

DECLARATION OF JUNE ANN MUNFORD

IPR2023-00037
Apple EX1033 Page 1

1. My name is June Ann Munford. I am over the age of 18, have personal

knowledge of the facts set forth herein, and am competent to testify to the

same.

2. I earned a Master of Library and Information Science (MLIS) from the

University of Wisconsin-Milwaukee in 2009. I have over ten years of

experience in the library/information science field. Beginning in 2004, I

have served in various positions in the public library sector including

Assistant Librarian, Youth Services Librarian and Library Director. I have

attached my Curriculum Vitae as Appendix CV.

3. During my career in the library profession, I have been responsible for

materials acquisition for multiple libraries. In that position, I have cataloged,

purchased and processed incoming library works. That includes purchasing

materials directly from vendors, recording publishing data from the material

in question, creating detailed material records for library catalogs and

physically preparing that material for circulation. In addition to my

experience in acquisitions, I was also responsible for analyzing large

collections of library materials, tailoring library records for optimal catalog

IPR2023-00037
Apple EX1033 Page 2

search performance and creating lending agreements between libraries

during my time as a Library Director.

4. I am fully familiar with the catalog record creation process in the library

sector. In preparing a material for public availability, a library catalog record

describing that material would be created. These records are typically

written in Machine Readable Catalog (herein referred to as “MARC”) code

and contain information such as a physical description of the material,

metadata from the material’s publisher, and date of library acquisition. In

particular, the 008 field of the MARC record is reserved for denoting the

date of creation of the library record itself. As this typically occurs during

the process of preparing materials for public access, it is my experience that

an item’s MARC record indicates the date of an item’s public availability.

5. Typically, in creating a MARC record, a librarian would gather various bits

of metadata such as book title, publisher and subject headings among others

and assign each value to a relevant numerical field. For example, a book’s

physical description is tracked in field 300 while title/attribution is tracked in

field 245. The 008 field of the MARC record is reserved for denoting the

creation of the library record itself. As this is the only date reflecting the

inclusion of said materials within the library’s collection, it is my experience

IPR2023-00037
Apple EX1033 Page 3

that an item’s 008 field accurately indicates the date of an item’s public

availability.

6. I have reviewed Exhibit ####, Efficient Algorithms for Speech Recognition

by Mosur K. Ravishankar.

7. Attached hereto as Appendix RAVISHANKAR01 is a true and correct copy

of the MARC record for Efficient Algorithms for Speech Recognition as held

by the Carnegie Mellon University library. I secured this record myself from

the library’s public catalog. The MARC record contained within Appendix

RAVISHANKAR01 accurately describes the title, author, publisher, and

submission details of Efficient Algorithms for Speech Recognition by Mosur

K. Ravishankar.

8. Attached hereto as Appendix RAVISHANKAR02 is a true and correct copy

of selections from Efficient Algorithms for Speech Recognition. I secured

these scans myself from the Carnegie Mellon University’s holdings. In

comparing Exhibit #### to Appendix RAVISHANKAR02, it is my

determination that Exhibit #### is a true and correct copy of Efficient

Algorithms for Speech Recognition by Mosur K. Ravishankar.

IPR2023-00037
Apple EX1033 Page 4

9. The 008 field of the MARC record in Appendix RAVISHANKAR01

indicates the date of record creation. The 008 field of Appendix

RAVISHANKAR01 indicates the Carnegie Mellon University library first

acquired this thesis as of June 27, 1996. Considering this information, it is

my determination that Efficient Algorithms for Speech Recognition was

made available to the public at least as early as December 31, 1996.

10. I have been retained on behalf of the Petitioner to provide assistance in the

above-illustrated matter in establishing the authenticity and public

availability of the documents discussed in this declaration. I am being

compensated for my services in this matter at the rate of $100.00 per hour

plus reasonable expenses. My statements are objective, and my

compensation does not depend on the outcome of this matter.

11. I declare under penalty of perjury that the foregoing is true and correct. I

hereby declare that all statements made herein of my own knowledge are

true and that all statements made on information and belief are believed to

be true; and further that these statements were made the knowledge that

willful false statements and the like so made are punishable by fine or

imprisonment, or both, under Section 1001 of Title 18 of the United States

Code.

IPR2023-00037
Apple EX1033 Page 5

Dated: 9/26/2022

June Ann Munford

IPR2023-00037
Apple EX1033 Page 6

J. Munford
Curriculum Vitae

Education

University of Wisconsin-Milwaukee - MS, Library & Information Science, 2009
Milwaukee, WI

● Coursework included cataloging, metadata, data analysis, library systems,
management strategies and collection development.
● Specialized in library advocacy, cataloging and public administration.

Grand Valley State University - BA, English Language & Literature, 2008
Allendale, MI

● Coursework included linguistics, documentation and literary analysis.
● Minor in political science with a focus in local-level economics and
government.

Professional Experience

Researcher / Expert Witness, October 2017 – present
Freelance ● Pittsburgh, Pennsylvania & Grand Rapids, Michigan

● Material authentication and public accessibility determination.
Declarations of authenticity and/or public accessibility provided upon
research completion. Experienced with appeals and deposition process.

● Research provided on topics of public library operations, material
publication history, digital database services and legacy web resources.

● Past clients include Alston & Bird, Arnold & Porter, Baker Botts, Fish &
Richardson, Erise IP, Irell & Manella, O'Melveny & Myers, Perkins-Coie,
Pillsbury Winthrop Shaw Pittman and Slayden Grubert Beard.

Library Director, February 2013 - March 2015
Dowagiac District Library ● Dowagiac, Michigan

● Executive administrator of the Dowagiac District Library. Located in

IPR2023-00037
Apple EX1033 Page 7

Southwest Michigan, this library has a service area of 13,000, an annual
operating budget of over $400,000 and total assets of approximately
$1,300,000.

● Developed careful budgeting guidelines to produce a 15% surplus during
the 2013-2014 & 2014-2015 fiscal years while being audited.

● Using this budget surplus, oversaw significant library investments
including the purchase of property for a future building site, demolition of
existing buildings and building renovation projects on the current facility.

● Led the organization and digitization of the library's archival records.

● Served as the public representative for the library, developing business
relationships with local school, museum and tribal government entities.

● Developed an objective-based analysis system for measuring library
services - including a full collection analysis of the library's 50,000+
circulating items and their records.

November 2010 - January 2013
Librarian & Branch Manager, Anchorage Public Library ● Anchorage, Alaska

● Headed the 2013 Anchorage Reads community reading campaign
including event planning, staging public performances and creating
marketing materials for mass distribution.

● Co-led the social media department of the library's marketing team,
drafting social media guidelines, creating original content and instituting
long-term planning via content calendars.

● Developed business relationships with The Boys & Girls Club, Anchorage
School District and the US Army to establish summer reading programs for
children.

June 2004 - September 2005, September 2006 - October 2013
Library Assistant, Hart Area Public Library
Hart, MI

● Responsible for verifying imported MARC records and original MARC

IPR2023-00037
Apple EX1033 Page 8

cataloging for the local-level collection as well as the Michigan Electronic
Library.

● Handled OCLC Worldcat interlibrary loan requests & fulfillment via
ongoing communication with lending libraries.

Professional Involvement

Alaska Library Association - Anchorage Chapter

● Treasurer, 2012

Library Of Michigan

● Level VII Certification, 2008
● Level II Certification, 2013

Michigan Library Association Annual Conference 2014

● New Directors Conference Panel Member

Southwest Michigan Library Cooperative

● Represented the Dowagiac District Library, 2013-2015

Professional Development

Library Of Michigan Beginning Workshop, May 2008
Petoskey, MI

● Received training in cataloging, local history, collection management,
children’s literacy and reference service.

Public Library Association Intensive Library Management Training, October 2011
Nashville, TN

● Attended a five-day workshop focused on strategic planning, staff
management, statistical analysis, collections and cataloging theory.

Alaska Library Association Annual Conference 2012 - Fairbanks, February 2012
Fairbanks, AK

● Attended seminars on EBSCO advanced search methods, budgeting,
cataloging, database usage and marketing.

IPR2023-00037
Apple EX1033 Page 9

Depositions

2019 ● Fish & Richardson
 IPR Petitions of 865 Patent, Apple v. Qualcomm (IPR2018-001281 /
 39521-00421IP & IPR2018-01282 / 39521-00421IP2)

2019 ● Erise IP
 Implicit, LLC v. Netscout Systems, Inc (Civil Action No. 2:18-cv-53-JRG)

2019 ● Perkins-Coie
 Adobe Inc. v. RAH Color Technologies LLC (Cases IPR2019-00627,
 IPR2019-00628, IPR2019-00629 and IPR2019-00646)

2020 ● O’Melveny & Myers
 Maxell, Ltd. v. Apple Inc. (Case 5:19-cv-00036-RWS)

2021 ● Pillsbury Winthrop Shaw Pittman LLP
 Intel v. SRC (Case IPR2020-1449)

Limited Case History & Potential Conflicts

Alston & Bird
 ● Nokia (v. Neptune Subsea, Xtera)

Arnold & Porter
 ● Ivantis (v. Glaukos)

Erise I.P.
 ● Apple
 v. Future Link Systems (IPRs 6317804, 6622108, 6807505, and
 7917680)

 v. INVT

 v. Navblazer LLC (Case No. IPR2020-01253)

IPR2023-00037
Apple EX1033 Page 10

 v. Qualcomm (IPR2018-001281, 39521-00421IP, IPR2018-01282,
 39521-00421IP2)

 v. Quest Nettech Corp, Wynn Technologies (Case No. IPR2019-
 00XXX, RE. Patent Re38137)

 ● Fanduel (v CGT)

 ● Garmin (v. Phillips North America LLC, Case No. 2:19-cv-6301-AB-KS
 Central District of California)

 ● Netscout

 v. Longhorn HD LLC)

 v. Implicit, LLC (Civil Action No. 2:18-cv-53-JRG)

 ● Sony Interactive Entertainment LLC

v. Bot M8 LLC

v. Infernal Technology LLC

● Unified Patents (v GE Video Compression, Civil Action No. 2:19-cv-248)

Fish & Richardson
 ● Apple
 v. LBS Innovations

 v. Masimo (IPR 50095-0012IP1, 50095-0012IP2, 50095-0013IP1,
 50095-0013IP2, 50095-0006IP1)

 v. Neonode

 v. Qualcomm (IPR2018-001281, 39521-00421IP, IPR2018-01282,
 39521-00421IP2)

 ● Dish Network

 v. Realtime Adaptive Streaming, Case No 1:17-CV-02097-RBJ)

IPR2023-00037
Apple EX1033 Page 11

 v. TQ Delta LLC

● Huawei (IPR 76933211)

● Kianxis

● LG Electronics (v. Bell Northern Research LLC, Case No. 3:18-cv-2864-
CAB-BLM)

● Metaswitch

● MLC Intellectual Property (v. MicronTech, Case No. 3:14-cv-03657-SI)

● Realtek Semiconductor

● Quectel

● Samsung (v. Bell Northern Research, Civil Action No. 2:19-cv-00286-
JRG)

● Texas Instruments

Irell & Manella

 ● Curium

O’Melveny & Myers

 ● Apple (v. Maxell, Case 5:19-cv-00036-RWS)

Perkins-Coie

 ● TCL Industries (v. Koninklijke Philips NV, PTAB Case Nos. IPR2021-
 00495, IPR2021-00496, and IPR2021-00497)

Pillsbury Winthrop Shaw Pittman
 ● Intel (v. FG SRC LLC, Case No. 6:20-cv-00315 W.D. Tex)

IPR2023-00037
Apple EX1033 Page 12

IPR2023-00037
Apple EX1033 Page 13

deader
@e1
aos
a8
@35
@35
@35
aaa
as
92
108

screenshot-cmu.primo.exlibrisgroup.com-2022.09.02-14_19_50
hitps://cmu.primo.exlibrisgroup.com/discovery/sourceRecord?vid=01CMU_INST:01CMU&docid=alma991002439939704436&recordOwner=01CMU_INST

02.09.2022

@1768nam az2004451a 4506
991862439939704436
19966627153454.8
96062751996 paua th e9@ Beng d
##$2468549-olcmu_inst
fH#Ba(OCOLC)4G8549 $9ExL
iiba(Sirsi) 034999141
4Ht$aPMC $cPMC
fHibaPMCC
##$a510.7808 SbC28r
l#$aRavishankar, Mosur.
le$aefficient algorithms for speech recognition / $cMosur K. Ravishankar.
Hi$aPittsburgh, Pa. : SbSchool of Computer Science, Carnegie Mellon University, #cc1996.
##$axii, 132 p. : $bill. 3 $c28 cm.
l#$a[Research paper] / Carnegie Mellon University, School of Computer Science, $vCMU-CS-96-143
##$a"May 15, 1996."
#H#$aThesis (Ph. D.)--Carnegie Mellon University, 1996,
H#$aIncludes bibliographical references.
f#$aSupported in part by the Department of the Navy, Naval Research Laboratory. $cN@@014-93-1-2005
##$a9
#@ZaAlgorithms.
#@$aAutomatic speech recognition.
#@$aReal-time data processing.
#@$aResearch paper (Carnegie Mellon University. School of Computer Science) ; $vCMU-CS-96-143d$a0cm34999141
fHi$a4eas49
Hi$a034999141
##$ajh/mm 6-24-96
#i#$al9960627
##$2819960627
fHibaCATALOGER
##$a2@070726
tHtbaBATCH
#H$V96-143 $c2 $heSs-tech rept $i 3848280683482
##$V96-143 $c3 bhe&s-tech rept $138482e06938499
##$a510.7808 C28R 95-143 SwDOEWEY $c2 $138482006838482 $d8/5/2002 $e9/25/2600 ZIBY-REQUEST $mOFFSITE $n13 $q2 SPV $sY BtTECH-RPT $u6/27/1996
##$a516,7808 C28R 96-143 SwDEWEY $c3 $138482006838490 $d6/18/2002 $e6/18/2002 B1BY-REQUEST $mOFFSITE $n4 $rV¥ $sVY StTECH-RPT $u6/27/1996 FORM=MARC

co

IPR2023-00037

Apple EX1033 Page 13

IPR2023-00037
Apple EX1033 Page 14

screenshot-cmu.primo.exlibrisgroup.com-2022.09.02-14_19_27
hitps://cmu.primo.exlibrisgroup.com/discoveryAulldisplay?

