
Building Real-Time Groupware with
GroupKit, A Groupware Toolkit

MARK ROSEMAN and SAUL GREENBERG

University of Calgary

This article presentsan overview of GroupKit, a groupware toolkit that lets developersbuild
applications for synchronous and distributed computer-based conferencing. GroupKit was
constructedfrom our belief that programminggroupwareshould be only slightly harder than
building functionally similar single-user systems. We have been able to significantly reduce
the implementationcomplexity of groupware through the key features that comprise Group-
Kit. A runtinw infia.structure automatically manages the creation, interconnection, and
communications of the distnbutsd processes that comprise conference sessions. A set of
groupware programming abstractions allows developersto control the behavior of distributed
processes,to take action on state changes,and to share relevant data. Groupwarewidgets let
interface features of value to conference participants to be easily added t.a groupware
applications. Session managers —interfaces that let people create and manage their meet-
inge—aredecoupledfrom groupwareapplicationsand are built by developersta accommodate
the group’s working style. Example GroupKit applicationsin a variety of domainshave been
implementedwith only modest effort.

Categoriesand Subject Descriptors:D.2.2 [Software Engineering]: Tools and Techniquee—
user inte~aces; D.3.3 [Programming Languages]: LanguageConstmcts and Features;D.4.1
[Operating Systems]: Organization and Design-interactive systems;H.5.2 [Information
Interfaces and Presentation]: User Interfaces-user interface management systems; H.5.3

[Information Interfaces and presentation]: Group and OrganizationInterfaces-synchro-
nous interaction

GeneralTerms: HumanFactors

Additional Key Words and Phrases: Computer-supportedcooperativework, GroupKit,group-
ware toolkits, synchronous groupware, user interface toolkits

1. INTRODUCTION

Over the last few years, we have been designing groupware for synchronous
distributed conferencing, where two or more distance-separated people
work on a shared task in real time. Our first system, called Share

[Greenberg 19901, allovved participants in a distributed meeting to take

This research was supported in part by the National Sciences and Engineering Research
Council of Canada and by Intel Corporation.
Authors’ address: Department of Computer Science, University of Calgary, Calgary, Alberta
T2N 1N4, Canada; email: [roseman; saul]@cpsc.ucalgary .ca.
Permission to make digital/hard copy of part or all of thie work for personal or classroom use
is granted without fee provided that the copies are not made or distributed for profit or
commercial advantage, the copyright notice, the title of the publication, and its date appear,
and notice ie given that copying is by permission of the ACM, Inc. To copy otherwise, to
republieh, to post on servers, or to redistribute to lists, requires prior specific permission
and/or a fee.
@ 1996ACM 1073-0516/96/0300-0066$03.50

ACM Transactions on Computer-Human Interaction, Vol. 3, No. 1, March 1996, Pages 66-106.

Meta Platforms, Inc.
Exhibit 1018

Page 001

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

GroupKit, a Groupware Toolkit . 67

Table I. Core Requirements for a Groupware Toolkit

Design Requirement Rationale Examples
User Cerriered

Support multiuser Many groupware applications can be seen as ●Tele~inters
actions and shared work surfaces, and stttdies (e.g., Tang ●GraphicsdAnnotations
awareness of [1991], Gutwin and Greenberg [1995], and ●Muhiuser Scrolkrars
others over a Dourish and Bellotti [1992]) have attemptedto ●Gestalt Views
visual work cbaracteti some of tfteproperties necessaryto
surface. support collaborativework. .%q.prdng tkse in

a toolkit can encourage developers to build more
usable applications.

Provide stqymrt
for structuring
group processes
but do so in a
flexible enough
fashion to accom-
modatethedlversc
needs of different
groups.

Rather than adopt a single model for how groups Different Polia”esfor:
should interact, a toolkit should provide a range .Floor Control
of facilities to support the needa and working ●-ion M~~
styles of different groups, while allowing appli- .Acceaa to Conferences
cation develops to extend these to support spe- .Treatrnent of Latemmera
cific steeds [Greenberg 1591]. A toolkit should
scs~rt buildhtg ap@icationsrelying on either
aocmtprotocols orhrghly stmctured andautomated
proceaa models.

Integrate group- -are shouldnotpme a barria to ‘Wvidual” .Shared Terminals
warewith waysof doing work, but instead it should be ●Te@hone Links
conventional antooUdyintegrated [ItiI andKotsayashi19%2]. .Videa Conferencirsg
ways of doing Access to both single-user applications or even
work. aoncomputer reaortrces [Iabii 195X)]is important,

as is the avaiiabifityof traditiorudcommunication
rne&srns.

