
Archive ouverte UNIGE
https://archive-ouverte.unige.ch

Chapitre d'actes 1996 Accepted version Open Access

This is an author manuscript post-peer-reviewing (accepted version) of the original publication. The layout of

the published version may differ .

Generating Hypertext Views on Databases

Falquet, Gilles; Prince, Ian James; Guyot, Jacques

How to cite

FALQUET, Gilles, PRINCE, Ian James, GUYOT, Jacques. Generating Hypertext Views on Databases.

In: Actes du 14ème Congrès INFORSID - Systèmes d’information, multimédia et systèmes à
base de connaissance. Bordeaux (France). Toulouse : INFORSID, 1996. p. 269–284.

This publication URL: https://archive-ouverte.unige.ch//unige:46602

© This document is protected by copyright. Please refer to copyright holder(s) for terms of use.

Meta Platforms, Inc.
Meta Platforms, Inc. v. Angel Technologies Group LLC

IPR2023-00059
Exhibit 1042 - Page 1 of 17

f

Find authenticated court documents without watermarks at docketalarm.com.

https://archive-ouverte.unige.ch
https://archive-ouverte.unige.ch//unige:46602
https://www.docketalarm.com/

Generating Hypertext Views on Databases

Gilles Falquet, Jacques Guyot, Ian Prince

C.U.I - Université de Genève, 24, Rue Général Dufour
CH-1211 Genève, Suisse
Tél: +41 22 705 77 70 - Fax: +41 22 320 29 27
e-mail: {falquet, guyot, prince}@cui.unige.ch
http://cuiwww.unige.ch/db-research/hyperviews/

Resumé:

Cet article présente un langage et un sytème de construction de vue hypertexte (hypervue)
surune base de données. Nous étudions tout d’abord différentes manières de représenter les objets
d’un base de données sous forme de composants d’un hypertexte: représentation directe des
tuples, représentation d’ensembles de tuples et représentation de tuples associés. Nous montrons
ensuite comment ces approches sont intégrées dans un langage déclaratif de définition
d’hypervues. Ce langage permet de spécifier comment le contenu des différents types de noeuds
ainsi que les liens hypertextes sont formés à partir du contenu de la base de données. Nous
donnons également des indications sur la conception de la structure hypertextuelle en fonction des
relations sémantiques représentés dans le schéma de la base de données.

Le prototype de traducteur qui a été réalisé génère des hypervues pour le système Worldwide
Web (W3) à partir d’une base relationnelle. Nous décrivons les principaux composants du système
réalisé et montrons comment le processus de traduction peut rémédier à certains défauts du modèle
W3 d’hypertexte.

Mots clés: bases de données, sémantique des données, vues, hypertextes, génération
d’hypertextes

Abstract:

This paper presents a language and a system to construct a hypertextual view (a hyperview) of
the content of a database. We first study different approaches to map database objects to hypertext
components: tuple level mapping, tuple sets mapping, and associated tuples mapping. Then we
present a declarative hyperview definition language which integrates these approaches. With this
language one can specify for each node type and each link type how to construct it from the
database contents. We also show how the semantic relationship represented in the database schema
can be used to design the hypertext structure.

A prototype translator has been implemented to generate a Worldwide Web (W3) hyperview of
a relational database, the main components of this generation system are presented. We also show
how the translation process can overcome some shortcoming of the W3 hypertext model.

Keywords: databases, database semantics, views, hypertexts, hypertext generation.

Meta Platforms, Inc.
Meta Platforms, Inc. v. Angel Technologies Group LLC

IPR2023-00059
Exhibit 1042 - Page 2 of 17

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

1. Introduction

It is well acknowledged that accessing a database with traditional query languages, like SQL, is
too complex for non specialist or casual users. This is particularly true when the intended answer
requires information that is spread across several database tables (or classes). In such a situation
the user must be able to select a correct logical access path within the database schema and to
express this path as a query language expression. The former task may be particularly difficult
when the database schema comprises hundreds of tables and thousands of attributes (often bearing
misleading names).

