
Papers CHI 2000 • 1-6 APRIL 2000

ANCHORED CONVERSATIONS:
CHATTING IN THE CONTEXT OF A DOCUMENT

Elizabeth F. Churchill, Jonathan Trevor, Sara Bly, Les Nelson, Davor Cubranid

FX Palo Alto Laboratory Inc. Sara Bly Consulting
3400 Hillview Avenue 24511 NW Moreland Road

Palo Alto, CA 94304, USA North Plains, OR 97133, USA
{churchill, nelson, trevor}@pal.xerox.com sara_bly@acm.org

ABSTRACT
This paper describes an application-independent tool called
Anchored Conversations that brings together text-based
conversations and documents. The design of Anchored
Conversations is based on our observations of the use of
documents and text chats in collaborative settings. We
observed that chat spaces support work conversations, but
they do not allow the close integration of conversations
with work documents that can be seen when people are
working together face-to-face. Anchored Conversations
directly addresses this problem by allowing text chats to be
anchored into documents. Anchored Conversations also
facilitates document sharing; accepting an invitation to an
anchored conversation results in the document being
automatically uploaded. In addition, Anchored
Conversations provides support for review, catch-up and
asynchronous communications through a database. In this
paper we describe motivating fieldwork, the design of
Anchored Conversations, a scenario of use, and some
preliminary results from a user study.

Keywords
Text-based chat, sticky chats, collaboration, conversations,
CSCW, shared documents, synchronous communication,
asynchronous communication

INTRODUCTION
The past few years have seen the development of a number
of computationally lightweight text-chat systems that
support synchronous and asynchronous communications
between individuals and groups. Examples include Internet
Relay Chat (IRC) and AOL Instant Messenger [1]. Once
chat software of this kind is installed, initiating contact with
others is easy, taking only a few keystrokes. By creating
'buddy lists' of regular contacts, starting a chat is even
simpler - selecting a user-name initiates contact. Therefore,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed fbr profit or commercial advantage and that
copies bear this notice and the lull citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
CHI '2000 The Hague, Amsterdam
Copyright ACM 2000 1-58113-216-6/00/04...$5.00

ongoing and frequent informal interactions are easily
supported. It is also possible to have multiple simultaneous
conversations with different individuals and groups by
opening more than one chat window [3,5].

In many chat spaces, conversations are ephemeral, lasting
only while the current conversation or session is alive.
However, some applications and systems allow text-based
conversations to be recorded so that they have persistence.
Such text logs enable asynchronous messaging between
collaborators who are not online at the same time, and can
also be used for catch-up and review [2, 3, 5, 6, 16]. Much
recent work has also focused on providing more social
activity cues in the interfaces to such chat environments [6,
16].

The success of these chat tools is not entirely surprising -
people like to talk and maintain contact with others and
chat systems support a form of quick, lightweight, informal
communication. These are not just important for
recreational activities - in the workplace, informal quick
conversations and exchanges are important for maintaining
the social fabric as well as for specific information
exchange. Undoubtedly, the success of messenger
applications and chat spaces is also due to their being
computationally and cognitively lightweight: they take little
time and effort to set up, little processing power to run, and
little maintenance to keep going. Yet they support rich,
informal, ongoing contact whenever users require. Most
people don't even have to stray from their offices -
everything happens on their desktops.

Problems With Chats At Work
Although chat tools are proving very. useful in the
workplace for maintaining contacts and exchanging
information, they do not support the close integration of
documents with ongoing conversations. Many work
collaborations involve the sharing of documents: Web
pages, presentations, spreadsheets and word processed
documents. However, text conversations tend to occur in
windows that are separate from, and have no relationship
to, work-related resources. Figure 1 illustrates this point. In

tCurrent address: Dept. of Computer Science, University of British
Columbia, 20-2366 Main Mall, Vancouver, BC, Canada.
Email: cubranic@cs.ubc.ca

454 ~--k.~l~
C;:I=II~ ~ z ' O O I D

CHI Letters volume 2 • issue 1

Meta Platforms, Inc.
Exhibit 1021

Page 001

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

CHI 2 0 0 0 * I - 6 APRIL 2 0 0 0 Papers

Figure 1. Chatting in messenger windows.
On the left a text chat is ongoing; on the right the word processor document that is being discussed has been opened on the

desktop. Conversations and documents have no relationship

the first image a chat window is open on the desktop. In the
second image, the chat window is shown alongside a word
processor document that constitutes the subject of the
conversation.

