
Meta Platforms, Inc.
Exhibit 1024

Page 024

 42 Pa

tl Basic Concent,
right. However, since the DC manager and the DBMSareclear]
harmoniously together,they are sometimes regarded as equalpartn
cooperative venture called the database/data-communicationss
tem), in which the DBMSlooks after the database and the DC
messages to and from the DBMS,or moreaccurately to and from
the DBMS. In this book, however, we shall have comparatively lit
sage-handling as such (it is a large subject in its own right), Secti
discuss the question of communication between distinct systems(
machines in a communications network), but thatis really a separ

y required 10 Work
ers ina higher-toq
ystem (DB/Dc Sys
manager handles al
applications that use
tle to Say about mes-
ion 2.12 does briefly
L.e€., between distingy
ate topic.

2.10 Client/Server Architecture

m==Theserveris the DBMSi: itself, It :
cussedin Section 2.8 atl Supports all of the basic DBMSfunctionsdis-f efiniti : ‘rity, and so on.In particular. it Beis oul manipulation, data security and integ-

i Provides all of the external, conceptual, and internal

End users

Clients

Server

Database

FIG. 2.4 Client/server architecture

Chapter 2 An Architecture for a Database System 43

level support discussed in Sections 2.3-2.6, Thus, “server” in this contextis just
another namefor the DBMS.

ms Theclients are the variousapplications that run on top of the DBMS—both user-
written applications and builtin applications, i.e., applications provided either by
the vendor of the DBMSor by some “third-party” software vendor. Asfar as the
server is concerned, of course, there is no difference between user-written and
builtin applications—they all use the same interface to the server, namely the ex-
ternal-level interface discussed in Section 2.3.

Note: Certain special “utility” applications might constitute an exception to the
foregoing. As mentionedin Section 2.5, such applications sometimes need to op-
erate directly at the internal level of the system. Suchutilities are best regarded as
integral components of the DBMS,rather than as applications in the usualsense.
Utilities are discussed in more detail in the next section.

Applications in turn can be divided into several reasonably well-defined catego-
ties, as follows.

1. First, user-written applications. These are basically regular application programs,
written (typically) either in a conventional programming language such as C or
COBOLorin someproprietary language such as FOCUS—thoughin both cases
the language needsto be coupled somehowwith an appropriate data sublanguage,
as explained in Section 2.3.

2. Second, vendor-provided applications (often called tools). The overall purpose of
suchtools is to assist in the processof creating and executing other applications !—
i.¢., applications thatare tailored to some specific task (though the created applica-
tion mightnot look muchlike an application in the conventional sense; indeed, the
whole pointof the tools is to allow users, especially end users, to create applica-
tions without having to write conventional programs). For example, one of the
vendor-provided tools will be a query language processor, whose purpose of
courseis to allow endusersto issue ad hocqueries to the system. Each such query
is basically nothing more than a small (or maybe not so small) tailored application
thatis intended to perform somespecific application function.

Vendor-providedtools in turn divide into a numberofdistinctclasses:

" query language processors

= report writers

" business graphics subsystems

= spreadsheets

" natural language processors

" statistical packages

= copy managementtools

= application generators (including “4GL”processors)

= other application developmenttools, including computer-aided software engi-

- neering (CASE) products

Meta Platforms, Inc.

SLEY

T

dition,
1993

1993

er,
), 1992

991-1994,

991,
1992

989,

1gs,

989

1s,
33

375, 1994

ted and
ns,
1994

ented and
ns,

994

52, 1993

Edition,
\992

rement:
0

a,
189

ign,
*, 1989

Exhibit 1024

Page 024

Meta Platforms, Inc.
Exhibit 1024

Page 025

and so on. Details of such tools are beyond the scope of this book:
remarkthat since (as stated above) the whole point of a database ¢ » OWeVer, 5,, . oh We

port the creation and execution ofapplications, the quality of the aae IS £0 sup.
tools is, or should be, a major factor in “the database decision”(j ae fronte

Le., th Mendchoosing the right system for a given customer). In other words th ae PLOCessof9 e
BMS Per Seis not the only factor that needst 10 be taken into account

» NOT Even nececc.,:SSarily themostsignificantfactor.

We i i : ‘

feafly Geseee, a forward pointer. Since the overall System can
two on different masts tt ee ae Gaels)ithe Possibility arises ofi wi
ineDisneytee ae eraepotential exists for distributed Fi Ps
some kind of ebmnteanitedionenaveRReeected ietherie
can be s se See waythata sing] a

siitenanteSin the network. (In fact,Laeoy
come to apply almost exclusi ons, mainly economic—that the term “client/s ee

Clusively to the case where the server andclients Meitcedaondifferent machines Thi i
iS. TIS usage is sloppy buty. itributed Processing in moredetail in Secesk HeSS—*

2.11 Utilities

Utilities are progra i
Pecuiicacd iF :aihee to help the DBA with various administration tasks. A
System, and thus are efiseivaly=e Programsoperate at the external level of te
might not even be Fit Ing more than Special-purpose ications:

provided by the DBMS vendor, but Se. éy eeelon Re
WEvVer, operate direct] a

Here are some typi
In practice:

= Load routines, to cre: ate the initial i
databasefiles Version ofthe database from one or more non-

ery purposes and to 1 ©, OF portions thereof, to backup‘ el :

course, the “reload utility” is basically aneae from such backup copies (of0

obsolete

= Statistical routines, to compute varj
data value distributions or V/O count

= Analysis routines, to analyze the sta

OUS perf moe: se Ormancestatistics such asfile sizes or
Ustics just mentioned

Part! go.;
ASIC Co

"ents

Chapter 2 An Architecture for a Database System 45

The foregoing list represents just a small sample of the range of functions thatutilities
typically provide. A wealth of other possibilities exist.

