
Code200 Exhibit 1009
Page 1 of 308

DECLARATION BY MARC RENNHARD

I, Mare Rennhard, hereby declare as follows.

iL I am more than twenty-one (21) years ofage and I am competent to make this declara-

tion.

I am employed by ZHAW Schoolof Engineering as the HeadofInstitute of Applied In-

formation Technology and a Professor for Computer Science, focusing on Information

Security.

I authored the doctoral thesis titled, “MorphMix - A Peer-to-Peer-based System for

AnonymousInternet Access”.

I have been askedto certify “MorphMix - A Peer-to-Peer-based System for Anonymous

Internet Access”, found on the ETH Zurich Research Collection at https://www.research-

collection.ethz.ch/handle/20.500.11850/148022 (attached as Exhibit A).

“MorphMix - A Peer-to-Peer-based System for AnonymousInternet Access” was depos-

ited in the ETH Zurich Library, and I confirmed that it was deposited, and thereafter

available for retrieval by the public, on or around April 2, 2004.

“MorphMix- A Peer-to-Peer-based System for Anonymous Internet Access” was pub-

lished online on or around April 2, 2004 and wasavailable to the public shortly thereaf-

ter.

“MorphMix - A Peer-to-Peer-based System for AnonymousInternet Access”is also in-

dexed in the Swiss National Library at http://permalink.snl.ch/bib/sz001418710.

“MorphMix - A Peer-to-Peer-based System for AnonymousInternet Access” was pub-

lished by Shaker Verlag in 2004, with an ISBN of 978-3832226510.

Code200 Exhibit 1009

Page 1 of 308

Code200 Exhibit 1009
Page 2 of 308

I declare under penalty ofperjury underthe laws of the United States ofAmerica that the

Y
Marc Rennhard

foregoing is true andcorrect.

G
Executed onthis the oY: day of June 2020.

Code200 Exhibit 1009

Page 2 of 308

Code200 Exhibit 1009
Page 3 of 308

EXHIBIT A

Code200 Exhibit 1009

Page 3 of 308

ihehrtoT IDaahocsDR

-DocDtra lThese

-Morp-hi x APPo eM APPo tbaPs dSaePy mMo xfMfSyMna
ufePofPe xIIPaa

xnepMoca()
ihRRTrtnd ,rto

Ant:hIbehMf lbeP)
M220

APoybfPfe DhfL)

Tcc4ep::nDs/Dt.:g2/13M3:hcT9 r 220z23z0M

khRpea g DhIPfaP)

7R ID4Cts.Tc yDR IDNNhtosra meh UhtNscchn

lTse 4r.h Pre .hRhtrchn rwcDNrcsoraaC w4DR nDPRaDrn utDN cTh flE HwtsoT ihehrtoT IDaahocsDR / ZDt NDth
sRuDtNrcsDR 4ahreh oDRewac cTh lhtNe Du weh /

flE FsLtrtC Code200 Exhibit 1009
Page 4 of 308

Diss. ETHNo. 15420

MorphMix - A Peer-to-Peer-based

System for Anonymous Internet

Access

A dissertation submitted to the

SWISS FEDERAL INSTITUTE OF TECHNOLOGY

ZURICH

for the degree of

Doctor of Technical Sciences

presented by
MARC RENNHARD

Dipl. El.-Ing. ETH

born 10th February 1972

citizen of Böttstein (AG)

accepted on the recommendation of

Prof. Dr. Bernhard Plattner, examiner

Dr. Laurent Mathy, co-examiner

2004

(Examination date 23rd January 2004)

Code200 Exhibit 1009
Page 5 of 308

TIK-SCHRIFTENREIHE NR. 61

Diss. ETHNo. 15420

Marc Rennhard

MorphMix-A Peer-to-Peer-based

System for Anonymous
Internet Access

TIK-Schriftenreihe

Code200 Exhibit 1009
Page 6 of 308

Abstract

Contrary to popular belief, using the Internet is not anonymous at all. Since

the Internet is a packet-switching network, every IP packet must carry the IP

addresses of both communication endpoints. Consequently, anyone capable
of observing at least one packet of a communication relationship can tell who

is communicating with whom. The problem with this lack of anonymity is

that it limits the privacy protection of Internet users. Today, privacy issues

in the Internet are usually addressed by legislations that require operators of

servers to clearly state their privacy practices and by encrypting the applica¬
tion data exchanged between two communicating parties. In general, privacy

practices are difficult to enforce and encrypting the application data does not

hide the IP addresses in the IP packets. However, learning the endpoints of

communications relationships often reveals a lot of information about indi¬

vidual Internet users' preferences, habits, and problems; for instance when

accessing web sites that provide medical information, religious sites, or the

web site of a credit institution. These privacy issues can only be solved by

enabling anonymous Internet communication.

In this thesis, we work on the problem of achieving anonymous Internet

access for low-latency applications such as web browsing. With anonymous

Internet access, we mean that a client can connect to and communicate with

a server such that the server does not learn the client's IP address and an at¬

tacker interested in learning who is communicating with whom cannot find

out the IP addresses of both client and server. Unlike encryption, anonymity
cannot be "produced" by the communication endpoints themselves, but must

be provided by a third party infrastructure. The concept of mix networks is

widely considered to be the most promising approach for such an infrastruc¬

ture, and consequently, we focus on mix networks in these thesis.

The main contribution of our work is MorphMix, which fulfils the princi-

Code200 Exhibit 1009
Page 7 of 308

11

pal goal of this thesis: to develop a practical mix network that enables anony¬

mous low-latency Internet access for a large number of users. With practical,

we mean that (1) everybody owning a state-of-the-art computer connected to

the Internet can use the system, (2) the performance it offers is good enough
such that users won't turn away from it, (3) it provides good protection from

attacks by a realistic adversary, and (4) it scales well and can handle a large
number of users.

We first analyse traditional mix networks that strictly separate between

the mix network infrastructure and clients that access servers through the mix

network. The conclusion is that traditional mix networks are not well suited

to achieve our principal goal for various reasons. To overcome their limita¬

tions, we propose MorphMix, which presents a novel way of operating and

organising a mix network. In contrast to traditional mix networks, MorphMix
does no longer distinguish between clients and the mix network. Rather, the

clients themselves build the mix network infrastructure in a peer-to-peer fash¬

ion. After describing the basic functionality of MorphMix, we give detailed

analyses to show that MorphMix scales very well and provides good protec¬

tion from a realistic adversary. To analyse the performance MorphMix offers

to its users, we have implemented a simulator. The simulation results show

that the expected performance ofMorphMix is indeed good enough to attract

users, and that the requirements to use MorphMix are modest. We have also

specified the complete MorphMix protocol and have implemented a proto¬

type. The main conclusion of our work is that with respect to our principal

goal, MorphMix overcomes the limitations of traditional mix networks and is

the first practical system that enables anonymous low-latency Internet access

for a large number of users.

Code200 Exhibit 1009
Page 8 of 308

Zusammenfassung

Entgegen der weit verbreitetenMeinung ist die Benutzung des Internets nicht

anonym. Weil das Internet ein paketvermittelndes Netwerk ist, muss jedes
IP-Paketdie TP-Adressen beider Kommunikationsendpunkte enthalten. Folg¬
lich kann jeder, der mindestens ein Paket einer Kommunikationsbeziehung

beobachtet, sagen, wer mit wem kommuniziert. Dieses Problem der fehlen¬

den Anonymität führt dazu, dass der erreichbare Schutz der Privatsphäre von

Internetbenutzern limitiert wird. Derzeit wird die Privatsphäre im Internet

üblicherweise so geschützt, dass Gesetze erlassen werden, welche die Be¬

treiber von Servern verpflichten, ihre Praktiken im Umgang mit vertraulichen

Benutzerdaten publik zu machen. Zusätzlich können die Anwendungsdaten,
die zwischen den Kommunikationspartnern übertragen werden, mittels Ver¬

schlüsselung geschützt werden. Im Allgemeinen ist es jedoch schwierig zu

überprüfen, ob die Betreiber ihre publizierten Praktiken einhalten, und trotz

Verschlüsselung der Anwendungsdaten sind die IP-Adressen der Kommu¬

nikationspartner immer noch in den IP-Paketen sichtbar. Die Information,

wer mit wem kommuniziert, liefert jedoch häufig bereits Erkenntnisse über

die Vorlieben, Gewohnheiten und Probleme von individuellen Internetbenut¬

zern, zum Beispiel wenn Datenvon einem Webserver mit medizinischen oder

religiösen Inhalten heruntergeladen werden oder wenn der Webserver eines

Kreditinstituts kontaktiert wird. Solche Probleme betreffend des Schutzes

der Privatsphäre können nur durch anonyme Internetkommunikation gelöst
werden.

In dieser Arbeit beschäftigen wir uns mit dem Problem der Anonymisie¬

rung zeitkritischer Internetanwendungen wie Web-Browsing. Unter Anony¬

misierung verstehen wir, dass ein Client eine Verbindung zu einem Server

aufbauen und mit diesem kommunizieren kann, ohne dass der Server die

IP-Adresse des Clients erfährt. Darüber hinaus darf ein Angreifer, der er-

Code200 Exhibit 1009
Page 9 of 308

IV

fahren möchte, wer mit wem kommuniziert, nicht zugleichbeide IP-Adressen

von Client und Server herausfinden. Im Gegensatz zu Verschlüsselung kann

Anonymität nicht von den Kommunikationspartnern selbst "erzeugt" wer¬

den, sondern muss von einer Infrastruktur, welche von Drittenbetrieben wird,

gewährleistet werden. In der Forschungsgemeinde wird angenommen, dass

das Konzept der Mix-Netzwerke am besten geeignet ist, eine solche Infra¬

struktur bereit zu stellen. Folglich beschränken wir uns in dieser Arbeit auf

Mix-Netzwerke.

Der Hauptbeitrag dieser Arbeit ist das System MorphMix, welches unser

Hauptziel erfüllt: ein praktikables Mix-Netwerk zu entwickeln, welches den

anonymen Internetzugang für eine grosse Zahl von Benutzern ermöglicht.
Unter praktikabel verstehen wir, dass (1) jeder, der einen zeitgemässen Com¬

puter besitzt, von dem System Gebrauch machen kann, dass (2) die Perfor-

manz des Systems für anwenderfreundliche Nutzung ausreicht, dass es (3)

guten Schutz vor Attacken eines realistischen Angreifers bietet und dass es

(4) gut skaliert und viele Benutzer gleichzeitig unterstützen kann.

Wir analysieren zuerst traditionelle Mix-Netzwerke welche strikt zwi¬

schen der Mix-Netzwerk Infrastruktur und den Clients, die mit Servern durch

das Mix-Netzwerk kommunizieren, unterscheiden. Es wird gezeigt, dass sich

traditionelle Mix-Netzwerke nicht gut eignen, um unser Hauptziel zu errei¬

chen. Deshalb schlagen wir das System MorphMix vor, welches eine neue

Art des Betriebs und der Organisation eines Mix-Netzwerks darstellt. Im

Gegensatz zu traditionellen Mix-Netzwerken unterscheidet MorphMix nicht

zwischen Clients und dem Mix-Netzwerk. Vielmehr bilden die Clients selbst

die Mix-Netzwerk Infrastruktur auf Peer-to-Peer Basis. Nach der Beschrei¬

bung der grundlegendenFunktionalitätvon MorphMix liefern wir detaillierte

Analysen, welche zeigen, dass MorphMix sehr gut skaliert und guten Schutz

vor einem realistischen Angreifer bietet. Um die Performanz von MorphMix

zu analysieren, haben wir einen MorphMix Simulator implementiert. Die

Simulationsresultate zeigen, dass die erwartete Performanz die Benutzerzu¬

friedenheit gewährleisten kann, und dass die Hardwareanforderungen von

MorphMix von jedem zeitgemässen Computer erfüllt werden können. Des

Weiteren haben wir das vollständige MorphMix-Protokoll spezifiziert und

einen Prototypen implementiert. Insgesamt wird gezeigt, dass MorphMix
unter Berücksichtigung unseres Hauptziels signifikante Vorteile im Vergle¬
ich zu traditionellen Mix-Netzwerken aufweist und das erste praktikable Sys¬
tem darstellt, welches die Anonymisierung zeitkritischer Internetanwendun¬

gen für eine grosse Benutzerbasis ermöglicht.

Code200 Exhibit 1009
Page 10 of 308

Contents

1 Introduction 1

1.1 Invading Privacy at the Application Level 3

1.2 Invading Privacy at the Network Level 7

1.3 Why do we need Anonymity 8

1.4 Benefits versus Drawbacks 11

1.5 Terminology and Definitions 12

1.6 Problem Statement and Contributions of this Work 14

1.7 Outline 15

2 The Mix Network Approach 17

2.1 The Mix Network Idea and Terminology 17

2.2 Mix Networks based on Chaumian Mixes 25

2.2.1 Basic Functionality 26

2.2.2 Measures to Maintain the Sender's Anonymity ...
28

2.2.3 Basic Attacks on Mix Networks 29

2.3 Circuit-based Mix Networks 30

2.3.1 Basic Functionality 31

2.3.2 Measures to Maintain the Client's Anonymity
35

2.3.3 Attacks on Circuit-based Mix Networks 35

2.3.4 Ways of Operating Circuit-based Mix Networks
. . .

37

2.4 Summary 40

3 Related Work 41

3.1 Mix Networks Designs and Implementations 41

Code200 Exhibit 1009
Page 11 of 308

Contents

3.1.1 Chaumian Mix Networks 42

3.1.2 Circuit-Based Mix Networks 44

3.2 Mix Networks Analysis and Attacks 49

3.3 Techniques beyond Mix Networks 54

3.3.1 Simple Remailers 55

3.3.2 Proxy Forwarders 55

3.3.3 Broadcast-Based Approaches 56

3.3.4 Anonymous Publishing 57

3.4 Other Applications 60

3.5 Economics of Anonymity and Reputation 61

3.6 Measuring Anonymity 62

3.7 Summary 62

A Detailed Analysis of Mix Networks 64

4.1 Why Anonymity is so Hard 64

4.1.1 Global Passive External Attackers 66

4.1.2 Partial Active Internal Attackers 70

4.1.3 Summary 71

4.2 A Quantitative Analysis of Mix Networks 72

4.2.1 No Dummy Traffic 73

4.2.2 Dummy Traffic between Clients and Mixes 75

4.2.3 End-to-EndDummy Traffic 77

4.2.4 Mix Cascades 78

4.2.5 Summary 80

4.3 A Realistic Threat Model 82

4.3.1 The Passive External Attacker 82

4.3.2 The Active Internal Attacker 85

4.3.3 Summary 86

4.4 Comparison ofMix Network Approaches 87

4.4.1 Static Mix Networks as Commercial Services
....

87

4.4.2 Static Mix Networks Operated by Volunteers
....

90

4.4.3 Dynamic, Peer-to-Peer-based Mix Networks
....

91

4.4.4 Summary 92

4.5 Conclusions 93

Code200 Exhibit 1009
Page 12 of 308

Contents

5 MorphMix 95

5.1 Motivation and Goals 96

5.2 Basic Functionality of MorphMix 97

5.2.1 Overview 98

5.2.2 Anonymous Tunnels and Anonymous Connections
.

99

5.2.3 Cells and Messages 101

5.2.4 Anonymous End-to-End Communication 102

5.3 Requirements to Break the Anonymity 106

5.4 ThreatModel 108

5.4.1 The Passive External Attacker 109

5.4.2 The Active Internal Attacker 109

5.4.3 Summary 112

5.5 Establishing Anonymous Tunnels 113

5.5.1 Anonymous Tunnel Setup 113

5.5.2 Analysis of the Anonymous Tunnel Setup 119

5.5.3 Policy For Using the Virtual Links to Neighbours . .
122

5.5.4 Why Relaying Data for Other Nodes is Good
....

123

5.6 Collusion Detection Mechanism 123

5.6.1 Correlation and Correlation Distribution 124

5.6.2 Selection Size and Size of Extended Selections List
.

128

5.6.3 Detecting Malicious Tunnels 129

5.7 Peer Discovery Mechanism 131

5.7.1 Initial Peer Discovery 131

5.7.2 Continuous Peer Discovery 133

5.7.3 Organising and Accessing Information about other

Nodes 133

5.8 Scalability and Requirements to Run a Node 140

5.8.1 Scalability and General Requirements 140

5.8.2 NAT Gateways and Dynamic IP Addresses 142

5.9 An Outlook on IPv6 144

5.10 Summary 148

6 Attacks on MorphMix 151

6.1 Basic Attack Model 151

6.1.1 The Node Simulator 153

Code200 Exhibit 1009
Page 13 of 308

vin Contents

6.1.2 Basic Scenario 154

6.2 Varying the Attack Level 155

6.2.1 The Adversary Attacks Always 155

6.2.2 The Adversary Attacks Selectively 160

6.2.3 Summary 161

6.3 Attacks Including Malicious Witnesses 164

6.4 Denial of Service Attacks 165

6.5 Exploiting the Peer Discovery Mechanism 168

6.6 Why Counting the Occurrences of Subnets does not Work
. .

170

6.7 Summary 171

7 Analysis of the Collusion Detection Mechanism 174

7.1 Joining MorphMix for the first Time 174

7.2 Honest and Malicious Nodes in the same/16 Subnet 177

7.3 Large Realistic Systems 180

7.3.1 The Nodes have Abundant Capabilities and are Con¬

tinuously Participating in MorphMix 180

7.3.2 The Nodes have Different Capabilities and Up-Times 182

7.4 Optimising the Quality of Anonymous Tunnels 188

7.5 The Subnets Contain Different Numbers of Honest Nodes
. .

193

7.6 Varying the Tunnel Length 194

7.7 Summary 194

8 MorphMix Simulation and Results 198

8.1 The MorphMix Simulator 198

8.2 Basic Simulator Settings 200

8.2.1 Protocol Settings 200

8.2.2 Virtual Link Settings 201

8.2.3 Tunnel Settings 201

8.2.4 Node Settings 202

8.2.5 Web Browsing Scenario Settings 204

8.3 Simulation Results 205

8.3.1 Contacting the Web Server Directly 205

8.3.2 Contacting the Web Server through MorphMix . . .
207

8.3.3 Optimising the Throughput of Anonymous Tunnels
.

208

Code200 Exhibit 1009
Page 14 of 308

Contents ix

8.3.4 Using Multiple Anonymous Tunnels in Parallel
. . .

213

8.3.5 Bandwidth Usage and Overhead 214

8.3.6 The Influence of Failed Tunnel Setups and Rejected
Tunnels 220

8.3.7 The Influence of the Tunnel Length 221

8.3.8 The Influence of the Cell Length 224

8.3.9 Crashing Nodes and Blocked Virtual Links 225

8.4 Summary 227

9 Conclusions 231

9.1 Summary 231

9.2 Achievement of Goals and Assessment 234

9.3 Comparison with Other Systems 237

9.3.1 Comparison with Crowds 238

9.3.2 Comparison with Tarzan 240

9.4 FurtherWork 242

Bibliography 245

Acknowledgements 257

Biography 259

A MorphMix Protocol and Prototype Implementation 260

A.l Notation 260

A.2 Basic Protocol Properties 261

A.2.1 Cryptographic Algorithms 261

A.2.2 Cell Format 262

A.2.3 Node Levels 264

A.2.4 Encoding 264

A. 3 Messages between Neighbours 267

A.3.1 Establishing a Virtual Link 267

A.3.2 Appending a Node to a Tunnel 268

A.3.3 Peer Discovery Messages 269

A.3.4 Virtual Link Status Information Messages 271

A.3.5 Terminating an Anonymous Tunnel 271

Code200 Exhibit 1009
Page 15 of 308

x Contents

A.3.6 Flow Control Messages 272

A.3.7 Virtual Link Data Messages 273

A.4 End-to-End Messages 274

A.4.1 Appending a Node to a Tunnel 274

A.4.2 Initiating and Terminating an Anonymous Connection 275

A.4.3 End-to-End Status Information Messages 277

A.4.4 End-to-end Data Messages 278

A.5 Virtual Link and Tunnel Usage 278

A.5.1 Virtual Links and Tunnel Lifetimes 279

A.5.2 Policy for Using Virtual Links 280

A.6 Quantitative Analysis of the Data Overhead 281

A.6.1 Tunnel Setup and Teardown Overhead 281

A.6.2 Virtual Link Setup Overhead 284

A.6.3 Virtual Link Status Information Overhead 285

A.6.4 End-to-End Status Information Overhead 285

A.6.5 Other Protocol Overhead 285

A.6.6 Protocol Overhead Summary 286

A.7 MorphMix Prototype Implementation 286

Code200 Exhibit 1009
Page 16 of 308

List of Figures

2.1 The mix overlay network and the underlying physical network. 19

2.2 Sending application data directly from hc to hs 20

2.3 Sending application data via the mix network from h
c
to hs. 22

2.4 Sending application data AD through a Chaumian mix network. 26

2.5 A circuit-based mix network 32

2.6 Different ways of operating circuit-based mix networks.
. . .

37

4.1 Traffic analysis at a mix 66

4.2 End-to-end Traffic analysis 68

4.3 End-to-end Traffic analysis by an internal attacker 71

5.1 Basic idea of MorphMix 98

5.2 Multiple anonymous connections within one anonymous tunnel. 100

5.3 Virtual links and layers of encryption along an anonymous

tunnel 101

5.4 Anonymous connections and cell forwarding 103

5.5 Appending a node to a tunnel and establishing the layer of

encryption 117

5.6 Correlation distribution with 10000 nodes 127

5.7 Node Lookup list 135

6.1 fam if the adversary attacks always with the same attack level. 156

6.2 Correlation distribution when varying the attack level from

0-14 157

6.3 fam if the adversary attacks with different attack levels.
. . .

159

Code200 Exhibit 1009
Page 17 of 308

xii List of Figures

6.4 fam if the adversary attacks always with the same attack level

but only if he controls the first intermediate node 161

6.5 fam if the adversary attacks with different attack levels but

only if he controls the first intermediate node 162

6.6 fam if the adversary attacks with different attack levels but

only if he controls the first intermediate node, assuming he

does not always guess correctly 163

6.7 fam if the adversary hopes for a malicious witness when the

final node is appended 165

6.8 fam if the adversary attacks always with the same attack level

and refuses to forward data along any tunnel where he con¬

trols at least one node but not both the first intermediate and

the final node 166

6.9 Occurrences of/16 subnets in the extended selections list.
. .

171

6.10 fam without and with collusion detection, and if the adversary

plays fair. 173

7.1 Performance with 10000 nodes 175

7.2 Performance with 50000 nodes 176

7.3 fam depending on the fraction controlled by the adversary in

subnets with malicious nodes 179

7.4 100000 honest, 10000 malicious nodes (abundant capabili¬

ties, always participating) 181

7.5 1000000 honest, 10000 malicious nodes (abundant capabili¬

ties, always participating) 182

7.6 100000 honest, 10000 malicious nodes (different capabilities
and participation probabilities) 185

7.7 1000000 honest, 10000 malicious nodes (different capabili¬
ties and participation probabilities) 188

7.8 100000 honest, 10000 malicious nodes (with tunnel optimi¬

sation) 190

7.9 1000000 honest, 10000 malicious nodes (with tunnel optimi¬

sation) 192

7.10 1000000 honest, 10000 malicious nodes (different numbers

of honest nodes in the/16 subnets) 193

7.11 1000000 honest, 10000 malicious nodes (diff. tunnel lengths). 195

Code200 Exhibit 1009
Page 18 of 308

List of Figures xni

8.1 Download times, accessing the web server directly 206

8.2 Download times, accessing the web server through MorphMix. 207

8.3 Download times with optimised tunnel throughput 208

8.4 Download times with even more optimised tunnel throughput. 209

8.5 Ratio between the download times when accessing the web

server through MorphMix and directly using HTTP 1.1.
. . .

210

8.6 Download times for a single file 211

8.7 Download times for a single file (more detailed illustration). 212

8.8 Download times using multiple tunnels in parallel 213

8.9 Bandwidth usage 216

8.10 Data sent and received by the nodes 217

8.11 Download times bandwidth usage with reading time = 0.
. .

219

8.12 Data sent and received by the nodes with reading time = 0.
.

220

8.13 Download times with failed and rejected tunnels 221

8.14 Bandwidth usage with failed and rejected tunnels 221

8.15 Download times depending on the tunnel length 222

8.16 Bandwidth usage depending on the tunnel length 223

8.17 Download times using different cell lengths 225

8.18 Download times when nodes crash or are temporarily blocked

from their neighbours 227

A.l Cell format. 262

Code200 Exhibit 1009
Page 19 of 308

List of Tables

4.1 Minimum capacities to support 100000 users (web browsing,
5 MB per day and user) 81

7.1 Realistic bandwidth distribution ofMorphMix nodes 183

7.2 Acceptable intermediate and final nodes 189

8.1 Data volume depending on the cell length (all lengths in bytes) 224

8.2 Percentage of pages that failed during their first download.
.

228

A. 1 Node levels in MorphMix 264

A.2 Encoding of fields in the payload 265

A.3 Encoding of message types 266

A.4 Fields and cells to establish a virtual link 268

A. 5 Fields and cells (corresponding to messages 4-9) to append a

node to an anonymous tunnel 270

A.6 Fields and cells to learn about other nodes 271

A.7 Fields and cells to exchange status mformationbetween neigh¬
bours 272

A. 8 Cell to terminate an anonymous tunnel 272

A. 9 Cell to reset the credit of a tunnel on a virtual link 273

A. 10 Cell to transport end-to-end messages 273

A. 11 Fields and cell payloads (corresponding to messages 1-3 and

10) to append a node to an anonymous tunnel 276

A. 12 Fields and cell payloads to initiate and terminate anonymous

connections 277

Code200 Exhibit 1009
Page 20 of 308

List of Tables xv

A. 13 Fields and cell payloads to exchange status information be¬

tween endpoints of a tunnel 278

A. 14 cell payloads to transport end-to-end data 278

A. 15 Overhead for the initiator to set up a tunnel 281

A. 16 Overhead for the ith intermediate node to set up a tunnel.
. .

282

A. 17 Overhead for the final node to set up a tunnel 283

A. 18 Overhead for a witness to set up a tunnel 283

A. 19 Overhead summary to set up and tear down a tunnel with

lengthfive 284

Code200 Exhibit 1009
Page 21 of 308

Chapter 1

Introduction

Until the early 1990s, the Internet was mainly an academic research network

where security and privacy issues were of little importance. However, driven

by the huge popularity of the World Wide Web (WWW) due to graphical web

browsers, the Internet has become a platform used by hundreds of millions of

people everyday for activities that often have been shifted from the physical
to the online world.

Soon, it was recognised that especially the growth of e-commerce calls

for some security mechanisms. There is no universal definition of computer

or network security because it always depends on what must be protected, but

in the Internet context, security often means secure communication, which

can be defined as follows1 :

Definition 1 Secure Communication between two partiesA andB is defined
as a communication relationship with thefollowing three properties:

• Confidentiality: data exchanged between A and B cannot be read by
an eavesdropper

• Integrity: data exchanged between A and B cannot be altered (acci¬

dentally or intentionally) in transit in a way that is not detectable by
the recipient

• Authentication: A (or B) can be sure she is indeed communicating

with B (or A)

1
Other security properties include availability and non-repudiation, which are less important

for secure communication

Code200 Exhibit 1009
Page 22 of 308

2 1 Introduction

Applied to an e-commerce scenario, a customer should be sure she is

indeed communicating with the e-store she intends to and transmitting the

payment information from the user to the e-store should be protected from

modification or observation by third parties. Using the secure socket layer

(SSL) protocol [51] or its successor, the transport layer security (TLS) pro¬

tocol [33], together with X.509 digital certificates [60] solves these problems
and brings confidentiality, authenticity, and integrity to the Internet. Another

protocol for secure communication is IPSec [66], which "patches" the IP pro¬

tocol [40] with security mechanisms to enable, for example, virtual private
networks (VPNs) [108]. To put it briefly, regarding e-commerce and other

business transactions in the Internet and leaving out mobile and ad-hoc net¬

working scenarios, the basic security problems are well understood, solved,

and widely accepted and deployed.

Beyond security, there is privacy. Applied to the Internet context, privacy

can be defined as follows [54] :

Definition 2 Privacy refers to the ability ofan individual to control the in¬

formation about herself. This does not necessarily mean that no information
is revealed to anyone. Rather, a system that respects the privacy of its users

allows them to select what information about them is revealed, and to whom.

Unlike security, mechanisms to bring more privacy to the Internet are

not yet widely deployed. One proposal is the World Wide Web Consortium

(W3C)'s Platform for Privacy Preferences (P3P) project [93]. Its goal is to

clarify a web site's privacy practices to its users. When a web site or e-

shop is contacted, the user is informed of the privacy practices of that site.

The user can accept these practices, reject them and ask for an alternative

proposal, or send another proposal herself. If an agreement between user and

web site is reached, the communication continues, otherwise it is terminated.

However, P3P only specifies the protocol for exchanging structured data to

reach an agreement, but it cannot do anything to enforce the privacy practices

a web site has proposed: even if an e-shop has promised not to give away

information about the user to third parties, there is no way for the user to

check if the e-shop complies with the rules.

This thesis is primarily about anonymity, which is closely related to pri¬

vacy. We introduce the term anonymity more formally in Section 1.5, but for

now, anonymity can be defined as follows [54] :

Definition 3 Anonymity means privacy of identity. A system that offers

Code200 Exhibit 1009
Page 23 of 308

1.1 Invading Privacy at the Application Level 3

anonymity is one where the user gets control who learns her identity. In the

Internet context, identity not only means the true name of the user, but also

her e-mail or IP address.

For completeness, we also introduce the term pseudonymity, which is a

special case of anonymity:

Definition 4 Pseudonymity enhances anonymity with pseudonymous iden¬

tities. Such identities are also called nyms [13] and make it possible for an

Internet user to have an identity while her true name is kept secret. There are

nyms that are completely unrelated to the individual's real identity (for in¬

stance a self-chosen alias) and other nyms that make itpossible to unambigu¬

ously uncover its owner's identity if certain conditions are met (for instance

ifa court order has been issued).

In the remainder of this chapter, we first discuss common practices in use

today, which invade the privacy of Internet users. We also point out possibili¬
ties and limitations for a user to protect herselffrom such invasions and show

that anonymous Internet access is one way to overcome these limitations. We

discuss benefits and drawbacks of anonymity and finally, we state the main

goal of our work and describe our contributions.

1.1 Invading Privacy at the Application Level

One way to invade the privacy of Internet users is to do so at the applica¬
tion level. A prominent example is tracking users as they navigate through
the WWW, which is possible by combining several mechanisms of how web

browsers access web pages using the hypertext transfer protocol (HTTP) [8,

45] and its secure version HTTPS [105]. We briefly describe these mecha¬

nisms below:

• The HTTP référer2 field in the header of HTTP requests field tells a

web server or an eavesdropper the uniform resource locator (URL) of

the web object the user has downloaded before. For instance, if a web

site is accessed from the results page of a search engine, it contains the

entire search string the user entered.

2Note that référer (for referrer) was spelt incorrectly in the original standard and made it

into the first implementations ofthe HTTP protocol For backward compatibility, the misspelled
word is still used in newer implementations ofthe protocol as oftoday

Code200 Exhibit 1009
Page 24 of 308

4 1 Introduction

• Cookies [69] were originally invented to create a session over several

HTTP request/reply pairs, thereby allowing a web server to track a user

as she navigates through different web pages at the same site. A cookie

is a small piece of information that a web server sends to the browser

within an HTTP reply. If a page at the same site is requested later using
the same browser, the cookie is sent to the web server as part of the

HTTP request, which allows the web server to recognise subsequent
visits by the same user. If a user ever registers at the web site, the

server can associate her identity with the pages she has visited and form

a profile of her browsing interests.

• Embedded objects of a web page are automatically downloaded by
the web browser from their respective servers. Embedded objects must

not reside on the same server as the page containing them, but can

be locates on any server. One type of embedded objects are banners

for advertisement, and many institutions allow third parties to place
banners on their web pages in return for monetary compensation.

Combining HTTP referers, cookies, and embedded objects (usually in

the form of banners) make it possible for a third party to track users across

different web sites and accumulate detailed profiles. To do so, a company C

interested in collecting data about users places banners on several web pages

at different sites. If a user downloads a page containing a banner from C,

the browser automatically requests the banner form C's web server. Since the

browser also includes the HTTP référer in the request, C learns the URL of

the page the user is downloading. When sending the HTTP reply containing
the banner, C's web server includes a cookie, which is stored in the user's

browser. If the user later visits the same or another web site that contains a

banner from C, the browser includes this cookie in the HTTP requests to fetch

the banner, which allows C to recognise the user.

While this does not seem to be a significant loss of privacy at first glance,
it gets much more serious when looking at a real example. We visit Health-

Central, com, a site providing medical information, and enter "cancef
'

in the

search form on their entry page, which results in an HTTP request sent to the

web server that contains the following fields:

GET /search asp'?query=cancer HTTP/1 1

Host search healthcentral com

Référer http //www healthcentral com/home/home cfm

Code200 Exhibit 1009
Page 25 of 308

1.1 Invading Privacy at the Application Level 5

It tells the server identified with search.healthcentral.com (Host field) to

execute the script search.asp with parameter "cancer" (GET field). Note the

référer, i.e. the URL of the page that was just downloaded is also passed
to the server (Référer field). The server replies by sending an HTML page

containing the search results. The page contains several embedded objects
that are fetched automatically by the browser. One of the embedded objects

happens to be a banner, which is downloaded by the browser using an HTTP

request that contains the following fields:

GET /adi/N2552 healthcentral/Bl 106194 4 HTTP/1 1

Host ad doubleclick net

Référer http //search healthcentral com/search asp'?query=cancer

Apparently, the object is requested from the server ad.doubleclick.net

(Host field), which belongs to the company DoubleClick. Since the object
is requested from the result page of the search for "cancer", the Référer filed

corresponds to the URL of the result page and therefore contains the search

string entered by the user. This means that DoubleClick knows a user has re¬

quested information about "cancer" at HealthCentral.com. The HTTP reply
to the request above contains the following field:

Set-Cookie id=800000255cc5216, path=/, domain= doubleclick net, expires=Fn, 02

Jun2006 11 18 21 GMT

This sets a cookie in the user's browser that only expires after three years.

Now we assume that later, the user uses her favourite search engine HotBot3

to get information about "chemotherapy". The result page again contains a

banner from DoubleClick, and the request issued by the browser contains the

following fields:

GET /adi/hb ln/r,kw=chemotherapy HTTP/1 1

Host In doubleclick net

Référer http //www hotbot com/default asp'?prov=Inktomi&query=cheinotherapy
Cookie id=800000255cc5216

Since the request goes to doubleclick.net (Host field), the browser auto¬

matically includes the cookie (Cookie field) it received earlier. In addition,

the Référer field contains again the search string and in this case, the keyword
is even included in the GET field. As a result, DoubleClick knows that search¬

ing for "chemotherapy" with HotBot has been performedby the same user (or

3http://www.hotbot.com

Code200 Exhibit 1009
Page 26 of 308

6 1 Introduction

at least the same web browser) that requested information about "cancer" at

HealthCentral.com before.

So combining HTTP referers, cookies, and banners allows a third party

to track users across different web sites. Regarding the enormous number of

pages containing DoubleClick banners, it can be expected that the company

has accumulated extensive profiles about vast amounts of web users. Note

that if a user ever enters personal information such as her name into a form,

clicks on the submit button, and the resulting page contains a DoubleClick

banner, then DoubleClick can associate all activities of that user with her

identity. Note also that not even a visible embedded object in the form of a

banner is needed because so called web bugs, which are usually 1 by 1 pixel

gif images, are often embedded in pages for the same purpose. If the web bug
is requested from DoubleClick, the effect is the same as when using a banner.

Since web bugs have the same colour as the background and are downloaded

very quickly, they can hardly be noticed by the user without analysing the

page source.

We do not accuse DoubleClick of any unlawful activities, but their prac¬

tices show what's possible in today's Internet. There is not much to say

against personalised advertisements embedded in web pages as long as no

efforts are made to associate user profiles with their identity. However, in

the case of DoubleClick, it has never been entirely clear what their prac¬

tices are4. In the USA, state and federal lawsuits that charged the company

with violating the privacy of Internet surfers were raised and finally settled in

May 2002. The settlement requires the company to purge certain data files

of personally identifiably information, including names, addresses, telephone

numbers, and e-mail addresses. Among other provisions, the settlement re¬

quires DoubleClick to obtain permission from Internet surfers before it can

tie personally identifiable information with their web surfing history5.

It is quite simple to defeat being tracked by DoubleClick or others em¬

ploying similar methods: all popular browsers allow to completely disable

cookies, but this implies some web pages cannot be accessed anymore be¬

cause they don't work without cookies. Another simple method is to limit

the lifetime of cookies to the current session, which means all cookies are

deleted when the browser is closed. It is also possible to prompt the user for

every cookie that is received, but since so many sites try to store a cookie in

4http : //www.]unkbusters . com/new. html#DCLKprovides more details about the

history of DoubleClick

5http://news.com.com/2100-1023-9198 95.html

Code200 Exhibit 1009
Page 27 of 308

1.2 Invading Privacy at the Network Level 7

the browser, this is not very practical. Junkbuster6 or its successor Privoxy7
are freely available tools that allow cookies being received from and sent to

explicitly specified sites, but block all others. In addition, they can be used

to block certain requests. For instance blocking every request that contains

"doubleclick" should effectively protect from being tracked by DoubleClick.

1.2 Invading Privacy at the Network Level

Besides invading the privacy of Internet users at the application level as de¬

scribed in the previous section, it can also be done at the network level. Every
IP packet exchanged between a user's computer and another host contains the

IP addresses of both communication endpoints. Although an IP address does

often not directly identify a person, the knowledge to associate an IP address

used at a certain time with a particular individual is virtually always avail¬

able. If a user accesses a server through the Internet, there are various cases

how the communication relationship between the user and the server can be

uncovered:

• The system administrator of a company or of a department of a uni¬

versity can find out who has been assigned what IP address at what

time. This is possible by checking the appropriate logs and derive what

user has been logged onto what computer. If the computers do not

use static but dynamic IP addresses using the dynamic host configura¬
tion protocol (DHCP) [38], the logs of the DHCP server inform about

what computer was assigned what IP address at what time. As a result,

the system administrator can easily learn who has been communicating
with what server.

• A home user connected to the Internet using a dial-up connection often

gets assigned a dynamic LP address from a pool of addresses available

to the user's Internet Service Provider (ISP). The ISP knows what user

was using what LP address at what time and therefore knows all com¬

munication relationships of all its subscribers.

• The server or any entity that gets access to packets exchanged between

the user and the server sees the IP addresses of the communicating

parties. Accessing packets is for instance possible for every ISP be-

6http://www.]unkbuster.com
7http://www.privoxy.org

Code200 Exhibit 1009
Page 28 of 308

8 1 Introduction

tween user and server, the FBI using their Carnivore diagnostic tool
,

or any other eavesdropper. Assuming cooperation of the user's system

administrator or her access ISP, it is possible to learn what user is com¬

municating with what server. With the growing popularity of access

technologies such as (A)DSL or Cable that allow home users being
connected to the Internet permanently, more and more people have an

own public static IP address, which means identifying the user is much

easier and possible without cooperation of the system administrator or

the access ISP.

Defending against this kind of invasion of privacy is much more difficult

than in the previous section where the user could protect herself by control¬

ling the usage of cookies. The main problem is that IP addresses are one

fundamental component of the network layer to transport data in the Internet

and not just an application layer feature like cookies. In particular, the user

cannot simply choose not to include her IP address in the packets she sends

and receives.

One can argue that encrypting the application data carried in IP packets

helps to increase the privacy of web users. This is certainly true, but only
while a packet is in transit between user and server. The server still sees both

the data and the user's IP address. But more importantly, there are many sit¬

uations where even knowing only the identities of the communicating parties
is too much and this is where anonymity comes into play. For instance, when

sitting at your work place and browsing a site offering jobs, you do not want

your employer to know what site you are accessing. Connecting to medical

sites (e.g. www.healthcentral.com), pornographic sites, your favourite reli¬

gious site, or the web site of a credit institution already may reveal significant
information about your personal preferences and problems. Anonymity can

be considered as the ultimate form of privacy and is extremely difficult to

achieve in the Internet.

1.3 Why do we need Anonymity

It is a legitimate question to ask why we need anonymity in the Internet at

all. At least, the Internet has become very popular during the second half

of the 1990s although it was never built with privacy or anonymity in mind

and did not offer such measures at all. Don't Internet users care about their

http ://www.fbi.gov/hq/lab/carnivore/carmvore.htm

Code200 Exhibit 1009
Page 29 of 308

1.3 Why do we need Anonymity 9

privacy? According to a Forrester Research survey of online users in 1999,

67% said they were "extremely" or "very" concerned about releasing personal
information over the Internet9. An Arthur Andersen survey in 2000 found that

94% of 365 Internet users expressed some level of concern for their privacy10.
So it seems Internet users definitely care about privacy. But then, why are they

giving away so much personal information?

An explanation could be that most people are simply not aware of how

easy it is to accumulate information about them in the Internet. Indeed, com¬

paring Internet applications with their counterparts in the real world shows

that their online versions offer usually much less privacy, as the following

examples show:

• A notice-board as used at schools, work places, or public buildings can

be considered as the physical world equivalent of a newsgroup. Al¬

though much less powerful than their counterparts in the Internet be¬

cause far fewer people will ever read a notice, they have the advantage
that the lifetime of notices is usually limited. When a notice is removed

from the board, it will soon be forgotten. With newsgroups, every sin¬

gle posting will be stored for a very long time and can easily be found

using search engines.
• Sending an e-mail message discloses the identities of both sender and

recipient. In addition, the content is easily accessible to any mail server

or eavesdropper on the path from sender to recipient unless it is en¬

crypted. Although tools for encrypting are readily available, they are

often cumbersome to use and require both communicating parties to

have them installed on their computers. In addition, encrypting e-mail

messages only hides the content but not the addresses of sender and

recipient. Letters, on the other hand, usually hide the content from out¬

siders. Of course it is possible to open an envelope, read the content,

close the envelope again, and send it to the recipient without anybody

noticing this. But this is a time-consuming process and can hardly be

done with every single letter. With e-mail messages, this is much sim¬

pler because they are processed electronically. In addition, one can

easily send anonymous letters simply by omitting the sender address.

Note that with e-mail messages, this is also possible, for instance by

sending e-mail messages only using anonymous e-mail accounts as of-

9http://www.fdic.gov/news/conferences/transcript.html
°http://www.privacydigest.com/2 0 0 0/0 9/3 0

Code200 Exhibit 1009
Page 30 of 308

10 1 Introduction

fered by Yahoo11 and others. However, this only protects the sender's

identity from the recipient, but not from Yahoo or other eavesdroppers
because when accessing the mailbox at Yahoo from her home or work

computer, a user discloses her LP address. We conclude that e-mail

messages are more similar to postcards that contain the full sender's

address than to letters.

• Traditionally, one had to go to the library to look up information. This

is a very private and in fact anonymous process because nobody has

to disclose her identity when simply consulting some books. Today,

people start their favourite search engine and type in a search string,

or they visit a web portal, both of which is not private at all. In either

case, they will end up browsing through the web, accessing several

web servers and leave extensive traces about their personal preferences,

habits, and dislikes.

• Browsing through a physical store and looking at goods is anonymous.

When buying a product, the customer can choose to pay with cash,

which is difficult to trace. Internet-based e-commerce is different. First

of all, anonymously buying products is not possible because payment

is usually done by credit cards. But anonymously looking at the goods
is also not possible because with every user sending her IP address, the

e-store may know a customer's identity right when accessing the entry

page of the store. Consequently, e-commerce is like a customer would

have to provide her identity when entering a physical shop.

It could well be this resemblance of many Internet applications to the real

world which causes users to have a wrong sense of privacy. In any case,

if people start shifting more and more of their activities to the Internet, the

probability that information about them is logged and stored significantly in¬

creases. Storage has become so cheap that even vast amounts of information

can be stored for a long time. Using powerful search engines allows to learn

virtually everything stored in public databases about a particular individual.

For example, using Google12 and searching within "Groups" makes it possi¬
ble to access every single post ever made to newsgroups. It's virtually impos¬
sible to remove a message from a newsgroup. Once it has been posted, it is

likely to remain forever available to every Internet user13. The same is true for

every piece of information stored about a certain person in the Internet: if the

http ://www.yahoo.com

http ://www.google.com

Considering the time the Internet has been around, "forever" means "a few decades"

Code200 Exhibit 1009
Page 31 of 308

1.4 Benefits versus Drawbacks 11

server holding the information is not under control of that person, removing
the information is very difficult.

Today, only a fraction of the traces one leaves in the Internet are available

in public databases. However, other parties may monitor and store parts of

the traffic being sent over the Internet. As mentioned in Section 1.2, various

parties may see what an individual is doing. Just imagine the personal in¬

formation an individual discloses over a course of ten years of using search

engines, shopping online, visiting web sites in general, sending e-mail mes¬

sages, posting to newsgroups, chatting, using file-sharing systems, and more.

Large dossiers about Internet users could be accumulated and sold, and it

is reasonable to assume that there is a market for such a business. For in¬

stance, employers could extensively evaluate potential employees before hir¬

ing them, or politicians could dig for information they could use against their

opponents.

One - and probably the only - way to mitigate these problems and to

significantly enhance the privacy of Internet users is by enabling anonymous
Internet access. Anonymous Internet access makes the task of accumulating

large amounts of information about a particular individual much more com¬

plicated because Internet activities can no longer easily be associated with a

particular LP address or identity.

1.4 Benefits versus Drawbacks

Like every technology, anonymity in the Internet can be used for good and

bad purposes. As the examples given in Section 1.3 show, the physical world

often is anonymous. However, the availability of anonymity in real life is of¬

ten abused because anonymous letters or phone calls from public telephones

are used to threaten people all the time. Nevertheless, the benefits seem to

outweigh the drawbacks and consequently, anonymity in the physical world

is widely accepted as beneficial for society.

In the Internet, the situation is similar. We have given many arguments

for anonymity in this chapter, but there are several ways to abuse anonymous

Internet access. Distributing junk e-mail messages (spam) without being de¬

tected would get even easier than today. Similarly, harassment of people

through e-mail messages or posts to newsgroups are likely to increase. In

addition, anonymity-providing technologies may make it even more difficult

to derive the origin of denial of service attacks than today. But the greatest

Code200 Exhibit 1009
Page 32 of 308

12 1 Introduction

fear of opponents of anonymity are that it may provide terrorists, drug dealers,

and other criminals with a platform that facilitates their communications. Ba¬

sically, their arguments are the same we already heard during the discussions

in the 1990s about whether strong cryptography should be made available to

the broad public or not, and we do not deny that some of these arguments are

at least partially true. Like encryption, anonymity will make it more difficult

for intelligence agencies to spy on their enemies.

One thing to remember is that we can have very good anonymity in the

Internet even today. To browse the Web anonymously, we simply go to a pub¬
lic Internet terminal as found at various places (Internet cafes, airports, train

stations, libraries, ...). To exchange e-mail messages anonymously, we can

establish an anonymous e-mail account at Yahoo and only access it through
a public terminal. Furthermore, more and more public wireless access points

are installed and many of them do not require any form of authentication to

be used. To summarise, there are various possibilities to access the Internet

anonymously, but regularly using the Internet in such a way is cumbersome.

However, smart criminals take their time, are careful, and may in fact take

great care to access the Internet only in such a way. Simply spoken, we can

say that criminals already have anonymity, but normal people don't.

Ultimately, society will balance the benefits against the drawbacks and ei¬

ther make use and thereby boost anonymity-providing techniques or not. We

believe that anonymity in the Internet is valuable for society, but it is not the

goal of this thesis to educate Internet users or impose our opinion on others.

Rather, we want to bring research on anonymity-providing systems one step

furtherby exploring the possibilities and limits ofanonymous communication

in the Internet.

1.5 Terminology and Definitions

The terminology and definitions we use throughout this thesis are based on a

proposal for the terminology in anonymous communication systems [83].

The basic setting is that senders send messages to recipients. This ter¬

minology works well for scenarios such as e-mail communication where a

message correspond to an e-mail message, but for applications that make use

of request/reply pairs, we prefer the notation that a client exchanges messages
with a server. In this case, the message correspond to either a web request or

a web reply.

Code200 Exhibit 1009
Page 33 of 308

1.5 Terminology and Definitions 13

Anonymity is the state ofbeing not identifiable within a set of subjects, the

anonymity set. The anonymity set is the set of subjects (for instance users)

that may have caused an action (for instance having sent an e-mail message

or having accessed a web server). The concept of the anonymity set is fun¬

damental to research on anonymity. Less formal, it means that when using

an anonymity-providing service, one is only anonymous among the set of all

those using the same service at the same time, and not among all Internet

users. In general, larger anonymity sets imply better anonymity.

Unlinkability of two or more items (e.g. subjects or messages) means that

within an anonymity-providing system, these items are no more and no less

related than they are related concerning the a-priori knowledge. This means

the probability of those items being related stays the same before (a-priori

knowledge) and after the run within the system (a-posteriori knowledge of

the attacker).

Using the definition of unlinkability, anonymity can be defined as unlink¬

ability of subjects and messages. In particular, sender (or client) anonymity

means that for the recipient (or server), messages it receives are not linkable

to a sender (or client). In the client/server case, it also means that the server

can send back messages to the client without this data being linkable to a par¬

ticular client. Recipient (or server) anonymity means that for the sender (or

client), messages it sends are not linkable to a recipient (or server). Relation¬

ship anonymity means that except for the communicating parties, no other

party can learn who communicates with whom. In other words, sender (or

client) and recipient (or server) are unlinkable.

It should be noted that the definition of anonymity using unlinkability is

absolute. Either there is unlinkability and therefore anonymity or not. For in¬

stance, if an attacker manages to exclude 10% of all current users of a system

of having been the sender of a particular data, unlinkability and therefore also

anonymity are no longer given according to the definitions above, even if ev¬

ery one of the remaining 90% of all senders could have sent the message with

equal probability. While this makes sense for researchers exploring possibil¬
ities to achieve information-theoretic (or perfect) anonymity, it is less well

suited for those working on practical anonymity-providing systems because

in the latter case, attackers are usually capable to reduce the set of potential
senders of a certain message. We therefore define unambiguous linkability of

two or more items, which means these items can be unambiguously related.

Throughout this thesis, we equal IP addresses and identities, which means

that if the IP address of an item (for instance the sender) is known, we assume

Code200 Exhibit 1009
Page 34 of 308

14 1 Introduction

its identity (for instance the true name of the sender of an e-mail message or

the person acting as a client when downloading a web page) is also known.

Consequently and using our definition ofunambiguous linkability, we say the

sender (or client) anonymity is broken if the recipient (or server) can unam¬

biguously link a message it receives to the sender's (or client's) IP address.

Likewise, the recipient (server) anonymity is broken if the sender (or client)

can unambiguously link a message it sends to the recipient's (or server's) IP

address. Finally, the relationship anonymity is broken if any party except

communicating parties themselves can unambiguously link the IP addresses

of both sender (or client) and recipient (or server).

It shouldbe noted that this terminology is well suited for anonymous com¬

munication systems in general and is independent of a particular technology
that aims at providing anonymous communication. However, since this the¬

sis focuses primarily on systems based on mix network to enable anonymous

communication, we will have to adapt and extend this terminology when we

discuss mix networks in more detail in the next chapter.

1.6 Problem Statement and Contributions of this

Work

In this thesis, we focus on the problem of achieving anonymous Internet ac¬

cess for low-latency applications such as web browsing. As we will see in

Chapters 2 and 3, anonymity-providing systems have often been separated
into those supporting non-time-critical applications such as electronic mail

and those aiming at low-latency applications14, although the systems often

have many similarities independent of the type of application they support.

However, experience has shown that supporting the former type of appli¬
cation is a much more challenging problem than supporting the latter (see

Chapter 2) and as a result, no sophisticated system that provides practical

low-latency anonymity for a large number of users is available today.

Throughout this thesis, we focus on the concept of mix networks (see

Chapter 2), which is considered as the most promising approach to enable

anonymous Internet access. There are also alternative concepts (see Sec¬

tion 3.3), but they either provide only little protection from attacks or are

14Of course, systems supporting low-latency applications also support non-time-critical appli¬

cations, but not vice versa

Code200 Exhibit 1009
Page 35 of 308

1.7 Outline 15

not practical for a large number of users in the Internet context. Mix net¬

works provide client and relationship anonymity at the network level (see

Section 1.2), which means they hide the client's IP address from the server

and prevent an adversary from unambiguously linking the IP addresses of the

client and the server of a communication relationship.

The principal goal of this work is to provide a practical system that en¬

ables anonymous low-latency Internet access for a large number of users.

Although this will be specified in more detail in Chapter 5, with a practical

system we mean that (1) everybody owning a state-of-the-art computer con¬

nected to the Internet can use the system, (2) the performance it offers is good

enough such that users won't turn away from it, (3) it provides good protec¬

tion from attacks by a realistic adversary, and (4) it scales well and can handle

a large number of users. To do so, we first analyse traditional mix networks

to demonstrate that they are not well suited to achieve this goal (see Chap¬
ter 4). To overcome the limitations oftraditional mix networks and to achieve

our principal goal, we have developed MorphMix, which proposes a novel

way of operating and organising a mix network. We have carried out detailed

analyses to show that MorphMix scales very well and provides good protec¬

tion from a realistic adversary. To analyse the performance MorphMix can

offer to its users, we have implemented a simulator. The simulation results

show that the expected performance of MorphMix is indeed good enough to

attract users, and that the requirements to use MorphMix are modest. Finally,

we have specified the complete MorphMix protocol and have implemented a

prototype. The main conclusion of our work is that with respect to our prin¬

cipal goal, MorphMix overcomes the limitations of traditional mix networks

and is the first practical system that enables anonymous low-latency Internet

access for a large number of users.

MorphMix will be presented and analysed in Chapters 5 to 8, and the

precise goals MorphMix should achieve are stated in Section 5.1.

1.7 Outline

In Chapter 2, we start with a description of the concept of mix networks that

will provide the basis for our work. In Chapter 3, we look at other work that

has been conducted in the field of anonymity. We do not restrict ourselves

to mix networks, but also present other techniques to tackle the problem of

anonymous Internet communication. In Chapter 4, we examine mix networks

Code200 Exhibit 1009
Page 36 of 308

16 1 Introduction

in great detail. We especially focus on mix networks for low-latency applica¬
tions and analyse their resistance to attacks.

In Chapters 5-8, we present MorphMix, which is the major contribution

of our work. Chapter 5 describes the basic design and functionality and intro¬

duces the core components ofMorphMix. In Chapter 6, we examine different

attack strategies that can be employed by an adversary to analyse how well

MorphMix protects its users from the corresponding attacks. In Chapter 7, we

analyse the performance of the collusion detection mechanism, which is one

of the core components of MorphMix. We focus on large, realistic scenarios

where participants have different capabilities and are not online all the time.

In Chapter 8, we describe the MorphMix simulator and present the simulation

results.

Finally, we summarise our work, draw the conclusions, compare Mor¬

phMix with similar systems, and provide an outlook on possible further work

in Chapter 9.

Appendix A contains a detailed description of the MorphMix protocol
and the MorphMix prototype implementation.

Code200 Exhibit 1009
Page 37 of 308

Chapter 2

The Mix Network Approach

Mix networks are the basis for our our work. In this chapter, we first de¬

scribe the basic idea of mix networks and the terminology in general. Then

we look at mix networks in more detail, starting with the original approach
that was designed to support non-time-critical application such as electronic

mail. Afterwards, we describe how the original approach has been modified

to support near-real-time applications such as web browsing. In this chapter,

we only discuss the basic concepts; systems implemented on these concepts

are presented in Chapter 3. Similarly, we only talk about basic attacks in

this chapter. We will present more sophisticated attacks in Section 3.2 and

provide a more thorough analysis in Section 4.1.

2.1 The Mix Network Idea and Terminology

In 1981, the concept of a mix network was introduced by David Chaum [16].

Although the basic idea is independent of the underlying communication in¬

frastructure, nearly all work on actual systems to provide a mix network (see

Section 3.1) has been conducted in the Internet context. In this thesis, we

also focus on mix networks operated in the Internet context and, unless noted

otherwise, assume that the underlying communication infrastructure is the

Internet. In this section, we provide the basic idea of mix networks and the

terminology we will use throughout this thesis. The purpose of this section is

to show the relation between a mix network and the underlying physical net-

Code200 Exhibit 1009
Page 38 of 308

18 2 The Mix Network Approach

work and how a client and a server application can communicate with each

other such that an eavesdropper observing the Internet traffic cannot learn the

IP addresses of both communication endpoints by inspecting the network or

transport protocol headers of the corresponding IP packets. The purpose of

this section is not to explain measures employed by mix networks to defend

against more sophisticated attacks. In particular, the important concept of

layered encryption will be left out for now and introduced in Section 2.2.1.

It should also be noted that there is no such thing as a generic mix network

because although all mix networks have fundamental similarities, every pro¬

posal for a specific design of a mix network has its own typical properties.

Consequently, the model we use in this section to explain the basic mix net¬

work idea is also not generic, but has many similarities to MorphMix, which

is our own proposal for a circuit-based mix network (see Chapters 5-8). Nev¬

ertheless, it serves well to explain the fundamental ideas ofmix networks and

many of the components we identify in this section can also be found in the

following two sections when we describe two specific mix networks.

A mix network is an overlay network that aims at providing sender (or

client) and relationship anonymity at the IP level. According to our defini¬

tions in Section 1.5, this means the recipient (or server) cannot learn the IP

address of the sender (or client) and an adversary observing the data being

exchanged cannot learn the IP addresses of both communication endpoints.
Mix networks do not offer recipient (or server) anonymity because the sender

(or client) must know how to contact the other party.

A mix network is composed of multiple mixes mt. Basically, mixes are

proxies that relay data, but they provide additional functionality as we will

see in Sections 2.2 and 2.3. Mixes can be accessed using their mix address

that unambiguously identifies a mix. Up to now, all designs and implemen¬
tations of proposed mix networks have modelled a mix as a service running
at the application layer on an Internet host, and we will make use of this con¬

cept throughout this thesis. Consequently, mixes are accessed by specifying
the protocol to be used (either the transmission control protocol (TCP) [41]

or the user datagram protocol (UDP) [89]) together with an IP address and a

port, and therefore, the mix address is the combination of an IP address and

a port, i.e. mix mt is the mix address ipm»:pm»- Note that one could also

imagine a mix network operating below the application layer, for instance by

running the mixes directly on a subset of all routers using an extensible router

platform [65], but we will not pursue this approach further in this thesis. Fig¬
ure 2.1 illustrates the basic idea of a mix network and the relationship of the

Code200 Exhibit 1009
Page 39 of 308

2.1 The Mix Network Idea and Terminology 19

mix overlay network and the underlying physical network.

physical network

Figure 2.1: The mix overlay network and the underlyingphysical network.

The lower half of Figure 2.1 shows a simplified IP network where routers

rj, hosts hc and hs, and mixes m4 are interconnected by physical links. We

first look at what happens if a client application on hc communicates with a

server application on hs directly, which is illustrated in Figure 2.2.

Figure 2.2 shows the two hosts hc and hs and five routers r2, r4, r8, ri2,

and ri5 that specify the likely route IP packets follow when being sent from

hc to hs according to Figure 2.1. In addition, Figure 2.2 illustrates the ap-

Code200 Exhibit 1009
Page 40 of 308

20 2 The Mix Network Approach

application

layer

transport layer

(TCP/UDP)

k T
ITIADI

1

ITIAD
A

network layer

(IP)
N|T|AD l"2 r4 r8 ri2 ri5

T

N|T|AD

'PçPç-'PsPs^0

Figure 2.2: Sending application data directlyfrom hcto hs.

plication, transport, and network layer. We do not display layers below the

network layer as they are not relevant for the following discussion. We as¬

sume the client application wants to send application data AD to the server

application. The server application can be accessed using the appropriate ad¬

dress consisting of hs 's IP address ips and the appropriate port p s. Using this

addressing information, the client application sends the application data via

the socket interface on hc. This results in the generation of one or more LP

packets that contain the addressing information in the transport (T) and net¬

work (N) protocol headers. The headers also contain the address to identify
the client application consisting of hc's IP address ipc and a port pc. The

resulting socket pair ipc:pc-ips :ps unambiguously identifies the communica¬

tion relationship between the client and server applications and therefore also

between hc and hs. For simplicity, we assume the application data fits into

the payload of a single IP packet, but in reality, sending application data often

results in generating as many IP packets. The resulting IP packet is sent to

hs, and leaving out any kind of Network Address Translation (NAT) [43], LP

tunnelling [119], or application layer proxies, the addressing information in

the IP packet is left unchanged on the route between hc and hs. As discussed

in Section 1.2 this simultaneous presence of the identifiers of both commu¬

nication endpoints provides the fundamental prerequisite to easily invade the

privacy of the user at hc at the network level. Note that although not depicted
in Figure 2.2, sending application data back to hc works vice versa. In ad¬

dition, and also not depicted in Figure 2.2, the IP packets to establish the

end-to-end connection if TCP is used already contain the socket pair before

the actual application data transfer happens.

The upper half of Figure 2.1 illustrates the mix overlay network. Here,

we do no longer look at the routers and physical links of the underlying com¬

munication infrastructure, but only at hosts, mixes, and the communication

Code200 Exhibit 1009
Page 41 of 308

2.1 The Mix Network Idea and Terminology 21

relationships between them. The mixes build the core of the mix network.

At any time, a mix can have a communication relationship with a subset of

all other mixes, but not necessarily with with all of them. We identify such

a communication relationship with virtual link to distinguish it from physical
links. To establish a virtual link to m0, mt uses m0 's mix address. Virtual links

can make use of TCP or UDP (see Section 2.3.4) and can be short-lived or

long-standing. The mixes with which a mix currently has established virtual

links are its neighbours. The basic idea of a mix network is that application
data are not directly exchanged between hc and hs as in Figure 2.2, but are

relayed by a subset of the mixes.

To access the mix network, hc first contacts any one of the mixes ofwhich

it knows the mix address by establishing a virtual link to it. Once a host has

established a virtual link to a mix, we say that the host is part of the mix

network and we collectively identify the mixes and the hosts that have estab¬

lished a virtual link to a mix as nodes. To function properly, a mix network

uses its own mix network protocol. This protocol is used to exchange pro¬

tocol messages, or simply messages1 between two nodes. Since we assume

the mix network to operate on the application level, this protocol is an ap¬

plication level protocol. Messages are exchanged between two neighbouring
nodes within fixed-length cells2. The length of cells and their precise for¬

mat is part of the mix network protocol. A cell has a header and a payload.

Among other information such as a checksum to protect the integrity of the

payload or information to forward the payload of the cell correctly along its

path, the cell header contains the type of the message that is carried in the

payload to distinguishbetween different types protocol message.

The proposal for terminology in anonymous communication systems (see Section 15) uses

message where we use application data, which makes sense if anonymity is considered in general
and not bound to a particular system that provides anonymity However, since we focus on

systems based on mix networks, we will use messages to identify the protocol messages used in

mix networks In addition, the term application data is a reasonable choice because we focus on

mix network that enable the anonymous communication between a client and a server application
located on two different Internet hosts

2 It should be noted that there is no terminology that is commonly used by all mix networks

For instance, the term cell was introduced in the context of Onion Routing (see Section 3 12) and

is more often used in circuit-based mix networks (see Section 2 3) than in Chaumian mix net¬

works (see Section 2 2) Chaum used item and systems that were implemented based on Chaum's

idea (see Section 3 11) used packet or message Neither of these terms is well suited because

item was only used by Chaum, packet may easily be confused with IP packets, and message are

usually used to identify protocol messages To avoid confusion, we clearly distinguish between

application data, message, cell, and (IP) packet

Code200 Exhibit 1009
Page 42 of 308

22 2 The Mix Network Approach

Before hc can send application data anonymously to hs, hc selects a path
in the mix overlay network. Whether this path is actually selected by hc or the

mixes depends on the implementation of the particular mix network. Like¬

wise, some systems allow paths to be selected only between mixes that have

already established a virtual link while others create virtual links on demand.

The path consists of hc and a sequence of mixes. The sequence of mixes used

by hc is also named hc's chain ofmixes. As an example in Figure 2.1, we

assume hc has built a path via three mixes, mi, m5, and m6. This path can

now be used by the client application to communicate anonymously with the

server application, as illustrated in Figure 2.3.

m,

transport layer

(TCP/UDP)

network layer

(IP)

|T|Cg_ tOCL

\N\J\cm NlTlCl"

'Pc Pc-'Pm1 Pm

Figure 2.3: Sending application data via the mix networkfrom hctohs

Looking at Figure 2.3, we can see that mix networks introduce a new layer
betweenthe traditional end-to-end application and transport layers. The client

application again uses hs 's IP address ips and the appropriate port ps to iden¬

tify the server application on hs but this time, this information is not directly

put into the transport and network protocol headers. Rather, a mix network

protocol message is built that contains the information about the server appli-

Code200 Exhibit 1009
Page 43 of 308

2.1 The Mix Network Idea and Terminology 23

cation to contact (ips :ps) and the application data (AD) itself. This message

is then sent via mi and m5 to m6. To do so, the message is transported within

cells over the virtual links between neighbouring nodes. A cell has a header

(C) and the payload of a cell is encrypted (see Section 2.2.1) suchthat only
the last mix in the path can decrypt it, which implies that only the last mix

learns ips and ps. The cell itself is then sent over the virtual link to the first

mix mi using the underlying physical network via three routers r2, ri, and

r3. Since the mix network runs on the application layer, a cell is nothing else

than application level data, and it is consequently sent within an IP packet by

prepending transport (T) and network (N) protocol headers that contain ip c,

pc, and mi's mix address ipmi :pmi. This means that IP packets exchanged
between hc and mi contain the socket pair ipc:pc-ipmi :pmi, which does not

identify both hc and hs. Again, we have assumed for simplicity that the mes¬

sage containing AD fits into a single cell and that the resulting cell fits into

the payload of a single IP packet. In general, a message can result in multiple
cells and a cell may be spread across the payloads of several IP packets. The

opposite is also possible, i.e. cells may be so short that multiple cells fit into

the payload of a single IP packet. When receiving the cell, m i inspects the

cell header, generates a new header, and forwards the cell over the virtual link

to m2, which results in an LP packet containing the socket pair ipmi :pm/ -

ipm5:pm5- Note that we have silently assumed that mi was the initiator of

the virtual link to m5. Consequently, pm5 corresponds to the port specified in

m5's mix address (m5:pm5), but pm/ is completely unrelated to pmi specified
in mi's mix address (mi:pmi). Mix m5 essentially does the same as mi and

when the cell finally arrives at the last mix, m6 decrypts the payload of the

cell to extract the message, which reveals ips:ps and AD. This allows m6 to

establish a communication relationship with hs and forward AD. The result¬

ing LP packets between m6 and hs contain the socket pair ipm6 :pm/ -ips:ps,
which again does not identify both hc and hs. Here again, although not de¬

picted in Figure 2.3, sending a message back to hc works vice versa. Also,

any IP packets to establish, maintain, or close TCP connections between two

nodes or between the last mix and hs have been omitted.

Following this discussion and looking at the mix network layer in Fig¬

ure 2.3 more closely, we can say that the mix network layer itself can again
be separated into two layers: the message layer and the cell layer. Application
data sent by the client typically results in a mix network protocol message ex¬

changed between the client and the last mix in the path, and the message is

transported hop-by-hop through the mix network within one or more fixed-

Code200 Exhibit 1009
Page 44 of 308

24 2 The Mix Network Approach

length cells.

The discussion in this section has left out many details about mix net¬

work that will be explained in the following two sections, but it has already
identified several important fundamental properties:

1. No IP packet on the route between hc and hs contains the IP addresses

of both communication endpoints. In contrast to the case where hc

communicates with hs directly, this prevents an adversary that observes

the IP packets anywhere on the physical route between hc and hs to

break the relationship anonymity by simply inspecting the IP and trans¬

port protocol headers.

2. If at least two mixes are used in a path, no single mix learns the end-to-

end communication relationship because a mix knows the IP address

of at most one communication endpoint.
3. In contrast to the case when hc contacts hs directly, the IP packets ar¬

riving at hs carry the IP address of the last mix in the path and not hc's

IP address. Consequently, hs cannot easily identify hc by inspecting
the packets it receives, which is an essential property to achieve sender

(or client) anonymity.
4. Comparing Figures 2.2 andFigures 2.3, one can see that virtually noth¬

ing has changed for hs. In fact, communication between hc and hs in

the non-anonymous case works in exactly the same way as communi¬

cation between m6 and hs in the anonymous case. The only difference

is that hs sees m6's instead of hc's IP address in the latter case. This

is a very important property of mix networks which states that access¬

ing a host anonymously is possible without changing that host in any

way, in particular without having to install additional software on that

host. Consequently, a host that is contacted via a mix network is not

considered to be part of the mix network itself. On the other hand, as

mentioned above, it makes sense to consider a client host being part of

the mix network once it has established a virtual link to a mix because

it communicates with this mix using the mix network protocol by send¬

ing and receiving cells. This also implies that additional software must

be installed to access mix networks.

If the user sitting at the client host can freely determine the mixes she

uses in a path, the mix network is also called afree-route mix networks. The

extreme opposite are mix cascades where disjoint subsets of the mixes form

long-standing chains. In this case, all users using the same cascade use ex¬

actly the same mixes in the same order. In this case, users using different mix

Code200 Exhibit 1009
Page 45 of 308

2.2 Mix Networks based on Chaumian Mixes 25

cascades are in different anonymity sets. Inbetween there are restricted route

mix networks, where users can still choose among different paths, but with

certain restrictions. For instance, one restriction could be to build paths only

along virtual links that are already established.

From now on, we focus on the mix overlay network and only consider

the underlying physical network when this is required. We are concerned

with application data that are put into mix network protocol messages. The

messages are transported within cells over virtual links between nodes. We

also do not care if the underlying topology changes as long as nodes in the

overlay network can still reach each other. If we say that an adversary has

access to cells sent over a virtual link, this means that he has access to the

IP packets carrying these cells somewhere on the physical route between the

two nodes. Similarly, if we say an adversary can access application data on

the route between the last mix and the host that is contacted anonymously, we

mean he can access the corresponding IP packets somewhere on the physical
route between the mix and the host.

In this section, we have shown that mix networks are overlay networks

where data are exchanged between client and server application via a subset

of mixes. Consequently, an adversary cannot learn anything by inspecting
the network or transport protocol headers of the corresponding IP packets. In

the following two sections, we will describe to specific mix network systems

that basically work very similar to the mix network described in this section.

However, as already mentioned above, every proposal for a specific design
of a mix network has its own typical properties. Consequently, it is also not

always possible to identify and separate application data, protocol messages,

and cells as clearly as we have done it in this section. In the next two sections,

we will also introduce more advanced features employed by mix networks to

defeat more sophisticated attacks than simply inspecting protocol headers.

2.2 Mix Networks based on Chaumian Mixes

Chaum's original idea of a mix network was targeted at enabling anonymous
e-mail communication between a sender s and a recipient r. To distinguish
the basic mixes proposed by Chaum from more recent variations, they are

often referred to as Chaumian mixes and the corresponding systems as Chau¬

mian mix networks.