context=L&vid=01CMU_INST:01CMU&search_scope=Myinst_and_Ci&tab=Everything&docid=alma991002439939704436
02.09.2022

Carnegie Mellon University
Bley

SIGNIN Pic

Search anythin 5¥ B Everything 7 nf P

 DISSERTATION

Efficient algorithms for speech recognition
Ravishankar, Mosur.
1996

a! Available at Offsite Repository BY-REQUEST(510.7808 C28R 96-143) »Tor =

Find in Library

TOP ee

Please sign in tocheckifthere are any requestoptions,BDsienin
€ BACK TO LOCATIONS

LOCATION ITEMS

Offsite Repository
Available , BY-REQUEST; 510.7808 C28R 96-143
(2 copies, 1 available,0 requests) ra)

Tv a2.

ae &=v

In transit until 09/03/2022 ooSignin for loan information

Item in place iSign in for loan information

Links

Report aProblem 4 >
Signed in andstill can't find what you're looking for? Let us know
‘Display source record >

Details

Title
Efficient algorithmsforspeech recognition

Top 4. Creator
Rawishankar, Mosur. >
Dissertation
Thesis (Ph. D.)--Carnegie Mellon University, 1996,
Subject
Algorithms »
Automatic speech recognition »
Real-time data processing »
Series
[Research paper] / Carnegie Mellon University, School of Computer Science, CMU-CS-96-143 >
Research paper (Carnegie Mellon University. School of Computer Science) ; CMU.CS-96-143. >
Publisher
Pittsburgh, Pa, : School of Computer Science, Carnegie Mellon UniversityCreation Date
1996
Format
xii, 132 p. rill. ;28em,

ier IPR2023-00037
Apple EX1033 Page 14

2
a
3.
=
7

IPR2023-00037
Apple EX1033 Page 15

"May15,1996"Source
Library Catalog

Send to

ENPORT
 TO EXCEL

penn

Baevat

&PERMALINK
"aus
ai.”

TOP tee 99 CITATION

BevoRl 1S

BeerBIBTEX

Bese

Virtual Browse

< able Adaptive Properties of a A case for Efficient Storage Design of the ver >
am precision family of network algorithms for Strategies for programming peroff floating-point parallel finite attached speech faultLolerant language oft
wage arithmetic and element securedisks recognition... video servers... Forsythe «i loc;
els in fastrobust simulations... 1596 c1se6 ‘1996 1996 usit1996 1996 198

IPR2023-00037

Apple EX1033 Page 15

IPR2023-00037
Apple EX1033 Page 16

Computer Science

CarnegieTg

IPR2023-00037
Apple EX1033 Page 16

IPR2023-00037
Apple EX1033 Page 17

a
University Libraries

Carnegie Mellon University
Pittsburgh PA 15213-389

IPR2023-00037

Apple EX1033 Page 17

IPR2023-00037
Apple EX1033 Page 18

Efficient Algorithms for Speech Recognition

Mosur K. Ravishankar

May 15, 1996
CMU-CS-96-143

School of Computer Science
Computer Science Division
Carnegie Mellon University

Pittsburgh, PA 15213

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Thesis Committee:

Roberto Bisiani, co-chair (University of Milan)
Raj Reddy, co-chair
Alexander Rudnicky

Richard Stern

Wayne Ward

© 1996 Mosur K. Ravishankar

This research was supported by the Department of the Navy, Naval Research Laboratory under
Grant No. N00014-93-1-2005. The views and conclusions contained in this document are those of

the author and should not be interpreted as representing the official policies, either expressed or
implied, of the U.S. government.

IPR2023-00037

Apple EX1033 Page 18

IPR2023-00037
Apple EX1033 Page 19

_School of Computer Science
DOCTORAL THESIS

in the field of

Computer Science

Efficient Algorithmsfor Speech Recognition

MOSURK. RAVISHANKAR

Submitted in Partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy

ACCEPTED:

; é,-COMMITTEE CHAIR / se
i42Riitls“(Bremid. +- 30-96

THESIS COMMITTEE CHAIR DATE

=)—SNFISE
—ss EPARTMENTHEAD—HEAD DATE

APPROVED:

|e’ s]11 [94

IPR2023-00037

Apple EX1033 Page 19

IPR2023-00037
Apple EX1033 Page 20

Abstract

Advances in speech technology and computing power have created a surge of
interest in the practical application of speech recognition. However, the most accurate
speech recognition systemsin the research world arestill far too slow and expensive to
be used in practical, large vocabulary continuous speech applications. Their main goal
has been recognition accuracy, with emphasis on acoustic and language modelling.
But practical speech recognition also requires the computation to be carried outin
real time within the limited resources—CPU power and memorysize—of commonly
available computers. There has been relatively little work in this direction while
preserving the accuracy of research systems.

In this thesis, we focus on efficient and accurate speech recognition. It is easy to
improve recognition speed and reduce memoryrequirements by trading away accu-
racy, for example bygreater pruning, and using simpler acoustic and language models.
It is much harder to improve both the recognition speed and reduce main memory
size while preserving the accuracy.

This thesis presents several techniques for improving the overall performance of
the CMU Sphinx-II system. Sphinx-II employs semi-continuous hidden Markov mod-
els for acoustics and trigram language models, and is one of the premier research
systemsof its kind. The-techniquesin this thesis are validated on several widely used
benchmarktest sets using two vocabularysizes of about 20K and 58K words.

The main contributions of this thesis are an 8-fold speedup and 4-fold memory size
reduction over the baseline Sphinx-II system. The improvementin speed is obtained
from the following techniques: lexical tree search, phonetic fast match heuristic, and
global best path search of the word lattice. The gain in speed from the tree searchis
about a factor of 5. The phonetic fast match heuristic speeds up the tree search by
another factor of 2 by finding the most likely candidate phones active at any time.
Though the tree search incurs someloss of accuracy, it also produces compact word
lattices with low error rate which can be rescored for accuracy. Such a rescoring is
combined with the best path algorithm to find a globally optimum path through a
word lattice. This recovers the original accuracy of the baseline system. The total
recognition time is about 3 timesreal time for the 20K task on a 175MHz DEC Alpha
workstation.

The memory requirements of Sphinx-II are minimized by reducing the sizes of
the acoustic and language models. The language model is maintained on disk and
bigrams and trigrams are read in on demand. Explicit software caching mechanisms
effectively overcome the disk access latencies. The acoustic modelsize is reduced by
simply truncating precision of probability values to 8 bits. Several other engineering
solutions, not explored in this thesis, can be applied to reduce memoryrequirements
further. The memorysize for the 20K task is reduced to about 30-40MB.

IPR2023-00037

i Apple EX1033 Page 20

IPR2023-00037
Apple EX1033 Page 21

IPR2023-00037

Apple EX1033 Page 21

IPR2023-00037
Apple EX1033 Page 22

Acknowledgements

I cannot overstate the debt I owe to Roberto Bisiani and Raj Reddy. They have
not only helped me and given me everyopportunity to extend myprofessional career,
but also helped me through personaldifficulties as well. It is quite remarkable that I
have landed not one but two advisors that combine integrity towards research with a
humantouch that transcends the proverbial hard-headedness of science. One cannot
hope for better mentors than them. Alex Rudnicky, Rich Stern, and Wayne Ward,
all have a clarity of thinking and self-expression that simply amazes me without end.
They have given methe most insightful advice, comments, and questions that I could
have asked for. Thank you,all.

The CMUspeech group has been a pleasure to work with. First of all, I would
like to thank some former and current members, Mei-Yuh Hwang, Fil Alleva, Lin
Chase, Eric Thayer, Sunil Issar, Bob Weide, and Roni Rosenfeld. They have helped
me through the early stages of my induction into the group, and later given invaluable
support in my work. I’m fortunate to have inherited the work of Mei-Yuh and Fil.
Lin Chase has been a greatfriend and sounding board forideas through these years.
Eric has beenall of that and a great officemate. I have learnt a lot from discussions
with Paul Placeway. Therest of the speech group and the robust gang has madeit a
most lively environment to work in. I hope the charge continues through Sphinx-III
and beyond.

I have spent a good fraction of mylife in the CMU-CS communityso far. It has
been, andstill is, the greatest intellectual environment. The spirit of cooperation, and
informality of interactions as simply unique. I wouldlike to acknowledge the support
of everyone I have ever come to knowhere, too manyto name, from the Warp and
Nectar days until now. The administrative folks have always succeeded in blunting
the edge off a difficult day. You never know what nickname Catherine Copetas will
christen you with next. And Sharon Burks has always put up with all my antics.

It goes without saying that I owe everything to myparents. I have had tremendous
support from mybrothers, and some veryspecial uncles andaunts. In particular, I
must mention the fun I’ve had with mybrother Kuts. I wouldalsolike to acknowledge
K. Gopinath’s help during mystay in Bangalore. Finally, “BB”, who has suffered
through my tantrums on bad days, kept me in touch with therest of the world, has a
most creative outlook on the commonplace, can drive me nuts some days, but when
all is said and done, is a most relaxed and comfortable person to have around.

Last but notleast, I would like to thank Andreas Nowatzyk, Monica Lam, Duane
Northcutt and Ray Clark. It has been mygood fortune to witness and participate in
some of Andreas’s creative work. This thesis owes a lot to his unending support and
encouragement.

IPR2023-00037

iii Apple EX1033 Page 22

IPR2023-00037
Apple EX1033 Page 23iv

IPR2023-00037

Apple EX1033 Page 23

IPR2023-00037
Apple EX1033 Page 24

Contents

Abstract i

Acknowledgements ili

1 Introduction 1

1:1. The: Modelling Problenty. . <.2.4.4 4 Se arararied WW rrr eas eo 3

1:2’. ‘The Search -Probleii, 0.0. wie cone cee eee See ew ees | HS 5

1.3; “Thedia Contribritionés: 3.2) awa gia seis. Kimicue © gov aia sae ad 7

LSD Trapooving Speed ma. - Rass: 5 eet bia. Oe hs ee 8

1.3.2 Reducing Memory Size i ig Diaries eas 8

1.4 Summary and Dissertation Outline ..- 2... eee eee 9

2 Background 11

S'1).Acoustic MOqeligg is. ack eas preys. 8 Si 2.2 FiSG.2 HAR Gas ews SG 11

Pt, Phones and Teiphoned si kere ode setpdee edb gd FG Gow Sa 5 11

2.1.2 HMM modelling of Phones and Triphones 12

22 Language Modelling. 6.6 a a scala ots e Pee Oe RAE HES ae HES 13

2:3: WReanch, Migntrbhint: gu © feck ae Sattar oe i eae 15

O31 Viterbi Beath Search, .000 Ae eae ak ale ee em erg 15

Dh~Feetearh Ges be toc as i a. tal Pad ae tien eG PG! cruel te D AIR Sa Sa a A 17

24:1. Tree Structured Léxic6hss 2.2.0 Fa eee aa a se 17

2.4.2 Memory Size and Speed Improvements in Whisper 19

2.4.3 Search Pruning Using Posterior Phone Probabilities 20

IPR2023-00037

Apple EX1033 Page 24 aj

IPR2023-00037
Apple EX1033 Page 25

2.4.4 Lower Complexity Viterbi Algorithm-- 20

Se), BS wAMSEM aad hiinh See a bo ah eee dies eae > & Ff 21

The Sphinx-II Baseline System 22

Bit. “Krowledge Bawraees csi eis tien sy Oy a: wal Geld w pale po Se OS BE 24

Sid. Acoustic Modells cress aiee ae Girs fae aaa ns 24

31:2 Pronunciation Lexictti. ti co eS Geo cee pee wees 26

82 Forward Beani Search: oss ese eee eae ge a eee wea 26

3.2.1 Flat Lexical: Strnctutés.. 5 .h cdr be eS es 26

3.2.2 Incorporating the Language Model----+----: 27

3.2.3 Cross-Word Triphone Modeling--+55455, 28

$.2:4. The Forward Search’ <0 sn 2 66a Gears a 2 RG ery ree ed 31

$:3.. Backward and) A* Searelt s.5 cso woe 5 or anos Spe wee OES 36

$3.1 Backward Viterbi Seatch . «2 6 2 ns ee ee ee es 37

93.55AM Searéhts sua Gee w Arid O50 ONG ab ead En gp OS ed 37

3.4 Baseline Sphinx-II System Performance.....-..-..-5558- 38

3.4.1 Experimentation Methodology---..-+++0+5- 39

3.4.2 Recognition Accuracy ror. ee we se hb de tea nd 41

3.473:'Search Speed: (a.-o oc Wher dF iw 4.65 Ba Le 42

34,4) ‘Methory Usage nc). eos Fe hee ea me Ame we 45

3:5. Baseline System Summary: 5. sti ese Ge eho eee meee s 48

Search Speed Optimization 49

431) Motivation 4a.0.5 24 Beem as 2 ol Aly, © idl Ss aie die 49

42 Texical TreeSéarth: oc ec i ec pKa ie Oe ah SOD A Gwe eo 51

4.2.1 Lexical Tree Construction«i066.eae ee ewes 54

4.2.2 Incorporating Language Model Probabilities 56

4.2.3 Outline of Tree Search Algorithm-.....2. 55845 61

4.2.4 Performance of Lexical Tree Search 1... +e pees 62

42:5 Lexical Tree Search Summary . 2.6 ge cw a eee ws 67

Vi
IPR2023-00037

Apple EX1033 Page 25

IPR2023-00037
Apple EX1033 Page 26

aS Glébal (Best. Path Searehy coi apa Go ec ee inky eee ww cow ele tant a ween 68