2.12 Distributed Processing

To repeat from Section 2.10, the term “distributed processing” meansthat distinct ma-
chines can be connected together into a communications network such that a single data
processing task can span several machinesin the network. (The term “parallel process-
ing’is also sometimesused with essentially the same meaning, exceptthatthe distinct
machinestend to be physically close together in a “parallel” system and need notbe so
in a “distributed” system—e.g., they might be geographically dispersed in the latter
case.) Communication between the various machinesis handled by somekindofnet-
work management software—possibly an extension of the DC manager discussed in
Section 2.9, possibly a separate software component.

Manylevels or varieties of distributed processing are possible. As mentioned in
Section 2.10, one simple case involves running the DBMSbackend (the server) on one
machine and the application frontends(the clients) on another. Referto Fig. 2.5.

As mentionedat the end of Section 2.10, “client/server”—althoughstrictly speak-

Client machineApplications
Transparent
remote access

FIG. 2.5 Client and server running on different machines

Server machine

————

SLEY

iT

‘dition,
1993

’

1993

er,

0, 1992

991-1994,

991,
1992

989,

ngs,

L989

1S,
33

375, 1994

ted and
ms,

1994

lented and
ms,

994

152, 1993

993

192

| Edition,
L992

zement:
10

Qo,
189

ign,

Meta Platforms, Inc.
Exhibit 1024

Page 025

Meta Platforms, Inc.
Exhibit 1024

Page 026

46

ing a purelyarchitectural term—has cometo bevirtually Synonymouswith
mentillustrated in Fig. 2.5, in which client and server run on different etac

Tangee

deed, there are many argumentsin favor of such a scheme: ines, lh.

= Thefirst is basically just the usual parallel processing ar
many processors are now being applied to the overall task
and client (application) processing are being donein parall
throughput should thus be improved.
Furthermore, the server machine mi
to the DBMSfunction (a
DBMSperformance.

BuMent—name),
and server (da,

el. Response time

that

ase)

and

ght be a custom-built m“ achinethatis ta;
database machine”), and mig tailoredht thus provide better

responses, and overall improved ease of use to the user
Several different client machines mi

) toccess the same server machies chine. Thus, a sin iseveral distinct client systems (see Fig. 2.6) peecanbiseoes
ght be able (in fact, probably will be able

n
In addition to th ie .

emits) SedakaeeSR there is also the pointthat runningthecli
machines matches the w

ay Many enterprisesactually

Client
Machines

Communication
network

Server
Machine

Chapter 2 An Architecture for a Database System 47

operate. It is quite commonfor a single enterprise—abank, for example—to operate
many computers, such that the data for one portion of the enterprise is stored on one
computer and that for another portion is stored on another. It is also quite commonfor
users on one computerto need at least occasionalaccess to data stored on another. To
pursue the banking example for a moment,it is very likely that users at one branch
office will occasionally need accessto data stored at another. Note, therefore, that the
client machines might havestoreddata of their own,and the server machine might have
applicationsofits own.In general, therefore, each machinewill act as a server for some
users andaclientfor others (see Fig. 2.7); in other words, each machinewill support an
entire database system (in the senseofearlier sections of this chapter).

Thefinal pointis that a single client machine mightbe able to access several dif-

Clients

<=

Communication
network

: FIG.2.7 Each machineis both client and server

SLEY

T

dition,
1993

1993

er,

), 1992

991-1994,

991,
1992

989,

1gs,

989

1S,
3

375, 1994

ted and
ns,
1994

ented and
ns,

994

152, 1993

,

993

1,

92

| Edition,
L992

zement:
‘0

189

Meta Platforms, Inc.
Exhibit 1024

Page 026

Meta Platforms, Inc.
Exhibit 1024

Page 027

 48

Part | Basic Conce
Rts

ferent server machines(the converse ofthe caseillustrated in Fig. 2.6). This
is desirable because, as mentioned above, enterprises do typically Breare “APabiliy
mannerthattheir total data collection is not stored on one single machine é IN Such gsos . : . , Ul fr: {

spread across manydistinct machines, and applications will sometimes need ; ratherjg; Ne

to access data from more than one machine, Such access can basically b ‘ili
two ways: © Provided in

1. A given client might be able to access any numberof servers, but only one a1. ,;
(i.e., each individual database request must be directed to Just one aieeu
a system it is not possible, within a single request, to combine data ae po

2. Theclient might be able to access many servers simultaneou; Sly (i.e.,asi at

to make such systems
Chapter 21.

2.13 Summary

point of view. First, we describ’ eddatabase system into three eae
physical storage (1.€., itis th
the external level js the on
Way the data is viewed by
indirection between the oth
as perceivedat eachlevel j
the externallevel). Mappin

levels, as follows: PARC architecture, which divides a
€ One concerned The internal level is the one closest to
€ closest to the ee ue Way the datais physically stored);

USeTs (i.€., it is the one concerned with theindividual users);> and th ;
er {wo(it Provides acon aecaperate slevel of

Chapter 2 An Architecture for a Database System 49

nal schemaand the conceptual schema,and (b) the conceptual schemaand theinternal
schema.