There are several problems with this arrangement. First
sharing or copying the document that is to be discussed
requires that users carry out extra steps using other
applications (e.g. ftp the file, email an attachment, browse a
shared repository, set up a shared window, etc). Secondly,
when documents are sent or retrieved, issues arise around
ensuring that all collaborators have the s a m e document.
Thirdly, once all collaborators have copies of the same
document, establishing shared reference by navigating to
the same portion of the document can be time consuming.
Discussions about the content of the document require that
navigation statements be typed into the chat window
("Look at section three, paragraph 2") or that the relevant
materials from the document be copied and pasted into the
text-chat window. In the case of shared windows,
navigation cues in the form of shared pointers may be
available, but shared windows tend to result in restrictions
on what users can do with the content of the file itself and
do not support asynchronous communications.

What we know about many collaboration situations is at
odds with the technology affordances in this instance.
Collaborators who are collocated and working in a "tightly
coupled" way over those documents often converse about
the details of documents: lines of text, figures or cells in a
spreadsheet. Conversations in such collaborations have
been characterized as "object laden" [7]; there is a high
level of focus on the object or artifact that is under
discussion and/or that is being co-constructed. Discussions
are facilitated by (1) knowing which section is currently
under discussion, (2) seeing the broader context in which
the section is located, and (3) negotiating a shared visions
of what is required and who will carry it out. Such
conversations, therefore, crucially depend on shared

context, i.e. that collaborators all have visual access to the
artifact or object under construction or discussion. Here,
"the object leads and language follows" [7].

FIELD WORK: CONVERSATIONS OVER WORK
DOCUMENTS
Our intuitions about work collaborations were further
developed in a series of field observations and interview~
[3]. Our analyses focused on tightly-coupled collaborative
work between non-collocated colleagues in a number of
domains including software research, nuclear fusion
experiments, geology field studies and after-sales software
support. In each of these domains we noted issues arising
around the sharing of artifacts.

In the first domain, software research, collaborators were
using a text-based MUD to keep in touch and work
together. Here, the tendency was to share files through
email or by consulting shared file repositories. Specific
details were shared by pasting text into the chat window
and giving navigation cues like "Section 3, line 4" [5]. As
well as being somewhat unwieldy and involving many
steps, this copy-and-paste practice had the side-effect of
taking the pasted-in material out of its local context. In the
second domain, nuclear fusion experiments, problems arose
around the sharing of experimental results in graphical and
textual form. In the third domain, geology field
experiments, we noted the need to support discussion
around numerical data in a spreadsheet and graphs. In the
f'mal domain, after-sales software support, we noted the
need to support collaborative problem solving over on-line
software manuals.

In each of these cases problems arose around the
establishment of shared context for conversations. The
communication media (e.g. emaii, telephone and text-chat)
were separate from documents under discussion and
explicit navigation cues were required to literally "get
everyone on the same page".

455

Meta Platforms, Inc.
Exhibit 1021

Page 002

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Papers CHI 2000 ,, 1-6 APRIL 2000

Figure 2: Chatt ing over a d o c u m e n t using Anchored Conversat ions
Chat windows are anchored into word processor documents. Anchor points are represented as pushpins. There are no

restrictions on the number of chat windows that can be anchored into a document.

