

Document title: Documentation/4.x/Acknowledgments - Slicer Wiki

Capture URL: https://www.slicer.org/wiki/Documentation/4.x/Acknowledgments

Page loaded at (UTC): Mon, 15 May 2023 19:07:45 GMT

Capture timestamp (UTC): Mon, 15 May 2023 19:08:14 GMT

Capture tool: 10.20.33

Collection server IP: 3.90.170.83

Browser engine: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like

Gecko) Chrome/108.0.5359.215 Safari/537.36

Operating system: Windows_NT (Node 16.17.1)

PDF length: 5

Capture ID: bVxoi5JugH6g3DPMvo8ugE

User: mce-cfraiser

_ PDF REFERENCE #:

eCtMj7Vrhaxyo3t7PhC49z

3DSlicer

About slicer

- Introduction
- Acknowledgments
- News
- Contact Us
- Licensina
- Commercial Use

Publication

- Publication DB
- Image Gallery
- Slicer Community
- Citing Slicer

Documentation

- Slicer Training
- User manual
- Developer manual

Help

- Help
- User Q&A
- Developer FAQ
- Discussion Forum

- Downloads
- Wiki
- Homepage
- Recent Changes

Search

Search Slicer Wiki

Tools

- What links here
- Related changes
- Special pages
- Printable version ■ Permanent link
- Page information
- Cite this page

discussion

view source

history

Documentation/4.x/Acknowledgments

Jump to: navigation, search

Home < Documentation < 4.x < Acknowledgments

4.x 3.x 2.x ALL VERSIONS

Citing Slicer

To acknowledge 3D Slicer as a platform, please cite the Slicer web site (http://www.slicer.org ☑) and the following publication:

Fedorov A., Beichel R., Kalpathy-Cramer J., Finet J., Fillion-Robin J-C., Pujol S., Bauer C., Jennings D., Fennessy F., Sonka M., Buatti J., Aylward S.R., Miller J.V., Pieper S., Kikinis R. 3D Slicer as an Image Computing Platform for the Quantitative Imaging Network . Magnetic Resonance Imaging. 2012 Nov;30(9):1323-41. PMID: 22770690

Slicer is made possible through contributions from an international community of scientists from a multitude of fields, including engineering and biomedicine. The following sections give credit to some of the major contributors to the 3D Slicer core effort. Each 3D Slicer extension has a separate acknowledgements page with information specific to that extension.

Ongoing Slicer support depends on YOU

- Please give the Slicer repository 🗗 a star on github 🗗. This is an easy way to show thanks and it can help us qualify for useful services that are only open to widely recognized open projects.
- Don't forget to cite our publications because that helps us get new grant funding.
- If you find Slicer is helpful like the community please get involved. You don't need to be a programmer to help!

Major Contributors

- · Ron Kikinis: Principal Investigator
- Steve Pieper: Chief Architect
- Jean-Christophe Fillion-Robin: Lead Developer
- Nicole Aucoin
- Stephen Aylward
- Andrey Fedorov
- Noby Hata
- Hans Johnson
- Tina Kapur
- Gabor Fichtinger
- Andras Lasso
- Csaba Pinter
- Jim Miller
- Sonia Pujol: Director of Training
- Junichi Tokuda
- Lauren O'Donnell
- Andinet Enquobahrie

Contributors are not only developers, but also individual helping to secure funding and move the platform forward.

Groups Contributing to the Core Engineering of Slicer in a Major Way

- SPL: Ron Kikinis, Nicole Aucoin, Lauren O'Donnell, Andrey Fedorov, Isaiah Norton, Sonia Pujol, Noby Hata, Junichi Tokuda
- Isomics: Steve Pieper. Alex Yarmarkovich
- Kitware: Jean-Christophe Fillion-Robin, Julien Finet, Will Schroeder, Stephen Aylward, Andinet Enquobahrie, Beatriz Paniagua, Matt McCormick, Johan Andruejol, Max Smolens, Alexis Girault, Sam Horvath
- University of Iowa: Hans Johnson
- Perk Lab, Queen's University: Andras Lasso, Tamas Ungi, Csaba Pinter, Gabor Fichtinger
- Kapteyn Astronomical Institute, University of Groningen: Davide Punzo

Funding Sources

Many of the activities around the Slicer effort are made possible through funding from public and private sources. The National Institutes of Health of the USA is

Contents [hide]

- 1 Major Contributors
- 2 Groups Contributing to the Core Engineering of Slicer in a Major Way
- 3 Funding Sources
 - 3.1 Grants
 - 3.2 Commercial Partners
 - 3.3 Slicer Based Products and Product Prototypes

Funding Sources

Many of the activities around the Slicer effort are made possible through funding from public and private sources. The National Institutes of Health of the USA is a major contributor through a variety of competitive grants and contracts.