Users—i.e., end users and application programmers, both of whom operateatthe
external level—interact with the data by meansof a data sublanguage, which breaks
down into at least two components, a data definition language (DDL) and a data
manipulation language (DML). The data sublanguage is embeddedin a host lan-
guage. Note: The dividing lines between the host language and the data sublanguage,
and between the DDLand the DML,are primarily conceptual in nature; ideally they
should be “transparentto the user.”

Wealso took a closer look at the functions of the DBA and the DBMS. Among
other things, the DBA is responsible for creating the internal schema (physical
database design); creating the conceptual schema (logical or conceptual database
design), by contrast, is the responsibility of the data administrator. And the DBMS
is responsible (among other things) for implementing DDL and DMLrequests from
the user. The DBMSis also responsible for providing some kind of data dictionary
function.

Database systemscan also be conveniently thoughtof as consisting of a server (the
DBMSitself) and a set ofclients (the applications). Client and server can andoften will
run on separate machines,thus providing one simple kind of distributed processing.
In general, each server can serve manyclients, and each client can access many servers.
If the system providestotal “transparency”—meaningthateachclient can behaveasif
it were dealing with a single server on a single machine,regardless of the actual phys-
ical state of affairs—then we havea true distributed database system.

Exercises

2.1 Draw a diagram of the database system architecture presented in this chapter (the
ANSI/SPARCarchitecture).

2.2 Define the followingterms:

backend frontend
client host language
conceptual DDL,schema, view load

logical database design
internal DDL, schema, view

physical database design
data manipulation language planned request
data sublanguage reorganization
DB/DCsystem server
DC manager storagestructure definition
distributed database unload/reload
distributed processing unplanned request
external DDL, schema, view user interface

€xternal/conceptual mapping utility

conceptual/internal mapping
data definition language
data dictionary

LEY

T

dition,
1993

1993

er,

|, 1992

191-1994,

191,
1992

189,

475, 1994

ed and
1S,
1994

ented and
1S,

I94

52, 1993

193

32

Edition,

992 1

ement:

Meta Platforms, Inc.
Exhibit 1024

Page 027

Meta Platforms, Inc.
Exhibit 1024

Page 028

P

art | Basic Conte §

Explain the sequenceofsteps involved in retrieving a particular external rec dOr Oce
List the major functions performed by the DBMS. Utence
List the major functions performed by the DBA.

Distinguish between the DBMSand a file managementsystem,
Give some examples of vendor-provided frontendsortools.

Give some examples of databaseutilities.

Examineany database system that might be available to
ANSVUSPARCarchitecture as described in this chapter
levels of the architecture? How are the mappings betw
various DDLs(external, conceptual, internal) look like?
system support? Whathost languages? Who performs
secunty or integrity facilities? Is there a dictionary?
doesthe System support? Whatutilities? Is there a
distributed processing capabilities? :

you. Try to mapthat systemto the
Doesit cleanly Support the three
een levels defined? What do fe

Whatdata sublanguage(s) does ie
the DBA function? Are there *

What vendor-provided applications
eparate DC manager? Arethere any

References and Bibliography
g nces are b i 1 i

2.1

ee

2.3

present chapter
ANSI/X3/SPARCStudy Group on Data B
OM SIGMOD bulletin) 7, No. 2 aueine
Dionysios C. Tsichritzis and An
work: Report of the Study G
tems 3 (1978). er

gement Systems. /nterim Report. FDT

th :

Rarwie The ANSI/X3/SPARC DBMSFrame-
ase Management Systems.” InformationSys-

~2.2] are the Interi m and Final R:dy G €ports,
Management Systems (to give irreigenOLSS/SPARC Stud; giveitit iPlanning and Requireme its full title) was established in late 1972 by the Standardsnts Commi
Standards Committee on Compute ule (SPARC)of ANSI/X3, the American National

Ts and Information Processing. The objectives oftheStudy Group were 7to determin i 3ate for standardization, and © which areas, if any, of database technology were appropt'-2 to produce
area. In working to meet these objecti s the steasmmendations for action in each such
were the only aspectofa datab. Ives, the Study Group took the position that interfaces
lion, and accordingly defined a aere ue that could Possibly be suitable for standardiza-
that emphasizedtherole of such i ralized database system architecture, or framework.
tion ofthat architecture and ofSeeFinal Report provides a Hetailed descrip-
an earlier working doc € 42 identifiedi i iume sage interfaces. 5nt thatis still of some interest; in some AeBeaceaddi

respectively, of the so-

aSE syste

tional detail,

J. J. van Griethuysen (ed.). C
Information Base. InternateaeTermin
ISO/TC97/SC5-N695 (March 1982)
ISO/TC97/SCS/WG3is an ISO W

ologyfor the Conceee, ptual Schema andthe
€anization for Standardization Document No.

Chapter 2 An Architecture for a Database System

2.4

2.9

2.6

2.7

51

ample involving the activities of a hypothetical Car Registration Authority. The three sets
of contenders are (1) “entity-attribute-relationship” approaches, (2) “binary relationship”
approaches, and (3) “interpreted predicate logic” approaches. Thereport also includes a
discussion of the fundamental concepts underlying the notion of the conceptual schema,
and offers someprinciples for implementation of a system that properly supports that no-
tion. Heavy going in places, but an important document for anyone seriously interested in
the conceptual level of the system.
Data Dictionary Systems Working Party of the British Computer Society. Report. Joint
Issue: Data Base (ACM SIGBDP newsletter) 9, No. 2; SIGMOD Record (ACM SIGMOD
bulletin) 9, No. 4 (December 1977).
Anexcellent description of the role of the data dictionary; includes a brief but good discus-
sion of the conceptual schema.