4.3.1 Best Path Search PUOUTITs o hss cree £un.64sapla Daa 3 68

4.3.2 Performance 4s sere ree eee ees 73

A338. Best Path Search SamMmMary iu sta Gade ec ell sina 74

4.4 Rescoring Tree-Search Word Lattice.-.--.---2+2-5- 76

AAD “MOtvatiinls 3) 5.6:554.5 5.85 © white hs 2 BS eR ara 76

AAD BERANE oes teh -'ny lahn in Sarin Fo Lats Bole Dae gp ligte etna 5 76

S48 'Sutensey? Gs ohn ib oe Se es BAG 78

45. Phonetic: Bast Maton. ..6 ole else g goal poe ee eee aig eee we 78

BST: ABORTVALION cals. ca en eae eas Sle! Ree a ew) cae oh Ge es 78

4.5.2 Details of Phonetic Fast Match-...0 000068. 80

4.5.3 Performance of Fast Match Using All Senones 84

4.5.4 Performance of Fast Match Using CI Senones 87

4.5.5 Phonetic Fast Match Summary250002- 88

4:6. Exploiting Conctrrenty ois. d.s.e @ mle pin go lee oie mes x & 89

4.6.1 Multiple Levels of Concurrency--.+..+-.-. 90

4.6.2 Parallelization Summary5 285-888 8h 88 &s 93

4.7 Summary of Search Speed Optimization-.....004. 93

Memory Size Reduction 97

5.1 Senone Mixture Weights Compression.-.-.-.505+. 97

5.2 Disk-Based Language Models 2... 2.2.5.2 2 cee eneneae 98

5.3. Summary of Experiments on Memory Size 100

Small Vocabulary Systems 101

GL))Mpraerecnl Teotie’ ooh cig sean 4 SLE ee et ee Acad oy wre 8 101

62 Performance tn ATIC -o52 ha ee ES dE GSS 102

6.2.1 Baseline System Performance-2.2204.4. 102

6.2.2 Performance of Lexical Tree Based System 103

6.3 Small Vocabulary Systems Summary 2... 2.2.2 uae 106

aii IPR2023-00037
Apple EX1033 Page 26

a

IPR2023-00037
Apple EX1033 Page 27

7 Conclusion 107

Col) SSuptieparyitey ELAMGe! oy. vals. Se Sadly ed Gedwc to sedee-<d Fre bea Aiea 108

Pit)+SODETIMORIONS Us Fig. Sh sn Bo, ee ke a Se ee eae & 109

7.3 Future Work on Efficient Speech Recognition. lll

Appendices

A The Sphinx-II Phone Set 115

B Statistical Significance Tests 116

Bd CO Bag hat i nee B. BtGR 6. 2 we Re ada ee a 89 eck Bi ad a e-Gnaie 117

BD DEK Tasks vetsne is gehen ae yt Sghd Sig SG daa Gal aPareue) dig ene aya 121

Bibliography 125

IPR2023-00037

Apple EX1033 Page 27
vill

IPR2023-00037
Apple EX1033 Page 28

List of Figures

2.1 Viterbi Search as Dynamic Programming 15

3.1 Sphinx-II Signal Processing Front End.--........ 24

3.2 Sphinx-II HMM Topology: 5-State Bakis Model............. 25

3.3 Cross-word Triphone Modelling at Word Ends in Sphinx-II....... 29

3.4 Word Initial Triphone HMM Modelling in Sphinx-I]. 31

3.5 One Frame of Forward Viterbi Beam Search in the Baseline System. . 33

3.6 Word Transitions in Sphinx-II Baseline System. TEE 248 35

3.7 Outline of A* Algorithm in Baseline System-. 38

3.8 Language Model Structure in Baseline Sphinx-I] System. 46

4.1 Basephone Lexical Tree Example.5.0280506. 52

4.2: Txaphone Lexical ‘Tree Example: 2... a be esee 55

4.3. Cross-Word Transitions With Flat and Tree Lexicons.......... 57

4.4 Auxiliary Flat Lexical Structure for Bigram Transitions. 58

4.5 Path Score Adjustment Factor f for Word w; Upon Its Exit. 59

4.6 One Frame of Forward Viterbi Beam Search in Tree Search Algorithm. 63

4.7 Word Lattice for Utterance: Take Fidelity’s case as an example. ... 69

4.8 Word Lattice Example Represented asa DAG...........-..- 70

4.9 Word Lattice DAG Example Using a Trigram Grammar. 71

4.10 Suboptimal Usage of Trigrams in Sphinx-II Viterbi Search. 73

4,11 Base Phones Predicted by Top Scoring Senones in Each Frame; Speech
Fragment for Phrase THIJS TREND, Pronounced DH-IX-S T-R-EH-
DAEis the 53a od. oP athe EIS te HS ete, Ae Se oe Ios G a aes fe Ses 81

IPR2023-00037

5 Apple EX1033 Page 28

IPR2023-00037
Apple EX1033 Page 29

4.12 Position of Correct Phone in Ranking Created by Phonetic Fast Match. 82

4.13 Lookahead Window for Smoothing the Active Phone List. 83

4.14 Phonetic Fast Match Performance Using All Senones (20K Task). .. 85

4.15 Word Error Rate vs Recognition Speed of Various Systems...... . 94

4.16 Configuration of a Practical Speech Recognition System.-... 95

IPR2023-00037

Apple EX1033 Page 29

IPR2023-00037
Apple EX1033 Page 30

List of Tables

3.1 No. of Words and Sentences in Each Test Set 40

3.2 Percentage Word Error Rate of Baseline Sphinx-I] System. 41

3.3. Overall Execution Times of Baseline Sphinx-II System (xRealTime).. 43

3.4 Baseline Sphinx-II System Forward Viterbi Search Execution Times
CROREeee a yrioee Rk ee Ee, Dad anc bee aera me | 43

3.5 HMMs Evaluated Per Frame in Baseline Sphinx-II] System. 44

3.6 N-gram Transitions Per Frame in Baseline Sphinx-II System..... . 45

4.1 No. of Nodes at Each Level in Tree and Flat Lexicons. 55

4.2 Execution Times for Lexical Tree Viterbi Search, 64

4.3 Breakdown of Tree Viterbi Search Execution Times (xRealTime). .. 65

4.4 No. of HMMs Evaluated Per Frame in Lexical Tree Search... 65

4.5 No. of Language Model Operations/Frame in Lexical Tree Search... 65

4.6 Word Error Rates for Lexical Tree Viterbi Search. 66

4.7 Word Error Rates from Global Best Path Search of Word Lattice Pro-

duced by. Lexical Tree Searcli 5. 6 ce he eee al eee ee ew 74

4.8 Execution Times for Global Best Path DAG Search (x RealTime)... 74

=I]|4.9 Word Error Rates From Lexical Tree+Rescoring+Best Path Search. .

7|4.10 Execution Times With Rescoring Pass.5522045-

4.11 Fast Match Using All Senones; Lookahead Window=3 (20K Task)... 86

4.12 Fast Match Using All Senones; Lookahead Window=3 (58K Task)... 87

4.13 Fast Match Using CI Senones; Lookahead Window=3.......... 88

6.1 Baseline System Performance on ATIS.................. 103

IPR2023-00037

Apple EX1033 Page 30
Xi

IPR2023-00037
Apple EX1033 Page 31

6.3

6.4

6.5

A.l

Ratio of Number of Root HMMsin Lexical Tree and Words in Lexicon
(approximate), 2. cee eeet ee es 103
Execution Timeson ATIS. .. 0... 2. teeter ee ee eee 104

Breakdown of Tree Search Execution Times on ATIS (Without Pho-
netic Fast Match). ..- 1-2 se eee eee ee ee 104

Recognition Accuracy on ATIS. . 2 2 - eene 105

The Sphinx-II Phone Set. ..- 1. - eee ree tebe eee eee 115

IPR2023-00037

ee Apple EX1033 Page 31

IPR2023-00037
Apple EX1033 Page 32

Chapter 1

Introduction

Recent advances in speech technology and computing power have created a surge
of interest in the practical application of speech recognition. Speech is the primary
mode of communication among humans. Ourability to communicate with machines
and computers, through keyboards, mice and otherdevices, is an order of magnitude
slower and more cumbersome. In order to make this communication more user-
friendly, speech input is an essential component.

There are broadly three classes of speech recognition applications, as described
in [53]. In isolated word recognition systems each word is spoken with pauses before
and afterit, so that end-pointing techniques can be used to identify word boundaries
reliably. Second, highly constrained command-and-control applications use small vo-
cabularies, limited to specific phrases, but use connected word or continuous speech.
Finally, large vocabulary continuous speech systems have vocabularies of several tens
of thousands of words, and sentences can be arbitrarily long, spoken in a natural fash-
ion. The last is the most user-friendly but also the most challenging to implement.
However, the most accurate speech recognition systems in the research world arestill
far too slow and expensiveto be usedin practical, large vocabulary continuous speech
applications on a widescale.

Speech research has been concentrated heavily on acoustic and language modelling
issues. Since the late 1980s, the complexity of tasks undertaken by speech researchers
has grown from the 1000-word Resource Management (RM) task [51] to essentially
unlimited vocabulary tasks such as transcription of radio news broadcast in 1995
[48]. While the word recognition accuracy has remained impressive, considering the
increase in task complexity, the resource requirements have grown as well. The RM
task ran about an order of magnitude slower than real time on processors of that
day. The unlimited vocabulary tasks run about two orders of magnitude slower than
real time on modern workstations whose power has grown by an order of magnitude
again, in the meantime.

The task of large vocabulary continuous speech recognition is inherently hard for

IPR2023-00037

1 Apple EX1033 Page 32

IPR2023-00037
Apple EX1033 Page 33

2 CHAPTER 1. INTRODUCTION

the following reasons. First, word boundaries are not known in advance. One must
be constantly prepared to encounter such a boundaryat every time instant. We can
draw a rough analogyto reading a paragraph of text without any punctuation marks
or spaces between words:

myspiritwillsleepinpeaceorifthinksitwillsurelythinkthusfarewellhesprangfrom
thecabinwindowashesaidthisupontheiceraftwhichlayclosetothevesselhewassoon
borneawaybythewavesandlostindarknessanddistance...

Furthermore, many incorrect word hypotheses will be produced from incorrect seg-
mentation of speech. Sophisticated language models that provide word context or
semantic information are needed to disambiguate between the available hypotheses.

The second problem is that co-articulatory effects are very strong in natural or
conversational speech, so that the sound produced at one instant is influenced by
the preceding and following ones. Distinguishing between these requires the use of
detailed acoustic models that take such contextual conditions into account. The in-

creasing sophistication of language models and acoustic models, as well as the growth
in the complexity of tasks, has far exceeded the computational and memorycapacities
of commonly available workstations.

Efficient speech recognition for practical applications also requires that the pro-
cessing be carried out in real time within the limited resources—CPU power and
memory size—of commonly available computers. There certainly are various such
commercial and demonstration systems in existence, but their performance has never
been formally evaluated with respect to the research systems or with respect to one
another, in the way that the accuracy of research systems has been. This thesis is
primarily concerned with these issues—in improving the computational and memory
efficiency of current speech recognition technology without compromising the achieve-
ments in recognition accuracy.

The three aspects of performance, recognition speed, memory resource require-
ments, and recognition accuracy, are in mutualconflict. It is relatively easy to improve
recognition speed and reduce memory requirements while trading away some accu-
racy, for example by pruning the search space moredrastically, and by using simpler
acoustic and language models. Alternatively, one can reduce memory requirements
through efficient encoding schemes at the expense of computation time needed to de-
code such representations, and vice versa. But it is much harder to improve both the
recognition speed and reduce main memory requirements while preserving or improv-
ing recognition accuracy. In this thesis, we demonstrate algorithmic and heuristic
techniques to tackle the problem.

This work has been carried out in the context of the CMU Sphinx-II speech
recognition system as a baseline. There are two main schools of speech recognition
technology today, based on statistical hidden Markov modelling (HMM), and neural

IPR2023-00037

Apple EX1033 Page 33

IPR2023-00037
Apple EX1033 Page 34

1.1. THE MODELLING PROBLEM 3

net technology, respectively. Sphinx-II uses HMM-based statistical modelling tech-
niques andis one of the premier recognizersof its kind. Using several commonly used
benchmark test sets and twodifferent vocabulary sizes of about 20,000 and 58.000
words, we demonstrate that the recognition accuracyof the baseline Sphinx-II system
can be attained while its execution time is reduced by about an order of magnitude
and memory requirements reduced by a factor of about 4.