ANCHORED CONVERSATIONS
The Anchored Conversations tool directly addresses the
issue of coupling conversations and work artifacts when
working remotely. Like Chat spaces, the Anchored
Conversations tool is computationally and cognitively
lightweight, supporting synchronous and asynchronous
communications. However, Anchored Conversations also
allows text-based conversations to be coupled with the
documents that provide the context for work discussions
(e.g. word processor documents, presentation files,
spreadsheet files, graphical simulations, etc). The user
model is that of"st icky chats" - adhesive chat windows that
can be stuck to documents for in-context conversations,
much as a sticky note can be affixed to a printed document.

Although our examples in the following sections are all
grounded in word processor documents, Anchored
Conversations is application independent. Sticky chat
windows can be placed into any application document, and
can be moved between different application documents,
just as a sticky note may be moved from one type of printed
document to another.

Below we detail the features of Anchored Conversations.
First we describe the "sticky chat" windows in which
conversations take place. Then we describe how the
Anchored Conversations tool supports document transport
and sharing. Here we also describe how Anchored
Conversations solves the problem of establishing and
maintaining shared context.

Chat windows in documents
In Figure 2 we show the use of Anchored Conversations to
support synchronous discussions over a text document. In
the first image at the left of Figure 2, a text editor is shown
with a document displayed. In the document is an anchored
chat space, a "sticky chat" window. This is a standard chat
space having a space for typing text, a window for viewing
the ongoing conversation and a scroll bar at the right for
viewing things that have already been said. The window

can be resized easily. Again, as is standard, people's names
are shown in the angled brackets at the left of the chat
window.

The small pushpin icon to the top left of the chat window
before the word "asky" indicates the location at which the
chat is anchored - or, to put it another way, the context for
the conversation. The chat space is literally anchored to the
point where the pushpin is inserted. I f the user scrolls the
document, the chat window scrolls with it. It may even go
off screen. On scrolling back, the sticky chat window will
reappear, still attached to its anchor point. Similarly, if the
user drags the application window around the desktop, the
sticky chat window will stick to the application window at
that location and move around with it.

Sticky chat windows may be stuck to the anchor as
described above, stuck near the anchor or detached from
the anchor. Thus, a sticky chat window's spatial location in
relation to the anchor can be altered to prevent occlusion of
the material in the body of the document.

In the second image in the center of Figure 2, the sticky
chat window is shown having been moved to the right of its
anchor point in the document in order to uncover the
previously occluded text. The sticky chat window has been
"locked" into this new location. The chat window is still
attached to its anchor and will remain in this. spatial relation
to the anchor unless moved and again "locked" to a new
location. So, if the user scrolls the document or moves the
application window, the sticky chat will move as before.

Sticky chat windows can also be detached; in the third
image at the right of Figure 2, two sticky chat windows are
shown. The lower window in the image at the right of
Figure 2 is detached. The toggle at the bottom of the chat
window indicates this, as the user has the option to
"reattach". When a window is detached, if the user scrolls
the document or moves the application window, the chat
window will not move with it. However, the sticky chat
does not "forget" its "home" or context anchor point. By

456 "~k.~U

Meta Platforms, Inc.
Exhibit 1021

Page 003

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

CHI 2 0 0 0 • 1 - 6 APRIL 2 0 0 0 Papers

simply clicking on the 'Reattach' toggle at the bottom of
the sticky chat window, the chat window reattaches to its
"home" anchor location.

As shown at the right of Figure 2, users can have as many
sticky chat windows anchored in the document as they
wish. These sticky chats could be separate conversations
between different groups of people or could be
conversations that are separated due to theme or topic.

It is also possible to move a sticky chat window's anchor
location by placing the cursor, and then selecting and
clicking on the "Move" toggle at the bottom of the chat
window. The new anchor location is set and the anchor is
moved to a new place in the document. The sticky chat
window is now anchored at this new location. When sticky
chats are moved in one document, this change propagates:
if I move a sticky chat to a new location, you will see the
change and your chat will move too. Sticky chats can also
be moved between documents. This is discussed below.