P, P. Uhrowczik. “Data Dictionary/Directories.” /BM Sys. J. 12, No. 4 (1973).
A goodintroduction to the basic conceptsofa data dictionary system. An implementation
is outlined based on IMS (IBM’s original Data Dictionary product in fact conformedto that
broad outline).

Paul Winsberg. Dictionary Standards: ANSI, ISO, and IBM; and Industry Views of the Dic-
tionary Standards Muddle. Both in InfoDB 3, No. 4 (Winter 1988/89).
Anexcellentintroduction to, and analysis of, the world ofdictionary standards—including,
in particular, the ANSI Information Resource Dictionary Systems (IRDS)standard.
William Kent. Data and Reality. Amsterdam, Netherlands: North-Holland/New York, NY:
Elsevier Science (1978).

A stimulating and thought-provoking discussion of the natureof information, andin partic-
ular of the conceptual schema. The book can be regardedin large part as a compendium of
real-world problemsthat(it is suggested) existing database formalisms—inparticular, for-
malismsthat are based on conventionalrecord-like structures, which includes the relational
approach—havedifficulty in dealing with. Recommended.

LEY

T

lition,
1993

1993

1,

, 1992

91-1994,

91,
992

189,

BS,

989

S;
3

75, 1994

ed and
1s,
1994

‘nted and
LS,

194

32, 1993

193

2a

Edition,
992

, 1989

Meta Platforms, Inc.

Exhibit 1024

Page 028

Meta Platforms, Inc.
Exhibit 1024

Page 029

'

j} aHE :I yi Z neoTie[AfrHaIhadFedelrmmT

3 {An Introduction to

Relational Databases

3.1 Introduction

3.2 Relational Systems
Webegin by defini ng arelatifor short) as a syst SS ae

€m In which,at a minimum:

1. Thedatais Perceived by the USEras tab
. The operators at the ’s diuser’s di

generate new tables from old ra
knownas RESTRICT) PROJECT

; Thisdefinition, tho
in Chapter |.

les (and nothing buttables); and
ame for data retrieval—are operators that

Osea Include at least SELECT(also
ugh still y lef, is sli

; ery brief, is slightly more Specific than the one given
samplerelational dat

in Fig. 3.1. As you can 5:aaastartments-and-employees database, is shown
ing of those tables is inte vt 1s indeed “perceived as tables” (and the mean-nded to be «
SELECT, PROJECT,and JOINenexplanatory), Fig. 3.2 shows some sample

ons againstthatdatabase. Hereare (very loose!)definitions of those Operations:

= The SELECTopeTation (also kno
fromatable. Wn as RESTRICT) extracts specified rows

TTT

e fr : r;managementsystem (relational system

Chapter 3 AnIntroduction to Relational Databases 53

 DNAME

 Marketing
Development
Research

SALARY

40K
42K
30K
35K

FIG. 3.1 The departments-and-employees database (sample values)

The PROJECToperation extracts specified columns from a table.

The JOIN operation joins together two tables on the basis of common values in a
common column.

Ofthe three examples, the only one that seems to need any further explanation is
the JOIN example.First of all, observe that the two tables DEPT and EMPdoindeed
have a commoncolumn, namely DEPT#, sothey can be joined together on the basis of

BEIEM (RESTRICT): Result: es

DEPTs where BUDGET > 8M D1 Marketing 10M
D2 Development 12M

PROJECT: Result: DEPT# BUDGET

DEPTs over DEPT#, BUDGET D1 10M
D2 12M

D3 5M

JOIN:

DEPTs and EMPs over DEPT#

Result:|DEPT# DNAME BUDGET|EMP#|ENAME|SALARY
D1 Marketing 10M}El 40K

Marketing 10M 42K
Development 12M 30K
Development 12M 35K

FIG.3.2 SELECT, PROJECT, and JOIN (examples)

91-1994,

91,
992

189,

175, 1994

ed and
1s,
L994

2nted and
1s,

I94

52, 1993

193

Meta Platforms, Inc.
Exhibit 1024

Page 029

Meta Platforms, Inc.
Exhibit 1024

Page 030

,

ntA

| |

a

oR

mh
he,a

—=

54
a CY

rt] Basic Conce
. . ‘ Pls

commonvalues in that column. Thatis, a given row from table DEp
given row in table EMP—to produce a new, wider row—if and only eh Will join tog
question have a common DEPT#value. For example, the DEPT and EMP 0rows in

rows

 DNAME BUDGET

(column names shownfor explicitness) can be joined together to produceth

€ result roy

Tve that the common (DEPT#)
Observe too thatsince no EMP

urrently assigned to that depart-
gh there is a row for D3 in table

value appearsjust once, not twice
row has a DEPT#value of D
ment), no rn in theaaa ow for D3 appearsin the result, even thou

"e, in each result row.
3 (i.e., no employeeis c

i le. This is the relattant. Basically, because the o) ieeeret
input—

a ng are all tables—sothe outputfrom one 0
eee ‘nus It Is possible (for €xample) to take a ;
: ctions, etc., etc. In other words, it is possib
eeesons In which the Operands thetacelecs

Just simple table names, This fact ; a- This factin ¢ ieae nes. Thi urn has num

Nieie (both aes chapterandin many aires+e—i We Sa at | I eeythatthe output from each operation is anothertable,it is very

eration can becomeinputto an-
Projection ofa join, or a join of two
le to write nested expressions—i.e.,

© represented by expressions, instead

T exampler example, suppose weare trying to compute a‘ 3 » aS Soon as eo
can immediately apply the restrict 4 g1Ven row ofthe JOin is constructed, the system