1.1 The Modelling Problem

As the complexity of tasks tackled by speech research has grown, so has that of
the modelling techniques. In systems that use statistical modelling techniques, such
as the Sphinx system, this translates into several tens to hundreds of megabytes of
memory needed to store information regarding statistical distributions underlying the
models.

Acoustic Models

One of the key issues in acoustic modelling has been the choice of a good unit of
speech (32, 27]. In small vocabulary systems of a few tens of words, it is possible to
build separate models for entire words, but this approach quickly becomesinfeasible
as the vocabulary size grows. For one thing, it is hard to obtain sufficient training
data to build all individual word models. It is necessary to represent words in terms
of sub-word units, and train acoustic models for the latter, in such a way that the
pronunciation of new words can be defined in terms of the already trained sub-word
units.

The phoneme (or phone) has been the most commonly accepted sub-word unit.
There are approximately 50 phones in spoken English language; words are defined as
sequencesof such phones’ (see Appendix A for the Sphinx-II phone set and examples).
Each phoneis, in turn, modelled by an HMM (described in greater detail in Section
2.1.2).

As mentioned earlier, natural continuous speech has strong co-articulatory ef-
fects. Informally, a phone models the position of various articulators in the mouth
and nasal passage (such as the tongue and the lips) in the making of a particular
sound. Since these articulators have to move smoothly between different sounds in
producing speech, each phoneis influenced by the neighbouring ones, especially dur-
ing the transition from one phone to the next. This is not a major concern in small
vocabulary systems in which words are not easily confusable, but becomes an issue
as the vocabularysize and the degree of confusability increase.

1Some systems define word pronunciations as networks of phones instead of simple linear se-
quences [36].

IPR2023-00037

Apple EX1033 Page 34

IPR2023-00037
Apple EX1033 Page 35

4 CHAPTER 1. INTRODUCTION

Most systems employ triphones as one form of contert-dependent HMMmodels
[4, 33] to deal with this problem. Triphones are basically phones observed in the
context of given preceding and succeeding phones. There are approximately 50 phones
in spoken English language. Thus, there can be a total of about 50? triphones,
although only a fraction of them are actually observed in the language. Limiting
the vocabulary can further reduce this number. For example, in Sphinx-II, a 20,000
word vocabulary has about 75,000 distinct triphones, each of which is modelled by a
5-state HMM, for a total of about 375,000 states. Since there isn’t sufficient training
data to build models for each state, they are clustered into equivalence classes called
senones [27].

The introduction of context-dependent acoustic models, even after clustering into
equivalence classes, creates an explosion in the memory requirements to store such
models. For example, the Sphinx-II system with 10,000 senones occupies tens of
megabytes of memory.

Language Models

Large vocabulary continuous speech recognition requires the use of a language model
or grammarto select the most likely word sequence from the relatively large number
of alternative word hypotheses produced during the search process. As mentioned
earlier, the absence of explicit word boundary markers in continuous speech causes
several additional word hypotheses to be produced, in addition to the intended or
correct ones. For example, the phrase /t’s a nice day can be equally well recognized
as It sun iced A. or It son ice day. Theyare all acoustically indistinguishable, but the
word boundaries have been drawn atadifferent set of locations in each case. Clearly,
many more alternatives can be produced with varying degreesoflikelihood, given the
input speech. The language model is necessary to pick the most likely sequence of
words from the available alternatives.

Simple tasks, in which one is only required to recognize a constrained set of
phrases, can use rule-based regular or context-free grammars which can be repre-
sented compactly. However, that is impossible with large vocabulary tasks. Instead,
bigram and trigram grammars, consisting of word pairs and triples with given prob-
abilities of occurrence, are most commonly used. One can also build such language
models based on word classes, such as city names, months of the year, etc. However,
creating such grammarsis tedious as they require a fair amount of hand compilation
of the classes. Ordinary word n-gram language models, on the other hand, can be
created almost entirely automatically from a corpusoftraining text.

Clearly, it is infeasible to create a complete set of word bigrams for even medium
vocabulary tasks. Thus, the set of bigram and trigram probabilities actually present
in a given grammaris usually a small subset of the possible number. Even then, they
usually numberin the millions for large vocabulary tasks. The memory requirements

IPR2023-00037

Apple EX1033 Page 35

IPR2023-00037
Apple EX1033 Page 36

1.2. THE SEARCH PROBLEM 3

for such language models range from several tens to hundreds of megabytes.

1.2 The Search Problem

There are two components to the computational cost of speech recognition: acoustic
probability computation, and search. In the case of HMM-based systems, the former
refers to the computation of the probability of a given HMMstate emitting the
observed speech at a given time. The latter refers to the search for the best word
sequence given the complete speech input. The search cost is largely unaffected by
the complexity of the acoustic models. It is much more heavily influenced by thesize
of the task. As we shall see later, the search cost is significant for medium andlarge
vocabulary recognition; it is the main focus of this thesis.

Speech recognition—searching for the most likely sequence of words given the
input speech—gives rise to an exponential search space if all possible sequences of
words are considered. The problem has generally been tackled in two ways: Viterbi
decoding (62, 52] using beam search [37], or stack decoding [9, 50] which is a variant
of the A* algorithm [42]. Some hybrid versions that combine Viterbi decoding with
the A* algorithm also exist [21].

Viterbi Decoding

Viterbi decoding is a dynamic programming algorithm that searches the state space
for the most likely state sequence that accounts for the input speech. Thestate
space is constructed by creating word HMMmodels from its constituent phone or
triphone HMM models, and all word HMM models are searched in parallel. Since
the state space is huge for even medium vocabularyapplications, the beam search
heuristic is usually applied to limit the search by pruning out theless likely states.
The combination is often simply referred to as Viterbi beam search. Viterbi decoding
is a time-synchronous search that processes the input speech one frame at a time,
updating all the states for that frame before moving on to the next frame. Most
systems employ a frame input rate of 100 frames/sec. Viterbi decoding is described
in greater detail in Section 2.3.1.

Stack Decoding

Stack decoding maintains a stack of partial hypotheses” sorted in descending orderof
posterior likelihood. At each step it pops the best one off the stack. If it is a complete
hypothesis it is output. Otherwise the algorithm expands it by one word, trying all

7A partial hypothesis accounts for an initial portion of the input speech. A complete hypothesis.
or simply hypothesis, accounts for the entire input speech.

IPR2023-00037

Apple EX1033 Page 36

IPR2023-00037
Apple EX1033 Page 37

6 CHAPTER 1. INTRODUCTION

possible word extensions, evaluates the resulting (partial) hypotheses with respect
to the input speech and re-inserts them in the sorted stack. Any numberof N-best
hypotheses [59] can be generated in this manner. To avoid an exponential growth in
the set of possible word sequences in medium and large vocabulary systems, partial
hypotheses are expandedonlyby a limited set of candidate words at each step. These
candidatesare identified by a fast match step [6, 7, 8, 20]. Since our experiments have
been mostly confined to Viterbi decoding, we do not explore stack decoding in any
greater detail.

Tree Structured Lexicons

Even with the beam search heuristic, straightforward Viterbi decoding is expensive.
The network of states to be searched is formed by a linear sequence of HMM models
for each word in the vocabulary. The number of models actively searched in this
organization isstill one to two orders of magnitude beyond the capabilities of modern
workstations.

Levical trees can be used to reduce the size of the search space. Since many
words share common pronunciation prefixes, they can also share models and avoid
duplication. Trees were initially used in fast match algorithmsfor producing candidate
wordlists for further search. Recently, they have been introduced in the main search
componentof several systems (44, 39, 43, 3]. The main problem faced by them is in
using a language model. Normally, transitions between words are accompanied by
a prior language model probability. But with trees, the destination nodes of such
transitions are not individual words but entire groups of them, related phonetically
but quite unrelated grammatically. An efficient solution to this problem is one of the
important contributions of this thesis.

Multipass Search Techniques

Viterbi search algorithms usually also create a word lattice in addition to the best
recognition hypothesis. Thelattice includesseveral alternative words that weré recog-
nized at any given time during the search. It also typically contains other information
such as the time segmentations for these words, and their posterior acoustic scores
(ie., the probability of observing a word given that time segment of input speech).
The lattice error rate measures the numberof correct words missing from the lattice
around the expected time. It is typically much lower than the word error rate® of the
single best hypotheses produced for each sentence.

Wordlattices can be kept very compact, with lowlattice error rate, if they are
produced using sufficiently detailed acoustic models (as opposed to primitive models

*Word error rates are measured by counting the number of word substitutions. deletions, and
insertions in the hypothesis, compared to the correct reference sentence.

IPR2023-00037

Apple EX1033 Page 37

IPR2023-00037
Apple EX1033 Page 38

1.3. THESIS CONTRIBUTIONS —I

as in, for example, fast match algorithms). In our work, a 10sec long sentence typically
produces a wordlattice containing about 1000 wordinstances.

Given such compact lattices with low error rates, one can search them using
sophisticated models and search algorithms veryefficiently and obtain results with a
lower word error rate, as described in [38, 65, 41]. Most systems use such multipass
techniques.

However, there has been relatively little work reported in actually creating such
lattices efficiently. This is important for the practical applicability of such techniques.
Lattices can be created with low computational overhead if we use simple models, but
their size must be large to guarantee a sufficiently lowlattice error rate. On the other
hand, compact, low-error lattices can be created using more sophisticated models, at
the expense of more computation time. Theefficient creation of compact, low-error
lattices for efficient postprocessing is another byproduct of this work.

1.3. Thesis Contributions

This thesisexplores ways of improving the performanceof speech recognition systems
along the dimensions of recognition speed and efficiency of memory usage, while
preserving the recognition accuracy of research systems. As mentioned earlier, this
is a much harder problem than if we are allowed to trade recognition accuracyfor
improvement in speed and memoryusage.

In order to make meaningful comparisons, the baseline performance of an estab-
lished “research” system is first measured. We use the CMU Sphinx-II system as the
baseline system since it has been extensively used in the yearly ARPA evaluations.
It has known recognition accuracy on various test sets, and with similarities to many
other research systems. The parameters measured include, in addition to recognition
accuracy, the CPU usage of various steps during execution, frequency counts of the
most time-consuming operations, and memory usage. All tests are carried out using
two vocabulary sizes of about 20,000 (20K) and 58,000 (38K) words. respectively.
The test sentences are taken from the ARPA evaluations in 1993 and 1994 [45, 46].

The results from this analysis show that the search component is several tens
of times slower than real time on the reported tasks. (The acoustic output proba-
bility computation is relatively smaller since these tests have been conducted using
semi-continuous acoustic models [28, 27].) Furthermore, the search timeitself can
be further decomposed into two main components: the evaluation of HMM models.
and carrying out cross-word transitions at word boundaries. The formeris simplya
measure of the task complexity. The latter is a significant problem since there are
cross-word transitions to every word in the vocabulary, and language model proba-
bilities must be computed for every one of them.

IPR2023-00037

Apple EX1033 Page 38

IPR2023-00037
Apple EX1033 Page 39

8 CHAPTER 1. INTRODUCTION

1.3.1 Improving Speed

The work presented in this thesis shows that a newadaptation of lexical tree search
can be used to reduce both the number of HMMsevaluated and the cost of cross-word

transitions. In this method, language model probabilities for a word are computed not
when entering that word but uponits exit, if it is one of the recognized candidates.
The number of such candidates at a given instant is on average about two orders of
magnitude smaller than the vocabularysize. Furthermore, the proportion appears to
decrease with increasing vocabularysize.

Using this method, the execution time for recognition is decreased by a factor of
about 4.8 for both the 20K and 58K word tasks. If we exclude the acoustic output
probability computation, the speedup of the search component aloneis about 6.3 for
the 20K word task and over 7 for the 58K task. It also demonstrates that the lexical
tree search efficiently produces compact word lattices with low error rates that can
again beefficiently searched using more complex models and search algorithms.

Even thoughthereis a relative loss of accuracy of about 20%using this method, we
show that it can be recovered efficiently by postprocessing the word lattice produced
by the lexical tree search. Theloss is attributed to suboptimal word segmentations
produced bythe tree search. However, a newshortest-path graph search formulation
for searching the word lattice can reduce the loss in accuracy to under 10% relative
to the baseline system with a negligible increase in computation.

If the lattice is first rescored to obtain better word segmentations,all the loss in
accuracyis recovered. Therescoring step adds less than 20% execution time overhead,
giving an effective overall speedup of about 4 over the baseline system.

We have applied a new phonetic fast match step to the lexical tree search that
performs an initial pruning of the context independent phones to be searched. This
technique reduces the overall execution time by about 40-45%, with a less than 2%
relative loss in accuracy. This brings the overall speed of the system to about 8 times
that of the baseline system, with almost no loss of accuracy.

The structure of the final decoder is a pipeline of several stages which can be
operated in an overlapped fashion. Parallelism among stages, especially the lexical
tree search and rescoring passes, is possible for additional improvementin speed.

1.3.2 Reducing Memory Size

The two main candidates for memory usage in the baseline Sphinx-II system, and
most of the commonresearch systems, are the acoustic and language models.

The key observation for reducing the size of the language models is that in decod-
ing any given utterance, only a small portion of it is actually used. Hence, we can

IPR2023-00037

Apple EX1033 Page 39

IPR2023-00037
Apple EX1033 Page 40

1.4. SUMMARYAND DISSERTATION OUTLINE 9

consider maintaining the language model entirely on disk, and retrieving only the nec-
essary information on demand. Caching schemes can overcomethe large disk-access
latencies. One might expect the virtual memory systems to perform this function
automatically. However, they don’t appear to beefficient at managing the language
model working set since the granularity of access to the related data structures is
much smaller than a pagesize.