Code200 Exhibit 1009
Page 46 of 308

26 2 The Mix Network Approach

2.2.1 Basic Functionality

Every mix mt can be identified with its mix address at and has a public-

key pair consisting of a public key PK4 and a secret (or private) key SKj.

Similarly, the recipient, or strictly speaking the application running on the

recipient's computer, can be identified with address ar (which, in the case

of e-mail communication, is an e-mail address) and has a public key PKr

and a secret key SKr. To use the mix network, the sender must know the

addresses and public keys of at least some of the mixes and of the recipient.
To send application data AD anonymously to a recipient, the sender picks a

subset of all mixes. Assuming that s picks mixes mi, m2, and m3 in this

order and EPK% (d) denotes the encryption of data d with the public key PK4,

s generates the following cell:

EpKmi (EpKm2 (EpKm3 (EpKr(AD), ar), am3),am2)

The idea is that this cell can be sent to r via the three selected mixes in a

way such that each mix can remove a layer ofencryption to learn the next hop
to which the cell must be forwarded to, but nothing more. The mixes used by

a sender s is also named s's chain ofmixes. Figure 2.4 illustrates how the cell

containing the application data AD is sent to the recipient along s's chain of

mixes.

'=PKmu'=PKm2\'=PKm3\'zPKr^^)

I I

sender (s)

'=PKm2t'=PKm3\'zPKr^^)

ar) am3:

Figure 2.4: Sending application dataAD through a Chaumian mix network.

The sender establishes a virtual link to mi, sends the cell, and terminates

virtual link again. Having received the cell from s and assuming DsKz(d)

Code200 Exhibit 1009
Page 47 of 308

2.2 Mix Networks based on Chaumian Mixes 27

denotes the decryption of the encrypted data d with the secret key SK%, mi

performs the following operation:

DsKmi (EpKmi (EpKm2 (EpKm3 (EpKr(AD), ar), am3), am2)) —>

EpKm2 (EpKm3 (EpKr(AD), ar), am3), am2

This tells mi to forward the resulting cell to m2 identified with address

am2. To do so, mi establishes a virtual link with m2, sends the cell, and

tears down the virtual link. The same is done by m2 and m3 until the ap¬

plication data AD finally arrives at the recipient. In the case of e-mail com¬

munication, this usually means a mailbox, which is eventually accessed by
the intended recipient who can decrypt the e-mail message. Note that since

Chaum's proposal was inspired by sending e-mail messages anonymously,
he made the reasonable assumption that users interested in sending e-mail

messages anonymously would also want to encrypt them. Therefore, he in¬

clude the encryption ofthe application data (corresponding to an unencrypted
e-mail message) for the recipient in the mix protocol, although the protocol
would also work without encrypting the application data for the recipient. We

will see in Section 2.3 when discussing circuit-based mix networks that this

encryption for the recipient (or server) is not present in those mix network

protocol. Rather, it is left to the application using the mix network, so AD

corresponds to either encrypted or unencrypted application data.

To allow the recipient to send a reply, the sender can include a reply block

into the cell, which is constructed as follows3 :

EpKm,3 {EpKm2 {EpKmi (as, h), ai, k2), a2, k3), PK's,a3

PK!, is the public key of a key pair generated by the sender exclusively
for this reply block, ki, k2, and k3 are symmetric keys randomly generated

by the sender, and as is the address of the sender. The reply block tells the

recipient to encrypt a reply with PK^ and send it to m3 identified with address

a3. Assuming AD' is the recipient's reply, the following cell is sent to m3:

EpKm,3 {EpKm2 {EpKmi (as, h), ai, k2), a2, k3), EPK>s (AD')

3
We assume that replies take the same path in opposite direction, but in fact, the sender can

choose any set of mixes for the return path

Code200 Exhibit 1009
Page 48 of 308

28 2 The Mix Network Approach

Subsequently, every mix mt decrypts the first half of the cell using its

secret key SKm^ to get the next hop along the return path, encrypts the second

half of the cell with the symmetric key kt, and forwards the resulting cell.

Finally, the following cell arrives at the sender:

Ek3(Ek2(Ekl(EPK,(AD'))))

Since the sender knows all kt and SK'S, the application data AD' can be

uncovered.

A noteworthy property of Chaumian mix networks is that the mixes are

stateless: a mix receives a cell, gets all information to process it correctly
with the cell, and forgets it after the data have been forwarded. This stateless¬

ness ofthe mixes is one fundamental difference to circuit-based mix networks

(see Section 2.3). Consequently, Chaumian mixes are also called store and

forward mixes and the systems store andforward mix networks.

2.2.2 Measures to Maintain the Sender's Anonymity

We have already discussed fundamental properties to protect the sender's

identity towards the end of Section 2.1. In particular, we have shown that

inspecting only the network and transport protocol headers does not help an

adversary. However, Chaumian mix networks employ additional measures to

protect against more sophisticated attacks that compare cells at various places
in the mix network. As explained in Section 2.1, all cells exchanged between

two nodes have the same length. This means that the sender must pad the

application data with random bits such that the resulting cell has the desired

length. On the other hand, if the application data are too large to fit into a

single cell, they are split up into several pieces and sent as multiple cells.

Systems that were implemented based on Chaumian mix networks use rela¬

tively long cells such that breaking up a application data into multiple cells

occurs rarely. For instance, Mixminion (see Section 3.3.1) uses 32 KB long
cells. Since every mix removes the address of the next hop, a cell would get

smaller on its way to the recipient. To guarantee a cell keeps its length, addi¬

tional random bits are appended to the cell by every mix before it is forwarded

to the next hop. Together with the layered encryptions, this results in all cells

exchanged between two nodes in the mix network having exactly the same

length and appearing to be composed of random bits.

Code200 Exhibit 1009
Page 49 of 308

2.2 Mix Networks based on Chaumian Mixes 29

When arriving at a mix, cells are not forwarded right away but stored until

several cells from different senders have been accumulated and forwarded in

batches to the next hop. Cells in a batch are reordered such that the incoming
and outgoing sequences of cells are not related. Note that a cell can poten¬

tially be delayed in a mix for a long time because it does not necessarily have

to be included in the next batch that is processed, but this is usually not criti¬

cal with applications such as e-mail. When a batch is forwarded by a mix, the

mix establishes virtual links to all mixes it sends at least one cell, sends the

cells in the batch over the virtual links, and tears them down. Consequently,

a virtual link is short-lived and exists only as long as it takes for one or more

cells to be sent from one node to another. Finally, dummy cells (or cover traf¬

fic) that look like real cells for an eavesdropper can be included in batches if

there are not enough real cells or simply to confuse an attacker further.

2.2.3 Basic Attacks on Mix Networks

With attacks on mix networks, we usually mean different kinds of traffic

analysis attacks. Traffic analysis means observing and correlating the data

exchanged at various places in the mix network to get information about who

is communicating with whom. One prominent attacker is the eavesdropper
that is able to observe all or parts of the traffic sent and received the mixes.

This includes cells sent across virtual links and the data exchanged between

mixes and the recipients. Such an attacker could try to detect the mapping of

incoming and outgoing data at a mix. If he manages to successfully carry out

this attack at all mixes, he has broken the entire system and knows all com¬

munication relationships between senders and recipients. However, recalling
that all cells entering a mix have exactly the same length, this cell volume

attack is defeated because (1) cells are either forwarded to another mix which

results again in cells having the same length or (2) a mix forwards the content

of a cell to the recipient, which results in a data volume that is completely un¬

related to the fixed size of the corresponding incoming cell. Similarly, using
of the cell coding attack to compare the patterns of incoming and outgoing
data does not help because cells are decrypted (or encrypted if replies to the

sender are enabled using reply blocks) and therefore completely change their

encoding when traversing a mix. Another option for the attacker is to employ

a timing attack to correlate data based on the time at which they enter and

leave a mix. But since cells are reordered, delayed, and processed in batches,

this attack will only reveal little information. It is therefore unlikely that at-

Code200 Exhibit 1009
Page 50 of 308

30 2 The Mix Network Approach

tacking every single mix will be successful. Another strategy is to attack at

the edges of a mix network, which means cells on the virtual links between

senders and first mix in their path and data on the route between last mix

and recipients are compared. But again, this attack is unlikely to succeed for

the same reasons as attacking a single mix. The conclusion is therefore that

Chaumian mix networks are very resistant to external observers.

Another threat are collusion attacks by mixes that share their knowledge.
In general, colluding mixes have a significant advantage over the eavesdrop¬

per because they know the mapping of incoming and outgoing data at their

mixes. If all mixes in a chain are colluding, it is trivial for them to correlate

the sender and recipient. If not all but a subset of the mixes in a chain are col¬

luding, the anonymity may decrease depending on the specific design of the

mix network. In the case of synchronous mix cascades (see Section 3.2), one

honest mix in the cascade is enough to protect the relationship anonymity be¬

tween sender and recipient as well as if all mixes in the cascade were honest.

In the case of free-route mix networks, the relationship anonymity is usually
less well protected and depends on the number and positions of the colluding
mixes in a chain.

There is an additional fundamental external attack to consider, the cell re¬

play attack. Since a mix merely removes or, if replies based on reply blocks

are allowed, adds a layer of encryption, processing a cell again produces the

same output (although padding bits may change). An attacker can therefore

resend a cell to a mix and wait until the same output is produced again. To de¬

fend against this attack, a mix must process every cell only once. To do so, all

cells that have been processed before must be stored and a newly arriving cell

is compared with all of them. To reduce the complexity, cells can include a

time stamp that limits the time during which they are processed and the public

keys of mixes can be changed periodically. After the time stamp has expired

or the public key is no longer valid, a cell must no longer be remembered by

a mix.

2.3 Circuit-based Mix Networks

In particular with the advent of graphical web browsers in the 1990's and the

popularity of the WWW, researchers became interested in applying Chaum's

original idea to near-real-time applications. With near-real-time, we mean

applications that benefit from getting an answer quickly but that do not require

Code200 Exhibit 1009
Page 51 of 308

2.3 Circuit-based Mix Networks 31

hard real-time guarantees. Web browsing is a good example for a near-real¬

time application because users prefer receiving pages quickly, but the service

still works if there is a delay often seconds from time to time.

The problem is that Chaumian mix networks were designed for applica¬
tions that are not time-critical and don't work well to support near-real-time

applications for various reasons. One is that a cell must be completely re¬

ceived by a mix before it is forwarded to the next hop. Assuming a large
web page and three mixes in the chain, it may take quite a while until the

first byte of the page arrives at the client's computer. Another reason is that

public-key operations are computationally expensive and not well suited for

large amounts of data4. Furthermore, delaying cells a long time in a mix until

enough cells are accumulated to forward them in a batch is completely out of

the question when near-real-time applications should be supported.

The basic solution has been presented in the context of Onion Rout¬

ing [94], all mix networks that support near-real-time applications are based

on this approach, and they are commonly referred to as circuit-based mix

networks. In this section, we look at the basic properties of circuit-based

mix networks and compare them with Chaumian mix networks. Tradition¬

ally, circuit-based networks have been used by a client c to access a server s

anonymously5. We also name mix networks for near-real-time applications

low-latency mix networks.

2.3.1 Basic Functionality

There are again several mixes that are distributed in the Internet. Every mix

mt is identified with its mix address at and has a public-key pair consisting of

PKj and SK4. The application on the server to be contacted anonymously is

identified with address as. A mix has established a virtual link to some other

mixes but not necessarily with all of them. Two mixes mt and nr, that have

established a virtual link share a secret key, which we identify with k l3.
This

key is established when the virtual link is set up using the public keys of the

two mixes for key-exchange. In contrast to Chaumian mix networks where a

application data can be sent to a recipient right away by picking some mixes

4Although not proposed by Chaum, this problem could be reduced by encrypting the bulk

data with a ephemeral symmetric key and only encrypt the symmetric key with the public key
5 In general, circuit-based mix networks can be used for any anonymous near-real-time com¬

munication between two peers But even in peer-to-peer system, one peer is always the initiator

(the client) of a communication relationship with another peer (the server)

Code200 Exhibit 1009
Page 52 of 308

32 2 The Mix Network Approach

and generating one or more cells, accessing a server via a circuit-based mix

network is a three-step process.

First, a circuit is established via a subset of the of the mixes, then data are

exchanged anonymously with a server via the circuit, and finally the circuit is

torn down. Figure 2.5 illustrates the basic idea of a circuit-based mix network.

Figure 2.5: A circuit-based mix network.

In Figure 2.5, c has established a circuit via three mixes m i, m2, and m3.

During circuit setup, the client exchanges a key with each of the mixes it

wants to use in the circuit in a way such that only the first mix in the circuit

knows who the client is. These keys are then used to add and remove the

layers of encryption. There are different ways to establish such a circuit. The

one we present here is similar to the method introduced by Onion Routing.

First, the client established a virtual link to the first mix it wants to use in its

circuit. Then, the client prepares a data structure that contains the keys for

each mix. Assuming kct is the key prepared by c that will be shared between

c and mt, the data structure for our example in Figure 2.5 looks as follows:

EpKmi (EpKm2 (EpKm3 (kc3, as), kc2, km3), kc\, am2)

The client sends this data structure within one or more cells over the vir¬

tual link itjust has established with mi. When receiving the data, mi decrypts
them using its secret key SKmi, which reveals both the key kci and the ad¬

dress am2 of the next mix m2. If mi and m2 have not yet established a virtual

link, they set it up now. Then, the remainder ofthe data structure is forwarded

within one or more cells to m2, but mi also includes a circuit identifier CID i2

that has only local significance on the virtual link between mi and m2. The

reason for using the circuit identifier is that multiple circuits established by
different users may include the virtual link betweenm i and m2. The circuit

Code200 Exhibit 1009
Page 53 of 308

2.3 Circuit-based Mix Networks 33

identifier is put into the cell header and serves a mix to separate the cells

belonging to different circuits and to correctly process an incoming cell. To

avoid that different circuits can be identified by an eavesdropper, the circuit

identifier is always encrypted with the key that belong to the virtual link in

which is used. Consequently, CIDi2 is encrypted using the key ki2 shared

between mi and m2. If Ek%j (d) denotes the encryption of data d with the

symmetric key kv, mi sends the following cell to m2 :

Ekl2 (CIDu), EpKm2 (EpKm3 (kc3), kc2, am3)

Similarly, m2 establishes a virtual link to m3 if they do not yet share a

virtual link, picks CID23 to unambiguously identify this circuit on the virtual

link between m2 and m3 and sends the encrypted circuit identifier and the

remainder of the data structure within one or more cells to m3. Finally, m3
learns that the server with address as should be contacted and established a

communication relationship with s.

In contrast to Chaumian mixes, virtual links are long-standing and can

potentially remain established while several circuits are established and torn

down on top of them. In addition, mixes in circuit-based mix networks are

stateful because they must store some state to send cells back and forth cor¬

rectly along a circuit once it has been set up. In particular, mi, m2, and m3

must remember the following:

mi : c <-> to2, CIDyi withA;ci

to2 : toi : CIDyi <-> to3 : CID23 withA;c2

to3 : to2 : CID23 <-> s with kc3

This means mi knows everything arriving from c must be forwarded to

m2 using circuit identifier CID i2 and the corresponding layer of encryption

can be removed with key kci. Similarly, m2 knows cells arriving from mi
with CIDi2 are forwarded to m3 with CID23 and the key it shares with the

client of this circuit is kc2. Finally, m3 forwards everything it gets from m2

with CID23 to s and removes the layer of encryption with key k c3.

Once a circuit has been completely set up, the actual data transport takes

place where application data are exchanged between client and server. Just

like in Chaumian mix networks, application data are transported within cells

and all cells exchanged over virtual links have the same length. However,

Code200 Exhibit 1009
Page 54 of 308

34 2 The Mix Network Approach

these cells are much shorter than the typical amount of data exchanged be¬

tween client and server. For instance, cells in Onion Routing have a length
of 128 bytes. Since typical web objects are usually several KB long, a web

reply often results in many cells sent back to the client. Although omitted

for simplicity, the data structures described above to set up a circuit are also

transported within one or multiple fixed-length cells.

To send a application data AD to the server, the client splits them into

one or more parts such that the resulting cells have the appropriate length. If

necessary, the payload of the last cell is padded with random bits. Assuming
the application data AD is split into n pieces ADj, 1 < i < n, the client

generates n cells as follows:

Ekca(Ekc2(Ekcl(ADt)))

All n cells are sent over the virtual link to the first mix mi. Upon re¬

ceiving such a cell, mi knows it's from c, which means kci must be applied

according to the state it has stored about the circuit to remove a layer of en¬

cryption. It also knows that the resulting cell must be forwarded to m2 using
the circuit identifier CIDi2 in the cell header. To hide the circuit identifier

from an eavesdropper, the entire cell header (including the circuit identifier)

is encrypted using the key ki2 that belong to the virtual link between mi and

m2. The cell sent to m2 therefore includes:

Ekl2(CID12),Ekd2(Ekcl(ADt))

Decrypting the circuit identifier and consulting the state it has stored about

this circuit, m2 knows that the cell must be decrypted with kc2 and forwarded

to m3 using CID23 as the circuit identifier:

Ek2a(CID23),Ekcl(ADt)

Receiving this cell, m3 used the appropriate key kc3 and forwards ADj to

the server. When all cells have been processed, the application data AD have

arrived at s. To send data back to the client, it works vice versa: m3 gets the

application data from the server, splits them such that they fit into the payloads
of one or more cells, encrypts the payloads of the cells with the key it shares

Code200 Exhibit 1009
Page 55 of 308

2.3 Circuit-based Mix Networks 35

with the client, puts the circuit identifier into the cell header, and encrypts

the cell header. The cells are then sent back to the client along the circuit in

opposite direction, where every mix in the circuit adds a layer of encryption.

Eventually, the client receives the cells, removes all encryptions and gets the

entire application data. To terminate the communication relationship with the

server, the client tears down the circuit by sending a special control cell along
the circuit all the way to the last mix, which causes the mixes to remove the

state they have stored about the circuit.

Compared to Chaumian mix networks, this design has several advantages
to support near-real-time applications. Since the cell size is small, a mix only
needs to receive a small fraction of a potentially large amount of application
data until data can be forwarded to the next hop in the circuit. In addition,

only the setup of the circuit involves public-key operations and the actual

data cells use symmetric cryptography, which means processing a data cell is

computationally significantly less expensive.

2.3.2 Measures to Maintain the Client's Anonymity

Like Chaumian mix networks, circuit-based mix networks make use of fixed-

length cells and layered encryption. In addition, dummy cells can be em¬

ployed to further complicate traffic analysis and a mix makes sure no cell is

processed more than once. However, delaying cells for a long time and pro¬

cessing them in large batches is impossible because the end-to-end delay of

cells should be at most a few seconds. It is a fundamental difference between

low-latency mix networks and Chaumian mix networks that in the former, a

cell is forwarded within some fractions of a second after it has been received

by a mix while in the latter, a cell may be delayed in a mix for hours. This

has a major impact on traffic analysis attacks and we provide a first insight
below. In Section 4.1, we will analyse traffic analysis attacks on low-latency
mix networks in more detail.

2.3.3 Attacks on Circuit-based Mix Networks

For the same reasons as in Chaumian mix networks, an attacker that performs

a cell volume or cell coding attack by observing the data entering and exiting

a mix can be defeated. Timing attacks, however, are much more likely to

succeed because data are forwarded quickly. If a mix network is heavily
loaded and a mix processes a thousand cells per second, the timing attack

Code200 Exhibit 1009
Page 56 of 308

36 2 The Mix Network Approach

is more difficult but if only a few cells are relayed by a mix, incoming and

outgoing data can be related with high probability. Note that what matters

when discussing timing attacks is not so much the time a cell remains in a

mix, but the total number of cells that are processed by a mix compared to

the time a cell remains in a mix. If a thousand cells are processed per hour

by a Chaumian mix and they are delayed for one hour on average, then this is

comparable with a thousand cells that are processed per second in a mix in a

low-latency mix network where cells are delayed for one second on average.

Another attack on a single mix is the application data volume attack. The

amount of application data are usually larger than what fits into a single cell (a

long web reply can easily result in hundreds of cells) and as a result, streams

of cells that carry parts of the same application data travel along a circuit.

So instead of trying to correlate single cells, an attacker counts the number

of cells that may belong to the same application data entering and leaving
a mix and tries to correlate the entire application data. Combined with the

timing attack, the application data volume attack is a very powerful attack

and difficult to defend against. One possibility to increase the resistance is to

employ dummy traffic between neighbouring mixes to disguise the patterns of

real data cells. This mechanism is also known as virtual linkpadding because

"missing" real cells on a virtual link are padded with dummies.

Observing the edges of a low-latency mix network is even more promis¬

ing. Due to the low-latency property ofthe mixes, the (part of the) application
data enclosed in a cell entering the first mix will leave the last mix towards

the server at most a few seconds afterwards. Consequently, combining the

application data volume and timing attacks at the edges reveals a lot of infor¬

mation to an eavesdropper. Making this attack more difficult is possible by

employing dummy traffic also on the virtual links between clients and their

first mix.

Collusion attacks by mixes are also a more significant threat than in Chau¬

mian mix networks. It can be expected that by using timing and application
data volume attacks, any two mixes along the same circuit are likely to be able

to correlate cells flowing through them if enough cells are sent back and forth

along the circuit. In particular, if these two mixes happen to be the first and

last mix in that circuit, they can unambiguously link the client and the server

and have broken the relationship anonymity. In this case, dummy traffic be¬

tween mixes does not help at all because the mixes can distinguish dummies

from real data cells. Rather, end-to-end dummies sent from the client all the

way to the last mix in a circuit and back are used to increase the resistance to

Code200 Exhibit 1009
Page 57 of 308

2.3 Circuit-based Mix Networks 37

this attack. This is also known as end-to-endpadding or circuitpadding.

2.3.4 Ways of Operating Circuit-based Mix Networks

With Chaumian mix networks, virtual links are usually based on short-lived

TCP connections that are only established to send one or a few cells. This

makes sense because Chaumian mixes may delay cells for a long time and

it is therefore reasonable to break the "natural" single end-to-end connec¬

tion that is used when hosts communicate with each other directly as in Fig¬

ure 2.2 into multiple ones. In circuit-based low-latency mix networks, how¬

ever, cells are forwarded quickly and it is not necessarily needed to break the

end-to-end connection between client and server. Consequently, two differ¬

ent approaches have found their way into implemented systems and they are

illustrated in Figure 2.6 assuming a web browser communicates with a web

server

user's computer mix mix server

web

browser

access

program

mix

program

mix

program

web

server

soc

ntef

ket

cace

socket

i ntefcace

socket

in te teace

sock

int

TCP TCP TCP TCP TCP TCP TCP TCP

IP IP IP IP IP IP IP IP

network network networK

a) breaking up the end-to-end TCP connection

user's computer

web

browser

sock
mt

access

program

IP

nz

mt

UDP

IP

physic

mix

program

_socke_t_
i ntefcace

mix

program

sock_
mt

"ÜÖP

IP

physic

web

server

b) maintaining the end-to-end TCP connection

Figure 2.6: Different ways ofoperating circuit-based mix networks.

The first approach shown in Figure 2.6(a) breaks up the end-to-end TCP

connections such that a TCP connection is used as the basis for the virtual

link between any two nodes along the path from client to the last mix in the

circuit. To access the mix network, software that is usually provided by the

Code200 Exhibit 1009
Page 58 of 308

38 2 The Mix Network Approach

developers of the mix network is installed on the client computer. We name

this software access program. The client application only interacts with this

access program, in exactly the same way a web browser accesses a web proxy :

a TCP connection is set up to the access program and instead of communicat¬

ing directly with the web server, requests are sent to and replies are received

from the access program. All communication with the mix network and with

the web server through the mix network is handled by the access program,

transparently to the client application. This includes circuit setup and tear-

down, and generating and unpacking the cells. The access program can also

remove information from the data stream that could possibly give hints to

identify the user. In the case of web browsing, for instance, the access pro¬

gram can modify or remove the user-agent field to not reveal information

about the user's operating system or her web browser. Similarly, the access

program can block every cookie included in HTTP requests. Breaking up

the end-to-end TCP connection implies that its properties - flow control and

correct delivery of all data in the right order - are guaranteed between two

adjacent nodes and between the last mix and the web server, and not end-to-

end between the web browser and the web server. Consequently, a mix must

not lose any data of an end-to-end connection or the application will usually
fail. While breaking up the end-to-end connection seems unnatural, operat¬

ing a mix network according to Figure 2.6(a) has some practical advantages.
First of all, using TCP for the virtual links between two nodes that have very

different bandwidth connections makes communication quite easy because

the transport layer takes care that all data are delivered correctly over a vir¬

tual link. In addition, installing the required software on the client computer

and supporting different platforms is also easy because all that is needed is

the access program, which runs in the user space and accesses the standard

socket interface without requiring special privileges. A disadvantage of this

approach is that it requires the client application to be proxy-aware, which is

usually the case web browsers and file transfer protocol (FTP) [88] clients.

But in general, virtually any application can be made proxy-aware and for

many of them there exist implementations that can be downloaded for free

(for example PuTTY, which is a proxy-aware telnet [87] and secure shell

(SSH)6 client7). Other applications such as e-mail can be supported by spec¬

ifying the access program as the simple mail transfer protocol (SMTP) [90]

server.

6http://www.letf.org/html.charters/secsh-charter.html
7http://www.chiark.greenend.org.uk/~ sgtatham/putty

Code200 Exhibit 1009
Page 59 of 308

2.3 Circuit-based Mix Networks 39

The second approach is illustrated in Figure 2.6(b) and does not break

up the end-to-end TCP connections. To do so, virtual links are implemented

on top of UDP datagrams that are exchanged between two nodes. Data are

extracted after the IP layer on the client's computer and passed to an access

program. After removal of information that could possibly identify the user's

computer such as its IP address, the IP packets are transported within cells to

the first mix. The cells are forwarded across the virtual links until the last mix

in the circuit is reached. The last mix extracts the IP packets from the cells,

sets its own IP address in the source IP address field, and sends them to the

web server by inserting them into its network stack. To send data back to the

client, it works vice versa. Note that since the data are extracted and inserted

at the IP layer, all TCP control data are also exchanged and interpreted end-to-

end, which includes TCP segments to establish and tear down the connection

and TCP segments that are only sent to acknowledge the reception of data.

While this approach seems cleaner because it does not break up the end-to-

end connection, it has some disadvantages. Bypassing the socket interface

and extracting data from and inserting them into the IP stack is not easily

possible without support of the operating system. In addition, this is usually

requires special user privileges. Note that with virtual links based on UDP,

cells can be lost anywhere in the mix network. But unlike in the approach

above, it is not necessary for the mix network to deliver all data in correct

order because this is handled by the end-to-end TCP connection used by the

application.

Both approaches have advantages and disadvantages. In general, operat¬

ing the mix network as shown in Figure 2.6(a) is easier because (1) no special

privileges are needed on the client's computer to access the mix network be¬

cause the additional software that must be installed runs entirely in the user

space and (2) especially if the capabilities of the mixes are heterogeneous,

employing UDP between them could result in losing and re-sending so many

cells that the end-to-end performance suffers significantly.

Assuming anonymity-providing techniques become very popular in the

future, one could consider providing a special socket type that handles the

communication with the mix network, completely transparent to the appli¬
cation. An application would then simply make use of this new socket type

instead of traditional TCP (or UDP) sockets.

Code200 Exhibit 1009
Page 60 of 308

40 2 The Mix Network Approach

2.4 Summary

Mix networks are overlay networks and are the most promising technique to

anonymise Internet communication. The basic idea of mix networks is to

break up the end-to-end communication relationship and relay all data ex¬

changed between the communication endpoints via some mixes to provide
sender (or client) and relationship anonymity at the IP level. This means the

recipient (or server) cannot learn the IP address ofthe sender (or client) and an

adversary observing the data being exchanged cannot learn the IP addresses

of both communication endpoints.

Basically, there are two types of mix networks. Chaumian mix networks

are well suited for non-time-critical application such as e-mail and circuit-

based mix networks help to anonymise near-real-time applications such as

web browsing. Although similar in design, there are some differences be¬

tween the two types regarding cell length, use of public- or symmetric-key

cryptography, and allocation of state in the mixes.

The most significant difference in terms of operation is that in Chaumian

mix networks, cells can be delayed for a long time in a mix. This removes

virtually all correlation between incoming and outgoing cells. In low-latency
mix networks, this is not the case and as a result, they are certainly not ex¬

pected to offer better protection from attacks than Chaumian mix networks.

We will analyse the protection circuit-based mix networks offer in much more

detail in Chapter 4.

Code200 Exhibit 1009
Page 61 of 308

Chapter 3

Related Work

In this chapter, we look at other work in the field of anonymity. We first

present designs and implementations on Chaumian and circuit-based mix net¬

works. Then we look at several papers that cover analysis of mix networks

and attacks on them. Afterwards, we examine other approaches than mix net¬

works to achieve anonymity in the Internet. We also look at anonymous and

pseudonymous applications that operate on top of an anonymising infrastruc¬

ture. Finally, we briefly look at recent work on the economics of anonymity,
how reputation systems may help to increase the performance of mix net¬

works, and proposals on how to measure anonymity.

3.1 Mix Networks Designs and Implementations

Several mix networks have been proposed and some of them have been oper¬

ational. Not all of these systems employ all measures used in mix networks

(see Sections 2.2.2 and 2.3.2) to protect from attacks. In this section, we list

those approaches that make at least use of layered encryption and multiple in¬

termediate hops (mixes) between the communicating endpoints. There have

been practical systems based on Chaumian and circuit-based mix networks

and accordingly, we distinguishbetween the two approaches.

Code200 Exhibit 1009
Page 62 of 308

42 3 Related Work

3.1.1 Chaumian Mix Networks

Different types of remailers have been implemented and several ofthem make

use of Chaum's original ideas. Today, the different types are categorised as

type 0, I, II, and III anonymous remailers. A higher category corresponds
to a more sophisticated design that provides better protection from attacks

than a lower category. Note that type 0 remailers do not make use of encryp¬

tion and only one intermediate node is used between sender and recipient.

Consequently, type 0 remailers will not be discussed in this section, but in

Section 3.3.1.

Type I anonymous remailers, also known as Cypherpunk remailers [73]

were the first significant implementation of Chaumian mixes. They became

available in 1994 and were the result of discussions within the Cypherpunks

mailing list. One main motivation was to overcome the problems of Type 0

remailers (see Section 3.3.1). Type I remailers use PGP [129] for the layered

encryptions and make use of reply blocks (see Section 2.2.1) for the recipient
of an e-mail message be able to reply to the sender. On the other hand, they do

not employ fixed-length cells, batching, or replay protection. As ofNovember

2003, there were about 40 Cypherpunk remailers available [42].

Type II anonymous remailers, also known as Mixmasters [20, 79] go be¬

yond type I remailers by adding fixed-length cells, protection from replay

attacks, and processing of cells in batches. Mixmasters does no longer allow

using reply blocks because reply blocks provide a way to point back to the

sender of an e-mail message by means of "rubber hose cryptanalysis" [110].

In this attack, the recipient or anyone possessing the reply block may ask or

force (by means of threatening, blackmailing, torturing,...) all operators of

mixes used in the path back to the sender to process the reply block for them

and reveal the next mix to use. Eventually - if all mixes comply - this re¬

veals the sender of the original e-mail message. It should be noted that even

without reply blocks, it would be possible to derive the true sender of an e-

mail message. To do so, operators of mixes would have to be required by
law to keep logs of the mapping of incoming and outgoing data they process

and deliver this information to law enforcement agencies if requested. To our

knowledge, no operator of any type of remailer has ever been forced to keep
such logs in a large scale (see Section 3.2) and consequently, reply blocks can

indeed be considered as the only pointer to the sender. Beyond this potential

problem, reply blocks as used by Cypherpunk remailers can be used multi¬

ple times, which enables an attack where multiple e-mail messages using the

Code200 Exhibit 1009
Page 63 of 308

3.1 Mix Networks Designs and Implementations 43

same reply block are sent to the same mix. Since all resulting cells must be

forwarded to the same next hop mix, an attacker can use this knowledge to

trace the e-mail messages to the original sender. Unlike Cypherpunk remail¬

ers, Mixmasters employ a sophisticated batching strategy, which is known as

timed dynamic pool batching. A mix keeps a pool of cells and as new cells

arrive, they are decrypted and enter the pool. Every t seconds, the mix fires,

i.e. it sends a certain number of cells, but only if the pool contains more cells

than a certain threshold. In addition, not all cells in the pool are forwarded,

but only a constant fraction of them. This means a cell entering a mix can

be forwarded during the next time the mix fires, or only after several rounds.

As of November 2003, there were about 40 Mixmasters available [42]; most

of them actually supporting both the Mixmaster and Cypherpunk remailer

protocol. Babel [58] is similar to Mixmaster but allows for reply blocks.

Recently, Mixminion [26] has been proposed as a standard implementa¬
tion for a Type III anonymous remailer to overcome the flaws of previous
remailers. Since reply blocks are convenient, Mixminion allows them again,
but every reply block can only be used once. In addition, cells correspond¬

ing to replies can no longer be distinguished from forward cells, not even by
the mixes themselves. To provide forward anonymity, Mixminion uses both

ephemeral keys between each pair of communicating mixes and every mix

rotates its public-key pair from time to time. Once keys have been changed,
the old versions are forgotten, which means that a mix cannot comply with

demands for decryption of a cell that was previously intercepted by an ad¬

versary. Changing the public-key pair regularly also makes it more efficient

to protect from replay attacks because once the keys have been changed,
the cells processed with the old key no longer need to be remembered. To

keep its users informed about keys and availability and performance of mixes,

Mixminion employs a directory service. Basically, Mixminion employs the

same batching strategy as Mixmaster remailers, but when a mix forwards a

batch of cells, it always adds a few dummy cells to the batch. This increases

the protection from attacks because an adversary no longer knows which of

the cells are real and which are dummies. Finally, Mixminion allows for

exit policies that allows a user to specify not to receive anonymous e-mail

messages at all. To summarise, Mixminion is not a completely new or inno¬

vative design, but brings many state-of-the-art techniques together to provide
a remailer system that is efficient, practical, and protects from a variety of

attacks.

Besides the systems that were actually implemented, several proposals

Code200 Exhibit 1009
Page 64 of 308

44 3 Related Work

on how to operate Chaumian mix networks have been made. Stop-and-Go
Mixes [68] do not batch cells, but have each cell wait a random time in a mix

before it is forwarded. Researchers have also worked on improving the ro¬

bustness of Chaumian mix networks by making sure that it can be verified if

a mix has processed all cells correctly, resulting in Flash Mixes [61, 75], Hy¬
brid Mixes [62, 82], Provable Shuffles [52, 80], and other proposals [1, 30].

Although these schemes have very strong and provable properties, they are

often not practical because they assume strong coordination and synchronisa¬
tion between the mixes and result in a significant computational and commu¬

nication overhead. Since this thesis focuses on practical methods for provid¬

ing anonymity, we do no longer consider such theoretical approaches.

3.1.2 Circuit-Based Mix Networks

ISDN-mixes, a system to anonymise ISDN-telephony [84, 63] via a mix cas¬

cade is based on the idea that the subscribers connected to the same end-office

build an anonymity set. The approach makes heavily use of the synchronised

telephony system in the sense that all subscribers are always sending data

to the end-office so that real phone calls cannot be distinguished from the

dummy data. Although the idea could be realised very efficiently in the tele¬

phony world, it is not well suited for the highly asynchronous Internet.

Onion Routing [57, 94] was the first circuit-based mix network that be¬

came operational in the Internet. The system employs uniform cell length
of 128 bytes and layered encryption to complicate traffic analysis. A proto¬

type network was online for about two years until January 2000. The pro¬

totype consisted of five mixes (which are called onion routers) that were

actually all hosted on a single computer. During the final months of oper¬

ation, about 50000 connections were established through the prototype net¬

work every day. Onion Routing supported remote login (rlogin) [64], HTTP,

and SMTP. The Onion Routing analysis1 and visualisations2 pages provide

some interesting quantitative results that were collected during the operation
of the prototype. To put it briefly, Onion Routing was a proof of concept

that Chaumian mix networks can indeed be modified to support low latency

applications. A successor of Onion Routing named TOR was proposed as

early as June 2000 [122] and was being tested as a limited public user trial

http ://www.onion-router.net/Analysis.html

2http://www.onion-router.net/Vis.html

Code200 Exhibit 1009
Page 65 of 308

3.1 Mix Networks Designs and Implementations 45

as of November 20033. It should be noted that the U.S. government, or more

specifically the Naval Research Laboratory, was awarded a patent for Onion

Routing on 24th July 2001. In particular, the patent covers the method how

circuits are established in Onion Routing. Since MorphMix, the system we

will propose later in this thesis, employs a different method to establish the

circuits, it does not fall under this patent.

The Freedom Network [55, 13, 54] was a commercial mix network pro¬

vided by Zero-Knowledge Systems. Subscribing to the service cost about

US$ 50 per year and during its peak, it had about 15000 subscribers4. Be¬

sides anonymising Internet connections, it also provides pseudonymous e-

mail addresses (or nyms). The Freedom Network consisted of about 150

mixes named anonymous Internet proxies (AIPs) operated by various ISPs in

Europe, North America, and Japan. Every AIP was connected to the Inter¬

net at least at Tl speed (1.544 Mb/s) [117]. The Freedom Network makes

use of layered encryption, but - although included in the original design -

neither fixed-length cells nor dummy traffic was employed for efficiency rea¬

sons. The system designers' argument is that the increased resistance to traffic

analysis is not worth the data overhead. In addition, the AIPs do not really
mix the traffic but forward the cells in a first in, first out (FIFO) manner. As

a result, the Freedom Network offers a slightly smaller level of anonymity
than Onion Routing. The Freedom network was shut down in October 2001.

An interesting discussion took place on Slashdot5 about the reasons for the

termination of the service because it followed shortly after the terrorist at¬

tacks against the USA on 11th September 2001. But apparently, the Freedom

network was shut down due to economic reasons6.

WebMIXes [9,10] is a very ambitious project that wants to provide anony¬
mous access to near-real-time services in the Internet assuming a very strong

attacker model. Instead of a mix network, a mix cascade that employs lay¬
ered encryption and fixed-length cells is used as the basis. In addition, the mix

cascade is operated synchronously, which means the continuous time line is

split up into slices of the same length and at the end of every slice, all cells

in a mix are forwarded. A mix operating in this way is also called a timed

mix. As a result, all cells the first mix in a cascade receives from the clients

during the same time slice are processed and forwarded through the cascade

3http://www.freehaven.net/tor/
4http://www.polltechbot.com/p-03619.html

5http://slashdot.org/articles/01/10/04/1526256.shtml
6http://slashdot.org/comments.pl?sid=22261&cid=2388 977

Code200 Exhibit 1009
Page 66 of 308

46 3 Related Work

together. Similarly, all data the last mix in a cascade receives from the servers

during the same time slice result in cells being sent back through the cascade

together. Based on this concept of a synchronous mix cascade, Web MIXes

introduces some novel concepts to beat sophisticated attacks. For instance, in

theflooding attack, an attacker tries to flood the first mix in the cascade with

many cells to make sure that only cells of one other user are processed during
the time slice. This would allow the attacker to break the anonymity of the

single user as the data in her cells leaves the last mix towards the contacted

host. To counter this attack, Web MIXes proposes a ticket-based authentica¬

tion system where every user gets tickets that allow to send a limited number

of cells per time slice. Users must possess tickets for every mix along the

cascade and to protect the user's identity, tickets are issued using blind signa¬
tures [17]. Web MIXes also proposes a dummy traffic scheme where every

user exchanges dummies with the last mix all the way through the cascade

and back. The idea is to send dummies whenever the client does not have

real data to send to maximise protection from traffic analysis attacks. If Web

MIXes could be operated according to its design, it would probably offer the

best protection that can be imagined when aiming at supporting low-latency

applications. However, it remains to be shown if such a system is practical be¬

cause end-to-end padding introduce a tremendous overhead (see Section 4.2)

and the ticketing mechanism produces a significant management burden as

well. A prototype of their system is known as JAP (Java Anon Proxy) and

has been up and running7 since 2000. Our trials of JAP provided acceptable

performance for web browsing but the system does not yet provide the kind of

resistance to attacks Web MIXes is aiming at. In particular, the ticketing and

dummy traffic mechanism are not used. Consequently, the level of protection
JAP offers in its current state is comparable with Onion Routing. Recently,
there has been a controversial discussion surrounding JAP. On 21st August

2003, The Register8 informed about a back-door that was included into the

access program by the JAP developers without informing the users. As a re¬

sult, the service was logging access attempts to a particular (unnamed) web

site and reporting the IP addresses of those who attempted to contact it to the

German police. The JAP developers were especially criticised for not having
informed the users in first place. A few days later, the back-doorwas removed

again9 because the JAP operators managed to successfully appeal against the

7http : //anon, inf
. tu-dresden.de/mdex.html

8http://theregister.co.uk/content/55/324 5 0.html

9http://www.theregister.co.uk/content/6/32 53 3.html

Code200 Exhibit 1009
Page 67 of 308

3.1 Mix Networks Designs and Implementations 47

court order and the issue was finally settled in favour ofthe JAP developers10.

PipeNet [23] proposes a synchronously operated mix network for low-

latency applications. Like Web MIXes, its design aims at providing resistance

to a powerful adversary that is able to observe all traffic sent and received by
all mixes and that can selectively block the flow of data entering or exiting the

mixes. Besides the basic measures of circuit-based mix networks (see Sec¬

tion 2.3.2), PipeNet proposes to use end-to-end padding, which means that

during the time a circuit is established, cells are continuously exchanged all

the way through the circuit between the client and the last mix in the circuit.

Whenever the client must send a cell to maintain a constant flow of cells, it

either sends a real data cell if one is available, or a dummy cell otherwise. The

network is synchronous in the sense that during each round, exactly one cell

is sent over every virtual link. Between any pair of mixes, there may be more

than one virtual link and the number ofvirtual links between two mixes corre¬

sponds on the number of circuits that are currently established between them.

The synchronous way of operation makes PipeNet very resistant to several

attacks because the systems begins the next round only after a cell has been

received over every virtual link. If one virtual link fails, the whole system is

brought to a temporary halt until the missing cell is received. On the down¬

side, such a system is totally vulnerable to Denial of Service (DoS) attacks:

any user can shut down the entire system by creating a circuit but never send¬

ing cells through it. One can argue that such a user should simply be ignored
because he would be mainly hurting himselfand all the others only a little bit.

But then, PipeNet would no longer operate truly synchronously and in addi¬

tion, a malicious mix can perform the same attack by stopping forwarding
cells. Even in the absence of this attack, the whole system adapts its perfor¬

mance to the slowest virtual link and since it must be expected that virtual

links happen to be temporarily blocked from time to time due to congestion

or failure of the underlying physical network, the system would probably be

more often stalled than forwarding cells. PipeNet is illustrative to show that

there are theoretical ways of operating mix networks such that they resist very

powerful adversaries, but is of little practical value.

The Anonymity Network [102, 103, 104] is another proposal fora circuit-

based low-latency mix network. Its designers focused on finding a good bal¬

ance between usability, protection from attacks, and overhead. Unlike in

Onion Routing, circuits in the Anonymity Network are not established and

http ://www.datenschutzZentrum.de/material/themen/presse/

anonip3.htm

Code200 Exhibit 1009
Page 68 of 308

48 3 Related Work

torn down for a single web request/reply pair. Rather, they are set up, used

to communicate for a while with potentially multiple servers in parallel, and

eventually torn down. The advantage of this approach is that the load induced

on the mixes by public key operations to set up a circuit (see Section 2.3.1) is

significantly reduced. On the other hand, contacting different servers through
the same circuit could leak information about the user to the last mix in the

circuit because the combination of the severs accessed by the user could re¬

veal hints at her identity. The Anonymity Network also introduced a novel

cover traffic scheme that results in fewer dummy data than employing con¬

stant flows of cells between two neighbouring mixes (see Section 4.1.1), es¬

pecially during times when the amount of real data is relatively low and if

the load is approximately equally distributed among all mixes. Using this

cover traffic scheme, every mix forwards cells in rounds and at the end of

each round, one cell is sent to each neighbouring mix. If there is a real data

cell waiting to be sent over a virtual link, the cell is sent, otherwise a dummy
cell is sent. The duration of a round is not fixed but is determined individu¬

ally by a mix for itself and depends on the amount of incoming data: if many

cells are arriving, the rounds get shorter, if fewer cells are incoming, they get

longer without getting so long that the end-to-end performance suffers too

much. Compared to a system that uses a fixed duration of a round, this dy¬
namic adaptation has the advantage that it decreases the amount of dummy
cells during low load situations by increasing the duration of a round and that

it can cope with high load situations by making the duration of a round small

to process as many cells as the computational power or Internet connectiv¬

ity of the mix allows. The performance of the Anonymity Network has been

analysed in great detail using a testbed consisting of six mixes. One main

conclusion of the performance analysis was that the number of dummy cells

used between two neighbouring mixes is indeed low using the cover traffic

mechanism described above. However, this mechanism can only be employed
between mixes but not between clients and mixes and to protect the virtual

links between clients and mixes, constant bidirectional flows of cells must be

employed on all these virtual links (see Section 4.1.1), which results in much

more overhead and a significantly worse end-to-end performance.

Tarzan [50] is an effort to provide a peer-to-peer anonymising network

layer. There is no distinction between clients and mixes, every client is also

a mix at the same time and called a node in the overlay mix network. Tarzan

provides anonymous best-effort IP service and works similar as illustrated

in Figure 2.6(b). The system makes use of layered encryption, fixed-length

Code200 Exhibit 1009
Page 69 of 308

3.2 Mix Networks Analysis and Attacks 49

cells, and cover traffic between any two nodes that have established a virtual

link to achieve high protection from traffic analysis attacks. The cover traffic

mechanism is especially worth mentioning: each node maintains a bidirec¬

tional cell stream with a fixed number of other nodes (its mimics). Circuits

through a node are only relayed via the node's mimics, which implies that

real data are always hidden in the cell streams between the node and its mim¬

ics. While this approach limits the possible paths that can be selected for a

circuit, it has the advantage that cover traffic is exchanged only between a few

of all potential pairs of nodes. The data rates of the bidirectional cell streams

between two neighbours can vary within an upper and a lower bound. This

seems to be a good idea because different nodes have different capabilities
but it is not entirely clear how much protection such a scheme really offers.

Mimics are not selected at will by each node, but are assigned in a pseudo¬

random, but universally verifiable way from the pool of all present nodes.

Consequently, the probability that a malicious node has only other malicious

nodes as its mimics is very small, which implies it is difficult for an adver¬

sary that operates several nodes himself to control all nodes along a circuit.

To select the own and verify another node's mimics, a node needs to know

about all nodes in the system. Additionally, a node validates each other node

upon learning from its presence by contacting it. It is reasonable to assume

that Tarzanworks quite well if the set of participating nodes is relatively static

and does not change too frequently. On the other hand, especially the require¬
ment to know about all other nodes leaves open the question how well Tarzan

can cope with a large dynamic environment where nodes come and go. Basic

source code of Tarzan has been made available, but no further development
of Tarzan was planned as of January 2003 [49]. It is therefore unlikely to see

a public user-trial to really evaluate the system.

3.2 Mix Networks Analysis and Attacks

Mazières et al. [74] report about their experiences operating an e-mail pseudo¬

nym server. Users could get a pseudonymous e-mail address at the server and

deposit a reply block suchthat e-mail messages sent to their nym could even¬

tually find their way to the intended recipient via Cypherpunk remailers. An

important argument of the authors is that one way to attack an anonymity

system is to abuse it and stir enough trouble that it must shut down. The

operators encountered all sorts of problems typically happening with e-mail

Code200 Exhibit 1009
Page 70 of 308

50 3 Related Work

such as bulk mail, mail bombs, and spam. Often, simple mechanisms such as

daily limits or not accepting blind carbon copies helped to reduce the prob¬
lems. Once, somebody posted a message to a newsgroup to exploit a bug
in the Unix news server that causes the server to send its password file to a

specified e-mail address. The sender of the message specified a nym as the

address to send the password file to in order to receive the file anonymously.
As the message was replicated across multiple news servers, the number of

e-mail messages received by the nym exceeded its daily limit, which caused

the e-mail messages to bounce back to the administrators ofthe attacked news

servers. In another case, someone posted child pornography from a nym. The

operators were contacted by the FBI and handed out the reply block. This

does not directly disclose the identity of the owner of a nym, but helps the

FBI to issue more subpoenas. Still, the FBI did not request the operators to

keep logs or shut down the service. The paper teaches a valuable lesson by

showing that operators of anonymity-providing service must be prepared to

cope with abuse. Apparently, the operators ofthe pseudonym server managed
to do so during the two years the service was operational.

Raymond [92] provides an introduction to the traffic analysis problem.
The paper covers both Chaumian and circuit-based mix networks and gives a

thorough overview of different attacks. Among others, it mentions the inter¬

section attack, which exploits the fact that users tend to communicate with the

same communication partners (e.g. web servers or e-mail recipients) when¬

ever they are online. By performing an operation similar to an intersection

of the sets of active users at different times it is likely that the adversary can

gain some information about communication relationships. Raymond also

mentions the tagging attack where an attacker slightly modifies a cell such

that it can be recognised later in the chain of mixes. Assuming the adversary

owns the first and last mix in a chain, this attack may make it possible to link

sender and recipient of a cell.

Zero-Knowledge Systems have provided documents with a security anal¬

ysis of their Freedom Network [118, 5]. They point out several attacks their

system is vulnerable to. In particular, they state that since there is no cover

traffic or traffic shaping, an adversary capable of observing most of the Free¬

dom Network should be able to learn quite a lot about communication rela¬

tionships by performing statistical analysis. Dai [24] has pointed out that the

Freedom Network is vulnerable to a tagging attack where any two colluding
AIPs can easily learn whether they are the first and last AIP in a circuit. The

attack exploits the fact that a message authentication code (MAC) to check

Code200 Exhibit 1009
Page 71 of 308

3.2 Mix Networks Analysis and Attacks 51

the integrity of a cell sent through the network is only used between the client

and last AIP. To execute the attack, the first AIP simply modifies the payload
of a cell it receives from the client and the last AIP waits until it detects a cell

that fails the MAC check.

Berthold et al. [12] discuss different methods of how to choose the route

through a mix network. In particular, they compare free-route mix networks

where every user picks the mixes she likes and synchronously operated mix

cascades where all users use the same mixes in the same order. The authors

assume a strong adversary that controls most mixes in the system and demon¬

strate that under these circumstances, the mix cascade has advantages com¬

pared to free-route mix networks. The main reason is that in a mix cascade,

cells arriving at the first mix are processed together in a batch and are only
forwarded when the complete batch has been received. The anonymity set

remains the same because the batches always contain the same cells from the

same set of users. A mix networks, on the other hand, works asynchronously
and every batch processed by a mix contains cells from different sets of users.

Assuming an attacker observes or owns most mixes and a sender sends mul¬

tiple cells to a recipient, the adversary should be able to reduce the set of po¬

tential senders of a cell by calculating intersections of incoming and outgoing
cells at the mixes. One can also say that although mix networks can support

many more users and therefore potentially have much larger anonymity sets,

the effective anonymity set may be smaller than in mix cascades assuming a

very powerful adversary. The paper also briefly discusses dummies and con¬

cludes that dummies exchanged only between neighbouring mixes are of no

help against mixes controlled by an adversary.

An analysis of Onion Routing is given by Syverson et al. [122]. The

authors point out that an adversary controlling or observing both the first and

last mix along a circuit should be able link the communication endpoints. The

paper also proposes to use at least partial end-to-end padding in addition to

virtual link padding to significantly complicate the task for an adversary that

controls some mixes.

Back et al. [6] talk about traffic analysis and trade-offs in anonymity-

providing systems. They look closely at the Freedom Network and PipeNet
and come to the conclusion that designing such a system means finding a

balance between traffic analysis resistance, performance, resistance to DoS

attacks, and bandwidth cost. The paper contains one very important state¬

ment that should always be kept in mind when aiming at designing a practical

anonymity-providing system: in anonymity systems, usability, efficiency, re-

Code200 Exhibit 1009
Page 72 of 308

52 3 Related Work

liability, and cost become security objectives because they affect the size of

the user base which in turn affects the degree of anonymity that is possible to

achieve. Simply spoken, this means that anonymity-providing systems should

aim at supporting as many users as possible because this means potentially

larger anonymity sets and therefore better anonymity.

Wright et al. [127] examine the vulnerability of anonymity-providing sys¬

tems to the predecessor attack. The attack bases on a scenario where there is

no distinctionbetween sender and mixes like in the Onion Routing local-COR

configuration [121], Tarzan (see Section 3.1.2), and Crowds (see Section 3.3,

although we do not consider Crowds as a mix network variation because of

the lack of layered encryption). The attacks requires that a subset of all mixes

is controlledby an adversary and that there are recurring sessions betweenthe

sender and recipient, for instance a client that frequently connects to the same

web server or a sender that often sends e-mail messages to the same recipi¬
ent. In addition, the attack requires that there is some information available

in the cells that allows the last mix in a chain to link the different sessions

of the same sender. According to the authors, this includes cookies, user

IDs, or e-mail addresses. The attack exploits the fact that assuming every

mix along a chain is picked randomly from the set of all mixes and the last

and one other mix along this chain is malicious, then the predecessor of the

first malicious mix in the chain is more likely to be the actual sender than

an intermediate mix in the chain. Carrying out this analysis over multiple
rounds allows to identify the sender with increasing probability. It should be

noted that the attack works always no matter how sophisticated the methods

employed by the mix network to resist traffic analysis are, but takes much

longer (more sessions are needed) in the latter case. In addition, the attack

is more difficult if there are more mixes in the system and if the percentage

of compromised mixes is smaller. Follow-up work by the same authors [128]

contains simulation results of the predecessor attack, which show the attack

times are significantly lower in practice than the upper bounds given in their

theoretical analysis. The paper also shows that choosing the mixes in the

chain non-randomly increases the resistance to the attack because choosing

always the same first and last mixes and not both are malicious does not al¬

low the adversary to learn anything. Finally, and not directly related to the

predecessor attack, the paper discusses the intersection attack in a dynamic
environment where mixes join and leave. Again assuming that different ses¬

sions can be linked by malicious last mixes in different chains, exploiting the

fact that different nodes are present at different times should eventually iden-

Code200 Exhibit 1009
Page 73 of 308

3.2 Mix Networks Analysis and Attacks 53

tify the sender. To do so, the adversary also needs a complete list of all nodes

available at any time, which is exactly what is offered to every single node

in Tarzan and Crowds. Although very interesting and insightful, the practi¬

cability of these attacks are questionable because linking different sessions to

the same sender is often impossible, for instance by carefully filtering HTTP

headers and cookies in the web browsing scenario. However, in certain situ¬

ations or when only one or very few senders communicate with a particular

recipient or server, the attack is definitely of practical value.

A method to prevent long-term intersection attacks by using dummy traf¬

fic is presentedby Berthold et al. [11]. The authors propose that pre-generated
dummies are being sent to the communication partner (e.g. a web server) dur¬

ing the user's offline periods. The simple approach would be a dummy server

that just generates traffic during the offline hours, but this requires too much

trust in the single service and the user would have to tell the server when to

send traffic and when not, since no dummies should be send during the user's

online hours to not expose statistical significant variations in total traffic gen¬

erated. Therefore, the authors propose a distributed database that contain

prefabricated dummies by all users. The distributed database publishes regu¬

larly dummies and users pick them randomly. The databases themselves are

accessed via an anonymised channel. A user that wants to prevent her own

dummies from being processed simply picks her own dummies and does not

send them. Tickets similar as in Web MIXes (see Section 3.1.2) are proposed
to prevent an adversary from draining or flooding the distributed database.

The solution is very costly in terms of data and computational overhead and

the proposed design principles should mainly be considered as inputs for fur¬

ther work to make such a scheme practical.

Serjantov et al. [112] analyse the different batching strategy of mixes.

The authors focus on the question if an attacker can manipulate cells entering

a mix such that the produced batch contains only one cell unknown to the

attacker. This may involve delaying or dropping incoming cells (a trickle at¬

tack) or flooding the mix with attacker cells (a flooding attack). The analysis
shows that adding a "pool" to the mix and forwarding only a fraction of all

cells when the number of cells in the pool is above a certain threshold can

significantly improve anonymity. Diaz et al. [31] also examine the batching

strategies of mixes and present a generalised framework for expressing them.

The authors also propose a new batching strategy and name a mix employing
this strategy binomial mix. It is basically a timed pool mix that adapts the

number of cells to flush in each round to the traffic load. An advantage of this

Code200 Exhibit 1009
Page 74 of 308

54 3 Related Work

new mix is that it resists well to the flooding attack because it makes guess¬

ing the actual number of cells in the mix difficult. In another paper [113],

Serjantov et al. present an analysis of the anonymity of a timed pool mix and

compare it with threshold pool mixes.

Kesdogan et al. [67] analyse the impact of the intersection attack. They
assume an anonymity-providing system that itself provides perfect untrace-

ability between incoming and outgoing cells (e.g. a mix or a mix cascade that

reorders and changes the encoding of the cells). There are a total of n system

users and every user has m communication partners. During every round, b

senders send b cells to n < b recipients. Note that always all b cells are pro¬

cessed by the system, i.e. there is no pool in the mix. The analysis shows the

number of rounds it takes for an attacker able to observe all incoming and out¬

going cells to identify the m communication partners of a particular sender

with high probability. Not surprisingly, it takes longer if 6 or m get larger.

Although not mentioned in the paper, employing a more advanced batching

strategy that allows introducing long delays should significantly reduce the

practical impact of the attack.

Danezis [25] examines mix networks with restricted routes. The idea is

that every mix in a large mix network is only connected to relatively few

other mixes, e.g. to 10% of all mixes. The author shows that the number of

mixes that should be included in a chain such that traffic is "mixed" as well

as in fully connected mix networks is logarithmically dependant on the total

number of mixes. In addition, an interesting result is that mix networks with

restricted routes are less vulnerable to intersection attacks because when pro¬

cessing a batch, the probability that there is a cell sent out on any virtual link

is larger than in fully connected mix networks. Although the paper does not

investigate how the virtual links between mixes should be chosen in practice,
it is a valuable addition to the field because it shows there is a middle ground
between free-route mix networks and extremely restrictive mix cascades.

3.3 Techniques beyond Mix Networks

There are a few noteworthy techniques to get a certain degree of anonymity
that do not base on mix networks.

Code200 Exhibit 1009
Page 75 of 308

3 3 Techniques beyond Mix Networks 55

3.3.1 Simple Remailers

Simple Remailers (also known as Type 0 anonymous remailer) are proxies

between sender and recipient that strip of headers from e-mail messages and

replace the original sender address with a pseudonym One popular remailer,

anon. penet. f i, has been operational from 1993 to 1996 For Alice with

address al ice@home
. org to send an e-mail message to Bob with address

bob@work.org, she sends it to anon, penet. f i, which replaces Alice's

address with, for instance, an7184@anon .penet. f i This even allows

Bob to reply to Alice because anon .penet. f i remembers the mapping

between Alice's real address and her pseudonym Type 0 remailers do not

make use of encryption and the protection they offer from traffic analysis at¬

tacks is quite low In particular, the remailer offers a single point of attack and

in the case of anon. penet. f i, this was exploited in the Church ofScien¬

tology vs anon penetfi case [81] in early 1995, somebody posted a message

to alt .religion. Scientology via the anonymous remailer Scientol¬

ogy representatives claimed the information of the message was stolen from

an internal Scientology computer and used Interpol and the Finnish police to

demand the true name of the poster of the message Johan Helsingius, the

owner of the remailer, reluctantly complied, fearing that if he resisted, he

might be forced to give up his entire database that matched anonymous IDs

to true names In 1996, Scientology once again demanded the names of two

anon penet fi users, as a result, Johan Helsingius shut the remailer down on

30st August 1996 [59] At its peak, the remailer had 500000 registered users

and processed 10000 messages per day

3.3.2 Proxy Forwarders

The Anonymizer [22] is a simple proxy-based service that offers anonymous

web browsing The system works similar as a web proxy in the sense that

all data exchanged between the user's browser and the web server are relayed

by the Anonymizer The advantages of the system are that it is simple and

that the delay it introduces is relatively low compared to more sophisticated

systems The disadvantages are that the level of anonymity it offers is quite

low and that the end-to-end relationship is not anonymous with regard to the

Anonymizer itself

Crowds [95] collects users in a group (the "crowd") to browse the Web

anonymously Crowds can be considered as a peer-to-peer system because

Code200 Exhibit 1009
Page 76 of 308

56 3 Related Work

every user issues web requests and forwards data for others. However, it relies

on a centralised lookup service to inform all users about all other current users

in the crowd. A user is represented in a crowd by a process on her computer

called "jondo". To join a crowd, the jondo contacts the lookup server to learn

about the otherjondos. Similarly, the lookup server informs the otherjondos
about the new participant. A user selects her own jondo as a web proxy. If

she wants to request a web page, the jondo forwards the request randomly
to another jondo in the crowd. Similarly, when a jondo receives a request

from another jondo, it makes a random choice to either forward the request

to another jondo or submit it to the server the request is intended for. The

reply from the server uses the same path in opposite order to find its way to

the requester. To the outside, the system provides anonymity in the sense that

any crowd user could have requested the web page. Crowds does not make

use of layered encryption but uses pairwise keys to encrypt the data between

two jondos. Crowds does also not employ fixed-length cells. As a result, an

eavesdropper can easily trace data and any two jondos along the same path
should easily be able to correlate data flowing through them. One important
feature of Crowds is plausible deniability because a user can always claim

she merely relayed the data for someone else. Likewise, a jondo never really
knows if its predecessor in a path is the original requester or not. A weakness

of the system is the lookup service that provides a single point of attack and

a potential bottleneck if a crowd gets large and its users change frequently.

3.3.3 Broadcast-Based Approaches

Chaum's solution to the Dining Cryptographers Problem [18] provides infor¬

mation theoretic sender and relationship anonymity. The basic idea is that all

participants continuously send random-looking data as broadcasts to the en¬

tire group and only one of them is really transmitting a meaningful message.

The message is encrypted using the intended recipient's public-key such that

no other recipient can read it. Although appealing because of its information

theoretic guarantees, it is of little practical value because participants are ar¬

ranged on a logical ring and each participants must pre-share long random

bit-sequences with each of its two neighbours. In addition, only one partici¬

pant can send a message at any time, and a malicious participant can easily

disrupt communicationby sending data all the time.

P5 [116] is a peer-to-peer-based approach that aims at providing sender,

recipient, and relationship anonymity between nodes. P5 organises the nodes

Code200 Exhibit 1009
Page 77 of 308

3.3 Techniques beyond Mix Networks 57

in a logical binary tree. Each node represents a broadcast group, which is de¬

fined as the sub-tree of which the node is the root, and every group includes

all groups below it. Similarly, a user is not only member of the group that she

actually represents, but also of all other groups on the path to the root of the

tree. Recipients of messages are addressed by (one of) the broadcast groups

in which they reside. When a message is sent to a broadcast group, it is prop¬

agated to all child-groups of that group. If the load gets too high, nodes drop

message. The rule is that messages sent to large broadcast groups (closer

to the root of the tree) are dropped with higher probability than messages

sent to smaller broadcast groups. This allows each individual node to make a

trade-off between communication latency, bandwidth usage, and anonymity

by sending messages to larger or smaller broadcast groups in which the re¬

cipient resides: choosing a smaller group means less anonymity, but higher

probability (and therefore lower latency) that the message is not dropped. P5

produces significant data overhead because every node in P5 is always broad¬

casting data to conceal her real sending of data and it is assumed that the

traffic is always at the maximum ofwhat nodes can sustain.

3.3.4 Anonymous Publishing

Work on anonymous publishing has been strongly influenced by Anderson's

work on the Eternity Service [3]. The main goal of Eternity was not so much

anonymous publishing, but censorship-resistance in the sense that it should

be difficult for anyone to delete a document once it has been published. It

assumes there are several Eternity servers available where publishers up¬

load documents together with the requested storage duration onto multiple
servers. Having done so, the publisher forgets about the servers where she has

placed the documents, which removes the capability for the publisher to eas¬

ily delete all available copies of the document. Anderson argues that forget¬

ting about the locations where the documents have been stored is required for

censorship-resistance, because if the capability to revoke a document exists,

an adversary has incentive to find who controls this capability and threaten

or torture that person until revocation takes place. To make it difficult for

an adversary to identify the servers on which a publisher publishes the docu¬

ments, upload is done via an anonymous channel and payment for the service

is done with anonymous e-cash [15]. To download a document, queries are

done via broadcast and document delivery is achieved through anonymous

remailers. Anderson's design leaves open many practical questions such as

Code200 Exhibit 1009
Page 78 of 308

58 3 Related Work

updating documents and fluctuations in the server population, but shows that

a censorship-resistant anonymous publishing system is possible.

The Rewebber Network [56] aims at anonymous publishing. Rewebbers

are proxies that relay web requests via multiple hops until they arrive at the

server containing the requested document. A locator is used to request doc¬

uments and is similar to a reply block in Chaumian mix networks. Using

public-key cryptography and layered encryption, it guarantees that only the

identity of the next rewebber in the chain to use is revealed. The actual web

reply is sent back to the requester using the same chain in opposite direc¬

tion. On the way back, each rewebber removes one layer of encryption from

the document itself (the keys to do so are included in the locater and are re¬

membered when the locater is sent through the chain of rewebbers) until the

document is sent in plaintext from the first rewebber in the chain to the re¬

quester. Except for the identity of the first rewebber, a locator only contains

random-looking data and is totally unrelated to the document it points to. To

solve this naming problem, the authors propose TAZ (TemporaryAutonomous

Zone11) servers that provide the mapping of intelligible document names to

locators. Note that if the server storing the document deletes it, it is lost un¬

til it is published again. However, since the document is encrypted multiple

times, it is hard for the server to decide why to delete a document at all if not

for storage restrictions. JANUS [29] is a proposal similar to the Rewebber

Network.

In Pubhus [124], the publisher encrypts a document with a secret key.

Using Shamir's secret-sharing algorithm [114], the key is then split into n

shares such that any k of these shares are sufficient to reconstruct the key.
Then the publisher picks n Publius servers and anonymously sends the en¬

crypted document plus one share of the key to each of these servers. The

name of the document is also published together with the addresses of the

n servers, which forms an URL that can be used by potential readers to ac¬

cess the document. To do so, a local web proxy recognises such an URL and

fetches all shares and the encrypted document, reconstruct the key, and de¬

crypts the document. The main idea to encrypt the document but split the key
is for a server not being able to easily read the document and delete because

its operator does not like the content. In this sense, Publius does not only

provide publisher anonymity, but also resistance to censorship: as long as at

least k shares remain available, the document can be retrieved. A drawback is

http ://www.to.or.at/hakimbey/taz/taz.htm

Code200 Exhibit 1009
Page 79 of 308

3.3 Techniques beyond Mix Networks 59

that a server can find out what documents it is storing by searching for URLs

containing its own address.

Freenet [19] is a peer-to-peer file-sharing system. It has the property that

popular files are replicated on several nodes while infrequently requested files

eventually vanish. Both searching files and downloading them is anonymous

in the sense that the requester does not know where it downloads the file from

and the one offering the file does not know who the requester is. Nodes also

do notknow what files they are storing because the files are identified with the

hash of the file name and the file itself is encrypted using the file name as the

key. To search for a document, the requester must know the precise file name,

builds its hash, and sends the request to the one of its current neighbours that

"most likely" stores it. If that node indeed stores the file, it sends it back

to the requester, otherwise it sends itself the request to the neighbour that is

most likely to store it. This continues until the file is found or a time-to-live

(TTL) counter reaches zero. One drawback is that the choice to drop a file is

a purely local decision, which implies the system cannot guarantee a certain

lifetime of a file.

The Free Haven Project [36] aims at deploying a system for distributed,

anonymous, persistent data storage which is robust against attempts by pow¬

erful adversaries to find and destroy any stored data. The specific goals are

(1) anonymity for all parties, (2) accountability using reputation and micro-

payment schemes without sacrificing anonymity, (3) persistence in the sense

the publisher of a document determines its lifetime, and (4) flexibility, which

means the system functions smoothly as peers dynamically join or leave.

Although the project was not finished as of November 2003, it was put on

hold because fundamental problems must be addresses first12. In particular,

a working reputation system seems to be very difficult to establish and docu¬

ment retrieval based on broadcast is too inefficient.

Tangier [123] is another distributed document storage system that pro¬

vides reader and publisher anonymity and censorship-resistance. The main

idea is to entangle different documents by transforming them into fixed-sized

blocks in such a way that many blocks belong to multiple documents. This

not only diffuses responsibility from particular servers for particular docu¬

ments, but also makes replicating parts of other documents an inherent part

of publishing, and even gives a plausible cause for replicating other blocks in

the system.

http ://www.freehaven.net

Code200 Exhibit 1009
Page 80 of 308

60 3 Related Work

The goal of GNUnet [70,7] is to provide practical anonymous and censor¬

ship-resistant file-sharing. GNUnet is a peer-to-peer system and data are ba¬

sically forwarded similar as in mix networks. But unlike in traditional mix

networks, the servers are also part of the system itself. This implies there are

no easily identifiable "edges" and attacking the system at the edges (see Sec¬

tions 2.2.3 and 2.3.3) is more difficult. The intended practicability of GNUnet

has caused the designers to find a reasonable trade-offbetween anonymity and

efficiency. For instance when a reply is sent back to the requester, it is pos¬

sible to short-circuit two nodes to circumvent a highly loaded node along the

path. This makes GNUnet more vulnerable to attacks, but the designers be¬

lieve this is worth the improved performance. GNUnet also makes trade-offs

when looking at censorship-resistance, where some resistance is sacrificed

for improvements to search for and find documents.

3.4 Other Applications

Besides techniques to exchange data anonymously, there have been proposals
for other applications that often rely on an underlying anonymous communi¬

cation infrastructure.

Chaum et al. [15] proposed untraceable electronic cash. Alice can go to

a bank, withdraw some digital coins from her account, and spend the money.

Later, when the merchant takes the money to the bank, the bank checks if

it has issued the coin earlier and if the coin has not been spent before. The

trick is that the bank cannot link the coin it receives from the merchant to

Alice, since the coin was blinded by Alice when the bank issued it, using a

technique called blind signatures [17]. Untraceable electronic cash was never

widely accepted, mainly because of its reliance on the cooperation of banks

and software wallets that were difficult to use.

Low et al. [71] propose Anonymous Credit Cards. The idea is that a cus¬

tomer has two accounts in different banks. The first bank knows the person's

identity whereas the second does not (e.g. a numbered Swiss bank account).

Since the first bank knows the person, it is willing to grant her credit. The

second bank is not willing to grant the person credit, as it does not know her.

However, on the person's request, the first bank agrees to put credit into the

anonymous account at the second bank. When the person pays, she uses a

credit card for her account at the second bank. The bank checks the person's
credit and - if she is credit-worthy - authorises the payment. Eventually, the

Code200 Exhibit 1009
Page 81 of 308

3.5 Economies of Anonymity and Reputation 61

second bank sends a bill to the first bank, which sends a bill to the person.

This separates the information such that no party knows the identities ofboth

customer and merchant.