The generally adopted solution consists in providing a set of views or access forms to the user.
However forms enable users to perform queries quickly and safely, they limit the user’s interaction
with the database to a set of predefined actions. This is particularly annoying when the user needs
information that exists somewhere in the database but none of the predefined forms has been
devised to get it. This approach also raises problems related to information distribution over large
heterogeneous networks. Since forms are in fact database client applications, each new user must
obtain and run these applications on his local system.

Database browsing or navigation tools can remedy such problems by allowing the user to
explore the database contents with a single navigation tool.

Several exploration tools have already been proposed for databases, in particular for object-
oriented databases (see [SIGMOD 92] for papers on this topic) (see [Isakowitz & al] for a
hypermedia methodology based on E-R model).

We chose to take another perspective that consists in presenting the database content as a
hypertext. This hypertext can be actually stored in a hypertext system or virtual, in which case,
nodes and links are constructed on demand through database queries. Different users with different
operating environments can then access this hypertext with a simple hypertext browsing tool,
provided it recognizes the common hypertext markup language. In addition, the generated
hypertext nodes can be linked to other external hypertext nodes and thus participate in a global
hypertext.

Our first prototype has been used to build a W3 [Berners-Lee 94] hypertext view of the Oracle
dictionary [Bobrowski 92] which comprises more than one hundred tables.

In the next section we present some features of the relational data model on which the hypertext
construction is based. Note that since we use a semantic point of view, our results are also
applicable to object-oriented models. In section 3 we analyse several ways of mapping database
entities to hypertext components. Section 4 presents a hypertext definition language intended to
specify how to construct hypertext nodes and links from the database contents. The
implementation technique using W3 and Oracle is shown in section 6. Section 7 contains a
comparison with other approaches. The conclusion discusses the benefits of hypertext generation
techniques for W3-based hypertexts.

2. Semantic Links in the Relational Model of Data

2.1 Relations, Attributes and Tuples

In the relational model of data [Codd 70] real world entities are represented by relation tuples.
The structure of these tuples is given by relation schemes which are sets of attribute names together
with their domain (or data type). A tuple of a relation R takes a value for each attribute of R’s
scheme, this value must belong to the attribute’s domain.

Relations can be either explicitly stored in the database or derived (computed) from other
relations. In current relational database management systems stored relations are usually called
tables and derived relations are called views. In this paper we will stay with the term relation to
designate either a table or a view. We will also use the term tuple and attribute while these are often
called rows and columns in commercial DBMSs.

Meta Platforms, Inc.
Meta Platforms, Inc. v. Angel Technologies Group LLC

IPR2023-00059
Exhibit 1042 - Page 3 of 17

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Throughout the paper we will base all our examples on the Oracle database dictionary, which is
a database comprising approximately 120 tables.

2.2 Inter Relations References

One important characteristic of the relational model is that references between tuples are based
on attribute values, as opposed to object-oriented or hypertext models which use immutable object
identifiers. However, relations usually possess a primary key which is composed of one or more
attributes the values of which uniquely identify each tuple of the relation. For instance the attribute
username is a primary key of relation U S E R S (u s e r n a m e , u s e r _ i d ,
creation_date,...) since all users must have a different user name. Primary key values can
be used in other relations to refer to a particular tuple of this relation. For instance, each tuple of
the relation TABLES(table_name, owner, table_space,...) refers to a tuple of
USERS through the value of its owner attribute. Since the same user may possess several tables,
this attribute establishes a “many-to-one” relationship between TABLES and USERS.

References through primary key values, called foreign keys, create many-to-one relationships.
In order to implement many-to-many relationships between the tuple of two relations R(r-key, …)
and S(s-key, …), the relational model forces to define an “associative” relation T(r-key, s-key, …)
which refers to both R and S.

Inter relation references are generally intended to implement different kinds of semantic
relationships such as compound-component (part-of), generic-specific (is-a), or general binary
relationships. We will see later how the hypertext generation may depend on the kind of semantic
relationship considered.

3. Strategies for Mapping Database Contents to Hypertexts Components

Database and hypertext models are based on radically different information representation and
processing paradigms [Conklin 87][Nanard Nanard 93]. Hence it is not possible to transform a
database into an equivalent hypertext. However, if one focuses on information representation, not
considering information retrieval and processing, one can use different strategies to map the
contents of a database to hypertext components.