10n to that row to see whetherit Beloneein the final
the output from the join m;Join might “eXist ac.at all. As a general rule,j onNetexist as a fully materialized tablein its ownright

: : : System tri ae: i

ate tein their enuirety, for obviouseeetaagize sntermest
€r pointthat Fig, 3.2 : ce reasons.

at-a-time, not rowsoe opalyillustrates is that the operationsareall set-
Just single rows, and tables conanhomeo end results are all entiretables, no!
Operates on twotables ofthre o" Tows. For exampl in Fi 2z ple, the JOIN in Fig. 3.and four rows respectively, and returnsa result ric offour rows. This set i; . Processing capability ; :relational systems (see furthe, Bee bility is a major distinguishing characteristic of- . . SiO i i

ationsin nonrelational systems are sypically enon 3.6 below). By contrast, the oper-at the row- or record-at-a-ti-at-a-time level.

Chapter 3 An Introduction to Relational Databases

Letus return to Fig. 3.1 fora moment. There are a few additional points to be made
in connection with the sample database of that figure:

First, note that the “relational system”definition requires only that the database be
perceivedby the user as tables. Tables are the logical structure in a relational sys-
tem, not the physical structure. At the physicallevel, in fact, the system is free to
use any orall of the usual storage structures—sequential files, indexing, hashing,
pointer chains, compression, etc.—provided only that it can mapthosestructures
into tables at the logical level. Another way of saying the samethingis that tables
represent an abstraction of the waythe data is physically stored—an abstraction in
which numerousstorage-level details, such as stored record placement,stored re-
cord sequence, stored data encodings, stored record prefixes, stored access struc-
tures such as indexes,and so forth, are all hidden fromthe user.

Incidentally, the term “logical structure” in the foregoing paragraphis in-
tended to encompass both the conceptual and external levels, in ANS/SPARC
terms. The point is that—as explained in Chapter 2—the conceptual and external
levels in a relational system will be relational, but the internal or physical level will
not. In fact, relational theory as such has nothing to say about theinternal levelat
all; it is, to repeat, concerned with how the database looksto the user.

Second,relational databaseslike that of Fig. 3.1 satisfy a very nice property: The
entire information contentofthe database is represented in one andonlyone way,
namely as explicit data values. This method ofrepresentation (as explicit values in
column positions in rowsin tables) is the only method available in a relational
database.In particular, there are no pointers connecting one table to another. For
example, there is a connection between the D1 row of table DEPT and the El row
of table EMP, because employee EI works in department D1; but that connection
is represented, not by a pointer, but by the appearance of the value DI in the
DEPT#position of the EMP rowfor E1. In nonrelational systems, by contrast, such
informationis typically represented by somekind ofpointer that is explicitly visi-
ble to the user.

Note: When weSay there are no pointers in a relational database, we do not
mean that there cannot be pointers at the physical level—on the contrary, there
certainly can be pointers at that level, and indeed there certainly will be. But as
already explained,all such physical storage details are concealed from the user in
a relational system.

Finally, note that al! data values are atomic (or sealar). That is, at every row-and-
column positionin every table there is always exactly onedata value, never a group of
several values. Thus, for example, in table EMP (considering the DEPT# and EMP#
columnsonly, and for clarity showing them inthatleft-to-right order), we have

D1 El
D1 E2

slatiiiiaiaaek

55

1-1994,

51,
992

89,

75, 1994

‘d and
Sy
994

nted and
Sy

94

2, LOGS

93

2

Edition,
192

‘ment:

Meta Platforms, Inc.
Exhibit 1024

Page 030

Meta Platforms, Inc.
Exhibit 1024

Page 031

56 Part
| BasicCK

Neen
instead of

Column EMP#in the second version of this table is an exa :

usually called a repeating group.A repeating groupis a column pect
of columns, that contains several data values in each row (diffi hee
values in different rows, in general). Relationa ee
groups; the second version ofthe table above w
System. (The reasonforthis apparentlimitatio
ters 4 and 19 for further discussion.)

Nhat j¢

Nation

| databases do not allow + et
; FeDeatin D

ould not be permitted in a relational
N is basically simplicity, See Chap.

We Close this section by remarkin
at the beginning ofthe section is onl
[3.1], and is essentially the definitio

ts it is usual to treat the termthey were synon 7 Ss af 1 1 ” é ” :mous; ind es == Telation” and “table” as ifeed,the term “table” is used much morefrequently than the

The principles of ;
E. FCodd,tereal model were originally laid down in 1969-70 by Dr.
ematician by training, first eeIBM.It was late in 1968 that Codd, a math-
used to inject somesolid princieeae the discipline of mathematics could be
that, prior to that ti EOF Into a field—database ma t—
were first widelyaetee soficieat in any such qualities. Codd’sideas
for L cog WaSsi¢ paper, “A Relatir Large Shared Data Banks” (see reference [4., a7 CheeModel of Data

Chapter 3 AnIntroduction to Relational Databases 57

m Since that time, those ideas—by now almost universally accepted—have had a
wide-ranging influence on just about every aspect of database technology,and in-
deed on otherfields as well, such as the fields of artificial intelligence, natural
language processing, and hardware system design.

Now,the relational modelas originally formulated by Codd very deliberately made
use of certain terms, such as the term “relation” itself, that were not familiar in IT

circles at that time, even though the concepts in some cases were. The trouble was,
many of the more familiar terms were veryfuzzy—they lacked the precision necessary
to a formal theory of the kind that Codd was proposing.

mu Example: Consider the term “record.” At different times that single term can mean
either a record occurrence or a record type; a COBOL-style record (which allows
repeating groups)or aflar record (which doesnot); a /ogical record or a physical
record; a stored record or a virtual record; and perhapsother things as well.