We have implemented simple caching rules and replacementpolicies for bigrams
and trigrams, which show that the memoryresident portion of large bigram and
trigram language models can be reducedsignificantly. In our benchmarks, the number
of bigrams in memoryis reduced to about 15-25% of the total, and that of trigrams
to about 2-5% of the total. The impact of disk accesses on elapsed time performance
is minimal, showing that the caching policies are effective. We believe that further
reductions in size can be easily obtained by various compression techniques, such as
a reduction in the precision of representation.

The size of the acoustic models is trivially reduced by a factor of 4, simply by
reducing the precision of their representation from 32 bits to 8 bits, with no difference
in accuracy. This has, in fact, been done in manyother systems as in [25]. The new
observation is that in addition to memorysize reduction, the smaller precision also
allows us to speed up the computation of acoustic output probabilities of senones every
frame. The computation involves the summation of probabilities—in log-domain,
which is cumbersome. The 8-bit representation of such operands allows us to achieve
this with a simple table lookup operation, improving the speed of this step by about
a factor of 2.

1.4 Summary and Dissertation Outline

In summary, this thesis presents a number of techniques for improving the speed
of the baseline Sphinx-II system by about an order of magnitude, and reducing its
memory requirements by a factor of 4, without significant loss of accuracy. In doing
so, it demonstrates several facts:

e It is possible to build efficient speech recognition systems comparable to research
systems in accuracy.

e It is possible to separate concerns of search complexity from that of mod-
elling complexity. By using semi-continuous acoustic models and efficient search
strategies to produce compact wordlattices with low error rates, and restricting
the more detailed models to search such lattices, the overall performance of the
system is optimized.

e It is necessary and possible to make decisions for pruning large portions of the
search space away with low cost and highreliability. The beam search heuristic

IPR2023-00037

Apple EX1033 Page 40

IPR2023-00037
Apple EX1033 Page 41

10 CHAPTER 1. INTRODUCTION

is a well known example of this principle. The phonetic fast match method and
the reduction in precision of probability values also fall under this category.

The organization of this thesis is as follows. Chapter 2 contains background
material and brief descriptions of related work done in this area. Since recognition
speed and memoryefficiency has not been an explicit consideration in the research
community so far, in the way that recognition accuracy has been, there is relative
little material in this regard.

Chapter 3 is mainly concerned with establishing baseline performancefigures for
the Sphinx-II research system. It includes a comprehensive description of the base-
line system, specifications of the benchmark tests and experimental conditions used
throughout this thesis, and detailed performance figures, including accuracy, speed
and memory requirements.

Chapter 4 is one of the main chapter in this thesis that describes all of the new
techniques to speed up recognition and their results on the benchmark tests. Both the
baseline and the improved system use the same set of acoustic and language models.

Techniques for memory size reduction and corresponding results are presented in
Chapter 5. It should be noted that most experiments reported in this thesis were
conducted with these optimizations in place.

Though this thesis is primarily concerned with large vocabulary recognition,it is
interesting to consider the applicability of the techniques developed here to smaller
vocabulary situations. Chapter 6 addresses the concerns relating to small and ex-
tremely small vocabulary tasks. The issues of efficiency are quite different in their
case, and the problemsare also different. The performance of both the baseline
Sphinx-II system and the proposed experimental system are evaluated and compared
on the ATIS (Airline Travel Information Service) task, which has a vocabulary of
about 3,000 words.

Finally, Chapter 7 concludes with a summaryof the results, contributions of this
thesis and some thoughts on future directions for search algorithms.

IPR2023-00037

Apple EX1033 Page 41

IPR2023-00037
Apple EX1033 Page 42

Chapter 2

Background

This chapter contains a brief review of the necessary background material to un-
derstand the commonly used modelling and search techniques in speech recognition.
Sections 2.1 and 2.2 cover basic features of statistical acoustic and language mod-
elling, respectively. Viterbi decoding using beam search is described in Section 2.3,
while related research on efficient search techniques is covered in Section 2.4.

2.1 Acoustic Modelling

2.1.1 Phones and Triphones

The objective of speech recognition is the transcription of speech into text, i.e., word
strings. To accomplish this, one might wish to create word models from training
data. However, in the case of large vocabulary speech recognition, there are simply
too many words to betrained in this way. It is necessary to obtain several samples
of every word from several different speakers, in order to create reasonable speaker-
independent models for each word. Furthermore, the process must be repeated for
each new word that is added to the vocabulary.

The problem is solved by creating acoustic models for sub-word units. All words
are composed ofbasically a small set of sounds or sub-word units, such as syllables
or phonemes, which can be modelled and shared across different words.

Phonetic models are the most frequently used sub-word models. There are only
about 50 phones in spoken English (see Appendix A for the set of phones used in
Sphinx-IT). New words can simply be added to the vocabulary by defining their pro-
nunciation in terms of such phones.

The production of sound corresponding to a phoneis influenced by neighbouring
phones. For example, the AE phone in the word “man” sounds different from that in

IPR2023-00037

11 Apple EX1033 Page 42

IPR2023-00037
Apple EX1033 Page 43

12 CHAPTER 2. BACKGROUND

“lack”; the former is more nasal. IBM [4] proposed the use of triphone or context-
dependent phone models to deal with such variations. With 50 phones, there can be
up to 50° triphones, but only a fraction of them are actually observed in practice.
Virtually all speech recognition systems nowuse such context dependent models.

2.1.2 HMM modelling of Phones and Triphones

Most systems use hidden Markov models (HMMs) to represent the basic units of
speech. The usage and training of HMMshas been covered widely in the literature.
Initially described by Baum in [11], it was first used in speech recognition systems by
CMU[10] and IBM [29]. The use of HMMsin speech has been described, for example,
by Rabiner [52]. Currently, almost all systems use HMMsfor modelling triphones and
context-independent phones (also referred to as monophones or basephones). These
include BBN [41], CMU[35, 27], the Cambridge HTK system [65], IBM [5], and LIMSI
[18], among others. We will give a brief description of HMMsas used in speech.

First of all, the sampled speech input is usually preprocessed, through various
signal-processing steps, into a cepstrum or other feature streamthat contains one
feature vector every frame. Frames are typically spaced at 10msec intervals. Some
systems produce multiple, parallel feature streams. For example, Sphinx has 4 feature
streams—cepstra, Acepstra, AAcepstra, and power—representing the speech signal
(see Section 3.1.1).

An HMMis asetof states connected by transitions (see Figure 3.2 for an example).
Transitions model the emission of one frame of speech. Each HMM transition has
an associated output probability function that defines the probability of emitting the
input feature observed in any given frame while taking that transition. In practice,
most systems associate the output probability function with the source or destination
state of the transition, rather than the transition itself. Henceforth, we shall assume
that the output probability is associated with the source state. The output probability
for state 7 at time t is usually denoted by 6,(t). (Actually, b; is not a function of t,
but rather a function of the input speech, which is a function of t. However, we shall
often use the notation 5;(t) with this implicit understanding.)

Each HMM transition from any state 7 to state 7 also has a static transition
probability, usually denoted by a;;, which is independent of the speech input.

Thus, each HMMstate occupies or represents a small subspace of the overall
feature space. The shape of this subspace is sufficiently complex that it cannot be
accurately characterized by a simple mathematical distribution. For mathematical
tractability, the most common general approach has been to model the state output
probability by a mizture Gaussian codebook. For any HMMstate s and feature stream
f, the i-th component of such a codebook is a normal distribution with mean vector
fts,;; and covariance matrix ©,;;. In order to simplify the computation and also

IPR2023-00037

Apple EX1033 Page 43

IPR2023-00037
Apple EX1033 Page 44

2.2. LANGUAGE MODELLING 13

because there is often insufficient data to estimateall the parameters of the covariance
matrix, most systems assume independence of dimensions and therefore the covariance
matrix becomes diagonal. Thus, we can simply use standard deviation vectors o,,;;
instead of ©;;;. Finally, each such mixture component also has a scalar mixture
coefficient or mixture weight we;,.

With that, the probability of observing a given speech input x in HMMstate s is
given by:

b(x) = [](d0 ws,pi(Xs, Me,s.i0 %s,4,i)) (2.1)
fP ok

where the speech input x is the parallel set of feature vectors, and x; its f-th feature
component; 7 ranges over the numberof Gaussian densities in the mixture and f over
the number of features. The expression \V(.) is the value of the chosen component
Gaussian density function at x;.

In the general case of fully continuous HMMs, each HMMstate s in the acoustic
model has its own separate weighted mixture Gaussian codebook. However, this is
computationally expensive, and many schemes are used to reduce this cost. It also
results in too manyfree parameters. Most systems group HMMstates into clusters
that share the same set of model parameters. The sharing can beof different degrees.
In semi-continuous systems,all states share a single mixture Gaussian codebook, but
the mixture coefficients are distinct for individual states. In Sphinx-II, states are
grouped into clusters called senones [27], with a single codebook (per feature stream)
shared amongall senones, but distinct mixture weights for each. Thus, Sphinx-II uses
semi-continuous modelling with state clustering.

Even simpler discrete HMM models can be derived by replacing the mean and
variance vectors representing Gaussian densities with a single centroid. In every
frame, the single closest centroid to the input feature vector is computed (using the
Euclidean distance measure), and individual states weight the codeword so chosen.
Discrete models are typically only used in making approximate searches such as in
fast match algorithms.

For simplicity of modelling, HMMs can have NULLtransitions that do not con-
sume any time and hence do not model the emission of speech. Word HMMscan be
built by simplystringing together phonetic HMM models using NULL transitions as
appropriate.

2.2 Language Modelling

As mentioned in Chapter 1, a language model (LM)is required in large vocabulary
speech recognition for disambiguating between the large set of alternative, confusable
words that might be hypothesized during the search.

IPR2023-00037

Apple EX1033 Page 44

IPR2023-00037
Apple EX1033 Page 45

14 CHAPTER 2. BACKGROUND

The LM defines the a priori probability of a sequence of words. The LMproba-
bility of a sentence (i.e., a sequence of words w;, w2,..., Wn) is given by:

P(w)P(we|wi) P(w3|wi, w2)P(wa|wi, we, ws) +++ P(wrlwi,...,Wn-1)
n

— II P(w;|w1, ras , Wi-1)-
i=1

In an expression such as P(w;|w1,..., wi-1), W1,.--, Wi-1 is the word history or simply
history for w;. In practice, one cannot obtain reliable probability estimates given
arbitrarily long histories since that would require enormous amountsoftraining data.
Instead, one usually approximates them in the following ways:

e Context free grammars or regular grammars. Such LMsare used to define the
form of well structured sentences or phrases. Deviations from the prescribed
structure are not permitted. Such formal grammars are never used in large
vocabulary systems since they are too restrictive.

e Word unigram, bigram, trigram, grammars. These are defined respectively as
follows (higher-order n-gramscan be defined similarly):

P(w) = probability of word w
P(w;|w;) = probability of w; given a one wordhistory w;
P(w;,|w;,w;) = probability of w, given a two word history w;, w;

A bigram grammar need not contain probabilities for all possible word pairs.
In fact, that would be prohibitive for all but the smallest vocabularies. Instead,
it typically lists only the most frequently occurring bigrams, and uses a backoff
mechanism to fall back on unigram probability when the desired bigram is not
found. In other words, if P(w,;|w;) is sought and is not found, one falls back on
P(w;). But a backoff weight is applied to account for the fact that w; is known
to be not one of the bigram successors of w; [30]. Other higher-order backoff
n-gram grammars can be defined similarly.

e Class n-gram grammars. These are similar to word n-gram grammars, except
that the tokens are entire word classes, such as digit, number, month, proper
name, etc. The creation and use of class grammarsis tricky since words can
belong to multiple classes. There is also a fair amount of handcrafting involved.

e Long distance grammars. Unlike n-gram LMs, these are capable of relating
words separated by some distance (i.e., with some intervening words). For
example, the trigger-pair mechanism discussed in [57] is of this variety. Long
distance grammars are primarily used to rescore n-best hypothesis lists from
previous decodings.

IPR2023-00037

Apple EX1033 Page 45

IPR2023-00037
Apple EX1033 Page 46

2.3. SEARCH ALGORITHMS 15

States :
“® Final state

Start state

0 1 2 3 4 5 Time

Figure 2.1: Viterbi Search as Dynamic Programming

Of the above, word bigram and trigram grammars are the most commonly used
since they are easy to train from large volumes of data, requiring minimal manual
intervention. They have also provided high degrees of recognition accuracy. The
Sphinx-II system uses word trigram LMs.

2.3 Search Algorithms

The two main forms of decoding most commonlyused today are Viterbi decoding
using the beam search heuristic, and stack decoding. Since the work reported in this
thesis is based on the former, we briefly reviewits basic principles here.

2.3.1 Viterbi Beam Search

Viterbi search [62] is essentially a dynamic programmingalgorithm, consisting of
traversing a network of HMM states and maintaining the best possible path score
at each state in each frame. It is a time-synchronous search algorithm in thatit
processes all states completely at time t before moving on to time t+ 1.

The abstract algorithm can be understood with the help of Figure 2.1. One
dimension represents the states in the network, and the otheris the time axis. Thereis
typically one start state and one or morefinal states in the network. The arrows depict
possible state transitions throughout the network. In particular, NULL transitions
go vertically since they do not consume any input, and non-NULLtransitions always
go one time step forward. Each point in this 2-D space represents the best path
probability for the corresponding state at that time. That is, given a time ¢ and
state s, the value at (t,s) represents the probability corresponding to the best state
sequenceleading from theinitial state at time 0 to state s at timet.