3.1. Direct Tuple Level Mapping

The most straightforward way to map database entities to a hypertext structure consists in
mapping each relation tuple t to a hypertext node node(t). In this situation, (a subset of) the
attribute values of the tuple form the content of the corresponding node. The key attributes’ values
provide the identity of the node.

Semantic relationships based on attribute values can give rise to links between the nodes
corresponding to the related tuples. For instance, let t be a tuple of TABLES which has value
“Joe” on the attribute owner and let u be the tuple of USERS such that u.username = “Joe” ;
this induces a hypertext link from the node(t) to node(u).

If the target hypertext model does not support reverse traversal of links one must also generate a
link from node(u) to node(t).

This approach is simple but it raises two problems:
• it may generate a large amount of nodes and links, which can result in user’s

disorientation. For instance if user u owns 50 tables then there will be 50 links starting
from u and leading to 50 nodes (one for each table).

• there is no way to see a set of data as a whole. For instance, to see the names of all the
tables of user u it is necessary to navigate to each one of the 50 nodes linked to u.

However, it may be an acceptable solution for relations with many attributes and relatively few
tuples.

Meta Platforms, Inc.
Meta Platforms, Inc. v. Angel Technologies Group LLC

IPR2023-00059
Exhibit 1042 - Page 4 of 17

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

3.2. Mapping Homogeneous Sets of Tuples to Nodes

In this approach each node is the representation of a set of tuples of a relation, nodes are
structured as a set of items, each one of these being the representation of one selected tuple. This
structure implies that there are now three kinds of links, namely: links between two nodes; links
between an item and a node; and links between two items.

In general the content of a node will be made of the tuples of a relation which satisfy a given
predicate. For instance, the content of a node tables_of_Joe could be a representation of all
the tuples t of relation TABLES which satisfy t.owner = “Joe” , i.e., it will show all the tables
owned by user Joe. Figure 1 below shows the hypertext structure one can create this way to
represent the information content of two relations TABLES and USERS and their relationship
through the foreign key owner

.

T1, U1
T2, U2
T3, U1
T4, U3
T5, U1
T6, U3
T7, U1

U1

U2

U3

T1
T3
T5
T7

U1

T2
T4
T6

U2

U3

Database relations with references Hypertext nodes and links

TABLES(tablename, owner, …)

USERS(username, …)

tables_of_U1

tables_of_U2
tables_of_U3

all_users

Figure 1. Mapping two connected relations to hypertext nodes and links

Compared to the previous approach, this one may greatly reduce the number of nodes and links
necessary to represent the database content. In addition, it offers a more synthetic view of data.
For instance, a single navigation step from a user item is sufficient to reach all the user’s tables.

Another advantage of this approach lies in the possibility to directly represent one-to-many
relationships, even in hypertext models (like W3) which do not support multi-headed links.

3.3 Mapping Sets of Related Tuples to Nodes

In the previous section we have shown how to define nodes by selecting sets of tuples from the
same relation. We now consider nodes which are made of tuples coming from different relations.
In this case the selection criteria is the existence of a relationship between the different tuples
represented in a node. In other words, grouping occurs along the inter-relation reference axis
instead of the within-relation axis.

This type of node construction is particularly useful to reconstruct complex entities because the
relational data model does not provide constructs to represent complex hierarchic entities, i.e.
entities which are composed of several other simple or complex entities. Such complex entities
must be decomposed and stored as tuples of different relations.

For example, a user subschema is composed of tables, views, procedures, and triggers; a table
is itself composed of a set of columns, etc. Such a complex object is represented by

- a tuple u of relation USERS(username, …)
- n1 tuples of relation TABLES(table_name, owner, …) which refer to u through

attribute owner

Meta Platforms, Inc.
Meta Platforms, Inc. v. Angel Technologies Group LLC

IPR2023-00059
Exhibit 1042 - Page 5 of 17

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
	� Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

	� Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
	� With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

	� Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
	� Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

	� Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