The formal relational model therefore does not use the term “record”at all; instead,

it uses the term “tuple” (short for “‘n-tuple”), which was givenaprecise definition by
Codd whenhefirst introducedit. We do notgive that definition here; for present pur-
poses, it is sufficient to say that the term “tuple” corresponds approximately to the
notion of aflat record instance (just as the term “relation” corresponds approximately
to the notion of a table). When we moveon(in Part IT) to study the more formal aspects
of relational systems, we will make use of the formal terminology, butin this chapter
weare nottrying to be very formal, and we will mostly stick to terms such as “table,”
“Tow,” and “column”that are reasonably familiar.

3.4 The Relational Model

So whatexactlyis the relational model? A good wayto characterizeit is as follows: The
relational model is a way of looking at data—thatis, it is a prescription for a way of
representing data (namely, by meansoftables), and a prescription for a way of manip-
ulating such a representation (namely, by meansof operators such as JOIN). More pre-
cisely, the relational modelis concerned withthree aspectsofdata: data structure, data
integrity, and data manipulation. The structural and manipulative aspects haveal-
ready beenillustrated; to illustrate the integrity aspect (very superficially, please note!),
we consider the departments-and-employeesdatabase of Fig. 3.1 once again. In all like-
lihood, that database would be subject to numerous integrity rules; for example, em-
ployee salaries might have to be in the range 25K to 95K, department budgets might
haveto be in the range IM to 15M,and so on. However,there are certain rules that the
database must obeyifit is to conform to the prescriptionsofthe relational model. To be
specific:

1. Each row in table DEPT must include a unique DEPT#value; likewise, each row
in table EMP mustinclude a unique EMP# value.

2. Each DEPT# value in table EMP mustexist as a DEPT# value in table DEPT (to

reflect the fact that every employee mustbe assignedto an existing department).

SLEY

iT

‘dition,
1993

1993

rer,

0, 1992

991-1994,

991,
1992

989,

ngs,

1989

ns,
83

1375, 1994

ited and

ms,
, L994

iented and
ms,

S:

1994

652, 1993

8,

1993

in,
5

992

d Edition,
1992

gement:
50

mm,
989

sign,
4, 1989

Meta Platforms, Inc.

Exhibit 1024

Page 031

Meta Platforms, Inc.
Exhibit 1024

Page 032

C.J.)
consu

syster
ist at

Jose,
nical

prodi
May,

Mr. I

for ov

anyw
cance¢

the re

part ¢

expo!
techn

is thi

SOL
relati

a des

DB2
mer<

Relai
ume:

prod
cles,

nolo;

Mr.|

jects
ciall:
Amé

Latil

repu
to cc

clea

592

Answers to Selected Exercises

he counterintuitive nature of th;k. (b) true. (c) true. (d) unk (note t of this on 5 .re (false ties that IS_UNKnever returns unk). (g) false. (h) true. a (©) false y l DiStributed Dat b
202 (kn(re. fle(an(a. ie aDase and203 Because “TSUNK(x)” returns pee 17 an he y 1 Xi Yin re aus unk (for arbitr, Ch ot/S Sarbitrary y), and it returnsfalse if and only if “x = y OR x # y” returns true (for oe and erver ystems ,;nonUNKy). trary ;
20.4 Because (e.g.) “MAYBE_RESTRICT R WHERE p” is the Sue as “R WHERE MAYBE() Fs
20.5 The four monadic operators can be defined as follows(A is the single operand): .

A

NOT (A)

A OR NOT(A) .
A AND NOT(A) 21.1 Introduction

i finedasfoll A and B ; : eeThe 16 dyadic operators can be defined as follows(A andBare the two Operands): Wetouchedonthe subjectof distributed databases at the end of Chaptertereee
A OR NOT(A) OR B OR NOT(B) said that “. . . full support for distributed database implies that a sing] licatiA AND NOT(A) AND B AND NOT(B) . gle application
: should be able to operate transparently on data thatis spread across a variety ofdiffer-
NOT (A) ent databases, managed by a variety ofdifferent DBMSs, Tunning ona variety ofdiffer-
_ ent machines, supported by a variety of different operating systems, and connected \NOT (B) together by a variety of different communication networks—wherethe term transpar- i: ee ently means that the application operates froma logical pointofview asif the data were
A OR NOT(B) ___ allmanagedby a single DBMSrunning ona single machine.” Weare now ina position
A AND NOT(B) to examine these ideas in somedetail. To be specific, in this chapter we will explain
NOT(A) OR B exactly what a distributed databaseis, whydistributed databases are important, and ada z wesx what someof the unsolved technical problemsarein thedistributed databasefield.
NOT(A) AND NOT(B) Chapter 2 also briefly discussedclient/server systems, which can be regarded as a
(NOT(A) OR B) AND (NOT(B) OR a) Particularly simple special case of distributed systems in general. We will consider: y, g(NOT(A) AND B) OR (NOT(B) AND a) chent/server systems specifically in Section 21.6.
Incidentally, to see that we do not need both AND and OR,observethat, e.g., The overall plan ofthe chapteris explainedatthe endofthe nextsection.

