor that user, the corresponding
Defining security and integrity rules ices, external/conceptual mapping, the conceptual schema, the conceptual/internal map- ee

Asalready discussed ping, and the storage structure definition. 3
conceptual schema. The Saeaeeragrity rules can be Tegarded aspart ofth 4. The DBMSexecutes the necessary operations onthe stored database. ’
such rules, should include facilities for Specityine By way of an example, consider whatis involvedin the retrieval of a particular ee
Defining backup and recove external record occurrence.In general, fields will be required from several conceptual

Once-an wee Ty procedures record occurrences, and each conceptual record occurrence in turn will require fields
descutene ees 1S Committed to a database ¢ from several stored record occurrences. Conceptually, then, the DBMS mustfirst re- 989
intat © Successful operation of that system aoa It becomes critically trieve all required stored record occurrences, then construct the required conceptual a
hens e database—caused by human tte - Inthe event of damageto any record occurrences, and then construct the required external record occurrence. At each 3
= p ring Operating system—itis essent; » Say, Or a failure in the hardware stage, data type orother conversions might be necessary. ety 7 eee

Med with the minimum of delay and wi aual to be able to repair the data con- Of course, the foregoing description is very muchsimplified; in particular, it im- <a
the System. For €xample, the availabj with as little effect 4S possible ontherest of plies that the entire processis interpretive, inasmuch as it suggests that the processes of ed and
ideally not be affected. The DRA ability of data that has not been dama d should analyzing the request, inspecting the various schemas,etc., are all done at execution ra
€ry scheme, involving e.8., pe FRESE define and implement an a ro ee ae time. Interpretation, in turn, usually implies poor performance, because of the ee
backup Storage, and procedi sage unloading or “dumping” a ieie execution-time overhead.In practice, however, it might be possible for access requests ented and
the mostrecent Ps ures for reloading the database When Fi ee . to be compiled in advance of execution time. A concrete example of a system that as;

Incidentally, the foregoin di ; ae employsthis latter approach, IBM’s DB2,is briefly described in Appendix B.
Bood idea to spread the total Scussion provides one reason why it mj Let us now examinethe functions of the DBMSinalittle more detail. Those func-
acing itall in one Place; the infiveneee actosseveral esWeot tions will include support forat leastall of the following. 304um : ‘ ?

icjsagesNecess weyaneneey welrmibcuntte gadein _
Maatens ase, for Simplicity, € to talk as if there were The DBMSmustbe able to accept data definitions (external schemas, the con-

& performance and Tesponding ¢ : ceptual schema,the internal schema,andall associated mappings) in source form 193
Asindicatedin Section 1.4, th > ° changing requirements and convert them to the appropriate object form. In other words, the DBMS must

fem asto getthe perience i E DBA 1S Tesponsible for SO organi7i include language processor componentsfor each ofthe variousdata definition lan- ;
appropriate adjustments as re ae 1s “best for the enterprise.” a neers the sys- guages (DDLs). The DBMS mustalso “understand” the DDL definitions, in the
Sary to reorganizethe soredea change. For exam fe OE making the sense that, for example, it “understands” that EMPLOYEEexternal records in- 92
mancelevels remain acceptable ae On a periodic pici Hecdeeance clude a SALARYfield; it must then beableto use this knowledge in interpreting waliStorage (internal) leve| of the “AS already mentioned any cha nsure that perfor- and responding to user requests (e.g., a request for all employees with salary less one
changeto the definj tion of the ieee: must be accompanied ie Agsee p22 350,000).
Ceptual schema can remain co Mapping from the concept y a corresponding SM Data = itati ement:nstant. Ptual level, so that the con- ata manipulation 0

Ofcourse, the foregoing is The DBMS must be able to handle requests from the userto retrieve, update, 1,
Someideaofthe extent ata not an exhaustive list—itj , or delete existing datain the database, or to add new data to the database. In other 89

nature of the DBere, S merely intendedto give words, the DBMS mustinclude a data manipulation language (DML) processor en,
, 1989

Meta Platforms, Inc.
Exhibit 1024

Page 022

Meta Platforms, Inc.
Exhibit 1024

Page 023

Part | Bac;
aSic Co

Neents

I ¥ ’ séa Eeneral, DMLrequests may be “planned” or unplanned”: Chapter 2 AnArchitecture for a Database System 41 iLEY

1. A planned request is one for which th; e need was foreseen Ta - ’ WwW © - 4 * & 6s ge 4 betthetime at which the request is actually to be executed. The ee M advance at how inferior toa true dictionary—andwould reserve the term “dictionary” to refer eebly have tuned the physical database design in such ; BA will Prob; to a specific (important) kind of application developmenttool [2.6]. Other terms Fia ,
performancefor such requests g uch a Wayas to Suarantee o,, f that are also sometimesusedto referto this latter kind of object are “data reposi-