The time-synchronous nature of the Viterbi search implies that the 2-D space
is traversed from left to right, starting at time 0. The search is initialized at time

IPR2023-00037

Apple EX1033 Page 46

IPR2023-00037
Apple EX1033 Page 47

16 CHAPTER 2. BACKGROUND

t = 0 with the path probability at the start state set to 1, and at all other states
to 0. In each frame, the computation consists of evaluating all transitions between
the previous frame and the current frame, and then evaluating all NULLtransitions
within the current frame. For non-NULLtransitions, the algorithm is summarized
by the following expression:

P;(t) = max(P;(t — 1) - a;; + b;(t)), ie set of predecessor states of 7 (2.2)

where, P;(t) is the path probabilityof state 7 at time t, a;; is the static probability
associated with the transition from state i to 7, and 6;(t) is the output probability
associated with state 7 while consuming the input speech at ¢ (see Section 2.1.2 and
equation 2.1). It is straightforward to extend this formulation to include NULL
transitions that do not consume any input.

Thus, every state has a single best predecessor at each time instant. With some
simple bookkeeping to maintain this information, one can easily determine the best
state sequence for the entire search by starting at the final state at the end and
following the best predecessor at each step all the way back to the start state. Such
an example is shown bythe bold arrows in Figure 2.1.

The complexity of Viterbi decoding is N?T (assuming each state can transition
to every state at each time step), where NVis the total numberof states and T is the
total duration.

The application of Viterbi decoding to continuous speech recognition is straight-
forward. Word HMMsarebuilt by stringing together phonetic HMMmodels using
NULLtransitions between the final state of one and the start state of the next. In
addition, NULL transitions are added from the final state of each word to theinitial
state of all words in the vocabulary, thus modelling continuous speech. Language
model (bigram) probabilities are associated with every one of these cross-word tran-
sitions. Note that a system with a vocabulary of V words has V? possible cross-word
transitions. All word HMMsaresearchedin parallel according to equation 2.2.

Since even a small to medium vocabulary system consists of hundreds or thousands
of HMMstates, the state-time matrix of Figure 2.1 quickly becomes too large and
costly to computein its entirety. To keep the computation within manageablelimits,
only the mostlikely states are evaluated in each frame, according to the beam search
heuristic [37]. At the end of timet, the state with the highest path probability P™**(t)
is found. If any other state i has P(t) < P™**(t)- B, where B is an appropriately
chosen threshold or beamwidth < 1, state i is excluded from consideration at time
t+1. Only the ones within the beam are considered to be active.

The beam search heuristic reduces the average cost of search by ordersof magni-
tude in medium and large vocabulary systems. The combination of Viterbi decoding
using beam search heuristic is often simply referred to as Viterbi beam search.

IPR2023-00037

Apple EX1033 Page 47

IPR2023-00037
Apple EX1033 Page 48

2.4. RELATED WORK 17

2.4 Related Work

Some of the standard techniques in reducing the computational load of Viterbi search
for large vocabulary continuous speech recognition have been the following:

e Narrowing the beamwidth for greater pruning. However, thisis usually asso-
ciated with an increase in error rate because of an increase in the number of
search errors: the correct word sometimes get pruned from the search path in
the bargain.

¢ Reducing the complexityof acoustic and language models. This approach works
to some extent, especially if it is followed by more detailed search in later
passes. There is a tradeoff here, between the computational load of the first
pass and subsequent ones. Theuse of detailed models in the first pass produces
compact word lattices with lowerror rate that can be postprocessed efficiently,
but the first pass itself is computationally expensive. Its cost can be reduced if
simpler models are employed, at the cost of an increasein lattice size needed to
guarantee low lattice error rates.

Both the above techniques involve some tradeoff between recognition accuracy and
speed.

2.4.1 Tree Structured Lexicons

Organizing the HMMsto be searched as a phonetic tree instead of the flat structure
of independent linear HMMsequencesfor each word is probably the most often cited
improvement in search techniques in use currently. This structure is referred to as
tree-structured lexicon or lexical tree. If the pronunciations of two or more words
contain the same n initial phonemes, theyshare a single sequence of n HMM models
representing that initial portion of their pronunciation. (In practice, most systems
use triphones instead of just basephones, so we should really consider triphone pro-
nunciation sequences. But the basic argument is the same.) Since the word-initial
models in a non-tree structured Viterbi search are typically the majority of the total
numberof active models, the reduction in computation is significant.

The problem witha lexical tree occurs at word boundary transitions where bigram
language model probabilities are usually computed and applied. In the flat (non-tree)
Viterbi algorithm thereis a transition from each word endingstate (within the beam)
to the beginning of every word in the vocabulary. Thus, there is a fan-in at the
initial state of every word, with different bigram probabilities attached to every such
transition. The Viterbi algorithm chooses the best incoming transition in each case.

However, with a lexical tree structure, several words may share the same root node
of the tree. There can be a conflict between the best incoming cross-word transition

IPR2023-00037

Apple EX1033 Page 48

IPR2023-00037
Apple EX1033 Page 49

18 CHAPTER 2. BACKGROUND

for different words that share the same root node. This problem has been usually
solved by making copies of the lexical tree to resolve such conflicts.

Approximate Bigram Trees

SRI [39] and CRIM [43] augment their lexical tree structure with a flat copy of the
lexicon that is activated for bigram transitions. All bigram transitions enter the flat
lexicon copy, while the backed off unigram transitions enter the roots of the lexical
tree. SRI notes that relying on just unigrams more than doubles the worderrorrate.
They show that using this scheme, the recognition speed is improved by a factor of
2-3 for approximately the same accuracy. To gain further improvements in speed,
they reduce the size of the bigram section by pruning the bigram language modelin
various ways, which addssignificantly to the error rate.

However,it should be noted that the experimental set up is based on using discrete
HMMacoustic models, with a baseline system word error rate (21.5%), which is
significantly worse than their best research system (10.3%) using bigrams, and also
worse than most other research systems to begin with.

As we shall see in Chapter 3, bigram transitions constitute a significant portion of
cross word transitions, which in turn are a dominant part of the search cost. Hence,
the use of a flat lexical structure for bigram transitions must continue to incur this
cost.

Replicated Bigram Trees

Ney and others [40, 3] have suggested creating copies of the lexical tree to handle
bigram transitions. The leaf nodes at the first level (unigram) lexical tree have sec-
ondary(bigram) trees hanging off them for bigram transitions. The total size of the
secondary trees depends on the numberof bigrams present in the grammar. Sec-
ondary trees that represent the bigram followers of the most commonfunction words,
such as A, THE, IN, OF, etc. are usually large.

This scheme creates additional copies of words that did not exist in the original
flat structure. For example, in the conventional flat lexicon (or in the auxiliary flat
lexicon copy of [39]), there is only one instance of each word. However, in this
proposed scheme the same word can appear in multiple secondary trees. Since the
short function words are recognized often (though spuriously), their bigram copies
are frequently active. They are also among the larger ones, as noted above. It is
unclear how much overhead this adds to the system.

IPR2023-00037

Apple EX1033 Page 49 |

IPR2023-00037
Apple EX1033 Page 50

2.4. RELATED WORK 19

Dynamic Network Decoding

Cambridge University [44] designed a one-pass decoder that uses the lexical tree
structure, with copies for cross-word transitions, but instantiates new copies at ev-
ery transition, as necessary. Basically, the traditional re-entrant lexical structure is
replaced with a non-re-entrant structure. To prevent an explosion in memory space
requirements, they reclaim HMM nodes as soon as they becomeinactive byfalling
outside the pruning beamwidth. Furthermore, the end points of multiple instances of
the same word can be merged under the proper conditions, allowing just one instance
of the lexical tree to be propagated from the merged word ends, instead of separately
and multiply from each. This system attained the highest recognition accuracyin the
Nov 1993 evaluations.

They report the performance under standard conditions—standard 1993 20K Wall
Street Journal development test set decoded using the corresponding standard bi-
gram/trigram language model using wide beamwidthsas in the actual evaluations.

The number of active HMM models per frame in this scheme is actually higher
than the numberin the baseline Sphinx-II system undersimilar test conditions (except
that Sphinx-II uses a different lexicon and acoustic models). There are other factors
at work, but the dynamic instantiation of lexical trees certainly plays a part in this
increase. The overhead for dynamically constructing the HMM networkis reported to
be less than 20% of the total computational load. This is actually fairly high since the
time to decode a sentence on an HP735 platform is reported to be about 15 minutes
on average.

2.4.2 Memory Size and Speed Improvements in Whisper

The CMU Sphinx-II system has been improved in many ways by Microsoft in pro-
ducing the Whisper system [26]. They report that memorysize has been reduced by
a factor of 20 and speed improved bya factor of 5, compared to Sphinx-II under the
same accuracy constraints.

One of the schemes for memory reduction is the use of a context free grammar
(CFG) in place of bigram or trigram grammars. CFGs are highly compact, can
be searched efficiently, and can be relatively easily created for small tasks such as
command and control applications involving a few hundred words. However, large
vocabulary applications cannot be so rigidly constrained.

They also obtain an improvement of about 35% in the memorysize of acoustic
models by using run length encoding for senone weighting coefficients (Section 2.1.2).

They have also improved the speed performance of Whisper through a Rich Get
Richer (RGR) heuristic for deciding which phones should be evaluated in detail, using
triphone states, and which should fall back on context independent phone states.

IPR2023-00037

Apple EX1033 Page 50

IPR2023-00037
Apple EX1033 Page 51

20 CHAPTER 2. BACKGROUND

RGRworksas follows: Let P,(t) be the best path probability of any state belonging
to basephone p at time t, P™**(t) the best path probability overall states at ¢, and
b,(t +1) the output probability of the context-independent model for p at time t+ 1.
Then, the context-dependent states for phone p are evaluated at frame t + 1 iff:

a- P,(t)+6,(¢+1) > P™*(t) -K

where, a and K are empirically determined constants. Otherwise, context-independent
output probabilities are used for those states. (All probabilities are computed in
log-space. Hence the addition operations really represent multiplications in normal
probability space.)

Using this heuristic, they report an 80% reduction in the numberof context de-
pendent states for which output probabilities are computed, with no loss of accuracy.
If the parameters a and K are tightened to reduce the numberof context-dependent
states evaluated by 95%, there is a 15% relative loss of accuracy. (The baseline test
conditions have not be specified for these experiments.)

2.4.3 Search Pruning Using Posterior Phone Probabilities

In [56], Renals and Hochberg describe a method of deactivating certain phones during
search to achieve higher recognition speed. The method is incorporated into a fast
match pass that produces words and posterior probabilities for their NOWAY stack
decoder. The fast match step uses HMM base phone models, the states of which
are modelled by neural networks that directory estimate phone posterior probabil-
ities instead of the usual likelihoods; i.e., they estimate P(phone|data), instead of
P(data|phone). Using the posterior phone probability information, one can identify
the less likely active phones at any given time and prune the search accordingly.

This is a potentially powerful and easy pruning technique when the posterior phone
probabilities are available. Stack decoders can particularly gain if the fast match step
can be made to limit the number of candidate words emitted while extending a
partial hypothesis. In their NOWAY implementation, a speedup of about an order of
magnitude is observed on a 20K vocabulary task (from about 150x real time to about
15x real time) on an HP735 workstation. They do not report the reduction in the
numberof active HMMsas a result of this pruning.

2.4.4 Lower Complexity Viterbi Algorithm

A new approachto the Viterbi algorithm,specifically applicable to speech recognition,
is described by Patel in [49]. It is aimed at reducing the cost of the large number
of cross-word transitions and has an expected complexity of NNT,instead of N?T
(Section 2.3.1). The algorithm depends on ordering the exit path probabilities and

IPR2023-00037

Apple EX1033 Page 51

IPR2023-00037
Apple EX1033 Page 52

2.5. SUMMARY 21

transition bigram probabilities, and finding a threshold such that most transitions
can be eliminated from consideration.

The authors indicate that the algorithm offers better performanceif every word
has bigram transitions to the entire vocabulary. However, this is not the case with
large vocabulary systems. Nevertheless, it is worth exploring this technique further
for its practical applicability.

2.5 Summary

In this chapter we have covered the basic modelling principles and search techniques
commonly used in speech recognition today. We havealso briefly reviewed a number
of systems and techniques used to improve their speed and memoryrequirements. One
of the main themes running through this work is that virtually noneof the practical
implementations have been formally evaluated with respect to the research systems
on well established test sets under widely used test conditions, or with respect to one
another.

In the rest of this thesis, we evaluate the baseline Sphinx-II system under normal
evaluation conditions anduse the results for comparison with our other experiments.

IPR2023-00037

Apple EX1033 Page 52

IPR2023-00037
Apple EX1033 Page 53

Chapter 3

The Sphinx-II Baseline System

As mentioned in the previous chapters, there is relatively little published work on
the performance of speech recognition systems, measured along the dimensions of
recognition accuracy, speed and resource utilization. The purpose of this chapteris
to establish a comprehensive account of the performance of a baseline system that
has been considered a premier representative of its kind, with which we can make
meaningful comparisons of the research reported in this thesis. For this purpose, we
have chosen the Sphinz-IJ speech recognition system! at Carnegie Mellon that has
been used extensively in speech research and the yearly ARPA evaluations. Various
aspects of this baseline system and its precursors have been reported in theliterature,
notably in [32, 33, 35, 28, 1, 2]. Most of these concentrate on the modelling aspects
of the system—acoustic, grammatical or lexical—and their effect on recognition ac-
curacy. In this chapter we focus on obtaining a comprehensive set of performance
characteristics for this system.