Let
Gu~
Th~

H e

L o ~

Figure 3 Pushpin Anchor
Menu I tem The Anchored
Conversations tool adds a
menu down the left side of
applications. The pushpin
menu item allows sticky
chats to be attached to
documents.

Starting conversations and sharing documents
The Anchored Conversations tool user interface consists of
four parts: (1) the sticky chat window described above; (2)
the pushpin that represents the point at which a sticky chat
is anchored; (3) a menu bar that is added to applications
and that appears down the left side of application windows
(shown in Figure 3); and (4) a conversation coordinator
window which interfaces to the Anchored Conversations
database (shown in Figure 4).

Starting an anchored conversation requires few steps. By
selecting the push-pin from the menu (shown in Figure 3)
and clicking, an anchor is placed into the document at the
current cursor point. Clicking on the push-pin in the
document results in a sticky chat window appearing. Once
the window is open, names can be selected from a "buddy"
list in the menu bar. Selections result in invitations being
sent automatically to invitees' desktops. This model is the
same as for most messenger services. Also in accord with
messenger services, once invitations are accepted, the
invitees join the chat.

However, Anchored Conversations differs from other chat
applications in that, on accepting an invitation to converse
over a document, that document is automatically
transported to the desktop of the invitee. The document
itself opens automatically and is scrolled to the location
where the sticky chat window is anchored. The sticky chat
window is open and IRC available. Each person has his/her

own copy of the document at this point; the sticky chat
window is shared.

Anchored Conversations can also act as a simple chat
application. I f a chat window is not anchored within a
document when created using the Conversation
Coordinator, invitations result in a conversation client
being opened on the desktop much as a standard chat client
would. However, a chat can then be attached to a document
and that document will be sent to others in the
conversation.

Logging conversations and contexts
All conversations are logged in the sticky chat database
(called the Conversation Database), and are available for
review at any time - irrespective of whether the associated
document is open. As all conversations are logged as text,
searching and displaying by theme or person is trivial.

Conversation contexts are also logged. Sticky chats are not
simply embedded chat objects. The "anchors" store
information about the local context for the conversation.
This context may be words that are nearest to the anchor, or
ceils in a spreadsheet - the specifics of context depend on
the application in which the sticky chat is anchored.
Context information of this kind is stored in the database
along with information about the creation time and date of
the anchor. All previous context locations in which the
anchor has been inserted are also still available.

Users may query the database to see, for example, if an
anchored chat has ever been located in a different place. All
actions and conversations that take place within an
anchored chat window are retained in the database, and are
available for search, review and reuse. Even if the
document in which the sticky chat was located has been
deleted, it is still possible to review the conversations that
were associated with the file - the filename and local
context that the anchor was originally in are also preserved.
Thus users can recreate conversation contexts if decisions
need to be reconsidered. There is evidence that people
review in this way occasionally [3].

In Figure 4 we show our current interface to the database.
Information about different active chats is shown (2 chats
and their contexts are shown on the right of the window) as
well as a log of all the current chats is shown on the left. By
selecting the chats on the right, the user can navigate to a
chat window in a document. We thus support our fourth
goal, to provide review facilities for recreating
conversations in context.

Scenar io of use
In this section we present a short scenario to illustrate the
use of Anchored Conversations in a distributed,
collaborative work context.

Carol, Ann and Joe are colleagues working closely together
on the collection and analysis of field data. They are
currently preparing an executive summary of their recent
work to distribute to the company management. Ann and

=~r1~
~k~ll~l 457

Meta Platforms, Inc.
Exhibit 1021

Page 004

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Papers CHI 2 0 0 0 • 1 - 6 APRIL 2 0 0 0

Joe work in the same geographic location but Carol works
4000 miles away with a 6-hour time difference.