Programmer Centered

Provide technical Groupware systems are composedof multiple ●Session Management
support to deal processes that mmsnurricateover a network, ● process Creation
with multiple and toolkits can augment the operating-system- ● Locate Other Processes
distributed level support by simplifyhrg creation, inter- .Multicaat Abstractions
proceaaes. comection, and teardown of the processes. A W%aion Persistence

toolkit can also provide cmntnuntcations models ●Meaaage SdsLzstion
ami concurrencycontrol smclsartismathat abstract and Data LQcking
away from the operating system.

Provide support Dim-ibutedgroupware shouldalso be able to share ●Shared Environments
for shared data. its commondata easily and shmddbe able to &lezt ●Data serialization

and take action when data are changed. Concar- and LOCking
rency control should b available to kee data

!?!
●BirtchtgCaflbacks to

consistent [Greenberg ad Marwood 1 4]. Environment Events

Provide support Sin@ many groupware
??

Iicatioas can k seen ●Sbared Graphics
for shared data as shared visual work au aces, a toolkit ahoutd and Primitives
and an extensible supportthecreationandrtsanipulatkmof bothgemric K)bj@_-
shared-gmphics ad qsplication-specificobjectson a graphicalwork
model. surface. paradigmssuch as Abs&acdon-Link-View ●SepamteView fmar

[Patterson 1991]can be supported by the toolkit Objezt Representation
to facilitate this.

turns sharing unaltered single-user applications; group interaction was ‘
mediated by choosing from a variety of flexible floor control mechanisms
to best match the particular style of the meeting [Greenberg 1991]. We
then built several groupware equivalents of paint and structured draw-
ing programs [Greenberg et al. 1992]. GroupSketch was a minimalist
bitmapped sketchpad, where all users saw exactly the same things on
their display, FMwell as the multiple pointers of other participants. X/Group-
Sketih was a second-generation version that, among its additional features,

ACM Transactions on Computer-Human Interaction, Vol. 3, No. 1, March 1996

Meta Platforms, Inc.
Exhibit 1018

Page 002

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

68 ● M. Roseman and S. Greenberg

allowed participants to view different parts of the document. GroupDraw was
a prototype of a structured drawing application, where participants could
jointly manipulate a variety of objects, such as lines and rectangles, on their
display.

Building groupware proved a frustrating experience. Implementing even
the simplest systems was a lengthy process, as much time was spent
inventing similar ideas over and over again. Some of the common tasks of
the programmer included the following items. The setup and management
of distributed processes had to be arranged. Interprocess communication
links had to be established. Actions between processes had to be coordi-
nated and their internal states updated as people interacted with the
system. Similar interface components had to be reimplemented to provide
for generic group needs. Session managers had to be supplied so that
people could create, monitor, and enter the conferences.

Consequently, we decided h implement a groupware toolkit to support
programming of synchronous and distributed computer-based conferencing
systems. Our motivation for this project was our belief that:

A developer using a well-designed toolkit should find it only slightly
harder to program usable groupware systems when compared to the
effort required to program an equivalent single-user system.

We took the tasks common to almost all groupware programming (noted
earlier) and transformed them into a set of core user and programmer-
centered requirements for a groupware toolkit. These are summarized in
Table 1 and are described in more detail elsewhere [Roseman and Green-
berg 19921. The table also lists the rationale behind the requirements.
From these requirements, we believed that a tiolkit could reduce imple-
mentation complexity by providing the following generic features:

—A runtime infrastructure would automatically create processes and man-
age their interconnections and communications.

—A simple set of groupware programming abstractions, built on top of a

conventional language and GUI toolkit, would be available to groupware
developers. Primitives would include remote procedure calls between
application instances, sharing of data, and generation and tracking of
conferencing events.

—A set of groupware widgets would let developers easily add generic
interface constructs of value to conference participants, resulting in
better and more usable groupware systems.

-Session management, the mechanism by which people create and manage
meetings, would be handled separately from the groupware applications.
Primitives for constructing different session managers would be available
for developers wishing to create custom interfaces that suit the particu-
lar needs of a group.

The result of our efforts is GroupKit, a toolkit whose design has been
evolving over several years. The first generation of GroupKit, developed in

ACM Transactions on Computer-Human Interaction, Vol. 3, No. 1, March 1996.

Meta Platforms, Inc.
Exhibit 1018

Page 003

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

GroupKit, a Groupware Toolkit ● 69

C++ and InterViews [Linton et al, 1989], has been described in a previous
paper [Roseman and Greenberg 1992]. Based on our experiences with that
system, we constructed a second-generation version that has proven to be
an even richer platform for developing groupware. Readers familiar with
the earlier work should find that the version described here both general-
izes and extends the earlier system.