The baseline Sphinx-II recognition system uses semi-continuous or tied-mixture
hidden Markov models (HMMs)for the acoustic models [52, 27, 12] and word bigram
or trigram backoff language models (see Sections 2.1 and 2.2). It is a 3-pass decoder
structured as follows:

1. Time synchronous Viterbi beam search [52, 62, 37] in the forward direction. It is
a complete search of the full vocabulary, using semi-continuous acoustic models,
a bigram or trigram language model, and cross-word triphone modelling during
the search. The result of this search is a single recognition hypothesis, as well as
a word lattice that contains all the words that were recognized during the search.
The lattice includes word segmentation and scores information. One of the key
features of this lattice is that for each word occurrence, several successive end
times are identified along with their scores, whereas very often only the single
mostlikely begin timeis identified. Scores for alternative begin times are usually

‘The Sphinx-II decoder reported in this section is known internally as FBS6.

IPR2023-00037

= Apple EX1033 Page 53

IPR2023-00037
Apple EX1033 Page 54

23

not available.

2. Time synchronous Viterbi beam search in the backward direction. This search
is restricted to the words identified in the forward pass and is veryfast. Like
the first pass, it produces a word lattice with word segmentations and scores.
However, this time several alternative begin times are identified while typically
only one end time is available. In addition, the Viterbi search also produces
the best path score from any point in the utterance to the end of the utterance.
which is used in the third pass.

3. An A* or stack search using the word segmentations and scores produced by the
forward and backward Viterbi passes above. It produces an N-best list [59] of
alternative hypotheses as its output, as described briefly in Section 1.2. There
is no acoustic rescoring in this pass. However, any arbitrary language model
can be applied in creating the N-best list. In this thesis, we will restrict our
discussion to word trigram language models.

The reason for the existence of the backward and A* passes, even though the
first pass produces a usable recognition result, is the following. One limitation of the
forward Viterbi search in the first pass is that it is hard to employ anything more
sophisticated than a simple bigram or similar grammar. Although a trigram grammar
is used in the forward pass, it is not a complete trigram search (see Section 3.2.2).
Stack decoding, a variant of the A* search algorithm? [42], is more appropriate for
use with such grammars which lead to greater recognition accuracy. This algorithm
maintains a stack of several possible partial decodings (i.e, word sequence hypotheses)
which are expanded in a best-first manner [9, 2, 50]. Since each partial hypothesis
is a linear word sequence, any arbitrary language model can be applied to it. Stack
decoding also allows the decoder to output several most likely N-best hypotheses
rather than just the single best one. These multiple hypotheses can be postprocessed
with even more detailed models. The need for the backward pass in the baseline
system has been mentioned above.

In this chapter we review the details of the baseline system needed for under-
standing the performance characteristics. In order to keep this discussion fairly self-
contained, wefirst review the various knowledge source models in Section 3.1. Some
of the background material in Sections 2.1, 2.2, and 2.3 is also relevant. This is fol-
lowed bya discussion of the forward pass Viterbi beam search in Section 3.2, and the
backward and A* searches in Section 3.3. The performance of this system on sev-
eral widely used test sets from the ARPA evaluations is described in Section 3.4. It
includes recognition accuracy, various statistics related to search speed, and memory
usage. Wefinally conclude with some final remarks in Section 3.5.

2We will often use the terms stack decoding and A* search interchangeably.

IPR2023-00037

Apple EX1033 Page 54

IPR2023-00037
Apple EX1033 Page 55

24 CHAPTER 3. THE SPHINX-II BASELINE SYSTEM

16KHz, 16—bit linear samples
 Pre—emphasisFilter

H(z) = 1-0.97z7!

=> 10ms—=—

SNeee aeYaWhi Tg
= 25.6ms —

25.6msec

Hamming Window
10msec intervals

 12 melfreq. coeff.

+

powercoeff.

100 cepstral frames/sec

sentence—based

power and
cepstral normalization

power —= max(power) over sentence
cepstrum —= mean(cepstrum) over sentence

Figure 3.1: Sphinx-II Signal Processing Front End.

3.1 Knowledge Sources

This section briefly describes the various knowledge sources or models and the speech
signal processing front-end used in Sphinx-II. In addition to the acoustic models
and pronunciation lexicon described below, Sphinx-II uses word bigram and trigram
grammars. These have been discussed in Section 2.2.

3.1.1 Acoustic Model

Signal Processing

A detailed description of the signal processing front end in Sphinx-II is contained
in Section 4.2.1 Signal Processing of [27]. The block diagram in Figure 3.1 depicts
the overall processing. Briefly, the stream of 16-bit samples of speech data, sampled
at 16KHz, is converted into 12-element mel scale frequency cepstrum vectors and a
powercoefficient in each 10msec frame. We represent the cepstrum vector at time t¢
by x(t) (individual elements are denoted by z;(t),1 < k < 12). The powercoefficient

IPR2023-00037

Apple EX1033 Page 55

IPR2023-00037
Apple EX1033 Page 56

3.1. KNOWLEDGE SOURCES 25

Final State

(Non-emitting)

Initial State

Figure 3.2: Sphinx-II HMMTopology: 5-State Bakis Model.

is simply zo(t). This cepstrum vector and power streamsare first normalized, and
four feature vectors are derived in each frame by computingthefirst and second order
differences in time:

x(t) = normalized cepstrum vector
Ax(t) = x(t+2)—x(t—2), Arx(t)=x(t+4) —x(t—4)
AAx(t) = Ax(t+1)—Ax(t—1)
Xo(t) = Z(t),

Azo(t) = zo(t + 2) — zo(t — 2),
AAzo(t) = Azo(t + 1) _ Azo(t = 1)

where the commas denote concatenation. Thus, in every frame we obtain four feature
vectors of 12, 24, 12, and 3 elements, respectively. These, ultimately, are the input
to the speech recognition system.

Phonetic HMM Models

Acoustic modelling in Sphinx-II is based on hidden Markov models (HMMs)for base-
phones and triphones. All HMMsin Sphinx-II have the same 5-state Bakis topology
shown in the Figure 3.2, (The background on HMMshas been covered briefly in
Section 2.1.2.)

As mentioned in Section 2.1.2, Sphinx-II uses semi-continuous acoustic modelling
with 256 component densities in each feature codebook. States are clustered into
senones [27], where each senone has its own set of 256 mixture coefficients weighting
the codebook for each feature stream.

In order to further reduce the computational cost, only the top few component
densities from each feature codebook—typically 4—are fully evaluated in each frame
in computing the output probability of a state or senone (equation 2.1). The rationale
behind this approximation is that the remaining components match the input very
poorly anyway and can be ignored altogether. The approximation primarily reduces
the cost of applying the mixture weights in computing senone output probabilities in
each frame. For each senone and feature only 4 mixing weights have to be applied to
the 4 best components, instead of all 256.

IPR2023-00037

Apple EX1033 Page 56

IPR2023-00037
Apple EX1033 Page 57

26 CHAPTER 3. THE SPHINX-II BASELINE SYSTEM

3.1.2 Pronunciation Lexicon

The lexicon in Sphinx-II defines the linear sequence of phonemes representing the
pronunciation for each word in the vocabulary. There are about 50 phonemes that
make up the English language. The phone set used in Sphinx-IIis given in Appendix
A. The following is a small example of the lexicon for digits:

OH OW

ZERO Z IH R OW

ZERO (2) Z IY R OW

ONE W AHN

TWO T UW

THREE TH R IY

FOUR F AOR

FIVE F AY V

SIX SIHKS

SEVEN S EH V AX N

EIGHT EY TD

NINE N AY N

There can be multiple pronunciations for a word, as shown for the word ZERO above.
Each alternative pronunciation is assumed to have the same a prior: language model
probability.

3.2 Forward Beam Search

As mentioned earlier, the baseline Sphinx-II recognition system consists of three
passes, of which thefirst is a time-synchronous Viterbi beam search in the forward
direction. In this section we describe the structure of this forward pass. We shall
first examine the data structures involved in the search algorithm, before moving on
to the dynamics of the algorithm.

3.2.1 Flat Lexical Structure

The lexicon defines the linear sequence of context-independent or base phones that
make up the pronunciation of each word in the vocabulary. Since Sphinx-II uses
triphone acoustic models [34], these base phone sequences are converted into triphone
sequences by simply taking each base phone together with its left and right context
base phones. (Note that the phonetic left context at the beginning of a wordis the
last base phone from the previous word. Similarly, the phonetic right context at the
end of the wordis the first base phone of the next word. Since the decoder does

IPR2023-00037

Apple EX1033 Page 57

IPR2023-00037
Apple EX1033 Page 58

3.2. FORWARD BEAM SEARCH 27

not knowthese neighbouring words a priori, it must try all possible cases andfinally
choose the best. This is discussed in detail below.) Given the sequenceof triphones
for a word, one can construct an equivalent word-HMMbysimply concatenating the
HMMsfor the individual triphones, i.e., by adding a NULL transition from the final
state of one HMMtotheinitial state of the next. Theinitial state of first HMM, and
the final state of the last HMM in this sequence becometheinitial and final states,
respectively, of the complete word-HMM.Finally, in order to model continuous speech
(i.e., transition from one word into the next), additional NULLtransitions are created
from the final state of every word to theinitial state of all words in the vocabulary.
Thus, with a V word vocabulary, there are V? possible cross-word transitions.

Since the result is a structure consisting of separate linear sequence of HMMsfor
each word, wecall this a flat lerical structure.

3.2.2 Incorporating the Language Model

While the cross-word NULLtransitions do not consume any speech input, each of
them does have a language model probability associated with it. For a transition
from some word w; to any word w;, this probability is simply P(w;|w;) if a bigram
language model is used. A bigram language modelfits in neatly with the Markov
assumption that given any current state s at time t the probability of transitions out
of s does not depend on how onearrived at s. Thus, the language model probability
P(w;|w;) can be associated with the transition from the final state of w; to the initial
state of w; and thereafter we need not care about how wearrived at w;.

The above argument does not hold for a trigram or some other longer distance
grammarsince the language model probability of transition to w; depends not only
on the immediate predecessor but also someearlier ones. If a trigram language model
is used, the lexical structure has to be modified such that for each word w there are

several parallel instances of its word HMM,one for each possible predecessor word.
Although the copies mayscore identically acoustically, the inclusion of language model
scores would maketheir total path probabilities distinct. In general, with non-bigram
grammars, we need a separate word HMM modelfor each grammarstate rather than
just one per word in the vocabulary.

Clearly, replicating the word HMMmodels for incorporating a trigram grammar
or some other non-bigram grammar in the search algorithm is much costlier compu-
tationally. However, more sophisticated grammarsoffer greater recognition accuracy
and possibly even a reduction in the search space. Therefore, in Sphinx-Il, trigram
grammarsare used in an approximate mannerwith the following compromise. When-
ever there is a transition from word w; to w;, we can find the best predecessor of w;
at that point, say w{, as determined by the Viterbi search. We then associate the
trigram probability P(w;|w‘,w;) with the transition from w; to w;. Note, however.
that unlike with bigram grammars, trigram probabilities applied to cross-word tran-

IPR2023-00037

Apple EX1033 Page 58

IPR2023-00037
Apple EX1033 Page 59

28 CHAPTER 3. THE SPHINX-II BASELINE SYSTEM

sitions in this approximate fashion have to be determined dynamically, depending on
the best predecessor for each transition at the time in question.

Using a trigram grammarin an approximate manner as described above has the
following advantages:

e It avoid anyreplication of the lexical word-HMM structures and associated

increase in computational load. —

e In terms of accuracy, it is much better than using a bigram modelandis close to
that of a complete trigram search. We infer this from the fact that the accuracy
of the results from the final A* pass, which uses the trigram grammarcorrectly,
and also has the benefit of additional word segmentations to choose from,is
relatively only about 5% better (see Section 3.4.2).

e A trigram grammar applied in this approximate manneris empirically observed
to search fewer word-HMMs compared to a bigram grammar, thus leading to a
slight improvement in the recognition speed. The reduction in search is a result
of sharper pruning offered by the trigram grammar.

3.2.3 Cross-Word Triphone Modeling

It is advantageous to use cross-word triphone models (as opposed to ignoring cross-
word phonetic contexts) for continuous speech recognition where word boundaries
are unclear to begin with and there are very strong co-articulation effects. Using
cross-word triphone models we not only obtain better accuracy, but also greater com-
putational efficiency, at the cost of an increase in the total size of acoustic models.
The sharper models provided by triphones, compared to diphones and monophones,
leads to greater pruning efficiency and a reduction in computation. However, us-
ing cross-word triphone models in the Viterbi search algorithm is not without its
complications.

Right Context

The phonetic right context for the last triphone position in a wordis the first base
phone of the next word. In time-synchronousViterbi search, there is no way to know
the next word in advance. In any case, whatever decoding algorithm is used, there
can be several potential successor words to any given word w; at any given time.
Therefore, the last triphone position for each word has to be modelled by a parallel
set of triphone models, one for each possible phonetic right context. In other words,if
there are k basephones pj, p2,..., px in the system, we have & parallel triphone HMM
models hy, ,hy,,.--;hp, representing the final triphone position for w;. A cross-word
transition from w; to another word w;, whose first base phoneis p is represented by

IPR2023-00037

Apple EX1033 Page 59

IPR2023-00037
Apple EX1033 Page 60

3.2. FORWARD BEAM SEARCH 29

HMM network for word w,

Parallel set of HMMsin

last phoneposition for
different phonetic
right contexts

Cross—word NULLtransition

Word Wis first basephone = p

 Right context.
basephone

Figure 3.3: Cross-word Triphone Modelling at Word Endsin Sphinx-II.

a NULLarc from h, to theinitial state of w;. Figure 3.3 illustrates this concept of
right context fanout at the end of each word w; in Sphinx-II.