Grants

For more information on how this table was created, see this page.

Project Name \$	Grant Number and NIH Link	Title (and Project Page) \$	Grant Pls +	Start Date +	End Date
Renal Biopsy	R44DK115332₺	Advanced virtual simulator for real-time ultrasound-guided renal biopsy training	Enquobahrie, Andinet A.	2019- 08-13	2021- 07-31
Software annotation	R01EB025212₺	Software for Practical Annotation and Exchange of Virtual Anatomy	Enquobahrie, Andinet A.	2019- 07-02	2021- 03-31
Computer Modeling of the Tricuspid Valve in Hypoplastic Left Heart Syndrome	1R01HL153166- 01₫	Computer Modeling of the Tricuspid Valve in Hypoplastic Left Heart Syndrome	Matthew Jolley	2021- 06-30	2025- 06-30
3D Slicer for Radiation Therapy	CANARIE RS-319 / 3D Slicer면	SlicerRT	Gabor Fichtinger, PerkLab, Queen's University	2018- 07-15	2020- 09-30
3D Slicer for Image Guided Therapy	CANARIE RS-214 / 3D Slicer®	SlicerIGT	Gabor Fichtinger, PerkLab, Queen's University	2017- 07-15	2020- 09-30
Pediatric Valve Modeling-Slicer Heart	NA	PediatricValveModeling	Matthew Jolley	2015- 08-15	2020- 08-15
DiffusionMRI	2P41EB015898₽	Image Guided Therapy Center	Clare M. Tempany	2004- 04-01	2020- 06-30
Shape	1R01EB021391₫	Shape Analysis Toolbox for Medical Image Computing Projects	Beatriz Paniagua	2016- 09-19	2020- 06-30
National Center for Image Guided Therapy	5P41EB015898₽	Use of Slicer in a Wide Array of Image-guided Therapy Research for Prostate Cancer, Neurosurgery, and Image Navigation	Clare M. Tempany	2004- 04-01	2020- 06-30
Slicer-Radiomics-U24	1U24CA194354₺	Quantitative Radiomics System Decoding the Tumor Phenotype	Hugo Aerts	2015- 04-01	2020- 03-31
Slicer-Radiomics-U01	1U01CA190234₺	Genotype and Imaging Phenotype Biomarkers in Lung Cancer	Hugo Aerts	2015- 01-01	2019- 12-01
Tools to Analyze Morphology and Spatially Mapped Molecular Data	5U24CA180924₺	Tools to Analyze Morphology and Spatially Mapped Molecular Data	Joel Saltz	2014- 09-01	2019- 08-31
NIRView (Dartmouth)	5R01CA184354₽	MRI Fluorescence Tomography For Quantifying Tumor Receptor Concentration <i>in vivo</i>	Scott C. Davis	2014- 04-01	2019- 02-28
VROrthognathic	R43DE027595₺	High-Fidelity Virtual Reality Trainer for Orthognathic Surgery	Beatriz Paniagua	2017- 09-07	2018- 09-06
CMF	R21DE025306₽	Textural Biomarkers of Arthritis for the Subchondral Bone in the Temporomandibular Joint	Beatriz Paniagua	2016- 09-01	2018- 08-31
HD_SHAPEANALSS	1U01NS082086₺	4D Shape Analysis for Modeling Spatiotemporal Change Trajectories in Huntington's Disease	Guido Gerig	2012- 09-28	2018- 08-31
QIICR	U24 CA180918년	Quantitative Image Informatics for Cancer Research (QIICR)&	Ron Kikinis, Andrey Fedorov	2013- 09-04	2018- 08-31
SlicerDMRI Diffusion MRI	1U01CA199459₽	Open Source Diffusion MRI Technology for Brain Cancer Research	Lauren Jean O'Donnell	2015- 09-22	2018- 07-31
HD_KIDS	5R01NS055903₫	Growth and Development of the Striatum in Huntington's Disease	Peggy Nopoulos	2009- 03-01	2018- 07-31
DiffusionMRI	5P41EB015902룝	Neuroimaging Analysis Center (NAC)	Ron Kikinis	2013- 08-01	2018- 05-31
Neuroimage Analysis Center	4P41EB015902₽	Application of Slicer to Image-guided Neurosurgery and other Applications through Steered Computation and Image Navigation Databases	Ron Kikinis	2013- 08-01	2018- 05-31