The Lucent Personalized Web Assistant (LPWA) [53] provides its users

with aliases where each alias consists of an alias user name, alias password
and alias e-mail address. The LPWA acts as a proxy and whenever the user

has to submit user name, password, or the e-mail address, he uses predefined
two character escape sequences (\u, \p or \@), and LPWA replaces them

with the appropriate alias. The LPWA provides a simple and effective way to

generate and use consistent pseudonyms.

Rennhard et al. [91, 104] propose a system to enable Pseudonymous E-

Commerce. Using different components such as pseudonymous certificates

and pseudonymous credit cards (using a protocol called Pseudonymous Se¬

cure Electronic Transaction [101]), the system allows a customer to browse

through an e-shop, select goods, and pay the goods with her credit card such

that neither the e-shop operator nor the credit card issuer nor an eavesdropper
is able to get any information about the customer's identity. The system also

guarantees that during the credit card payment process, none of the involved

parties can act dishonestly without being detected.

The Secure ANonymous GRoup InfiAstructure (SANGRIA) [125, 126]

proposed by Weiler enables secure and anonymous group communication.

Her work combines traditional unicast-based approaches for privacy with au¬

thenticated and encrypted group communication. Thereby, only users who

fulfil certain conditions are allowed to join the secure anonymous group, non-

members of the group cannot understand the data, and the identity of a mem¬

ber cannot be uncovered by outsiders of the group. Additionally, a member

may hide its identity from other group members.

3.5 Economics of Anonymity and Reputation

Two parties interested in keeping the content of their communications secret

can easily do so by employing appropriate cryptographic measures. With

anonymity, it is different because anonymity cannot be created by the sender

or recipient. Anonymity must be provided be some third party, and the ques¬

tion about who could be interested to do so arises. One possibility is to pay

mixes for the service they provide, and Franz et al. [48] have introduced and

analysed different protocols for payment of an anonymity service.

Code200 Exhibit 1009
Page 82 of 308

62 3 Related Work

Acquisti et al. [2] have looked at the incentives for participants (as senders

or mixes) in mix-like anonymity services. There are some noteworthy re¬

marks in that paper. For instance, before high-sensitivity users (those that

really want good anonymity) join a system, there must already be several

low-sensitivity users in the system to provide the necessary noise for good

anonymity. Also, weak security parameters (small batches, lower latency)

may actually provide stronger anonymity by attracting more users. The au¬

thors also states that high-sensitivity users have incentive to run mixes them¬

selves to be certain the first mix in their chain is honest.

Other work targets at increasing the reliability of mix networks. Using

reputation systems [35, 37] should enable users to use chains of mixes that

will succeed in delivering a message with high probability. Although still

in their infancy, such ideas may eventually help to increase the reliability
of practical mix networks because they result in far less overhead than pro¬

posals aiming at giving provable guarantees about a system's robustness (see

Section 3.1.1).

3.6 Measuring Anonymity

Two independent works by Diaz et al. [32] and Serjantov et al. [111] propose

metrics to measure anonymity. The main argument is that the traditionally
used anonymity set does not take into account potentially different probabili¬
ties of different members ofthe anonymity set actually having sent or received

a cell. Both proposed measures are similar and base on Shannon's definition

of entropy [115]. The metrics are well suited to analyse the anonymity of a

single Chaumian mix or simple systems based on strict assumptions, but it is

likely that they provide only a starting point to develop a more sophisticated

anonymity metric that is able to take into account the changing state of practi¬
cal systems overtime, for instance users or mixes that are joining and leaving

or links that are temporarily blocked. Due to their early development stage,

we do not make use of these metrics in this thesis.

3.7 Summary

In particular since the early 1990s, a lot of work has been conducted in the

field of anonymity, including work on systems to enable anonymous com-

Code200 Exhibit 1009
Page 83 of 308

3.7 Summary 63

munication and publishing, analysis of and attacks against proposed systems,

anonymous payment methods, studies of the economics of anonymity, and

how to measure anonymity.

With the notable exception of Cypherpunk remailers, Mixmasters, and

the Anonymizer, none of the proposed systems has been available to the

broad public for a long period. In particular, there is no sophisticated sys¬

tem based on mix networks to enable anonymous low-latency Internet ac¬

cess in widespread use as of today; either because they failed for economical

reasons (Freedom), never made it beyond a limited user trial phase (Onion

Routing, JAP, Anonymity Network), or were never implemented or deployed

(PipeNet, Tarzan). We therefore conclude that none of these systems was re¬

ally well suited or optimised to provide practical anonymity for a large num¬

ber of users. Considering all the attacks against and analysis of systems in

Section 3.2, we argue that finding the optimal design for such a system is

closely associated with finding a reasonable trade-off between usability and

protectionfrom attacks. We will analyse this more closely in the next chapter.

Code200 Exhibit 1009
Page 84 of 308

Chapter 4

A Detailed Analysis of Mix

Networks

In this chapter1, we perform an analysis ofmix networks. We focus on circuit-

based mix networks that aim at supporting low-latency applications, although
several of our findings apply to Chaumian mix networks as well. We first dis¬

cuss why anonymity is so difficult to achieve. Afterwards, we provide a quan¬

titative analysis of mix networks to estimate how big a mix network must be

to support a certain number of users and to analyse the costs ofdummy traffic

overhead. Then we give arguments for what we believe is a realistic threat

model for different mix networks. We also analyse different mix network ap¬

proaches in light of our realistic threat model and derive conclusions which

approaches are better suited than others to provide practical anonymity for a

large number of users.

4.1 Why Anonymity is so Hard

We base our analysis on a client/server scenario where the client contacts

a server anonymously. We assume the goal of an attacker is to learn who

communicates with whom by means of traffic analysis. With mix networks,

there are different kinds of attackers that can be described with the following

The work in this chapter has been published in a refereed paper [99]

Code200 Exhibit 1009
Page 85 of 308

4.1 Why Anonymity is so Hard 65

three attributes:

• Passive vs. Active. Passive attackers monitor the cells exchanged be¬

tween nodes over virtual links and the data exchanged between the last

mix in the circuits and servers. Active attackers have all capabilities of

passive attacker, but in addition, they can insert, modify, duplicate, or

delete the data exchangedbetween two nodes or the last mix in a circuit

and the server.

• External vs. Internal. External attackers do not operate mixes them¬

selves. Internal attackers control one or more mixes, for instance by

running them themselves, which means an internal attacker knows the

mapping of incoming to outgoing data at the mixes he controls and also

which ofthe cells originating or ending at these mixes are real data cells

and which are dummies.

• Partial vs. Global. A global attacker can attack the entire system, while

a partial attacker can attack only parts of the system.

Basically, any combination of these attributes is possible. In addition, an

attacker can be both active and passive and both internal and external at the

same time. For instance, an adversary may operate a few mixes himself and

modify the data flowing through them, which makes him an internal active

attacker. At the same time it could be possible that he manages to passively
observe a few other mixes, which makes him a passive external observer. In

addition, some combination of attributes enable the adversary to break any

mix network. For instance, the global internal attacker that operates all mixes

can trivially relate all communicating endpoints. Note also that every user

of a mix network is an active attacker because she can observe and manipu¬
late all cells she exchanges with the the first mix the circuits she establishes.

However, this alone does not tell her anything about the anonymous commu¬

nications of other users.

In the remainder of this section, we analyse two prominent attackers, the

global passive external attacker and the partial active internal attacker. We

examine the measures needed to defeat these two adversaries. Our method¬

ology is as follows: we start with a basic circuit-based mix network (see

Section 2.3) that does not make use of any cover traffic and show why this

does not provide protection from certain traffic analysis attacks. Then we in¬

crease the resistance of the mix network step-by-step by employing different

dummy traffic schemes, while demonstrating that even complex cover traffic

schemes are not enough to protect from sophisticated traffic analysis attacks.

Code200 Exhibit 1009
Page 86 of 308

66 4 A Detailed Analysis of Mix Networks

4.1.1 Global Passive External Attackers

The global passive external attackers (sometimes also called global eaves¬

dropper or simply global passive attacker) can observe all data exchanged
over every virtual link between two nodes and between mixes and the servers.

As already mentioned in Section 2.1, observing the data on a virtual link

means observing them somewhere on the physical route between two nodes.

Similarly, monitoring the application data on the route between the last mix

and the server means monitoring them somewhere on that physical route.

Therefore, an adversary capable of observing all data entering and exiting
all mixes is a global eavesdropper because it enables him to monitor all data

exchanged between clients and mixes, all data exchanged between any two

neighbouring mixes, and all data exchanged between mixes and servers. We

briefly analyse the possibilities of such an attacker and the measures mix net¬

works can employ to beat him. First, we look at attacks on a single mix and

Figure 4.1 illustrates the basic scenario.

a) without dummy traffic

b) with dummy traffic

Figure 4.1: Traffic analysis at a mix

We use an example with six mixes (mi-m6). User ui uses client ci and

is is connected to server si via mixes mi, m6, and m3. User u2 uses client

Code200 Exhibit 1009
Page 87 of 308

4.1 Why Anonymity is so Hard 67

c2 and is connected to S2 via m5, m6, and m4. Although there should be

many more users in a real mix network, the case with two users serves well to

explain the basic attacks and defences. Our basic mix network makes use of

fixed-length cells and layered encryption. The mixes may delay and reorder

incoming cells or data they receive from the servers for a short time. However,

as we are looking at near-real-time applications, cells must be sent out quickly

(i.e. within a few tenths of a second after the corresponding data have been

received) and if there is only little traffic, there may be no data from other

users available to reorder anything. A first attack is trying to follow the data

as they traverse a mix, as depicted in Figure 4.1 (a). In our example, m 6 is used

by both users, and let's assume ci is sending three cells to si, C2 is sending
two cells to S2, and the cells happen to arrive at m6 at nearly the same time.

Although an attacker cannot correlate the cells entering and exiting m 6 based

on their length or encoding, he can still easily deduce that the data from m i

is forwarded to m3 and the data from m5 is forwarded to m4 because of their

different data volumes (three cells versus two cells). This corresponds to a

combined application data volume and timing attack (see Section 2.3.3).

Using cover traffic that is indistinguishable from the real cells, this attack

can be defeated. In Figure 4.1(b), m6 employs constant flows of cells with

all its neighbours in both directions. An observer at m6 has no way to tell

which of the cells entering and exiting the mix are real ones (the black ones)

and which are just dummies (the gray ones). As a result, there is nothing to

correlate as the application data volumes are hidden in the constant flows of

cells.

Since the adversary can no longer trace cells as they traverse a mix, he can

try to correlate the data at the endpoints. Knowing that each mix will delay
the data for at most a fraction of a second, cells sent from a client to the first

mix must result in data exiting the mix network towards the server at some

other mix within at most a few seconds. Figure 4.2(a) illustrates the attack.

The attacker no longer looks at any traffic exchanged between mixes, but

only sees three cells entering the mix network from ci and two from c2.

Within some seconds, he sees data exiting at m3 that have a length corre¬

sponding to about three cells and data exiting at m4 with a length of about

two cells. Note that the fixed-length cells used on the virtual link between

the clients and the mixes are not visible on the route between the last mix

and the server, because the last mix just forwards the contents of the cells,

i.e. the application data to the server. Nevertheless, this combined end-to-end

application data volume and timing attack works well because the amount

Code200 Exhibit 1009
Page 88 of 308

68 4 A Detailed Analysis of Mix Networks

a) without dummy traffic

b) with dummy traffic

Figure 4.2: End-to-end Traffic analysis

of data entering the first mix and exiting at the last mix are closely related.

Figure 4.2(b) shows the countermeasure to this attack. The route between the

last mix and the server is not part of the mix network, and there is nothing we

can do there without requiring the servers to participate in the mix network

protocol. But we can introduce cover traffic on the virtual links between the

clients and mixes. Like between mixes, we use constant flows of cells on all

virtual links between clients and mixes in both directions. This removes any

correlation between the data entering the first mix and leaving the last mix.

However, there are still attacks possible. One is the long-term intersection

attack (see Section 3.2), which also correlates events at the endpoints but over

a long period of time. It makes use of the fact that every user has a certain

behaviour when being online, e.g. most Internet users download similar web

pages whenever they are hooked up to the Internet. As an example, assume

ui sitting atci regularly downloads data from s i, andsi happens to be a web

server that is visited only by a few Internet users. So even if the combined

end-to-end application data volume and timing attack described above does

Code200 Exhibit 1009
Page 89 of 308

4.1 Why Anonymity is so Hard 69

not work when observing just one Internet session of a user, it could work

when correlating the patterns observed during 100 sessions, because c i con¬

tacts Si in 90% of her sessions. This attack is of course much more difficult

to carry out when the server is visited by a huge number of people such as

www.cnn.com. But who is interested in learning who visits www.cnn.com?

An adversary can learn much more about an individual by knowing what "ex¬

otic" web servers she visits. But even this attack could be beaten, at least in

theory: by making sure that users are always connected to the mix network

and always exchange dummy traffic with their first mix. But this is an unre¬

alistic assumption even if users want to be online all the time: computers and

programs crash from time to time and Internet connections are not working
all the time due to congestion or ISP failure. To be really resistant against
the long-term intersection attack, mix networks would have to be brought to

a temporary halt whenever the cell stream between any client and its first

mix stalls to not leak any information to the global observer, as proposed in

PipeNet (see Section 3.1.2), a mix network operated synchronously. Assum¬

ing a mix network with 100 mixes, it would be extremely difficult to distribute

the information about a stalled virtual link between a client and a mix quickly

enough to all other mixes. In addition, if 100 users were connected to each

of the 100 mixes, the probability that all 10000 virtual links between clients

and mixes are working at any time would be virtually zero in today's Inter¬

net. So even if the mix network could be brought to a full stop, it would

be of little practical use because it would be halted most of the time. Addi¬

tional problems of PipeNet with DoS attacks have already been discussed in

Section 3.1.2.

There is a special case of mix networks that makes it easier to defend

against the long-term intersection attack: the mix cascade operated in the way

as proposed by the developers of the Web MIXes project (see Section 3.1.2).

Their mix cascade is operated synchronously and in a mix cascade, every user

uses the same set of mixes in the same order. For instance, we could use 25

mix cascades with four mixes each instead of a mix network with 100 mixes.

This would also have the advantage that the different mix cascades could

have different rates for the constant traffic flows on the virtual links between

clients and the first mix in the cascade they use. Slow dial-up users could

connect to a 32 Kb/s cascade and users with fast DSL connections could use

one of the 512 Kb/s cascades. Bringing a synchronous mix cascade to a halt

if any virtual link between a client and the first mix in its cascade is quite

simple because all users of a cascade are connected to the same first mix

Code200 Exhibit 1009
Page 90 of 308

70 4 A Detailed Analysis of Mix Networks

in the cascade and cells are only forwarded when all clients have sent one

or a certain number of cells. Using the same example as above with 10000

users and 100 mixes, we can arrange the 100 mixes in 25 mix cascades of

four mixes each. Consequently, each cascade must support 400 users. Note

that this also means an anonymity set that is 25 times smaller than above

because if a particular server is contactedby the last mix in a cascade, all users

of the other cascades cannot have been the initiator of this communication

relationship. But even with 400 clients per cascade, the probability that none

of these 400 virtual links to the first mix has connection problems at any

time is small. In addition, some problems remain: as with PipeNet-like mix

networks, any user or mix can bring the cascade down by stopping sending
cells.

But most of all, the huge amount of dummy traffic exchanged between

clients and mixes in both directions consumes a lot ofbandwidth at the mixes,

as we will point out in Section 4.2. In general, the concept of dummy traffic

to increase anonymity is still not really understood. One question is if there

are "cheaper" ways than employing fixed streams of traffic between clients

and mixes to defeat the combined end-to-end application data volume and

timing attack. Probably not, because anything that is adapting to the user's

behaviour in any way leaks some information [11].

4.1.2 Partial Active Internal Attackers

The partial active internal attacker controls a subset ofthe mixes, which opens

a new spectrum of attacks. In particular, dummy traffic can no longer be gen¬

erated on a per-virtual link basis between two nodes because unlike an exter¬

nal attacker observing a mix, the internal attacker knows which of the cells

the mixes he controls send and receive are dummies. Figure 4.3 illustrates

how this can be exploited by an adversary controlling two mixes, m i and m3,

which happen to be the first and last mix used by c i.

In Figure 4.3(a), mi knows which cells on the virtual link to Ci are real

data, which means mi and m3 can carry out a combined end-to-end appli¬
cation data volume and timing attack to break u i 's anonymity, just like in

Figure 4.2(a). To resist this attack, dummies have to be sent from the client

through the whole chain of mixes and back, as illustrated in Figure 4.3(b).

As a result, mi is no longer able to distinguish between c i 's real data and its

dummies and the application data volume attack does no longer work.

Unfortunately, even this cover traffic scheme is not enough to defeat the

Code200 Exhibit 1009
Page 91 of 308

4.1 Why Anonymity is so Hard 71

a) without end-to-end dummy traffic

b) with end-to-end dummy traffic

Figure 4.3: End-to-end Traffic analysis by an internal attacker

active internal attacker. If mi briefly blocks the constant cell stream from

Ci several times and checks with m3 if it has noted a corresponding brief in¬

terruption of an incoming cell stream shortly afterwards, they can conclude

with high probability that c i communicates with si. In fact, introducing such

timing signatures in the cell streams is always possible for an adversary con¬

trolling some mixes, independent ofthe actual cover traffic scheme that is em¬

ployed. Since dummy cells would only give the adversary more possibilities
to introduce timing signatures, using dummies at all could even increase the

adversary's chances to break the anonymity of a user. Indeed, synchronous

designs could even cope with this attack, but practical issues refrain us from

making use of them in low-latency systems.

4.1.3 Summary

Providing protection against very powerful attackers is extremely difficult.

Cover traffic certainly helps to increase the protectionfrom external observers

that cannot continuously monitor the entire mix network or that are only capa¬

ble of observing a subset of the system. However, a global observer using the

Code200 Exhibit 1009
Page 92 of 308

72 4 A Detailed Analysis of Mix Networks

long-term intersection attack can most probably beat every system because

there are always periods where clients cannot keep up a constant flow of traf¬

fic with the first mix in their chain. A global observer with additional capa¬

bilities of an active external attacker will be even more successful because

he can block virtual links without having to wait for such failures to happen

naturally. Stalling the whole system when any virtual link fails is simply not

an option in a practical system for low-latency applications. Internal attack¬

ers could theoretically be beaten with end-to-end dummies, but since internal

attackers controlling mixes can always be assumed to also have active capa¬

bilities, the adversary should again succeed by briefly blocking cell streams

at the first mix and recognise this at the last mix (or vice versa) if he controls

both the first and last mix in a chain. Introducing such timing signatures in

the cell streams is always possible independent of the cover traffic scheme,

which implies that dummy cells are in general of little value against internal

active attackers. One also must remember that if there are internal attackers

present in a system, perfect anonymity is not possible even in theory, because

even in a perfectly balanced and synchronous system, it can always happen
that all mixes along a chain are compromised.

4.2 A Quantitative Analysis of Mix Networks

In this section, we analyse how many data the mixes in a mix networks must

handle to serve a certain number of web users. The reason for this is to learn

more about the costs in terms ofbandwidth of different cover traffic schemes

compared to the case where no dummies are used at all. Note that we are only

looking at the data handled by the mixes because from the point of view of

the operator(s) of a mix overlay network, this directly determines the band¬

width costs they have to pay. We are not comparing the costs of anonymous

communication with direct client/server interaction because besides the costs

to operate the mixes, mix networks produce additional load on the whole

Internet infrastructure due to the longer paths the data travel between the end-

points of a communication relationship. We use web browsing as the example

application and for simplicity, we only take web requests and replies into ac¬

count, leaving out any overheads resulting from underlying protocols or the

mix network protocol itself.

We assume a mix network consists of m mixes mt, 1 < i < m that are

connected to the Internet with bidirectional bandwidths b
t
b/s. We define the

Code200 Exhibit 1009
Page 93 of 308

4.2 A Quantitative Analysis ofMix Networks 73

capacity c of a mix network as the total number ofbits all mixes together can

send or receive in a second:

c = ^2'ml-bl (4.1)

i=\

Note that it is reasonable not to distinguish between sending and receiving

capacities because mixes always send and receive approximately the same

amount of data: they get data from clients and forward the same amount of

data to the next hop, they receive data from a mix and forward them to another

mix, or they get data from a mix and forward them to a server. Consequently,
if a mix has an asymmetric Internet connection, then the lower bandwidth

determines the amount of data it can send and receive.

4.2.1 No Dummy Traffic

If no dummy traffic is used, then the whole capacity is devoted to transport

real data. We analyse how many users a mix network with a given capacity

can support. We assume that on average, each user sends ds bits and receives

dr bits per day through / mixes. If the application is e-mail, data are only sent

and dr = 0. If the application is web browsing, dr is about ten times a big as

ds. In any case, / mixes receive ds bits in one direction, and / mixes receive

dr bits in the other direction during 24 hours (86400 seconds). Similarly, /

mixes send ds bits in one direction and / mixes send dr bits on the way back.

On average, each user is responsible that I (ds + dr) bits must be sent and

received by the mix network. This means that without dummy traffic, the

load on the mix network is symmetric, i.e. the total amount of data sent or

received by all mixes is the same. We denote d = ds + dr as the total amount

of data produced by each user during 24 hours. The minimum capacity a mix

network must offer to support n users, each of them producing d bits during

a day can therefore be computed as

n I d

Cmm =

mM [b/s]- (4'2)

Transforming this equation, we get the maximum number of users a mix

network can handle given its capacity:

Code200 Exhibit 1009
Page 94 of 308

74 4 A Detailed Analysis of Mix Networks

As an illustrative example, we assume we want to support 100000 web

users. To estimate the amount of data generated by the users, we use results

from Internet traffic pattern studies. According to Nielsen//NetRatings2 and

Cyberatlas3, the average web user had about 25 web sessions per month dur¬

ing September 2003. A web session is defined as a continuous series of user

activity via URL requests. A session is considered ended if no requests for

URLs have been made and if no corresponding applications (for instance a

web browser) have been running for one minute4. The average duration of a

web session is about 33 minutes and during a single session, about 50 web

pages are completely downloaded. To determine the amount of data that is

generated to download a single web page, we use appropriate values from sci¬

entific literature. We assume web requests to be 300 bytes with a probability
of0.8and 1100 bytes with a probability of 0.2 [72]. This results in an average

web request length of 460 bytes. The lengths of web replies follow a Pare-

toll distribution with parameters k = 800 and a = 1.2 [44], which results

in an average size of 12 KB. The number of embedded objects also follow a

ParetoII distribution, this time with parameters k = 2.4 and a = 1.2 [44],

resulting in an average of four embedded objects per page. Consequently,

requesting a web page results in sending 2300 (= 5 • 460) bytes, and the size

of a web page is 60 (= 5 • 12) KB on average.

Summarising these data, the average user sends out 115 KB and receives

3 MB during each session. With 25 session during September 2003, the aver¬

age data sent and received per day are 96 KB and 2.5 MB, respectively. For

ease of the further analysis in this section, we slightly modify the usage pat¬

tern of the average user and assume every user has one session of 30 minutes

per day. During a session, 115 KB are uploaded and 3 MB are downloaded.

Note that these data are also similar to the outcome of WhiteCross/NARUS

study5 that the average web user generates about 2.5 MB of data per day. We

further assume the average number of mixes in a circuit to three, which is a

2http://www.nielsen-netratings.com

3http://cyberatlas.internet.com/big_picture/traffic^patterns
4http://ereportsacn.netratings.com/help/

Glossary%2 0of%2 0NetView%2 0Terms.pdf.

5http://www.whitecross.com/white-papers/wnfwpll02.htm

Code200 Exhibit 1009
Page 95 of 308

4.2 A Quantitative Analysis ofMix Networks 75

reasonable compromise between protection from attacks and end-to-end de¬

lay. Based on these assumptions and realising that every user generates 3115

KB per day, which is equivalent to 24920 Kb, the minimum capacity of the

mix network according to (4.2) must be

100000 • 3 • 24920000

Crrnn = ~ 87 Mb s.

86400
'

According to (4.1), this mix network could be built with 87 mixes capable
of handling 1 Mb of data per second in both directions, or 9 mixes with a

10 Mb/s connection to the Internet. Note that there is no requirement for

homogeneous mixes, i.e. the mixes can have different capabilities. However,

the figures are based on the assumption that all traffic is equally distributed

over time and that the circuits are chosen in a way that optimally distributes

the traffic according to the capabilities of the mixes. In practice, this is never

the case and the effective capacity needed to support 100000 users is probably
several times bigger than the minimum capacities we computed according to

(4.2). Nevertheless, the minimum capacity provides a good measure for the

absolute minimum that is needed to support a certain number of users.

4.2.2 Dummy Traffic between Clients and Mixes

With dummy traffic, the amount ofdata certainly increases, but by how much?

We have seen in Section 4.1.1 that dummy traffic employed only between

mixes does not help muchbecause of end-to-end traffic analysis. So let's look

at the case with constant bidirectional cell flows on the virtual links between

clients and mixes. The capacity c is no longer exclusively available for real

data, but some of it must be devoted to handle the dummy data. We therefore

divide the capacity into a part cr to handle the real data and a part cd to handle

the dummy data.

Similar as in the case without dummy traffic, each user is responsible that

/ • d bits of real data must be sent and received by the mix network. But now

we also have dummy traffic that is exchanged with the first mix. If t
up

is the

average uptime of a client during 24 hours and r d is the rate at which data are

exchanged between the users and their first mix, then the number of dummy
bits received by the first mix is rd tup - ds. The reason for subtracting

ds is that the real data is sent within the constant cell stream and does not

account for the dummy data overhead. On the way back, the first mix sends

Code200 Exhibit 1009
Page 96 of 308

76 4 A Detailed Analysis of Mix Networks

rd-tup-dr bits ofdummy data to the client in addition to the real data. So the

dummy traffic sent and receivedby all mixes together is not symmetric. Since

the load stemming from the real data is unchanged compared to Section 4.2.1,

it follows that the total traffic sent and received by the whole mix network is

also not symmetric. If ds < dr, then the whole mix network receives more

data than it sends and vice versa. As a result, the minimum capacity and the

maximum number of users given the capacity are defined as:

n

^^(l-d + rd-tup-min(ds,dr)) [b/s] (4.4)

86400 • c

I d + rd -tup - min(4, dr)
(4.5)

We can easily decompose (4.5) into the minimum capacity for the real

and the dummy data:

oß/inn L / J v /

86400 86400

86400
cmm,d

=

„„.„„ (rd tup - min(4, dr)) [b/s] (4.7)

Unsurprisingly, the part for the real data equals the minimum capacity
in (4.2) where no dummy traffic is used. We use the same example with

web users as above, assuming every user is online during 30 minutes (1800

seconds) a day and exchanges data with the first mix at 64 Kb/s. According
to (4.5), the minimum capacity of the mix network is

100000
,

Cmm,30m
= (3 • 24920000 + 64000 • 1800 - 920000)

« 219M6/s.

The capacity for the real data remains the same as in the example without

any dummy traffic, i.e. cmtrhr « 87 Mb/'s.

As discussed in Section 4.1.1, users must be online all the time to beat

long-term intersection attacks. So cover traffic should not only be generated

during one but 24 hours a day. In this case, the minimum capacity increases

to

Code200 Exhibit 1009
Page 97 of 308

4.2 A Quantitative Analysis ofMix Networks 77

100000
,

cmn,2Ah
=

-^^-(3
• 24920000 + 64000 • 86400 - 920000)

« 6.49 Gb/s.

According to (4.1), this could be provided by 649 mixes with a 10 Mb/s

connection or 66 mixes with a 100 Mb/s connection each. Note that since

we did not take dummies between mixes into account in (4.5), the actually
needed capacity would be even higher.

4.2.3 End-to-End Dummy Traffic

Going even further, we can defeat internal attacks where the adversary con¬

trols the first and last mix of a chain by introducing end-to-end dummies (see

Section 4.1.2). In this case, the constant cell streams go all the way through
the whole chain of mixes and back. Each user is responsible that rd-tup bits

are sent to / mixes in the forward direction and to / — 1 mixes on the way back.

In addition, dr bits are sent from the contacted server (e.g. the web server) to

the last mix in the chain. Similarly, r^ • u are sent by 21 — 1 mixes and ds

is sent by the last mix to the contacted server. Here again, the total amount

of data sent and received by all mixes together is not symmetric. If ds < dr,

then the whole mix network receives more data than it sends and vice versa.

The minimum capacity and the maximum number of users given the capacity

are defined as:

'Oj

^^ ((2/ - 1) • rd tup + max(4, dr)) [b/s] (4.8)

86400-c

(21 - 1) • rd tup + rrmx(ds,dr)

Taking into account that the minimum capacity for the real data is the

same as in (4.7), we can compute these capacities as follows:

n I d

crrnn,r
=

"^TjTJ i6/sJ (410)

((2/- 1) -rd -tup + m&yL(ds,dr) - I d)
cmm,d

=

gg^ [b/s] (4.11)

Code200 Exhibit 1009
Page 98 of 308

78 4 A Detailed Analysis of Mix Networks

Using again the same example with web users as above, the minimum

capacities assuming every user is online for 30 minutes or 24 hours a day are

100000
,

cmî„,30m
= -----(5 • 64000 • 1800 + 24000000) « 695 M6/s

OD4UU

cmm,24h
= (5 -64000 -86400 + 24000000)« 32.03 Gb/s.

If every user is online all time, we need a mix network consisting of at

least 321 mixes with a 100 Mb/s connection each.

4.2.4 Mix Cascades

For completeness, we also briefly analyse mix cascades. We assume that the

mixes build k fixed cascades of length /, and each cascade handles n/k of all

users. If no dummy traffic is used, then each user is responsible for sending

ds bits to the first mix in a cascade and dr bits on the way back. The minimum

capacity of the first mix in a cascade to support n/k users is

c,„ ,„„„
= ±±m.

Every mix in the cascade handles the same amount of data, so the capacity
of all cascades together to support n users and the maximum number of user

that can be handled are defined by

d

[b/s] (4.12)
86400

86400 c

Umax ï j • y^-^-*)
d I

Comparing these equations with (4.2) and (4.3), we can see that without

dummy traffic, mix networks and mix cascades are equally efficient.

Introducing cover traffic on the virtual links between the clients and the

first mix in a cascade, the first mix receives d bits of real data and rd-tup—ds
bits of dummy data. Similarly, it sends d bits of real data and r d tup — dr

Code200 Exhibit 1009
Page 99 of 308

4.2 A Quantitative Analysis ofMix Networks 79

dummy bits. The needed capacity of a single first mix and the number of

users it can serve given the capacity are

Cl" rrnx,rrnn
= oJlnn (d + rd ' tup -mm(ds,dr)) [b/s] (4.14)

86400 • c

Tl\st ratx,max T , ,
/ T T \

• v^-l-V
d + rd -tup

-

mm(ds, dr)

For the other mixes in every chain, the capacity and the users given the

capacity can be computed as follows:

I
-(1

C2nd]th rmx^rmn
= [b/s] (4.16)

86400 • c

n2nd ith mix,max
—

~j (4.1/)

So the total minimum capacity of all mixes is k (c^* m%x,m%n
+ (I -

1) •

c2nd_;th mtXimm), which is exactly the same as the capacity in the case

of a mix network with dummy traffic on the virtual links between clients and

mixes (4.5). The difference to mix networks is that the capacity of the first

mix in each chain must be much bigger than the capacity of the others. Using

our web browsing example and assuming that the 2
nd

...
Ith mixes all have a

capacity of 1 Mb/s, each of them can handle

86400-1000000

rc2„d_,th mtx,max
-

24920000
~

users according to (4.17). This also means that we need A; = 100000/3467«
29 chains to serve 100000 users. Each user is online during 30 minutes a day,
which means that using (4.15), the capacity of the first mix in every chain

must be

3467
,

ci.tm,x,m,n
=

^^(24920000+64000-1800-920000)
« 5.59 Mb/s.

Code200 Exhibit 1009
Page 100 of 308

80 4 A Detailed Analysis of Mix Networks

So a system consisting of29 mix cascades where 29 mixes have a capacity
of 5.59 Mb/s and 58 mixes have a capacity of 1 Mb/s is one possible minimum

configuration to support 100000 users.

With end-to-end dummy traffic, the capacities of the first / - 1 mixes

in each chain is the same, as is the number of users they can handle if the

capacity is given:

cl>* (H)"- m«,mm
—

86400
' ^ ' Td ' tuP ^/S] (418)

86400 • c

nlst (l-l)th mix,max
—

7, 7 (4-19)
•^ ' T'd '

^up

The capacity of the last mix and the number of users it can handle at most

are as follows:

cith mlx,min
= ^ (rd tup + max(ds,dr)) [b/s] (4.20)

86400 c

rd -tup + max(ds,dr)

Adding up the capacities of all mixes in all cascades, we can see again that

mix cascades have the same minimal capacity requirements as mix networks

when end-to-end dummies are used.

4.2.5 Summary

Table 4.1 summarises the various cases we discussed above and also gives ex¬

ample configurations and the dummy traffic overhead for a system to support

100000 users.

To summarise, dummy traffic significantly increases the minimum capac¬

ity of mix networks. While accepting being vulnerable to the long-term in¬

tersection attack introduces a data overhead of a "only" a few times the real

data, the measures to resist this attack are extremely costly in terms of data

overhead. The minimum capacities of mix cascades are the same as those

of mix networks but the capacities of either the first mix (if dummy traffic is

used only on the virtual links between clients and mixes) or the last mix (if
end-to-end dummies are employed) differ from the others. Especially in the

Code200 Exhibit 1009
Page 101 of 308

4.2 A Quantitative Analysis ofMix Networks 81

Table 4.1: Minimum capacities to support 100000 users (web browsing, 5

MBper day and user).

dummy
data

rate (b/s)

online time

per user

(hours/day)

capacity

needed

(Mb/s)

example

configurations

dummy
traffic

overhead

87 mix network:

87 mixes with 1 Mb/s

29 mix cascades:

87 mixes with 1 Mb/s

64000

(between

client and

first mix)

05 219 mix network:

22 mixes with 10 Mb/s

29 mix cascades:

29 mixes with 5 59 Mb/s

58 mixes with 1 Mb/s

152%

64000

(end-

to-end)

05 695 mix network:

70 mixes with 10 Mb/s

27 mix cascades:

54 mixes with 10 Mb/s

27 mixes with 6 05 Mb/s

699%

64000

(between

client and

first mix)

24 6486 mix network:

649 mixes with 10 Mb/s

29 mix cascades:

29 mixes with 222 9 Mb/s

58 mixes with 1 Mb/s

7355%

64000

(end-

to-end)

24 32028 mix network

321 mixes with 100 Mb/s

128 mix cascades:

256 mixes with 100 Mb/s

128 mixes with 50 27 Mb/s

36714%

case ofdummy traffic only between the clients and the mixes, the first mix in

each chain must handle many more data than the others.

Recalling that none of these cover traffic schemes provides full protection
from powerful adversaries and considering the very significant bandwidth

data, any use of cover traffic is questionable. In particular, given any mix

network with a certain capacity, and considering that the bandwidth that is

spent on handling dummies is not available to handle real data, an important

question to consider is whether it is better to have a certain level of anonymity

Code200 Exhibit 1009
Page 102 of 308

82 4 A Detailed Analysis of Mix Networks

among 10000 users without dummy traffic or to have "a bit more" anonymity

among 1000 users when using dummies.

4.3 A Realistic Threat Model

We have seen in Section 4.2 that employing dummy traffic to protect from

powerful adversaries is extremely expensive in terms of data overhead. We

have also discussed in Section 4.1 that achieving perfect protection against a

global observer or a partial internal attacker in a practical system is simply
not possible. But how realistic are these powerful attackers? The community
has been arguing for years about what a realistic threat model could be like.

In this section, we give arguments for what we call a realistic threat model.

4.3.1 The Passive External Attacker

We start with the global passive attacker. The long-term intersection attack is

the most powerful attack that can be executed by such an adversary. To resist

this attack, users must be connected to the mix network all the time and all

users must continually exchange constant, bidirectional cell streams with the

first mix in their circuits. To not leak any information, the mix network must

be operated completely synchronously, but we have already shown in Sec¬

tion 4.1.1 that this is impossible to achieve if the mix network is reasonably

large and if an acceptable quality of service should be offered to the users.

Protection against a global passive attacker is only realistic using syn¬

chronous mix cascades with a small number (e.g. 100) of users per cascade.

The synchronous operation of these mix cascades and the assumption that the

probability that no virtual link between the clients and the first mix in a cas¬

cade is stalled is reasonably close to one imply that such a system would be

usable in practice. Such a small number of users could also make it possi¬
ble that the huge dummy traffic overhead (about 74 times the amount of real

data traffic according to Table 4.1) can be absorbed by a powerful first mix

in the cascade. But what does it help to be anonymous within such a small

anonymity set?

Following this discussion, we state that perfect anonymity for very many

users within large anonymity sets is impossible in the Internet. In fact, we

go even further and say that if there is a global eavesdropper, then practi¬
cal anonymous low-latency communication is not possible, at least not until

Code200 Exhibit 1009
Page 103 of 308

4.3 A Realistic Threat Model 83

the implications of cover traffic schemes are better understood and efficient

mechanisms that significantly increase protectionfrom traffic analysis attacks

will be developed.

But how realistic is such a global passive attacker? As discussed in Sec¬

tion 4.1.1, this attacker would have to be able to read every cell exchanged
between two nodes and all application data between mixes and servers. In

addition, he would need the capability to store this information together with

precise timing information to correlate them at different places in the mix

network based on their timing. If a cell is observed, he must store at least

the IP addresses and ports of the two nodes between which it was sent. In

the case of application data that are observed between a mix and a server,

he must additionally store the length of the data. ISPs are a potential threat

because their task of transporting data through the Internet implies they have

also access to the data handled by a mix network. If a cell is sent from one

node to another or application data are exchangedbetween a mix and a server,

the corresponding IP packets usually travel across different ISPs. In general,
this means they are sent from one access ISP via zero or more backbone ISPs

to another access ISP, but it can also mean the involvement of only a single

access ISP ifboth nodes or the mix and the server happen to be served by that

single access ISP. Assuming a large mix network with mixes that are spread

across the world, every ISP only gets a small part of the full picture. Some

ISPs are larger than others and can therefore monitor a more significant por¬

tion of the Internet than others, but in general, the capabilities of a single ISP

are limited. To act as a global passive attacker, several backbone ISPs must

collect data and bring together the relevant information. Even when leaving
out technical issues to collect and store the data, the threat from such a collu¬

sion of ISPs is minimal because of the large number of ISPs. As an example,
there are about 40 backbone ISPs in the USA according to ISP Planet6. To get

all data sent and received by mixes in the USA, nearly all of these 40 inde¬

pendent organisations would have to collaborate, which is an unlikely threat.

Similar arguments can be made for other major Internet regions in the world

such as Europe or Japan. We therefore conclude that if the number of mixes

is sufficiently large and they are spread across several countries and use a

variety of different ISPs, then the global observer is a very unlikely threat.

Another potential threat are federal agencies that are interested in getting
the full picture about what is going on in a mix network. Using FBI's Carni-

6http://www.isp-planet.com/resources/backbones/index.html

Code200 Exhibit 1009
Page 104 of 308

84 4 A Detailed Analysis of Mix Networks

vore diagnostic tool, this is possible by installing Carnivore at all backbone

ISPs. Carnivore can theoretically capture all data flowing through an ISP, but

by specifying filter rules, Carnivore only delivers those data that match these

rules (e.g. only packets that contain a specific IP address). At least officially,
Carnivore can only be used for a limited time after a court order has been

issued, and even then only to read data "authorised for capture" by the court

order, which directly affects the filter settings. In addition, a court order is

only issued to gather hard evidence and not intelligence. Since a court order

is needed for every single temporary installation of Carnivore at an ISP, get¬

ting continual access to all backbone ISPs using the legal way is not likely to

be possible for federal agencies.

Another option for federal agencies is to circumvent the legal way and to

convince the backbone ISPs to provide them with all data. This might even

work with a few of them, but making deals to collaborate with every single
backbone ISP is extremely unlikely to be successful - in particular without

anyone leaking information about this criminal act.

To summarise, if a mix network contains only 10 mixes that are in a geo¬

graphically small area such as a single country, then the global attacker may

be a threat because only a few ISPs must combine their data to get the full

picture. But with 100s or 1000s of mixes that are distributed over the whole

planet, it is very unlikely an attacker can observe more than a small subset

of them for the reasons given above. Note that we cannot provide a precise
number for the maximum percentage of all traffic in a mix network an adver¬

sary may be able to observe in a large distributed mix network but following
this discussion, anything significantly larger than 10% of all traffic is unlikely.

Still, one must bear in mind that a partial observer capable of observing 10%

of all traffic may be enough to break the anonymity ofusers from time to time.

In particular, ifno cover traffic is used, it is likely that an adversary eavesdrop¬

ping on the virtual link between client and first mix and on the route between

the last mix and the server can break that circuit using the combined end-to-

end application data volume and timing attack, as illustrated in Figure 4.2.

The more data that are sent along a virtual circuit, the higher the probability
the attacker can indeed link the two communication endpoints but since this

is difficult to quantify, we simply assume the adversary can always link the

endpoints if he observes any data on both the virtual link between client and

mix and on the route between last mix and server. The probability of suc¬

cess of this attack depends on the fraction of all Internet traffic the adversary
can observe. Assuming the adversary observes a fraction of 10 of all Internet

Code200 Exhibit 1009
Page 105 of 308

4.3 A Realistic Threat Model 85

traffic and assuming the traffic exchanged between nodes in the mix network

and between mixes and servers is similarly distributed across the Internet as

all traffic, the probability pb the adversary can observe both endpoints in a

random circuit and thereby break the relationship anonymity is given by:

Pb = t02 (4.22)

Consequently, if an adversary manages to observe 10% of the entire Inter¬

net traffic, he can expect to break 1% of all circuits and therefore also 1% of

all anonymous communications, because 10% corresponds to a fraction 0.1

and therefore pb = 0.12 = 0.01 according to (4.22).

4.3.2 The Active Internal Attacker

The active internal attacker controls a subset of the mixes, probably by run¬

ning them himself. If he controls the first and last mixes in a circuit, he can

observe both the virtual link to the client and the data on the route to the

server, which implies he has broken the relationship anonymity according
to our discussion above. Assuming the attacker controls n

c
of n mixes, the

probability pb the adversary can observe a random circuit is given by [122]:

Pb=(^)2 (4-23)

We assume the government or any other powerful institution is the adver¬

sary and interested in breaking the anonymous communications. While this

institution would probably not run mixes under its own name, it could pro¬

vide private persons with the necessary equipment to operate mixes at their

homes and pay th em 1000 US$ a year in addition. Assuming the infrastruc¬

ture (a decent Internet connection and a personal computer) costs 4000 US$

a year per mix, there are yearly costs of 5000 US$ per mix. As an example,

we take quite a big mix network consisting of 100 mixes that are operated

by volunteers such as companies, universities, and private persons. If the

adversary manages to convince 300 people to run a mix, he controls 75%

of all mixes and the yearly costs are 1.5 million US$. According to (4.23),

this would mean the adversary can break any random circuit with probability

Pb = (0.75)2 « 0.56. Note that as we have seen earlier in this chapter that

Code200 Exhibit 1009
Page 106 of 308

86 4 A Detailed Analysis of Mix Networks

no dummy traffic scheme helps against an internal attacker if he makes use of

his active capabilities to introduce timing signatures in the cell streams at one

endpoint to recognise this later in the chain.

If a mix network is operated by volunteers, then this attack is a very real

threat. Operating any significant fraction of all nodes is certainly much sim¬

pler than observing the same percentage passively. One possible defence

against the adversary controlling a significant subset is to make sure that only
"honest" people and institutions are allowed to operate a mix. But how could

one guarantee this in practice? With 10 mixes, this is possible, maybe even

with 100. But it gets more and more difficult as the number of mixes in¬

creases.

We conclude that it is quite possible for an adversary to operate a signifi¬
cant portion (e.g. 50%) of all mixes in a mix network operated by volunteers

as described as above. The larger the number of honest mixes, the more dif¬

ficult and expensive the attack gets.

4.3.3 Summary

Based on the assumption of a distributed mix network of reasonable size that

aims at supporting at least several 1000 users, we conclude that there is no

known method that can be applied in practice to really provide protection

against a global observer. However, we have also given reasonable arguments
that the likelihood of such an attacker depends on the size ofthe mix network.

The global observer may be a threat in mix networks with no more than a few

mixes. But if the number of mixes grows and the mixes are spread over the

world, it is very unlikely any adversary can observe more than a small subset

of all mixes. It is of course difficult to prove that global eavesdroppers are no

threat to a large mix network if its mixes are spread over the whole planet,
but we have given strong arguments to support this. We can only repeat that

if there is a global observer, practical anonymity for low-latency applications
is not possible, at least not with the current knowledge we have about cover

traffic schemes. Internal attackers are always a threat if there is no strict ac¬

cess control about who is allowed to run a mix. Even assuming a mix network

operated by volunteers that consists of 100 mixes that are spread across the

world, the threat from an internal observer is significant, and we have given

arguments that it is likely to be bigger than the threat from an external ob¬

server. The only way to defend against an adversary controlling a significant
subset of all mixes is either by allowing only "trustworthy" institutions or per-

Code200 Exhibit 1009
Page 107 of 308

4.4 Comparison of Mix Network Approaches 87

sons to run a mix, which makes it difficult to acquire a large number of mixes

at all, or by making the attack more expensive by increasing the number of

honest mixes.

It is important to remember that there is no practical defence against an

internal attacker operating some mixes because even end-to-end cover traf¬

fic would not prevent any two colluding mixes from learning whether they

are part of the same circuit. If the adversary controlled both endpoints of a

circuit, he would succeed in breaking it, in particular if many data are ex¬

changed between client and server. Similarly, when leaving out any cover

traffic mechanism, a partial external attacker observing the data on the virtual

link between client and first mix and the route between last mix and server is

frequently able to break the relationship anonymity betweenthe endpoints. In

this case, however, dummy cells exchanged on the virtual link between clients

and mixes make it more difficult for the attacker to correlate the endpoints of a

communication, but again at the cost of supporting fewer simultaneous users.

4.4 Comparison of Mix Network Approaches

In Section 4.2, we have seen that very many mixes are needed to support

100000 users that want to browse the Web anonymously. In this section, we

analyse how well different mix network approaches are suited to provide prac¬

tical anonymity for such a large user base. We distinguish between three basic

approaches: commercially operated static mix networks, static mix networks

composed of volunteers that operate a mix, and dynamic, peer-to-peer-based
mix networks where every client is also a mix at the same time. With static

mix network, we mean an infrastructure where the set of mixes is highly sta¬

ble over time. We focus especially on how well the different approaches are

suited to acquire enough mixes to support many users and how well they are

suited with respect to the realistic threat model we stated in Section 4.3.

4.4.1 Static Mix Networks as Commercial Services

The only really big mix network for near-real-time applications that has been

operational so far was Zero-Knowledge Systems' commercial Freedom Net¬

work (see Section 3.1.2). Since the Freedom Network was shut down due to

economical reasons, we briefly look at the major cost factors when offering
such a service:

Code200 Exhibit 1009
Page 108 of 308

88 4 A Detailed Analysis of Mix Networks

• Bandwidth costs associated with the data handled by the mixes. These

costs are directly dependent on the data volume and therefore on the

number of users.

• Hardware costs to provide the platforms to operate the mixes. Like

bandwidth costs, these costs depend about proportionally on the user

base.

• Software costs, especially to develop and maintain the mix network

software itself. These costs are nearly independent of the number of

users and canbe expected to be relatively high in the beginning until the

software has reached a certain stability. Once the software has entered

its maintenance phase, these costs usually get smaller.

• Network operations costs, which includes human efforts to guarantee

smooth operation of the system. These costs depend on the size of the

mix network and the number of users.

According to Adam Shostack [117], Zero-Knowledge Systems' former

director of technology, bandwidth, software, and networks operations costs

were the dominating costs factors during the time the Freedom Network was

operational, while he expected software costs to get smaller over time be¬

cause the Freedom Network was basically always work in progress during
the period it was operational. In general, Shostack argues that while soft¬

ware costs have to be considered as an investment to improve the product
which eventually results in profits, bandwidth and network operations costs

are fundamental prerequisites to guarantee the operation of such a system,

which cannot easily be reduced. Since bandwidth costs are therefore indeed

one dominating cost factor when operating commercially a mix network, we

carry out the same analysis as in Section 4.2.1 using the figures we know

about the Freedom Network (see Section 3.1.2) and assume again that every

user generates 3115 KB of data per day. Recalling that no dummy traffic was

employed, that two mixes were used per default in a circuit, and assuming the

mixes were connected to the Internet with double Tl speed on average, the

Freedom Network was theoretically able to support about 800000 users ac¬

cording to (4.3). Taking overhead and peak times into account, however, the

Freedom Network was more likely to support 100000 users with reasonable

service, which is about 660 per mix on average. Recalling that the Freedom

Network had only about 15000 subscribers, we conclude that it simply did

not manage to attract enough users, which is confirmed by Shostack.

Following our discussion in Section 4.3, the Freedom Network was cer¬

tainly large and distributed enough to make the global observer extremely

Code200 Exhibit 1009
Page 109 of 308

4.4 Comparison of Mix Network Approaches 89

unlikely and the probability that a partial eavesdropper can observe data on

both the virtual circuits between client and first mix and the route between

last mix and server in a random circuit is small. In addition, operating several

mixes was difficult for a possible internal attacker because Zero-Knowledge

Systems made contracts only with ISPs and it was not possible for volunteers

to simply run a mix. But a problem with commercial mix networks is that to

sell anonymity, it may not be enough to say "anonymity in 99% of all cases

for 50 US$ a year". To offer better anonymity, cover traffic must be used on

the virtual links between clients and mixes (see Section 4.1.2). Using constant

streams of cells with a rate of 64 Kb/s between clients and mixes during the 3 0

minutes an average user was online, the theoretical maximumnumber ofusers

would have dropped to about 330000 according to (4.5). Considering over¬

head and peak times, something like 40000 users (about 266 per mix) is more

realistic. So introducing cover traffic between clients and mixes increases the

bandwidth cost per user by about 150%. Note also that exchanging the data

between clients and mixes at 64 Kb/s means a significant performance penalty
for all users that have faster Internet connections, which has been analysed in

the context of the Anonymity Network (see Section 3.1.2). But increasing
this fixed data rate implies significantly higher bandwidth costs per user. For

example, ifwe increase the data rate to 256 Kb/s, the number ofusers accord¬

ing to (4.5) drops to 85000 in theory and about 10000 in practice (about 66

per mix). Going even further, and assuming all users had been online all the

time and end-to-end dummies with a rate of 64 Kb/s had been used to defeat

long-term intersection attacks, the Freedom Network could have supported
2412 user in theory according to (4.9), which would have been about 16 per

mix.

We state that it is certainly possible to commercially operate a mix net¬

work for a large number of users. The question is whether this can be done

profitably, and Zero-Knowledge Systems did not manage to attract enough

users to do so. One problem could be that users are not willing to pay for

anonymity as long as the system is vulnerable to the external observer. How¬

ever, as we have seen above, employing any cover traffic mechanism to in¬

crease the protection from attacks multiplies the bandwidth that is consumed

by a user. Recalling that bandwidth costs were one of the dominating cost

factors of the Freedom Network, the cost per user would have significantly
increased. We therefore conclude that running profitably a commercial mix

network with or without dummy traffic is very difficult today. However, it

may well be the case to operate such a service profitably in the future, espe-

Code200 Exhibit 1009
Page 110 of 308

90 4 A Detailed Analysis of Mix Networks

daily if operational costs drop significantly and if users become more aware

of the lack of privacy in the Internet and recognise the value of anonymous

Internet access.

4.4.2 Static Mix Networks Operated by Volunteers

A trustworthy, static mix network capable of supporting a large number of

users must consist of very many mixes operated by independent institutions.

Leaving out any dummy traffic, Table 4.1 tells that at least 87 mixes with a

IMb/s connection each are needed at minimum to support 100000 users in

theory, which grows to several 100 mixes in practice But how difficult is it to

convince so many institutions to operate a mix?

There is no easy answer for this question. Not many mix networks con¬

sisting of really independent nodes have been around. The Cypherpunk and

Mixmaster remailers (see Section 3.1.1) have been operational for years and

each of them consists of about 40 remailers in total, where several of them

support both protocols. Looking at mix networks for low-latency applica¬

tions, no free mix network has grown beyond a limited user trial with more

than five mixes, and the mixes were not really operated by independent insti¬

tutions.

What does it cost to run a mix? First, one must dedicate a reasonably

powerful computer and accept that significant amounts of traffic are entering
and exiting one's network. The first one is not the main problem because a

powerful enough computer can be bought for about 1000 US$. Bandwidth

is a problem, though. In Switzerland, one can get a bidirectional 512 Kb/s

DSL-connection for about 130 US$ a month to your home as of November

2003. Not many people are willing to spend this amount of money voluntarily

just to run a mix, but again, the development of bandwidth costs is difficult

to predict. That leaves universities and large companies, which both have the

possibilities to easily spare a computer and "a few Mb/s" of their bandwidth.

So are they willing to help building a large mix network?

We do not believe the main problem to achieve a critical mass lies in

the potential availability of the resources but in the political field. The gov¬

ernments of several countries do not like the idea of anonymity in the In¬

ternet. For instance, academic institutions could be threatened to receive less

research funding from the government ifthey operated a mix. Likewise, com¬

panies could risk news articles where they are accused of supporting terror¬

ists and drug dealers and as a consequence, could lose customers. Recalling

Code200 Exhibit 1009
Page 111 of 308

4.4 Comparison of Mix Network Approaches 91

the Church of Scientology vs. anon.penet.fi case we have discussed in Sec¬

tion 3.3.1 shows that threats on operators of anonymity service have already

happened and are not only theoretical. For such reasons, we believe it will be

very difficult to run by volunteers a static mix network that provides a similar

capacity as the Freedom Network. Of course one can argue that bandwidth

will get cheaper, and in 10 years we may have 10 Mb/s connections into our

homes for 10 US$ a month. But with more bandwidth available, people send

more and larger objects across the Internet. Yesterday, people were down¬

loading small web objects, today, they are exchanging mp3-files, and in 10

years, they may be regularly sending whole movies around.

The fact that collecting a large number of mixes that are operated by vol¬

unteers is very difficult means that the active internal attacker controlling a

large number of mixes becomes a very real threat (see Section 4.3.2), and any

cover traffic scheme is of little value against this attacker (see Section 4.1.2).

Since collecting a large number of honest mixes is difficult, the only other

possible defence against this attack is to be very restrictive about who is al¬

lowed to operate a mix. But this will make it even more difficult to collect

enough mixes to support a large user base.

4.4.3 Dynamic, Peer-to-Peer-based Mix Networks

The third option are dynamic mix networks that operate in a peer-to-peerfash-
ion. The main idea is that there is no distinction between mixes and clients

that access the mixes. Rather, every client that uses other mixes to access the

Internet anonymously offers itself the service of a mix to other users. Instead

of paying for a commercial service or hoping that there are enough volun¬

teers to provide enough capacity for a static mix network, each user pays for

the anonymity by dedicating some of her bandwidth and computing power to

others, very much like in peer-to-peer networks for file-sharing. Since every

user brings her own mix, the capacity of such a mix network grows with the

number of users and as a result, it should be able to support a very large user

base. In addition, as it can be expected that users may join and leave such a

system at any time, the set of mixes in the system fluctuates over time and is

no longer stable. Consequently, we also name this type of systems dynamic
mix networks, in contrast to static mix networks.

One problem of static mix networks is that there are political and legal
barriers that may hinder an institution willing to operate a mix from doing so.

In a dynamic mix network, the barrier to join is quite low as in all peer-to-

Code200 Exhibit 1009
Page 112 of 308

92 4 A Detailed Analysis of Mix Networks

peer system. Participating in the system knowing that 100000 other users are

already doing so is a much smaller step than operating one of a small number

of static mixes.

Dynamic, peer-to-peer-based mix networks provide good protectionfrom

the realistic threats we identified in Section4.3. With a huge number of mixes

distributed all over the world, the probability that any adversary is able to ob¬

serve a significant portion of the mixes is small. In addition, dynamic mix

networks protect much better from internal attacks than static mix networks,

because one possibility to reduce the probability an adversary controls a sig¬
nificant portion of all mixes in a mix network is to make sure there are very

many honest mixes. With every user bringing her own mix, this is the best we

can do.

However, dynamic, peer-to-peer-based mix networks are also the least

explored approach and there are also some potential drawbacks. Since mixes

may leave at any time, circuits are more likely to break than in static mix net¬

works, which makes dynamic mix networks less well suited for long-standing
connections such as remote logins. Note that with Crowds (see Section 3.3.2

and Tarzan (see Section 3.1.2), two peer-to-peer-based anonymity providing

systems have been proposed, but neither of them copes well with significant

membership fluctuations. Another potential problem is exit abuse. It remains

to be seen if users really want to send web request for others. Static mix net¬

works may be in a better position here because a participating mix processes

lots of traffic and its operator can plausibly argue he didn't send it himself.

4.4.4 Summary

Of the three approaches we identified, static mix networks operated by volun¬

teers seem not to be the right choice when aiming at a low-latency anonymity
service for a large number of users. They suffer from the problem of ac¬

quiring enough mixes and from the very real threat of an internal attacker

controlling a significant portion of all mixes. Static mix networks operated

commercially are more likely to prevent this attack because volunteers can¬

not easily run mixes themselves. However, commercial mix networks have

yet to show whether they can be operated profitably. In particular, it is un¬

clear if and how much potential users are willing to pay for good but not

perfect anonymity. Dynamic, peer-to-peer-based mix networks seem to be

the best option to handle a large number of users because they do not suf¬

fer from capacity problems and provide good resistance against our realistic

Code200 Exhibit 1009
Page 113 of 308

4.5 Conclusions 93

threat model. Still, dynamic mix networks are not well explored at this time

and they have yet to demonstrate their usefulness in practice. In particular,

guaranteeing good end-to-end performance if mixes may leave at any time

and with some mixes offering poor performance (e.g. dial-up users) is more

difficult than in static mix networks. Nevertheless, we identify dynamic, peer-

to-peer-based mix networks as the potentially most promising way to provide

practical anonymity for a very large number of users. Consequently, we will

explore this approach in the remainder of this thesis to demonstrate that dy¬
namic mix networks are feasible and can be operated in a way such that they

provide good anonymity, acceptable end-to-end performance, and scale up to

a very large number of users.

4.5 Conclusions

In this chapter, we have performed a detailed analysis of mix networks. Fo¬

cusing on mix networks to support low-latency applications, we have seen

designing and operating a practical system that protects from powerful adver¬

saries is very difficult. Even employing cover traffic is of little value against
certain adversaries, in particular against the internal attacker that controls a

subset of all nodes.

In general, the concept ofdummy traffic to increase anonymity is still not

really understood, and especially on the virtual links between the clients and

the mixes, there may be more efficient ways than employing fixed streams of

cells to provide good protection from an external observer that cannot contin¬

uously monitor the entire system. However, based on the current knowledge,

any use of cover traffic is questionable, in particular as its significant data

overhead reduced the number of users that can be supported with any given

system.

We have defined a realistic threat model. Assuming a mix network that

consists of many mixes that are spread over the world, the passive external

attacker that is able to observe a significant portion of the system is a small

threat. However, it must be remembered that even a partial external attacker

may succeed in breaking the anonymity of a user from time to time if he

manages to observe the data on the virtual link between the client and the first

mix and on the route between the last mix and the server. Another realistic

threat in mix networks with no strict access control about who is allowed to

run a mix is the internal attackers that controls a subset of all mixes. Even

Code200 Exhibit 1009
Page 114 of 308

94 4 A Detailed Analysis of Mix Networks

in a mix network operated by volunteers that consists of 100 mixes that are

spread across the world, the threat from an internal observer is significant.

Finally, we have compared different mix network approaches regarding
their suitability to provide practical anonymity for a large number of users

with respect to our realistic threat model. We concluded that dynamic, peer-

to-peer-based mix network have advantages over static mix networks, in par¬

ticular because their capacity increases as more and more users join the sys¬

tem. Furthermore, dynamic mix networks can potentially attract very many

users, which implies it gets more difficult for an adversary to control a sig¬
nificant subset of all mixes. Nevertheless, dynamic mix networks have yet to

show their usefulness in practice.

Code200 Exhibit 1009
Page 115 of 308

Chapter 5

MorphMix

In this chapter, we introduce MorphMix, a peer-to-peer-based dynamic mix

network for low-latency applications. In Section 5.1, we first state our moti¬

vation for developing MorphMix and the goals we want to achieve. Then we

describe the basic functionality ofMorphMix by looking at its properties and

illustrating how a client application can communicate anonymously with a

server application in Section 5.2. Based on this functionality, we analyse the

requirements an adversary must fulfil to break the relationship anonymity in

Section 5.3 and elaborate on the threat model in Section 5.4. In Sections 5.5-

5.7, we introduce and explain the three core components ofMorphMix, which

include:

1. The anonymous tunnel setup protocol to establish circuits to access

servers anonymously (see Section 5.5)

2. The collusion detection mechanism to detect circuits that contain sev¬

eral nodes operated by an adversary with high probability (see Sec¬

tion 5.6)

3. The peer discovery mechanism to make sure that nodes can pick other

nodes from a wide variety of all available nodes (see Section 5.7)

Afterwards, we analyse scalability issues and the requirements to run a

node in Section 5.8 and take a look at what changes for MorphMix if IP

version 6 gets widely deployed in Section 5.9.

This chapter is the first of four chapters on MorphMix. After having in¬

troduced MorphMix in this chapter, we examine different attack strategies
that can be employed by an adversary in Chapter 6. In Chapter 7, we analyse

Code200 Exhibit 1009
Page 116 of 308

96 5 MorphMix

the performance of the collusion detection mechanism to assess the protec¬

tion MorphMix offers assuming realistic scenarios. Finally, we describe the

MorphMix simulator and present the simulation results in Chapter 8.

The basic idea of MorphMix has been published as a refereed paper [98]

and in larger technical report [97] that contains more details and early anal¬

yses than the paper version. The detailed analysis of MorphMix has been

published in another refereed paper [100].

5.1 Motivation and Goals

We have seen in Chapter 4 that dynamic mix networks have advantages over

static mix network, especially if the number of users that should be supported

gets large. However, it remains to be shown whether it is feasible to design

a dynamic mix networks in a way such that it fulfils our principal goal we

have stated in Section 1.6, which is to develop a practical system that enables

anonymous low-latency Internet access for a large number of users. This is

exactly what we want to achieve with MorphMix, and the more detailed goals

are as follows:

1. Requirements to Participate: Anybody who has access to a computer

that is connected to the Internet should be able to join and use Mor¬

phMix after having installed the MorphMix software. Participating
should be possible with a computer that has a public (static or dynamic)
IP address as well as with a computer that has a private IP address that

accesses the Internet through a NAT gateway. The bandwidth or com¬

puting power requirements should be modest in the sense that any com¬

puter with a dial-up connection capable of running a modern graphical
web browser should be sufficient.

2. Scalability: MorphMix should be able to efficiently cope with a very

large number of users. This means that even if there are millions of

participating users, the overhead to establish and tear down circuits and

to manage the MorphMix overlay network can easily be handled by

every participating computer that fulfils the requirements above. In

addition, the performance as perceived by a user should not decrease

as the number of participants increases.

3. Protection from Attacks: MorphMix should provide good protection
from the realistic attackers we have identified in Section 4.3. With good

protection, we mean that MorphMix does not guarantee the anonymity

Code200 Exhibit 1009
Page 117 of 308

5.2 Basic Functionality of MorphMix 97

of every single transaction, but provides very good protection from

long-term profiling. In particular, MorphMix should protect well from

an internal attacker operating parts of the system himself, as this is eas¬

ily possible due to the openness of the system.

4. Performance: MorphMix should be able to deliver adequate end-to-

end performance to its users despite the dynamic and heterogeneous
environment where users that are part of MorphMix may turn off their

computers at any time. Although adequate performance is difficult to

quantify, it should be good enough such that MorphMix users are not

turning away from the system because of its poor performance. In par¬

ticular, the performance as perceived by a user with a good Internet

connection (e.g. DSL with 512 Kb/s) should not be degraded to the

performance of a dial-up connection.

It is important to realise that perfect anonymity is not a design goal of

MorphMix, at least not at this time. In fact, as discussed in Section 4.1, con¬

sidering the asynchronous nature of the Internet and powerful attacks on mix

networks, it is very unlikely that operating a practical mix network that offers

perfect anonymity is possible at all - especially when the mix network aims

at supporting low-latency applications. We have seen that there are cover

traffic schemes that help against certain kinds of external adversaries, but in

particular when aiming at defeating end-to-end traffic analysis, they introduce

significant data overhead. In addition, cover traffic is of little value against an

internal attacker, which we consider as the most serious threat to MorphMix

(see Section 5.4). Consequently, we do not employ any cover traffic mech¬

anism in MorphMix because we believe it is not worth its costs. However,

since MorphMix is essentially a mix network, we state that if more efficient

cover mechanisms that significantly increase the protection mix networks of¬

fer from external observers will be ever developed, they should be easily ap¬

plicable to MorphMix.

5.2 Basic Functionality of MorphMix

MorphMix is basically a circuit-based mix overlay network with many simi¬

larities to static circuit-based mix networks as described in Chapter 2. How¬

ever, it has a few special properties and we therefore give a detailed descrip¬
tion of its basic functionality, following the terminology introduced in Chap¬
ter 2 whenever possible. The MorphMix protocol itself is provided in Ap-

Code200 Exhibit 1009
Page 118 of 308

98 5 MorphMix

pendix A.

5.2.1 Overview

MorphMix is a peer-to-peer-based mix network and consequently, we no

longer distinguish between clients and mixes and simply refer to them as

nodes. Every node joining the system can itself establish circuits via other

nodes to access a server anonymously, but can also be part of circuits estab¬

lished by other nodes and relay data for them at the same time. A node i is

identified with its public IP address ip4. For now, we assume all nodes have

public static IP addresses; we will discuss other cases in Section 5.8.2. To be

contacted by other nodes, a node listens on TCP port pmm„ which is 28080

per default, but which can be changed by the node operator. In addition, each

node has a key pair consisting of a secret (or private) key SK4 and a public

key PKj. This key pair is generated locally when a node is started for the first

time. At any time, MorphMix consists of a set of participating nodes. Nodes

can join and leave the system at any time and must therefore not necessarily

participate in the MorphMix protocol all the time. From now on and un¬

less specified otherwise, we mean a currently participating node when we are

talking about a MorphMix node. We assume that at any time, a node knows

about some other nodes, i.e. their IP addresses, the ports on which the Mor¬

phMix application is listening for incoming connection requests, and their

public keys. Learning about other nodes requires a peer discovery mecha¬

nism, which we will describe in Section 5.7. Figure 5.1 depicts the basic idea

of MorphMix.

Figure 5.1: Basic idea ofMorphMix.

Code200 Exhibit 1009
Page 119 of 308

5.2 Basic Functionality of MorphMix 99

A node that is participating in MorphMix has established a virtual link to

one or more other MorphMix nodes at any time. In MorphMix, a virtual link

means that (1) there is a TCP connection between the two nodes and (2) they
share a symmetric key that is only known to these two nodes. To establish

a virtual link to a node b, node a first establishes a TCP connection with

b by connecting to vpb'-Vmmb- Node a then selects a random bit-string that

serves as the symmetric key for the virtual link. The key is encrypted with 6's

public key and sent to b. Using TCP connections between two nodes implies
that MorphMix is basically operated as illustrated in Figure 2.6(b), which is

reasonable because of the heterogeneity of the nodes (see Section 2.3.4). The

set of nodes to which a node a has currently established virtual links are a's

neighbours. In Figure 5.1, a has five neighbours because it has established

virtual links to five other nodes.

5.2.2 Anonymous Tunnels and Anonymous Connections

Since MorphMix is basically a circuit-based mix network, a node establishes

a circuit via some other nodes to access servers in the Internet anonymously.
In Section 2.3, we have described how a circuit is set up in Onion Routing
to connect to a server. This circuit can then be used to communicate anony¬

mously with the server but if another connection must be established with

the same server or if a different server is contacted, a new circuit must be

established. While this is not a problem with long-standing communication

relationships as used in remote login sessions, it is less well suited for appli¬
cations such as web browsing that frequently establish multiple short-lived

connections in parallel to the same web server. Since setting up circuits in

MorphMix is a relatively expensive operation (see Section 5.5.1), we make

use of a concept we have introduced in the context of the Anonymity Net¬

work (see Section 3.1.2) that allows using the same circuit to have several

communication relationships with a single or different servers. To do so, we

distinguish between anonymous tunnels (often referred to simply as tunnels)

and anonymous connections. Anonymous tunnels correspond to the circuits

as introduced in Section 2.3.

In Figure 5.1, we assume node a has established an anonymous tunnel

via b and c. The first node in a tunnel (a) is the initiator, the last node (c)

is the final node, and the nodes in between (6) are intermediate nodes. The

initiator and the final node are also called the endpoints of a tunnel. The

total number of nodes in a tunnel is the tunnel length and equals three in the

Code200 Exhibit 1009
Page 120 of 308

100 5 MorphMix

example above. If the tunnel length is more than three, there are multiple
intermediate nodes. Note that like in any mix network, the servers that are

contacted anonymously are not part of MorphMix and the tunnel ends at the

final node, not at the server.

Within an anonymous tunnel, anonymous connections can be set up to

anonymously communicate with a server Assuming a client application run¬

ning on a MorphMix node wants to communicate anonymously with a server,

and assuming the node has set up at least one tunnel that is ready to be used,

each TCP connection request issued by the application results in exactly one

anonymous connectionbeing established within an anonymous tunnel, which

results in exactly one TCP connection being established between the final

node in the tunnel and the server. If the client or the server terminates the com¬

munication relationship, the corresponding anonymous connection is also ter¬

minated, but the anonymous tunnel remains established and new anonymous

connections can be set up within this tunnel. The idea of multiple anonymous
connection within a single anonymous tunnel is illustrated in Figure 5.2:

Figure 5.2: Multiple anonymous connections within one anonymous tunnel.

Three client applications C1-C3 (e.g. web browser windows) on the ini¬

tiator's computer communicate anonymously with three server applications

S1-S3 through the same anonymous tunnel. For each of these three com¬

munication relationships (corresponding to a direct TCP connection in the

non-anonymous case), there is one anonymous connection. Note that it does

not matter whether the server applications are located on the same physical

server or not because despite using the same anonymous tunnels, anonymous
connections within the same tunnel are independent from one another. As we

will see below, anonymous connections are only visible at the endpoints of an

anonymous tunnel, i.e. at the initiator and final node. Intermediate nodes only

see the anonymous tunnel and cannot tell how many anonymous connections

there are currently established.