3A OR B = NOT(NOT(A) AND NOT(B))

20.6 See the annotation to refere 20 aan ee ‘20 tee Sena aae 21.2 SomePreliminaries7 (c). For further discussion, see reference [20.8].
i 7 : ; that oa a : :20.8 Webriefly describe the Tepresentation used in IBM's DB2product. In DB2,agu 3 We begin with a working definition (necessarilyalittle imprecise at this stage):can acceptnulls is physically represented in the stored database by two columns, fie am.columnitself and a hidden indicator column,onebyte wide,that is stored as a prefixoa \ distributed database system consistsofa collection ofsites, connected together

aeseee Aneeecolumn value of binary ones indicates Ree value vla Some kind of communications network,in which
, umn valueis to be ignored (i. ., tak ll); an indicator . l. ay th aeihs iee . 4of binary zeros indicates that theeiees vine is to be taken as ge% | Each site is a database systemsite in its ownright, but a. ya fs ; : ; ataine. Butthe indicator columnis always (of course) hidden from the user. i 2. The Sites have agreedto worktogether so that a userat any site < naeaa » Stweais Writer thatthis relation does not have a well-formed predicate atal é ~_Where in the network exactly asif the data were all stored at the

EITHERhe ‘The geesncthing like the following: The part with the specified Paeneal Usus ut Specified color OR has no color. But this statement is essentially ™ | I : irtual objectmy tfo toot 4 dofvirtual object,see To say that each x either hasa y or it doesn'tis to say nothing at all. Itee Whose ¢ llows that the so-called “distributed database” is really :agstshiceeatnapea‘ 4 Very meaningful“criterion for update acceptability.” fe ach, foul °mponent Parts are physically stored in a numberofdistin; » IUIOOKs strongly asif (on i : rmines thedations ofthe relational nen (once again)the notionofnulls unde
~ Meta Platforms,Inc.

Exhibit 1024

Page 032

Meta Platforms, Inc.
Exhibit 1024

Page 033

PartV F
594 NTRMer Topic

a number ofdistinct sites
‘Jac : le.21.1 provides an examp ye. Roeeay:z an a database systemsite in its o ;Notethat, to repeat, each site Is y Wn right. Ing

words, each site has its own local “real” Dees is a local users, its Own|
DBMSand transaction management software (including its own local locking, loggin
recoveryeles software), and its own local data SUTIN manager (DC man,
ager). In particular, a given user can perform operations on dataat that user’s own local
site exactlyas if that site did not participate in the distributed systemat all (at least, this
is an objective). The distributed database system can thus be regarded as a king of
partnership among the individual local DBMSs at the individual localsites; a new
software componentat each site—logically an extension of the local DBMS—provides
the necessary partnership functions, and it is the combination of this new component

(in effect, it is the logical unionofthosereal database
S), RiQ,

ther
Ocal

New York eendon

Ges —Sa

es) iC)
=|aN

|

Los Angeles San Francisco

FIG. 21.1 A typical distributed database system

 ; pistributed Database and Client/Server Systems
chapter2 595

“ah the existing DBMSthat constitutes what jtogetheraieement system (sometimes RicSpee ine distributed
gata ientally, it is common to assume that the com :

eee ossibly in fact geographically dispersed also,
trot actually it 1s sufficient that they be dispersed logically. Two “sites” miatcoexist on the same physical machine (especially during the period ae ree
i .qstallation and testing). Indeed, the emphasis in distributed systems his Shi

or the past few years: Whereas mostof the original research tended to assume geo-ov ie distribution, most of the early commercialinstallations have involved lo :
jistribution instead, with (e.g.) several “sites” all in the same building and came
peter by means of a local area network (LAN). From the database point of view,
however, it makeslittle difference—essentially the sametechnicalproblemsstill have
ibe solved—and so wecan reasonably regard Fig. 21.1 as representing a typical sys-
tem for the purposes of this chapter.

Note: In orderto simplify the exposition, we will assumeuntil further notice that
the system is homogeneous, in the sense that each site is running a copy of the same
DBMS. Wewill refer to this as the strict homogeneity assumption. Wewill explore
the possibility of relaxing this assumptionin Section 21.5.

Ponentsites are physically
as suggested by Fig. 2],

Advantages

Whyare distributed databases desirable? The basic answerto this question is that en-
terprises normally are distributed already, at least logically (into divisions, depart-
ments, workgroups,etc.), and very likely physicallytoo(intoplants, factories, labora-
tories, etc.)from whichit follows that data normallyis distributed already as well,
because each organizational unit within the enterprise will necessarily maintain data
that is relevant to its own operation. Thus,a distributed system enablesthe structure of
the database to mirror the structure ofthe enterprise: Local data can be keptlocally,
where it most logically belongs, while at the same time remote data can be accessed
when necessary.
_ Anexamplewillclarify the foregoing. ConsiderFig. 21.1 once again. For simplic-
l'y, Suppose there are only twosites, Los Angeles and San Francisco, and suppose the
System is a banking system, with accountdata for Los Angeles accounts stored in Los
Angeles and account data for San Francisco accounts stored in San Francisco. Then the
‘vantages are surely obvious: The distributed arrangement combinesefficiency -
oe(the data is stored closeto the point whereit is most feteeae
eeaccessibility(it is possible to access a Los Angeles accountir

ae Vice versa, via the communications network). terprise is (asjust llowing the structureof the database to mirror the struciat® of the en aevie
d “*Plained) probably the number one advantage of distributed systems. aati “onal benefits do also accrue, of course, but we will defer discussion of such aabenef; = ba However, we should mentionits to appropriate pointslater in the chapter. Patrice. i is the fact that distribute
‘stemeae Some disadvantages too,of which the biggest1S Sane ee© complex, at least from a technical point of view.