GroupKit and its applications still run on Unix workstations under an
Xl 1 environment. However, the system now uses the interpreted Tcl
language and Tk interface toolkit [Ousterhout 1994] and the Tc1-DP socket
extensions [Smith et al. 1993]. GroupKit developers build their applications
using Tcl/Tk as well as the extensions provided by our toolkit. GroupKit
and the underlying systems are all freely available via anonymous ftp;
details are provided at the end of this article. 1

The article begins with an overview of GroupKit. It shows both how an
end-user sees systems constructed with the toolkit and what a GroupKit
program looks like. Subsequent sections detail GroupKit’s features—its
runtime infrastructure, its groupware programming abstractions, the set of
groupware widgets, and its session management. These sections show how
some of these features work in practice by including both screen snapshots
and code fragments from existing applications. The examples also illustrate
the wide variety of systems that can be built in GroupKit. The article then
evaluates GroupKit by examining the effort required to build groupware
applications in it. It closes by comparing GroupKit to other groupware
toolkits. A video is also available [Greenberg and Roseman 1994] that
captures the dynamics of many of the screen snapshots described in this
article.

2. OVERVIEW

Before delving into technical details, it is worth getting an overall feel for
GroupKit. To set the scene, this section begins by showing what end-users
of programs built in GroupKit may see. It then takes the developer’s view,
by tracing through a simple GroupKit program.

The scenarios presume that users’ computers are running X Windows
within a Unix environment, that computers are interconnected using
TCP/IP protocol over the Internet, and that the GroupKit software has
been installed. Users may be located anywhere on the lnternet as long as
their network connection does not suffer excessive latency (which would
compromise interactive performance of some applications). Because Group-
Kit can run in most Unix systems, the actual machine type does not
matter.z

‘ All the systems that comprise GroupKit are under active development, with new versions of
software appearing periodically. This article is mostly based upon GroupKit 3.1, Tcl 7.4, Tk
4.0, and Tc1-DP 3.2.
z For example, GroupKit has been successfully installed on Sun, HP, RS6000, and Silicon
Graphics workstations as well as PCs running Linux.

ACM Transactions on Computer-Human Interaction, Vol. 3, No. 1, March 1996.

Meta Platforms, Inc.
Exhibit 1018

Page 004

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

70 ● M. Roseman and S. Greenberg

(%tmmi?S w&@Rms

Design Sasslal I.Ma TmI$ctnw
(M Gulwln

Yuu an% IsaulGreenberg

Fig. 1. The Open Registration session manager: two conference sessions are shown, with
three participantspresent in the PostIt conference.

2.1 An Example of an End-User’s View of GroupKit

This section walks through an example GroupKit session, where we will see
a user monitoring conferences in progress, joining two existing conferences,
and then creating a new conference. Although the scenario illustrates
actual systems provided in the GroupKit release, it is important to remem-
ber that these are just examples of systems that programmers could build
with the toolkit.

First, the user (Saul) invokes a session manager, in this case the “Open
Registration” manager (Figure 1). In the “Conferences” pane, Saul sees that
two conferences are in progress: “PostIt” and “Design Session.” By selecting
one of them, he can then see who is in a particular conference (the list in
the “Participants” pane).

Next, Saul joins the “Postlt” conference by double clicking its name,
which adds him to the list of participants. The PostIt Editor then appears
on his display (Figure 2, left window). With this simple GroupKit applica-
tion, he can type a short message and send it to one or more participants.
The selected participants will see the message appear in a pop-up window.
In Saul’s work community, everyone uses PostIt to see who is available and
to invite people into conferences. Shortly after joining, Saul receives a
PostIt message from Linda inviting him to join the “Design Session”
conference (Figure 2, right window).

Saul joins the “Design Session” conference via the session manager, and
GroupSketch, a multiuser sketchpad that allows simultaneous drawing, then
appears on his display (Figure 3). lt contains the group drawing being worked
on, as well as the teleprinters of the other participants. The voice connection is
made through a telephone conference call. ~er discussing the figure, Saul
leaves the conference by selecting the “Quit” option from the “File” menu.

A bit later on, Saul receives a phone call from his colleague Judy, who
wishes to discuss a document. Saul decides to create a new conference that
runs the FileViewer. This application provides a relaxed what-you-see-is-

ACM Transactions on Computer-Human Interaction, Vol. 3, No. 1, March 1996,

Meta Platforms, Inc.
Exhibit 1018

Page 005

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
 Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

 Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
 With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

 Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
 Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

 Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