Code200 Exhibit 1009
Page 121 of 308

5 2 Basic Functionality of MorphMix 101

Like static mix networks, MorphMix employs multiple layers ofencryp¬
tions (see Section 2 3) to complicate traffic analysis attacks Consequently,

once the anonymous tunnel from a via b to c has been established, it looks as

illustrated in Figure 5 3

a

ltl£a:

Ktm

^Lab

Figure 5.3: Virtual links and layers ofencryption along an anonymous tun¬

nel

There are virtual links between nodes a and b (VLa6) and b and c (VL6c)

that are communicating directly with each other across TCP connections The

corresponding symmetric keys shared by the two endpoints of each virtual

link are kVp ab and kVp be, respectively In addition, there is one layer of

encryption between the initiator a and each other node (6 and c) along the

tunnel, identified with LEa6 and LEac A layer of encryption between two

nodes means that the two nodes share a symmetric key (kLE ab and kLE ac,

respectively) that is only known to them At first glance, it seems pointless to

have two different shared secret kLE ab and kVp ab between a and 6 How¬

ever, this has to do with the property of MorphMix that b cannot easily tell

that a is the initiator of the tunnel, as will be discussed in more detail in Sec¬

tion 5 3 Note also that like in static mix networks, a virtual link is used to

transport the data of potentially multiple anonymous tunnels that are making

use of this virtual link A layer of encryption, on the other hand is associated

with exactly one anonymous tunnel

5.2.3 Cells and Messages

All data exchanged between two neighbouring nodes are transported within

the payload offixed-length cells A cell consists of a 16-byte header and a

496-byte payload, resulting in a cell length of 512 bytes, and we give argu¬

ments and show simulation results that support this choice in Section 8 3 8

If the length of the data is longer than what fits into the payload of a single

cell, the data are split such that they fit into the payloads of multiple cells

The payload of the last cell is padded with random bits to its fixed length

Code200 Exhibit 1009
Page 122 of 308

102 5 MorphMix

The header of a cell contains an identifier that has only local significance on

a virtual link between two nodes to determine what cells belong to which

anonymous tunnel and to correctly forward the data along its tunnel. If the

cell does not belong to a specific anonymous tunnel and is merely used to

exchange control information between two neighbours, a special identifier is

used (0). The header also contains a type to distinguish different types of

data transported within the cells and a checksum to check the integrity of the

data and to counter replay attacks (see Section A.2.2). To prevent an external

observer from easily identifying what cells exchanged between neighbours

belong to which tunnel, the header is encrypted using the symmetric keys of

the virtual link.

We refer to the data that are exchanged between nodes and transported
within cells as MorphMixprotocol messages, or simply messages. Messages

are either exchanged between two neighbours or between the endpoints of

an anonymous tunnel. In the first case, the messages are directly transported
within the payloads of the cells the message must not be forwarded to an¬

other node. In the second case, we refer to them as end-to-end messages and

the messages are not directly put into the payloads of the cells. Rather, end-

to-end messages are always associated with a specific anonymous connection

and to multiplex the end-to-end messages of multiple anonymous connections

within the anonymous tunnel, a second 16-byte header is used at the begin¬

ning of the cell payload. This second header looks exactly like a cell header

and we also refer to it as anonymous connection header. The identifier in

the anonymous connection header is used to distinguish the data of different

anonymous connections and similar as in the cell header, the identifier (0) is

used to exchange control mformationbetween the endpoints of an anonymous

tunnel.

Since the layers of encryption cover the entire cell payload, they also cov¬

ers the anonymous connection header, and the different anonymous connec¬

tions are therefore not visible for the intermediate nodes. Intermediate nodes

only care about the cell headers to forward the payload (which includes the

anonymous connection header) correctly along an anonymous tunnel.

5.2.4 Anonymous End-to-End Communication

The application data to be anonymised are transported within anonymous

connections. One anonymous TCP connection from the initiator's computer

to a server is mapped onto exactly one anonymous connection. In general,

Code200 Exhibit 1009
Page 123 of 308

5.2 Basic Functionality of MorphMix 103

MorphMix can anonymise any TCP-based application but in its first version,

we focus on web browsing and MorphMix supports HTTP (both versions 1.0

and 1.1) and HTTPS. Since MorphMix works as illustrated in Figure 2.6(a),

client applications access MorphMix through an access program that acts as

a proxy. As we do no longer distinguish between clients and mixes, this

access program is part of the MorphMix software itself and a MorphMix
node listens for anonymous communication requests by client applications

on TCP port papPi, which is 8080 by default, but which can be changed by
the node operator. To communicate anonymously with a server application
identified with ips :ps, the client application connects to port papPi on the lo¬

cal computer and sends ips and ps to the access program. The node then

establishes an anonymous connection within a previously set up anonymous

tunnel by sending an end-to-end message to the final node that contains ip s

and ps. The final node connects to the server and, assuming anything worked

correctly, sends back an end-to-end message to the initiator to indicate the

connection has been established. The initiator itself then notifies the client

application that the connection has been established and application data can

be exchanged between the client and server applications. Once this end-to-

end communication relationship has been established, application data can be

exchanged between client and server application. Figure 5.4 illustrates how

the application data are transported within the anonymous connection along
the anonymous tunnel, and how the forwarding is done using only anonymous
tunnel information.

I 'p, Pci.n,- 'p, p.ppTi—-*on [U*M/}

appli¬
cation

A© encrypt I decrypt A (fi)
-^

withkLeicf y^ ^x withkLE-cT

c*)mm Mwmm \^mmm ^wmm

encrypt
with k.

c

1 r--,
decrypt A r~,

J © with kLE,bT ©

©[Z
I encrypt

T with KjLgl

decrypt

(JJ with K

encrypt

with k,„ . ®

©

^ ES

decrypt
with

©

computer running node a
E,t a7[<-^ c 15

©

Figure 5.4: Anonymous connections and cellforwarding.

Code200 Exhibit 1009
Page 124 of 308

104 5 MorphMix

There exists an anonymous tunnel from a via b to c. We assume that 7 is

the identifier on the virtual link from a to 6 and 15 on the virtual link from

b to c. As explained in Section 2.3, each node along an anonymous tunnel

must know what to do with cells it receives. In our example, this means that

b knows that every cell arriving from a with identifier 7 must be forwarded

to c with identifier 15. The identifier also tells b to use key kLE,ab to remove

the corresponding layer of encryption. Similarly, c knows that cells arriving
from b with identifier 15 have reached their final node and that the layer of

encryption can be removed with kLE,ac- We assume the anonymous connec¬

tion within the anonymous tunnel is identified with identifier 3. Similarly,
the connection from the client application to a is identified with the socket

pair ipa :pchent-ipa '-VaPPi and consequently, a knows that everything arriving
from the connection corresponding to this socket pair must be sent through
the anonymous tunnel using the anonymous connection with identifier 3. Fi¬

nally, the connection between c and the server application is identified with

the socket pair ipc:pc/-ips:ps, which tells c to forward the data it receives

through the anonymous connection identified with identifier 3 must be sent to

the socket identified with this socket pair.

To send application data (AD) from the client to the server, the following

steps are carried out:

1. The client application sends AD to a.

2. Node a chops AD such that each resulting piece (while leaving room

for the anonymous connection header) fits into the payload of one fixed-

length cell. From the MorphMix' protocol point of view, each of these

resulting pieces is an end-to-end message that must be sent from one

endpoint ofthe tunnel (a) to the other (c). InFigure 5.4, we assume that

this results in three pieces and the last piece is padded with random bits

to its maximum length.
3. An anonymous connection header that contains the identifier of the

anonymous connection (3) is prepended to each piece.
4. Each resulting piece of data is encrypted with kLEtac corresponding

to the layer of encryption between a and c and then with kLEtab cor¬

responding to the layer of encryption between a and b. Note that for

simplicity, we illustrate this and also the following cell transport along
the anonymous tunnel for only one piece in Figure 5.4.

5. The resulting data are put into the payload of a fixed-length cell and the

cell header is filled with the correct identifier to identify the cell on the

virtual link between a and b.

Code200 Exhibit 1009
Page 125 of 308

5.2 Basic Functionality of MorphMix 105

6. The cell header is encrypted using key kVL,ab that corresponds to the

virtual link between a and b and the cell is sent to b.

7. Upon receiving the cell, b decrypts the cell header.

8. Node b sees the identifier (7), and knows that the layer of encryption

can be removed from the payload with kLEtab.
9. Node b also knows that the payload must be forwarded to c with iden¬

tifier 15. Consequently, a new cell header is prepended, encrypted with

kpE,bc, and the resulting cell is forwarded to c.

10. Node c decrypts the cell header, sees the identifier 15, knows that the

layer of encryption can be decrypted with kLEtac, and also knows that

the cell has reached its final node.

11. Node c consults the anonymous connection header in the payload, sees

that the identifier is 3 and knows that the rest of the payload (after

removing padding bits) must be sent out on the connection given by
the socket pair ipc :pc-ips :ps.

12. The same is done for all cells c receives and consequently, the server

eventually receives AD. Sending data back from the server to the client

works exactly in the opposite way.

It should be noted that although we have clearly separated setting up the

end-to-end communication relationship from the actual data exchange be¬

tween the client and the server application in the example above for illustra¬

tive reasons, this is not necessary in practice. In fact, the client application

can send the information about the server to contact and the application data

together to the access program, as is done by web browsers when they use

a web proxy. Since this saves one round-trip, MorphMix includes the ap¬

plication data in the request to establish an anonymous connection whenever

possible.

Another important detail is that if the client application does not know ip s

but only the host name ofthe server, the client application must not resolve the

host name itself, as this would easily tell an eavesdropper the server the client

wants to access. Instead, the host name is sent instead of ips to the access

program, which sends it to the final node when setting up an anonymous

connection. Only the final node resolves the host name, which does not leak

any information as the final node will contact the server directly anyway.

Note also that end-to-end messages are not only sent through completely
set up anonymous tunnels like in the example above. During the setup of

anonymous tunnels (see Section 5.5.1), nodes are appended hop by hop to the

tunnel. At any time, the initiator can exchange end-to-end messages with the

Code200 Exhibit 1009
Page 126 of 308

106 5 MorphMix

node that is currently the final node in the tunnel.

5.3 Requirements to Break the Anonymity

In this section, we identify the requirements for an adversary to break the

anonymity ofauser, i.e. to link the initiator and the serverof a communication

relationship.

An advantage of MorphMix compared to static mix networks is that in

the latter, the first mix in a circuit or an eavesdropper observing the cells ex¬

changed on the virtual link between the client and the mix can easily identify
the client because the roles of clients and mixes are clearly separated. In Mor¬

phMix, however, this is not the case because every client is also a mix. This

means that in Figure 5.1,6 cannot be sure if a is the initiator of the tunnel

or if a is just another intermediate node in this tunnel that relays data for yet

another node. The MorphMix protocol guarantees that no such information is

leaked by the content of the messages, neither during the anonymous tunnel

setup nor during the exchange ofapplication data between initiator and server.

This property of MorphMix is often referred to as plausible deniability be¬

cause assuming a user is accused of having contacted a server anonymously,
she can always claim she only relayed the data for another node.

We first analyse the internal attacker controlling a subset of all nodes. Re¬

calling our discussion in Section 4.3.2 about static mix networks, we should

say that the relationship anonymity is broken if the adversary controls the first

intermediate and the final node in the tunnel. This allows the adversary to cor¬

relate the cells exchanged betweenthe initiator and the first intermediate node

and data exchanged between the final node and the server. If sufficient data

are exchanged between initiator and server, this allows the adversary to link

the initiator and the server with high probability. However, due to the plau¬
sible deniability property of MorphMix, the operator of the first intermediate

node cannot be sure that his node is indeed the first intermediate node. In

practice, however, it can be assumed that the number of nodes along anony¬

mous tunnels is reasonably low, e.g. five, and the operator of an intermediate

node should be able to at least guess how many nodes are following in an

anonymous tunnel. For instance, the patterns of cells flowing through a node

when nodes are appended to a tunnel are quite typical (see Figure 5.5) and

an intermediate node can derive with high probability how many nodes are

following in the anonymous tunnel. Assuming most tunnels have a length

Code200 Exhibit 1009
Page 127 of 308

5.3 Requirements to Break the Anonymity 107

of five and an intermediate node recognises by analysing the traffic patterns

that three additional nodes are appended to the tunnel, it can derive with high

probability that it is indeed the first intermediate node. There are additional

ways to guess the position of a node in an anonymous tunnel. Assuming the

adversary controls the final node in a tunnel and knows that he controls an¬

other node in this tunnel, he can measure the time it takes for the fixed-length
cells to travel between the two nodes he controls. This gives him an indica¬

tion about how many other nodes there may be in between. Another property

that can be exploited by an intermediate node is measuring the time it takes

for the initiator to react to data it receives from the server. For instance in the

case of web browsing, embedded objects in a web page are automatically re¬

quested by the browser, which results in quickly sending back data to the web

server once the web browser has received the index file of a web page. If the

measured time between sending cells towards the initiator and receiving cells

from it is small, the intermediate node can conclude with high probability it is

indeed the first intermediate node. We therefore assume that if an adversary
controls the first intermediate and final node in an anonymous tunnel and data

are exchanged between initiator and server through this tunnel, then the ad¬

versary can always break the relationship anonymity and link the initiator and

the server. This is a worst case assumption because everything else is difficult

to quantify. In practice, it may not always be easy for the first intermedi¬

ate node to correctly determine its position in a tunnel with high probability.
In addition, especially if only few data are exchanged between initiator and

server, it may not even possible for the first intermediate and final nodes do

determine that they are part of the same anonymous tunnel. Nevertheless,

assuming there are n nodes in MorphMix, the adversary controls n
c
of them,

and there is at least one intermediate node in every tunnel, the adversary is

able to break the relationship anonymity between initiator and server with a

probability ofpb = (nc/n)2 according to (4.23).

With the external attacker, we distinguish between two cases. In the first

case, the attacker observes the initiator directly, which means he sees all traf¬

fic entering and exiting the node on all virtual links. Since no cover traffic is

employed, this should enable the observer to separate the data that originate or

terminate at this node from the data that are relayed for other nodes. The sec¬

ond case is an observer that only sees the cells on the virtual link between the

initiator and the first intermediate node in a tunnel. Using similar arguments

as for the adversary controlling the first intermediate node above, we can ar¬

gue this observer may be able to derive which cells originate and terminate

Code200 Exhibit 1009
Page 128 of 308

108 5 MorphMix

at the initiator in some cases, although this is significantly more difficult than

for the first intermediate node because the observer cannot easily separate the

data belonging to different circuits. However, again for the reasons that any¬

thing except the worst case is difficult to quantify, we assume an adversary

observing the virtual link between the initiator and the first intermediate node

can always learn which cells originate and terminate at the initiator. Conse¬

quently, and recalling our discussion in Section 4.3.1, we therefore assume an

eavesdropper can always break the relationship anonymity between the ini¬

tiator and the server if he observes the cells on the virtual link between the

initiator and the first intermediate node and the data exchanged between the

final node and the server. Assuming the adversary observes a fraction of 10

of all Internet traffic and assuming the traffic exchanged between nodes in the

mix network and between mixes and servers is similarly distributed across the

Internet as all traffic, the adversary is able to break the relationship anonymity
between initiator and server with a probability ofp b

= t02 according to (4.22).

Interestingly, the probabilities to break the relationship anonymity are the

same as in static mix networks (see 4.3). However, there is an important dif¬

ference in the sense that in static mix networks, the adversary always knows

who the initiator is. Consequently, it can be expected that attacks on static

mix networks are nearly as successful in practice as the formulas indicate.

In the case of MorphMix, on the other hand, there is often the uncertainty
whether the suspected initiator is really the initiator of a tunnel or merely re¬

laying the data for another node because of the plausible deniability property.

Consequently, the probability an adversary manages to break the relationship

anonymity between initiator and server can be expected to be significantly
smaller than in our worst case assumptions. Nevertheless we will use these

worst case assumption as a reference during the remainder of this thesis.

5.4 Threat Model

In this section, we state our threat model. We look at the two most likely
attackers on large mix networks that we have introduced in Section 4.3, the

passive external attacker and the active internal attacker.

Code200 Exhibit 1009
Page 129 of 308

5.4 Threat Model 109

5.4.1 The Passive External Attacker

With MorphMix, we want to provide anonymity for the masses and aim at

a large number of nodes distributed all around the world. According to our

definition of a realistic threat model (see Section 4.3), this makes it is very

unlikely any passive external attacker can observe a significant portion of all

data that are processed by MorphMix nodes. On the other hand, observing

a small portion of the traffic is certainly possible for certain potential adver¬

saries such as ISPs and as discussed in Section 5.3, such an attacker will

occasionally succeed in breaking the relationship anonymity between an ini¬

tiator and a server. However, recalling that even monitoring 10% of all traffic

only allows to link the initiator and the server in 1% of all cases and that one

goal of MorphMix is to provide protection from long-term profiling and not

to guarantee the anonymity of every single transaction, we accept this lim¬

ited vulnerability to the partial external attacker. Increasing the resistance of

MorphMix to this attack depends on the development of efficient cover traffic

mechanisms, which it outside the scope of this thesis.

5.4.2 The Active Internal Attacker

There is no admission control and the first goal in Section 5.1 states that

everybody with a computer connected to the Internet having access to a com¬

puter can easily join the system. As a result, we must assume there are honest

nodes, which are nodes that do not try to break the anonymity of other users

and there are malicious nodes, which collude with other malicious nodes to

break the anonymity of honest users. As mentioned previously, a MorphMix
node is identified with its IP address and is therefore usually associated with a

single computer. Consequently, we assume honest users typically run exactly

one node on their own computer.

An adversary that possesses several IP addresses can run several mali¬

cious nodes. However, it is not necessarily required for the adversary to oper¬

ate a dedicated physical computer for each node. In particular, ifan adversary

owns a contiguous range of IP addresses, he can operate multiple nodes on a

single computerby using special software (e.g. Linux-VServerl) that allows a

computerwith a single network interface to have multiple IP addresses. There

are additional possibilities for an adversary that owns many IP addresses to

operate many nodes using only a few physical computers. An access ISP, for

http ://www.13thfloor.at/vserver/pro]ect

Code200 Exhibit 1009
Page 130 of 308

110 5 MorphMix

instance, could run a node for each of its IP addresses it currently has not as¬

signed to its customers. One place to do so could be at the border gateway(s)

to the access ISP's backbone provider(s) where all data entering and exiting
the access ISP's network must pass. In general,we do not claim that operat¬

ing many nodes is a trivial task for an adversary that owns a range of n IP

addresses, but we must not argue that it is as complicated or as expensive as

running n different physical computers. Consequently, we assume it is feasi¬

ble for an adversary to run as many nodes as he owns IP addresses. In the case

of a class B network, this would allow the adversary to operate 65533 Mor¬

phMix nodes. Even if there were 100000 honest nodes in MorphMix, such

an attacker could relatively easily control nearly 40% of all nodes. According
to our discussion in Section 5.3 and assuming the nodes along an anonymous
tunnel are picked randomly, this would allow him to break the relationship

anonymity in 16% (because 0.42 = 0.16) of all cases. This is a serious and

very realistic threat to MorphMix users.

So it is quite easy for certain adversary such as ISPs or large institutions

in general to run very many MorphMix nodes. To defend against such an

adversary, we must first understand how IP addresses are assigned. For now,

we focus on IP version 4 (IPv4); the influence of IP version 6 (IPv6) will be

discussed in Section 5.9. Although the traditional notion of class A, B, and

C networks has been blurred due to subnetting [78] and classless interdomain

routing (CIDR) [96], it is still the case that usually contiguous ranges of IP

addresses are under a single administrative control. Consequently, although
it is easy for an adversary that possesses many IP addresses to run many

nodes, all of them are "similar" in the sense they usually all have the same

IP address prefix, i.e. the first few bits of the different IP addresses are equal.

Using again the example above with 100000 honest nodes, we can assume

these nodes have IP addresses with 1000s of different 16-bit prefixes. The

adversary owning an entire class B network can still operate 65533 nodes,

and looking at the complete IP addresses of all 165533 nodes present in this

system, he controls about 40% of all. But if we only look at the 16-bit prefix
ofthe IP addresses, the adversary "controls" only one out of 1000s ofdifferent

16-bit prefixes.

This assumption of the similarity of IP addresses of the malicious nodes

controlled by the adversary is the key to deal with the problem of defend¬

ing against an internal attacker. We say that all IP addresses with the same

16-bit IP address prefix are in the same /16 subnet. There are exactly 56559

public /16 subnets in the Internet: the unicast address range between 1.0.0.0

Code200 Exhibit 1009
Page 131 of 308

5.4 Threat Model 111

and 223.255.255.255 corresponds to 57088 different /16 subnets, but 256 of

them are assigned for local addresses (127.0.0.0 - 127.255.255.255) and 273

are reserved by the three private address ranges (10.0.0.0 - 10.255.255.255,

172.16.0.0- 172.31.255.255, and 192.168.0.0- 192.168.255.255). Follow¬

ing our discussion above, we conclude that while it is easy for an adversary

running many nodes, it is much more difficult for him to control nodes in a

significant portion of all 56559 /16 subnets. An adversary owning a class B

network controls nodes in only one of 56559 possible /16 subnets. Even an

adversary owning an entire class A network, which corresponds to the largest
address ranges that were assigned to single institutions2, can only run nodes

in 256 different /16 subnets, which is less than 0.5% of all public /16 subnets.

Consequently, all three core components of MorphMix we will present in

Sections 5.5-5.7, which includes the anonymous tunnels setup protocol, the

collusion detection mechanism, and the peer discovery mechanism, do not

operate on the whole IP address of a node, but only on its 16-bit IP address

prefix. Although we will describe this in much more detail later in this chap¬

ter, the basic idea is that from the point of view of the collusion detection

mechanism and the peer discovery mechanism, all nodes in the same /16 sub¬

net are equal. So for an adversary to be effective, he must not only control

many nodes, but he must control nodes in a wide variety of/16 subnets. Note

that the choice of a 16-bit prefix is a compromise between making it difficult

for an adversary to run nodes in a significant portion of all subnets (see be¬

low) and keeping the overhead of the collusion detection mechanism and the

peer discovery mechanism within reasonable limits (see Section 5.8).

We have seen that an adversary won't manage to control nodes in very

many different /16 subnet if he runs them only in the subnets he owns. An¬

other strategy for the adversary is to operate nodes also in/16 subnets he does

not own. Acquiring IP addresses under his own name in a wide variety of/16

subnets could soon become suspicious. So instead of acquiring IP addresses

under his own name, the adversary could provide private persons with the nec¬

essary equipment to operate nodes at their homes and pay them, for instance,

1000 US$ a year in addition. Assuming the infrastructure (a decent network

connectivity and a PC) costs 4000 US$ a year per node, there are yearly costs

of 5000 US$ per node. Convincing 1000 people to run 1000 nodes in 1000

different /16 subnets would therefore cost five million US$ per year. This is

certainly not a barrier for certain well-funded organisations that would like to

2http://www.iana.org/assignments/ipv4-address- space

Code200 Exhibit 1009
Page 132 of 308

112 5 MorphMix

break the anonymity of the MorphMix users. To do so, the adversary would

somehow have to advertise that he is looking for users operating nodes for

him, which again could eventually become suspicious. In any case, even if

the adversary does not care if he is detected, getting control over 1000s of

nodes in as many different /16 subnets either by operating them himself or by

private persons he provides with money and equipment is very difficult.

We say that an adversary controls a fraction between 0 and 1 of a /16

subnet depending on the ratio of malicious nodes to all nodes in this subnet.

If a subnet contains only malicious nodes, the adversary controls a fraction

of 1 of the subnet, and we also say he has full control of the subnet. If it

does contain only honest nodes, the adversary controls a fraction of 0 of the

subnet, and we also say he has no control of the subnet. If it contains both

honest and malicious nodes, the adversary controls any fraction greater than

0 and smaller than 1. With ns nodes in a /16 subnet s where nh<s are honest

and nms are malicious, the fraction /cs the adversary controls is given with

fc,s = nm,s/ns- There is one difference for the adversary between owning

a subnet and running a node in a subnet he does not possess: In the first

case, he can operate as many nodes as there are IP addresses available, and he

can force /CjS of this subnet close to 1 even if there are a few honest nodes.

Another option is to simply block all MorphMix traffic from and to the honest

nodes. Conversely, if the adversary runs nodes either by himself or by private

persons in subnets he does not own, /cs is often smaller than 1 if there are

also honest nodes in the subnet. The reason is that the adversary controls only

one or a small range of IP addresses and cannot run as many nodes as he likes.

5.4.3 Summary

We summarise the threat model based on the discussion in this Section. We

do not consider the external observer as a significant threat because like in

any large mix network distributed all over the world, it is unlikely such an

adversary can observe a significant portion of MorphMix.

Since it is easy for an adversary owning a range of IP addresses to operate

many node, we consider the internal attacker a much more serious threat. To

reduce the potential impact from such an adversary, the core components of

MorphMix do not operate on the whole IP address of a node, but only on its

16-bit IP address prefix. This is based on the assumption the adversary can

operate nodes in a limited number of/16 subnets. He either owns the subnets

and has full controls of them, but we do not assume it is realistic a single

Code200 Exhibit 1009
Page 133 of 308

5.5 Establishing Anonymous Tunnels 113

adversary will ever own more than 1000 /16 subnets, which corresponds to

about four class A networks or 1000 class B networks. Even the largest ISPs

do not control addresses in so many /16 subnets, which can be seen by query¬

ing the whois servers of the Regional Internet Registries such as RIPE NCC3

or ARIN4. The other option for the adversary is to run nodes in subnets he

does not possess, either by himself or by private persons. Usually, he controls

a fraction that is smaller than 1 in these subnets because there are also honest

nodes present. Again, running nodes in several 1000 subnets is very difficult,

in particular if the adversary wants to avoid that his activities to break the

anonymity of the users of MorphMix become public. We also assume that

malicious nodes can mark every cell they exchange with their neighbours and

all application data they exchange with servers with a precise timestamp and

send all relevant data (at least the IP addresses, ports, length of the application

data, and the timestamp) to a centralised place where the traffic handled by
different malicious nodes can be correlated to break tunnels as discussed in

Section 5.3.

5.5 Establishing Anonymous Tunnels

In this section, we present and analyse the protocol to set up anonymous

tunnels, which is the first major component of MorphMix. We first describe

how anonymous tunnels are set up and analyse the procedure. Then we talk

about the policy about how virtual links to neighbours should be used and

why MorphMix provides incentive to relay the data of other nodes.

5.5.1 Anonymous Tunnel Setup

As we will see below, setting up an anonymous tunnel is a relatively com¬

plex process that usually takes several seconds to complete. In addition, as

we will see in Section 5.6 when presenting the collusion detection mecha¬

nism, some tunnels will be rejected by the initiator and not used to contact a

server Consequently, anonymous tunnels are not established on demand to

contact a server anonymously, because this would take too long until a tunnel

were ready with high probability. Rather, setting up anonymous tunnels is a

background process in the sense that at any time, there should be a few of

3whois.ripe.net
4whois.arin.net

Code200 Exhibit 1009
Page 134 of 308

114 5 MorphMix

them ready to be used. In Chapter 8 when we analyse the performance of

MorphMix based on a simulator, we assume that a node has established five

tunnels at any time. The reason for having multiple tunnels ready at any time

is to quickly be able to switch to another tunnel in case one of them fails or

offers poor performance. In addition, anonymous tunnels are only used for a

limited time. We use the policy that anonymous connection may only be es¬

tablished within ten minutes after a tunnel has been set up. Note that after ten

minutes, a tunnel is not simply torn down but stays alive until all anonymous

connections within this tunnel have been terminated. There are two main rea¬

sons for this policy. The first is that the correct functioning of the collusion

detection mechanism and the peer discovery mechanism rely on frequently

setting up anonymous tunnels. The second is based on the observation that

the more data that are exchanged through an anonymous tunnel, the higher
the probability an adversary can break the anonymity in practice if he indeed

controls the first intermediate and the final node in a tunnel or eavesdrops on

the virtual link between initiator and the first intermediate node and on the

route between the final node and the server (see Section 5.3). Consequently,

limiting the time an anonymous tunnel can be used limits the amount of data

that can be exchanged through this tunnel, which complicates the task for the

adversary to break the anonymity. With five tunnels that can be used at any

time and a lifetime often minutes per tunnel, this results in setting up a tunnel

every two minutes on average.

An important design decision we made during the development of Mor¬

phMix is that an anonymous tunnel is set up hop-by-hop in the sense that

the initiator picks the first intermediate node and establishes the layer of en¬

cryption with it. Then the initiator tells the first intermediate node to append
another node to the tunnel and establishes the layer of encryptionwith the sec¬

ond intermediate node. This continues until the initiator decides the tunnel is

long enough. The key is that the initiator selects only the first intermediate

node and each node along the anonymous tunnel then picks the following
node.

This has one big advantage: at any time, a node a only needs to have a

few neighbours that it can append to anonymous tunnels if a is requested to

do so. In addition, a can communicate with its neighbours over the virtual

links it has established to them to learn which of them have spare resources

and are willing to be appended to an anonymous tunnels. Conversely, assume

the initiator would select all nodes of an anonymous tunnel itself. Except for

the first intermediate node, it would have no idea about the current status of

Code200 Exhibit 1009
Page 135 of 308

5.5 Establishing Anonymous Tunnels 115

the other nodes, e.g. whether they are still participating in MorphMix, and if

yes, whether they are actually willing to accept further anonymous tunnels.

For such a system to work efficiently, a lookup service would be required.
The lookup service could be queried to get nodes that are currently willing
to accept anonymous tunnels. Considering MorphMix is supposed to scale

up to millions of nodes, a centralised lookup service that keeps track of the

nodes that are currently participating in MorphMix is out of the question.
An alternative are distributed scalable peer-to-peer lookup services such as

Chord [120] where (a subset of) the MorphMix nodes themselves organise
the Chord Ring to provide information about all participating nodes. How¬

ever, the frequent joins and leaves of nodes and the continuously changing
state of each node would generate a lot of traffic to keep the Chord Ring
itself intact and to keep the information provided by the lookup service up-to-

date. Letting each node select the next hop makes MorphMix highly scalable

because independent of the system size, a node only has to manage its lo¬

cal environment and therefore only cares about a relatively small number of

other nodes at any time. Of course, MorphMix nodes still need a way to learn

about potential neighbours, but the peer discovery mechanism we employ

(see Section 5.7) is especially tailored to meet the needs of MorphMix and is

much simpler than a lookup service that continuously tries to keep track of

the nodes that are currently participating in MorphMix.

However, there is also one major problem with this design decision. Ac¬

cording to Section 5.3, we assume an adversary controlling a subset of all

nodes can break the relationship anonymity if he controls both the first inter¬

mediate and the final node in a tunnel. If an initiator picks a first intermediate

node that is controlled by the adversary, it can be therefore expected that the

first intermediate node picks another node controlled by the adversary as the

next hop and so on to make sure that the adversary controls both the first

intermediate and the final node. Using this strategy, assuming there are n

nodes, and nc of them are controlled by the adversary, the adversary man¬

ages to break the relationship anonymity between initiator and server with

a probability of pb = nc/n. If the initiator would pick all nodes along the

tunnel randomly, the probability of success for the adversary would only be

Pb = (nc/n)2. Note that is a significant difference. Assuming the adver¬

sary controls 10% of all nods, he only succeeds in breaking the relationship

anonymity in 1% of all cases if the initiator picks all nodes in the tunnel.

But if every node along the tunnel picks the following node, he can expect

to break the relationship anonymity in 10% of all cases. So by letting each

Code200 Exhibit 1009
Page 136 of 308

116 5 MorphMix

node along a tunnel select the following node, we have actually significantly
increased the chances for the adversary to break the anonymity of MorphMix

users. To deal with this problem, we require that the node that selects the

following node in a tunnel must first select multiple possible next hop nodes

from the set of its own neighbours and offer these nodes in a selection to the

initiator. The initiator simply picks one of them randomly and the node is

appended to the tunnel. This alone does not prevent the attack above because

a malicious node can simply offer exclusively malicious nodes in the selec¬

tion, but this selection can be used by the collusion detection mechanism (see

Section 5.6) to detect malicious nodes in tunnels with high probability.

Following the discussion above, setting up an anonymous means adding
nodes hop-by-hop. The main goal when adding a node c is to establish a sym¬

metric key for the layer of encryption (see Figure 5.3) between the initiator

and c that is only known to the initiator and c. Except for the first intermedi¬

ate node, the initiator does not know the nodes that will be added hop-by-hop

along a tunnel as it is set up. Consequently, the initiator does also not know

the public keys of these nodes beforehand and we therefore use the Diffie-

Hellman (DH) key-exchange algorithm [34]. If the initiator simply sent its

half5 of the DH key-exchange to node 6 responsible for selecting the next hop

c, b could easily play the role of c (and of other nodes following c) itself with¬

out the initiator noticing this. To counter this attack, we must not allow b to

see the initiator's half ofthe DH key-exchange in the clear. To solve this prob¬

lem, we introduce the notion of a witness. For each hop, the initiator selects

a witness randomly from the nodes it currently knows (see Section 5.7). The

witness' task is to act as a third party in the process of establishing a sym¬

metric key between the initiator and the newly appended node. Figure 5.5

illustrates the principal procedure to append a node to an anonymous tunnel

and to establish the layer of encryption, {d} PK% denotes the encryption of

data d with the public key PK4 of node i, and {d}sKz denotes the signature

(including the signed data) on data d with the secret key SK4 of node i. Fig¬

ure 5.5 only illustrates the most important fields in the protocol messages. In

Appendix A, we will describe the whole MorphMix protocol in much more

detail.

Node a is the initiator. We assume the tunnel has already been set up to

node b (via zero or more intermediate nodes). In addition, b has currently
three virtual links established with nodes c, d, and e that are willing to accept

5
One half of the DH key exchange corresponds to (f where g is the publicly known group

element and x the secretly chosen exponent

Code200 Exhibit 1009
Page 137 of 308

5.5 Establishing Anonymous Tunnels 117

{'Pc Pmmo PuKc {DHaWc},

{'Pb 'PcW DHc

Figure 5.5: Appending a node to a tunnel and establishing the layer ofen¬

cryption.

further anonymous tunnels. To append a new node to the tunnel, all messages

exchanged between the initiator and the currently final node 6 (messages 1,

2, 3, and 10 in Figure 5.5) are transported within the tunnel that has been set

up so far and are therefore end-to-end messages identified with the special

anonymous connection identifier (0) for control data (see Section 5.2.3). All

the other messages are directly exchanged between neighbours using the con¬

trol data identifier (0) in the cell header. To append a node to a tunnel and to

establish the layer of encryption with this node, the following messages are

exchanged:

1. a sends a message to b that tells b to append another node to the tunnel.

The message contains nsei, which is the number of nodes b has to offer

to a in message 2. Here, we assume nsei = 3.

2. b receives the message and selects nsei = 3 potential next hop nodes

(c, d, and e) among its neighbours. It sends a message back to a that

contains the IP addresses (ipc, ip^, and ipe), ports (p„ and

pmmJ, and public keys (PKC, PKd, and PKe) ofthe three potential next

hop nodes. We name the list of IP addresses offered by b the selection

from b.

a receives the message and randomly picks one node from the selection

from b as the next hop. Here, we assume c is selected. Then a picks a

witness w randomly from the set of nodes it currently knows, generates

its half DHa of a DH key-exchange, encrypts it for c with PKC, and

Code200 Exhibit 1009
Page 138 of 308

118 5 MorphMix

encrypts the resulting data together with ipc, pmmo, and PKC using w's

public key PK«,. This results in in {ipc, pmmo, PKC, {DUa}PKci}pKvj,
which is put into a message together with the witness' IP address ipw,
the port pmmra onwhich it accepts connections, and its public key PK„,,

and is sent to 6.

4. b receives the message, establishes a virtual link to w using ip„,, pmmra,
and PK«, and forwards the encrypted data.

5. w receives the message, decrypts the encrypted data to get ipc, pmmo,

PKC and {DHa}pKc, and establishes a virtual link to c using ipc, pmmc,
and PKC. w generates a message consisting of ipb and {DHa}pKc and

sends it to c.

6. c gets the message and checks if it is indeed willing to accept an anony¬

mous tunnel from b. If yes, c decrypts DHa, and sends a message back

to w telling it that everything is OK. In addition, c builds its own half

DHC of the key-exchange and uses DHa to compute the key kLEtac for

the layer of encryption between a and c.

7. w receives the message and generates the receipt for a. The receipt
contains the IP addresses of b and c and is signed by w using SK«.

8. b receives the message from w and learns that w has selected c as the

next hop. It generates a message containing the identifier ID to be used

to identify data belonging to this anonymous tunnel on the virtual link

between 6 and c and sends it to c.

9. c gets the message and sends its halfDHC ofthe DH key-exchange back

to 6.

10. b generates a message consisting of DHC and the receipt from w and

sends it to a. Upon receiving this message, a checks if the receipt
is indeed signed by w and if it contains 6's and c's IP addresses, a

then uses DHC to compute the key kLEtac for the layer of encryption
between a and c.

There are two important points to notice about the procedure to append a

node to a tunnel. The first is making sure that b does not learn a's half of the

DH key-exchange as this would easily enable 6 to simulate all remaining hops

by itself. This is achieved by encryptingDH a
first for c and then for w, which

guarantees DHa is never seen in the clear except at c. In particular, b never

sees DHa in non-encrypted form. The second is preventing b from selecting
the next hop purely by itself. This is achieved by having b offering a selection

of possible next hops to a and a selecting one of them. This guarantees that

b cannot predict which of the nodes in the selection is going to be picked as

Code200 Exhibit 1009
Page 139 of 308

5.5 Establishing Anonymous Tunnels 119

the next hop and makes it much more complicated for b to determine the next

hop. In particular, if b wants to make sure that c is in the same set of colluding
nodes as itself, then all nodes in the selection from 6 must be in that collusion.

Note that when appending the first intermediate node, a and b in Fig¬
ure 5.5 are "the same node" because a itself appends the first intermediate

node. Consequently, a simply picks the first intermediate node from its neigh¬
bours and only messages 4-9 must be used. However, from the point of view

of ofthe witness or the node c that is appended, appending a node always con¬

sists of using messages 4-9. As a result, they cannot distinguish appending
the first intermediate node from appending any other node by analysing the

content of the messages, which confirms the plausible deniability property of

MorphMix (see Section 5.3).

5.5.2 Analysis of the Anonymous Tunnel Setup

We analyse the security of the anonymous tunnel setup. We are interested in

the possibilities an adversary has to either learn the key exchanged between

the initiator and the newly appended node, to simulate the next hop himself, or

to make sure the node that is appendedby a malicious node is also malicious.

We use Figure 5.5 as the reference for the analysis.

Case 1: 6 is malicious Let's assume w is honest but 6 is malicious and no

further nodes are collaborating with 6. The goal of 6 is to break the layer of

encryption that will be set up between a and c to read the data exchanged
between them. To do so, b can try to simulate c itself by carrying out the

following steps:

1. In message 2, 6 replaces the public keys corresponding to the IP ad¬

dresses with self-generated versions it knows the secret keys of. The IP

addresses can be those of nodes participating in MorphMix, but this is

not required.
2. b intercepts the data sent from w to c to set up the virtual link and acts

as c itself. This allows b to decryptDHa in message 5 because it knows

the corresponding secret key.
3. b generates the OK message for c and sends it to w in message 6 to get

the receipt from w in message 7.

4. b generates c's half ofthe DH key-exchange and inserts it in message 8.

Code200 Exhibit 1009
Page 140 of 308

120 5 MorphMix

The main difficulty for b is getting active control on the virtual link be¬

tween w and c with the capability to intercept and inject data. Since 6 cannot

predict which witness a is going to choose, b cannot prepare itself in advance

and it is difficult to intercept data close to w. It seems more realistic for 6 to

intercept data close to c, especially as it is 6 that selects the list of nodes in

message 2. To make the attack as complicated as possible, we require that

all IP addresses offered by 6 and 6's own IP address must be in different /16

subnets. This does not prevent the attack, but makes it much more difficult

because it introduces a greater diversity of the physical paths of the possible
virtual links between w and c, and b needs active control over all of them to

make sure the attack can be carried out successfully. Nevertheless, even ifwe

assume the adversary has indeed managed to simulate the next hop itself, it

gets even more difficult for him if the initiator requests to append yet another

node to the tunnel. The problem for the adversary is that when appending this

additional hop, the receipt generated by the witness contains 6's IP address.

Since the initiator expects c's IP address in the receipt, the initiator notices

the attack and does not use the tunnel. The only way to avoid detection is if

all witnesses to set up further steps are colluding with 6, as will be discussed

in case 2.

To avoid these problems, b can carry out a man-in-the-middle attack using
the following steps:

1. In message 2, 6 replaces the public keys corresponding to the IP ad¬

dresses with self-generated versions it knows the secret keys of. This

time, the IP addresses must be those of nodes that are currently partic¬

ipating in MorphMix.
2. b intercepts the data sent from w to c to set up the virtual link and

performs a man-in-the middle attack on the key exchange to generate

the symmetric key for this virtual link.

3. b decrypts DHa in message 5, replaces a's half of the DH key-exchange
with a self-generated version DHa' and includes it in message 6. The

protocol then continues normally until b has received message 9.

4. Before sending message 10 to a, b replaces c's half DHC of the DH

key-exchange with an own version, DH c
'.

Node b has now broken the layer of encryptionbetween a and c because it

has split it into two parts: between a to b, the data is encrypted using keys gen¬

erated from DHa and DHC', whereas between b and c, it uses keys generated
from DHa

'

and DHC. In contrast to the case where b simulates the next hop b

by itself, the initiator will not detect the attack if another hop is appended be-

Code200 Exhibit 1009
Page 141 of 308

5.5 Establishing Anonymous Tunnels 121

cause the receipt will contain the correct IP addresses. However, controlling
further nodes or breaking additional layers of encryption is very difficult for

b because setting up the next hop will be handled by c and the IP addresses

in the selection are no longer offered by 6. Note that the IP addresses in the

selection offered by c to a could be replaced by 6 since it has broken the layer
of encryption between a and c. But the receipt from the witness will uncover

this attack because c detects that the IP address of the newly appended node

was not in the selection it offered to the initiator.

Only a very powerful attacker having active control over significant parts
of the Internet could be able to carry out both these attacks. Following our

discussion in Section 4.3.1, such an attacker is extremely unlikely to exist.

Case 2: 6 and w are malicious and colluding In this case, 6 attacks in the

same way as above to simulate the next hop itself. Since 6 and w collude, 6

trivially has active control on the virtual link between w and c. As discussed

above, this attack will be detected when the next hop is appended unless the

next witness is also colluding with b. So the attack only succeeds if all re¬

maining witnesses collude with b. In addition, b only learns about w after it

has offered the selection to a. Consequently, all 6 can do is to include fake

public keys in the selection and "hope" the initiator selects a malicious wit¬

ness. In general, if the percentage of malicious nodes is relatively large and

only a few nodes (e.g. one or two) nodes are appended after 6, the attack may

be successful with significant probability. Since the attack does not require
active control over virtual links, we will analyse its impact in Section 6.3.

Malicious witnesses can also help if they are following later in the tunnel.

If b has managed to simulate the next hop by itself or has broken a layer of

encryption according to case 1 and an additional hop needs to be appended,

a malicious witness can produce an appropriate receipt to please the initiator.

Still, this does not make the attack significantly easier because 6 still needs

active control over several virtual links and the probability all following wit¬

nesses are colluding with b is very small unless the percentage of malicious

nodes is relatively large. In the latter case, the attack described in case 3 is

much more likely.

Case 3: 6 is part of a set of cooperating malicious nodes If we assume

that b is not alone but is part of a larger set of cooperating malicious nodes,

then b can simply list a subset of these malicious nodes in message 2 and it is

Code200 Exhibit 1009
Page 142 of 308

122 5 MorphMix

guaranteed that the next hop is also part of the cooperating set. As we have

required that the IP addresses must all be in different /16 subnets, the ma¬

licious nodes must reside in different subnets, which makes the attack more

difficult according to our threat model (see Section 5.4). Nevertheless, if an

adversary manages to control several nodes located in different /16 subnets,

then this attack is quite easy to carry out.

Summarising the attacks discussed in this section, we conclude that the

most realistic attack is the one where a set of cooperating malicious nodes

tries to learn more about anonymous end-to-end connections (case 3). To

defend against this attack, we introduce a collusion detection mechanism in

Section 5.6. The first attack (case 1) requires active control over several vir¬

tual links and is therefore much harder to carry out. The second attack (case

2) does not require active control over virtual links, but we will show in Sec¬

tion 6.3 that it is not more successful than the attack described in case 3.

5.5.3 Policy For Using the Virtual Links to Neighbours

Basically, the virtual links to neighbours are bidirectional which means that

although a has initiated the connection to b to establish a virtual link, it can

be used by both endpoints to advertise the other node in selections. Similarly,

a can pick b as its first intermediate node in a tunnel and vice versa. However,

such a policy makes an attack possible where the adversary has several of

the nodes he controls establish virtual links to an honest node a such that a

ends up with many malicious neighbours. The first consequence is that the

probability a picks a malicious node as the first intermediate node in one of its

tunnels is significantly higher than in the average case. Since controlling the

first intermediate node is a necessary requirement for the adversary to break

the anonymity, this would significantly increase his chances. To avoid this

problem, a should pick the first intermediate node only among those nodes to

which a has established the virtual link itself. The second consequence is that

if a should append the next hop to a tunnel of another node, it will offer many

malicious nodes in the selection it sends back to the initiator in message 2

of Figure 5.5. Assuming malicious nodes offer mainly other malicious nodes

in their selections, this implies the selection of this honest node looks very

similar to one of a malicious node. However, this second consequence is not

a big problem because if there are too many malicious nodes in the selection,

the initiator will detect this with high probability and reject the tunnel (see

Section 5.6.3). Nevertheless, we will use the policy that a node only uses

Code200 Exhibit 1009
Page 143 of 308

5.6 Collusion Detection Mechanism 123

those nodes as first intermediate nodes or in selections it offers to which it

has established virtual link itself.

5.5.4 Why Relaying Data for Other Nodes is Good

Many peer-to-peer systems suffer from the "free rider" problem [39]. Espe¬

cially in popular file-sharing systems, most users only consume but do not

provide the files they downloaded to others. The main problem is that there is

no real incentive to offer content to others because everything is for free and

the systems seem to work well enough even ifmost users are free riders. Solv¬

ing the free rider problem by technical means is very difficult and proposals
to do so include micropayments and reputation systems, both of which have

been discussed in the context of the Free Haven project (see Section 3.3.4).

MorphMix suffers from the same problem. Nodes can simply choose not

to relay data of others by never accepting virtual links being established to

them. This poses a problem because assuming that, say, only 10% of all

nodes are relaying data of others, the load on them could get quite high and

the performance may suffer. However, the advantage ofMorphMix compared
to other peer-to-peer systems is that MorphMix provides an incentive to relay
the data of others. This has to do with the plausible deniability property of

MorphMix (see Section 5.3). Recalling our discussion about the requirements
for an attacker to break the relationship anonymity between an initiator and

a server, we concluded that it is not always trivial for the adversary to learn

whether the initiator of a tunnel is really the initiator of a tunnel or merely

relaying the data for another node. However, if a node a is a free rider, an

adversary (or in general any other node) can learn about this by trying to

establish virtual links to a. If this always fails or if a never accepts relaying

tunnels, it can be concluded with very high probability that all data sent or

received by a belong to tunnels of which a is the initiator. We therefore

conclude a node increases his protection from attacks by relaying data for

other nodes.

5.6 Collusion Detection Mechanism

In this section, we present the collusion detection mechanism, which is the

second major component ofMorphMix. We first describe its principal idea by

describing the concept of the correlation and the correlation distribution and

Code200 Exhibit 1009
Page 144 of 308

124 5 MorphMix

give a proof of concept. Then we discuss the dependence of the mechanism

of different parameters and provide reasonable values for them. Finally, we

examine how a node can make use of the correlation distribution to detect

anonymous tunnels that contain many malicious nodes with high probability.

5.6.1 Correlation and Correlation Distribution

The collusion detection mechanism makes use of the fact that if a colluding
set of malicious nodes want to control many nodes in an anonymous tunnel,

they have to offer many or only malicious nodes in their selections. Corre¬

sponding to honest nodes, we name the selections they offer honest selections

and the selections from malicious nodes malicious selections. Note that the

initiator always learns which node has offered what selection by inspecting
the messages during the anonymous tunnel setup (see messages 2 and 10 in

Figure 5.5).

We identify the combination of a selection and the node that has offered

the selection with extended selection (ES). Like with selections, we distin¬

guish between honest extended selections and malicious extended selections

depending on whether the selection has been offered by an honest or mali¬

cious node. A node remembers the extended selections it has accumulated

during the setup of anonymous tunnels in a extended selections list L es-

An extended selection does not contain IP addresses, but the correspond¬

ing 16-bit IP address prefixes. If prefix i6(ip) gives the 16-bit IP address pre¬

fix of an IP address ip and if node 6 has offered the selection {ip c, ipd, ipe},
the resulting extended selection is {prefixi6(ipb), prefixi6(ipc), prefixi6(ipd),

prefixi6(ipe)}.
For each new extended selection, a node computes the correlation by

comparing it to all extended selections stored in the extended selections list

LES. The idea bases on the assumption that honest nodes pick the nodes they
offer in their selections more or less randomly from the set of all nodes. Con¬

sequently, there is no subset of nodes that appear more frequently together in

honest extended selections than others, which should result in a small com¬

puted correlation of the nodes in a honest extended selection. Conversely,
since malicious nodes are expected to offer mainly other malicious nodes in

their selections, malicious nodes tend to show up together in extended selec¬

tions, i.e. there is a stronger correlation among them. Consequently, a mali¬

cious extended selection should result in a larger computed correlation than

an extended selection that contains nodes that are more randomly selected

Code200 Exhibit 1009
Page 145 of 308

5.6 Collusion Detection Mechanism 125

from all MorphMix nodes. The correlation of a new extended selection is

computed according to Algorithm 1:

Algorithm 1 Computing the correlation ofa new extended selection

1. BuildasetES^ consisting ofthe 16-bitIP address prefixes ofthe nodes

in the new extended selection.

2. Define a result setESr which is empty atfirst.
3. Compare each extended selection ESp in the extended selections list

LEs with ESn. IfES'n and ESp have at least one element in common,

add the elements ofESp to ESr.

4. Count each occurrence ofelements that appear more than once in ES r

and store the result in m.

5. Count the number ofelements that appear only once in ESr and store

the result in u.

6. Compute the correlation c which is defined as c = — ifu > 0, or oo

otherwise.

We argue that based on the assumption that honest nodes offer nodes from

a wide variety of all /16 subnets that contain MorphMix nodes, this correla¬

tion is in general large if the new extended selection contains many or only

colluding malicious nodes and small otherwise. The reasons are that mali¬

cious nodes (1) select other malicious nodes with high probability and (2) are

selected by other malicious nodes with high probability. This follows from

our assumption that attacks by a cooperating malicious set of nodes are most

likely. Similarly, honest nodes (3) pick nodes for the selections they offer

from the set of all other nodes and (4) are picked by all other honest nodes.

In step 3 of Algorithm 1, we want to find out what the nodes in the same /16

subnets as those in the new extended selection have done before, i.e. in what

extended selections they have appeared before. Therefore, we collect all el¬

ements of those extended selections in LES that contain at least one element

of the new extended selection in a set ESr. Recalling our threat model (see

Section 5.4) where we stated that any adversary can only control nodes in a

limited number of all public /16 subnets, assuming that there are honest nodes

in a much larger number of /16 subnets, and for reasons (1-4) given above,

we can state the following properties about the set ES r.

1. If the new extended selection ES at mainly consists of the /16 subnets

of malicious nodes, ESa will contain /16 subnets from only a small

fraction of all public /16 subnets that contain MorphMix nodes. In

Code200 Exhibit 1009
Page 146 of 308

126 5 MorphMix

addition, most of the /16 subnets in ESr are present several times in

the set. According to Algorithm 1, this implies a large m and a small

u, and since c = m/u, the resulting c is large.
2. If the new extended selection ES at mainly consists of the /16 subnets

of honest nodes, ESr will contain /16 subnets from a large fraction of

all public /16 subnets that contain MorphMix nodes. In addition, most

of the /16 subnets in ESr are present once or only a few times in the

set. According to Algorithm 1, this implies a small m and a large u,

and since c = m/u, the resulting c is small.

Simply counting how many times the /16 subnets in ES at show up in

LES does not work. Although subnets with malicious nodes may show up

in extended selections more frequently on average because malicious nodes

offer many or only other malicious nodes in their selections, many /16 subnets

consisting of only honest nodes will also show up frequently, either because

there are many nodes in them or because some nodes are very popularbecause

they have a lot ofbandwidth and computing power to spare. In addition, there

is an attack the adversary could exploit if simply counting the occurrences of

/16 subnets were used that we will point out in Section 6.6.

Note that the complexity to compute the correlation of a new extended

selection is proportional to the number of extended selections in LES. For

scalability reasons, we cannot keep all extended selections in LES forever.

Rather, we "forget" old extended selections and to keep only the k most re¬

cently received extended selections in LEs. We will talk in Section 5.6.2

about reasonable values for the number of extended selection in L ES.

A node remembers the correlations it has computed over time and rep¬

resents them as a correlation distribution. In our MorphMix prototype, this

is implemented as an array with 50 slots6, whereas each slot of the array

corresponds to a particular discrete correlation. If a new correlation c is com¬

puted, it basically affects the slot closest to c by incrementing its value by

one. However, in order not to let grow the values in the array indefinitely,

they follow an exponential weighted moving average (EWMA) with param¬

eter a. a is slightly larger than zero and depends on the number of extended

selections in LES: if kES is the number of extended selections in LES, then

a = l/kES. After a new correlation has been computed, the value in each

slot is first multiplied with (I-a), and a is added to the value in the slot that

corresponds to the new correlation. For details about the implementation of

6
Analyses with our node simulator (see Section 6 11) have shown that increasing the number

of slots beyond 50 does not provide better results

Code200 Exhibit 1009
Page 147 of 308

5.6 Collusion Detection Mechanism 127

the correlation distribution, refer to the MorphMix prototype implementation

(see Appendix A.7).

As a proof of concept, we analyse how the correlation distribution looks

using our node simulator (see Section 6.1.1). We assume a system with 10000

nodes, where some of them are malicious and in the same colluding set. All

10000 nodes are in different /16 subnets and every node has the same prob¬

ability of being offered in a honest selection. We set up 5000 anonymous

tunnels, whereas each tunnel consists of five nodes in total, which is a rea¬

sonable choice for the tunnel length (see Section 8.3.7). This means that the

initiator gets three different selections during the setup of each tunnel, one

from each ofthe intermediate nodes. Each selection contains 14 nodes, which

is a reasonable selection size in a system with nodes in 10000 different /16

subnets (see Section 5.6.2). For now, we assume that malicious nodes offer

only other malicious nodes from their collusion in their selections, i.e. mali¬

cious selections contain 14 malicious nodes. Figure 5.6 shows the correlation

distribution when 0, 5, 10, 20, 30, and 40% of all nodes are malicious.

a) 0% malicious nodes b) 5% malicious nodes c) 10% malicious nodes

d) 20% malicious nodes e) 30% malicious nodes f) 40% malicious nodes

Figure 5.6: Correlation distribution with 10000 nodes.

We can see the contributions of honest and malicious nodes to the corre¬

lation distribution. In general, this results in two peaks, one on the left from

the honest nodes and one on the right from the malicious nodes. The more

malicious nodes there are in the system, the bigger the right peak gets and

Code200 Exhibit 1009
Page 148 of 308

128 5 MorphMix

the closer the two peaks move together. Remembering that each node is in a

different /16 subnet, this also means that the larger the fraction of/16 subnets

that contain malicious nodes, the bigger the right peak gets and the closer the

two peaks move together.

5.6.2 Selection Size and Size of Extended Selections List

Our initial analysis [97] have shown that the shape of the correlation distribu¬

tion depends on the selection size and the number of extended selections in

LES. In general, both a largerL ES and a larger selection size help to separate

the peaks in the correlation distribution, but it has its limits. On the other

hand, increasing the sizes also means that the time to compute the correlation

and the memory requirements to store the extended selections list grow (see

Section 5.8). Using analyses based on our node simulator (see Section 6.1.1),

we have derived reasonable values for both sizes. They depend on the number

of different /16 subnets that contain nodes. If s is the number of different /16

subnets that contain nodes, the selection size nsei to be used is given by:

nsel = max(3, [7.75 • log10 s - 17]) (5.1)

The selection size is logarithmically dependent on the number of dif¬

ferent /16 subnets that contain nodes. Since there are only 56559 different

/16 subnets, there is an upper bound fornse;, which is given by naej^max
=

([7.75 • log10 56559 - 17]) = 20. So the selection size is always between

three and 20. The size of LES is also dependent on the number of different

/16 subnets that contain nodes. If rT^f is the average number of nodes in a

selection, the number of extended selections kES in Les is given by:

kES = \2-=~] (5.2)
nSei

Like for the selection size, there is also an upper bound for the size of

LES, which is given by kES,max = \2 56559/20] = 5656. So if there

are noes in all possible /16 subnets, the list contains 5656 extended selections

with 21 nodes each, and the list won't grow any further.

Note that when a node joins MorphMix for the first time, it does not know

how many nodes there are in the system, i.e. it does not know what value to

Code200 Exhibit 1009
Page 149 of 308

5.6 Collusion Detection Mechanism 129

use for s in (5.1) and (5.2). Consequently, the node starts with the minimum

selection size of three, but tries to estimate the actual number of different

/16 subnets that contain nodes by observing how frequently a new extended

selection has elements in common with extended selections in L ES. If there

are only a few different /16 subnets that contain nodes, this frequency will

already be high after only a few tunnels have been set up and vice versa. For

more details about estimating the number of/16 subnets that contain nodes,

refer to the MorphMix prototype implementation (see Appendix A.7).

To summarise, there is an upper limit on both the selection size and the

size of the extended selections list. We carried out some performance tests on

a system with a 1GHz AMD Athlon CPU, 256 MB RAM, running Linux as

operating system with a 2.4.17 kernel. With both selection size and size ofthe

extended selections list set to their maximum values, it takes about 50 ms to

compute the correlation ofa new extended selection. Assuming a node sets up

a tunnel every two minutes (see Section 8.2.3) and a tunnel has a reasonable

length of five (see Section 8.3.7), which means three correlations must be

computed per tunnel, the computational overhead resulting from computing
the correlations is only about 0.125% on the above-mentioned system, which

can be neglected.

5.6.3 Detecting Malicious Tunnels

Based on our discussion in Section 5.3, we say that a tunnel is malicious if

the adversary controls both the first intermediate and the final node in this

tunnel. We also say such a tunnel is compromised. Otherwise, the tunnel is

considered as good. Looking at the correlation distributions in Figure 5.6, the

strategy a node follows to detect malicious anonymous tunnels is as follows:

At any time, the node knows the correlation distribution it has generated based

on selections it received previously. Based on this distribution, the node de¬

termines a correlation limit, which should have the property that if the corre¬

lation of a new extended selection is smaller than this limit, then the node that

offered the corresponding selection is honest with a high probability. Simi¬

larly, the extended selection corresponding to the selection from a malicious

node should yield a correlation that is above the limit with high probability.
As an example, using the correlation distribution in Figure 5.6(d), a correla¬

tion limit of 0.28 would be reasonable. In general, the correlation limit is not

a fixed value but depends on the system size and the percentage of malicious

nodes. For instance, the correlation limit for Figure 5.6(e) should be about

Code200 Exhibit 1009
Page 150 of 308

130 5 MorphMix

0.2 instead of 0.28. The difficulty of determining this limit is that the initiator

only knows the correlation distribution of all nodes, i.e. the sum of the con¬

tributions of honest and malicious nodes in Figure 5.6. Furthermore, as we

will see in Chapter 6, the peaks cannot always be separated so clearly as in

Figure 5.6 and we will explain in Section 6.2.1 how the correlation limit is

determined in practice. For now, we simply assume the initiator can deter¬

mine a reasonable correlation limit based on the correlation distribution. If

the correlations of all extended selections of an anonymous tunnel are below

that limit, then the initiator considers the anonymous tunnel as good. But if

the correlation of at least one extended selection is above the limit, it is as¬

sumed the node that has offered that selection is malicious. Consequently, the

initiator considers the tunnel as malicious and it will not be used to contact a

server anonymously. Note that this decision is made before anonymous con¬

nections to contact servers are established within the anonymous tunnel, so

in case a tunnel is indeed malicious and rejected, the adversary cannot learn

anything to break a users anonymity. Note also that if only the final node

in the tunnel is malicious, then this is difficult to detect because it does not

offer a selection. However, this final node cannot learn anything about the

anonymous tunnel only by itself.

The steps the initiator carries out during the setup ofan anonymous tunnel

to determine whether it is considered good or malicious are listed in Algo¬
rithm 2:

Algorithm 2 Determining ifan anonymous tunnel is good or malicious

1. Initialise a variable rejectTunnel to false.
2. Get the next extended selection ESn ofthe anonymous tunnel.

3. Compute the correlation c ofES^-
4. Determine the correlation limit c\ from the correlation distribution.

5. Ifc is greater than c\, set rejectTunnel to true.

6. Add c to the correlation distribution and add ESn to the extended se¬

lections list.

7. Ifthere are more intermediate nodesfollowing in the tunnel, go to step

2.

8. If rejectTunnel is true, reject the tunnel. Otherwise it is consid¬

ered good.

One might wonder why we reject the tunnel if any of the computed cor¬

relations is above the correlation limit and not only consider the extended

Code200 Exhibit 1009
Page 151 of 308

5.7 Peer Discovery Mechanism 131

selection offered by the first node. The latter makes sense because a tunnel

is only malicious if the adversary controls both the first intermediate and the

final node. However, based on our analyses with the node simulator it has

turned out that the probability to detect malicious tunnels is higher if all ex¬

tended selections are tested and not only the first. The reason is that in case

the first malicious extended selection was not detected and the second inter¬

mediate node is also malicious, there is another chance by examining the ma¬

licious extended selection from the second intermediate node and so on. On

the downside, examining all extended selections also means the probability a

tunnel that is not compromised is rejected slightly increases, but the increased

chances to detect compromised tunnels outweighs this disadvantage.

5.7 Peer Discovery Mechanism

In this section, we present the peer discovery mechanism that enables Morph¬
Mix nodes to learn about other nodes. The peer discovery mechanism is the

third major component of MorphMix.

In general, resource discovery is an important and fundamental task that

must be solved in every self-organising system, which includes peer-to-peer

systems. Often, especially in peer-to-peer file-sharing systems, finding a re¬

source is equivalent to locating one or more peers that store a particular file

(or a part of the file). In MorphMix, however, the case is different because

there are no resources in the sense of files to discover. Rather, the other nodes

themselves are the resources. Therefore, all a MorphMix node needs to do is

learning about other nodes that can be used as new neighbours or witnesses.

In MorphMix, there are two different types of peer discovery: initial and con¬

tinuous peer discovery. The first one is used by a node to join MorphMix
for the first time. The second type of peer discovery happens all the time

while a node is participating in MorphMix. We first discuss these two types

of peer discovery. Afterwards, we describe how the information about other

nodes is organised internally and accessed to select nodes as new neighbours
or witnesses.

5.7.1 Initial Peer Discovery

The goal of initial peer discovery is to quickly learn about a few other nodes

when a node joins MorphMix for the first time. Once a node knows some

Code200 Exhibit 1009
Page 152 of 308

132 5 MorphMix

other nodes, it can start establishing virtual links to them and set up anony¬

mous tunnel, which directly leads to continuous peer discovery described be¬

low.

Of course, there are always offline methods (not part of MorphMix) such

as the Usenet or the Web to learn about other peers. But these approaches are

cumbersome to use because they cannot be integrated well into MorphMix.
In addition, one can imagine methods based on portscans, address resolu¬

tion protocol (ARP) [85] broadcast, or IP multicast [27] to discover other

nodes, but such methods may take a long time to discover a node (portscans),

are of limited reach (ARP broadcast), or are based on technology that is not

widely deployed (IP multicast). Consequently, MorphMix itself offers a way

to easily learn about other nodes when a node knows about at least one other

node. To do so, the MorphMix protocol includes peer discovery messages

(see Appendix A.3.3), which allow a node to ask another MorphMix node for

information about other nodes, i.e. their IP addresses, ports on which they are

listening for connection requests, public keys, and node levels 7.

To facilitate joining for nodes that do not know any other node, there are

"official" introductory nodes in MorphMix. The contact information of these

nodes is included in every distribution of the MorphMix program, and differ¬

ent distributions may contain different introductory nodes. These nodes are

basically just MorphMix nodes that are always participating and the method

to query them for information about other nodes is the same as described

above. The user has the choice to make use of these official introductory
nodes and the trust she puts in them depends on the trust she puts in the capa¬

bility of the developers of a distribution to pick only honest nodes as official

introductory nodes. We agree that that the approach with introductory nodes

is merely a "hack" to solve the bootstrapping problem, but there is simply

no alternative if we want to offer a built-in way to easily join MorphMix if

no other node is known. Users that do not trust the introductory nodes can

always choose offline methods to learn about other nodes. Another potential

problem with introductory nodes is that they are the only centralised (even if

there are several of them) component in the otherwise completely distributed

MorphMix system and provide therefore a potential point of attack for legal
attacks.

One general problem with querying other noes is that if the node that is

contacted is malicious, it will inform only about other malicious nodes and

7The concept of different node types that have different node levels will be introduced in

Section 7 3 2 and is specified in more detail in Appendix A 2 3

Code200 Exhibit 1009
Page 153 of 308

5.7 Peer Discovery Mechanism 133

these nodes again inform only about malicious nodes and so on, which means

a node may end up in a completely malicious MorphMix subsystem where

it is the only honest node. To minimise this risk, multiple nodes should be

queried, which increases the probability that there is at least one honest node

among them.

Querying other nodes is usually only needed right after having joined

MorphMix for the first time. A returning node that has been participating be¬

fore has usually accumulated so much information about other nodes during
the continuous peer discovery that other nodes that are currently participating

can be easily found. Nevertheless, if it happens at any time that a node knows

too few other nodes, it can always query other nodes again, but this is very

unlikely to happen considering the continuous peer discovery mechanism de¬

scribed below.

5.7.2 Continuous Peer Discovery

While participating in MorphMix and setting up anonymous tunnels, a node

learns about a variety of other nodes. Every selection it gets contains the IP

addresses, ports, public keys, and node levels of several nodes. This gives the

initiator all necessary information to contact new nodes to establish virtual

links to them, or to select a witness to append a node to its own tunnels.

In addition, a node always includes its own node information when estab¬

lishing a virtual link to another node (see Appendix A.3.1). This is necessary

because otherwise, a node could never inform other nodes about itself and

consequently, no other node would establish a virtual link to it. According
to our policy on using virtual links (see Section 5.5.3), this implies it would

never be chosen as intermediate node in tunnels of other nodes and could

therefore never relay data for other nodes.

5.7.3 Organising and Accessing Information about other

Nodes

The information a node learns about other nodes is stored in an internal data

structure. One possibility would be to use a simple list, where each list ele¬

ment corresponds to a node. However, we have seen in Section 5.6 that the

collusion detection mechanism is based on the assumption that honest nodes

pick the nodes they offer in their selections from a wide variety of/16 subnets

Code200 Exhibit 1009
Page 154 of 308

134 5 MorphMix

that containMorphMix nodes. To avoid that an honest node offers always the

same set of nodes in its selections, and since these nodes are selected from the

set of its current neighbours, honest nodes must change their neighbours from

time to time. To do so, a newly established virtual link to a new neighbour is

only kept for a limited time of 30 minutes (see Appendix A.5.1). After this

lifetime, the virtual link is not simply torn down because there may still be

tunnels using it, but the node at the other end of the virtual link is no longer
advertised in selections. Consequently, we should organise the data structure

in a way that easily supports picking nodes from a wide variety of/16 subnets.

Selecting the neighbours from a large range of /16 subnets has an ad¬

ditional benefit. To break the relationship anonymity between initiator and

server, it is a necessary requirement for the internal adversary to control the

first intermediate node. Therefore, selecting the neighbours (and therefore po¬
tential first intermediate nodes) from a wide variety of all /16 subnets reduces

the probability the adversary controls this node because of the assumption
that the adversary can only control nodes ina limited numberof all public /16

subnets (see Section 5.4).

The data structure to store the information about other nodes is imple¬
mented as follows: the initiator remembers the nodes it has received in se¬

lections in a node lookup list. There is at most one entry in the list per /16

subnet, which implies that this list has at most 56559 entries. Each entry

contains the corresponding 16-bit IP address prefix and a list of nodes that

contains the information about nodes in this subnet. Each entry in a list of

nodes contains itself the IP address, port, public key, and node level of the

corresponding node. Figure 5.7 illustrates the basic idea of the node lookup
list and the principal concept ofhow nodes are inserted into and selected from

the list. Note that Figure 5.7 only sketches the basic concept. In particular,
the cases of inserting a node (b, c, and e) correspond to nodes that have been

learned as part of selections offered by other nodes. For simplicity, we only
show the IP addresses of the nodes in the lists of nodes and leave out their

public keys, port numbers, and node levels.

In this example, we assume that in the beginning, the list contains three

different subnets and four nodes, as illustrated in Figure 5.7(a). 129.132 is the

16-bit IP address prefix of the first /16 subnet in the list, there are two nodes

for the /16 subnet 8.245 and one node for the two other subnets. Now we as¬

sume that the initiator learns about a new node with IP address 132.101.23.66.

Figure 5.7(b) shows how the information about the new node is processed:
since the 16-bit IP address prefix (132.101) corresponding to the new node is

Code200 Exhibit 1009
Page 155 of 308

5.7 Peer Discovery Mechanism 135

129.132 | 1 129 132 77 TT]

8.245 | 1 8 245 220 54~|—| 8 245 93 167~

132.101 | 1 132 101 48 9Î~|

a) beginning

213.12 I [21312 12S31 I

~T~^
132.101 | 1 132 101 23 66]—| 132 101 48 9?]

129.1321 1129 132 77 11 I

ZEZ
8.245 | 1 8 245 220 54~|—| 8 245 93 167~

c) after inserting 213 12 129 31

132.1011 1132 101 48 9T|—1132 101 23 66]

213.12 I 121312 12931 I

129.1321 1129 132 77 11 I

"T^
8.245 | 1 8 245 93 167~|—| 8 245 220 54~|

e) after inserting 132 101 48 91

1132.1011 113210123 66]—1132 101 48 9Î~|

1129.132 | 1 129 132 77 TT]

| 8.245 | 1 8 245 220 54~|—| 8 245 93 167~

b) after inserting node 132 101 23 66

| 213.12 | 1 21312129 3Î~|

1132.101 | 1 132 101 23 66]—| 132 101 48 §T~|

1129.132 | 1 129 132 77 TT]

| 8.245 | 1 8 245 93 167~|—| 8 245 220 54~]

d) after selecting 8 245 220 54

Figure 5.7: Node Lookup list.

already in the node lookup list, the node is inserted at thefirst position in the

list of nodes of this /16 subnet. In addition, the entry for the subnet is moved

to thefirst position of the node lookup list. Figure 5.7(c) shows how another

node 213.12.129.31 is inserted into the list: this time, the corresponding 16-

bit IP address prefix (231.12) is not yet in the list. Therefore, a new /16 subnet

is inserted at the first position in the node lookup list with the new node as

the single entry in the corresponding list of nodes. Figure 5.7(d) shows what

happens if the node lookup list is accessed to select a node from the /16 sub¬

net identified with 8.245 : the first element in the corresponding list of nodes,

8.245.220.54 is returned and moved to the last position of the list of nodes.