			I		
Neuroimage Analysis Center	4P41EB015902명	Application of Slicer to Image-guided Neurosurgery and other Applications through Steered Computation and Image Navigation Databases	Ron Kikinis	2013- 08-01	2018- 05-31
Craniosynostosis	2R42HD081712₫	Image-guided Planning System for Skull Correction in Children with Craniosynostosis: Phase II	Marius George Linguraru	2016- 05-01	2018- 04-30
DWI	R01CA160902₫	Advancement and Validation of Prostate Diffusion and Spectroscopic MRI	Stephan E. Maier	2012- 04-01	2018- 02-28
CMF	1R01DE024450₫	Quantification of 3D Bony Changes In Temporomandibular Joint Osteoarthritis	Lucia Cevidanes	2013- 09-10	2017- 08-31
PET/CT Calibration Phantom	2R42CA167907₫	Calibrated Methods for Quantitative PET/CT Imaging Phase II	Paul E. Kinahan	2012- 05-01	2017- 07-31
HD_TRACKON	NA	TRACK-ON HD	Sarah Tabrizi	2012- 01-01	2016- 12-31
Slicer-RT	NA	Cancer Care Ontario Applied Cancer Research Unit, Canada	Gabor Fichtinger, PerkLab, Queen's University	2011- 01-01	2016- 12-31
Slicer-RT	NA	Ontario Consortium for Adaptive Interventions in Radiation Oncology, Canadaß	David Jaffray, Princess Margaret Hospital, Toronto	2011- 01-01	2016- 12-31
HD_TRAJECTORY	NA	Developing a Robust Segmentation Pipeline that Allows for Consistent Trajectory Estimation of HD Gene Positive Individuals across Multiple Longitudinal MRI Sites	Eun Young Kim	2014- 11-01	2016- 10-31
Craniosynostosis	1R41HD081712₫	Image-Guided Planning System for Skull Correction in Children with Craniosynostos	Marius George Linguraru	2014- 09-26	2016- 08-31
HD_PREDICT	5R01NS040068₫	Neurobiological Predictors of Huntington's Disease (PREDICT-HD)	Jane Paulsen	2000- 08-01	2016- 08-31
PET-CT guided needle biopsy	3R42CA153488₫	Improving Liver Lesion Biopsy in the CT Suite Through Fusion with PET Images	Kevin R. Cleary	2012- 09-01	2016- 08-01
OrthognathicTrac	1R43DE024334₫	Real-Time Image Guidance for Improved Orthognathic Surgery	Andinet A. Enquobahrie	2014- 08-05	2016- 07-31
PediatricRadiologicDecisionSupport	1R01EB014947₫	Mi2B2 Enabled Pediatric Radiological Decision Support	Shawn N. Murphy	2012- 08-01	2016- 07-31
ProstateBRP	5R01CA111288₫	Enabling Technologies for MRI-guided Prostate Interventions	Clare M. Tempany	2004- 12-01	2016- 07-01
ProstateQIN	5U01CA151261₫	Quantitative MRI of Prostate Cancer as a Biomarker and Guide for Treatment	Fiona M. Fennessy	2010- 09-01	2016- 07-01
HD_GENETICS	1U01NS082074₫	Imaging and Genetics in Huntington's Disease	Turner Calhoun	2013- 07-01	2016- 06-30
HD_PET	1U01NS083173₫	Brain Network Imaging: A Novel Biomarker for Preclinical Huntington's Disease	Andrew Feigin	2013- 07-01	2016- 06-30
TubeTK	1R01CA170665₫	Micro-Tumor Detection by Quantifying Tumor-induced Vascular Abnormalities ☑	Paul A. Dayton	2012- 09-01	2016- 06-01
HD_WHITEMATTER	1U01NS083223₫	Characterization of White Matter in Huntington's Disease using Diffusion MRI	Carl-Fredrik Westin	2014- 01-01	2015- 12-31
Slicer-RT	NA	Cancer Care Ontario Research Chair, Canada	Gabor Fichtinger, PerkLab, Queen's University	2010- 01-01	2015- 12-31
HD_FMRI_DWI	1U01NS082083₫	Functional Connectivity in Pre-manifest Huntington's Disease	Stephen Mark Rao	2012- 09-26	2015- 08-31
Duke Prostate Registration	1R41CA196565₫	Prostate Cancer Assessment via Integrated 3D ARFI Elasticity Imaging and Multi-Parametric MRI	Mark L. Palmeri, Matthew M. McCormick	2015- 04-01	2015- 04-01
TubeTK	1R43EB016621₫	In-Field Fast Procedure Support and Automation ☑	Stephen R. Aylward	2013- 05-01	2015- 04-01
TubeTK	1R41NS081792₫	Multimodality Image-based Assessment System for Traumatic Brain Injury母	Stephen R. Aylward	2013- 01-01	2014- 12-01