~','ol I'~* s~arted the ch~t . .
T h e recorder Is on L) Chat 7: Con'ko~... Poem~'.doc: 'T+vas eunicks# ~ t...
davol h ~ i~ined ~ Chat 2: Next quest.., poems.doe: And gettessedl f r o m . <d~veo This one i¢ easy: eunicks == u r ~
d~vor has ~ter te.d the chat
The te+¢ordef is on
dereor has [~tned
<davor> OK, next q4J~tioi~
eli2ab~h h~ ~ned
< davu::. ~ do ~ thi,'¢<.
<¢ffzabeth> Let's cee...

Figure 4. Interface to database. The area on the left
displays the text chat and the area on the right lists the

sticky chats that are currently open, their names and their
current contexts. The icon beside the sticky chat name

shows which chats are currently active.

Last week they had a telephone conference call so that they
would all have a chance to agree on the general direction of
their executive summary. In addition, they have been
emailing messages back and forth daily. Today, Carol is
working to incorporate her analysis into the draft document
that Joe sent yesterday. She likes the graph showing the
data points that they've chosen to use but thinks there is an
additional interpretation that should be included based on
the original data. However, it will require a substantial
change to the summary graph and she's not sure how to best
to represent her concern. She is anxious to interact with
Ann and Joe about the data and the analysis. She has
already made several modifications to the document itself.
She has tried to summarize her concerns about the data in
an email message. However, she wants to have a
conversation about it. Although she knows she could call,
Joe typically works at his home in the mornings while Ann
will be in the company office. They would have to arrange
for a conference phone call and still might have trouble
knowing exactly what point in the original data was
troubling her. She decides to use the Anchored
Conversations tool. In the paragraph explaining the data,
she inserts a sticky chat window and invites Ann and Joe.
She knows they'll be getting into work soon and they'll see
the invitation to chat with her. She then continues to edit
other sections of the document, inserting and carefully
positioning a second anchored conversation to explain why
she reorganized the Related Work section.

As soon as Carol sees activity (she can see this both in the
conversation coordinator window and in the sticky chat
window itsel0, she returns to that section of the document.
Joe is there and asks why she isn't happy with the data as
presented. Carol immediately tells Joe she'll show him the
issue with the original data and moves the chat window to
the spreadsheet with all the original data. She anchors the
conversation to the graph of data points that she thinks
contradict the summary data representation. As she moves
the sticky chat window, Joe's document automatically

scrolls to the location Carol has selected and the sticky chat
window in his document reanchored.

At this point, Ann joins in as well. She reviews the
conversations that have taken place - seeing what was said
and where it was said. She agrees with Carol's point and
starts another sticky chat in a document where she had been
trying various data representations. Neither Joe nor Carol
has seen this document but copies open up for each of them
on their respective desktops, and all the chats automatically
follow. They continue to move around the data, the report
document and their conversation, arguing and discussing
the possibilities for their summary.

When Carol leaves for the day, she knows that the next
morning she will have another go at the document -- and
that Joe and Ann will have left conversations in critical
places in the document to share their thinking with her as
they continued to edit the report.

Anchored Conversations allows Joe, Ann, and Carol to
work together on a shared document despite their
differences in time and place. Carol was able to express her
concerns about the data with a clear reference to the
particular place in the data at issue. They were able to
converse at the same time and to leave notes for each other
at different times. Placing multiple conversations in the
documents allowed different conversations to point directly
to different topics. Also a conversation could move as the
group discussion continued; it was not held to document
boundaries or type. The anchored conversation serves as a
means of annotation, of chat, of pointer in both real-time
and at different times.

Anchored Conversat ion Host Computer

[- In~ernet Relay Chat Netw~'rk v

Figure 5 Architecture for Anchored Conversations

I m p l e m e n t a t i o n
The Anchored Conversations software design (Figure 5)
consists of several components: (1) the anchor that locates
a conversation within a document context; (2) the
conversation client that provides the interface for one
conversation; (3) the conversation coordinator that handles
all conversations occurring on a host computer; (4) the

458 ~k~lllll
~ I = I Z 2 0 0 0

Meta Platforms, Inc.
Exhibit 1021

Page 005

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
	� Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

	� Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
	� With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

	� Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
	� Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

	� Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