Finally, Figure 5.7(e) illustrates when a node 132.101.48.91 that is already
in the node lookup list is inserted: the old entry is removed from the list of

nodes, the information about the new node is inserted at the first position in

the list of nodes, and the subnet is moved to the first position of the node

lookup list.

Code200 Exhibit 1009
Page 156 of 308

136 5 MorphMix

For practical reasons, the information about at most ten different nodes is

stored in the list of nodes of a subnet, which implies a node knows of at most

ten nodes in the same subnet at any time. If information about a new node is

learned as part of a selection, the corresponding list of nodes already contains

ten nodes, and the new node is not yet in the list, then the last entry of the list

of nodes is simply discarded before the new node is inserted.

Organising the node lookup list in this way has two properties: (1) the

nodes belonging to the same /16 subnet are ordered in the corresponding list

of nodes such that the more recently the information about a node has been

received as part of a selection, the closer to the first position it is, and (2) the

subnets themselves are ordered such that the more recently the information

about a node has been received, the closer the corresponding subnet is to the

top of the node lookup list.

Whenever the initiator wants to contact a new neighbour, it randomly

picks a subnet from the node lookup list. Then it picks the first node in the

corresponding list of nodes and moves it to the last position, as illustrated

in Figure 5.7(d). It then tries to establish a virtual link to this node. If the

node cannot be contacted or the virtual link can not be established for any

reason, the information about the node is removed from the corresponding
list of nodes and the next node is tried in the list of nodes of the same subnet.

If this fails for all nodes in the list of nodes of the subnet, the subnet itself is

removed from the node lookup list and another subnet is tried. This procedure

guarantees that every honest node picks other nodes from a wide spectrum of

/16 subnets, and this is exactly what we wanted to achieve.

Since the /16 subnets corresponding to nodes that have been received re¬

cently are moved to the top of the node lookup list, picking a node from a

subnet that is close to the top of the list guarantees with high probability that

the node is currently participating in MorphMix. This is not critical for nodes

that should be contacted as new neighbours because the initiator can simply

try another node when a timeout occurs during the connection attempt. How¬

ever, the initiator also must select witnesses from the node lookup list. To

make sure that a high percentage of the attempts to set up an anonymous tun¬

nel succeed, it is desirable that the witnesses the initiator selects are currently

participating in MorphMix with high probability. Witnesses should therefore

be picked from a subnet that is close to the top of the node lookup list. Note

that like with nodes that are selected as neighbours, the information about a

node that has been selected as a witness is removed from the list of nodes if

it cannot be contacted during the setup of an anonymous tunnel.

Code200 Exhibit 1009
Page 157 of 308

5.7 Peer Discovery Mechanism 137

The nodes in newly arriving selections are only inserted into the node

lookup list if the corresponding computed correlation is not above the cor¬

relation limit. This means we have combined the peer discovery and collu¬

sion detection mechanisms to minimise the number of malicious nodes in the

node lookup list. This is an important property because for the adversary to

compromise a tunnel, he must necessarily control the first intermediate node.

Since an initiator picks the first intermediate node from the set of its cur¬

rent neighbours, which are selected from the node lookup list, the adversary
should make sure that many malicious nodes are present in the node lookup
lists of honest nodes to increase his chances to control the first intermediate

node. To achieve this, he should include many or only malicious nodes in the

selections his nodes offer. But since the collusion detection mechanism de¬

tects malicious selections that contain many malicious nodes with high prob¬

ability (see Chapter 6), the adversary cannot advertise malicious nodes as

aggressively as he would like.

We mentioned that Figure 5.7(b, c, and e) correspond to the case of insert¬

ing a node that has been learned as part of a selection. However, information

about other nodes are also learned when other nodes establish virtual links

to the own node or when other nodes are queried. Since these methods of

learning about other nodes are not coupled to the collusion detection mecha¬

nism, it is easy for the adversary to force the information about the nodes he

controls into the node lookup lists of honest nodes. In particular, if inserting
nodes into the node lookup list were always done as in Figure 5.7, frequently

establishing virtual links to a honest node would allow the adversary to move

the information about malicious nodes to the first positions of the subnets

where he controls nodes. Consequently, we employ a different strategy when

information about other nodes is not learned as part of a selection. The idea

is that an adversary that operates several nodes in a /16 subnet that also con¬

tains honest nodes should not be able to continuously put a malicious node

into the first position of the corresponding list of nodes of an honest node by

establishing virtual links to the honest node. On the other hand, the strategy

should still make it possible for an honest node that hasjoined MorphMix and

that wants to relay data for other nodes to disseminate its contact information

by establishing virtual links to other honest nodes. The strategy to insert in¬

formation about nodes that have not been received as part of selections is as

follows:

1. In general, inserting this information never moves the corresponding
subnet to the first position in the node lookup list.

Code200 Exhibit 1009
Page 158 of 308

138 5 MorphMix

2. If the corresponding subnet is not yet in the list, it is inserted at the

lastposition of the node lookup list with the information about the new

node as the only entry in the list of nodes.

3. If the subnet is already in the node lookup list, the information about

the new node is not in the corresponding list of nodes, and the list of

nodes contains fewer than ten elements, the information about the new

node is inserted at the first free position, i.e. at the end of the list of

nodes.

4. Ifthe subnet is already in the node lookup list and the information about

the new node is already in the corresponding list of nodes, the old entry

is replaced with the information about the new node.

5. If the subnet is already in the node lookup list, the information about

the new node is not in the corresponding list of nodes, the list of nodes

contains ten elements, and there is at least one node in the list of nodes

that is located in the same /24 subnet as the new node (i.e. the IP ad¬

dresses of the two nodes have the same 24-bit prefix), the last ofthese

entries is replaced with the information about the new node.

6. If the subnet is already in the node lookup list, the information about

the new node is not in the corresponding list of nodes, the list of nodes

contains ten elements, and there is no node in the list of nodes that is

located in the same /24 subnet as the new node, then the last entry in

the list of nodes is replaced with the information about the new node.

Analysing this strategy more closely and looking at a single /16 subnet

that contains honest and malicious nodes, we can see that as long as the list

of nodes of an honest node contains fewer than ten entries, the adversary (1)

cannot remove honest nodes from the list of nodes and (2) cannot insert the

information about malicious nodes at the first position in the list of nodes

(unless the subnet has not been in the node lookup list before). Consequently,
the adversary can only make sure honest nodes store the information about

malicious nodes in their list of nodes, but he cannot enforce honest nodes

to select a particular malicious node more frequently than any other node in

its list of nodes. If we again look at a single /16 subnet, assume that the

corresponding list of nodes of an honest node contains ten entries, and there

are honest nodes in different /24 subnets, we can state that an adversary must

either control nodes in the same /24 subnets as the honest nodes to effectively

remove all of them from the list of nodes, or he must control nodes in many

different (at least ten) /24 subnets to have a chance to introduce many or only
malicious nodes in the list of nodes. In the second case, however, it is not

Code200 Exhibit 1009
Page 159 of 308

5.7 Peer Discovery Mechanism 139

possible to remove honest nodes that are close to the first position in the list

of nodes because information about new nodes is never inserted at the first

position.

On the other hand, an honest node a that has joinedMorphMix for the first

time can effectively disseminate its contact information. By contacting other

nodes, it is inserted into their node lookup lists. Since this information cannot

easily be removed by the adversary, node a will eventually be contacted by
honest nodes and offered in selections to other nodes, which tells these other

nodes about node a and so on. Note that especially if the system is large, it

may take a while until node a is contacted regularly by other nodes because

before a is offered in selections, it is never inserted at the first position of lists

of nodes (unless the corresponding/16 subnet has notbeen in the node lookup
list before). However, once a is being offered in selections, it is inserted at

the first position of the lists of nodes and the contact information about a is

spread quickly.

Note that the strategy described above fails if the adversary controls nodes

in very many different /24 subnets of a /16 subnet. In this case, the adversary
should be able to insert mainly malicious in the corresponding lists of nodes

of honest nodes. The countermeasures are either increasing the length of the

lists of nodes beyond ten, or using shorter prefixes than 24 bits, for instance

/20 subnets instead of /24 subnets. However, longer lists of nodes means it

takes even longer until the information about a new node is disseminated if

there are already several nodes in the /16 subnet and the memory requirements
for the node lookup list also increases (see Section 5.8.1). Shorter prefixes,

on the other hand, increase the probability the adversary can overwrite entries

of honest nodes in a list of nodes. Using /24 subnets is a good compromise
because it hinders an institution owning a class C network (which is quite

common) from inserting significantly more than one of the nodes it controls

into the lists of nodes of honest nodes if there are several honest nodes in the

/16 subnet.

There is a possible attack on MorphMix that exploits the fact that a node

may eventually directly connect to a node that it received earlier as part of a

selection. We will analyse the impact of this attack in Section 6.5.

Code200 Exhibit 1009
Page 160 of 308

140 5 MorphMix

5.8 Scalability and Requirements to Run a Node

MorphMix aims at providing anonymity for the masses and should therefore

scale well up to a large number of nodes. In this section, we first state why

MorphMix indeed scales very well and why any modern personal computer

with a dial-up Internet connection is sufficient to run a node. We also anal¬

yse the possibilities for users with computers that are located behind NAT

gateways and the influence of dynamic IP addresses.

5.8.1 Scalability and General Requirements

The complexity of all three core components ofMorphMix grows as the num¬

ber of nodes increases. The most critical parameters that affect scalability in

MorphMix regarding to these three components are the following:

1. Collusion detection mechanism:

• the selection size

• the size of the extended selections list

• the complexity to compute the correlation

2. Anonymous tunnel setup:

• the length of message 2 in Figure 5.5

• the number of neighbours a node must have at any time

• the computational overhead imposed by public-key cryptography

operations
3. Peer Discovery:

• the memory requirements to store the node lookup list

In general, the key to scalability in MorphMix bases on the fact that all

these critical parameters depend on the number of different /16 subnets that

contain MorphMix nodes and not on the total number of nodes. As a result,

we can expect the complexity to grow slower than the number of nodes gets

larger because if many nodes that are already participating in MorphMix, it

gets less likely that new nodes reside in a "new" /16 subnet that does not yet

contain a node. But even more important, the complexity for these parameters

has an upper bound because the number of public /16 subnets is limited to

56559 (see Section 5.4.2). Consequently, ifwe can show that MorphMix can

cope well with an environment with nodes in all public /16 subnets, then we

can expect MorphMix to be able to handle as many nodes as there are public
IP addresses.

Code200 Exhibit 1009
Page 161 of 308

5.8 Scalability and Requirements to Run a Node 141

We first analyse the collusion detection mechanism. According to (5.1),

the selection size grows logarithmically with the number of/16 subnets. Us¬

ing the maximum number of/16 subnets, the selection size reaches its max¬

imum of 20. Similarly, the size of the extended selections list grows linearly
with the number of/16 subnets and reaches its maximum size with 5656 en¬

tries with 21 IP addresses each according to (5.2). This corresponds to less

than 0.5 MB memory space, which is hardly an issue for state-of-the-art com¬

puters. According to Algorithm 1, the computational overhead to compute the

correlation of a new extended selection grows linearly with the numberof/16

subnets, and we have already stated in Section 5.6.2 that with nodes in all

/16 subnets, this takes about 50 ms on a system with a 1GHz AMD Athlon

CPU. Assuming an average tunnel length of five and even if a node sets up

significantly more tunnels than one every two minutes because tunnels may

fail during the setup or may be rejected according to Algorithm 2, the com¬

putational overhead resulting from computing the correlations is well below

1% on the above-mentioned system, which is insignificant. We therefore con¬

clude that the overhead from the collusion detection mechanism is small and

can easily be handled by virtually any personal computer that is in use as of

November 2003.

The selection size determines the number of nodes a node must offer in its

selections and therefore it also determines the minimal number of neighbours

a node must have at any time. As a result, this minimal number of neigh¬
bours also grows logarithmically with the number of /16 subnets and has an

upper limit of 20. Similarly, the selection size determines the amount of data

exchanged during anonymous tunnel setup. Consequently, message 2 in Fig¬

ure 5.5 contains the information of at most 20 different nodes that are offered

to the initiator. For now, we can only state that since there is an upper limit for

the minimal number of neighbours and the amount of data exchanged during
the anonymous tunnel setup, the data overhead is so small that even dial-up
Internet connections are sufficient to participate in MorphMix. A detailed

analysis of this data overhead will be provided in Section 8.3. Similarly, we

state that since the data overhead is small, the computational overhead im¬

posed by public-key cryptography operations that are used to establish virtual

links and in general during the anonymous tunnel setup can be well handled

by reasonably modem personal computers, and we will also analyse this in

more detail in Section 8.3.

Finally, the length of the node lookup list grows linearly with the num¬

ber of /16 subnets that contain nodes. Consequently, its maximum length is

Code200 Exhibit 1009
Page 162 of 308

142 5 MorphMix

56559. Every entry in this list contains four bytes for the IP address, two

bytes for the port on which the MorphMix node is listening, 256 bytes for the

RSA modulus, and one byte for the node level. There may be up to 10 entries

per /16 subnet and consequently, the maximum size of the node lookup list

is about 150 MB. Since this data structure is stored in memory during the

time a node is participating in MorphMix, this is not insignificant. However,

it can well be handled by modem personal computer systems that are usu¬

ally equipped with at least 256 MB RAM as of November 2003. In addition,

there is always the possibility to reduce the number of entries per /16 subnets

to make the list smaller. Reducing it to two entries per subnet, for example,

brings down the memory requirements of the extended selections list to 30

MB.

Summarising this discussion concerning the computational, memory, and

bandwidth requirements depending on the number of nodes, we conclude that

MorphMix scales indeed very well and can handle as many nodes as there a

publicly available IP addresses. The computational requirements are modest,

although we have yet to show that the overhead imposed by the public-key

cryptography operations is indeed small (see Section 8.3). The memory re¬

quirements of the peer discovery mechanism are dominant and imply that it

may not yet be possible to ran a MorphMix node on a handheld computer.

On the other hand, the requirements are comparable with other typical appli¬
cations such as office packages or graphical web browsers and we therefore

conclude that any state-of-the-art personal computer can run a MorphMix
node. Bandwidth requirements are also modest and even dial-up connections

are sufficient to participate, and we will give a detailed analysis of this claim

in Section 8.3.

5.8.2 NAT Gateways and Dynamic IP Addresses

So far, we have assumed all MorphMix nodes have public static IP addresses.

What remains to be discussed is how participating in MorphMix is possible
for users with a computer that is located in a private network behind a NAT

gateway and the influence of dynamic IP addresses.

We first look at users that access the Internet through a NAT gateway.

One approach is to simply run the node on a computer behind the NAT gate¬

way and access MorphMix in the same way nodes with public IP addresses

do. This allows to establish anonymous tunnels via other nodes, but the own

computer cannot be accessed by others because it is hidden behind the NAT

Code200 Exhibit 1009
Page 163 of 308

5.8 Scalability and Requirements to Run a Node 143

gateway. If the NAT gateway is under control of the user's ISP and the user's

computer simply gets assigned a private IP address, there is nothing that can

be done about this situation and the user cannot relay anonymous tunnels of

other MorphMix user.

On he other hand, NAT gateways are also often used by administrators of

home or small office networks that get assigned one public static IP address

from their ISP. In this case, the NAT gateway is often under control ofthe user

or the user has indirect control of it through the network administrator. Con¬

necting to a computer behind the NAT gateway from computers outside the

private network can now easily be enabled by using port forwarding, which

is supported by virtually all NAT gateways, including (A)DSL/Cable routers.

When establishing a virtual link to another node, a node behind a NAT gate¬

way simply includes the public IP address and the corresponding port of the

NAT gateway instead of its own IP address and port to disseminate its contact

information (see Appendix A.3.1).

If multiple users with multiple computers in the same private network

want to access MorphMix from behind the NAT gateway, one could simply
extend the idea above by giving each MorphMix node a dedicated port such

that it can be accessed from outside the NAT gateway. Note that this results in

multiple nodes having the same public IP address, but different ports. How¬

ever, since MorphMix identifies nodes with IP addresses, they are equal from

the system's point of view. This can also be seen by recalling that the peer

discovery mechanism replaces a node with the same IP address as a new node

is inserted in the node lookup list. So for the other nodes, this looks like a

node that changes its port and its key pair quite frequently, but they always

only know about one of them. Although there is no problem to make use of

such a configuration, there is a much more elegant and cleaner solution to

access MorphMix from behind a NAT gateway if there are multiple users: by

choosing one of the internal computers to ran a single node, having all users

access MorphMix through this single node, and granting access to the node

from outside the NAT gateway by using port forwarding. Another option is

to ran the node directly on the NAT gateway. Since applications access their

own MorphMix node like a proxy, there is no need for this application to

ran on the same computer as the MorphMix node. Another advantage of this

scenario is that only a single computer must be kept up and running to be par¬

ticipating in MorphMix all time. A potential disadvantage of this approach is

that the anonymity of users may be compromised by an attacker sniffing on

the private network, but usually, a private network behind a NAT gateway can

Code200 Exhibit 1009
Page 164 of 308

144 5 MorphMix

be considered as trustworthy. In fact, this concept ofusing a single MorphMix
node on a dedicated, powerful computer for multiple users in a trustworthy
environment is an attractive option to participate in MorphMix for small com¬

panies, departments of larger companies, or institutes of a university.

The effect of dynamic IP addresses is that users get a different IP address

after a period (e.g. 24 hours) expires or each time they connect their computer

to the Internet. The effect is that nodes may get a new identity from time to

time. One consequence is that when a node gets a new IP address, it cannot be

accessed any longer by other nodes that remember this node under its former

identity in their node lookup list. However, this is no problem because a

node will easily detect this when trying to contact this node as a potentially

new neighbour and simply pick another node. When picking such a node

as a witness, the case is different, but selecting witnesses from the top of

the node lookup list as discussed in Section 5.7.2 reduces the probability a

node has changed its identity in the meantime. In general, nodes that change
their IP addresses have the same effect as nodes that leave the system. Since

MorphMix is designed to cope with disappearing nodes (see Sections 5.7

and 7.3.2), it can also deal with nodes that have dynamic IP addresses. As

an interesting side note, it can be expected that nodes that get dynamic IP

addresses always get them from the same /16 subnet. So for the collusion

detection mechanism, such a node always looks the same.

We conclude that having a public static IP address is no requirement, be¬

cause even users with computers that are located behind NAT gateways or

that get dynamic IP addresses can ran a node and participate in MorphMix.

5.9 An Outlook on IPv6

Although this thesis focuses on IP version 4 (IPv4), it is foreseeable that

IPv4 will eventually be replaced with its successor IP version 6 (IPv6) [28],

mainly because the IPv4 address space may become too small. In this section,

we analyse the implications of MorphMix if IPv6 gets widely deployed and

show that MorphMix should still work well on top of IPv6.

In this chapter, we have seen that MorphMix heavily depends on the IPv4

addressing structure and on the way IPv4 addresses are assigned to ISPs or

institutions in general. This has directly lead to our choice of using the 16-bit

prefix of IP addresses as the basis for the three core components of Mor¬

phMix. The two main reasons to use /16 subnets was that it bases on the

Code200 Exhibit 1009
Page 165 of 308

5.9 An Outlook on IPv6 145

assumption that adversaries cannot control nodes in very many of all pub¬
lic/16 subnets and that it makes MorphMix scalable because the maximum

number of /16 subnets is much smaller than the maximum number of pub¬
lic IP addresses. Consequently, the goal when moving to IPv6 is to organise
IPv6 addresses in a similar way, i.e. to arrange them in "subnets" such that it

is difficult for an adversary to ran nodes in a significant fraction of them and

that the total number of these "subnets" has a similar size as the number of

/16 subnets in IPv4 to maintain scalability.

IPv6 addresses [106] are 128 bits long and consist of a 64-bit network part

and a 64-bit host part. A trivial approach would therefore be to move from

/16 subnets in IPv4 to /64 subnets in IPv6. However, this would result in a

potentially very large number of different subnets and the resulting complex¬

ity of the three core components of MorphMix could not be handled by any

computer in the foreseeable future. To find a more suitable solution, we must

analyse how address allocation and assignment will be handled in IPv6 [4] in

more detail.

The Internet Assigned Number Authority (IANA) manages the whole

IPv6 address space. The address range 2000::/3 has been designated to be

the global unicast address space in IPv6 [106]. Below IANA, there are the

Regional Internet Registries (RIR) such as ARIN, APNIC, or RIPE NCC.

IANA has allocated initial ranges of global unicast address space from the

2001:716 address block to the existing RIRs. Below the RIRs, there are the

Local Internet Registries (LIRs), which are usually ISPs. The LIRs get one

or more /32 address blocks from their respective RIRs and end users get /48

address blocks from their LIR. /48 address blocks should be enough even for

the largest companies, because it allows operating 216 subnets with 264 hosts

each.

Address allocation in IPv6 is therefore much more structured than in IPv4.

In IPv6, one can always state that all addresses within the same /32 address

block have been allocated by one and the same ISP. This is not the case in

IPv4 where there is no such clear boundary. Small ISPs can have relatively
small /19 IPv4 address blocks while larger ISPs often administrate several /16

address blocks or even larger ones. Similarly, IPv6 addresses within the same

/32 address block can be expected to be topologically (and therefore also

geographically) close, but two IPv4 addresses within the same /16 address

block are often not.

With IPv4, one main motivation for using /16 subnets was to make it dif¬

ficult for any entity to run MorphMix nodes in a significant portion of all

Code200 Exhibit 1009
Page 166 of 308

146 5 MorphMix

possible /16 subnets. Since hardly any ISP or institution owns or adminis¬

trates more /16 subnets than what corresponds to a class A network, this goal

was met. Transferring the same principle to IPv6, then /32 subnets are rea¬

sonable to hinder ISPs from operating several nodes. This also implies that it

is at least as difficult to do so for individual companies owning a /48 address

block. According to Cyberatlas8, there are about 12000 ISPs worldwide as of

March 2003. Assuming each of them gets one /32 IPv6 address block, there

will be 12000 /32 subnets, which is smaller than the number of/16 subnets

that are possible in IPv4. In general, the problem with using /32 subnets di¬

rectly it that it is difficult to predict how many of them there will be in use. If

the number grows significantly beyond to the number of/16 subnets in IPv4,

scalability problems arise. Conversely, if the number of/32 subnets is much

smaller than the number of /16 subnets in IPv4, it becomes easier for an in¬

stitution (or a few colluding institutions) to ran nodes in a significant portion
of all /32 subnets, which reduces the protection from the internal attacker. So

what we need is a function that maps different /32 subnets into a space that

approximately corresponds to the number of different /16 subnets in IPv4,

and this is what we will solve in the remainder of this section.

The idea is to not use the /32 subnet of an IPv6 address directly, but the

last 16 bits of a cryptographic hash (for instance SHA1 [46]) over the 32-bit

prefix, which we denote as the l\6h subnet of this address. Independently
of the number of ISPs, the complexity of MorphMix is now bound by the

216 different l\6h subnets. If the number /32 subnets will be much larger
than today, either because there will be more ISPs or because large ISPs get

assigned several /32 subnets, at least one /32 subnet will hash into most of

the l\6h subnets and the situation for MorphMix is very similar to what we

have today in IPv4. Of course this implies that different /32 subnets may

be mapped onto the same l\6h subnet, but this is not a problem, because

an adversary controlling a /32 subnet still only gets control in a single /16 h

subnet.

It looks different if the number of/32 subnets will be significantly smaller

than 216. This could for instance be the case if the number if IPv6 ISPs gets

significantly smaller during the next years and most ofthem only need one /32

subnet. As a result, the number of/lô^ subnets will also be small and it will

be easier for an adversary to operate nodes in many different /16 h subnets. It

this case, it is therefore reasonable to not only hash the first 32 bits to generate

http ://cyberatlas.internet.com

Code200 Exhibit 1009
Page 167 of 308

5.9 An Outlook on IPv6 147

the /16ft subnets, but also make use of the following 16 bits. For instance,

assuming there are only 2000 ISPs left and each of them controls one /32

subnet, we could use the last 10 bits of the hash over the 32-bit IP address

prefix and append the last 6 bits of the hash over the next 16 bits in the IP

address, which should exhaust nearly the entire /16 h subnet space. Assuming

an adversary that either operates nodes by himself or by private persons, he

must therefore again control nodes in thousands of different /48 networks

to control a significant subset of all /16ft subnets. Looking at a single ISP,

we can state that it is still capable of controlling only a small subset of all

/16ft subnets (26 of 216 in this example), which corresponds approximately
to the inverse of the number of different ISPs. This is the best we can do to

protect from a single ISP because the fewer different ISPs there are, the more

significant the portion of the address space a single ISP controls. As another

example, assuming there will still be 12000 ISPs and each of them controls

one /32 subnet, then using the last 13 bits of the hash over the 32-bit prefix
and appending the last 3 bits of the hash over the next 16 bits is reasonable.

Note that this mapping of IPv6 prefixes to /16 ft subnets such that it is

difficult for any institution to control nodes that correspond to many different

/16ft subnets can also be considered as a generalisation of simply using 16-

bit prefixes in IPv4. The simple mapping in IPv4 is possible because of the

relatively small address space and the fact that most public /16 subnets have

already been assigned to RIRs, ISPs, or end users. Due to the uncertainty
about how many /32 subnets will be assigned to ISPs in IPv6, we cannot

yet tell what mapping should be used. However, it is reasonable to assume

that eventually, the number of /32 subnets assigned to ISPs will grow beyond
216 and consequently, hashing the first 32 bits of an IPv6 address will be an

adequate mapping into the /16 ft subnet space for the reasons given above.

We conclude that using these modifications, MorphMix can still be op¬

erated efficiently on top of IPv6 without any limits in the number of users

that can be supported. Its maximum complexity is slightly higher than with

IPv4, because there will be 216 = 65536 different /16ft subnets compared to

56559 different /16 subnets with IPv4. As a result, the maximum selection

size in (5.1) increases from 20 to 21 and the maximum length of the extended

selections list increases from 5656 to 6242 according to (5.2). In addition, the

length needed to store the IP addresses in extended selections list and in the

node lookup list increases from 4 to 16 bytes, and the length of message 2 in

Figure 5.5 also gets slightly larger.

Code200 Exhibit 1009
Page 168 of 308

148 5 MorphMix

5.10 Summary

In this section, we have presented the basic idea and functionality of Mor¬

phMix, a peer-to-peer-based dynamic mix network for low-latency applica¬
tions. In contrast to static mix networks, there is no distinction between

clients and mixes. Rather, every participating node is both a client and a

mix at the same time. The principal goal of MorphMix is to enable practi¬
cal anonymous Internet access for a large number of users. We have defined

a threat model which states that due to the openness of MorphMix where

anybody can easily run a node, the internal attacker controlling a significant
subset of all nodes is the biggest threat. On the other hand, we have also

stated that while it is easy for an adversary to run many MorphMix nodes, it

is much more difficult to operate nodes in a significant portion of all public
/16 subnets. To achieve the principal goal and to protect from this internal

attacker, MorphMix is based on three core components.

The first component is the protocol to establish anonymous tunnels. One

key decision to make MorphMix scalable is that every node along an anony¬

mous tunnel picks its immediate successor node. This guarantees that at any

time, a node only needs to have a few neighbours that it can append to anony¬

mous tunnels. In addition, neighbouring nodes can communicate over their

virtual link to learn which nodes have spare resources to accept new anony¬

mous tunnels. But since everyone owning a computer with a public IP ad¬

dress can join MorphMix, a colluding set of malicious nodes would simply

pick the next hop among themselves to compromise the anonymity of honest

users. For this reason, we have designed the protocol to append a node to a

tunnel in such a way to make this attack as complicated as possible. In par¬

ticular, the node that is appending a node to a tunnel must offer a selection

of several potential next hop nodes that are located in different /16 subnets

to the initiator and the initiator picks one of them. This alone is not enough
to stop the adversary because he can offer exclusively malicious nodes in his

selections to control all remaining hops in a tunnel, and we have identified

this attack as by far the most promising one assuming the adversary controls

several nodes.

To counter this attack, we have developed a collusion detection mecha¬

nism, which is the second core component. The goal of the collusion detec¬

tion mechanism is to detect malicious tunnels with high probability before the

server is contacted. It makes use ofthe selections that are offered to the initia¬

tor when appending a node to a tunnel with the goal to detect those selections

Code200 Exhibit 1009
Page 169 of 308

5.10 Summary 149

that contain several malicious nodes with high probability. The collusion de¬

tection mechanism makes use of our assumption in the threat model that the

adversary cannot control nodes in many different /16 subnets. Consequently,
the collusion detection mechanism is not directly based on the IP addresses

that are offered in selections, but on their 16-bit prefix. We have delivered a

proof of concept that assuming 10000 nodes reside in as many different /16

subnets and that the adversary always offers exclusively malicious nodes in

his selections, the mechanism indeed works by producing a correlation distri¬

bution with two peaks that can be clearly separated if the adversary does not

control nodes in significantly more than 30% of all /16 subnets.

However, since the collusion detection is based on the assumption that

honest nodes pick the nodes they offer in their selections from a wide variety
of /16 subnets, MorphMix requires a mechanism that supports this. Con¬

sequently, the third core component provides a peer discovery mechanism

that allows nodes to easily learn about a large number of nodes. The infor¬

mation about other nodes is organised in a node lookup list, which allows

honest nodes to pick their neighbours from a wide variety of/16 subnets. In

addition to providing the basis for the correct functioning of the collusion

detection mechanism, this has an additional benefit because it is a necessary

requirement for the internal adversary to control the first intermediate node to

break the relationship anonymity between initiator and server. Selecting the

neighbours from a wide variety of all /16 subnets reduces the probability the

adversary controls this node because of the assumption in our threat model

that the adversary can only control nodes ina limited numberof all public /16

subnets.

We have also shown that MorphMix scales very well and can handle as

many nodes as there are public IP addresses. Joining MorphMix is possi¬
ble for a user independent of whether her computer has a static or dynamic

public IP address or is located in a private network behind a NAT gateway.

The computational and memory requirements to ran a node are reasonable

and can easily be handled by a modem personal computer, although we will

be able to show that the computational overhead imposed by the public-key

cryptography operations is indeed small only after we have analysed the data

overhead in Section 8.3. Furthermore, even a dial-up Internet connection is

sufficient to participate, andwe will provide a detailed analysis to support this

claim in Section 8.3.

Finally, MorphMix makes heavily use of the IPv4 addressing structure

and on the way IPv4 addresses are assigned. However, we have demonstrated

Code200 Exhibit 1009
Page 170 of 308

150 5 MorphMix

that with minor modifications, MorphMix should be able to cope well with

IPv6.

Code200 Exhibit 1009
Page 171 of 308

Chapter 6

Attacks on MorphMix

In this chapter, we analyse various attacks on MorphMix. We first describe

the basic attack model we will use throughout this chapter. Then we analyse
attacks where the adversary inserts different numbers of malicious nodes into

malicious selections. Afterwards, we look at attacks including malicious wit¬

nesses and DoS attacks. We also discuss attacks exploiting the peer discovery
mechanism and show that simply counting the occurrences of subnets in ex¬

tended selections would not work well to determine whether an anonymous

tunnel is good or malicious.

6.1 Basic Attack Model

We have mentioned in Section 5.5.2 that the most realistic threat on Mor¬

phMix is an adversary controlling several nodes in several /16 subnets. We

therefore focus primarily on attacks where the adversary tries to control as

many nodes in tunnels initiated by honest nodes by offering many or only
malicious nodes in malicious selections. However, it should be kept in mind

that there is a whole range of other attacks that are still possible against Mor¬

phMix, although we believe they are no significant threat. One of them is

the passive observer that can see parts of all traffic handled by MorphMix
nodes. If this adversary manages to observe both the cells on the virtual link

between initiator and the first intermediate node and the corresponding data

on the route between the final node and the server, he may succeed in break-

Code200 Exhibit 1009
Page 172 of 308

152 6 Attacks on MorphMix

ing the relationship anonymity between initiator and server (see Section 5.3).

However, since our threat model (see Section 5.4) is based on the assumption
that only a small fraction of all traffic can be observed by a realistic adver¬

sary, we do not consider this attacker as a significant threat. Furthermore,

since we do not employ digital certificates [86], there is no binding between a

node's IP address and its public key, which makes man-in-the-middle attack

a threat (see Section 5.5.2). But to implement this attack in an effective way

to break several virtual links and layers of encryption along an anonymous

tunnel, the adversary needs active control over many network links, which

is even more difficult than observing the data on these links passively. Fi¬

nally, there are attacks that MorphMix cannot cope with such as threats from

malware. An adversary could manipulate the MorphMix software, the oper¬

ating system or the application (for instance a web browser) that is used to

access the Internet anonymously in a way such that information about end-

to-end connections is leaked. Note that as is often the case with software that

attempts to increase a user's privacy or security, introducing a back-door is

much easier than breaking the system. Since it is likely that implementations
of the MorphMix software will be open source, introducing a few lines of

code that send information about all communication relationships of a user

to a centralised server is very easy. This is much simpler than controlling
several nodes or eavesdropping on a significant fraction of all traffic handled

by the MorphMix nodes to collect and correlate large amounts of data. The

best protection against malware in general is to download the software only
from trustworthy servers and to check its integrity with checksums based on

cryptographic hashes.

As defined in Section 5.6.3, a tunnel is malicious (or compromised) if the

adversary controls at least the first intermediate and the final node. Corre¬

spondingly, an anonymous tunnel is good if the adversary does not control

both the first intermediate and the final node. Looking at the collusion de¬

tection algorithm described in Algorithm 2 in Section 5.6.3, it is obvious that

setting up t tunnels results in ta tunnels being accepted and tr tunnels being

rejected. Similarly, there are tg good and tm malicious tunnels. Of the ta

tunnels that are accepted, tag are good and tam are malicious. Likewise, of

the tr tunnels that are rejected, tTm are indeed malicious but tTg are good.
The goal is to minimise both tam and tTg. Note that it is trivial to minimise

either one without considering the other: rejecting every tunnel means that

tam = 0 and accepting every tunnel implies tTg = 0. The difficulty is to keep
both values small simultaneously. Consequently, we are mainly interested in

Code200 Exhibit 1009
Page 173 of 308

6.1 Basic Attack Model 153

two figures in our following analyses. The first is the fraction of malicious

tunnels among the accepted tunnels, fam = tam/ta. The second is the frac¬

tion of good tunnels that were wrongly classified as malicious, fTg = tTg /tg,
which is - using intrusion detection systems terminology - nothing else than

the fraction of false positives. The prime goal is to minimise fam. Ifwe man¬

age to keep fam close to zero, then a reasonably low fraction of false positives

(e.g. 0.25) is acceptable.

Note that fTg and fam are not independent. With fam = tam/ta, ta =

tag + tam, tag =tg - tTg, and tTg = fTg tg, it follows

fam tg(i-fTg)+taj (61)

which means that a large fTg implies a large fam. So keeping the fraction

of false positives low is not only important for good usability of the system,

but especially to keep the fraction of malicious tunnels that are wrongfully

accepted as good low.

6.1.1 The Node Simulator

To analyse the effectiveness of attacks by an adversary controlling a subset of

the nodes, we have developed a node simulator that allows simulating attacks

onMorphMix from the point ofview ofa single node. Basically, the simulator

simulates setting up anonymous tunnels, focusing on the selections that are

offered to the node. The simulator also completely implements the collusion

detection mechanism and the peer discovery mechanism. The node simulator

has been used for all analyses in the previous, this, and the following chapter.
Note that this node simulator is not related to the MorphMix simulator we

will describe and use in Chapter 8.

The node simulator allows specifying a wide variety of parameters to

analyse different settings. The most important parameters them include:

• The number of /16 subnets that contain nodes

• The numberofhonest and malicious nodes and how they are distributed

over the /16 subnets

• The capabilities of nodes (see Section 7.3)

• The strategy of the adversary (how many malicious nodes to include in

selection and when to attack)

Code200 Exhibit 1009
Page 174 of 308

154 6 Attacks on MorphMix

• The tunnel length

In addition, the node simulator allows specifying several fundamental pa¬

rameters of MorphMix, including the selection size and size of the extended

selections list. In fact, we have used the node simulator to find reasonable

values for several MorphMix parameters, including the selection size in (5.1),

the size of the internal table in (5.2), and the number of slots in the internal

representation of the correlation distribution (see Section 5.6.1).

The node simulator can provide different outputs, including f Tg, fam, and

the correlation distribution depending on the number oftunnels that have been

set up.

6.1.2 Basic Scenario

For all attacks in this section, we use the same basic setting as in Figure 5.6:

there are 10000 nodes in 10000 different /16 subnets and every node has the

same probability ofbeing offered in a honest selection. The numberof collud¬

ing nodes ranges from 500^1000. According to (5.1), a selection contains 14

nodes, which means the adversary can vary the number of malicious nodes he

puts into a selection from 0-14. We set up 5000 anonymous tunnels, whereas

each tunnel consists of five nodes in total. Note that this is a very "clean" sce¬

nario because every node is in a different /16 subnet. In addition, if a fraction

/ of all nodes is malicious, it actually means that a fraction / of all /16 sub¬

nets are completely controlled by the adversary. However this clearly defined

scenario is perfectly suited to compare the basic effectiveness of different at¬

tack strategies that can be employed by an adversary. We will analyse more

realistic scenarios in Chapter 7.

With malicious nodes present in the system, it is never possible to reduce

fam to zero. Like in any mix network where malicious nodes are present,

it may always happen that the adversary controls the endpoints of an anony¬

mous tunnel. If we assume there are n nodes in MorphMix that all reside

in different /16 subnets, an adversary controls nc of them, and he picks the

nodes for the malicious selections randomly from the set of all (honest and

malicious) nodes, the probability he controls at least the first intermediate and

the final node in a tunnel is approximately (nc/n)2 (see Section5.3). There is

no way to detect such a tunnel because the malicious nodes behave in exactly
the same way as honest nodes during the tunnel setup. On the other hand, as

we have seen in Section 5.5.1, if MorphMix would not employ any collusion

detection mechanism, the adversary could easily control all nodes in a tunnel

Code200 Exhibit 1009
Page 175 of 308

6.2 Varying the Attack Level 155

if he controlled the first intermediate node. The resulting probability for the

adversary to control all intermediate nodes and the final node would be n c/n.
The goal of the collusion detection mechanism is therefore that the adversary
cannot do much better than he would if he played fair, i.e. if malicious nodes

picked the nodes in their selections randomly.

6.2 Varying the Attack Level

We first analyse what the adversary can achieve depending on his aggressive¬

ness. The more malicious nodes that are included in malicious selections, the

more aggressive the adversary is. We denote the number of malicious node

in malicious selections the attack level of the adversary. We look at two dif¬

ferent basic strategies. In the first, the adversary attacks always when one of

his nodes offers a selection. In the second, the adversary attacks only if he

controls the first intermediate node in the tunnel.

6.2.1 The Adversary Attacks Always

In this attack, the adversary always offers malicious nodes in its selection if

a malicious node is hit during the setup of an anonymous tunnel. First, we

assume the adversary uses always the same attack level, which means that the

number of malicious nodes in malicious selections is always the same. We

analyse different attack levels and how they influence the adversary's chances

to control as many tunnels as possible, i.e. to maximise fam. Figure 6.1

illustrates the average results over ten simulation roundsl
.

Figure 6.1 shows that unless the adversary controls 40% of all nodes (see

below for an explanation), it is not advisable for him to always include only
malicious nodes in malicious selections. This is not surprising, because Fig¬

ure 5.6 illustrates that the peaks resulting from the correlations of honest and

malicious extended selections are clearly separated as long as the fraction of

malicious nodes is reasonably small. Including fewer malicious nodes makes

malicious selections more similar to honest selections, and the peaks in the

correlation distribution can no longer be easily separated. Below a certain

threshold, it is virtually impossible for the correlation detection mechanism

to determine if a selection is malicious. For instance, if 10% of all nodes are

1
Without mentioning this again, we will use the average over ten simulation rounds in general

to generate plots of this kind in this and the next chapter

Code200 Exhibit 1009
Page 176 of 308

156 6 Attacks on MorphMix

5% mahcious nodes -—I

0 45 -10%

20%

malicious

malicious

nodes -

nodes

—X— "

04 -30%

40%

malicious

malicious

nodes

nodes -

D

-- -

1

0 35
'

'
-

03

^"
^

' -

0 25

02

0 15
t--*

--»-
--*

^
-

-'
-'

-
-
-

"

-a"

~

01, r a
a

Q
°

D
O D

Q
~

0 05. * *e * ^ * ^ SK
^K

H
~

0
: =^ "T-—-f"^#=^=*=fc=^#--it--¥--¥-+-*-

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

number of malicious nodes in malicious selections

Figure 6.1: fam ifthe adversary attacks always with the same attack level.

malicious, fam slowly increases as the the number ofmalicious nodes in mali¬

cious selections grows from 0-5, because honest and malicious selections are

too similar for the collusion detection mechanism to detect. With more than 5

malicious nodes in a malicious selection, the collusion detection mechanism

starts working correctly in the sense that more and more malicious selections

are detected if the attack level is increased. This can even better be seen when

looking at the correlation distribution. Figure 6.2 illustrates the correlation

distribution when 10% of the 10000 nodes are malicious. The number of

malicious nodes in selections is increased from 0-14.

For 0-5 malicious nodes in malicious selections, the peak from malicious

extended selections overlaps completely with the peak from honest extended

selections. Only increasing the number of malicious nodes in malicious se¬

lections to 6 and beyond makes it more and more possible to separate the

peaks and detect malicious nodes with higher and higher probability. We

conclude the collusion detection mechanism cannot completely prevent ma¬

licious nodes from offering some malicious nodes in their selections, but it

prevents them from offering too many such nodes.

Figure 6.2 also serves well to explain how the correlation limit is deter¬

mined. We do not try to detect two peaks and pick the minimum between

them. This would not always work because if there are no malicious nodes,

there is no second peak and if there are different, independent adversaries,

Code200 Exhibit 1009
Page 177 of 308

6.2 Varying the Attack Level 157

0 malicious nodes 2 malicious nodes 4 malicious nodes

5 malicious nodes 6 malicious nodes 7 malicious nodes

9 malicious nodes 11 malicious nodes 14 malicious nodes

Figure 6.2: Correlation distribution when varying the attack levelfrom 0-14.

there are "multiple second peaks", which could also overlap. In addition,

as it is the case in Figure 6.2 when about 6-9 malicious nodes are used in

malicious selections, determining the minimum is difficult if the peak from

malicious extended selections overlaps with the peak from the honest ones

and the sum of the two does not result in two peaks but looks more like one

peak with a tail on the right end. The strategy is therefore to use the left

flank of the first peak and the maximum of this peak as a reference to guess

the approximate end of the first peak. This allows to detect at least some

malicious selections even when the peaks overlap significantly. For more de¬

tails about determining the correlation limit, refer to the MorphMix prototype

implementation (see Appendix A.7).

Depending on the percentage of malicious nodes, there is an optimum
number of malicious nodes that should be offered in malicious selections for

Code200 Exhibit 1009
Page 178 of 308

158 6 Attacks on MorphMix

the adversary to be most effective. We name this optimum numberthe optimal
attack level. It is defined as the maximum number of malicious nodes in mali¬

cious selections suchthat the two peaks still overlap completely. With 10000

nodes in the system and if 10% of all nodes are malicious, Figure 6.2 tells

us that the optimal attack level is 5. This is confirmed by Figure 6.1, which

tells us indeed that the adversary manages to control a maximum fraction of

0.0142 of all tunnels if he uses 5 malicious nodes in malicious selections.

This is larger than the fraction of 0.12 = 0.01 he would control if he played

fair, but is also much smaller than the fraction of 0.1 he would control if no

collusion detection mechanism were employed.

Figure 6.1 also shows that the collusion detection mechanism has its limits

if the percentage of malicious nodes increases. With 20% malicious nodes,

the adversary manages to control a fraction of 0.0535 of all tunnels compared
to 0.04 if the malicious nodes played fair and with 30% malicious nodes,

this grows to 0.128 compared to 0.09 if the adversary played fair. With 40%

malicious nodes, however, the collusion detection mechanism does no longer
work and the adversary manages to compromise a fraction of nearly 0.38 of

all tunnels instead of 0.16 if he played fair. This can be explained by looking
at Figure 5.6 and realising that the peaks resulting from selections from honest

and malicious nodes move closer together as the number of malicious nodes

gets larger.

A variation of the first attack is to still attack always, but to attack with

a higher level if the final node is appended to the anonymous tunnel. This

means that if the adversary controls the last intermediate node, this node

offers only other malicious nodes in the selection for the final node. If an

intermediate node is appended to a malicious node, the node offers fewer ma¬

licious nodes in the selection. This attack is difficult to mount in practice
because the adversary cannot know when the final node is appended. Assum¬

ing the adversary controls indeed the last intermediate node in a tunnel, the

predecessor node ofthe final intermediate node is honest, and there is an addi¬

tional malicious node in the tunnel, the adversary can try to correlate the cells

handled by both malicious nodes during the tunnel setup. Since the number

of nodes along anonymous tunnels is reasonably small in practice, e.g. five,

this may tell the adversary the position of the last intermediate node in the

tunnel. However, there are only a few cells that are handled by both mali¬

cious nodes before the last intermediate node must send back the selection

for the final node to the initiator. If there are many nodes in the system, these

cells are definitely not enough to make a correct guess with high probability.

Code200 Exhibit 1009
Page 179 of 308

6.2 Varying the Attack Level 159

Another possibility for a malicious node is to guess its position without cor¬

relating data with other nodes. The idea is to measure the time that has passed
between sending message 9 in Figure 5.5 to append the malicious node and

receiving message 1 to append the next node. If the measured time is very

small, then it is likely that there is no other node between the initiator and the

malicious node. If the time increases, it is more likely that there are "a few"

other nodes in between. However, if the initiator introduces a random delay
of several seconds between the reception of message 10 (or message 9 if the

first intermediate node is appended) and sending out message 1 to append
the next hop, it is virtually impossible for a malicious node to determine its

position in an anonymous tunnel during the setup. Nevertheless, we analyse
the impact of this attack assuming the adversary always knows when the final

node is appended to the tunnel to compare it with the attack described above.

We vary the number of malicious nodes in malicious selections from 0-

14 when another intermediate node is appended. When the final node is ap¬

pended, malicious nodes offer 14 malicious nodes in the selection. Figure 6.3

depicts the fraction of malicious tunnels among the accepted tunnels.

50

45

y)
40

c

Z5 3b

y)

CJ 30
o

CO

F 25

o

m A)
m

c 15

0
Q. 10

5

0

5% malicious nodes ——I—

1 1 1 1 1 1 1

_10% malicious nodes —-x—

20% malicious nodes ^

30% malicious nodes D

40% malicious nodes - -» -

A

-

-m-
"

-m
"

,
"

-"

w

~

r a a a o
o

a

~

- ~

; s*

—*—-S-__&_-*-—*-
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

number of malicious nodes in malicious selections from intermediate nodes

Figure 6.3: fam ifthe adversary attacks with different attack levels.

The attack is slightly more efficient than the one above. For instance,

with 10% malicious nodes in the system, the adversary controls a fraction of

0.0147 of all tunnels if he uses one malicious node in his selections.

Code200 Exhibit 1009
Page 180 of 308

160 6 Attacks on MorphMix

6.2.2 The Adversary Attacks Selectively

A better strategy for the adversary is to attack only if he controls the first

intermediate node in an anonymous tunnel. Intuitively, this makes sense be¬

cause breaking the relationship between initiator and server is only possible
if he controls the first intermediate node in the corresponding tunnel. Attack¬

ing when the first intermediate node is not controlled delivers unnecessarily
an extended malicious selection with several malicious nodes to the initia¬

tor. Since a node stores the extended selections it receives in the extended

selections list, this increases the correlation of further malicious extended se¬

lections with several malicious nodes that are sent to the same initiator. In the

following two attacks, malicious nodes offer only honest nodes in their selec¬

tions whenever the first intermediate node is not controlled by the adversary.

Again, these attacks are difficult to carry out in practice. The adversary
must decide during the setup whether a node he controls is the first interme¬

diate node along an anonymous tunnel. This is very difficult since all infor¬

mation a malicious first intermediate node has is to measure the time between

sending messages 9 in Figure 5.5 to the initiator and receiving message 1 to

append the next hop. In addition, if the first intermediate node is indeed mali¬

cious and one or more honest nodes are picked as the next nodes in the tunnel,

it is very difficult to determine for a malicious node appended to this tunnel

whether the first intermediate node is also malicious, for the same reasons as

discussed in Section 6.2.1. We still analyse the impact of the following two

attacks in the same way as above.

Like in the case where the adversary attacks always, we first assume the

number of malicious nodes in malicious selections is always the same. We

analyse different attack levels and how they influence the adversary's changes
to control as many tunnels as possible (fam). Figure 6.4 illustrates the results.

Compared to Figure 6.1, this strategy gives the adversary better chances to

control a malicious tunnel. With 10% malicious nodes, the maximum fam in¬

creases from 0.0142 with 5 malicious nodes in malicious selections to about

0.0175 with 8 malicious nodes. Interestingly, the adversaries chances de¬

crease compared to Figure 6.1 if he controls 40% of all nodes. The reason is

that the initiator now gets fewer malicious selections, which causes the peak
from correlations of malicious extended selections to be smaller than in Fig¬
ure 5.6(f). As a result, the initiator can better detect the leftmost peak and a

reasonable correlation limit.

We also examine the adversary's changes if he attacks with a higher attack

Code200 Exhibit 1009
Page 181 of 308

6.2 Varying the Attack Level 161

05

0 45

04

0 35

03

0 25

02

0 15

0 1

0 05

0

5% malicious nodes -—1—

-10% malicious nodes -—X— -

20% malicious nodes -X

-30% malicious nodes D
_

40% malicious nodes - -- -

-

-

-»-
^

"n

-

i--»
.-»-*

r °
D

D
D Q D

O U O
a

D

X

v
-

r * * r. * * ^ -^ X

*

-_^^_-*-

n

-Jfl-

:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

number of malicious nodes in malicious selections

Figure 6.4: fam if the adversary attacks always with the same attack level

but only ifhe controls thefirst intermediate node.

level when the final node is appended to the anonymous tunnel. To carry out

this attack, the adversary must not only know if he controls the first interme¬

diate node, but also guess when the final node is appended to a tunnel, which

is even more complicated than the attack above. Assuming the adversary
controls the first intermediate node, we vary the number of malicious nodes

in malicious selections from malicious nodes from 0-14 when another inter¬

mediate node is appended. When the final node is appended, malicious nodes

offer 14 malicious nodes in the selection. Figure 6.5 depicts the fraction of

malicious tunnels among the accepted tunnels.

This maximum fam that can be achieved with this attack is again larger
than before. Compared to Figure 6.1 and an adversary controlling 10% of all

nodes, the maximum fam increases to about 0.0231.

6.2.3 Summary

Comparing the attacks described above, we conclude the adversary should

attack only if he controls the first intermediate node in an anonymous tunnel

and attack with a higher attack level when appending the final node. However,

as already pointed out, this attack is nearly impossible to mount in practice
because decisions have to be made based on very little information. In partie-

Code200 Exhibit 1009
Page 182 of 308

162 6 Attacks on MorphMix

05

0 45

04

0 35

03

0 25

02

0 15

0 1

0 05

0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

number of malicious nodes in malicious selections from intermediate nodes

5% mahcious nodes -—i—

'

-10% malicious nodes -—x— -

20% malicious nodes -*

-30% malicious nodes D
_

40% malicious nodes - -- -

-

l--b- __«----
------ -

-» - -m-
^

-*
^

~~B

-

- sa -

i- D
D D a d O D

D

v

_

- a v -

: * * * * * Xr
-*

^

*
a

_

^f-^#=
*

=-*--$--J--*-: u-—-1 1——i 1— 1 —$~

Figure 6.5: fam ifthe adversary attacks with different attack levels but only

ifhe controls thefirst intermediate node.

ular, having the initiator introduce a random delay of several seconds between

the reception of message 10 (or message 9 if the first intermediate node is ap¬

pended) and sending out message 1 to append the next hop makes it virtually

impossible for a malicious node to find out if it is the first intermediate node in

a tunnel. Similarly, even if a malicious node leams it is the last intermediate

node before it offers the selection to the initiator, only very little informa¬

tion is available for the adversary to find out if the first intermediate node of

this tunnel is also malicious. Of course, the adversary can always make a

guess, but the uncertainty about when to attack will result in several missed

opportunities where he should have attacked but did not, and many situations

where he wastes a malicious extended selection because he decided to attack

although he didn't control the first intermediate node.

To support this claim, we analyse the impact of wrong guesses on the

results in Figure 6.5. In this scenario, the adversary has to decide between

three options when he controls a node: attack by offering only malicious

nodes, attack with the reduced attack level, or do not attack and offer only
honest nodes. Simply guessing would tell the adversary the right thing to do

in 1/3 of all cases when he controls a node. To analyse the impact of wrong

guesses, we analyse two cases. In the first case, we assume the adversary

guesses correctly with a probability of 1/2; in the second case we increase

Code200 Exhibit 1009
Page 183 of 308

6.2 Varying the Attack Level 163

this probability to 2/3. If the adversary make the wrong guess, we assume he

chooses any one of the two other options with equal probability. The results

are illustrated in Figure 6.6.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

number of malicious nodes in malicious selections from intermediate nodes number of malicious nodes in malicious selections from intermediate nodes

a) guessing correctly with prob. 1/2 b) guessing correctly with prob. 2/3

Figure 6.6: fam ifthe adversary attacks with different attack levels but only

ifhe controls thefirst intermediate node, assuming he does not always guess

correctly.

Comparing Figures 6.5 and 6.6, we see that the higher the probability the

adversary makes a correct guess, the larger the number of malicious tunnels

among the accepted tunnels, which is not surprising. However, comparing

Figures 6.1 and 6.6(b) shows that the adversary must guess correctly with a

probability of about 2/3 or better to be as successful as when he attacks al¬

ways with the same attack level. Since guessing correctly with a probability
of 2/3 is very unlikely according to our discussion in this section, we can state

that the adversary will be more successful in practice by attacking always with

the same attack level thanby employing the strategy in Figure 6.5. Similar ar¬

guments canbe made for the other two attacks that depend on correct guesses,

illustrated in Figures 6.3 and 6.4. Since these attacks result in a smaller fam
than the attack in Figure 6.5 assuming the adversary always guesses correctly,
we expect they also result in a smaller fam than in Figure 6.6(b) in practice.
We therefore conclude that of all attacks we have discussed in this section, the

one where the adversary attacks always with the same attack level results in

the largest fam in practice. The adversary can get all information to carry out

this attack optimally, because observing the system tells him the approximate
number of different /16 subnets with nodes in the system. This can then be

used to determine the optimal attack level. One way to determine this optimal

Code200 Exhibit 1009
Page 184 of 308

164 6 Attacks on MorphMix

level is by employing the same methodwe do throughout this thesis: by using
our node simulator and testing the effectiveness of different attack levels.

6.3 Attacks Including Malicious Witnesses

Recalling the procedure to append a node to a tunnel in Figure 5.5, there is a

potential attack that can be used if the node 6 that appends the next hop to the

tunnel and the witness collude. Although b cannot yet know if the witness will

be also malicious, it can hope for a malicious witness and generate a forged
selection for the initiator. This selection contains any IP addresses of nodes

that are not in the 6's collusion and self-generated public keys of which node

b knows the corresponding secret keys. If it turns out that the witness is really

malicious, b and w can decrypt DHa sent by the initiator in message 3 and b

can simulate the next hop itself. However if the witness is not malicious, the

setup will fail because w will either not be able to contact c at all because 6 did

not include the IP addresses of existing MorphMix nodes or c won't be able to

decryptDHa in message 5 because it is not encrypted with c's real public key.
But even if b and w are malicious and b simulates c itself, this will be detected

when appending the next hop if that witness is not malicious because it will

include 6's IP address in the receipt in message 7. Therefore, it does not make

sense that the adversary makes use of this attack if he controls a node early in

the tunnel, because most attacks would be detected. However, assuming the

adversary knows when the final node is appended to the anonymous tunnel,

it could make sense to employ this attack when the last intermediate node is

malicious. Again, this attack is not easy to mount because finding out when

the final node is appended is difficult in practice.

We analyse the impact of this attack. We vary the number of malicious

nodes in malicious selections from 0-14 when another intermediate node is

appended. When the final node is appended, malicious nodes hope for a ma¬

licious witness and offer only IP addresses in /16 subnets that do not contain

malicious nodes and also include self-generated public keys of which they
know the secret keys. Figure 6.7 depicts the fraction of malicious tunnels

among the accepted tunnels.

Whencontrolling20%ofallnodesorfewer, the maximum ,farri is smaller

than in Figure 6.1. It seems that the probability that 6 and w are colluding
when appending the last hop is too small to gain anything from this attack.

With 30 or 40% malicious nodes, fa is slightly larger than in Figure 6.1.

Code200 Exhibit 1009
Page 185 of 308

6.4 Denial of Service Attacks 165

05

0 45

04

0 35

03

0 25

02

0 15

0 1

0 05

0

5%

-10%

20%

-30%

40%

malicious nodes -

malicious nodes -

malicious nodes

malicious nodes

malicious nodes -

1

—X—

-X

D

-- -

"

L'

-

-»-

-,

\

"

o
1

q O D O Ö o D
Q

a

s

"

r * >£ * * * -^ X
H4

-4-

n

B

"1
»f

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

number of malicious nodes in malicious selections

Figure 6.7: fam ifthe adversary hopesfor a malicious witness when thefinal
node is appended.

Considering that this attack is significantly more difficult to mount than the

one in Figure 6.1, it is very unlikely to be more effective in practice for the

reasons we discussed in Section 6.2.3. Consequently, it does not make sense

for an adversary to use this attack.

6.4 Denial of Service Attacks

Any MorphMix node can always choose not to forward cells, and there is

nothing MorphMix can do about it. For the initiator, an anonymous tunnel

simply fails to transport data; it cannot distinguishbetween a congested node,

a failure or congestion in the underlying physical network, a node that has

crashed, or a node that refuses to forward data. If a tunnel fails, all end-to-

end communication relationships that use this tunnel also fail.

This can be exploited by the adversary because it may always happen
that a tunnel that is accepted by the initiator contains malicious nodes, but

the tunnel itself is not malicious because the adversary does not control both

the first intermediate and the final node. If the adversary refuses to transport

data through these tunnels after they have completely been set up, t
ag gets

smaller and so does ta, but ta stays the same. Since fa = ta /ta, fa

Code200 Exhibit 1009
Page 186 of 308

166 6 Attacks on MorphMix

gets larger, i.e. the fraction of malicious tunnels among all tunnels accepted

by the initiator gets larger.

Figure 6.8 depicts the impact of this attack. We use the same setting as

in Figure 6.1 where the adversary attacks always with the same attack level.

However, if the adversary controls at least one node along the tunnel but not

both the first intermediate and the final node, he won't forward any data along
this tunnel, which means the initiator cannot use it.

- »-
m

m

„
m"

_
\

5% mal ClOUS nodes -—i—

10%

20%

30%

mal

mal

mal

CIOUS

ClOUS

ClOUS

nodes -

nodes

nodes

—x-

-x

" 40% mal ClOUS nodes - -- -

]
O O

G
O D a

O -

r X.
* * Xr '%- ^

-^

^

a
-

;- -^t-^t^=£^-^~^-^^=4--*-—¥---M—«--fr-
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

number of malicious nodes in malicious selections

Figure 6.8: fam if the adversary attacks always with the same attack level

and refuses to forward data along any tunnel where he controls at least one

node but not both thefirst intermediate and thefinal node.

With 5 or 10% malicious nodes, fam is not significantly larger than in

Figure 6.1. However, as the percentage of malicious nodes grows, fam sig¬

nificantly increases. For instance, with 20% malicious nodes fam grows to

0.106 compared to 0.0535 in Figure 6.1, and with 30% malicious nodes fam
is 0.311 compared to 0.128 in Figure 6.1.

The explanation for this is that with 10% malicious nodes, the probabil¬

ity there is at least one malicious node in a tunnel is about 0.34. This is not

depicted in Figure 6.8 but was produced as an additional output during the

analysis with the node simulator to generate the results in Figure 6.8. With

20% malicious nodes, this probability increases to 0.59 and with 30% ma¬

licious nodes to 0.77. It is therefore not surprising that as the percentage of

malicious nodes grows, more and more tunnels that are actually good because

Code200 Exhibit 1009
Page 187 of 308

6.4 Denial of Service Attacks 167

the adversary does not control both the first intermediate and last node cannot

be used because the adversary blocks the data flowing through them.

Such DoS attacks are not a specific MorphMix problem, but a general

problem of mix networks where the adversary operates a subset of the mixes

himself: if the adversary blocks the traffic along all chains of mixes where he

controls at least one node but not all the nodes he needs to break the chain,

his success rate increases. It seems difficult to prevent this attack, but one

possibility to reduce its impact is to couple MorphMix with a reputation sys¬

tem. Nodes repeatedly failing to forward data would get a bad reputation
over time and would no longer be offered in extended selections from honest

nodes. Research on reputation systems is still in its infancy, but initial studies

to make mix networks more reliable through reputation have been carried out

(see Section 3.5).

Although the theoretical threat from these attacks is significant if the per¬

centage of the nodes controlled by the adversary exceeds 15-20%, it is not

trivial to mount in practice. Before refusing to transport data through a par¬

ticular tunnel, the adversary first must be sure that he does really not control

the first intermediate and the final node. Correctly determining this with high

probability is only possible after several cells have been transported along
the tunnel. The collected data must be sent to a centralised place where the

traffic flowing through the various malicious nodes can be correlated to leam

which tunnels the adversary controls and which he can block. This takes time

and depending on the system size, the number of malicious nodes, and the

amount of data transported through a tunnel before it is torn down, this may

take longer than the average lifetime of a tunnel. It should be at least possi¬
ble for a user to send and receive some data through such a tunnel before the

adversary starts blocking the traffic, which reduces the impact of the attack.

We conclude that in practice, the adversary could be able to find out quickly

enough if he controls nodes in a tunnel that is not malicious to block the traf¬

fic before the lifetime of the tunnel expires, which increases fam compared
to Figure 6.1. However, especially if the percentage of malicious nodes is

below 15-20% malicious nodes, the expected gain for the adversary won't be

significant.

As a side note, another strategy for an adversary is to participate in Mor¬

phMix with several nodes simply to disrupt the service and not to link initia¬

tors to servers. To do so, his nodes would accept tunnels being established

through them but refuse to transport data once a tunnel has been set up or

stop forwarding data after it has been used for a while. Depending on the

Code200 Exhibit 1009
Page 188 of 308

168 6 Attacks on MorphMix

application, MorphMix is resilient to tunnel failures up to a certain degree

by switching to another tunnel if a tunnel fails and establishing the commu¬

nication relationship wit the server again. For instance, in the case of web

browsing, if downloading a web page is interrupted, the page can simply be

downloaded again using another tunnel (see Section 8.3.9). But in general,
this attack can be quite effective in the sense that if most tunnels fail, the

quality of service as perceived by the users gets so poor that they no longer

use MorphMix. As discussed above, a reputation system could help against
DoS attacks in general by excluding nodes that have a history of offering poor
service.

6.5 Exploiting the Peer Discovery Mechanism

During initial peer discovery, a node a contacts another node 6 directly to

leam about some other nodes. Afterwards, 6 knows some nodes a is storing
in its node lookup list. Let's assume 6 is malicious and 6 tells a about m

malicious nodes {mi, m2,..., mm} that are part of 6's collusion. Ifwe look

at one of these nodes and identify it with mfc, 1 < k < m, then we can

say that if mk gets picked later as a witness to add a hop to an anonymous

tunnel, then it could be that a is the initiator of this tunnel. The adversary

can maximise his chances to be successful with this attack by making sure

the nodes are advertised only to a and to no other node. However, a could

itself tell others about some or all of these nodes during initial or continuous

peer discovery, which implies the adversary cannot be sure if the initiator

is indeed a if mk is picked as a witness. In addition, a may have removed

mk from its node lookup list if it has learned about several other nodes in

the same /16 subnet or if it has contacted mk directly to pick it as a new

neighbour. But assuming the adversary has told about m k exclusively to a

and assuming a has not informed other nodes about it, then a malicious node

c that is colluding with 6 and mk and that is appended to a tunnel can be sure

that a is the initiator of this tunnel if mk is picked as the witness for adding
this hop. If no further nodes are appended, the tunnel is compromisedbecause

the adversary controls the final node and knows how the initiator is.

Looking at continuous peer discovery, there is a similar exploit. A mali¬

cious node 6 offers m other malicious nodes {mi, m2,..., mm} exclusively
in one selection. Let's assume that a is the initiator of this tunnel, it happens
the adversary controls the final node, and, by correlating the data that are

Code200 Exhibit 1009
Page 189 of 308

6.5 Exploiting the Peer Discovery Mechanism 169

sent along the tunnel, the adversary can determine that the selection above

was offered during the setup of this tunnel. Unless the adversary controls

also the first intermediate node in this tunnel, he cannot know that a is the

initiator at this time, but since the adversary controls the final node, he re¬

members all servers that were contacted using this tunnel. If later, a contacts

any mfc, 1 < k < m directly to pick it as a new neighbour, and ifwe assume

that a has not informed others about m k, then the adversary can be sure that

a was the initiator of the tunnel.

How useful are these attacks? The first attack requires that when m k is

picked as a witness, a malicious node must be appended. In addition, the fi¬

nal node in the tunnel must be malicious, which is trivial is no further nodes

are appended after mk has been picked as the witness. So even if mk is in¬

deed selected as a witness, it is by no means guaranteed that the final node

will also be malicious. The second attack suffers from the problem that the

final node does not offer a selection and malicious intermediate nodes cannot

predict if the final node in the tunnel will also be in their collusion. Conse¬

quently, the malicious intermediate nodes must offer other malicious nodes

exclusively in their selections although the probability the final node will be

malicious is relatively small. In general, the problem is similar in both cases:

in the first attack, the final node must be malicious when m k is picked as a

witness and in the second case, the final node must be malicious when m k is

offered in a selection. But beyond this, both attacks suffer from the problem
that they are very uncertain to succeed because the nodes can be overwritten

with other nodes from the same /16 subnet in the targeted user's node lookup
list or information about them can be forwarded to other nodes during peer

discovery. So looking at the first attack, the adversary has no way to tell if

the node picking mk as a witness is indeed the same node that received mk

exclusively earlier. Similarly, in the second attack, the adversary does not

know if the node directly contacting mk is the same node that received mk

exclusively as part of a malicious selection before. Another problem for the

adversary is to decide when an exclusive node can be reused. Since the infor¬

mation about a node may remain in a node lookup list for a long time until

it is removed (see Section 5.7.3), the adversary does not know if a node has

been overwritten or is still out there in the targeted node's list if it has never

been contacted directly or used as a witness. If the targeted node has further

disseminated information about the node, things get even more complicated
because its virtually impossible for an attacker to tell when a node has been

removed from the node lookup lists of all nodes.

Code200 Exhibit 1009
Page 190 of 308

170 6 Attacks on MorphMix

The main problems with exploiting the peer discovery mechanisms are the

uncertainty when deciding ifan attack was successful or not and that multiple
malicious nodes must be assigned exclusively to a single attack without being
reusable for a potentially long time. The second problem gets smaller when

the adversary owns several /16 subnets, which gives him quite large reservoir

of exclusive nodes. But operating many nodes in one subnet increases the

probability that the nodes in these subnets are overwritten quickly in the node

lookup lists. Looking at all the complications with the attacks exploiting peer

discovery, we argue that they are unlikely to be effective in practice. The

attacks may be used and even be effective from time to time on a small scale,

but are not well suited to attack on a large scale.

6.6 Why Counting the Occurrences of Subnets

does not Work

We stated in Section 5.6.1 that simply counting how many times the subnets

in an extended selection show up in the extended selections list would not

work well. Here, we show a simple attack how the adversary could exploit
this. We use again 10000 nodes in 10000 subnets, 1000 of which are mali¬

cious. Malicious nodes offer six malicious nodes in their selections, but if a

malicious node is asked by one of its honest neighbours if it is willing to be

the next hop in an anonymous tunnel, then it accepts this with a probability of

only 0.35. The main idea behind this strategy is to compensate the increase of

malicious nodes in malicious selection with the frequency they are included

in honest selection. Figure 6.9 illustrates the occurrences of the 10000 /16

subnets. The first 9000 entries are the subnets with honest nodes while the

last 1000 subnets contain malicious nodes.

Looking at Figure 6.9, it is virtually impossible to tell what subnets con¬

tain many malicious nodes. Using the collusion detection mechanism based

on occurrences of subnets in the extended selections list in our node simulator,

we found out that the adversary would have managed to control the first inter¬

mediate and final node in a fraction of about 0.036 of all tunnels accepted by
the initiator. This is significantly larger than the maximum fraction of 0.0142

of all tunnels that are malicious according to Figure 6.1 with 10% malicious

nodes and when using the "real" collusion detection mechanism as described

in Section 5.6.1. Carrying out the attack above and using the real collusion

detection mechanism, the fraction of malicious tunnels drops from 0.036 to

Code200 Exhibit 1009
Page 191 of 308

6.7 Summary 171

Figure 6.9: Occurrences of716 subnets in the extended selections list.

about 0.0043. We therefore conclude that the correlation as it is computed
in Algorithm 1 in Section 5.6.1 is a useful measure to leam which extended

selections contain many malicious nodes.

6.7 Summary

Based on the assumption that an adversary controlling a subset of all nodes

is the biggest threat to MorphMix, we have analysed several different attack

strategies. The most reasonable basic attack the adversary should make use

of is attacking always with the same attack level, as analysed in Figure 6.1.

Attacking with different levels or attacking only when the first intermediate

node is malicious is very difficult in practice and very unlikely to be more

successful as we have shown in Figure 6.6.

The DoS attack where the adversary refuses to forward data in tunnels

where he does not control both the first intermediate and the final node is a

potential threat because it significantly increases fam, especially if the ad¬

versary controls at least 15-20% of all nodes. However, we can expect its

practical impact to be much smaller than in the theoretical analysis in Fig¬

ure 6.8 because the tunnels where traffic would be blocked can only be iden¬

tified after several cells have been sent through them. In general, any kind

Code200 Exhibit 1009
Page 192 of 308

172 6 Attacks on MorphMix

of DoS attack is a problem if the quality of service as perceived by the users

gets so poor that they no longer use MorphMix. One possibility to reduce the

impact of DoS attacks are future advances in research on reputation systems

and their application to mix networks. Exploiting the peer discovery mech¬

anism could give the adversary an advantage for a short time, but turns out

to be very problematic in the long run, since the adversary cannot control to

which other nodes information about exclusive nodes are propagated after the

information has been given to one particular node. Finally, we have shown

that simply counting how many times the subnets in an extended selection

show up in the extended selections list would not be a useful alternative to

our collusion detection mechanism to detect malicious selections.

Consequently, we assume the adversary attacks always with the same at¬

tack level in the remainder of this thesis. We also assume he can always
determine the optimal attack level to use to maximise fam. Using this as¬

sumptions, Figure 6.10 depicts the fraction of malicious tunnels among the

accepted tunnels depending on the percentage of malicious nodes (0-40%).