			University	01-01	12-31
HD_FMRI_DWI	1U01NS082083₫	Functional Connectivity in Pre-manifest Huntington's Disease	Stephen Mark Rao	2012- 09-26	2015- 08-31
Duke Prostate Registration	1R41CA196565₫	Prostate Cancer Assessment via Integrated 3D ARFI Elasticity Imaging and Multi-Parametric MRI	Mark L. Palmeri, Matthew M. McCormick	2015- 04-01	2015- 04-01
TubeTK	1R43EB016621₫	In-Field Fast Procedure Support and Automation	Stephen R. Aylward	2013- 05-01	2015- 04-01
TubeTK	1R41NS081792₫	Multimodality Image-based Assessment System for Traumatic Brain Injury	Stephen R. Aylward	2013- 01-01	2014- 12-01
PET-CT guided needle biopsy	2R42CA153488₫	Improving Liver Lesion Biopsy in the CT Suite through Fusion with PET Images	Kevin R. Cleary	2012- 09-01	2014- 08-01
TubeTK	1R43CA165621₫	Quantitative Ultrasound Analysis of Vascular Morphology for Cancer Assessment⊞	Stephen R. Aylward	2012- 12-01	2014- 08-01
HD_SUBCORTICAL_SHAPE	5U01NS082085₫	Basal Ganglia Shape Analysis and Circuitry in Huntington's Disease	Michael Miller, Christopher Ross	2012- 09-26	2014- 07-31
HD_DWI	5U54EB005149₫	National Alliance for Medical Image Computing (NA-MIC)	Ron Kikinis	2010- 09-30	2014- 06-30
HD_FMRI	5R01NS054893₫	Cognitive and Functional Brain Changes in Preclinical Huntington's Disease (HD)	Jane Paulsen	2007- 05-15	2013- 04-30
PET-CT guided needle biopsy	1R41CA153488₫	Improving Liver Lesion Biopsy in the CT Suite through Fusion with PET Images	Kevin R. Cleary	2010- 07-01	2012- 06-01
Biological Morphometry	NSF 1759883₽	Collaborative Proposal: ABI Development: An Integrated Platform for Retrieval, Visualization and Analysis of 3D Morphology from Digital Biological Collections	Murat Maga	2018- 09-01	2021- 08-31

For more information on how this table was created, see this page.

Commercial Partners

- Ebatinca SL^g is an international technology company in Las Palmas, Spain focused on technology for sustainable development.
- Isomics uses 3D Slicer in a variety of academic and commercial research partnerships in fields such as planning and guidance for neurosurgery, quantitative imaging for clinical trials, clinical image informatics.
- Kitware has a long history of leading and contributing to open source platforms that serve as the foundation of many medical visualization and data processing applications. Kitware collaborates with customers to meet the demand for the development of proprietary applications and commercial products based on 3D Slicer. The company, whose focus is on solving the world's most complex scientific challenges through customized software, has used 3D Slicer to rapidly prototype solutions in nearly every aspect of medical imaging and is collaborating on the development of commercial pre-clinical products based on 3D Slicer.
- Pixel Medical[®] builds on and contributes to 3D Slicer to develop innovative medical software from idea to clinical prototype to finished product, and to support academic research projects. Areas of expertise include radiation therapy, image guided therapy, virtual & augmented reality, hardware & device support, and machine learning & artificial intelligence.

Listed in alphabetical order.

Slicer Based Products and Product Prototypes

Many companies prefer not to disclose what software components they use in their products, therefore here we can only list a few commercial products that are based on 3D Slicer:

- Allen Institute for Brain Science: Cell Locator, Desktop application for manually aligning specimens to annotated 3D spaces.
- Radiopharmaceutical Imaging and Dosimetry: RPTDose, a 3D Slicer-based application that streamlines and integrates quantitative imaging analysis and dose estimation techniques to guide and optimize the use of radiopharmaceutical therapy agents in clinical trials. See more information on Kitware blog ...
- SonoVol is developing a whole-body ultrasound imaging system for small animals. This start-up company arose from research in the Department of Biomedical Engineering at the University of North Carolina at Chapel Hill. See more information on Kitware blog is.
- Xoran Technologies: Image-guided Platform for Deep Brain Stimulation Surgery 1. See more information on Kitware blog®
- Xstrahl is developing a Small Animal Radiation Research Platform (SARRP) that uses 3D Slicer as its front-end application for radiation therapy beam placement and system control. See more information on Kitware blog is.

Listed in alphabetical order.

This page was last edited on 2 April 2021, at 17:11.

Content is available under Creative Commons Attribution-ShareAlike unless otherwise noted.

About Slicer Wiki Disclaimers

Privacy policy