2 ‘ Sood tory” and “data encyclopedia.” See references [2.4-2.6].- An unplanned request, by contrast, is an ad h ; 1993
the need was not seen in advance ea oc query, 1.€., a request for Which m Performance ¥, i c : ; ; j ,fashion. The physical database ee-reaina Spur-of-the-momeny It goes withoutsaying that the DBMSshould perform all of the functions iden- , 19923 ment or might notbei Ret tified aboveasefficiently as possible.eetrequest underconsideration.In general, obtainin Coa Suited for : el 191-1994,performance for unplanned Tequests representsasignifi eee best POSsible Wecan summarizeall of the foregoing by saying that the overall function of the
DBMS.See Chapter 18 for an extensive discussi af pant challenge for the DBMSisto provide the user interface to the database system. The userinterface can 91,
To use the terminology introd a4 : op of this problem. be defined as a boundary in the system below which everythingis invisible to the user. 992

teristic of “operational” or “prod ures Section 1.3, planned requestsare char: Bydefinition,therefore, the user interface is at the externallevel. However, as weshall 189,
characteristic of “decisi BTS oe applications, while unplanned requ ie see in Chapter 17, there are somesituations in which the external view is unlikely to
will typically be issued ce Support” applications. Furthermore plae— are differ very significantly from the relevant portion of the underlying conceptual view,at eeom prewritten applicati peaests least in today’ rcial productsrequests, by definiti , : Pplication pro ams, w east in today s commercial products.ie y Sfinition, will be issued interactively, 4 hereas unplanned Weconcludethis section by briefly contrasting database managementsystemsas

©curity and integrity discussed above with file managementsystems(file managersfor short). Basically, the 989
The DBMSmust monitor user requests file manageris that componentofthe overall system that managesstoredfiles, loosely :

Security andintegrity rules defined b ie andreject any attemptsto violate the speaking,therefore,it is ‘closer to the disk” than the DBMSis.(In fact, Appendix A ;
Data recovery and concurre ythe DBA (see Section 2 7) explains how the DBMSistypically built on top of somekindoffile manager.) Thus, i.The DBMS ncy the user of a file managementsystem will be able to create and destroystoredfiles and oes
Brae —or else some other related softw perform simpleretrieval and update operations on stored records in suchfiles. In con- ed and

nsaction manager—must enfo are Component, usually called trast to the DBMS, however: s,
trols. Details of these aspects of the Tce certain recovery and concurrency con ‘ 1994
see Part IV ofthis book for : System are beyond the Scope ofthis ch m File managersare not aware ofthe internal structure ofstored records, and hence entedso further information (C P' 1s chapter handl ane nted andData dictionary (Chapters 13 and| 4) cannot handle requeststhat rely on a knowledge ofthat structure (such as “Find all is,

loyees with salary less than $50,000”).The DBMS must <1BP
be regarded as adahes a data dictionary function Thedatadict m Theytypically provide little or no support for security andintegrity rules.its own 4 ionary can : endatabase). The dictionary aie(but a system database, rather than :.user m Theytypically provide little or no support for recovery and concurrency controls. 94
caeis, definitions ofotheraie ped the data” (sometimes called a Thereis no true data dictionary conceptat the file managerlevel. > 1993ata. cts i z : "Baer i Particular, all the various asieitee assystem—rather thanjust “raw m They provide muchless data independence than the DBMSdoes.

ul physically be stored, in both sour Mappings(external, conceptual oncomprehensive dictionary will also ' ce and object form,in the dictionary. A = 3
forinstance, which programs use waeude cross-reference information Resing 2.9 The Data Communications Manager
which : CQ piecesofthe 5 :ac reeeesey are connectedpie ieeece eauire In this section, we briefly consider the topic of data communications. Database re—in em, 5 ; .fines, and thus inclyeecee should—be integrated eeSs=ee. quests from an end userare actually transmitted (from that user’s workstation—which a
the dictionary justlike an mf €Mnition. It should certainly be possibl might be physically remote from the system itself—to some online application,builtin Edition,
which prommncandi oe feiosSo that, for example aeBeeii or otherwise, and thence to the DBMS)in the form of communication messages. Like- 992

ie the system. See Chapters gana: ely to be affected by some 5Opotedichange to wise, responses back to the user (from the DBMSand online application back to the ement:: er discussion, g user’s workstation) are also transmitted in the form of such messages. All such message)
transmissions take place underthe direction of another software component, the data ;
communications manager (DC manager). 39

The DC manageris not part of the DBMSbutis an autonomoussystem in its own gn,lt . that di i, einen ieee directories andcatalopsaresome-7sry rae Oe eeee a , 1989

Meta Platforms, Inc.

Exhibit 1024

Page 023