The top line shows the fraction of malicious tunnels if no collusion detec¬

tion mechanism is employed, which corresponds to nc/n if nc of n nodes

are malicious. The bottom line shows the fraction if the adversary plays fair,

i.e. if malicious nodes picked the nodes in their selections randomly from the

set of all nodes, which corresponds to (nc/n)2. The line in between shows

the fraction of malicious tunnels if the adversary uses the optimal attack level

depending on the percentage of nodes he controls. The table below the figure

gives the optimal attack level to maximise fam. The setting is the one we

described in Section 6.1.

As long as the percentage of malicious nodes is reasonably small, the

collusion detection mechanism works well in the sense that the adversary
cannot compromise significantly more tunnels than if he plays fair. If the

adversary controls more than about a third of all nodes, the collusion detection

mechanism starts failing because the peaks resulting from selections from

honest and malicious nodes are too close together to determine a reasonable

correlation limit (see Section 5.6.1).

Note that since we used a setting where every node is located in its own

/16 subnet, the results in Figure 6.10 can also be interpreted by replacingper¬

centage ofmalicious nodes with percentage ofsubnets where the adversary
hasfull control. Consequently, Figure 6.10 also tells the fraction of malicious

tunnels depending on the percentage of all /16 subnets where the adversary
has full control assuming all /16 subnets contain the same number of nodes

Code200 Exhibit 1009
Page 193 of 308

6.7 Summary 173

04

0 35

03

0 25

02

0 15

0 1

0 05

0

without collusion detection

with collusion detection

malicious nodes play fair

10 15 20 25 30

percentage of malicious nodes

malicious nodes (%) 25 5 75 10 12 5 15 17 5 20

optimal attack level 3 4 5 5 5 5 6 6

malicious nodes (%) 22 5 25 27 5 30 32 5 35 37 5 40

optimal attack level 6 6 7 7 8 14 14 14

Figure 6.10: /„

playsfair

without and with collusion detection, and ifthe adversary

and all nodes have the same probability ofbeing offered in honest selections.

Considering that fully controlling 10% of all /16 subnets is difficult according
to our threat model (see Section 5.4), we can expect already now that assum¬

ing there are honest nodes in most public /16 subnets, a realistic adversary
should only manage to compromise a small fraction of all tunnels that are

accepted by the initiator. Nevertheless, we will analyse this in more detail in

the next chapter where we assume more realistic scenarios than the one we

used in this chapter to compare different attack strategies.

Code200 Exhibit 1009
Page 194 of 308

Chapter 7

Analysis of the Collusion

Detection Mechanism

In this chapter, we evaluate the performance of the collusion detection mech¬

anism. We first use the basic scenario from the previous chapter to see what

happens if a node joins MorphMix for the first time. Then, we extend this

basic scenario to analyse the effect if there are honest and malicious nodes in

the same subnet. Afterwards, we examine realistic scenarios with many nodes

and analyse the influence of nodes that have different capabilities and that are

not participating in MorphMix all the time. We also look at how optimis¬

ing the quality of anonymous tunnels in terms of throughput affects collusion

detection, analyse the influence if there are different numbers of nodes in the

different subnets, and examine the effect ofusing different tunnel lengths than

five.

7.1 Joining MorphMix for the first Time

In our first analysis, we want to examine what happens if a node joins Mor¬

phMix for the first time with an empty extended selections list. It is reason¬

able to assume that a node first has to set up several anonymous tunnels until

the correlation distribution starts getting its typical shape and the initiator can

make valid decisions about whether a new extended selection is good or ma¬

licious.

Code200 Exhibit 1009
Page 195 of 308

7.1 Joining MorphMix for the first Time 175

We use the same setting as in Chapter 6 and vary the percentage of ma¬

licious nodes from 0-40%. Malicious nodes attack always using the optimal
attack level. We are interested in the the fraction of malicious tunnels among

the accepted tunnels (/am) and the fraction of false positives (frg) depending

on the number of tunnels that have been set up. Figure 7.1 shows the results.

The data are represented as a rolling average over the 200 most recently set

up anonymous tunnels. Below each individual graph, the optimal attack level

is given in parenthesis.

a) 0% malicious (-) b) 5% malicious (4) c) 10% malicious (5)

d) 20% malicious (6) e) 30% malicious (7) f) 40% malicious (14)

Figure 7.1: Performance with 10000 nodes.

Starting with an empty internal table, the fraction of false positives is

quite high at the beginning but starts dropping quickly. Recalling that accord¬

ing to Section 5.5.1, a new tunnel is set up every two minutes on average,

and considering that a large fraction of false positives only increases this rate

because if a tunnel is rejected, another is set up right away, the fraction of

false positives should drop below 0.5 within a few hours after having joined

MorphMix. After having set up about 1000 tunnels, the fraction of false pos¬

itives has reached approximately 0.2 and remains at this level. This implies
that in the long run, one out of five tunnels that are actually good are rejected

by the initiator. However, this no significant problem because as discussed in

Section 5.5.1, setting up anonymous tunnels is a background process to keep
a pool of usable tunnels ready at any time. Similarly, Figure 7.1 shows that it

Code200 Exhibit 1009
Page 196 of 308

176 7 Analysis of the Collusion Detection Mechanism

takes setting up several tunnels until the fraction of malicious tunnels among

the accepted tunnels has reached a "steady state", but in general, the fraction

of malicious tunnels among the accepted tunnels is not especially large in the

beginning. This is surprising, but can be explained with the way the correla¬

tion distribution is built starting with an empty extended selections list. After

a few tunnels have been set up, the shape of the correlation distribution does

not yet look as in Figure 6.2, but consist of several small peaks. Since the

left flank of the first peak is used as a reference to determine the correlation

limit according to Algorithm 2 in Section 5.6.3, the resulting correlation limit

is usually chosen too small in the beginning. One can also say the correla¬

tion limit is selected conservatively in the beginning to guarantee only a small

fraction of malicious tunnels, but at the cost of more false positives.

Since the size of MorphMix is determined by the number of different /16

subnets in which the nodes are located, we conclude that joining the system

for the first time when there are 10000 different subnets works well. In Sec¬

tion 5.6, we mentioned there are 56559 public /16 subnets in the Internet.

What about joining the system for the first time if there are nodes present in

nearly all/16 subnets? Figure 7.2 repeats the analysis for a system with 50000

nodes in 50000 different/16 subnets. This time, we set up 10000 tunnels.

a) 0% malicious (-) b) 5% malicious (7) c) 10% malicious (8)

d) 20% malicious (9) e) 30% malicious (10) f) 40% malicious (20)

Figure 7.2: Performance with 50000 nodes.

The results are very similar to those in Figure 7.1, with the exception

Code200 Exhibit 1009
Page 197 of 308

7.2 Honest and Malicious Nodes in the same /16 Subnet 177

that it takes setting up about 4000 anonymous tunnels until the fraction of

false positives reaches and remains at approximately 0.2. But still, joining
the system for the first time is not a problem, although the fraction of false

positives will be relatively high during the first hours. To reduce this learning

phase, a node could try to fill its extended selections list much more quickly

by asking other nodes that have been participating in MorphMix for a while

about extended selections they have stored in their lists. But carelessly giv¬

ing away the information about extended selections collected during the setup

of the own anonymous tunnels could allow others to leam more about these

tunnels. In addition, malicious nodes could distribute forged extended selec¬

tions to confuse honest nodes. We therefore choose not to employ any such

mechanism to speed up a node's filling of its extended selections list.

The fact that it takes setting up some anonymous tunnels until a node can

make reasonable judgements about whether a tunnel is good or malicious has

some implications. First of all, we should keep the knowledge about pre¬

viously established tunnels in case a node leaves MorphMix and joins again
later. Therefore, the complete extended selections list is periodically stored on

disk. Furthermore, we have already discussed in Section 5.5.4 why relaying
traffic for others is good to increase the own anonymity. The collusion detec¬

tion mechanism provides additional incentive for a user to keep her node up

and running and relay data for others even when she does not need to access

the Internet anonymously: the node continues to set up anonymous tunnels

to collect information about the system, which keeps the data in the extended

selections list table up-to-date.

7.2 Honest and Malicious Nodes in the same /16

Subnet

In Chapter 6 and Section 7.1, we have always assumed that some /16 subnets

contain only honest and some other subnets contain only malicious nodes. In

reality, however, it is more likely that the adversary controls some nodes in

subnets where there are also honest nodes.

We analyse a system with 100000 nodes in 10000 different /16 subnets.

Every subnet contains 10 nodes, and all nodes have the same probability of

being offered in honest selections. We vary the number of subnets that contain

both honest and malicious nodes from 500-4000; all other subnets contain

only honest nodes. We examine fa depending on the fraction of malicious

Code200 Exhibit 1009
Page 198 of 308

178 7 Analysis of the Collusion Detection Mechanism

nodes in the subnets where there are both honest and malicious nodes, which

corresponds to the fraction the adversary controls in these subnets according
to Section 5.4.2. We vary this fraction from 0-1, where 0 corresponds to no

malicious nodes in the particular subnet and 1 corresponds to exclusively ma¬

licious nodes in the subnet (which corresponds to the basic scenario used in

Chapter 6. We also assume that there are at most ten nodes in a single /16 sub¬

net that are all located in different /24 subnets. This implies that malicious

nodes can never overwrite honest nodes in the node lookup lists of honest

nodes (see Section 5.7.3). We set up 5000 anonymous tunnels, whereas each

tunnel consists of five nodes in total. The adversary attacks always using the

optimal attack level. Figure 7.3 illustrates fam depending on the fraction con¬

trolled by the adversary in subnets with malicious nodes and the percentage

of subnets that contain both honest and malicious nodes. The table lists the

optimal attack levels to maximise fam.

We can see that if the fraction the adversary controls in subnets with

malicious nodes gets larger, the number of malicious tunnel among the ac¬

cepted tunnels also increases. This is not surprising because recalling the

peer discovery mechanism in Section 5.7 and looking at a single /16 subnet,

the fraction of malicious nodes that are stored in the corresponding list of

nodes grows as the fraction the adversary controls of this subnet gets larger.

Consequently, the probability an honest node picks a malicious node from

this subnet as a new neighbour increases, which implies the probability that

the first intermediate node in one of the tunnels of an honest node is mali¬

cious also gets larger. For the same reason, the probability that a malicious

node from this subnet is included in a selection offered by a honest node gets

larger, which increases the probability a malicious node is selected from this

subnet as the final node in a tunnel of an honest node. Figure 7.3 also illus¬

trates that if there are malicious nodes in 40% of all subnets, the collusion

detection mechanism only fails if the adversary controls more than a fraction

of 0.7 in these subnets.

Note that what counts is mostly the fraction controlled by the adversary
in a /16 subnet, and not so much the absolute numbers of malicious and hon¬

est nodes. If the adversary has full control over a subnet (corresponding to a

fraction of 1), then it does not matter if he runs only a few or 65533 nodes be¬

cause an honest node stores exclusively malicious nodes in the list of nodes

at the corresponding entry in the node lookup list. Similarly, assuming the

nodes are located in different /24 subnets (see Section 5.7.3), it does not mat¬

ter if there one malicious and four honest or two malicious and eight honest

Code200 Exhibit 1009
Page 199 of 308

7.2 Honest and Malicious Nodes in the same /16 Subnet 179

5% of all subnets contain also malicious nodes -h-

1

0 45 -10% of all subnets contain also malicious nodes

20% of all subnets contain also malicious nodes

— -x-

-x

-

-

04 - 30% of all subnets contain also malicious nodes D
_

40% of all subnets contain also malicious nodes -- -

^m-
~

- \

0 35 , -

¥

03 " -

0 25 - -

02
'

-

0 15

-r

0 1

.

"
'

' D

n

D
_

0 05

0 i

yt
yt

0 01 02 03 04 05 06 07 08 09 1

fraction of malicious nodes in subnets with honest nodes

% of subnets

with malicious

nodes 0.1 0.2

fracti

in s

0.3

on cor

ubnets

0.4

ltrollec

with

0.5

Iby th

nalick

0.6

e adve

)us noc

0.7

rsary

ies

0.8 0.9 1

5% 9 8 7 6 6 6 5 5 5 4

10% 10 8 7 7 7 6 6 5 5 5

20% 10 9 8 8 7 7 7 6 6 6

30% 11 10 10 9 9 8 8 8 7 7

40% 11 10 10 10 9 9 9 14 14 14

Figure 7.3: /am depending on the fraction controlled by the adversary in

subnets with malicious nodes.

nodes in a /16 subnet, because in both cases, the adversary controls a fraction

of 0.2 of the /16 subnet, which means it is likely that a fraction of 0.2 of all

nodes that are stored in the list of nodes of this /16 subnet in node lookup list

are malicious. We can also say that a /16 subnet that contains many honest

nodes is more resistant to the adversary than one with only a few such nodes.

If there are eight honest nodes in a /16 subnet and the adversary manages to

ran two nodes in this subnet, he controls only a fraction of 0.2. If he runs

two malicious nodes in a subnet with only two honest nodes, he controls a

fraction of 0.5. So every additional honest node in a /16 subnet increases the

resistance of this subnet to the adversary. Note that due to the restriction for

practical reasons of the length of a list of nodes to ten and if there are more

Code200 Exhibit 1009
Page 200 of 308

180 7 Analysis of the Collusion Detection Mechanism

than ten nodes in a /16 subnet, it is possible that the fraction of malicious

nodes an honest node stores in the list of nodes of this particular /16 subnet

is larger than the fraction the adversary controls in this /16 subnet. However,

this requires the malicious nodes in this /16 subnet to be located in several

different /24 subnets.

7.3 Large Realistic Systems

One goal of MorphMix is to provide anonymity for a large number of users.

We therefore analyse the performance of the collusion detection mechanism

assuming there are nodes in nearly all public /16 subnets. We always look

at two systems: one system with 100000 honest nodes in 50000 subnets and

a large system with 1000000 honest nodes in 50000 subnets. We assume

the adversary manages to control 10000 malicious nodes that are located in

1000, 2000, 5000, or 10000 different subnets that also contain honest nodes.

In addition, we assume that malicious nodes establish virtual links to other

nodes as frequently as honest nodes and all nodes in the same /16 subnet are

located in different /24 subnets. The latter implies that a node that is inserted

into the node lookup list of an honest node can never overwrite another node

that is located in the same /24 subnet (see Section 5.7.3). When offering

selections, malicious nodes attack always using the optimal attack level. First,

we assume that every node has an abundant capacity, i.e. every node can

always accept relaying further anonymous tunnels. In addition, all nodes are

continuously participating in MorphMix. In Section 7.3.2, we look at what

happens if the nodes have different capabilities and if not all of them are

participating in MorphMix all the time.

7.3.1 The Nodes have Abundant Capabilities and are Con¬

tinuously Participating in MorphMix

We start by examining the smaller system with 100000 nodes. Starting with

an empty internal table, 10000 anonymous tunnels are set up. Figure 7.4

shows the fraction of false positives and the fraction of malicious tunnels

among the accepted tunnels. The data are again represented as a rolling av¬

erage over the 200 most recently set up anonymous tunnels. Note that we

do not graphically depict the results for malicious nodes in 2000 subnets, but

still include them in the table.

Code200 Exhibit 1009
Page 201 of 308

7.3 Large Realistic Systems 181

a) 1000 subnets with

malicious nodes (7)

.,

1

b) 5000 subnets with

malicious nodes (9)

d) 10000 subnets with

malicious nodes (12)

subnets with

mal nodes

optimal
attack level

fam With 1 fam Without

collusion detection

1000 7 0 0009 0 0142

2000 9 0 0022 0 0261

5000 9 0 0068 0 0482

10000 12 0 0248 0 0811

Figure 7.4: 100000 honest, 10000 malicious nodes (abundant capabilities,
always participating).

We see that for the adversary, it is much better to control only one or a few

nodes in as many different subnets as possible than to have nearly full control

over a smaller number of subnets. Owning ten nodes in 1000 different subnets

corresponds to controlling ten of twelve nodes in these subnets (a fraction of

0.83) and allows the adversary to control the first intermediate and final node

in a fraction of 0.0009 of all tunnels that are accepted by the initiator. Having

one malicious node in 10000 different subnets means controlling one of three

nodes in these subnets (a fraction of 0.33), but allows the adversary to control

the first intermediate and final node in a fraction of 0.0248 of all tunnels. The

table in Figure 7.4 also lists fam if no collusion detection were employed. In

this case, the adversary would offer always only malicious nodes in malicious

selections. So looking at the example with malicious nodes in 1000 different

subnets, we can see that a fraction of 0.0142 of all tunnels used be the initiator

would be malicious if no collusion detection were used. This is already quite

a low value because the node lookup list (see Section 5.7) contains malicious

nodes for at most 1000 subnets and honest nodes for about 50000 subnets.

Therefore, the probability a malicious node is picked as the first intermediate

node is already quite small. Still, employing the cover traffic mechanism

reduces fam about 16 times to 0.0009. With an increasing number of subnets

in which the adversary controls nodes, this reduction factor becomes smaller:

Code200 Exhibit 1009
Page 202 of 308

182 7 Analysis of the Collusion Detection Mechanism

with 2000 subnets it is about 12, with 5000 subnets about seven, and with

10000 subnets about 3.5.

Increasing the number of honest nodes to 1000000 gives the results in

Figure 7.5. The main difference is that the adversary controls a smaller frac¬

tion of the nodes in the subnets with malicious nodes. For instance, if the

adversary operates two nodes in 5000 subnets, he no longer controls a frac¬

tion of 0.5 (two of four nodes) of these subnets, but only a fraction of about

0.09 (two of 22 nodes).

a) 1000 subnets with b) 5000 subnets with c) 10000 subnets with

malicious nodes (9) malicious nodes (14) malicious nodes (17)

subnets with

mal nodes

optimal
attack level

fam With 1 fam Without

collusion detection

1000 9 0 0004 0 0086

2000 12 0 0009 0 0093

5000 14 0 0042 0 0181

10000 17 0 0128 0 0354

Figure 7.5: 1000000 honest, 10000 malicious nodes (abundant capabilities,
always participating).

Compared to the setting with 100000 nodes, fam gets smaller both with

and without collusion detection. This is not surprising when looking at the

results in Figure 7.3 and undermines that increasing the number of honest

nodes adds to the resistance of MorphMix to attacks.

7.3.2 The Nodes have Different Capabilities and Up-Times

Up to now, we have always assumed that all nodes are equal: they are always

capable to accept further anonymous tunnels and all nodes are participating
in MorphMix all the time. In reality, this is not the case. Some users have

slow dial-up connections and pay for the time they are online, which means

Code200 Exhibit 1009
Page 203 of 308

7.3 Large Realistic Systems 183

their nodes are usually participating in MorphMix for only a relatively short

period during a day. In addition, these nodes do not have the capabilities to

relay many anonymous tunnels of other nodes because of the bandwidth lim¬

itations and are therefore offered less frequently in selections. Then there are

nodes with very good network connectivity that are potentially participating
in MorphMix continuously. These are nodes ran at universities or by users

having fast DSL connections. And there is a range of nodes in between these

two extremes.

It is difficult to estimate what nodes would participate in MorphMix. As a

basis, we use a measurement study [109] about the peers participating in the

Napster [39] and Gnutella [39] file-sharing systems. One main result of the

study is the distribution of the bandwidths of the peers, and based on these

results, we define a distribution for the bandwidths of MorphMix nodes that

we assume to be realistic. For instance, according to the study, only about

10% of all peers have slow dial-up connections (at most one ISDN channel)

and about 15% of all peers have very fast ones (Tl or T3). In between, there

is a range of peers with ADSL, Cable, and DSL connections. We assume the

bandwidth ofMorphMix nodes is similarly distributed as in Napster/Gnutella.

Depending on the bandwidth of a MorphMix node, we also define acceptance

probabilities, which is the probability a node accepts to relay anonymous tun¬

nels when it is picked as a new neighbour. If the new neighbour does not

accept to relay tunnels, the virtual link is terminated and a new neighbour is

picked from the same /16 subnet. It is reasonable to assume that nodes with

good Internet connections accept to relay the data of others with a higher

probability than nodes with slower Internet connections. Table 7.1 illustrates

the distribution for the bandwidths of MorphMix nodes and the acceptance

probabilities. Note that these assumptions are only valid for honest nodes.

We describe a different model for malicious nodes below.

Table 7.1: Realistic bandwidth distribution ofMorphMix nodes.

node type

bandwi

up-stream

dth (Kb/s)

down-stream

percentage

of all nodes

acceptance

probability

ISDN 64 64 10 0 05

ADSL2B6 64 256 25 01

ADSLbi2 128 512 25 02

DSLbi2 512 512 25 05

Tl 1544 1544 10 08

T3 4632 4632 5 0 95

Code200 Exhibit 1009
Page 204 of 308

184 7 Analysis of the Collusion Detection Mechanism

Looking at Table 7.1, we can see that we assign ISDN nodes a very small

acceptance probability of 0.05, which implies that these nodes are only ca¬

pable of accepting anonymous tunnels in one out of 20 cases when they are

picked as a new neighbour. Conversely, we assume nodes with fast Internet

connections can handle most of the requests to relay further anonymous tun¬

nels and we therefore assign Tl and T3 nodes an acceptance probability of

0.8 and 0.95, respectively. Note that we have not explicitly listed nodes with

Cable connections because the bandwidths they offer are the same as ADSL

or DSL connections. Therefore, the ADSL and DSL nodes in Table 7.1 also

include nodes with Cable connections.

A second valuable result from the measurement study are the up-times of

the peers. It shows that the probability a Napster/Gnutella peer is connected

to the Internet at any time is nearly evenly distributed between zero and one,

with the exception that hardly any peer is nearly never or nearly always con¬

nected. It is reasonable to assume that the peers with dial-up connections are

connected to the Internet for only a relatively short time and that peers with

fast Tl and T3 connections are nearly always online. In MorphMix, we as¬

sume that nodes are always participating in MorphMix during the time they
are connected to the Internet. Using the results of the measurement study, we

therefore model the probability a MorphMix node is participating at any time

as follows:

• The ISDN nodes are participating in MorphMix during one hour a day,
which means the participation probability is 1/24.

• The Tl and T3 nodes have a participation probability of 0.9.

• All other nodes get randomly a participation probability between 1/24
and 0.9.

To be most effective, the adversary makes sure that the malicious nodes

are participating inMorphMix as often as possible. In addition, to be involved

in as many anonymous tunnels as possible, the malicious nodes should always

accept further anonymous tunnels, We therefore assign all malicious nodes

per default an acceptance probability and a participation probability of one.

When analysing the performance of the collusion detection mechanism,

the participation probabilities are used as follows: we assume the initiator sets

up one anonymous tunnel every two minutes (see Section 5.5.1). This implies
that 30 anonymous tunnels are set up during one hour. It can also be assumed

that nodes are connected to the Internet for a certain period and then offline

for another; it is not likely that on- and offline periods follow each other

rapidly. Consequently, at the beginning, it is determined for each node if it

Code200 Exhibit 1009
Page 205 of 308

7.3 Large Realistic Systems 185

is participating in MorphMix during the following hour (which corresponds
to 30 anonymous tunnels) according to its participation probability. After

30 anonymous tunnels have been set up, this procedure is repeated. Since

an ISDN node has a participation probability of 1/24, this implies that on

average, such a node is continually participating in MorphMix for one hour

during 24 hours, which is a reasonable assumption.

We analyse how well the collusion detection mechanism copes with the

realistic acceptance and participation probabilities defined above. We start

with 100000 honest nodes. Figure 7.6 illustrates the performance of this sce¬

nario.

a) 1000 subnets with

malicious nodes (4)

iVVvy yy-^/Vw-^'A^wA/w,

b) 5000 subnets with

malicious nodes (7)

c) 10000 subnets with

malicious nodes (10)

subnets with

mal nodes

optimal
attack level

fam With 1 fam Without

collusion detection

1000 4 0 0028 0 0534

2000 5 0 0091 0 1004

5000 7 0 0447 0 2290

10000 10 0 1242 0 4254

Figure 7.6: 100000honest, 10000 malicious nodes (different capabilities and

participation probabilities).

The fraction of malicious tunnels among the accepted tunnels is larger
than in Figure 7.4. This makes sense because taking the participation proba¬
bilities into account means that at any time, there are about 150.9+75 (0.9+

l/24)/2 + 10 • 1/24 « 46.5% of all honest nodes participating. With 100000

honest nodes in 50000 /16 subnets, this means that at any time, there are sev¬

eral subnets where no honest node is participating. In addition, using the data

from Table 7.1, 60% of all nodes have an acceptance probability of at most

0.2. Recalling how honest nodes pick their neighbours (see Section 5.7.2),

this implies that even if there are honest nodes for a given /16 subnet in the

initiator's node lookup list, it may happen that none of them can be used as a

Code200 Exhibit 1009
Page 206 of 308

186 7 Analysis of the Collusion Detection Mechanism

new neighbour. This significantly increases fam compared to Figure 7.4.

Nevertheless, the collusion detection mechanism still works very well

because fam is also increased if no collusion detection mechanism is used.

Comparing fam with and without employing the collusion detection mecha¬

nism, then the relative gain in Figures 7.4 and 7.6 depending on the number

of/16 subnets with malicious nodes is comparable.

Considering that an average honest node is no longer always participating
in MorphMix and does not always accept further anonymous tunnels leads us

to the notion of the overall acceptance probability of honest and malicious

nodes. If there are nh honest nodes with acceptance probabilities acch% and

participation probabilitiespart h%11 < i < nh, the overall average acceptance

probability of any honest node is defined as:

acch

1 _"fe.
— y^ acchz partf^ (7.1)
nh

h

Similarly, if there are nm malicious nodes with acceptance probabilities

accm% and participation probabilities part m%11 < i < nm, the overall aver¬

age acceptance probability of any malicious node is defined as:

1
nm

—E
n.._.

^-^
accm = y accm% partm% (7.2)

Looking at the scenario analysed in Figure 7.6(b) with the adversary op¬

erating nodes in 5000 subnets and applying (7.1), we get

acch = 0.1-0.05 h (0.25-0.1+0.25-0.2+ 0.25-0.5)

-24— + (0.1 • 0.8 + 0.05 • 0.95) • 0.9 « 0.207.

This means that picking any honest node at any time, it is both partici¬

pating and can accept further anonymous tunnels with probability of about

0.207. Since malicious nodes are always participating and can always accept

anonymous tunnels, accm = 1. So compared to Figure 7.4 where acch = 1,

Code200 Exhibit 1009
Page 207 of 308

7.3 Large Realistic Systems 187

honest nodes in the scenario of Figure 7.6 are only about one fifth "as useful"

on average.

Taking different capabilities and participation probabilities into account,

we have to modify our notion about the adversary controlling a certain frac¬

tion of a /16 subnet (see Section 5.4). The fraction the adversary controls

of a subnet depends on the nodes that are online on average in this subnet

and their acceptance probabilities. If there are nh<s honest nodes in a /16

subnet s with acceptance probabilities acch^s and participation probabili¬
ties parth^s, 1 < i < Uh,s, and n„hS malicious nodes in the same sub¬

net s with acceptance probabilities accm^s and participation probabilities

part„HtS, 1 < i < n„hS, the average fraction /CjS the adversary controls

of this subnet is defined as:

J2"=f accm^ partmz

Y^li accK partK + Y^=i acCrrH partr,

If the honest nodes are evenly distributed among all s /16 subnets, (7.3) can

also be written as:

-f- acch + 2^=1 «ccm,
• Partm%

Applying the scenario from Figure 7.6 with 5000 malicious nodes to (7.4),

we get

fc
s

« « 0.829
J

'

2-0.207 + 2

for the subnets that contain malicious nodes. Considering the decrease in

the overall acceptance probability of honest nodes (acch) from 1 to 0.207 and

the increase ofthe fraction an adversary controls ofthe subnets with malicious

nodes from 0.5 to 0.829 in the case when there are malicious nodes in 5000

subnets explains the significantly larger fam when comparing Figures 7.6

and 7.4.

Increasing the number of honest nodes to 1000000 leads to the results

illustrated in Figure 7.7.

Code200 Exhibit 1009
Page 208 of 308

188 7 Analysis of the Collusion Detection Mechanism

a) 1000 subnets with

malicious nodes (7)

b) 5000 subnets with

malicious nodes (11)

c) 10000 subnets with

malicious nodes (14)

subnets with

mal nodes

optimal
attack level

fam With 1 fam Without

collusion detection

1000 7 0 0006 0 0171

2000 8 0 0014 0 0295

5000 11 0 0052 0 0550

10000 14 0 0220 0 0923

Figure 7.7: 1000000 honest, 10000 malicious nodes (different capabilities
andparticipation probabilities).

Like inFigure 7.6, fam is larger than when all honest nodes are participat¬

ing all the time and always accept further anonymous tunnels (see Figure 7.5).

Applying (7.3) again assuming the adversary operates nodes in 5000 subnets

results in

fc
20-0.207 + 2

0.326,

which is smaller than the /CjS of 0.5 of the scenario in Figure 7.4(b) but

also largerthanthe /CjS of 0.09 of the scenario inFigure 7.5(b). It is therefore

reasonable that the fam inFigure 7.7 are between those ofFigures 7.4 and 7.5.

7.4 Optimising the Quality of Anonymous Tun¬

nels

Taking into account nodes with very different bandwidths, we must think

about the quality of the nodes along an anonymous tunnel. Basically, the

slowest node in a tunnel determines the maximum throughput of the tunnel:

Code200 Exhibit 1009
Page 209 of 308

7.4 Optimising the Quality of Anonymous Tunnels 189

if one intermediate node is an ISDN node and all the others, including the

initiator, are T3 nodes, the throughput of the tunnel will be at most 64 Kb/s.

This is a significant problem because hardly any user is willing to sacrifice

her fast Internet connection for anonymity if all she gets is the equivalent of

a slow dial-up connection.

The only way to cope with this problem is to make sure no nodes with

slow Internet connections are present along tunnels of initiators that have

good Internet connections. In practice, this means that the initiator speci¬
fies a minimum quality in terms of bandwidth for the nodes it accepts in its

anonymous tunnels, which causes the intermediate nodes to offer only nodes

that fulfil these requirements in their selections. Table 7.2 specifies what we

believe could be acceptable intermediate and final nodes depending on the

capabilities of the initiator.

Table 7.2: Acceptable intermediate andfinal nodes

initiator ISDN

interme

ADSL2B6

diate and fin

ADSLbi2

al nodes

DSLbi2 Tl T3

ISDN • • •

ADSL2B6 •

ADSLbi2

DSLbi2

Tl

T3

For initiators that are ISDN nodes, every other node is suitable to be used

in their anonymous tunnels because no other node has a worse Internet con¬

nectivity than the initiator. For ADSL256 nodes, ISDN and other ADSL256

are no good choice for the intermediate or final nodes in their tunnels be¬

cause this would limit the throughput to 64 Kb/s, which is only one fourth

of the initiator's down-stream bandwidth. Even ADSL 5i2 nodes in tunnels of

ADSL256 nodes limit the throughput to 128 Kb/s, but we believe that a 50%

throughput reduction is acceptable for getting anonymity. If the initiator has

an ADSL5i2,DSL5i2, Tl, orT3 connection to the Internet, the nodes along a

tunnel should be at least DSL5i2 nodes to guarantee a reasonably good end-

to-end performance to the initiator.

However, we can expect that these measures to improve the throughput
of anonymous tunnels will increase the adversaries chances to compromise
an anonymous tunnel. Just like whenwe introduced different capabilities and

Code200 Exhibit 1009
Page 210 of 308

190 7 Analysis of the Collusion Detection Mechanism

participation probabilities of the nodes in Section7.3.2, the effective number

of honest nodes for initiators with fast Internet connections becomes smaller

because nodes with slow connections are no longer offered in selections to

them. Figure 7.9 illustrates the performance with 100000 honest nodes. We

assume the initiator has an Internet connection corresponding to ADSL 5 i2 or

faster, which corresponds to the worst case since the spectrum of nodes that

can be offered in selections to these nodes is smallest according to Table 7.1.

a) 1000 subnets with b) 5000 subnets with c) 10000 subnets with

malicious nodes (7) malicious nodes (11) malicious nodes (14)

subnets with

mal nodes

optimal
attack level

fam With 1 fam Without

collusion detection

1000 4 0 0045 0 0574

2000 5 00113 0 1126

5000 7 0 0523 0 2404

10000 10 0 1417 0 4464

Figure 7.8: 100000 honest, 10000 malicious nodes (with tunnel optimisa¬

tion).

As expected, fam is larger than in Figure 7.6 where no optimisation of

the throughput of anonymous tunnels was made. However, the difference is

quite small although DSL512, Tl, and T3 account for only 40% of all nodes

according to Table 7.1. The reason is that from the point of view of a node

with a fast Internet connection, not very much has changed because look¬

ing at the acceptance probabilities in Table 7.1 shows that nodes with slow

Internet connection accept only infrequently to relay tunnels after they have

been picked as a new neighbour. This implies that by requesting a minimum

quality for the nodes offered in selection for nodes with good Internet con¬

nections, we have merely removed occasional occurrences ofnodes with slow

connections in these selections. It should be noted that for ADSL 256 nodes,

fam is slightly smaller than in Figure 7.8 and for ISDN nodes, nothing has

changed compared to the results in Figure 7.6.

Code200 Exhibit 1009
Page 211 of 308

7.4 Optimising the Quality of Anonymous Tunnels 191

The small difference between the results shown in Figures 7.6 and 7.8

can also be explained using our notation introduced in Section 7.3.2. Only

considering DSL512, Tl, and T3 nodes and using (7.1), we get the following
overall average acceptance probability of any honest node:

À + 0.9
,

acch = 0.25-0.5-^ + (0.1 • 0.8 + 0.05 • 0.95) • 0.9 « 0.174

This is relatively close to the 0.207 when no optimisation of tunnels was

made. Similarly, using (7.4) to compute the average percentage /CjS the ad¬

versary controls in the subnets that contain malicious nodes for the case illus¬

trated in Figure 7.8(b) results in

fc
s

« « 0.852.
J

'

2-0.174 + 2

Compared with the results without any optimisation, this is a small in¬

crease from 0.829 to 0.852, which again explains the small increase of fam.

Increasing the number of honest nodes to 1000000 leads to the results illus¬

trated in Figure 7.9.

Again, fam is slightly larger than without optimising the throughput of a

tunnel. Using (7.4) to compute the average fraction /cs the adversary con¬

trols in the subnets that contain malicious nodes for the case illustrated in

Figure 7.9(b) results in

fc
s

« « 0.365,J
'

20-0.174 + 2

which is close to the 0.326 without any optimisation. We conclude that opti¬

mising the throughput of anonymous tunnels does not significantly increase

the adversaries chances to compromise anonymous tunnels. In addition, we

will see in Section 8.3.3 when analysing the end-to-end performance Mor¬

phMix offers that the benefits by optimising the throughput of anonymous

tunnels greatly outweighs the small increase of fam.

As a side note MorphMix demonstrates how poorly asymmetric access

technologies such as ADSL and often also Cable connections are suited for

peer-to-peer systems. For traditional client/server applications, such asym¬

metric access technologies are very well suited but in peer-to-peer systems,

Code200 Exhibit 1009
Page 212 of 308

192 7 Analysis of the Collusion Detection Mechanism

a) 1000 subnets with b) 5000 subnets with c) 10000 subnets with

malicious nodes (7) malicious nodes (11) malicious nodes (14)

subnet with

mal nodes

optimal
attack level

fam With 1 fam Without

collusion detection

1000 7 0 0005 0 0179

2000 8 0 0018 0 0316

5000 11 0 0060 0 0571

10000 14 0 0237 0 0951

Figure 7.9: 1000000 honest, 10000 malicious nodes (with tunnel optimisa¬

tion).

the slow up-link of these nodes becomes a bottleneck. What we have mainly
done with our throughput optimisation to make sure that nodes with slow up¬

links are not present in the tunnels of nodes with fast down-links. Actually,
this is not completely true because we have allowed ADSL512 nodes with rel¬

atively slow 128 Kb/s up-links in tunnels of ADSL256 nodes. If these nodes

had up-links as fast as their down-links, they would be much more useful for

MorphMix and Table 7.2 would look differently.

One can ask if the measures to increase the quality of anonymous tun¬

nels decrease the chances to set up a tunnel successfully in the sense that all

intermediate nodes along a tunnel have enough neighbours of the adequate
node type they can offer in their selections. But this can be easily solved in

practice (and is done in this way in the MorphMix protocol in Appendix A)
in the sense that if the number of nodes nsei to be offered in a selection is

larger than the number ntype>typemm of neighbours that fulfil the minimal

node type requirements as requested by the initiator, the remaining positions
in the selection are filled with the (nsei — ntype>typemm) next best nodes

regarding the node type.

Code200 Exhibit 1009
Page 213 of 308

7.5 The Subnets Contain Different Numbers of Honest Nodes 193

7.5 The Subnets Contain Different Numbers of

Honest Nodes

In reality, the participating nodes are not evenly distributed over the /16 sub¬

nets in which they are located. We analyse how much this affects the perfor¬

mance of the collusion detection mechanism. The basic setting is the same

as in Figure 7.9, with the exception that the number of honest nodes per sub¬

net is distributed linearly over all 50000 subnets such that the subnet with

the largest number of honest nodes contains ten times as many honest nodes

as the subnet with the smallest number of honest nodes. We also use tunnel

throughput optimisation according to Table 7.2 and assume the initiator has

an Internet connection corresponding to at least ADSL512 or better. Since

some subnets contain ten times as many nodes as others, we only consider

the case with 1000000 honest nodes and Figure 7.10 illustrates the results.

a) 1000 subnets with

malicious nodes (6)

b) 5000 subnets with

malicious nodes (10)

c) 10000 subnets with

malicious nodes (13)

subnets with

mal nodes

optimal
attack level

fam With 1 fam Without

collusion detection

1000 6 0 0007 0 0192

2000 7 0 0023 0 0334

5000 10 0 0069 0 0611

10000 13 0 0251 0 0984

Figure 7.10: 1000000 honest, 10000 malicious nodes (different numbers of
honest nodes in the /16 subnets).

The adversary's probability to compromise any tunnel is again slightly

larger than in Figure 7.9. This can be explained with the fact that although
there are fewer than average honest nodes in half of all subnets, there also

more than average honest nodes in the other half. Similarly, half of the mali¬

cious nodes are in subnets with relatively many honest nodes and half of them

Code200 Exhibit 1009
Page 214 of 308

194 7 Analysis of the Collusion Detection Mechanism

are in subnets with relatively few honest nodes on average. Since according
to Figure 7.3, malicious nodes are the more powerful the fewer honest nodes

there are in their subnets, the results in Figure 7.10 indicate that the effect

of having some malicious nodes in sparsely populated subnets does slightly

outweigh the effect of having some malicious nodes in subnets with many

honest nodes.

7.6 Varying the Tunnel Length

Finally, we analyse the effect ofthe tunnel length. Longertunnels imply more

extended selections per tunnel for the initiator to test, which should increase

the probability to detect malicious tunnels according to Algorithm 2 in Sec¬

tion 5.6.3. On the other hand, longer tunnels in general also mean worse

end-to-end performance as we will analyse in Section 8.3.7. Figure 7.11 il¬

lustrates fam and the fraction of false positives for a tunnel length of three,

four, six, and ten. All other parameters are set as in Figure 7.10, which means

we assume the subnets contain different numbers of nodes and that tunnel op¬

timisation is used according to Table 7.2. For completeness, we also include

the figures for a tunnel length of five in the table below the graphs.

The fraction of malicious tunnels among the accepted tunnels gets indeed

smaller if the tunnel length gets longer. However, it does not seem to make

sense to increase the tunnel length more and more, because the relative gain

by adding a hop gets smaller and smaller. For instance, with malicious nodes

in 5000 subnets, the relative decrease in fam when going from a tunnel length
of five to six is about the same as when going from six to ten. In addition,

the rate of false positives also increases as the tunnel length gets longer. With

a tunnel length of ten, the fraction of false positives is about 0.4 compared
to about 0.2 with five nodes in a tunnel. Note that fam without collusion

detection is independent of the tunnel length. We will continue analysing the

influence of the tunnel length in Section 8.3.7.

7.7 Summary

Looking at the realistic scenarios we analysed in this section, we can state

that our collusion detection mechanism works indeed well. It significantly
reduces fa compared to the case if no such mechanism were employed and

Code200 Exhibit 1009
Page 215 of 308

7.7 Summary 195

a) tunnel length = 3, malicious nodes in 1000, 5000, and 10000 subnets

b) tunnel length = 4, malicious nodes in 1000, 5000, and 10000 subnets

c) tunnel length = 6, malicious nodes in 1000, 5000, and 10000 subnets

d) tunnel length = 10, malîcious nodes in 1000, 5000, and 10000 subnets

subnets

with mal

nodes

optimal
attack

level 3

fam Witt

dependi
4

i collusion

tig on tunn

5

detection

el length
6 10

fa
m

Without

collusion

detection

1000 6 0 0070 0 0014 0 0007 0 0004 0 0003 0 0192

2000 7 0 0098 0 0028 0 0023 0 0017 0 0013 0 0334

5000 10 0 0288 0 0157 0 0069 0 0052 0 0038 0 0611

10000 13 0 0752 0 0426 0 0251 0 0161 0 0100 0 0984

Figure 7.11: 1000000 honest, 10000 malicious nodes (diff tunnel lengths).

Code200 Exhibit 1009
Page 216 of 308

196 7 Analysis of the Collusion Detection Mechanism

it is very difficult for an adversary to control the first intermediate and final

node in a significant percentage of all anonymous tunnels. According to our

most realistic scenario in Figure 7.10 that takes into account that nodes are

not participating in MorphMix continuously, that nodes are connected to the

Internet with different bandwidths, that there are different numbers of honest

nodes in the /16 subnets, and that employs tunnel throughput optimisation,
the collusion detection mechanism can reduce the number of compromised
tunnels that are accepted by the initiator about 27 times with malicious nodes

in 1000 subnets, about 14 times with malicious nodes in 2000 subnets, about

eight times with malicious nodes in 5000 subnets, and about 4 times with

malicious nodes in 10000 subnets.

We conclude that especially when the system gets large, i.e. when there

are nodes in most public /16 subnets, the task for the adversary becomes very

complicated, because he cannot simply ran many nodes in a few subnets but

must be present in a large number of different subnets. Of course it could

be the case that the adversary owns a part of the public IP address space, for

instance a whole class A network. But this only gives him full control over

256 /16 subnets, which only enables him to control the first intermediate and

final node in very few tunnels. To be effective, the adversary must have nodes

under his control invery many different/16 subnets. Assuming a large system
with honest nodes in nearly all public /16 subnets, the results in Figure 7.10

show that the adversary must control nodes in more several 1000 subnets to

compromise more than a fraction of 0.01 of the tunnels that are accepted by
the initiator.

We have also seen that not only the collusion detection mechanism, but

also the peer discovery mechanism helps to keep the fraction of compromised
tunnels small. In particular, the way in which information about other nodes

is arranged in the node lookup list (see Section 5.7.2) guarantees that the

probability an adversary controls the first intermediate node in a tunnel does

not depend on the fraction of all nodes he controls, but on the fraction of

different/16 subnets inwhichhe controls nodes. Consequently, the fraction of

malicious tunnel is already relatively small simply because honest nodes pick
their neighbours randomly among all /16 subnets, but the collusion detection

mechanism helps to significantly reduce this fraction further.

One minor problem is the learning phase that requires a newly joining
node to set up many anonymous tunnels until the collusion detection mecha¬

nism starts working correctly. This results in s significantly higher fraction of

false positives in the beginning because the correlation limit is selected con-

Code200 Exhibit 1009
Page 217 of 308

7.7 Summary 197

servatively during this phase to keep the fraction of malicious tunnels small.

However, if a node remains active most of the time, this only happens once

and even during this learning phase, a user can already use her node to contact

servers anonymously, although anonymous tunnels must be set up at a higher
rate to compensate for the high fraction of false positives. One could reduce

this learning phase by asking other nodes about their extended selections, but

we have given arguments in Section 7.1 that this is not necessarily a good
idea.

The results in this section have demonstrated that to estimate the strength
of an adversary, we cannot simply count the absolute number of honest and

malicious nodes, but must take their capabilities and participation probabil¬
ities into account. We have therefore introduced the notion of the overall

average acceptance probabilities acch and accm. Honest nodes that are par¬

ticipating in MorphMix more frequently or accept relaying anonymous tun¬

nels more often than others are more valuable to increase the resistance to

attacks because they contribute more to keep the fraction /cs an adversary
controls in a particular subnet small.

In general, longer anonymous tunnels increase a user's anonymity be¬

cause it decreases the percentage of compromised tunnels by the adversary.
If minimising fam were the only goal, tunnels lengths of ten or even more

would be a reasonable choice. However, we will see in Section 8.3 that longer
tunnels usually imply worse end-to-end performance and we will therefore

continue to use a tunnel length of five nodes as the basis for our evaluation of

MorphMix.

Code200 Exhibit 1009
Page 218 of 308

Chapter 8

MorphMix Simulation and

Results

Although we have shown in the previous chapters that MorphMix protects

well from an internal attacker that wants to break the anonymity ofMorphMix

users, it is still not clear how practical the system is. Since MorphMix users

contact servers indirectly, the expected performance is certainly worse than

when communicating with a server directly. In addition, there is overhead

because nodes not only handle their own data, but also set up tunnels and relay
the data of other nodes. To evaluate the expected performance MorphMix can

offer to its users, we have implemented a simulator. In this chapter we first

describe the MorphMix simulator and the basic settings we have used in our

simulation runs. Afterwards, the simulation results are presented.

8.1 The MorphMix Simulator

We decided to implement our own simulator, mainly because existing generic
network simulators such as ns-2 [14] simulate the underlying network proto¬

cols in great detail and are therefore not capable of simulating a large number

of nodes (e.g. 1000) over a large simulated time period (several hours) within

a reasonable execution time. The prime goal of the MorphMix simulator is

not to reflect the real world as closely as possible, but to deliver valuable

information about how the heterogeneity and dynamism of the nodes affect

Code200 Exhibit 1009
Page 219 of 308

8.1 The MorphMix Simulator 199

the end-to-end performance. We therefore basically simulate the MorphMix

overlay network consisting of nodes and virtual links and omit many of the

details of the underlying physical communication infrastructure.

The core elements of the simulator are the MorphMix nodes. Every node

has an up- and down-stream bandwidth that specifies the number of bytes it

can send and receive at most during a time interval. In addition, nodes may be

shut downby their operators or simply crash or may temporarily not be reach¬

able due to network problems. There is a subtle difference between a crash

or a shut down ofthe MorphMix application and a crash of the computer run¬

ning the application: in the first case, the TCP connections from and to the

computer will be correctly terminated [41], which tells the neighbours imme¬

diately that the connections and all tunnels using them are no longer usable.

These nodes can then send a TERM message (see Appendix A.3.5) through
all tunnels that have failed and the initiators ofthese tunnels can simply termi¬

nate all connections between the access program and the client applications

(see Section 5.2.4) that are using these tunnels. Since client applications usu¬

ally inform their users about unexpectedly terminated connections, the users

can then re-establish the communication relationships with the servers using
other tunnels. In the second case, however, the TCP connections won't be

torn down and the crashed computer simply won't react to data sent to it. If

the computer is eventually rebooted, it will respond with a TCP RST if it still

receives data but it may take a long time until the computer is rebooted at

all. In this situation, we must assume that the user eventually notices that

a tunnel has failed without being notified by the client application. A com¬

puter crash will therefore be more harmful for the end-to-end performance
than an application crash or shut down because it takes longer for a user to

detect that a particular tunnel is no longer usable. Nodes that are temporarily
not reachable due to network problems produce the same effects as a crashed

computer: they simply do not respond anymore.

If two nodes are connected (i.e. they are neighbours), there is a virtual

link between them. A virtual link has a certain delay to simulate the propa¬

gation delay when data are sent from a node to another and is an abstraction

of a "perfect" TCP connection. This means that if none of the two nodes

communicating over a virtual link has crashed or is temporarily blocked, then

all data are transmitted with exactly the specified delay. However, virtual

links do simulate the TCP flow control mechanism to account for the limited

buffer space in hosts. Depending on the delay on a virtual link, this flow

control mechanism puts an upper limit on the maximum throughput of any

Code200 Exhibit 1009
Page 220 of 308

200 8 MorphMix Simulation and Results

virtual link.

The simulator itself is event-driven. The continuous time line is chopped
into slots of 10 ms. Sending data at a node during a certain time slot triggers
the complete reception of these data during a future time slot at another node

depending on the delay of the virtual link between the two nodes, their up-

and down-stream bandwidths, the TCP flow control mechanism, and the other

data that are handled concurrently by the two nodes. Since we assume the

delay on any virtual link to be always at least 20 ms, time slots of 10 ms are

small enough to accurately analyse the time it takes for data to travel through

anonymous tunnels. Of course one could always make the time slots smaller,

but this would increase the simulation time inversely proportionally.

We analyse the performance ofMorphMix using web browsing as the ex¬

ample application. It can be expected that web browsing will be one of the

prime applications if any system for anonymous low-latency Internet access

ever gets widely deployed. But web browsing is also a very challenging appli¬
cation for anonymity-providing systems, since web pages often contain sev¬

eral small embedded objects, which results in many sequential request/reply

pairs being exchanged between client and server.

8.2 Basic Simulator Settings

There are a variety of parameters that can be specified in the MorphMix sim¬

ulator. All of our simulations in this section will be based on the same basic

setting. These setting can be separated into protocol settings, virtual link set¬

tings, tunnel settings, node settings, and web browsing scenario settings. The

simulator simulates the entire MorphMix protocol as specified in Appendix A

and the basic settings for many parameters are directly inherited from the pro¬

tocol specification.

8.2.1 Protocol Settings

These settings follow directly from the MorphMix protocol in Appendix A:

the fixed cell length is 512 bytes and the cell and anonymous connection

header length is 16 bytes. To take into account the overhead from lower-

level protocols such as TCP, IP, and link layer protocols, we assume 10%

of a node's bandwidth is used for the corresponding headers and trailers and

simply deduct these 10% from a node's bandwidth.

Code200 Exhibit 1009
Page 221 of 308

8.2 Basic Simulator Settings 201

8.2.2 Virtual Link Settings

Virtual link settings describe the properties of our abstraction of a TCP con¬

nection between two nodes. The virtual link delay is the time it takes for

the data to travel from one to the other node. For every virtual link between

two nodes, we choose a random delay evenly distributed between 20 and 150

ms. The TCP buffer size determines the maximum throughput of the virtual

link and is set to 64 KB (65536 bytes). For the collusion detection mech¬

anism to work, the nodes that are offered in selections from the same node

must change from time to time, which means honest nodes must change their

neighbours from time to time. To do so, a newly established virtual link to a

new neighbour is only kept for a limited virtual link lifetime, which is set to 30

minutes. After this lifetime, the virtual link is not simply torn down, but the

node at the other end of the virtual link is no longer advertised in selections.

The virtual link itself is kept alive until all tunnels using it have been torn

down. Finally, the virtual link status message interval determines the interval

between two subsequent STAT_REQ/STAT_REP pairs (see Appendix A.3.4)

being sent over one virtual link. After a STAT_REP message has been re¬

ceived, we assume it takes a random time evenly distributed between 0 and

four minutes before the next STAT_REQ is sent.

8.2.3 Tunnel Settings

The tunnel length is the number of nodes in a tunnel and is set to five, which

corresponds to the standard tunnel length we used in the previous chapters.
Tunnel settings also specify the tunnel setup interval time, which is set to

two minutes and the minimum number oftunnels that should be available at

a node at any time, which is set to five. This means that tunnels are regu¬

larly set up in the background while making sure that the number of tunnels

never falls below a certain minimum. There is a tunnel lifetime set to ten min¬

utes, which means that after this lifetime, a tunnel is no longer used for new

anonymous connections. Limiting the tunnel lifetime guarantees that virtual

links can eventually be torn down after all tunnels using it have reached their

lifetime. The tunnel end-to-endping interval specifies the time between two

subsequent E2E_PING/E2E_PONG pairs (see Appendix A.4.3) are used to

measure the round-trip time (RTT) of a tunnel and is set to two minutes. To

detect tunnels that have failed for any reason, for instance because a node

along the tunnel has left MorphMix, the tunnel timeout parameter, which is

Code200 Exhibit 1009
Page 222 of 308

202 8 MorphMix Simulation and Results

set to 30 seconds, is used. If the initiator sends an E2E-PING message and

no reply arrives within the time specified by the tunnel timeout parameter, the

tunnel is considered to have failed and is torn down, Similarly, if no reply
arrives within this time during the tunnel setup after the initiator has sent a

message, the tunnel is also considered to have failed and is torn down.

Our basic assumption throughout this chapter is that setting up anony¬

mous tunnels only fails if one of the nodes along the tunnel fails (for instance

by leaving MorphMix) during the setup or a witness that is used to append a

node fails. Similarly, we assume anonymous tunnels are never rejected by the

initiator, i.e. every tunnel that has been set up successfully can potentially be

used for anonymous communication. The influence of other failures during
tunnel setup or tunnels that are rejected by the initiator because they are iden¬

tified as malicious by the collusion detection mechanism will be analysed in

Section 8.3.6.

8.2.4 Node Settings

We always set the number ofnodes in the system to 1000. More nodes are

possible but the simulation time grows linearly with the number of nodes.

However, we argue that even a system with 1000 nodes delivers reasonable

information about how a very large system would perform if certain parame¬

ters are set accordingly. To do so, we will always use the maximum selection

size of 20 (see Section 5.6.2), which implies the messages to set up a tun¬

nel have their maximum length. We also make sure that at any time, every

node has at least 30 neighbours that are willing to relay more anonymous tun¬

nels, which implies that 20 nodes can easily be offered in selections at any

time. So even if the system consisted of a million nodes, the tunnel setup

messages would not be longer and the local environment every node has to

handle would not be larger. We use the same distribution of the nodes' capa¬

bilities and participation probabilities (see Table 7.1) as we used for the large
realistic systems in Section 7.3.2. This determines the up- and down-stream

bandwidths, the participation patterns, and the acceptance probabilities of

the nodes. If the system were ten times bigger, there would be ten times as

much traffic, but also ten times as many nodes to handle it. Since the dis¬

tribution of the nodes' capabilities and participation probabilities would be

unchanged, we could expect the simulation results to be very similar.

The participation pattern determines when a nodejoins MorphMix to par¬

ticipate and when it leaves the system again because it is shut downby its op-

Code200 Exhibit 1009
Page 223 of 308

8.2 Basic Simulator Settings 203

erator When a node leaves the system because of its participation pattern, we

always assume the MorphMix application has been shutdown, which means

the information about tunnels that have failed is quickly propagated to the

initiators (see Section 8.1).

We specify the cell processing delay with ten ms, which means that after

a cell has been completely received by a node, we assume it can be forwarded

to the next node after ten ms. Processing a cell includes reading the data

from the socket into the application, performing the cryptographic operations,

modifying the cell header, and writing the data into the socket to forward the

cell. Only the cryptographic operations are computationally expensive (see

Appendix A.2.1 and A.2.2): the 16-byte header of the incoming cell must be

decrypted and the one of the outgoing cell encrypted, a layer of encryption
must be added or removed resulting in encrypting or decrypting 496 bytes,
and computing two hashes over 502 bytes of data, one to check the checksum

ofthe incoming cell and one to build the checksum ofthe outgoing cell. Mod¬

em computers are capable of computing hashes and symmetric encryptions

or decryptions at rates of several 10 Mb/s. Since several 10 Mb/s is signifi¬

cantly faster than the bandwidth of any node (see Table 7.1), we can assume

that cells can be processed at line speed, and the assumption all cells can be

processed withing 10 ms is reasonable. Similarly, we also assume the initia¬

tor can handle the multiple encryptions or decryptions of the cell it sends and

receives at line speed, i.e. the limiting factorto the number of cells that can be

handled is never the rate of encryption or decryption. Finally, the public-key

operation processing delay is specified with 100 ms and denotes the delay in¬

duced by public-key operations during the setup ofanonymous tunnels. Using
state-of-the-art computers, 100 ms is certainly enough to perform any of the

public-key operations we are dealing with, which includes public-key encryp¬
tions and decryptions and DH key-exchange operations. Note that although
RSA public-key operations take much less time than private-key operations
due to the small public-key exponent (see Appendix A.2.1), we assume both

of them introduce a processing delay of 100 ms to be on the safe side. We

also assume that public-key operations never delay the processing of other

cells, which can be achieved in practice by performing public-key operations
not in the main loop of the MorphMix program, but in a dedicated thread. We

will give a more detailed analysis of the computational overhead imposed by
the cryptographic operations in Section 8.3.5.

Per default, nodes or the computers they ran on never crash and nodes that

are online can always be reached, i.e. their connection to the Internet is never

Code200 Exhibit 1009
Page 224 of 308

204 8 MorphMix Simulation and Results

blocked temporarily. This means that nodes do only leave MorphMix when

they are willingly shut downby their operator according to their participation

pattern. Note that we will analyse the influence of nodes that crash or that

cannot be reached temporarily in Section 8.3.9.

8.2.5 Web Browsing Scenario Settings

The nature of web traffic and web users has been thoroughly analysed and

we use appropriate values from scientific literature to model it. The web

request length is 300 bytes with a probability of 0.8 and 1100 bytes with a

probability of 0.2 [72]. The web reply lengths (in bytes) follow a ParetoII

distribution with parameters k = 800 and a = 1.2 [44]. For simplicity, we

limit the maximum reply size to 1 MB. The number of embedded objects

per page also follow a ParetoII distribution, this time with parameters k =

2.4 and a = 1.2 [44]. For simplicity, we limit the maximum number of

embedded objects per page to 50. The reading time (in seconds) is the time it

takes between having completely downloaded a page and initiating the next

download. Again, this follows a ParetoII distributed with parameters k = 60

and a = 2.0 [44]. For simplicity, we limit the maximum reading time to 60

seconds. The browsing time is the time a user running a node is browsing
the Web per day. For ISDN nodes, we assume the user is always browsing
when the node is running; for all other nodes, the browsing time is set to

two hours per day. Like the virtual links between two MorphMix nodes, the

connection between the final node in a tunnel and the web server has also a

delay that is evenly distributed between 20 and 150 ms and also simulates the

TCP flow control mechanism using buffer sizes of 64 KB. In addition, the

time it takes to establish the TCP connection to the web server is simulated

by inserting an additional delay of two times the delay on that connection.

Unlike nodes, web servers never crash and can always be reached. The web

requestprocessing delay is specified with ten ms, which is the time it takes for

the web server to start sending a web reply after having completely received a

web request. Considering the performance of modem web servers, ten ms is

certainly not too small. As mentioned in Section 5.2.4, the initiator must not

perform the address resolution using the domain name system (DNS) [76, 77]

by itselfbecause this would reveal the identity ofthe host it intends to contact.

Resolving the name is therefore done by the final node in a tunnel. However,

querying a name server takes very little time (a few ms) because the name

server is usually located nearby the final node (for instance at the access ISP)

Code200 Exhibit 1009
Page 225 of 308

8.3 Simulation Results 205

and queries and replies use the UDP protocol. In addition, caching replies of

name servers means that name servers need not be contacted every time a web

request arrives at the final node of a tunnel. We therefore do not take the time

to resolve a name into account and assume it is included in the processing

delay often ms by the final node.

If downloading a page has failed because the tunnel that has been used

to download (parts of) the page has failed for any reason, we assume the

user reacts by downloading the entire page again. We specify this download

failure reaction time with five and 30 seconds. For the reasons discussed in

Section 8.1 two different reaction times make sense: five seconds is used if

the initiator, and therefore also the client application, can be informed about

the failed tunnel and the terminated connections; 30 seconds is used if this is

not possible and the user has to detect herself whether downloading the page

has failed.

8.3 Simulation Results

We analyse the performance of MorphMix using web browsing as the exam¬

ple application. In all simulations, we simulate four hours of real-time. We

usually evaluate the time it takes to completely download a web page, which

is defined as the time between sending the first byte of the web request for

the index file and receiving the last byte of the complete page. We do not

take the time it takes to display a completely downloaded page in the web

browser into account. Since there are six different types of nodes depending

on their up- and down-stream bandwidths (see Table 7.1), the graphs show

the download times for each of these types separately. In general, it turns out

that the page download time is nearly linearly dependent on the page size; we

therefore use linear regression to plot the graphs.

8.3.1 Contacting the Web Server Directly

We first analyse the performance if the web server is contacted directly. We

use both versions 1.0 [8] and 1.1 [45] ofHTTP and also vary the upper limit

of simultaneous connections when using HTTP 1.0, because browser usually
have such an upper limit. The main difference between HTTP 1.0 and 1.1 is

that with HTTP 1.0, a dedicated TCP connection is established to download

a single web object, e.g. the index file or a single embedded object of a page.

Code200 Exhibit 1009
Page 226 of 308

206 8 MorphMix Simulation and Results

With HTTP 1.1, the entire web page is usually downloaded over a single TCP

connection, which significantly reduces the number of TCP connections that

have to be established to download an entire web page. Consequently, we

expect HTTP 1.1 offers better performance than HTTP 1.0. During the four

hours of simulated real-time, about 130000 pages were downloaded with a

total size of about 3.2 GB. Figure 8.1 depicts the results.

60 200

page sze (klobytes)

a) HTTP 1 0, one simult conn

page sze (klobytes)

b) HTTP 1 0, five simult conn

60 200

c) HTTP 1 0, 50 simult conn

page sze (klobytes)

d) HTTP 1 1

Figure 8.1: Download times, accessing the web server directly.

Not surprisingly, the download times are the shorter the higher the band¬

width with which users are connected to the Internet. We can also see that

the performance of HTTP 1.0 is increased if more simultaneous connections

are allowed. As expected, HTTP 1.1 generally outperforms HTTP 1.0, but

the advantage gets smaller if many simultaneous connections are allowed in

HTTP 1.0. We will use the results in Figure 8.1 as a reference for all forth¬

coming performance measurements in this section. As most browsers have at

least a default limit of about five simultaneous connections with HTTP 1.0,

we will focus on this case when using HTTP 1.0.

Code200 Exhibit 1009
Page 227 of 308

8.3 Simulation Results 207

8.3.2 Contacting the Web Server through MorphMix

We analyse the performance when the web server is contacted anonymously

through MorphMix. Figure 8.2 shows the download times forHTTP 1.0 with

five simultaneous connections and HTTP 1.1.

page size (kilobytes) page size (kilobytes)

a) HTTP 1.0, 5 simult. connections b) HTTP 1.1

Figure 8.2: Download times, accessing the web server through MorphMix.

Compared to Figure 8.1, the download times are significantly longer. The

better the bandwidth of the node, the more severe the performance penalty
from which it suffers. We already discussed this problem in Section 7.4 when

we analysed the influence of optimising the throughput ofanonymous tunnels

on the collusion detection mechanism. The problem stems from intermedi¬

ate or final nodes with poor Internet connections in tunnels of initiators that

have good Internet connections. While this is not a problem for ISDN nodes

because they are the slowest node type in our analyses, the impact gets the

larger the faster the initiator is. In particular, the end-to-end performance
of any node falls below the performance ISDN nodes experience if the web

server is contacted directly, as is shown in Figure 8.1. Comparing HTTP 1.0

with HTTP 1.1, Figure 8.1 shows that like when contacting the web server

directly, the latter offers slightly better performance. This is again not sur¬

prising because using HTTP 1.0, each object of a web page results in setting

up one anonymous connection within the anonymous tunnel and one TCP

connection between the final node and the web server, whereas with HTTP

1.1, all object of a web page are downloaded through a single anonymous

connection and a single TCP connection between the final node and the web

server

We strongly believe that a performance loss so significant as shown in

Figure 8.2 would be unacceptable for most users with reasonably fast Internet

Code200 Exhibit 1009
Page 228 of 308

208 8 MorphMix Simulation and Results

connections and hinder MorphMix from acquiring a critical mass.

8.3.3 Optimising the Throughput ofAnonymous Tunnels

To optimise the throughput of anonymous tunnels, we employ the minimum

quality for intermediate and final nodes depending on the node type of the

initiator as introduced in Table 7.2. We have seen in Section 7.4 that the opti¬
misation has only a marginal effect on the adversary's chances to compromise

anonymous tunnels. Figure 8.3 shows the corresponding download times.

page sze (klobytes)

a) HTTP 1 0, 5 simultaneous connections

page sze (klobytes)

b) HTTP 1 1

Figure 8.3: Download times with optimised tunnel throughput.

Compared to Figure 8.2, the end-to-end performance could be signifi¬

cantly improved. We can also clearly state that the benefits from optimising
the throughput of anonymous tunnels greatly outweighs the small increase in

the number of compromised tunnels. When optimising the throughput, ISDN

nodes have better end-to-end performance than T3 nodes without any optimi¬

sation, which is remarkable. Interestingly, the performance of ISDN nodes

has also significantly improved although they still accept all other nodes in

their anonymous tunnels. The explanation is that ISDN nodes are now only
intermediate or final nodes in tunnels of other ISDN nodes. As a result, ISDN

nodes must donate only very little bandwidth to handle the traffic of other

nodes, which increases the bandwidth available for their own data.

Compared with the results in Figure 8.1 when contacting the web server

directly, the download times for large web pages have increased about 20%

for ISDN nodes and about 50% for ADSL256 nodes. All other nodes only

accept nodes with at least DSL5i2 speed in their tunnels and the performance

they experience is therefore approximately equal. Their download times are

Code200 Exhibit 1009
Page 229 of 308

8.3 Simulation Results 209

now about 50% longer than those of ADSL512 or DSL512 nodes when the

web server is contacted directly.

Further optimisation is of course still possible. Looking at Table 7.2, it

could make sense to increase the minimum node type for intermediate nodes

if the initiator is a ADSL256 to DSL512 to avoid the slow 128-Kb/s up-stream

bandwidth of ADSL512 nodes. Similarly, DSL512 nodes can be considered as

too slow if the initiator is a T1 or T3 node andwe therefore raise the minimum

node type for intermediate or final nodes for these initiators to Tl nodes.

Analysing the download times for this scenario with even more optimised

tunnels, we get the download times as illustrated in Figure 8.4.

page sze (klobytes)

a) HTTP 1 0, 5 simultaneous connections

page sze (klobytes)

b) HTTP 1 1

Figure 8.4: Download times with even more optimised tunnel throughput.

Compared with the results in Figure 8.3, the throughput could be again

improvedforall nodes with at least ADSL 25 6 speed. The biggest relative gain
is experienced by Tl and T3 nodes because they got rid of "slow" DSL 512

nodes in their tunnels. However, the improvement compared to Figure 8.3 is

in general relatively small and we do not believe it is worth the greater risk

of compromised tunnels. We therefore will continue using the optimisation

according to Table 7.2 and the corresponding results in Figure 8.3 as a ba¬

sis. Another argument to continue our analysis based on this less aggressive

optimisation strategy is that in practice, the higher the minimum node type

specified by the initiator, the smaller the probability all nodes along a tunnel

the initiator sets up fulfil this minimum node type requirements. The reason

is that the higher this minimum node type, the smaller the probability a node

has enough neighbours of this minimum node type it can offer in selections.

As we have discussed in Section 7.4, selections are filled up with the next

best neighbours that do not fulfil the minimal requirements and it may there-

Code200 Exhibit 1009
Page 230 of 308

210 8 MorphMix Simulation and Results

fore happen that not all nodes along a tunnel fulfil the minimum node type

requirements as specified by the initiator. It is therefore indeed reasonable to

use optimisation according to Table 7.2 as a basis, although in practice, auser

may always choose to override the default minimum node type she accepts in

her tunnels.

For completeness, Figure 8.5 illustrates the ratio of the download times

between accessing the web server directly and through MorphMix based on

the optimisations in Figures 8.3 and 8.4. We only illustrate the ratio forHTTP

1.1 because the results for HTTP 1.0 are similar.

G
7

? 6

5

1 3

ISDN

.

ADSL 256 - -

ADSL 512

DSL 512

T1

T3 - --

G
7

? 6

5

5

| 3

o 2

g

0

000

ISDN

_

ADSL 256 - -

ADSL 512

DSL 512 -

T1

T3 -

0 40000 80000 120000 160000 20

page size (bytes)

a) optimisation as illustrated

in Figure 8.3(b)

40000 80000 120000 160000 200000

page size (bytes)

b) optimisation as illustrated

in Figure 8.4(b)

Figure 8.5: Ratio between the downloadtimes when accessing the web server

through MorphMix and directly using HTTP 1.1.

We see that for small web pages, the ratio is nearly the same for all tun¬

nels. The reason is that the download time is mainly determined by the RTT,

which is several times larger if the web server is accessed throughMorphMix.
As the web pages get larger, the throughput ofthe anonymous tunnel becomes

more important and we can confirm the results we observed above that espe¬

cially Tl and T3 nodes profit from the even more optimised tunnels we used

to generate the results in Figure 8.4.

Using a single anonymous tunnel to download the web page, it seems we

are approaching the limits in terms of end-to-end performance. However, the

size of a web page does not unambiguously reflect the complexity to down¬

load it because it could be just one file that requires one request/reply pair or it

could be composed of an index file and several embedded object, resulting in

several request/reply pairs being sent through MorphMix. To assess the pure

performance of MorphMix, we simulate file transfers with random file sizes

Code200 Exhibit 1009
Page 231 of 308

8.3 Simulation Results 211

between one and 200000 bytes. Every file transfer results in exactly one re¬

quest/reply pair, which means there is no uncertainty as in the web browsing

case about the number of embedded objects in a web page. Figure 8.6 depicts
the download times when the server is contacted directly, when the optimisa¬
tions according to Table 7.2 are used, and when the further optimisations as

in Figure 8.4 are employed.

a) direct download b) optimisation c) further optimisation

according to Table 7.2 as in Figure 8.4

Figure 8.6: Download timesfor a singlefile.

Again and not surprisingly, downloading a single file through MorphMix
takes longer than downloading it directly. When contacting the server di¬

rectly, the download times in Figures 8.1(d) and 8.6(a) are virtually the same,

which means that downloading a single web page possibly composed of sev¬

eral objects is only marginally slower than downloading a single file of the

same size. This can be explained with the relatively short RTT, which means

that the time between requesting the embedded objects and starting receiv¬

ing them is relatively short. Contacting the server through MorphMix using
tunnel throughput optimisation according to Table 7.2 and comparing Fig¬

ures 8.3(b) and 8.6(b), we can see that downloading a single file is notably
faster than downloading a web page of the same size. The main reason is the

significantly longer RTT than when contacting the server directly: since the

delay on a virtual link and on the connection to the web server is 85 ms on

average (see Section 8.2), accessing the server through MorphMix and using

a tunnel length of five results in an the average RTT of 850 ms compared to

170 ms when the server is contacted directly. If a web page with embedded

objects is downloaded through MorphMix, this implies it takes at least 850

ms on average between completely receiving the index file and starting re¬

ceiving the first bytes of embedded objects. Consequently, there is a gap of

at least 850 ms on average during which no data are downloaded to the ini-

Code200 Exhibit 1009
Page 232 of 308

212 8 MorphMix Simulation and Results

tiator In the single file transfer case, this gap is not present, which explains
the difference of the download times. Using the even more optimised tun¬

nel throughput scenario and comparing Figures 8.4(b) and 8.6(c), we observe

exactly the same.