nd

1,

Meta Platforms, Inc.
Exhibit 1024

Page 033

Meta Platforms, Inc.
Exhibit 1024

Page 034

C.J.)
const

syste1
ist at

Jose,
nical

prod
May,

Mr. I

for ov

anyw
canc¢

the re

part

expo!
techn

is thi

SOL
relati

a de:

DB2
merc

Relai
ume:

prod
cles,

nolo;

Mr.

jects:
ciall:
Ame

Latil

repu
to cc

clea

Part V Fu rt596 her Topics

omplexity should be the implementer’s problem, not the user’s, butitis]
aesgunatio-hal some aspects of that complexity will show throughto
very careful precautionsare taken.

ikely_1
Users, Unless

Sample Systems

For purposes of subsequent reference, we briefly mention someofthe bet
distributed system implementations. First, prototypes. Out of numerous Tesearch ¢
tems,three of the best knownare (a) SDD-1, which wasbuilt in the researcha
of Computer Corporation of America in the late 1970s and early 1980s [21.26}; (b) it
(pronounced “Rstar”), a distributed version of the SystemRprototype,built at IBM
Researchin the early 1980s [21.30]; and (c) Distributed INGRES,a distributed Version
of the INGRESprototype, also built in the early 1980sat the University of California
at Berkeley [21.28].

As for commercial implementations, most of today’s relational products offer
some kind of distributed database support (with varying degrees of functionality,of
course). Some of the best known include (a) INGRES/STAR,from The ASK Group
Inc.’s Ingres Division; (b) the distributed database option of ORACLE7,from Oracle
Corporation; and (c) the distributed data facility of DB2, from IBM.Note: These two
lists are obviously not meantto be exhaustive;rather, they are meantto identify certain
systemsthat either have been or are being particularly influential for one reason or
another, or else have somespecial intrinsic interest.

It is worth pointing out thatall of the systems listed above, both prototypes and
products, are relational. Indeed, there are several reasons why,for a distributed system
to be successful, that system must berelational; relational technologyis a prerequisite
to (effective) distributed technology [21.14]. We will see someof the reasonsfor this
state of affairs as we proceed through the chapter.

ter known

A FundamentalPrinciple

Now itis possible to state what might be regarded as the fundamental principle of
distributed database[21.1 3):

a Tothe user, a distributed system should look exactly like a NONaistributed system.
; fm

In other words, users in a distributed system should behave exactly as if the sy
were not distributed. All ofthe problemsofdistributed systems are—0Or should b
ternal or implementation-level problems, not externalor user-level problems. (ead

Note: The term “users” in the foregoing paragraphrefers specifically t hsast
users or application programmers) who are performing data manipulation operall: ; ition
All data manipulation operations should remain logically unchanged. Data definition
cca Ee on —for eXi by contrast, will require some extensionin a distributed syste™ 4 into
ple, so that a useratsite X : . iV1
7A can specify that a given stored relation beC™” infragments”thatare to be sto ees o tation
the nextsection), red atsites Y and Z (see the discussion of fragmen

e—ill-

; eaary rules
The fundamental Principle identified above leads to a number of subsidiary

ter2t pistributed Database andClient/Server SystemspFis 597
biectiyes*—actually twelve of them—which wil

once welist those twelve objectiveshere:re ‘

1, Local autonomy
9, No reliance on 2 centralsite

I be discussed in Section 21.3. For

3, Continuous operation
4, Location independence
5. Fragmentation independence
6, Replication independence
7, Distributed query processing
g. Distributed transaction management
9, Hardware independence

10. Operating system independence
11. Network independence

12. DBMS independence

These twelve objectivesare not all independentof one another, norare they neces-
sarily exhaustive, nor are they all equally significant(differentusers will attach differ-
ent degrees of importanceto different objectivesin different environments). However,
they are useful as a basis for understandingdistributed technology andas a framework
for characterizing the functionality of specific distributed systems. Wewill therefore
use them as an organizing principleforthe rest of the chapter. Section 21.3 presents a
brief discussion of each objective; Sections 21.4 and 21.5 then homein oncertain spe-
cific issues in more detail. Section 21.6 (as previously mentioned) discusses cli-
en/server systems. Finally, Section 21.7 addresses the question of SQL support, and
Section 21.8 offers a summary anda few concluding remarks.

_ Onefinal introductory point: It is important to distinguish true, generalized, dis-
tibuted database systems from systemsthat merely provide some kind of remote data
cess (Whichis all that client/server systemsreallydo, incidentally). In a “remote data
“cess”system, the user might be able to operate on data at a remotesite, or even on
aSeveral remote sites simultaneously, but the seams show;the user is ante
ingly nee a grcater or lesser extent—thatthe data is remote, andhas to eeeah>
of the se ttuedistributed database system, by contrast, the seains oe srethe
Seams are pes chapter is concerned with whatit means aesnea tenets aa
Pecifical] t aie foNOMSAWS SNLaedstem, as opposedto a simple
Temote ia 0 a true, generalized, distributed database system, fest

access system (barring explicit statements to the contrary

and the “fundamentalfirst introduced [21.13] (vm sounds much t00
* &

. R >
Minciny nwles” was t “rule

really a better term—tple” y, ‘ws
Loematio. wos ferred to as Rule Zero). However,“objectives: 1s

tay with the milder term “objectives”in the present chapich:

he term usedin the paperin which they were
*E will s

nd

a,

Meta Platforms, Inc.
Exhibit 1024

Page 034