With the results in Figure 8.6, we can definitely see the limits of the end-

to-end performance MorphMix users may expect. To analyse this in more

detail, we depict the download times for a single file again in Figure 8.7,

but this time with an y-axis that only ranges from 0-10 seconds. We do not

include the download times for initiator that are ISDN nodes because for large

files, their download times are significantly longer than ten seconds.

a) direct download b) optimisation c) further optimisation

according to Table 7.2 as in Figure 8.4

Figure 8.7: Download timesfor a singlefile (more detailed illustration).

There are three factors that account for the increased download times.

The first is the increased RTT, which is clearly visible looking at Figure 8.7

for small file sizes: contacting the server through MorphMix (Figures 8.7(b)

and(c)) results in download times that are about one second longer than when

contacting the server directly (Figure 8.7(a)). The second component are

nodes with poor Internet connections along the tunnels of initiators with good
Internet connections. Looking at initiators with ADSL256 connections and

comparing Figures 8.7(a) and (b), the increased download times with Mor¬

phMix cannot only be explained with the increased RTT, but also with the

slow up-stream bandwidth of ADSL512 nodes that are allowed to be present

in the tunnels according to Table 7.2. With the even more optimised tunnels,

this is no longer the case and as a result, the increased download times of

ADSL256 nodes in Figure 8.6(c) can again be explained with the RTT. Fi¬

nally, the third factor are congested nodes. In general, MorphMix makes use

of statistical multiplexing, which means that even if a node handles several

tunnels simultaneously, it is likely that it must send or receive data of one or

Code200 Exhibit 1009
Page 233 of 308

8.3 Simulation Results 213

only a few of them at the same time. However, it may always happen that this

is not the case at a node for a short while, which makes this node a temporary

bottleneck for all tunnels using it. This can be seenby the increased download

times for large files ofDSL512 nodes comparing Figures 8.7(a) and (b), which

shows the difference is larger than what can be explained with the increased

RTT.

8.3.4 Using Multiple Anonymous Tunnels in Parallel

Anotherway to get better end-to-endperformance is to use multiple tunnels in

parallel. This should decrease the download times of web pages with several

embedded objects because they can be requested in parallel through different

tunnels. We analyse the download times when using three or five tunnels in

parallel. We use HTTP 1.0 with a maximum offive parallel connections. Note

that using tunnels in parallel to download a single web page does not make

sense with HTTP 1.1 where the index file and all embedded objects of a page

are fetched through the same anonymous connection, and therefore through
the same anonymous tunnel. Figure 8.8 illustrates the download times.

page sze (klobytes)

a) three tunnels in parallel

page sze (klobytes)

b) five tunnels in parallel

Figure 8.8: Download times using multiple tunnels in parallel.

Again, the download times could be decreased compared to Figure 8.3(a)

and using five tunnels in parallel results in an end-to-end performance that is

only slightly worse than using HTTP 1.1 as inFigure 8.3(b). However, using

multiple tunnels in parallel to request a web page from a single server greatly
increases the risk that an adversary breaks the anonymity because all he needs

is to compromise one of the tunnels used to communicate with the server.

Assuming fa is the fraction of compromised tunnels among the tunnels an

Code200 Exhibit 1009
Page 234 of 308

214 8 MorphMix Simulation and Results

initiator accepts and tp tunnels are used in parallel to access a single server,

the probability po6S that this can be observed by the adversary is

Pobs = l-(l-fam)tp- (8.1)

As an example, assuming fam = 0.01 and tp = 5 results in pobs «

0.049, which means the probability of being observed has increased nearly
five times. Considering that even using five tunnels in parallel does in general
not yield shorter download times than when using HTTP 1.1, it definitely
does not make sense to use tunnels in parallel. We therefore continue to use

the good compromise with one tunnel per web page and the optimisations

accordingto Table 7.2. Since HTTP 1.1 always outperforms HTTP l.Oifone

tunnel is used, we will stick exclusively with HTTP 1.1 from now on.

8.3.5 Bandwidth Usage and Overhead

Appendix A.6 gives a quantitative analysis of the overhead produced by Mor¬

phMix and concludes that the data to set up and maintain anonymous tunnels

result in an average overhead of sending and receiving about 1090 B/s for

each node. Here, we analyse the bandwidth usage and the data overhead of

MorphMix in more detail assuming our web browsing scenario. We distin¬

guish between six different types of data:

1. Web requests/replies at initiator: the web requests sent and replies
received by initiators. This corresponds to the the application data sent

and received if the web server is contacted directly.
2. Cell header/padding: the additional data that are needed to generate

fixed-length cells from the web requests and replies. This includes the

cell headers, anonymous connection headers, and the random bits for

the padding.
3. Forwarding web requests/replies: the web requests and replies for¬

warded by intermediate and final nodes. It is the total length of all data

that are forwarded, including application data, cell and anonymous con¬

nection headers, and padding.
4. Tunnel setup overhead: all data associated with tunnel setup and tear-

down. It includes data sent and received by all nodes along a tunnel to

establish append nodes and to establish the layer of encryption, includ¬

ing setting up the virtual links from and to the witnesses. We separate

Code200 Exhibit 1009
Page 235 of 308

8.3 Simulation Results 215

between data sent and received by the nodes along a tunnel and by the

data sent and received by witnesses to append a node. It also includes

TERM messages to tear down tunnels.

5. E2E ping/pong overhead: all data sent and received to test the RTT

of anonymous tunnels. It includes the data sent and received to test the

own tunnels and the data forwarded for other nodes.

6. Virtual link message overhead: all virtual link messages sent and re¬

ceived between two neighbours to set up a virtual link and exchange
virtual link status information. It also includes CREDIT messages (see

Appendix A.3.6) for flow-control and cell headers and padding to ex¬

change the virtual link messages.

The first three types of data are needed to fulfil the prime task of a mix

network: to send and receive application data through anonymous tunnels.

We therefore do not count the anonymous connection headers, cell headers,

and padding bits to generate the fixed-length cells from the application data

and forwarding the resulting cells along anonymous tunnels as data overhead.

Consequently, we identify the first three types of data as tunnel data. On the

other hand, the other three types of data are needed to provide the anonymous

tunnel infrastructure including tunnel setup, testing, and teardown overhead

and management of the overlay network, and are therefore collectively iden¬

tified as data overhead.

We first analyse how much of the available bandwidth is actually used by

MorphMix using the scenario in Figure 8.3 (b) where web pages are requested

through one anonymous tunnel using HTTP 1.1 and tunnel optimisation ac¬

cording to Table 7.2 is used. We distinguish between data sent and received

and between tunnel data and data overhead. Figure 8.9 shows the bandwidth

usage for all nodes together and for the different node types.

Looking at the leftmost bars in Figure 8.9, we can make two important
observations:

1. Overall, only about 3% of the total bandwidth available to all nodes is

used by MorphMix for sending and receiving data assuming our web

browsing scenario described above. This is quite a small burden and

means in general that most users can easily run a node without noticing

a significant drop in terms of network performance for other applica¬
tions.

2. Of all MorphMix data sent and received by all nodes, about 61% are

tunnel data and 39% are data overhead. This means that the overhead

is relatively large compared to the tunnel data, but since the total Mor-

Code200 Exhibit 1009
Page 236 of 308

216 8 MorphMix Simulation and Results

all nodes ISDN ADSL 256 ADSL 512 DSL 512 T1

node type

Figure 8.9: Bandwidth usage.

phMix load is so small compared to the bandwidth available to the

nodes, it can easily be dealt with this data overhead.

Looking at the different node types, we can see that about one third of

the down-stream bandwidth of ISDN nodes is used, which can be explained
with their small bandwidth and our assumption that users with ISDN nodes

are always browsing when they are online. Of the up-stream bandwidth of

ISDN nodes, less than 10% is used. The explanation is that web requests

are much shorter than web replies and that ISDN nodes only relay very little

data of other nodes. In general, the percentage of the used bandwidth de¬

creases as the Internet connection of the nodes gets faster. The exception in

Figure 8.9 are DSL5i2 nodes because they are the nodes with the slowest In¬

ternet connections that are accepted in anonymous tunnels of all other nodes

(see Table 7.2).

The calculations in Appendix A.6 result in an average data overhead of

sending and receiving about 1090 B/s per node. According to Figure 8.9,

ISDN nodes spend about 6% of their total available bandwidth for data over¬

head, which corresponds to approximately 430 bytes/s. This is less than the

average because ISDN nodes relay fewer than average data from other nodes

and 430 B/s is definitely an acceptable overhead for slow ISDN nodes. This

overhead increases as the nodes get faster and T3 nodes use about 0.47% of

their available bandwidth for overhead, which is equal to 2450 B/s and above

the average. This is the maximum data overhead any node can expect and is

insignificant compared to the available bandwidth to fast nodes.

Code200 Exhibit 1009
Page 237 of 308

8 3 Simulation Results 217

We can also use the results in Figure 8 9 to estimate the computational
overhead imposed by the cryptographic operations We only consider T3

nodes because they handle the largest amount of data These nodes send and

receive about 7 8 KB of data per second On our test system that is equipped
with a 1GHz AMD Athlon CPU and 256 MB RAM, the symmetric key oper¬

ations and the cryptographic hashes we employ (see Appendix A 2 1) can be

computed at rates of 80 and 350 Mb/s, respectively Even recalling that the

payload of some cells must be encrypted multiple times, the resulting com¬

putational overhead is significantly below 1% Looking at public-key cryp¬

tography and assuming RSA private-key operations with a 2048-bit key (see

Appendix A 2 1), our test system manages to process about 160 Kb of data

per second Public-key cryptography is only used to process the data over¬

head and even there, only to establish virtual links and during the anonymous

tunnel setup In fact, less than 10% of all data overhead involves public-

key operations (see Appendix A 6), and only half of these operations are the

significantly more expensive private-key operations Considering a T3 node

sends and receives about 20 Kb of data overhead per second, less than 2 Kb

of them must be processed using expensive private-key operations, which re¬

sults in a computational overhead of about 1-2% We therefore conclude that

the computational overhead imposed by cryptographic operations is below

2% and can be handled well by a reasonably modem computer and that our

assumptions in Section 8 2 4 were correct

To analyse the data sent and received by the nodes in more detail, Fig¬

ure 8 10 illustrates how much of the used bandwidth is spent on which type

of data

00 -

EZ3 web eque at n a o exi unne e up o e head a ong unne

^m e heade paddng j pjTnn^nnnn n Mhead"
"^ ^

i=i orwa d ng web eque sJep e lzj rtua ill; me age o e head

80 -

60 -

n
.

40 -

20 -

kJ À M h In k
SDN ADS 256 ADS 5 2 DS 5 2

node type

a) data sent

00 -

= „„ d.gnb . ,.,/.,. Crtu ngnongo
e o e head

-

80

60 -

40 -

I h IM M M n h n
in in

"

a node SDN ADS 256 ADS 5 2 DS 5 2 3

node type

b) data -eceiv sd

Figure 8.10: Data sent and received by the nodes

Code200 Exhibit 1009
Page 238 of 308

218 8 MorphMix Simulation and Results

By far the biggest part - about 55% - is spent on forwarding the web

requests and replies of other nodes and only relatively little is spent to handle

the own application data. This is reasonable because sending a web request

as an initiator means that all other nodes along the anonymous tunnel must

send and receive this request, too. Similarly, the reply sent back by the web

server must be sent and received by the final and all intermediate nodes along
the tunnel. The effective web replies received at the initiators only account

for about 11% of all data nodes receive. Since web requests are usually much

shorter than web replies, requests issued at an initiator account for less than

1% of all data sent. Figure 8.10 also shows that the additional amount of

data produced by cell and anonymous connection headers and padding bits

is relatively small compared to the user data: looking at the web replies, it is

about 10% of the application data.

Tunnel setup and teardown overhead is responsible for about half of all

data overhead and for about 19% of all all data. About 16.5% stem from the

nodes along the tunnel and 2.5% from the witnesses when appending a node.

End-to-end status information is responsible for about 9% and the various

virtual link messages for about 11% of all data. Looking at the different node

types, the bandwidth that is spent for handling the data of other nodes gets

the bigger the faster the Internet connection of the node is. This is reasonable

because according to our assumptions about realistic capabilities and partic¬

ipation probabilities in Section 7.3.2, nodes with good Internet connections

accept relaying anonymous tunnels more frequently and are participating in

MorphMix more often. In particular, ISDN nodes have to deal with relatively
little data overhead, which can clearly be seen by inspecting Figure 8.10(b).

More than 70% of all data received by ISDN nodes are web replies they have

requested themselves and the data overhead accounts for only about 20%.

The main reason is that we assume that the owners of the ISDN nodes are

always browsing the web when the node is up. In addition, ISDN nodes

nearly never accept relaying anonymous tunnels and as a result, their tunnel

setup overhead mainly stems from setting up their own tunnels and acting as

a witness for others. Similarly, ISDN nodes forward only little end-to-end

status information messages of other nodes, which means most of the data

overhead also stems from testing their own tunnels. As the nodes' bandwidth

increases, they accept relaying anonymous tunnels more frequently and also

become more attractive for others to be used in their tunnels. As a result,

the fraction of the bandwidth that is used to forward data of other nodes gets

larger and the fraction of the bandwidth that spent on handling the own web

Code200 Exhibit 1009
Page 239 of 308

8.3 Simulation Results 219

requests and replies gets smaller.

The results depicted in Figures 8.9 and 8.10 are of course heavily depen¬
dent on the scenario and the different parameters we specified in Section 8.2.

For instance, reducing the interval between two subsequent tunnels setups to

one minute on average would approximately double the data overhead im¬

posed by tunnel setups. Similarly, increasing the amount of application data

decreases the relative data overhead. To analyse the impact of an increased

amount of application data, we reduce the reading time (see Section 8.2.5)

to zero, which means that as soon as a web page has completely been down¬

loaded, the next request is initiated right away. Figure 8.11 depicts the down¬

load times and the bandwidth usage.

pagesze (klobytes) node type

a) download times b) bandwidth usage

Figure 8.11: Download times bandwidth usage with reading time = 0.

Figure 8.11(b) shows that the total bandwidth used by MorphMix has

nearly tripled from 3% to about 8.9% compared to Figure 8.9. Still the down¬

load times in Figure 8.11(a) have only increased a little bit compared to Fig¬

ure 8.2(b), which means the MorphMix nodes could cope quite well with the

increased traffic volume. Furthermore, the additional computational overhead

by symmetric key operations and the cryptographic hashes can easily be han¬

dled by the nodes following our discussion in Section 8.3.5. Since the data

overhead has remained the same, it now only accounts for about 15% of all

data. For completeness, Figure 8.12 shows the data sent and received by the

nodes in more detail.

Compared to Figure 8.10, the bars corresponding to tunnel data have be¬

come longer and those corresponding to data overhead have become smaller.

Otherwise, the basic characteristics ofhow many data are used for which type

depending on the node type have remained similar to those in Figure 8.10.

Code200 Exhibit 1009
Page 240 of 308

220 8 MorphMix Simulation and Results

00

EZ3 web eque at n a o

^m e heade padd ng

i=i orwadngweb eque sJe

= slBil ead w°ne "e""6

80

60

40

r

20

wi flu M Mk iMl iHI

SDN ADS 256 ADS 5 2 DS 5 2

node type

s «n [1 KL n rl flJl Kl^kJI fU RMI n I h rfl n I k J1

iode SDN ADS 256 ADS 5 2 DS 5 2 3

node type

a) data sent b) data received

Figure 8.12: Data sent and received by the nodes with reading time = 0

8.3.6 The Influence of Failed Tunnel Setups and Rejected
Tunnels

Throughout this chapter, we have always assumed that setting up anonymous

tunnels only fails if one of the nodes along the tunnel fails (for instance by

leaving MorphMix) during the setup or a witness that is used to append a node

fails Similarly, we have assumed tunnels are never rejected by the imtiator

However, in practice it may happen that the tunnel fails during the setup for

any reason, for instance because the witness specified by the imtiator cannot

be contacted In addition, some tunnels will be rejected by the imtiator be¬

cause they are identified as malicious by the collusion detection mechanism

Even without malicious nodes, a fraction of about 0 2 of all tunnels will be

rejected because of false positives (see Chapter 7) We analyse the impact

of failed or rejected tunnels in Figure 8 13, assuming that a fraction of 0 5

or 0 8 of all anonymous tunnels fails or is rejected Note that although tun¬

nels can fail at any time during the setup, we assume a worst case scenario

in the sense that the failure occurs at the end of setting up a complete tunnel

Consequently, failed and rejected tunnels both "cost" setting up a complete
tunnel

Comparing Figure 8 13 with Figure 8 3(b), we can see that the down¬

load times have marginally increased This is not surprising, as there is addi¬

tional load because more tunnels have to be set up This can also bee seen by

analysing the correspondingbandwidth usage illustrated in Figure 8 14

In general, the overhead has increased compared to Figure 8 3 and con¬

sequently, the total load per node has increased The overhead has grown

from about 39% of the total amount of data in Figure 8 3 to approximately

Code200 Exhibit 1009
Page 241 of 308

8.3 Simulation Results 221

ISDN

45000 - ADSL 250

ADSL 512

40000 - DSL 512

100000 200000

a) failure/reject probability 0 5 b) failure/reject probability 0 8

Figure 8.13: Download times withfailed and rejected tunnels.

SDN ADSL256 ADSL512 DSL512 Tl

node type

SDN ADSL256 ADSL512 DSL512 Tl

node type

a) failure/reject probability 0 5 b) failure/reject probability 0 8

Figure 8.14: Bandwidth usage withfailed and rejected tunnels.

49% in Figure 8.14(a) and 64% in Figure 8.14(b). However, the total load of

all MorphMix traffic is still below 5% of the total bandwidth available to all

nodes even if a fraction of 0.8 of all tunnels cannot be used. For T3 nodes,

the data overhead in Figure 8.14(b) has about tripled compared to Figure 8.3,

which implies the computational overhead imposed by cryptographic opera¬

tions has also approximately tripled. On a computer equipped with a 1GHz

AMD Athlon CPU, this result in a computational overhead of about 6% (see

Section 8.3.5), which can easily be handled. Consequently, we conclude that

MorphMix copes well with a significant fraction of failed or rejected tunnels.

8.3.7 The Influence of the Tunnel Length

In Section 7.6, we have analysed the effect of different tunnel lengths on the

probability the adversary manages to compromise anonymous tunnels. In

Code200 Exhibit 1009
Page 242 of 308

222 8 MorphMix Simulation and Results

general, we have seen that longer tunnels imply better protection but they
also increase the fraction of false positives. To examine the influence of the

tunnel length, Figure 8.15 illustrates the download times depending on the

tunnel length. We use againHTTP 1.1 to download a whole web page through

one anonymous tunnel and the optimisations according to Table 7.2. As a

reference, we also include Figure 8.3(b) with a tunnel length of five nodes.

a) tunnel length = 3 b) tunnel length = 4 c) tunnel length = 5

d) tunnel length = 6 e) tunnel length = 10

Figure 8.15: Download times depending on the tunnel length.

Not surprisingly, the download times increase as the tunnels get longer.
In addition, the RTT gets longer, which can be clearly seen by comparing
the download times when the page sizes are small. On the other hand, the

download times if one uses three nodes in a tunnel are significantly faster than

with five nodes, in particular if the initiator has a good Internet connection.

Figure 8.16 depicts the bandwidth usage for the scenarios inFigure 8.15.

The longer the tunnel length, the larger the percentage of the total band¬

width that is used by MorphMix. The relative data overhead also gets larger

as the tunnels get longer because the tunnel setup overhead grows faster than

the tunnel data if the tunnel length increases. Similarly, the computational
overhead imposed by cryptographic operations and the collusion detection

mechanism increases as the tunnel length grows. Note that longertunnels also

means an increased risk that any of the intermediate or final nodes suddenly
leaves the system and thereby breaks the tunnel. Nevertheless, assuming the

Code200 Exhibit 1009
Page 243 of 308

8.3 Simulation Results 223

_1
_Ü Qua ÖH MB

a) tunnel length = 3

1
Ha = H Œ =__

1 1
n= n_ flj

b) tunnel length = 4 c) tunnel length = 5

Jm a Va n, a_

d) tunnel length = 6 e) tunnel length = 10

Figure 8.16: Bandwidth usage depending on the tunnel length.

web browsing scenario, the amount of data can easily be handledby the nodes

even if all tunnels have a length of ten.

As a conclusion, we state there is simply no optimal tunnel length in

MorphMix. Choosing the tunnel length is a compromise between usability
and protection from attacks. A user who prefers good end-to-end perfor¬
mance over best possible anonymity should be happy with a tunnel length of

three. Another user interested in minimising the probability of compromised
tunnels may be willing to use tunnels with ten nodes even if this implies

worse end-to-end performance and a higher rate of false positives. A third

user could try to find a good trade-off between performance and protection
from attacks and chooses five nodes in her tunnel. Recalling the results in

Figures 7.11, 8.15, and 8.16, a tunnel length of five still seems to be a good

compromise and a reasonable default value to be used in MorphMix. How¬

ever, any implementationofa MorphMix node should give the user the choice

to change the default value to anything between three and ten. A tunnel length
below three does not make sense because this means the initiator directly ap¬

pends the final node to itself, which implies there is no selection offered to

the initiator during the entire tunnel setup and consequently, there are no data

for the collusion detection to operate on. Tunnel lengths above ten are also

not recommended because they add virtually nothing to further increase the

resistance to attacks and are therefore not worth the additional performance

penalty and the increased load on other MorphMix nodes.

Code200 Exhibit 1009
Page 244 of 308

224 8 MorphMix Simulation and Results

8.3.8 The Influence of the Cell Length

We have always used 512 bytes for the length of the cells, but other cell

lengths could be used. In general, shorter cells mean more header data over¬

head per cell but also fewer padding bits on average in the last cell of a Mor¬

phMix protocol message. In addition, the end-to-end delay for a single cell is

slightly smaller because nodes must always completely receive a cell before

they can forward it. Conversely, longer cells mean less header data over¬

head and more padding bits in the last cell of a message, and completely

receiving and processing a cell takes a bit longer. As an example, we analyse
the total amount of data that must be transmitted to handle different applica¬
tion data lengths from 100 to 100000 bytes. To get the effective payload per

cell that can be used to carry application data, we must subtract the cell and

anonymous connections headers lengths from the cell length. Looking at cell

lengths of 256, 512, and 1024 bytes, the available payloads for the applica¬
tion data are 224, 480, and 992 bytes, respectively. Table 8.1 illustrates the

number of cells needed and the total data that must be transmitted depending

on the application data length and the cell length.

Table 8.1: Data volume depending on the cell length (all lengths in bytes)

appl data

length

256-b

#cells

yte cells

tot data

512-b

#cells

yte cells

tot data

1024-1

#cells

jyte cells

tot data

100 1 256 1 512 1 1024

1000 5 1280 3 1536 2 2048

10000 45 11520 21 10752 11 11264

100000 447 114432 209 107008 101 103424

Looking at the results in Table 8.1, we can say that small amounts of

application data profit from small cells while longer amounts benefit from

long cells. Ifwe were sure MorphMix would only be used to download large

files, we would choose a cell length of 1024 or even longer. If it were mainly
used for anonymous remote terminal access, even 256 bytes would be too

much because a single character would be transmitted in one cell most of the

time. Using our web browsing scenario and examining the download times

depending on the cell length, we get the results in Figure 8.17. We use the

standard settings, i.e. requesting a page through one tunnel via HTTP 1.1 and

using tunnel optimisation according to Table 7.2. For easy comparison, we

also include Figure 8.3(b).

Code200 Exhibit 1009
Page 245 of 308

8.3 Simulation Results 225

a) cell length = 256 B b) cell length = 512 B c) cell length = 1024 B

Figure 8.17: Download times using different cell lengths.

There is virtually no difference between the download times, with the

exception that with a cell length of 1024 bytes, the times for fast nodes are

slightly worse than with shorter cells. We conclude our cell length of 512

bytes is reasonable, although 256 bytes would make sense too when looking
at the download times. One argument in favour of 512 bytes is that about 80%

of all web requests are approximately 300 bytes long (see Section 8.2.5) and

therefore fit into one cell, which means exactly one cell must be processed by
each node along a tunnel for most web request.

8.3.9 Crashing Nodes and Blocked Virtual Links

So far, nodes did never crash and could always be reached. The only way they
could disappear and render tunnels useless was when their operators willingly
shut them down. In practice, we can expect that nodes or the computers they

ran on crash from time to time and that nodes can temporarily not be reached

due to problems with their Internet connection. We have already mentioned

the subtle differences between a MorphMix application that crashes or is shut

down and a computer running a MorphMix node that crashes or that cannot

be reached temporarily in Section 8.1. Here we analyse the impact on the

end-to-end performance.

We use the following model: MorphMix applications or the computers

they ran on can crash at any time. If a node crashes, we assume it is because

of a computer crash in 50% of all cases and because of a MorphMix applica¬
tion crash in the other 50% of all cases. Once a node has crashed, we assume

it will be back online within a random time between one and five minutes.

In addition, nodes can temporarily not be reachable due to connection prob¬
lems for a random time between one and five minutes. Note that the effect

Code200 Exhibit 1009
Page 246 of 308

226 8 MorphMix Simulation and Results

of a node that cannot be reached is similar as a crashed computer because

the initiator, and therefore the client application, cannot be notified about the

terminated connection. Since the download failure reaction time (see Sec¬

tion 8.2.5) is at most 30 seconds, any of the failures described above always
result in downloading the entire page again through another tunnel.

We analyse the impact of node crashes and temporarily blocked virtual

links assuming every node crashes once during a day and is temporarily
blocked from its neighbours 5,10, or 20 times during a day. Figure 8.18 illus¬

trates the download times for the four node types ISDN, ADSL256, DSL512,

and T3 for the cases where a node is blocked from its neighbours 5 or 20

times a day. Since some page downloads take much longerbecause they page
must be downloaded more than once, we do not use linear regression this time

but show the effective download times of each individual page download. We

use the standard settings, i.e. requesting a page through one tunnel via HTTP

1.1 and using tunnel optimisation according to Table 7.2.

First of all, Figure 8.18(a) shows the download times are indeed nearly

linearly dependent on the page size, which justifies our practice of using lin¬

ear regression to plot the graphs. Without any node crashes or blocked virtual

links, only very few downloads take significantly longer than they should be¬

cause the probability a tunnel is interrapted is small. In this case, interrapted
tunnels occur only if an intermediate or final node leaves the system accord¬

ing to its participation pattern (see Section 8.2.4). With crashing nodes and

with an increasing probability ofblocked virtual links, more and more tunnels

fail and as a result, the probability a page must be requested more than once

increases. However, even in Figure 8.18(c), the vast majority of all download

times are still the same as with no node crashes or blocked virtual links. Cor¬

responding to Figure 8.18, Table 8.2 lists the percentage of pages that failed

during their first download.

With no node crashes or blocked virtual links, only about one of 1000

page downloads fail. With every node crashing once and being blocked tem¬

porarily from the Internet five times a day, the failure rate increases to about

1%. The results for even more frequently blocked nodes are of rather the¬

oretical interest, as we do not believe nodes crash or are blocked from the

Internet so often. We conclude that MorphMix should still be able to deliver

satisfactory performance if nodes crash or are blocked from their neighbours
from time to time.

Code200 Exhibit 1009
Page 247 of 308

8 4 Summary 227

a) no crashes,

never blocked

b) 1 crash,

5 times blocked

c) 1 crash,

20 times blocked

Figure 8.18: Download times when nodes crash or are temporarily blocked

from their neighbours

8.4 Summary

We have presented a thorough discussion of the performance MorphMix of¬

fers to its users using our own simulator and web browsing as the example

application Naturally, we cannot expect the same performance as when con¬

tacting the web server directly, but summarising all results, we state that de-

Code200 Exhibit 1009
Page 248 of 308

228 8 MorphMix Simulation and Results

Table 8.2: Percentage ofpages thatfailed during theirfirst download.

node type

type

no crashes,

no blocks

1 crash,

5 blocks

1 crash,

10 blocks

1 crash,

20 blocks

ISDN 0 09% 0 90% 2 04% 4 47%

ADSL2B6 0 11% 0 95% 2 00% 3 97%

ADSLbi2 0 09% 0 96% 1 90% 3 95%

DSLbi2 0 07% 0 95% 1 85% 3 75%

Tl 0 06% 1 05% 1 95% 3 78%

T3 0 15% 0 88% 1 74% 4 93%

total 0 09% 0 96% 1 91% 3 95%

spite the heterogeneity and the fact that nodes may no longer be reachable

at any time, MorphMix offers good performance. In particular, using HTTP

1.1 and downloading the whole page through a single tunnel, a tunnel length
of five nodes, and tunnel optimisation according to Table 7.2 results in an ac¬

ceptable performance penalty and provides a reasonable compromise between

download times and protection from attacks. We have also demonstrated that

participating in MorphMix and getting adequate performance is not only pos¬

sible for users with computers that have a broadband Internet connection,

but also for users with computers with slow 64 Kb/s Internet connections.

Finally, we have shown that even if a significant fraction of all anonymous

tunnels cannot be used, either because the tunnel fails during the setup or is

rejected by the initiator because the tunnel is identified as malicious by the

collusion detection mechanism, the performance gets only marginally worse.

Besides the "normal" mix network overhead induced by fixed-length cells

and relaying the data of other nodes, there is additional data overhead result¬

ing from tunnel setup, testing, and teardown and management of the overlay

network, which accounts for nearly 50% of all MorphMix traffic assuming

every second anonymous tunnel cannot be used because it has either failed

during the setup or is rejected by the initiator. This is the price MorphMix
users must pay to deal with a dynamic environment with potentially mali¬

cious nodes, but we have shown that this data overhead can be easily han¬

dled. Similarly, we have also demonstrated that considering the nodes that

handle the largest amounts of data and assuming that most tunnels cannot

be used after they have been set up, the cryptographic operations impose a

computational overhead that consumes up to 6% of the available computing

power on a computer that is equipped with a 1GHz AMD Athlon CPU. Con-

Code200 Exhibit 1009
Page 249 of 308

8.4 Summary 229

sequently, the computational overhead can be easily handled by reasonably
modem computers.

Although we have simulated a system consisting of only 1000 nodes, we

state that our results are also representative for significantly larger systems.

In particular, we have set the selection size to its maximum value, which

implies the messages to set up a tunnel have their maximum length. In addi¬

tion, every node has 30 neighbours at any time to guarantee 20 nodes can be

easily offered in selections, which means the overhead to manages the local

environment is not smaller than it would be with nodes in all public /16 sub¬

nets. Furthermore, we use the realistic assumptions about the capabilities of

the nodes we introduced in Section 7.3.2. As a result, the tunnel data, data

overhead, and computational overhead for a single node in our simulation are

the same as if there were nodes in all /16 subnets. Since the load on a sin¬

gle node is low, we state that our results would be very similar to the results

based on a significantly larger system. In general, it can be expected that the

performance offered by MorphMix is virtually independent of the number of

/16 subnets that contain nodes if the distribution of the nodes' capabilities re¬

mains approximately the same, because the data and computational overheads

are always small, no matter how large the system is.

We conclude that MorphMix is indeed practical in the sense that its data

overhead an the computational overhead resulting from cryptographic opera¬

tions are reasonably small and the performance it offers is good enough such

that users are not turning away from the system for performance reasons. It

should be noted that we have measured only the time to download the pages

and have not taken the time it takes to display a completely downloaded page

in the web browser into account. Since displaying the pages can take a few

seconds for complex pages independent of whether the page was downloaded

directly or through MorphMix, the relative performance penalty to download

and display a page should be even smaller than what our simulation results

revealed.

One final remark about the variations of different parameters to optimise
the performance: it is all in hands of the initiators. A user that wants to max¬

imise her protection from being observed and does not care much about the

performance she gets can always choose to accept every node in her anony¬

mous tunnels and to use long tunnels. Another user aiming at a good compro¬
mise between anonymity and performance would probably make use of the

optimisations according to Table 7.2 and use a tunnel length of five to contact

a host anonymously. Finally, users that wish to maximise the performance

Code200 Exhibit 1009
Page 250 of 308

230 8 MorphMix Simulation and Results

but still get a certain degree of anonymity make sure that only fast nodes are

present in their tunnels and use short tunnels with only three or four nodes.

Code200 Exhibit 1009
Page 251 of 308

Chapter 9

Conclusions

In this chapter, we conclude our work. We first provide a brief summary of

our work. Thenwe review the goals we have stated in Section 5.1 and analyse
if we could achieve them. We also point out some limitations of MorphMix.

Afterwards, we compare MorphMix with other peer-to-peer-based systems

that aim at providing anonymous Internet access. Finally, we identify several

challenging topics for future research on mix networks in general.

9.1 Summary

In thesis, we have presented MorphMix, a novel peer-to-peer-based dynamic
mix network. The main motivation for developing MorphMix was that static

mix network, operated commercially or by volunteers, seem not to be well

suited to provide anonymous Internet access for a large number of users.

Static mix networks operated by volunteers suffer from the problem of ac¬

quiring enough mixes and from the threat of an internal attacker controlling
a significant portion of all mixes. Commercially operated static mix network

have yet to show whether they can indeed be operated profitably. Peer-to-

peer-based mix networks, on the other hand, seem to have some intrinsic

advantages over static mix networks. Since every user brings her own mix,

they should be able to support a very large number of users. In addition, the

potentially large number of participating users makes it more difficult for an

adversary to operate a significant subset of all mixes. However, peer-to-peer

Code200 Exhibit 1009
Page 252 of 308

232 9 Conclusions

mix networks are still a relatively new area of research and they had yet to

demonstrate their usefulness in practice.

The goal of our work on MorphMix was to provide a practical system that

enables anonymous low-latency Internet access for a large number of users.

To achieve this goal, MorphMix is composed of three core components. The

first of these components is the anonymous tunnel setup protocol. One key

design decision regarding this protocol is that every node along a tunnel picks
its immediate successor. This has the advantage that every node must only
handle its local environment consisting of its neighbours. A node can easily
communicate with its neighbours to leam which of them are currently par¬

ticipating in MorphMix and have spare resources to accept new anonymous

tunnels. The disadvantage is that a malicious node would simply pick another

malicious node as its successor to compromise anonymous tunnels of honest

nodes. To counter this attack, we designed the anonymous tunnel setup pro¬

tocol in a way such that a node cannot simply choose its successor itself, but

must offer a selection of several nodes to the initiator and the initiator picks

one of them. The idea is that a malicious node must now offer many or only
malicious node in its selections to guarantee the following node in the tunnel

is also malicious with high probability.

This is where the second core component, the collusion detection mecha¬

nism, comes into play. Based on the assumption that an adversary can operate

nodes only in a small subset of all public /16 subnets, the collusion detection

mechanism can detect selections that containmany malicious nodes with high

probability, if such a selection is detected, the tunnel is suspected as poten¬

tially malicious and is rejected by the initiator. Therefore, a malicious node

can only offer relatively few malicious nodes in its selections without be¬

ing detected and consequently, the adversary manages to compromise only

slightly more tunnels than if he played fair. The collusion detection mech¬

anism bases on the assumption that honest nodes pick their neighbours they
offer in selections from a wide variety of all /16 subnets that contain Mor¬

phMix nodes. Consequently, MorphMix requires a mechanism that supports

this.

This is achieved with the third component, the peer discovery mecha¬

nism. The idea is that a node remembers the information about other nodes it

receives in selections. This information about other nodes is stored in a way

that allows honest nodes to pick their neighbours from a wide variety of/16

subnets. In addition to providing the basis for the correct functioning of the

collusion detection mechanism, this has an additional benefit because it is a

Code200 Exhibit 1009
Page 253 of 308

9.1 Summary 233

necessary requirement for the internal adversary to control the first interme¬

diate node to break the relationship anonymity between initiator and server.

Selecting the neighbours from a wide variety of all /16 subnets reduces the

probability the adversary controls this node because of the assumption that

the adversary can only control nodes in a limited number of all public /16

subnets.

After having described the basic design of MorphMix, we have analysed
the impact of different attack strategies that can be employedby the adversary
and have come to the conclusion that the most promising attack the adversary
should make use of is attacking always with the same attack level. This means

that whenever a malicious node is picked as an intermediate node in a tunnel,

it should offer always the same number of malicious nodes in its selection.

The number of malicious nodes in a selection corresponds to the attack level

and depending on the number of different /16 subnets that contain MorphMix

nodes, there is an optimal attack level that maximises the adversary's chances

to compromise a tunnel.

Based on this attack, we have analysed the performance of the collusion

detection mechanism assuming a realistic scenarios with a large number of

nodes that are located in many different /16 subnets. In addition, we have

analysed the impact of different capabilities of the nodes and the influence

of the fact that many nodes are not continuously participating in MorphMix,
but may join or leave at any time. The main result was that the collusion

detection works well in the sense that it can significantly reduce the number

of compromised tunnel compared to the case if no such mechanism were em¬

ployed. In particular, assuming a large system with honest nodes in nearly all

public /16 subnets, the adversary must control nodes in several 1000 subnets

to compromise more than a fraction of 0.01 of the tunnels that are accepted

by the initiator.

Finally, we have implemented a simulator to evaluate the performance

MorphMix users can expect and to analyse the data overhead produced by

MorphMix. Using web browsing as the example application, we have shown

that although the nodes are very heterogeneous, may no longer be reachable

at any time, tunnels may fail during the setup, and tunnels may be rejected

by the initiator because it is identified as malicious by the collusion detec¬

tion mechanism, the performance MorphMix offers is good enough such that

users are not turning away from the system for performance reasons. In ad¬

dition, both the data overhead and the computational overhead imposed by

cryptographic operations are reasonably small and can be easily handled by

Code200 Exhibit 1009
Page 254 of 308

234 9 Conclusions

any participating node.

For completeness, we have also provided the full MorphMix protocol

specification and a prototype implementation, both of which are described

in the appendix.

9.2 Achievement of Goals and Assessment

The principal goal of our work was to develop a practical system that enables

anonymous low-latency Internet access for a large number of users. In Sec¬

tion 5.1, we have stated four more detailed goals we wanted to achieve with

MorphMix to fulfil the principal goal of this thesis, and we can say we have

fulfilled all four of them:

1. Requirements to Participate: Recalling our discussion on computa¬

tional and memory requirements in Sections 5.8.1 and 8.3, participating
in MorphMix is possible for anyone owning a state-of-the art computer

that is connected to the Internet and capable of running modem graph¬
ical application such as web browsers or office packages. We have

shown in Section 8.3 that the bandwidth requirements are also modest

and even users with computers that have slow 64 Kb/s dial-up Internet

connections can participate. In addition, participating is possible in¬

dependent of whether the computer has a static or dynamic public IP

address or is located in a private network behind a NAT gateway, as we

have shown in Section 5.8.2. Finally, joining MorphMix for the first

time is easy because the peer discovery mechanism (see Section 5.7)

makes it possible to quickly leam about other nodes.

2. Scalability: MorphMix scales very well and can handle as many nodes

as there are public IP addresses (see Section 5.8.1). The key to scala¬

bility in MorphMix is that the complexity of its three core components

does not depend on the number of nodes, but on the number of/16 sub¬

nets that contain MorphMix nodes. Since there is an upper bound on

the number of/16 subnets (see Section 5.4.2), the complexity of the

three components is also limited, and we have shown in Sections 5.8.1

and 8.3 that a node that fulfils the requirements above can cope well

with an environment with MorphMix nodes in all /16 subnets. Further¬

more, we have demonstrated in Section 8.3 that since the data overhead

is so small, the performance offered by MorphMix is virtually indepen¬
dent on the system size.

Code200 Exhibit 1009
Page 255 of 308

9.2 Achievement of Goals and Assessment 235

3. Protection from Attacks: Based on our assumption that an adversary
can operate nodes in only a small fraction of all public /16 subnets (see

Section 5.4.2), we have shown in Chapter 6 that the collusion detection

mechanism works well in the sense that an attacker cannot compromise

significantly more tunnels than if he played fair, i.e. if malicious nodes

behaved like honest nodes and picked the nodes in their selections ran¬

domly. Note that this is close to the optimumwe can achieve because it

is never possible to detect an adversary that plays fair based on his be¬

haviour. Furthermore, we have demonstrated in Chapter 7 that assum¬

ing a realistic scenario with a large number of nodes that have different

capabilities and that are spread across many different /16 subnets, the

combination of the peer discovery mechanism and the collusion detec¬

tion mechanism prevents an adversary from compromising more than

a very small fraction of all tunnels that are accepted by the initiator.

In particular, assuming a large system with honest nodes in nearly all

public /16 subnets, the adversary must control nodes in several 1000

subnets to compromise more than a fraction of0.01 ofthe tunnels. Con¬

sequently, MorphMix indeed provides good protection from long-term

profiling attacks by an internal attacker. However, it must be remem¬

bered that MorphMix cannot guarantee the anonymity of every single
transaction and does therefore not offer perfect anonymity. In addition,

MorphMix does not employ measures to protect from an external ob¬

server that observes a subset of all nodes because we do not consider

this attacker as a significant threat (see Section 5.4). However, as men¬

tioned in Section 5.3, it must be expected that an adversary observing
both the first intermediate and the final node of a tunnel manages to

break the relationship anonymity between the initiator and the server

that is contacted through this tunnel. Developing efficient mechanisms

that significantly increase protection from external observers in mix

networks in general is a topic of further research.

4. Performance: According to our performance analysis in Chapter 8

based on a realistic web browsing scenario, we conclude MorphMix
indeed offers good performance despite the heterogeneous environ¬

ment with nodes that have significantly different capabilities and that

may no longer be reachable at any time, either because they have been

shut down by their operators, have crashed, or can temporarily not be

reached due to network problems. Naturally, there is a performance

penalty when accessing servers through MorphMix, but especially the

Code200 Exhibit 1009
Page 256 of 308

236 9 Conclusions

measures to optimise the throughput of anonymous tunnels by making
sure no nodes with slow Internet connections are present in the tunnels

of initiators with broadband Internet connections (see Section 8.3.3)

result in acceptable performance. We therefore can state that the per¬

formance MorphMix offers is good enough such that MorphMix users

are not turning away from the system for performance reasons.

Since we have achieved all four partial goals, we conclude that MorphMix
fulfils the principal goal of our work and is indeed a practical system that

enables anonymous low-latency Internet access for a large number of users.

However, there is still room for improvements. The most significant limi¬

tation ofMorphMix is that if any node along a tunnel can no longerbe reached

for any reason, the tunnel fails. Consequently, all anonymous communication

relationships between the initiator and servers that use this tunnel are termi¬

nated. This is a general problem of mix networks that are operated similar

as illustrated in Figure 2.6(a), but static mix networks suffer less from it be¬

cause their mixes are usually available all the time. We have thought about

possible solutions to mitigate this problem, for instance by bypassing nodes

in a tunnel that are no longer reachable. However, doing so could enable an

attack where malicious nodes claim that their honest successor node in a tun¬

nel can no longerbe reached and we therefore decided not to make use of this

approach. Consequently, and until there is no proposal to solve this problem,

MorphMix is not well suited for long-standing communication relationships
such as remote logins.

For many other applications, however, MorphMix can be well used. We

have already shown in Chapter 8 that web browsing is one such application.
In addition, MorphMix can be used to anonymise FTP downloads or in gen¬

eral to enable anonymous file transfer, with the risk that files must be down¬

loaded again if a tunnel fails. MorphMix is also very well suited to enable

anonymously searching and downloading files from other peers in peer-to-

peer file-sharing communities. One could go even further: by incorporat¬

ing ideas to use mix networks to enable both client and server anonymity
via rendezvous points1 and assuming every peer runs also a MorphMix node

would enable a completely anonymous file-sharing community where offer¬

ing, downloading, and searching for files would be anonymous.

Another potential problem for MorphMix are DoS attacks. As discussed

in Section 6.4, an adversary may participate in MorphMix with several nodes

http ://freehaven.net/tor

Code200 Exhibit 1009
Page 257 of 308

9.3 Comparison with Other Systems 237

simply to disrupt the service. To do so, his nodes would accept tunnels being
established through them but refuse to transport data once a tunnel has been

set up or stop forwarding data after it has been used for a while. In practice,
this attack can be quite effective in the sense that if most tunnels fail in the

middle of a file transfer, the quality of service as perceived by the users gets

so poor that they no longer use MorphMix. Again, this problem is less severe

in static mix networks with a limited number of mixes where it is much easier

to identify and exclude mixes that fail to process data correctly. The solu¬

tion to this problem is to couple MorphMix with a reputation system. Nodes

that repeatedly fail to forward data would get a bad reputation over time and

would no longer be offered in extended selections from honest nodes. Re¬

search on reputation systems is still in its infancy, but initial studies to make

mix networks more reliable through reputation have been carried out (see

Section 3.5). Note that such a reputation system would not only protect better

from DoS attacks by an adversary, but decrease the failure rate of anonymous

tunnels in general because nodes that frequently leave the system would also

get a poor reputation.

One final remark about the fact that MorphMix protects from long-term

profiling attacks but does not guarantee the anonymity of every single trans¬

action. Although the latter would be more desirable from an anonymity point
of view, the acceptance of MorphMix could actually benefit from this. The

reason is that if a person is suspected to be involved in criminal activities by

communicating with a particular server through MorphMix, it is relatively

easy to uncover this communication relationship because all that is needed is

to eavesdrop on both the person's computer and the server (see Section 5.3).

It is likely that if there is a strong suspicion of ongoing criminal activity, court

orders would be issued to facilitate this action. Consequently, MorphMix is

probably not the right tool to be used for criminal activities because the risk

of being detected by a well targeted attack is too high.

9.3 Comparison with Other Systems

The advantages of dynamic, peer-to-peer-based mix networks have already
be pointed out in Chapter 4 and we therefore do not compare MorphMix with

static mix networks. Rather, we compare MorphMix with other, peer-to-peer-

based approaches where hosts that are not part ofthe system are contacted via

some other nodes. In particular, we compare MorphMix with Crowds (see

Code200 Exhibit 1009
Page 258 of 308

238 9 Conclusions

Section 3.3) and Tarzan (see Section 3.1.2).

9.3.1 Comparison with Crowds

There are three main differences when comparing MorphMix with Crowds:

(1) Crowds requires a centralised lookup server to keep track of nodes that

are currently participating, (2) Crowds does not employ a collusion detection

mechanism, and (3) Crowds does neither make use of fixed-length cells nor

of layered encryption.

The requirement of a lookup service is definitely a major drawback, first

of all because it provides a single point of failure and attack and second be¬

cause the lookup server must inform all participating nodes about joining

or leaving nodes because every node must know about all other nodes in the

crowd. The second makes Crowds not well suited to support many nodes (e.g.
several 1000s) where nodes come and go. In contrast, leaving out the optional

introductory nodes to join for the first time, MorphMix does not relay on such

a lookup service and in particular, MorphMix does not require a node to know

about all other nodes at any time and we have shown in Sections 5.8 and 8.3

that MorphMix scales very well up to as many nodes as there are public IP

addresses. Note that due to the lack of simulation results or analyses of the

overhead that is produced by the communication of the nodes with the lookup

server, it is difficult to compare the data overheads of Crowds and MorphMix.
But it can be expected that in Crowds, the relative data overhead compared
to the actual application data that are processed grows with the number of

nodes because more and more bandwidth must be devoted to keep all nodes

informed about joining and leaving nodes. In MorphMix, on the other hand,

the data overhead is nearly independent of the number of nodes and can eas¬

ily be handled by the nodes even if there are very many participants (see

Section 8.3).

The second difference is the lack of a collusion detection mechanism in

Crowds. Assuming the requester picks a malicious node to which it forwards

the request and that node can find out that its predecessor is indeed the re¬

quester, it has broken the anonymity. To protect from this attack, the last

node along a chain retrieves the page including all embedded objects before

sending it back to the requester. This prevents the malicious node from eas¬

ily making use of a timing attack to leam whether it is directly following
the requester or not because embedded objects would be requested by the

browser automatically. It also improves the performance because round-trips

Code200 Exhibit 1009
Page 259 of 308

9.3 Comparison with Other Systems 239

to request embedded objects between requester and web server are avoided.

Still, this approach also has disadvantages because it requires the last page

to parse an HTML object to get all embedded objects, which could be diffi¬

cult with web pages that contain executable scripts. In addition, the approach
does not work ifHTTPS is used because the last node along the chain cannot

access the HTML object. Furthermore, the requester clicking on a link can

itself leak information that can be used for a timing attack by the first node

in the chain to determine its position with high probability. The Crowds' de¬

signers propose to introduce random delays to complicate this attack, but this

reduces the end-to-end performance and could refrain potential users from us¬

ing the system. Finally, HTTP redirects [45] may be inserted by the malicious

node to force the browser to issue another request after a specified amount of

time. Of course one can always filter such content on the requesters com¬

puter, but this always implies limiting the capabilities of the system a bit.

In general, this entire approach has the serious drawback that Crowds needs

to be application-aware and cannot easily be used for other applications than

web browsing. In contrast, the collusion detection mechanism as employed in

MorphMix is a much cleaner solutionbecause it increases the probability that

anonymous paths are "secure" before the server is contacted. Consequently,

no such measures as employed by Crowds are required and the nodes along a

tunnel can always simply forward the data of others without having to inspect
the content. Note also that during the analysis of attacks on MorphMix, we

have assumed that during the exchange of data between initiator and server,

the first intermediate node in the tunnel always learns that it is directly follow¬

ing the .initiator This may not always be easy in practice, but it will often be

possible to find this out with high probability if sufficient data are sent forth

and back through the tunnel (see Section 5.3).

The third major difference is the lack of fixed-length cells and layered

encryption in Crowds. From the point of view of correlating data at different

places in the Internet, layered encryption and fixed-length cell do not help
much because the combined application data volume and timing attack at the

endpoints is difficult to prevent (see Section 4.1) without employing cover

traffic. The reason for using layered encryption in MorphMix is mainly mo¬

tivated by hiding the data sent by the initiator from any of the nodes along
the tunnel except from the final one. Otherwise, a malicious first intermediate

node could for instance see a web request and the whole collusion detec¬

tion mechanism would be pointless. Crowds, on the other hand, does not

make use of layered encryption because it assumes the first node cannot eas-

Code200 Exhibit 1009
Page 260 of 308

240 9 Conclusions

ily leam that it follows directly the initiator. Even if layered encryption were

employed in Crowds, it would not help because malicious nodes could sim¬

ply pick other malicious nodes (or themselves) as their successors. Using

fixed-length cells has a performance advantage because application data can

be "streamed" along an anonymous tunnel in the sense that data can be for¬

warded as soon as a (short) cell has been received. In Crowds, the entire data

corresponding to a web request or reply must be received by a node before

they are forwarded, which introduces long end-to-end delays if the chain gets

long and if a web page is large. The MorphMix design with fixed-length cells

and layered encryption also has the advantage that cover traffic could easily
be added if an efficient mechanism will be ever developed.

We conclude that MorphMix is superior to Crowds, mainly because of its

scalability, its application independence, and its capabilities to detect mali¬

cious tunnels with high probability before any critical data are sent through
that tunnel. Since Crowds cannot detect a malicious node directly following
the requester, it mainly focuses on making it difficult for this node to detect

its predecessor is indeed the requester.

9.3.2 Comparison with Tarzan

The main differences between MorphMix and Tarzan are: (1) Tarzan builds

an universally verifiable set of neighbours (the mimics) for every node, and

(2) Tarzan employs cover traffic streams between neighbours. The first re¬

quires Tarzan nodes to know about all other nodes, which again makes it

unlikely Tarzan can function well in a large and dynamic environment where

nodes come and go. Apart from this drawback, the fact that every node selects

its neighbours in a pseudo-random but verifiable way makes it virtually im¬

possible for a malicious node to have only other malicious neighbours. Since

the initiator picks the nodes along a tunnel (each node is picked from the mim¬

ics of it predecessor), it is therefore very unlikely all nodes along an anony¬

mous path are malicious. In comparison to the collusion detection mechanism

employed in MorphMix, we can identify the mechanism employed by Tarzan

as collusion prevention. Assuming the mimics of a node in Tarzan are indeed

selected randomly, it can be expected that the node following the initiator and

the last node in an anonymous path are also selected nearly randomly from

the set of all nodes. Consequently, the probability of a compromised anony¬

mous path can be expected to be slightly better than in MorphMix and close

to the optimum (i.e. the bottom line in Figure 6.10). However, this comes

Code200 Exhibit 1009
Page 261 of 308

9.3 Comparison with Other Systems 241

with a heavy price because every node must know about all other nodes for

the system to work correctly. In addition, there is only little room for through¬

put optimisation because the potential next hop nodes are limited to a node's

mimics. Due to the lack of quantitative simulation results, we can only es¬

timate the data overhead of Tarzan, but like in Crowds, it is reasonable to

assume that keeping the information about the entire system up-to-date at

every node grows faster than the number of participating nodes.

The second difference is the decision to make use of cover traffic in

Tarzan. The main motivation was to provide protection from a global eaves¬

dropper and we agree that this requires cover traffic between neighbours (see

Section 4.1.1). However, according to our threat model (see Section 5.4), we

believe that like in MorphMix, internal attackers are a more significant threat

and no cover traffic scheme helps against this internal active attacker. In addi¬

tion, cover traffic could reduce the performance offered by Tarzan so signifi¬

cantly that users interested in anonymity would not use the system at all. Just

imagine a DSL512 nodes with six neighbours. Using the same constant cover

traffic rates on all links would reduce the bandwidth of each link to 64 Kb/s

even if all neighbours could handle at least as many data as the DSL 5 i2 node.

In MorphMix and assuming the node is currently only handling the data of

one tunnel, the full 512 Kb/s were available to forward the data. It is exactly

reasons like this that refrain us from employing any cover traffic mechanism.

It should be noted that Tarzan does not require a node to employ the same

fixed stream bit-rates with all its neighbours. In fact, data rates of the bidi¬

rectional cell streams between two neighbours can vary within an upper and

a lower bound. This seems to be a good idea because different nodes have

different capabilities but it is not entirely clear how much protection such a

scheme really offers.

We conclude that Tarzan could work well if the number of nodes is rela¬

tively small or if the nodes in the system do not change too frequently. As¬

suming such a scenario, Tarzan provides good protection against internal at¬

tackers and even against the global observer In fact, the number of compro¬

mised tunnels can be expected to be slightly smaller than in MorphMix. But

as long as there are only a few honest nodes, it is also relatively easy for an

adversary to operate a significant subset of all Tarzan nodes by himself. On

the other hand, Tarzan is unlikely to cope well with large (e.g. with several

1000 nodes) and dynamic systems because of the requirement for every node

to know about all other nodes. MorphMix can cope much better with large

systems because there is no need to know about all other nodes. Looking at

Code200 Exhibit 1009
Page 262 of 308

242 9 Conclusions

the cover traffic, it should be remembered that Tarzan provides better pro¬

tection from external observers, but at the cost of a significant performance

penalty. It all depends on the threat model: if the eavesdropper is considered

to be the biggest threat, cover traffic may be a good idea. With our threat

model, cover traffic would help only little and its drawbacks would greatly

outweigh its benefits.

9.4 Further Work

Besides the limitations of MorphMix we have identified in Section 9.2, there

are several open issues regarding mix networks in general. The following list

contains some of the challenging questions that remain to be answered. Note

that these are general problems that are not dependent on a particular mix

network design. Consequently, MorphMix would profit from solving these

problems as well.

1. Cover traffic schemes: The concept of dummy traffic is still not well

understood. In general, there is the question whether there are alter¬

natives to constant streams of cells between a pair of nodes that are

much more efficient without reducing protection from attacks. If not,

then maybe there are schemes that produce significantly less overhead

while reducing the anonymity only marginally. In particular with peer-

to-peer-based mix networks, there is the question whether there are effi¬

cient cover traffic schemes that would significantly improve the protec¬

tion from eavesdroppers without introducing too much data overhead

and hurting the performance so much such that nobody would to use

the system.

2. Deployment: How should a mix network be deployed? The problem
is that without several other users, there is only little anonymity at all.

But users really interested in anonymity won'tjoinbefore there is a rea¬

sonable number of system users. When deploying a peer-to-peer-based
mix networks, this problem is even more significant because there is

not even a fixed set of static mixes for the first users to begin with. In

this case, the only reasonable way to solve the problem is by collecting
several users - for instance through mailing lists focusing on anonymity
and privacy aspects - that are interested in running a node to provide a

basic infrastructure to attract additional users.

Code200 Exhibit 1009
Page 263 of 308

9.4 Further Work 243

3. Incentives: What incentives are there for volunteers to operate a mix?

This problem of acquiring enough mixes is one of the most crucial is¬

sues of static mix networks. In peer-to-peer-based systems, this is a

smaller problem and in MorphMix, there are even incentives to relay
the data of others because it increases the own protection from attacks.

But MorphMix cannot enforce a node to actually act as mix and it may

be that like in many peer-to-peer file-sharing systems, 90% of all nodes

will be free riders. One way to attack this problem is through reputa¬

tion systems in the sense that peers that do not offer a service to other

peers get a poor reputation over time and are no longer allowed to use

services offered by other peers. In general, solving these problems on

reputation and incentives in peer-to-peer communities is a very inter¬

esting and challenging topic for future research.

4. Exit abuse: This is a serious problem in mix networks. It is also cou¬

pled to the incentive problem described above: do people really want

to handle the web requests of others? What if a Yahoo account is ac¬

cessed through a mix network and a threatening e-mail message is sent

to the President of the USA? Will the operator of the last mix in the

chain be prosecuted because the IP addresses in the (possibly avail¬

able) logs at Yahoo indicate the account has been accessed from her

computer? This problem seems more significant in peer-to-peer-based
mix networks, because especially in commercially operated static mix

networks, the operator can plausibly argue about not having sent the

e-mail message himself. One possibility to solve this problem are exit

policies in the sense that there is a blacklist at every node that deter¬

mines what host/port combinations must not be accessed. There is an¬

other potential solution to this problem: assuming a system such as

MorphMix becomes extremely popular in the sense that there are mil¬

lions of users that relay traffic for each other. This would significantly
"blur" the relationship between IP addresses in IP packets and the com¬

puter the data have originally been sent from or are sent to and as a re¬

sult, IP addresses could possibly no longerbe accepted by law enforce¬

ment to track down individuals. Another option could be to combine

anonymity and accountability such that it is possible to unambiguously

identify an anonymous users if certain conditions are met (for instance

if a court order to do so has been issued). To do so, mixes would log
all data they process including the corresponding keys and the mapping
of incoming and outgoing data. If the last mix were accused of having

Code200 Exhibit 1009
Page 264 of 308

244 9 Conclusions

been the sender of the threatening e-mail message to the President, it

would identify the previous mix in the chain. Doing this step-by-step
would eventually reveal the true sender. The problem is that the logged
information could grow rapidly and pose a burden on the nodes, and a

node that accidentally "loses" the logs for any reason could be in trou¬

ble. But even worse, any set of mixes could easily blame any user of

having contacted a server and having sent or received certain data be¬

cause there is no binding (for instance a digital signature) between the

user and the data she has sent or received that could be used to prove

this binding to a third party. Pseudonyms that can be unambiguously
linked to an individual's real identity could be a solution to solve this

accountability problem. In general, the relation between the concepts

of anonymous communication, the systems and operators that imple¬
ment them, and the needs of society are a topic for future research.

There are several other open problems, but the ones described above are

closely related to the work presented in this thesis. We expect that anonymity
and privacy-enhancing technologies in general will certainly remain to be a

hot and interesting research area during the years to come.

Code200 Exhibit 1009
Page 265 of 308

Bibliography

[1] Masayuki Abe. Universally Verifiable MIX with Verification Work

Independent of the Number of MIX Servers. In Proceedings ofEU-
ROCRYPT1998. Springer-Verlag, LNCS 1403, 1998.

[2] Alessandro Acquisti, Roger Dingledine, and Paul Syverson. On the

Economics of Anonymity. In Rebecca N. Wright, editor, Proceedings

of Financial Cryptography (FC '03). Springer-Verlag, LNCS 2742,

January 2003.

[3] Ross Anderson. The Eternity Service. In Proceedings ofPragocrypt

'96, 1996.

[4] APNIC, ARIN, and RIPE NCC. IPv6 Address Allocation and Assign¬
ment Policy. RIPE Network Coordination Center, ripe-267,2003.

[5] Adam Back, Ian Goldberg, and Adam Shostack. Freedom 2.1 Security
Issues and Analysis. White Paper, http: //www.homeport.

org/~adam/zeroknowledgewhitepapers/Freedom_

Security2 - 1. pdf, May 2001.

[6] Adam Back, Ulf Möller, and Anton Stiglic. Traffic Analysis Attacks

and Trade-Offs in Anonymity Providing Systems. In Proceedings of
4th International Information Hiding Workshop, Pittsburg, PA, USA,

April 2001.

[7] Krista Bennett and Christian Grothoff. GAP - Practical anonymous

networking. In Roger Dingledine, editor, Proceedings ofPrivacy En¬

hancing Technologies workshop (PET 2003). Springer-Verlag, LNCS

2760, March 2003.

Code200 Exhibit 1009
Page 266 of 308

246 Bibliography

[8] T. Bemers-Lee, R. Fielding, and H. Frystyk. Hypertext Transfer Pro¬

tocol-HTTP/1.0. RFC 1945, 1996.

[9] Oliver Berthold, Hannes Federrath, and Marit Kohntopp. Project

"Anonymity and Unobservability in the Internet". In Proceedings of
the Workshop on Freedom and Privacy by Design / Conference on

Freedom andPrivacy 2000 CFP, pages 57-65, Toronto, Canada, April
4-7 2000.

[10] Oliver Berthold, Hannes Federrath, and Stefan Köpsell. Web MIXes:

A System for Anonymous and Unobservable Internet Access. In

H. Federrath, editor, Proceedings of Designing Privacy Enhancing

Technologies: Workshop on Design Issues in Anonymity and Unob¬

servability. Springer-Verlag, LNCS 2009, July 2000.

[11] Oliver Berthold and Heinrich Langos. Dummy Traffic Against Long
Term Intersection Attacks. In Proceedings of the 2nd Workshop on

Privacy-Enhancing Technologies, San Francisco, CA, USA, April 14-

15 2002.

[12] Oliver Berthold, Andreas Pfitzmann, and Ronny Standtke. The Disad¬

vantages of Free MIX Routes and how to Overcome them. In H. Fed¬

errath, editor, Proceedings ofDesigning Privacy Enhancing Technolo¬

gies: Workshop on Design Issues in Anonymity and Unobservability.

Springer-Verlag, LNCS 2009, July 2000.

[13] Philippe Boucher, Adam Shostack, and Ian Goldberg. Freedom

Systems 2.0 Architecture. White Paper, http : //www. homeport.

org/~adam/zeroknowledgewhitepapers/Freedom_

System_2_Architecture .pdf,December2000.

[14] Lee Breslau, Deborah Estrin, Kevin Fall, Sally Floyd, John Heide-

mann, Ahmed Helmy, Polly Huang, Steven McCanne, Kannan Varad-

han, Ya Xu, and Haobo Yu. Advances in Network Simulation. IEEE

Computer, May 2000.

[15] D. L. Chaum, A. Fiat, and M. Naor. Untraceable Electronic Cash. In

Advances in Cryprology - CRYPTO '88, volume 403 of Lecture Notes

in Computer Science, pages 319-327. Springer-Verlag, 1989.

Code200 Exhibit 1009
Page 267 of 308

Bibliography 247

[16] David L. Chaum. Untraceable Electronic Mail, Return Adresses,

and Digital Pseudonyms. Communications ofthe ACM, 24(2): 84-88,

February 1981.

[17] David L. Chaum. Blind Signature System. In David L. Chaum, editor,

Proceedings ofCrypto '83, page 153. Plenum Press, New York, 1984.

[18] David L. Chaum. The Dining Cryptographers Problem: Unconditional

Sender and Receiver Untraceability. Journal of Cryptology, 1(1):66—

75, 1988.

[19] Ian Clarke, Oskar Sandberg, Brandon Wiley, and TheodoreW Hong.
Freenet: A Distributed Anonymous Information Storage and Retrieval

System. In Proceedings ofDesigning Privacy Enhancing Technolo¬

gies: Workshop on Design Issues in Anonymity and Unobservability,

pages 46-66, July 2000.

[20] Lance Cottrell. Mixmaster Software, http://www.obscura .

com/"loki/remailer/remailer-essay.html.

[21] Lance Cottrell. PKCS #1: RSA Cryptography Standard. RSA Lab¬

oratories, http ://www.rsasecurity.com/rsalabs/pkcs/

pkcs-1/index.html.

[22] Lance Cottrell. The Anonymizer. http://www.anonymizer.

com.

[23] Wei Dai. PipeNet. http://www.eskimo.com/~weidai/

pipenet.txt.

[24] Wei Dai. Two attacks against the Freedom Network, http://www.

eskimo.com/~weidai/freedom-attacks.txt.

[25] George Danezis. Mix-networks with Restricted Routes. In Roger Din¬

gledine, editor, Proceedings ofPrivacy Enhancing Technologies work¬

shop (PET 2003). Springer-Verlag, LNCS 2760, March 2003.

[26] George Danezis, Roger Dingledine, and Nick Mathewson. Mixminion:

Design of a Type III Anonymous Remailer Protocol. In Proceedings

ofthe 2003 IEEE Symposium on Security and Privacy, May 2003.

[27] S. Deering. Host Extensions for IP Multicasting. RFC 1054, 1988.

Code200 Exhibit 1009
Page 268 of 308

248 Bibliography

[28] S. Deering and R.Hinden. Internet Protocol, Version 6 (IPv6) Specifi¬
cation. RFC 2460, 1998.

[29] Thomas Demuth and Andreas Rieke. Securing the Anonymity of Con¬

tent Providers in the World Wide Web. In Proceedings ofSPIE'99,

pages 494-502, San José, CA, USA, January 1999.

[30] Yvo Desmedt and Kaora Kurosawa. How To Break a Practical MIX

and Design a New One. In Proceedings of EUROCRYPT 2000.

Springer-Verlag, LNCS 1803,2000.

[31] Claudia Diaz and Andrei Serjantov. Generalising Mixes. In Roger

Dingledine, editor, Proceedings of Privacy Enhancing Technologies

workshop (PET 2003). Springer-Verlag, LNCS 2760, March 2003.

[32] Claudia Diaz, Stefaan Seys, Joris Claessens, and Bart Preneel. Towards

Measuring Anonymity. In Roger Dingledine and Paul Syverson, edi¬

tors, Proceedings ofPrivacy Enhancing Technologies Workshop (PET

2002). Springer-Verlag, LNCS 2482, April 2002.

[33] T Dierks and C. Allen. The TLS Protocol, Version 1.0. RFC 2246,

1999.

[34] W Diffie and M. E. Hellman. New directions in cryptography. IEEE

Transactions on Information Theory, 22(6):644-654, November 1976.

[35] Roger Dingledine, Michael Freedman, David Hopwood, and David

Molnar. A Reputation System to Increase MIX-net Reliability. In

Proceedings of4th International Information Hiding Workshop, pages

126-141, Pittsburg, PA, USA, April 2001.

[36] Roger Dingledine, Michael J. Freedman, and David Molnar. The Free

Haven Project: Distributed Anonymous Storage Service. In H. Fed¬

errath, editor, Proceedings ofDesigning Privacy Enhancing Technolo¬

gies: Workshop on Design Issues in Anonymity and Unobservability.

Springer-Verlag, LNCS 2009, July 2000.

[37] Roger Dingledine and Paul Syverson. Reliable MIX Cascade Net¬

works through Reputation. In Proceedings ofFinancial Cryptography
2002. Springer-Verlag, March 2002.

[38] R. Droms. Dynamic Host Configuration Protocol. RFC 2131,1997.

Code200 Exhibit 1009
Page 269 of 308

Bibliography 249

[39] Andy Oram (Editor). Peer-to-Peer: Harnessing the Power ofDisrup¬
tive Technology. O'Reilly, first edition, 2001.

[40] Jonathan B.Postel (editor). Internet Protocol. RFC 791, 1981.

[41] Jonathan B. Postel (editor). Transmission Control Protocol. RFC 793,

1982.

[42] Electronic Frontiers Georgia (EFGA). Anonymous Remailer Informa¬

tion, http://anon.efga.org/Remailers/.

[43] K. Egevang and P. Francis. The IP Network Address Translator (NAT).

RFC 1631, 1994.

[44] Anja Feldmann, Anna C. Gilbert, Polly Huang, and Walter Willinger

Dynamics of IP Traffic: A Study of the Role of Variability and the

Impact of Control. In Proceeding ofSIGCOMM '99, Massachusetts,

USA, September 1999.

[45] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and

T Berners-Lee. Hypertext Transfer Protocol - HTTP/1.1. RFC 2616,

1999.

[46] Secure Hash Standard. United States of America, National Institute

of Science and Technology, Federal Information Processing Standard

(FIPS) 180-1, April 1993.

[47] Advanced Encryption Standard (AES). United States of America, Na¬

tional Institute of Science and Technology, Federal Information Pro¬

cessing Standard (FIPS) 197, November 2001.

[48] Elke Franz, Anja Jerichow, and Guntram Wicke. A Payment Scheme

for Mixes Providing Anonymity. InW Lamersdorf and M. Merz, ed¬

itors, Trends in Distributed Systemsfor Electronic Commerce, Lecture

Notes in Computer Science, pages 94-108. Springer-Verlag, 1998.

[49] Michael J. Freedman. Private communication, January 2003.

[50] Michael J. Freedman and Robert Morris. Tarzan: A Peer-to-Peer

Anonymizing Network Layer. In Proceedings ofthe 9th ACM Confer¬
ence on Computer and Communications Security (CCS 2002), Wash¬

ington, D.C., USA, November 2002.

Code200 Exhibit 1009
Page 270 of 308

250 Bibliography

[51] A. Freier, P. Karlton, and P. Kocher. The SSL Protocol, Version 3.0.

Netscape Communications, 1996.

[52] Jun Furukawa and Kazue Sako. An Efficient Scheme for Proving a

Shuffle. In Joe Kilian, editor, Proceedings ofCRYPTO 2001. Springer-

Verlag, LNCS 2139,2001.

[53] E. Gabber, PB. Gibbons, Y Matias, and Y Mayer. How to Make Per¬

sonalized Web Browsing Simple, Secure and Anonymous. In Proceed¬

ings of Financial Cryptography '97, pages 17-31. Springer-Verlag,

February 1997.

[54] Ian Goldberg.A Pseudonymous CommunicationsInfrastructurefor the

Internet. PhD thesis, UC Berkeley, December 2000.

[55] Ian Goldberg and Adam Shostack. Freedom Network 1.0 Architecture

and Protocols. White Paper, http://www.homeport.org/

"adam/zeroknowledgewhitepapers/arch-tech.pdf,

November 1999.

[56] Ian Goldberg and David Wagner. TAZ Servers and the Rewebber Net¬

work: Enabling Anonymous Publishing on the World Wide Web. First

Monday, 3(4), August 1998.

[57] David M. Goldschlag, Michael G. Reed, and Paul F. Syverson. Hiding

Routing Information. In Information Hiding, Lecture Notes in Com¬

puter Science, pages 137-150. Springer-Verlag, 1996.

[58] Ceki Gülcü and Gene Tsudik. Mixing E-mail With Babel. In Proceed¬

ings ofthe Network and Distributed Security Symposium - NDSS '96,

pages 2-16. IEEE, February 1996.

[59] Johan Helsingius. anon, penet. fi press release, http://www.

penet.fi/press-english.html.

[60] R. Housely and W. Polk. Internet X.509 Public Key Infrastructure.

RFC 2528, 1999.

[61] Markus Jakobsson. Flash Mixing. In Proceedings of Principles of
Distributed Computing - PODC '99. ACM Press, 1999.

Code200 Exhibit 1009
Page 271 of 308

Bibliography 251

[62] Markus Jakobsson and Ari Juels. An Optimally Robust Hybrid Mix

Network (Extended Abstract). In Proceedings of Principles of Dis¬

tributed Computing - PODC '01. ACM Press, 2001.

[63] Anja Jerichow, Jan Müller, Andreas Pfitzmann, Birgit Pfitzmann,

and Michael Waidner Real-Time Mixes: A Bandwidth-Efficient

Anonymity Protocol. Journal on Selected Areas in Communications,

16(4):495-509,May 1998.

[64] B. Kantor. BSD Rlogin. RFC 1282, 1991.

[65] R. Keller, L. Ruf, A. Guindehi, and B. Plattner. PromethOS: A Dy¬

namically Extensible Router Architecture Supporting Explicit Rout¬

ing. In James Sterbenz, Osamu Takada, Christian Tschudin, and Bern¬

hard Plattner, editors, Proceedings ofthe Fourth Annual International

Working Conference on Active Networks IWAN, number 2546 in Lec¬

ture Notes in Computer Science, Zurich, Switzerland, December 2002.

Springer Verlag.

[66] S. Kent and R. Atkinson. Security Architecture for the Internet Proto¬

col. RFC 2401, 1998.

[67] Dogan Kesdogan, Dakshi Agrawal, and Stefan Penz. Limits of

Anonymity in Open Environments. In Fabien Petitcolas, editor, Pro¬

ceedings ofInformation Hiding Workshop (IH 2002). Springer-Verlag,
LNCS 2578, October 2002.

[68] Dogan Kesdogan, Jan Egner, and Roland Büschkes. Stop-and-Go
MIXes: Providing Probabilistic Anonymity in an Open System. In

Proceedings of Information Hiding Workshop (IH 1998). Springer-

Verlag, LNCS 1525, 1998.

[69] D. Kristol and L. Montulli. HTTP State Management Mechanism.

RFC 2109, 1997.

[70] Dennis Kügler. An Analysis of GNUnet and the Implications for

Anonymous, Censorship-Resistant Networks. In Roger Dingledine,

editor, Proceedings of Privacy Enhancing Technologies workshop

(PET 2003). Springer-Verlag, LNCS 2760, March 2003.

Code200 Exhibit 1009
Page 272 of 308

252 Bibliography

[71] Steven Low, Nicholas Maxemchuk, and Sanjoy Paul. Anonymous
Credit Cards. In Proceedings of the 2ndAnnualACM Conference on

Computer and Communications Security, pages 108-117, 1994.

[72] Brace A. Mah. An Empirical Model of HTTP Network Traffic. In

Proceeding ofInfocom 1997, pages 592-600, Kobe, Japan, April 1997.

[73] Tim May. Description of Early Remailer History. http:

//www.inet-one.com/cypherpunks/dir.1996.08.

29-1996.0 9.04/msgO0431.html.

[74] David Mazières and M. Frans Kaashoek. The Design, Implementa¬
tion and Operation of an Email Pseudonym Server. In Proceedings of
the 5th ACM Conference on Computer and Communications Security

(CCS'98). ACM Press, November 1998.

[75] M. Mitomo and K. Kurosawa. Attack for Flash MIX. In Proceedings

ofASIACRYPT2000. Springer-Verlag, LNCS 1976, 2000.

[76] P. Mockapetris. Domain Names - Concepts and Facilities. RFC 1034,

1987.

[77] P. Mockapetris. Domain Names - Implementation and Specification.
RFC 1035, 1987.

[78] J. Mogul and J. Postel. Internet Standard Subnetting Procedure. RFC

950, 1985.

[79] UlfMöller and Lance Cottrell. Mixmaster Protocol - Version 2. Unfin¬

ished draft, http: //www. obscura .com/"loki/remailer/

remailer- essay. html, January 2000.

[80] C. Andrew Neff. A Verifiable Secret Shuffle and its Application to

E-Voting. In P. Samarati, editor, Proceedings of8th ACM Conference
on Computer and Communications Security (CCS-8), pages 116-125.

ACM Press, November 2001.

[81] Ron Newman. The Church of Scientology vs. anon.penet.

f i. http : //www.xs4all .nl/~kspamk/cos/rnewman/

anon/penet.html.

Code200 Exhibit 1009
Page 273 of 308

Bibliography 253

[82] Miyaku Ohkubo and Masayuki Abe. A Length-Invariant Hybrid MIX.

In Proceedings ofASIACRYPT 2000. Springer-Verlag, LNCS 1976,

2000.

[83] Andreas Pfitzmann and Marit Köhntopp. Anonymity, Unobserv¬

ability, and Pseudonymity - A Proposal for Terminology; Draft

v0.12. http: //www. koehntopp.de/marit/pub/anon/

Anon_Termmology.pdf, June 17 2001.

[84] Andreas Pfitzmann, Birgit Pfitzmann, and Michael Waidner. ISDN-

MlXes: Untraceable Communicationwith Very Small Bandwith Over¬

head. In Kommunikation in verteilten Systemen, 267, pages 451-463,

1991.

[85] David C. Plummer. Ethernet Address Resolution Protocol. RFC 826,

1982.

[86] W Polk, R. Housley, and L. Bassham. Algorithms and Identifiers for

the Internet X.509 Public Key Infrastructure Certificate and Certificate

Revocation List (CRL) Profile. RFC 3279, April 2002.

[87] J. Postel and J. Reynolds. Telnet Protocol Specification. RFC 854,

1983.

[88] J. Postel and J. Reynolds. File Transfer Protocol. RFC 959, 1985.

[89] Jonathan B. Postel. User Datagram Protocol. RFC 768, 1980.

[90] JonathanB. Postel. Simple Mail Transfer Protocol. RFC 821, 1982.

[91] Sandro Rafaeli, Marc Rennhard, Laurent Mathy, Bernhard Plat¬

tner, and David Hutchison. An Architecture for Pseudonymous e-

Commerce. In Proceedings of the AISB'01 Symposium on Informa¬
tion Agentsfor Electronic Commerce, pages 33-42, York, UK, March

21-24 2001.

[92] Jean-François Raymond. Traffic Analysis: Protocols, Attacks, Design
Issues and Open Problems. In H. Federrath, editor, Proceedings ofDe¬

signing Privacy Enhancing Technologies: Workshop on Design Issues

in Anonymity and Unobservability. Springer-Verlag, LNCS 2009, July
2000.

Code200 Exhibit 1009
Page 274 of 308

254 Bibliography

[93] Joseph Reagle and Lome Faith Cranor The Platform for Privacy Pref¬

erences. Communications ofthe ACM, 42(2), February 1999.

[94] Michael Reed, Paul Syverson, and David Goldschlag. Anonymous
Connections and Onion Routing. IEEE Journal on Selected Areas in

Communications, 16(4) :482-494, May 1998.

[95] Michael K. Reiter and Aviel D. Rubin. Crowds: Anonymity for Web

Transactions. ACM Transactions on Information and System Security,

l(l):66-92, November 1998.

[96] Y Rekhter and T Li. An Architecture for IP Address Allocation with

CIDR. RFC 1518, 1993.

[97] Marc Rennhard. MorphMix: Peer-to-Peer based Anonymous
Internet Usage with Collusion Detection (available at http:

//www.tik.ee.ethz.ch/~rennhard/publications/

morphmix. pdf). TIK Technical Report Nr. 147, TIK, ETH Zurich,

Zurich, CH, August 2002.

[98] Marc Rennhard and Bernhard Plattner. Introducing MorphMix: Peer-

to-Peer based Anonymous InternetUsage with Collusion Detection. In

Proceedings of the Workshop on Privacy in the Electronic Society (in

association with 9th ACM Conference on Computer and Communica¬

tions Security), pages 91-102, Washington, DC, USA, November 21

2002.

[99] Marc Rennhard and Bernhard Plattner. Practical Anonymity for the

Masses with Mix-Networks. In Proceedings of the IEEE 8th Intl.

Workshop on Enterprise Security (WETICE 2003), Linz, Austria, June

9-112003.

[100] Marc Rennhard and Bernhard Plattner. Practical Anonymity for the

Masses with MorphMix. In Proceedings of the Financial Cryptogra¬

phy Conference (FC 2004), Key West, USA, February 9-12 2004.

[101] Marc Rennhard, Sandro Rafaeli, and Laurent Mathy. From SET

to PSET - The Pseudonymous Secure Electronic Transaction Proto¬

col (available at http: //www.tik.ee.ethz.ch/~rennhard/

publications/PSET.pdf). TIK Technical Report Nr. 117, TIK,

ETH Zurich, Zurich, CH, August 2001.

Code200 Exhibit 1009
Page 275 of 308

Bibliography 255

[102] Marc Rennhard, Sandro Rafaeli, Laurent Mathy, Bernhard Plattner,

and David Hutchison. An Architecture for an Anonymity Network.

In Proceedings ofthe IEEE 6th Intl. Workshop on Enterprise Security

(WETICE 2001), pages 165-170, Boston, USA, June 20-22 2001.

[103] Marc Rennhard, Sandro Rafaeli, Laurent Mathy, Bernhard Plattner,

and David Hutchison. Analysis of an Anonymity Network for Web

Browsing. In Proceedings of the IEEE 7th Intl. Workshop on Enter¬

prise Security (WET ICE 2002), pages 49-54, Pittsburgh, USA, June

10-12 2002.

[104] Marc Rennhard, Sandro Rafaeli, Laurent Mathy, Bernhard Plattner,

and David Hutchison. Towards Pseudonymous e-Commerce. Elec¬

tronic Commerce Research Journal, Special Issue on Security and

Trust in Electronic Commerce, Kluwer Academics Publisher, 4(1-

2):83-l 11, January-April 2004.

[105] E. Rescorla. HTTP overTLS. RFC 2818, 2000.

[106] R.Hinden and S. Dering. IP Version 6 Addressing Architecture. RFC

2373, 1998.

[107] Ron Rivest, Adi Shamir, and Leonard Adleman. A Method for Ob¬

taining Difital Signatures and Public-Key Cryptosystems. Communi¬

cations ofthe ACM, 21(2):120-126, February 1978.

[108] E. Rosen andY Rekhter. BGP/MPLS VPNs. RFC 2547, 1999.

[109] Stefan Saroiu, P. Krishna Gummadi, and Steven D. Gribble. A Mea¬

surement Study of Peer-to-Peer File Sharing Systems. In Proceed¬

ings ofMultimedia Computing and Networking 2002 (MMCN '02),

San Jose, CA, USA, January 2002.

[110] Bruce Schneier Applied Cryptography. John Wiley & Sons, Inc.,

second edition, 1996.

[Ill] Andrei Serjantov and George Danezis. Towards an Information The¬

oretic Metric for Anonymity. In Roger Dingledine and Paul Syver¬

son, editors, Proceedings of Privacy Enhancing Technologies Work¬

shop (PET 2002). Springer-Verlag, LNCS 2482, April 2002.

Code200 Exhibit 1009
Page 276 of 308

256 Bibliography

[112] Andrei Serjantov, Roger Dingledine, and Paul Syverson. From a

Trickle to a Flood: Active Attacks on Several Mix Types. In Pro¬

ceedings of5th International Information Hiding Workshop, Noordwi-

jkerhout, Netherlands, October 2002.

[113] Andrei Serjantov and Richard E. Newman. On the anonymity of timed

pool mixes. InProceedingsofthe Workshop on Privacy andAnonymity
Issues in Networked and Distributed Systems, pages 427-434, Athens,

Greece, May 2003. Kluwer

[114] Adi Shamir. How to Share a Secret. Communications of the ACM,

22(11), November 1979.

[115] Claude Shannon. The Mathematical Theory of Communication. Bell

Systems Technical Journal, 27(3):379-423; 623-656, 1948.

[116] Rob Sherwood, Bobby Bhattacharjee, and Aravind Srinivasan. P5: A

Protocol for Scalable Anonymous Communication. In Proceedings of
the 2002 IEEE Symposium on Security and Privacy, May 2002.

[117] Adam Shostack. Private communication, January-October 2003.

[118] Adam Shostack and Ian Goldberg. Freedom 1.0 Security Issues and

Analysis. White Paper, http : //www. homeport. org/~adam/

zeroknowledgewhitepapers/Freedom-Security.pdf,

November 1999.

[119] W Simpson. IP in IP Tunnelling. RFC 1853, 1995.

[120] Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and Hari

Balakrishnan. Chord: A Scalable Peer-to-peer Lookup Service for In¬

ternet Applications. In Proceedings of the ACMSIGCOMM '01 Con¬

ference, San Diego, CA, USA, August 2001.

[121] Paul Syverson, Michael Reed, and David Goldschlag. Onion Routing
Access Configurations. In DARPA Information Survivability Confer¬
ence and Exposition (DISCEX 2000), volume 1, pages 34-40. IEEE

CS Press, 2000.

[122] Paul Syverson, Gene Tsudik, Michael Reed, and Carl Landwehr. To¬

wards an Analysis of Onion Routing Security. In H. Federrath, editor,

Proceedings ofDesigning PrivacyEnhancing Technologies: Workshop

Code200 Exhibit 1009
Page 277 of 308

Bibliography 257

on Design Issues in Anonymity and Unobservability. Springer-Verlag,
LNCS 2009, July 2000.

[123] Marc Waldman and David Mazières. Tangler: a censorship-resistant

publishing system based on document entanglements. In Proceedings

ofthe 8th ACM Conference on Computer and Communications Secu¬

rity (CCS'01), pages 126-135, November 2001.

[124] Marc Waldmann, Aviel D. Rubin, and Lome Faith Cranor. Publius: A

Robust, Tamper-Evident, Censorship-Resistant Web Publishing Sys¬
tem. In Proceedings of the 9th USENIX Security Symposium, August
2000.

[125] Nathalie Weiler. Secure Anonymous Group Infrastructure for Com¬

mon and Future Internet Applications. In Proceedings ofl 7th Annual

Computer Security Applications Conference 2001 (ACSAC'01), pages

401-411, New Orleans, LO, USA, December 2001.

[126] Nathalie Weiler. SANGRIA - Secure ANonymous GRoup InfrAstruc-
ture. PhD thesis, Swiss Federal Institute of Technology Zurich, 2002.

[127] Matthew Wright, Micah Adler, Brian Neil Levine, and Clay Shields.

An Analysis of the Degradation of Anonymous Protocols. In Pro¬

ceedings ofISOCNetwork andDistributed System Security Symposium

(NDSS2002), San Diego, USA, February 2002.

[128] Matthew Wright, Micah Adler, Brian Neil Levine, and Clay Shields.

Defending Anonymous Communication Against Passive Logging At¬

tacks. In Proceedings of the 2003 IEEE Symposium on Security and

Privacy, May 2003.

[129] Phil R. Zimmermann. The Official PGP User's Guide. Boston: MIT

Press, 1995.

Code200 Exhibit 1009
Page 278 of 308

Acknowledgements

I want to express my gratitude to Prof. Dr. Bernhard Plattner for guidance
and providing me with an environment to freely explore the world of scien¬

tific research. Furthermore, I'd like to thank Dr. Laurent Mathy, not only for

valuable comments on my work, but also for fruitful collaboration when we

were working together on a European research project.

Many thanks to my colleagues at the Computer Engineering and Net¬

works Laboratory at ETH Zurich for inspiring discussions and enjoyable so¬

cial activities. I'm especially happy about having made new friends; notably
Nathalie Weiler, Matthias Bossardt, and Lukas Ruf. I'm also thankful for the

contributions ofvarious students who wrote semester or diploma theses under

my supervision.

Finally, my biggest thanks go to my wife Brigitte and my parents for love,

support, and understanding.

Code200 Exhibit 1009
Page 279 of 308

Biography

I was bom in Chur, Switzerland on 10th February 1972 where I also at¬

tended primary and high schools and graduated with a Matura degree (Typus

C) in June 1991. After attending compulsory military service and visiting

a language school abroad, I started my studies in electrical engineering at

the Swiss Federal Institute of Technology (ETHZ) in October 1992. I inter¬

rapted my studies for one year to work as a software engineer and received

the diploma (masters) degree in electrical engineering (Dipl. El.-Ing. ETH)
in April 1998.

From Mai 1998 until September 1999,1 was working as an IT consultant

before I decided to join the Computer Engineering and Networks Labora¬

tory (TIK) at ETHZ as a research assistant. After spending a few months

on a project dealing with charging and accounting technologies for the In¬

ternet, I started working on a research project in the area of pseudonymous

e-commerce in April 2000. While working on this project, I became familiar

with problems sunounding anonymity in the Internet in general and mix net¬

works in particular. Influenced by my own experiences while designing and

implementing a traditional mix network within the context of the project, I

started my work on MorphMix in February 2002.

While working at TIK, I also undertook postgraduate studies in higher
education at ETHZ starting in October 2000 and graduated with the diploma
for didactics in computer science (Didaktischer Ausweis in Informatik) in

March 2003.

Code200 Exhibit 1009
Page 280 of 308

Appendix A

MorphMix Protocol and

Prototype Implementation

In this appendix, we describe the details of the MorphMix protocol. We

first introduce the notation we are using throughout this appendix. Then, we

describe the protocol basics which includes the various cryptographic algo¬
rithms we employ, the cell format, the different node levels, and the encoding
of various fields in messages. Afterwards, we give the meaning and precise
format of all messages exchanged between neighbouring nodes and between

the endpoints of an anonymous tunnel. We also give detailed descriptions
of the life cycle of virtual links and tunnels, and the policy for using virtual

links. Finally, we make a quantitative analysis of the data overhead induced

by MorphMix and give a brief description ofthe MorphMix prototype imple¬
mentation.

A.l Notation

We use the following notation: a is the node that sets up a virtual link to node

b. Similarly, when a node is appended to a tunnel, a is the initiator and b is the

final node of the tunnel that has been set up so far. w is the witness. Node c is

the node that is selected as the next hop when a node is appended to a tunnel,

and d,e,f... are the other nodes b offered in the selection but that were not

chosen. When end-to-end messages are sent through a tunnel, they are sent

Code200 Exhibit 1009
Page 281 of 308

A.2 Basic Protocol Properties 261

from a via 6 to c and we assume they are cunentiy on the virtual link between

a and b. kvLœy is the symmetric key for the virtual link between nodes x and

V- kpEœy is the symmetric key for the layer of encryption between nodes x

and y. PKX and SK^ are the conesponding public and secret keys of node

x. ipa; is the IP address of x. levx is the node level of node x. MorphMix
node x listens for incoming connections on port pmmx. The MorphMix port

is 28080 per default, but can be specified by the node operator. This port is

used to contact a node that has been chosen as a new neighbour. In addition,

there is a witness port pwttœ, which is always specified as pwttœ + 1. This

port is used to establish a virtual link to a witness and from the witness to

the node that is appended to a tunnel. The reason for having two ports is that

if a node does not want to accept being selected as a neighbour, it simply

stops listening on the MorphMix port. On the other hand, a node should

always listen on its witness port even if it does not accept being selected as

a new neighbour. Before setting up a virtual link, we assume a knows ip b,

pmmj (which implies a also knows r)mtb (= pmmt + 1), PK6, and levb and

before appending a node to a tunnel, a knows ip w, pmmra, and PK„,. All these

assumption make sense due to the peer discovery mechanism in Section 5.7.

Finally, h is the host that is contacted by a through the anonymous tunnel.

A.2 Basic Protocol Properties

In this section, we describe the basic protocol properties. We first define the

cryptographic algorithms we employ. Then, we describe the format of a cell,

the different node levels, and the encoding used in various fields of protocol

messages.

A.2.1 Cryptographic Algorithms

MorphMix makes use of different cryptographic algorithms. For symmetric

key cryptographic operations, we employ the Advanced Encryption Standard

(AES) [47] with 128-bit keys in cipher block chaining (CBC) mode [110]

with no padding. For public key operations, we use RSA [107] with 2048-bit

moduli. The same key pair is used for signing and encrypting. To encrypt

with the public key, we basically use RSA in electronic codebook (ECB)

mode [110] withPKCSl (version 1.5) padding [21], which operates on 245-

byte blocks. If more than 245 bytes must be encrypted with the public key,

Code200 Exhibit 1009
Page 282 of 308

262 A MorphMix Protocol and Prototype Implementation

we use a hybrid scheme as follows to encrypt n bytes: first, a 16-byte initial¬

isation vector w and a 16-byte symmetric key k are randomly chosen, which

serve as the input to an AES cipher that is operated as described above. Then,

the concatenation of iv, key, and the first k = n — (16 • \(n — 245 + 32)/16])

bytes of the data are encrypted using RSA with the recipients public key,
which results in d\. Since this input is guaranteed to be smaller than 245

bytes, only one block is encrypted. In addition, the remaining (n — k) bytes
of the data are encrypted using the AES cipher, which results in d2. The

concatenation of d\ and d2 is the output, i.e. the ciphertext of the hybrid

encryption. Decrypting the ciphertext works vice versa. To sign, we em¬

ploy RSA with SHA1 [46]. The public exponent of every node is fixed to

216 + 1 = 65537 and the modulus of node x is given by modx. To get the

symmetric keys for a layer of encryption, we use the Diffie-Hellman (DH)

key-exchange algorithm [34] with a 1024-bit modulus.

A.2.2 Cell Format

The format of a MorphMix cell exchanged between two neighbouring nodes

is depicted in Figure A. 1.

ver¬

sion
type atlD

length of

payload
checksum payload (+ padding)

«<»« »-4 *~*

112 2 10

* --«

header (16 bytes) payload (496 bytes)

Figure A.1: Cellformat.

All cells have a length of 512 bytes and consist of a 16-byte header and

a 496 bytes payload (including the padding). The version and type fields are

defined as unsigned 8-bit integers. The cunent version is 1.0, and the various

types are needed to identify the type of message that is transported in the

payload of the cell. The atlD is an unsigned 16-bit integer and is needed

to multiplex anonymous tunnels on a virtual link between two nodes. The

atlD has only local significance on the virtual link between two nodes. The

unsigned 16-bit integer field length ofpayload identifies the number of bytes
in the payload field, excluding the padding. If needed, the payload is padded
with random bits to make sure the cell has its fixed length.

To protect the integrity of a cell, there is a 10-byte checksum, which is

made over the concatenation of the first 6 bytes of the header and the whole

Code200 Exhibit 1009
Page 283 of 308

A.2 Basic Protocol Properties 263

payload, including the padding. SHA1 produces a 20-bytes output, of which

we XOR the left and right 10 bytes to generate the checksum. 10 bytes are

enough to detect if the cell has been tampered with in transit between two

nodes if the header is encrypted. It also makes replay attacks virtually im¬

possible, because if the header is encrypted, the decryption of the header of

a replayed cell results in a completely different plaintext header because we

are using AES in CBC mode. The probability a replayed cell is not detected

is 2-80.

If messages are exchanged between neighbours, they are directly trans¬

ported within the payload of cells. In the case of end-to-end messages that

are exchanged between the endpoints of an anonymous tunnel, an additional

anonymous connection header is inserted at the beginning of a cell payload.
The anonymous connection header looks exactly the same as a cell header

and the atlD conesponds to the anonymous connection identifier (acID). Us¬

ing the concept of anonymous connections (see Section 5.2) allows to use a

single anonymous tunnel for multiple anonymous communication relation¬

ships in parallel.

The atlDs are assigned as follows: the node that initiated establishing the

virtual link uses odd, the other even unsigned 16-bit integers. Note that ac¬

cording to our policy about how virtual links are used (see Appendix A.5.2),

this implies that even number will not be used at this time, but we never¬

theless separate between odd and even numbers in case this policy changes
in future versions. atlDs are assigned sequentially for each new anonymous

tunnel transported within a virtual link between the nodes, starting with 1

(1,3,5,7,...) and 2 (2,4,6,8,...), respectively. If they ever reach their maxi¬

mum (65535 and 65534), they simply wrap around, although it is extremely

unlikely a virtual link between two nodes remains active for such a long time

(see Appendix A.5.1). It works in the same way for anonymous connections:

the initiator uses odd acIDs and the final node uses even acIDs to multiplex

anonymous connections within one tunnel (although at this time, we do not

allow connections being established by the final node to the initiator) .
The

atlD/acID 0 is reserved for control data exchanged between neighbours or be¬

tween the endpoints of an anonymous tunnel that do not belong to a particular

anonymous tunnel/connection or if no such identifier has been assigned yet

(for instance during the setup of anonymous tunnels).

Code200 Exhibit 1009
Page 284 of 308

264 A MorphMix Protocol and Prototype Implementation

A.2.3 Node Levels

To optimise the quality of anonymous tunnel, each node has a specific node

level that depends on its up- and down-stream bandwidths. Table A. 1 defines

the node levels used in MorphMix. The table also lists the encoding of the

different levels and the default minimum level the nodes along a tunnel should

have depending on the node level of the initiator.

Table A.1: Node levels in MorphMix
node level bandw

up-stream

dth (Kb/s)
down-stream

enc default mm level

of nodes along tunnel

slower than ISDN <64 <64 1 1

ISDN 64 64 2 2

ADSL/Cable2B6 64 256 3 4

ADSL/CableBi2 128 512 4 5

ADSL/Cableio24 256 1024 5 6

DSLbi2 512 512 6 5

Tl 1544 1544 7 6

T3 or faster >4632 >4632 8 6

To make use of the node levels, the operator of a node specifies the level

of its node according to Table A. 1. If none of the levels matches her Internet

connection, she picks the highest level that both up- and down-stream band-

widths of her connections are at least as large as those of the chosen level.

In addition, she may modify the minimum level for the nodes she accepts in

her anonymous tunnels or simply use the default one. It is important to re¬

member that selecting the minimum acceptable level is a trade-off between

performance and protection from attacks. The default levels are similar to

those used in our analyses in Sections 7.4 and 8.3.3, which have turned out to

be reasonable compromises.

A.2.4 Encoding

Whenever control messages are exchanged between nodes (for instance to set

up virtual link and anonymous tunnels), the payload itself contains formatted

control data fields. To make sure that two nodes can communicate, the data in

these fields must be encoded in a clearly specified way. In general, we always
encode values in big-endian order, i.e. the most significant byte comes first.

In addition, most fields have a fixed length. One exception are the DH key-

exchange parameters, where the public key is represented in ASN. 1 encoding

Code200 Exhibit 1009
Page 285 of 308

A.2 Basic Protocol Properties 265

for public keys [86], which conesponds to at most 296 bytes. Table A.2 lists

the encoding of several fields.

Table A.2: Encoding offields in the payload.
field length description

IP address (vpx) 4 Each of the four bytes of an IP address is

stored in one of the four unsigned bytes

port(pa;,pmmx) 2 Ports are encoded as unsigned 16-bit integers

RSA modulus (mod^) 256 The 2048 bits are encoded as 256 unsigned bytes

node level (levmln, \e\x) 1 The node level is encoded as an 8-bit unsigned

integer

nonce (nonce^y) 16 A nonce is always 16 unsigned bytes long We

use nonces throughout the protocol to recognise

replies to a particular request and to guarantee

the freshness ofthese replies

symmetric key

Q^{VL\LE},xy)

16 The 128 bits are encoded as 16 unsigned bytes

initialisation

vector (iv)

16 The 128 bits are encoded as 16 unsigned bytes

selection size (lis el) 1 The selection size is encoded as an 8-bit

unsigned integer

length (U) 2 Length fields are represented as unsigned 16-bit

integers and identify the number of bytes
ofthe following field

DH parameters (DHe) <296 The DH public key (of one party) is represented in

ASN 1 encoding for public keys [86]

number of nodes for

peer discovery

(nreq, nrep)

1 The requested and replied number of nodes for

discovery is encoded as an 8-bit unsigned integer

information

(info, infoj;)

1 Status information exchanged between two

neighbours or information about the host x,

represented as unsigned 8-bit integers

RSA public key encryp¬

tion ({ }pKx)

n-256 Data encrypted with x's RSA public key are

represented as unsigned bytes,
the length is a multiple of 256 bytes

RSA signature

({ }skJ

256 Data hashed with SHA1 and then encrypted with

x's RSA private key, represented as 256

unsigned bytes

We describe the various message types that are exchanged between neigh¬
bours and between the endpoints of an anonymous tunnels. According to

Appendix A.2.2, the types are encoded as 8-bit unsigned integers. Since the

length of some messages can be longer than what fits into a single cell, there

is a simple rale to recognise when all cells of a message have been received:

Code200 Exhibit 1009
Page 286 of 308

266 A MorphMix Protocol and Prototype Implementation

The last cell of a message always has a different type than the others. For in¬

stance, the selection a node offers when appending a node to the tunnel is an

end-to-end message that uses multiple cells. Therefore, the type field in the

anonymous connection headers is SELHEQ in all cells except the last, where

it is SELJŒQ-FINAL. Table A.3 lists the encoding of all message types used

in MorphMix.

Table A.3: Encoding ofmessage types.

type | encoding || type | encoding

messages between neighbours

LINK.REQ 11 LINK.REP 12

WIT.REQ 16 WIT-REQ-FINAL 17

WIT.REP 18 WIT-FAIL 19

NEXT.REQ 21 NEXT.REP 22

NEXTJAIL 23

ADD.REQ 26 ADD.REP 27

ADD.FAIL 28

NODES.REQ 31 NODES.REP 32

NODES_REP_FINAL 33

STAT-REQ 36 STAT-REP 37

STAT-PUSH 38

TERM 41

CREDIT 46

LINK-DATA 51

end-to-end messages

SEL-REQ 61 SEL-REP 62

SEL-REP-FINAL 63 SEL-FAIL 64

APP.REQ 66 APP_REQ_FINAL 67

APP.REP 68 APP_REP_FINAL 69

APP.FAIL 70

CON.REQ 71 CON.REQ.FINAL 72

CON.REP 73 CONDATA-REQ 74

CONDATA_REQ_FINAL 75 CON.CLOSE 76

CON.FAIL 77

E2E-PING 81 E2E.PONG 82

E2E.DATA 86

Code200 Exhibit 1009
Page 287 of 308

A.3 Messages between Neighbours 267

A.3 Messages between Neighbours

In this section, we precisely describe all messages in MorphMix that are ex¬

changed between neighbours. They are used to set up virtual links, to set up

and terminate anonymous tunnels, for peer discovery, to get status informa¬

tion about neighbours, for flow control, and to carry end-to-end messages.

With the exception of the case when carrying end-to-end messages, layered

encryption is not relevant if messages are exchanged between neighbours.

Therefore, both the header and payload are usually encrypted using the key
of the conesponding virtual link.

A.3.1 Establishing a Virtual Link

Whenever two nodes in MorphMix communicate directly with each other,

they establish a virtual link. To do so, a establishes a TCP connection with

b using ip6 and pmmt (or pwttb if a or 6 act as a witness). Node a then

selects randomly three 128-bit values: a noncea^, an initialisation vector

(iv) for the AES cipher because it operates in CBC mode, and a key kVp,ab,
which will be used to encrypt data sent across the virtual link. Node a also

includes its IP address ipa, port pmma, RSA modulus moda, and node level

leva. If a is located in a private network behind a NAT gateway and port

forwarding to connect to a has been enabled on the NAT gateway, a includes

the public IP address and the conesponding port of the NAT gateway instead

of its own. All these data are concatenated, encrypted with 6's public key

PK6, and sent to 6 in a LINKJŒQ message. Since the resulting data have

a length of 368 bytes, they fit into the payload of a single cell. The atlD

is set to 0 because the messages do not belong to any particular anonymous
tunnel. Cells carrying messages of type LINK_REQ are the only cells where

the header is transmitted in the clear.

Upon receiving the message, 6 decrypts the payload to get the data that

were encrypted by a. iv and kVp,ab are used as input to the AES cipher
to encrypt the data on this virtual link. In addition, ipa, pmma, moda, and

leva are passed to the peer discovery mechanism (see Section 5.7). If 6 is

willing to accept the connection, it generates message of type LINKHEP that

contains nonceaj6. The header and the whole payload of the resulting cell are

encrypted with kVp,ab and sent back to a. Node a gets the cell, decrypts the

header, sees that it is a message oftype LINK_REP, checks the included nonce

to make sure it really is a valid reply to its own message and the virtual link

Code200 Exhibit 1009
Page 288 of 308

268 A MorphMix Protocol and Prototype Implementation

is established. If there is any problem with the LINK.REP message, a simply
tears down the TCP connection to b. If b cannot decrypt the LINK _REQ

message or does not want to accept the connection from a for any reason,

it simply closes the TCP connection. As mentioned in Appendix A.l, b can

simply stop listening on pmmt if it does not want to be chosen as a neighbour.

However, a node should always accept virtual links being established to p wttœ

to guarantee setting up anonymous tunnels succeeds with high probability.
Table A.4 summarises all fields and cells used during the setup of a virtual

link.

Table A.4: Fields and cells to establish a virtual link

field length description

noncea,(, 16 Nonce for a to recognise 6's reply

IV 16 Initialisation vector for the AES cipher

kvL,ab 16 Symmetric key used for the virtual link

ver¬

sion

type at

ID

pld
len

payload key to

header

encrypt

payload

10 LINK-REQ 0 368 {noncea>f, || iv || kVL,ab II

ipa || Pmm„ || moda ||
leva }pKh

no no

10 LINK-REP 0 16 noncea,(, kvL,ab kvL,ab

A.3.2 Appending a Node to a Tunnel

Messages 1-3 and 10 in Figure 5.5 are end-to-end messages and will be han¬

dled in Appendix A.4.1. Here, we describe messages 4-9.

Upon receiving message 3 in Figure 5.5, b sets up a virtual link to w. As

mentioned in Appendix A.5.2, this is only needed if b and w are cunentiy not

neighbours. Node 6 then generates a W1THEQ message. Since the length of

the message is longer than the payload of a cell, it results in two cells. The

first cell has type WITJIEQ and the second WIT_REQ_FINAL. The message

includes a nonce and the encrypted payload b received from a in message 3.

The witness w decrypts the encrypted data to get ipc, pmmc, and modc.

It establishes a virtual link to c by connecting to c's witness port pwttc (=

Pmmc + 1) if w and c are cunentiy not neighbours. Then, w generates a

NEXT-REQ message, which contains a new nonce (nonce „,jC), nonce6jC, ipb,
and a's DH public key that is encrypted for c. If w cannot establish a virtual

Code200 Exhibit 1009
Page 289 of 308

A.3 Messages between Neighbours 269

link to c or if there is a problem with the WIT_REQ message, w sends a

WITJAIL message to b that contains nonce«, jC.

Node c decrypts a's DH public key and completes the key-exchange to

get the shared secret. The first 16 bytes of this shared secret are used as the

initialisation vector and the next 16 bytes as the symmetric key kLEtac for the

AES cipher that is used for the layer of encryption between a and c. Node c

then generates its own DH public key, DHC of the key-exchange and replies
to w with a NEXTJŒP message that contains nonceWjC. If c does not accept

being the next node in the tunnel or if there is another problem, c replies with

a NEXTJAIL message to w. Upon receiving the NEXTJIEP message, w

generates the receipt for a, which includes noncea<w, the IP addresses of 6

and c, and a digital signature over these data. It then sends nonce b,w and the

receipt to 6 in a WITJŒP message. Ifw has received aNEXTJAIL message

from c, it sends a WIT_FAIL message to b.

After having received the WIT_REP message, b sends anADDJŒQ mes¬

sage containing nonce6jC and an identifier ID to be used to multiplex the

anonymous tunnel on the virtual link from b to c later. If c accepts the anony¬

mous tunnel, it replies with anADDJŒP message, which contains nonce b,c

and c's DH public key. If there is a problem with the ADD JlEP message,

it replies with anADDJAIL message. Table A.5 summarises the fields and

cells that are used used during steps 4-9 in Figure 5.5.

A.3.3 Peer Discovery Messages

A node can ask another node about further nodes. To do so, a establishes

a virtual link to b by connecting to 6's MorphMix port, i.e. 6 must first be¬

come a neighbour of a. Then, a sends a NODES-REQ message to 6. The

message contains a nonce and the maximum number of nodes a wants to

leam about. Node 6 responds with a NODESHEP message. Since the reply
is likely to be longer than the payload of a single cell, the last cell has type

NODES_REP_FINAL and the others NODES_REP A NODES_REP message

contains nonce0i6, the numberof noes about which information is provided in

the message (6 can choose to inform a about fewer nodes than a requested),
and the IP addresses, ports, RSA moduli, and node levels of these nodes. The

fields and cells used for peer discovery are given in Table A.6.

Code200 Exhibit 1009
Page 290 of 308

270 A MorphMix Protocol and Prototype Implementation

Table A.5: Fields and cells (corresponding to messages 4-9) to append a

node to an anonymous tunnel.

field length description

nonce;, w 16 Nonce for b to recognise w 's reply

nonce;, c
16 Nonce for feto recognise c's reply

noncea,TO 16 Nonce for a to recognise w's reply

ipc 4 c's IP address

Pmmc 2 c's MorphMix port

modc 256 c's RSA modulus

DHa <296 a's DH public key

nonceTO>c 16 Nonce for w to recognise c's reply

iPi> 4 b's IP address

ID 2 the identifier to multiplex the anonymous tunnel on the

virtual link between b and c

DHC variable c's DH public key

ver¬

sion

type at

ID

pld
len

payload key to

header

encrypt

payload

10 WIT.REQ

(.FINAL)

0 <720 nonce;, w || nonceg, c ||

{noncea,TO || ipc ||

Pmmc || modc ||

{DUa}PKr}pKm

kvL,bw k-VL,bw

10 NEXT.REQ 0 <382 nonceTO>c || noncef,c ||

iPb II {DH0}pkc
*-VL,wc k-VL,wc

10 NEXT-REP 0 16 nonceTO>c *-VL,u:c *-VL,u:c

10 NEXT-FAIL 0 16 nonceTO>c *-VL,wc K-VL,wc

10 WITJŒP 0 296 nonce;, w \\

noncea,TO || ip;, ||

ipc || {noncea,TO ||

k-VL,bw ^VL,bw

10 WIT-FAIL 0 16 nonce;, w kvL,bw kvL,bw
10 ADD-REQ 0 18 nonce;, c || ID kvL.fcc kvL.fcc
10 ADD-REP 0 <314 nonce;, c || DHC kvL.fcc kvL.fcc
10 ADD-FAIL 0 16 nonce;, c kvL.fcc kvL.fcc

Code200 Exhibit 1009
Page 291 of 308

A.3 Messages between Neighbours 271

Table A.6: Fields and cells to learn about other nodes.

field length description

nonceai{, 16 Nonce for a to recognise 6's reply

Ilreq 1 The number of nodes a requests at most (Udots255)

Ylrep 1 The number of nodes in 6's reply (lldots255)

ipi 4 t's IP address, % = c, d, e,

Pmmz 2 t's MorphMix port, % = c, d, e,

modj 256 t's RSA modulus, % = c, d, e,

levj 1 t's node level, % = c, d, e,

ver¬

sion

type at

ID

pld
len

payload key to

header

encrypt

payload

10 NODES-REQ 0 17 noncea>{, || nreq kvL.af) kvL.af)
10 NODES-REP

(.FINAL)

0 17 + noncea>{, || nrep ||

iPc || Pmmc ||

modc || levc ||

kvL,af) kvL,af)

A.3.4 Virtual Link Status Information Messages

Neighbouring nodes can request status information from each other or de¬

cided themselves to inform the other peer about the own status. To request 6's

status, a sends a STATJŒQ message to 6, to which 6 replies with a STATHEP

message. In addition, if a wants to tell 6 about its status, it can send a

STATJ'USH message. STAT_REQ and STAT_REP messages contain a nonce

and all status information messages contain an info field. The fields and cells

used to exchange status information messages are given in Table A.7.

A.3.5 Terminating an Anonymous Tunnel

Any node along an anonymous tunnel can terminate the tunnel at any time.

Often, this is done by the initiator, but due to potential failure of nodes, it can

also be done by any intermediate node or the final node. To terminate a tun¬

nel, a TERM message is sent to the next node in the tunnel. The resulting cell

contains the ID that identifies the tunnel to be torn down on the conesponding
virtual link. If an intermediate node tears down a tunnel, it sends two TERM

messages, one to the previous and one to the next node in the tunnel, unless

one of these two nodes is no longer a neighbour. The recipient of a TERM

message sends itself a TERM message to the next node again using the ap¬

propriate ID and so on, until the initiator or/and the final node receive such a

Code200 Exhibit 1009
Page 292 of 308

272 A MorphMix Protocol and Prototype Implementation

Table A.7: Fields and cells to exchange status information between neigh¬
bours.

field length description

noncea>{, 16 Nonce to identify which STAT.REQ belongs to which

STAT-REP message

info 1 Either the requested information, the reply, or the pushed
information

1 ACCEPT-TUNNELS (in STAT.REQ messages to ask

if the peer can accept further anonymous tunnels)
2 OK-TUNNELS (in STAT-REP messages to tell that

further anonymous tunnels can be accepted)
3 NO.TUNNELS (in STAT.REP or STATJ'USH messages

to tell that no further anonymous tunnels can be accepted)

ver¬

sion

type at

ID

pld
len

payload key to

header

encrypt

payload

10 STAT-REQ 0 17 noncea ;, || info kvL.af) kvL.af)
10 STAT-REP 0 17 noncea ;, || info kvL.af) kvL.af)
10 STAT-PUSH 0 17 info kvL.af) kvL.af)

message. Table A.8 gives the format of a cell containing a TERM message.

Table A.8: Cell to terminate an anonymous tunnel.

ver¬

sion

type at

ID

pld
len

payload key to encrypt

header | payload

10 TERM ID 0 kvL.af) | kVL,ab

A.3.6 Flow Control Messages

MorphMix employs a simple flow control mechanism. The main motiva¬

tion for this is that if a node gets cells much faster than it can forward them

to the next node, the cells may pile up in that node and consume a signifi¬
cant amount of its memory. MorphMix employs a credit-based scheme very

similar to the one introduced in the context of the Anonymity Network (see

Section 3.1.2), which works bidirectionally between two neighbouring nodes

along an anonymous tunnel. A node a gets an initial credit, which cone¬

sponds to the number of cells it is allowed to send to one specific neighbour 6

for a particular anonymous tunnel identified with atlD ID on the virtual link

between a and 6. This initial credit is set to 50 cells, which means that a is

Code200 Exhibit 1009
Page 293 of 308

A.3 Messages between Neighbours 273

allowed to send 50 cells belonging to this anonymous tunnel to 6 before it

must wait. Node 6 counts itself the cells with atlD ID it has received from

a and already forwarded to the next node along the tunnel (or to the client

applications) if the 6 is the initiator or to the host(s) if the 6 is the final node).

Whenever 6 has forwarded 30 cells, it sends a CREDIT message back to a

which sets the credit for the tunnel with atlD ID back to 50. The atlD of the

cell containing the CREDIT message contains the ID of the tunnel for which

the credit should be reset. Sending the CREDIT message already after 30

and not only after 50 cells have been forwarded should guarantee that a can

reset the credit for the conesponding tunnel before all credits have been used

up. If 6 cannot forward the cells from a anymore, it simply stops sending
back CREDIT messages, which prevents a from sending cells along the tun¬

nel identified with atlD ID after its credit is used up. Note that flow control

only affects LINK_DATA messages (see Appendix A.3.7) that carry the actual

end-to-end messages. All other messages between neighbours can always be

sent and do not affect the credit of cells a node is allowed to send. Table A.9

gives the format of a CREDIT message.

Table A.9: Cell to reset the credit ofa tunnel on a virtual link

ver¬

sion

type at

ID

pld
len

payload key to encrypt

header | payload

10 CREDIT ID 0 k-VL,ab I kVL,ab

A.3.7 Virtual Link Data Messages

Besides all control messages, there are simple LINKJJATA messages. A

LINK_DATA message is used to transport (parts of) an end-to-end message

across a virtual link between two neighbours. Table A. 10 gives the format of

a cell containing a LINK_DATA message.

Table A.10: Cell to transport end-to-end messages.
ver¬

sion

type at

ID

pld
len

payload key to

header

encrypt

payload

10 LINK-DATA ID 496 (parts of an) end-to-end

message

kvL,ab kLE,ab

Code200 Exhibit 1009
Page 294 of 308

274 A MorphMix Protocol and Prototype Implementation

A.4 End-to-End Messages

In addition to messages between neighbours, there are end-to-end messages

exchanged between the endpoints of an anonymous tunnel. They are used to

set up anonymous tunnels, to set up and terminate anonymous connections,

to exchange end-to-end status information, and to cany data exchanged be¬

tween the client application and the host. End-to-end messages are always

transported between two neighbours within one or more LINK .DATA mes¬

sages. The first 16 bytes of the conesponding cell payloads are used for the

anonymous connection header, which looks exactly like a cell header. Since

the cell header of end-to-end messages always contains the message type

LINK_DATA, the atlD of the corresponding tunnel, and a payload length of

496 bytes (see Appendix A.3.7), we only illustrate the cell payload (including
the anonymous connection header) and not the entire cells.

A.4.1 Appending a Node to a Tunnel

We follow the messages in Figure 5.5 and describe the messages in steps 1-3

and 10. When a wants to append a node to the tunnel, it sends a SEL -REQ

message to 6. The message includes a nonce (nonce a^, the number of nodes

6 must offer in its selection to a, and the minimum level these nodes should

have.

Node 6 replies with a SELJŒP message. This message usually needs sev¬

eral cells to be transported, which means the anonymous connection header

in the last cell has type SEL_REP_FINAL, the others SEL-REP The message

includes nonce0i6, the number of nodes in the selection, and the IP addresses,

ports, public keys, and levels of these nodes in the selection. If 6 cannot offer

a selection to a, it replies with a SELJAIL message. Note that 6 should try

to only offer nodes that satisfy the minimum node level specified by a, but

the prime goal is to offer a selection at all. So if 6 can offer a selection to

a but has not enough neighbours that satisfy the minimum node level speci¬
fied by a, the rule is that 6 still offers the entire selection. Node a then picks

randomly a node from the selection (here we assume node c is picked). It

is important that a picks the node at random, even if some nodes in the se¬

lection do not meet the minimum level. Otherwise, a malicious node could

offer a selection where it includes one malicious node with a very high level

and only honest nodes with low levels and hope the initiator picks the one

with the highest level. Node a then generates its public key DHa of the DH

Code200 Exhibit 1009
Page 295 of 308

A.4 End-to-End Messages 275

key-exchange and encrypts it with c public key, which results in {DH a}pKc
It then picks a witness w from the set of nodes it knows (see Section 5.7) and

encrypts the concatenation of a nonce (nonce a<w,
c's IP address, port, public

key, and {DHa}pKc with w's public key. It generates anAPPJŒQ message

for 6, which results in multiple cells where the anonymous connection header

in the last has type APP_REQ_FINAL and the others APP-REQ. The message

contains nonce0i6, w's IP address ip«,, portpmmra, RSA modulus mod«, ipc,

Pmmc, and the encrypted data for w. After 6 has completed appending c to the

anonymous tunnel, it sends aAPPJlEP message to a, which again results in

multiple cells where the anonymous connection header in the last cell has type

APP_REP_FINAL and the others APP-REP The message contains noncea,b,

the signed receipt from w (see Section A.3.2), and c's DH public key DHC.

Node a checks the receipt if it indeed contains the conect nonce (nonce a<w)
and the IP addresses of 6 and c If this is not the case, the tunnel is terminated.

If the receipt can be correctly verified, a uses DHC to create the initialisation

vector and the symmetric key kLEtac that are used as inputs to the AES cipher
for the layer of encryptionbetween a and c. If anything has failed and 6 could

not append c, 6 sends an APPJAIL message to a. Table A. 11 summarises

the fields and cell payloads used during steps 1-3 and 10 in Figure 5.5 when

appending a node to a tunnel.

A.4.2 Initiating and Terminating an Anonymous Connec¬

tion

Once an anonymous tunnel has been set up, the initiator can establish anony¬

mous connections. To do so, it sends a CONJŒQ message to c The message

contains the IP address or host name hnft and the port p^ ofthe service to con¬

tact. The message can potentially result in multiple cells, which means the

anonymous connection header in the last cell has type CON _REQ .FINAL

and the others CON-REQ. Note that the initiator must not perform the ad¬

dress resolution by itself because this would reveal the identity of the host it

intends to contact. The convention for c is that if hnft has a length of four

bytes and has the format of a valid IP address, it will be treated as an IP ad¬

dress, otherwise as a host name. Node c tries to contact h and sends back a

CONJŒP message, which contains an information field info/i. To increase

end-to-end performance, there is an additional message type to establish an

anonymous connection, the CONDATAJIEQ message. Basically it works

similar to a CON_REQ message but in addition contains end-to-end data to

Code200 Exhibit 1009
Page 296 of 308

276 A MorphMix Protocol and Prototype Implementation

Table A.11: Fields and cell payloads (corresponding to messages 1-3 and

10) to append a node to an anonymous tunnel.

field length description

nonceai{, 16 Nonce for a to recognise 6's reply

«sei 1 The number of nodes 6 must offer in the selection

l^-vmzn 1 The minimum level the nodes in 6's selection should have

iPi 4 t's IP address, % = c, d, e,

Pmm, 2 t's MorphMix port, % = c, d, e,

modj 256 t's RSA modulus, % = c, d, e,

levj 1 t's node level, % = c, d, e,

ip 4 w 's IP address

Pmmw 2 w 's MorphMix port

modTO 256 w 's RSA modulus

noncea,TO 16 Nonce for a to recognise w 's reply

iPfe 4 6's IP address

DHa <296 a's DH public key

DHC <296 c's DH public key

ver¬

sion

type ac

ID

pld
len

payload key to

header

encrypt

payload

10 SEL-REQ 0 18 noncea>{, || nse; || levmln kLE,ab kLE,ab
10 SEL-REP

(.FINAL)

0 17 +

s-263

noncea>{, || nse; || ipc ||

Pmmc || modc ||
levc ||

kLE,ab kLE,ab

10 SEL-FAIL 0 16 noncea>{, kLE,ab kLE,ab
10 APP.REQ

(.FINAL)

0 <972 noncea>{, || ipTO ||

VmmVJ || mod«, ||

iPc || Pmmc ||

{noncea, || iPc ||

Pmmc || mode ||

{DUajpKjpK^

kLE,ab kLE,ab

10 APP.REP

(.FINAL)

0 < 592 noncea,6 || noncea>TO ||

ipi> || ipc || {noncea,TO ||

iPb iPc}sK,u II DHC

kLE,ab kLE,ab

10 APP.FAIL 0 16 noncea,6 kLE,ab kLE,ab

be sent to the host as soon as the connection between the final node and the

host has been established. Looking at applications such as web browsing,
this saves one RTT because using the the normal CON_REQ/CON_REP pair,
the web request can only be sent through the anonymous tunnel to the web

server after the CON-REP has arrived at the initiator. CONDATA_REQ may

be longer than what fits into a single cell, which implies the anonymous con-

Code200 Exhibit 1009
Page 297 of 308

A.4 End-to-End Messages 277

nection header in the last cell has type CONDATA-REQ-FINAL and the oth¬

ers CONDATA-REQ. Note that there is no conesponding CONDATA_REP

message because the reply from the server is directly sent back to the initia¬

tor using E2E-DATA messages (see Appendix A.4.4). If connecting to the

host is not possible, the final node sends back a CLOSEJAIL message that

contains an info field to inform the initiator about the reason why connecting
was not possible. Finally, a CONjCLOSE message is sent along an anony¬

mous connection if either the host has closed the connection to the final node

or if the client application has closed the connection to the access program.

The CON-CLOSE message informs the other endpoint of the tunnel to itself

close the connection to the client application or the host. The fields and cell

payloads used to initiate and terminate anonymous connections are given in

Table A. 12.

Table A.12: Fields and cell payloads to initiate and terminate anonymous

connections.

field length description

^hrih 16 The length of the following host name or IP address of h

hn/j variable h's host name or IP address

Ph 2 The port to contact on h

info/j 2 Information about the connection attempt to h

1 NAME.RESOLUTION-FAILURE

2 DESTINATION-NOT-REACHED

ver¬

sion

type ac

ID

pld
len

payload key to

header

encrypt

payload

10 CON.REQ

(.FINAL)

ID variable hn/j || ph kLE,ac kLE,ac

10 CON-REP ID 0 k-LE,ac k-LE,ac
10 CONDATA-REQ

(.FINAL)

ID variable \nh II hnfe || ph ||
end-to-end data

k-LE,ac k-LE,ac

10 CON.CLOSE ID 0 kLB.ac kLB.ac
10 CON.FAIL ID 1 info/j kLB,ac kLB,ac

A.4.3 End-to-End Status Information Messages

To measure the RTT of an anonymous tunnel or to leam if the tunnel is ac¬

tually still functioning, there are E2EJING and E2EJONG message. The

initiator simply sends a nonce in a E2E_PING message through the tunnel to

Code200 Exhibit 1009
Page 298 of 308

278 A MorphMix Protocol and Prototype Implementation

the final node and remembers the time when it has sent message. Upon re¬

ceiving the message, the final node immediately sends the same nonce back

to the initiator using an E2E_PONG message. The fields and cell payloads
used to measure the RTT of a tunnel are given in Table A. 13.

Table A.13: Fields and cellpayloads to exchange status information between

endpoints ofa tunnel.

[field | length | description |

[noncea>e | 16 | Nonce for a to recognise c's reply |

ver¬

sion

type ac

ID

pld
len

payload key to

header

encrypt

payload

10 E2E.PING 0 16 noncea,c kLE,ab kLE,ab
10 E2E.PONG 0 16 noncea,c kLE,ab kLE,ab

AAA End-to-end Data Messages

To carry the actual data that are exchanged between the client application
and the host, E2EJJATA messages are used. The anonymous connection is

identified by putting the appropriate ID into the acID field of the anonymous

connection header and upon receiving an E2E .DATA message, the initiator

simply forwards the end-to-end data to the client application and the final

node forwards the data to the host. Table A. 14 gives the cell payload of

E2E-DATA messages.

Table A.14: cell payloads to transport end-to-end data.

ver¬

sion

type at pld
len

payload key to encrypt

header | payload

10 E2E.DATA ID <480 end-to-end data kpE,ab | ^LE,ab

A.5 Virtual Link and Tunnel Usage

In this section, we give the details about how long virtual links and tunnels

can be used once they have completely been set up. In addition, we give the

policy for using virtual links.

Code200 Exhibit 1009
Page 299 of 308

A. 5 Virtual Link and Tunnel Usage 279

A.5.1 Virtual Links and Tunnel Lifetimes

For the collusion detection mechanism (see Section 5.6) to work conectiy,
honest nodes must change their neighbours from time to time. We enforce

this by specifying the maximum time a virtual link or a tunnel can be used.

We first describe the life cycle of a virtual link:

1. During its lifetime, a virtual link from a to 6 can have four different

states: SETUP, READY, WAIT1, and WAIT2. In general, a virtual link

can be terminated at any time if a or 6 crashes, but in the normal course

of events, a virtual link changes its state from SETUP to READY to

WAIT1 and WAIT2. When a starts setting up a virtual link, the state of

the virtual link is set to SETUP.

2. When the virtual link has been completely set up, its state changes to

READY and it remains in this state for a virtual linkREADY lifetime of

30 minutes. Only while a virtual link is in state READY, a can choose

6 as the first intermediate node in a tunnel and 6 may be offered in

selections from a unless 6 has informed a to not to do so via virtual

link status information messages (see Appendix A.3.4).

3. When the virtual link READY lifetime expires, the state of the virtual

link is changed to WAIT1. The virtual link remains in this state for a

virtual link WAIT1 lifetime of 15 minutes.

4. When the virtual link WAIT1 lifetime expires, the state of the virtual

link is changed to WAIT2. Once a virtual link is in state WAIT2, it

is terminated as soon there are no more anonymous tunnels that use

this virtual link. After a virtual link WAIT2 lifetime of 15 minutes, the

virtual link is terminated in any case.

Similarly, there is a life cycle for anonymous tunnels:

1. During its lifetime, an anonymous tunnel can have three different states:

SETUP, READY, and WAIT. A tunnel can be torn down at any time if

any of the nodes along the tunnel leave MorphMix, but in general, a

tunnel changes its state from SETUP to READY and WAIT. When the

initiator starts setting up an anonymous tunnel, the state of the tunnel

is set to SETUP. If the tunnel cannot be set up completely within five

minutes, it is torn down.

2. Whenthe tunnel has been completely set up, its state changes to READY

and it remains in this state for a tunnel READY lifetime of 10 minutes.

Only while a tunnel is in state READY, it may be used to set up new

anonymous connections.

Code200 Exhibit 1009
Page 300 of 308

280 A MorphMix Protocol and Prototype Implementation

3. When the tunnel READY lifetime expires, the state of the tunnel is

changed to WAIT. Once a tunnel is in state WAIT, it is terminated as

soon as all anonymous connections using the tunnel are terminated.

Although there is no tunnel WAIT lifetime, a tunnel is eventually ter¬

minated even if there are still anonymous connections using it when

any of the virtual links it uses is terminated.

A.5.2 Policy for Using Virtual Links

We have already discussed in Section 5.5.3 that when offering a selection or

picking a neighbour as the first intermediate node in a tunnel, nodes should

only use those nodes to which they have established the virtual link them¬

selves. Virtual links are also used during tunnel setup by the node 6 that is ap¬

pending a new node to contact the witness w (WIT-REQ(-FINAL), WIT .REP,

and WIT_FAIL message) and for the witness to contact the node c that is ap¬

pended to a tunnel (NEXT_REQ, NEXT_REP, and NEXTJAIL message).
The policy for establishing and using a virtual link between 6 and w to ap¬

pend c is given below. It works in exactly the same way between w and c.

1. When 6 must contact w, 6 and w are cunentiy neighbours, and there is a

virtual link between them in state READY, this virtual link is also used

for all witness messages exchanged between 6 and w for this particular

appending of node c It does not matter which of the two nodes 6 and

w was the initiator of the virtual link.

2. If 6 and w will be neighbours in the sense that there is a virtual link in

state SETUP between them (but none in state READY), 6 waits until

this virtual link changes its state to READY and uses it to exchange

messages with w. Like above, it does not matter which of the two

nodes 6 and w was the initiator of the virtual link.

3. If 6 and w are cunentiy not neighbours or if the virtual link(s) between

them is (are) in state WAIT1 or WAIT2, a new virtual witness link is

established. The virtual witness link is basically the same as a virtual

link and is established in the same way, but the virtual witness link

is only used to exchange the witness messages between 6 and w for

this particular appending of node c and will be torn down after all wit¬

ness messages between 6 and w have been exchanged. Note also that

a virtual witness link between two nodes does not make these node

neighbours.

Code200 Exhibit 1009
Page 301 of 308

A.6 Quantitative Analysis of the Data Overhead 281

A.6 Quantitative Analysis of the Data Overhead

We give a quantitative analysis of the data overhead produced by the Mor¬

phMix protocol. As discussed in Section 8.3.5, data overhead includes all

data that are not directly related to transporting application data: tunnel setup

and teardown, virtual link setup, exchange of virtual link status messages,

end-to-end ping and pong messages, flow control messages, and peer discov¬

ery messages.

A.6.1 Tunnel Setup and Teardown Overhead

We assume a tunnel of length / is set up. We also assume that there are

nodes in all /16 domains, which results in a selection size of 20 according to

Section 5.6.2. The players when setting up a tunnel are the following: the ini¬

tiator, the Is*... (/ - 2)th intermediate node(s), the final node, and the (/ - 1)
witnesses. Besides the actual messages to append a node to a tunnel, tunnel

setup also includes establishing the virtual links from and to the witnesses.

For simplicity and to take into account the maximum possible data overhead,

we assume that virtual links from and to the witnesses must always be estab¬

lished to exchange the witness messages (see Appendix A.5.2). Analysing
the messages exchanged during the setup of anonymous tunnels, we get the

tunnel setup overhead for the initiator as illustrated in Table A. 15.

Table A. 15: Overheadfor the initiator to set up a tunnel.

message payload

length

number of

messages

#

send

cells

receive

total le

send

ngth (bytes)
receive

LINK-REQ 256 1 1 512

LINK.REP 16 1 1 512

WIT-REQ

WIT-REP

<720

296

1

1

2

1

1024

512

ADD-REQ

ADD-REP

18

< 312

1

1

1

1

512

512

6 4 3 2048 1536

SEL-REQ

SEL-REP

18

5277

(1-2)

(1-2)

1

11

512

5632

APP-REQ

APP-REP

<972

< 592

(1-2)

(1-2)

3

2

1536

1024

4 • (1 - 2) 4 13 2048 6656

The top six messages are needed to append the node immediately follow-

Code200 Exhibit 1009
Page 302 of 308

282 A MorphMix Protocol and Prototype Implementation

ing the initiator and each of these messages is needed exactly once. As a

result, four fixed-length cells of length 512 bytes each must be sent and three

cells must be received, resulting in sending 2048 and receiving 1536 bytes.

For each additional node to be appended to the tunnel, the initiator sends

two and receives two messages. Since the tunnel has a total length of / nodes,

this results in sending (/ - 2) 4 cells conesponding to (I — 2) 2048 bytes
and receiving (I — 2) 13 cells conesponding to (I — 2) 6656 bytes.

Looking at the overhead for the ith intermediate node, we get the results

in Table A. 16.

Table A.16: Overheadfor the i intermediate node to set up a tunnel.

message payload number of # cells total length (bytes)

length messages send receive send receive

LINK-REQ 256 1 1 512 512

LINK-REP 16 1 1 512 512

NEXT-REQ <382 1 512

NEXT-REP 16 1 512

WIT-REQ <720 2 1024

WIT-REP 296 1 512

ADD-REQ 18 1 1 512 512

ADD-REP < 312 1 1 512 512

SEL-REQ 18 1 512

SEL-REP 5277 11 5632

APP-REQ <972 3 1536

APP-REP <592 2 1024

12 20 10 10240 5120

SEL-REQ 18 (1-2-i) 1 1 512 512

SEL-REP 5277 {I-2-i) 11 11 5632 5632

APP-REQ <972 (I - 2 - i) 3 3 1536 1536

APP-REP <592 (I - 2 - i) 2 2 1024 1024

4 • (I - 2 - i) 17 17 8704 8704

The top twelve messages are needed to append the intermediate node it¬

self and the following node, which results in sending 20 cells (10240 bytes)
and receiving 10 cells (5120 bytes). Depending on the position of an interme¬

diate node, it has to relay more or fewer messages when the following nodes

are appended. With a tunnel length of / nodes and for the ith intermediate

node for 1 < i < (I — 2), this results in relaying I — 2 — i times 17 cells,

resulting in sending and receiving (/ - 2 - i) 17 cells ((/ - 2 - i)- 8704

bytes).

The final node is a special case of an intermediate node because it is only

Code200 Exhibit 1009
Page 303 of 308

A.6 Quantitative Analysis of the Data Overhead 283

appended to a tunnel but does not append additional nodes itself. Table A. 17

lists its overhead during the setup of a tunnel, which results in sending and

receiving three cells (1536 bytes).

Table A.17: Overheadfor thefinal node to set up a tunnel.

message payload

length

number of

messages

cells

send receive

total length (bytes)
send receive

LINK-REQ

LINK-REP

NEXT-REQ

NEXT-REP

ADD-REQ

ADD-REP

256

16

<382

16

18

< 312

1

1

1

1

1

1

512

512

512

512

512

512

6 3 3 1536 1536

There is also overhead for the witnesses. A witness must send four cells

(2048 bytes) and receive five cells (2560 bytes) when a node is appended to

the tunnel. Table A. 18 shows which messages are responsible for how much

overhead.

Table A. 18: Overheadfor a witness to set up a tunnel.

message payload number of # cells total length (bytes)

length messages send receive send receive

LINK-REQ 256 1 1 512 512

LINK-REP 16 1 1 512 512

WIT-REQ <720 2 1024

WIT-REP 296 1 512

NEXT_REQ <382 1 512

NEXT-REP 16 1 512

6 4 5 2048 2560

Finally, there is some overhead when tunnels are torn down. To do so,

the initiator sends a TERM message consisting of one cell (512 bytes) to

the first intermediate node, from where the tunnel is torn down hop by hop.

Therefore, the initiator sends one message, each intermediate node sends and

receives one message, and the final node receives one message.

Assuming a tunnel length of / = 5, the overhead for each node involved

in setting up and tearing down an anonymous tunnel is summarised in Ta¬

ble A. 19

Using the results from Table A. 19 and assuming there are n nodes in

Code200 Exhibit 1009
Page 304 of 308

284 A MorphMix Protocol and Prototype Implementation

Table A. 19: Overheadsummary to set up and tear down a tunnel with length

five.
node # cells total length (bytes)

send receive send receive

initiator 17 42 8704 21504

Is' witness 4 5 2048 2560

2nd witness 4 5 2048 2560

3 witness 4 5 2048 2560

4th witness 4 5 2048 2560

Is' int node 55 45 28160 23552

2nd int node 38 28 19456 14848

3 int node 21 11 10752 6144

final node 3 4 1536 2536

all nodes 150 150 76800 76800

MorphMix, the average tunnel length is five, every node sets up a tunnel

every Tts seconds and every node is equally likely to be selected as a witness,

an intermediate node, or a final node, then the average load (sending and

receiving) on every node is

loadte = ——

n

ftf

76800 76800

Tu
[B/s] (A.1)

With Tts = 120, this results in an average tunnel setup overhead of send¬

ing and receiving of about 640 B/s. While this is less than 0.5% of what a

Tl node can handle, it has an impact on slow nodes. Looking at an ISDN

node connected to the Internet with a bandwidth of 64 Kb/s, the tunnel setup

overhead accounts for approximately 8%.

A.6.2 Virtual Link Setup Overhead

If a node contacts and sets up a virtual link every Tie seconds and assuming
that the probability to be contacted is the same for every node, this results in

an average load of

loadie =

1

tTk
1024 [B/s (A.2)

Assuming a node contacts another node once per minute, i.e. Tle = 60,

the resulting overhead is about 17 B/s.

Code200 Exhibit 1009
Page 305 of 308

A.6 Quantitative Analysis of the Data Overhead 285

A.6.3 Virtual Link Status Information Overhead

At any time, every node has several neighbours that can be used as potential
next hops when appending a node to a tunnel. Assuming a node has estab¬

lished a virtual link with ln neighbours on average and assuming that a node

exchanges one STAT_REQ/STAT_REP pair with each of its neighbours every

Tis seconds, the overhead per node is

loadls = -f • 1024 = [B/s] . (A.3)
J-ls

Assuming that every node has /„ = 30 neighbours on average and that

status information is exchanged every two minutes, the overhead is about 256

B/s.

A.6.4 End-to-End Status Information Overhead

There is additional overhead from status information messages to test the

quality of a tunnel with E2E_PING and E2E.PONG messages. With n nodes,

an average tunnel length of /, every node has established t anonymous tunnels

on average, and a tunnel is tested with an E2E-PING/E2E.PONG pair every

Ttstat seconds, the average overhead per node is

, ,

n-t 2-(/-l)-512 t-(Z-l)-1024r„.
1/A ^

loadtstat
=

^ '-
=

„ B/s (A.4)

J-tstat U J-Utat

With t = 5 tunnels established per node at any time, an average tunnel

length of / = 5, and testing a tunnel every two minutes on average, the over¬

head is about 171 B/s.

A.6.5 Other Protocol Overhead

There are other overheads. Initial peer discovery produces NODES .REQ and

NODES-REP messages, but since they are usually only needed whenjoining

MorphMix for the first time or when joining again after having been offline

for a while, their impact is negligible. In addition, a few CREDIT messages

must be sent within the LINK-DATA messages stream between two nodes,

Code200 Exhibit 1009
Page 306 of 308

286 A MorphMix Protocol and Prototype Implementation

but the number ofthese messages is dependenton the number ofLINK DATA

messages and can therefore not be expressed in the same way as we did for

the other overheads above.

A.6.6 Protocol Overhead Summary

The overheads produced by the MorphMix protocol are quite significant.

Summing the overheads calculated above results in an average overhead of

sending and receiving about 1090 B/s. Taking into account additional over¬

heads from peer discovery and flow control messages, the effective overhead

is even slightly higher. This is quite a burden for ISDN nodes and even for

slower ADSL or Cable connections. However, recalling that slower nodes

will simply refuse accepting many anonymous tunnels as discussed in Sec¬

tion 7.3.2 implies that these nodes must handle much less than the average

overhead. On the other hand, fast nodes can easily handle more than the

average overhead without significantly compromising their bandwidth avail¬

able for real data. Note that the overhead is analysed in more detail in Sec¬

tion 8.3.5.

A.7 MorphMix Prototype Implementation

We have implemented a MorphMix prototype as a proof of concept. The

prototype implements the entire MorphMix protocol including collusion de¬

tection and peer discovery mechanisms and represents a fully functioning

MorphMix node. The prototype includes support for HTTP (versions 1.0 and

1.1) and HTTPS, and can easily be extended to support other protocols as

well. While the implementation did not deliver new fundamental results, it

served us well to conectiy specify the details of the MorphMix protocol.

The MorphMix prototype is free software and is available with full source

code under the terms of the GNU General Public Licensel at the MorphMix

project web page2. The MorphMix project web page will in general in¬

form about further developments of MorphMix, and also contains informa¬

tion about how to configure and run the prototype. In addition, the source

code itself contains many comments to facilitate further development of the

prototype. The prototype is implemented in Java 1.4. Since Java 1.4 includes

http ://www.gnu.org/copyleft/gpl.html

2http://www.tik.ee.ethz.ch/~morphmix

Code200 Exhibit 1009
Page 307 of 308

A.7 MorphMix Prototype Implementation 287

the Java Cryptography Extension (JCE)3 framework but no implementations
of the RSA and AES ciphers, we use version 1.21 of the free Bouncy Cas¬

tle4 crypto package, which provides a complete implementation of JCE. This

crypto package is not available at our MorphMix web page and the latest re¬

lease5 must be downloaded before the MorphMix prototype can be ran. The

Bouncy Castle web page also gives detailed information about how to install

the crypto package. Of course, it is possible to use any other provider of a

JCE compatible implementation of the necessary cryptographic algorithm.

The MorphMix prototype mainly serves experimental purposes to test the

protocol and to analyse the effect of varying different parameters. In partic¬

ular, it has not been optimised with respect to performance. Nevertheless,

our experiences with the prototype have shown that in its cunent state, the

performance it offers on a state-of-the-art computer and its stability are good

enough such that the prototype could certainly be used as a basis for a limited

user trial. However, the prototype definitely should be tested and fine-tuned

more thoroughly before a wider public release is attempted.

MorphMix is designed to operate in an environment with many nodes

distributed across a wide variety of different /16 subnets. However, such

an environment is usually not available when testing or experimenting with

the software. Consequently, we have added functionality to the MorphMix

prototype that allows running either several nodes using different MorphMix

ports on a single computer, or several nodes on different computers within

the same /16 subnet. Whether a MorphMix node should ran in either one of

these test modes or in the real mode with nodes in many different /16 subnets

can be specified with the appropriate command line arguments. In addition,

the MorphMix prototype makes use of a properties file to specify a variety of

parameters, which allows easily changing these parameters without having to

modify the code.

3http://]ava.sun.com/products/]ce

4http://www.bouncycastle.org

5http://www.bouncycastle.org/latest_releases.html

Code200 Exhibit 1009
Page 308 of 308