This solution, at first glance, appears to force a large increase in the total number
of triphone HMMsthat maybe searched. In the place of the single last position
triphone for each word, we now have one triphone model for each possible phonetic
right context, which is typically around 50 in number. In practice, we almost never
encounter this apparent explosion in computational load, for the following reasons:

e The dynamic numberof rightmost triphones actually evaluated in practice is
much smaller than the static number because the beam search heuristic prunes
most of the words away bythe time their last phone has been reached. Thisis
by far the largest source of efficiency, even with the right context fanout.

e The set of phonetic right contexts actually modelled can be restricted to just
those found in the input vocabulary; i.e., to the set of first base phones ofall
the words in the vocabulary.

Moreover, Sphinx-II uses state clustering into senones, where several states
share the same output distribution modelled by a senone. Therefore, the parallel
set of models at the end of any given word are not all unique. By removing
duplicates, the fanout can be further reduced. In Sphinx-II, these two factors
together reduce the right context fanout by about 70% on average.

e The increase is numberof rightmost triphones is partly offset by the reduction
in computation afforded by the sharper triphone models.

IPR2023-00037

Apple EX1033 Page 60

IPR2023-00037
Apple EX1033 Page 61

30 CHAPTER 3. THE SPHINX-II BASELINE SYSTEM

Left Context

The phonetic left context for the first phone position in a word is the last base
phone from the previous word. During decoding, there is no unique such predecessor
word. In any given frame ¢, there maybe transitions to a word w; from a number
of candidates w;,,w;,,... The Viterbi algorithm chooses the best possible transition
into w;. Let us say the winning predecessor is w;,. Thus, the last base phone of w;,
becomes the phonetic left context for w;. However, this is in frame ¢. In the next
frame, there may be an entirely different winner that results in a different left context
base phone. Since the real best predecessor is not determined until the end of the
Viterbi decoding, all such possible paths have to be pursued in parallel.

As with right context cross-word triphone modelling, this problem also can solved
by using a parallel set of triphone models for the first phone position of each word—a
separate triphone for each possible phonetic left context. However, unlike the word-
ending phoneposition which is heavily pruned by the beam search heuristic, the word-
initial position is extensively searched. Most of the word-initial triphone models are
alive every frame. In fact, as we shall see later in Section 3.4, they account for more
than 60% ofall triphone models evaluated in the case of large-vocabulary recognition.
A left context fanout of even a small factor of 2 or 3 would substantially slow down
the system.

Thesolution used in the Sphinx-II baseline system is to collapse the left context
fanout into a single 5-state HMM with dynamic triphone mapping as follows. As
described above, at any given frame there may be several possible transitions from
words w;,,Wi,,... into w;. According to the Viterbi algorithm, the transition with
the best incoming score wins. Let the winning predecessor be w;,. Then theinitial
state of w; also dynamically inherits the last base phone of w;, as its left context.
Whenthe output probability of the initial state of w; has to be evaluated in the next
frame, its parent triphone identityis first determined dynamically from the inherited
left context basephone. Furthermore, this dynamically determined triphone identity
is also propagated by the Viterbi algorithm, as the path probability is propagated
from state to state. This ensures that any complete path through theinitial triphone
position of w; is scored consistently using a single triphone HMM model.

Figure 3.4 illustrates this process with an example, going through a sequence of
4 frames. It contains a snapshot of a word-initial HMM model at the end of each
frame. Arcs in bold indicate the winning transitions to each state of the HMMin
this example. HMM states are annotated with the left context basephone inherited
dynamically through time. As we can see in the example, different states can have dif-
ferent phonetic left contexts associated with them, but a single Viterbi path through
the HMMis evaluated with the same context. This can be verified by backtracking
from the final state backward in time.

IPR2023-00037

Apple EX1033 Page 61

IPR2023-00037
Apple EX1033 Page 62

3.2. FORWARD BEAM SEARCH 31

Initial (leftmost) HMM model for a word

Incoming nants aa ans ax LEN
left context ee: an hy ‘a / i
phone = p e —_~ > >—~ ——(From Li{?;) -——> <4 — __ Time = 1
prewious zi — 4 — —— -—wor ~ : (os 4 \ AA A0) ! . ™ 5 t a Uya 2

[SeeeEeaee

leftcontextsy AS \ wt! ee ie ad
phone = Py i Neh —- ee A

Incoming
left context , \.
phone = P3

Figure 3.4: Word Initial Triphone HMM Modelling in Sphinx-II.

Single Phone Words

In the case of single-phone words, both their left and right phonetic contexts are
derived dynamically from neighbouring words. Thus, they have to be handled bya
combination of the above techniques. With reference to Figures 3.3 and 3.4, separate
copies of the single phone have to be createdfor each right phonetic context, and each
copy is modelled using the dynamic triphone mapping techniquefor handlingitsleft
phonetic context.

3.2.4 The Forward Search

The decoding algorithm is, in principle, straightforward. The problem is to find the
most probable sequence of words that accounts for the observed speech. This is
tackled as follows.

The abstract Viterbi decoding algorithm and the beam search heuristic, and its

IPR2023-00037

Apple EX1033 Page 62

IPR2023-00037
Apple EX1033 Page 63

32 CHAPTER 3. THE SPHINX-II BASELINE SYSTEM

application to speech decoding have been explained in Section 2.3.1. In Sphinx-II,
there are two distinguished words, <s> and </s> , depicting the beginning and ending
silence in any utterance. The input speech is expected to begin at the initial state of
<s> and endin thefinal state of </s>.

Wecan now described the forward Viterbi beam search implementation in Sphinx-
II. It is explained with the help of fragments of pseudo-code. It is necessary to
understand the forward pass at this level in order to follow the subsequent discussion
on performance analysis and the breakdown of computation amongdifferent modules.

Search Outline

Before we go into the details of the search algorithm, we introduce some terminology.
A state 7 of an HMM model m in theflat lexical search space has the following
attributes:

e A path score at time t, P(t), that indicates the probability corresponding to
the best state sequence leading from theinitial state of <s> at time 0 to this
state at time ¢, while consuming the input speech until¢.

e A history information at time ¢, H(t), that allows us to trace back the best
preceding word history leading to this state at t. (As we shall see later. this is
a pointer to the wordlattice entry containing the best predecessor word.)

e The senone output probability, 6”(t), for this state at time t (see Section 2.1.2).
If m belongs to the first position in a word, the senoneidentity for state j is
determined dynamically from the inherited phonetic left context (Section 3.2.3).

At the beginning of the decoding of an utterance, the search processis initialized
by setting the path probability of the start state of the distinguished word <s> to 1.
All other states are initialized with a path score of 0. Also, an active HMM list that
identifies the set of active HMMsin the current frameis initialized with this first
HMMfor <s>. From then on, the processing of each frameof speech, given the input
feature vector for that frame, is outlined by the pseudo-code in Figure 3.5.

We consider someof the functions defined in Figure 3.5 in a little more detail be-
low. Certain aspects, such as pruning out HMMsthatfall below the beam threshold,
have been omitted for the sake of simplicity.

VQ: VQ stands for vector quantization. In this function, the Gaussian densities
that make up each feature codebook are evaluated at the input feature vectors. In
other words, we compute the Mahalanobis distance of the input feature vector from
the mean of each Gaussian density function. (This corresponds to evaluating NVin

IPR2023-00037

Apple EX1033 Page 63

IPR2023-00037
Apple EX1033 Page 64

3.2. FORWARD BEAM SEARCH 33

SS

forward_frame (input feature vector for current frame)
A:

VQ (input feature) ; /* Find top 4 densities closest to input feature */
senone_evaluate (); /* Find senone output probabilities using VQ results */

hmm_evaluate (); /* Within-HMM and cross-HMM transitions */
word_transition (); /* Cross-word transitions */
/* HMM pruning using a beam omitted for simplicity +*/

update active HMM list for next frame;
}

hmm_evaluate ()
{

/* Within-HMM transitions */
for (each active HMM h)

for (each state s in h)

update path probability of s using senone output probabilities;

/* Within-word cross-HMM transitions and word-exits */
for (each active HMM h with final state score within beam) f{

if (h is a final HMM for a word w) {
create word lattice entry for w; /* word exit */

} else {

let h’ = next HMM in word after h;

NULL transition (final-state(h) -> initial-state(h’));
/* Remember right context fanout if h’ is final HMM in word */

}

word_transition ()

{

let {w} = set of words entered into word lattice in this frame;
for (each word w’ in vocabulary)

Find the best transition ({w} -> w’), including LM probability;

Figure 3.5: One Frame of Forward Viterbi Beam Search in the Baseline System.

IPR2023-00037

Apple EX1033 Page 64

IPR2023-00037
Apple EX1033 Page 65

34 CHAPTER 3. THE SPHINX-II BASELINE SYSTEM

equation 2.1.) Only the top 4 densities are fully evaluated and used further, since the
rest typically contribute verylittle to the senone output probability.

Since all senones share a single codebook per feature stream in the Sphinx-II
semi-continuous model, the VQ step does not have to be repeated for each senone.

Senone Evaluation: (Function senone_evaluate.) In this function, we compute
the output probability for each senone in the current frame as a weighted sum of
the top 4 density values in the frame. There are 4 feature streams in Sphinx-II. The
weighting is done independently on each stream andthefinal result is the productof
the four weighted values. (See Sections 3.1.1 and 2.1.2.)

HMM Evaluation: (Function hmm_evaluate.) This step includes two cases:

e Within-HMM transitions: For each active HMM model m the path score of
each state j in m is updated accordingto:

P(t) = max(P"(t — 1) - b(t) - az) (3.1)

where, ¢ indicates the current frame, 7 ranges over all states of m, and a7?
is a static probability for the arc from z to 7 in m. (See also Section 2.1.2.)
Furthermore, the history pointer H(t), and the dynamic phonetic left context
if applicable, are propagated to j from the state : that maximizes expression
3.1.

e Within-word cross-HMM transitions and Word Exits: A cross-HMM NULL

transition within a word from HMM m, to mz:causes the path score andhistory
information to be propagated from thefinal state of m, to the start state of m2
if it results in a better path score at the start state of mp.

Words whose final states have a score within the allowed threshold represent
potential word recognitions in the current frame. There can be several such
words in any given frame. All of them are entered in a word lattice along with
the path score and history information from the final state. The right context
fanout at the end of each word actually results in several entries for each word,
one for each possible phonetic right context.

Cross-Word Transition: (Function word_transition.) In principle, this step
attemptsall possible cross-word transitions from the set of words exited to all words
in the vocabulary, computing the language model probability in each case. If n words
reachedtheirfinal state in the current frame, and there are V words in the vocabulary,
a total of nV transitions are possible. This is an enormous number. However,notall
transitions have explicit trigram or even bigram probabilities in the language model.

IPR2023-00037

Apple EX1033 Page 65

IPR2023-00037
Apple EX1033 Page 66

3.2. FORWARD BEAM SEARCH 35

Transitions to trigram and bigram successors of words exited this frame

First HMMsofall words in vocabulary
Final HMMsof wordsexiting this frame
(Right context fanout not shown)

Backofftransitions a

Unigram transition to all words

| Figure 3.6: Word Transitions in Sphinx-II Baseline System.

Therefore, the computation is approximated by using trigram and bigram transitions
that can actually be found in the grammar, and backing off to unigrams through
a backoff node for the rest®. Thus, the total number of transitions evaluated is at
most V plus the number of bigrams and trigrams for the n words exited, which is a
typically a much smaller number than nV. The schemeis shown in Figure 3.6. For
the sake of clarity, details involving cross-word triphone modelling have been omitted.

If a cross-word transition is successful, the history information of the start state
of the destination word is updated to point to the word lattice entry corresponding
to the “winning” word just exited, i.e., the best predecessor word at this time. The
dynamic phonetic left context for the initial phone of the destination word is also set
from the best predecessor word.

Result of Forward Beam Search

One result of the forward pass is the word lattice identifying each word recognized
during the entire utterance. Each entry in the table identifies a word, its segmentation
(i.e., start and end points in time), and the acoustic score for that word segmentation.

The second result of the forward Viterbi search is a single recognition hypothesis.
It is the word sequence obtained by starting at the final state of </s> at the end of

*Trigram probabilities are applied using the approximation described in Section 3.2.2.

IPR2023-00037

Apple EX1033 Page 66

IPR2023-00037
Apple EX1033 Page 67

36 CHAPTER 3. THE SPHINX-II BASELINE SYSTEM

the utterance and backtracking to the beginning, by following the history pointersin
the wordlattice.

3.3 Backward and A* Search

As mentioned earlier, the A* or stack search is capable of exactly using more so-
phisticated language models than bigram grammars, thus offering higher recognition
accuracy. It maintains a sorted stack of partial hypotheses which are expanded in a
best-first manner, one word length at a time. There are two main issues with this
algorithm:

e To prevent an exponential explosion in the search space, the stack decoding
algorithm must expand each partial hypothesis only by a limited set of the
most likely candidate words that may follow that partial hypothesis.

e The A®* algorithm is not time synchronous. Specifically, each partial hypotheses
in the sorted stack can accountfor a different initial segment of the input speech.
This makes it hard to compare the path probabilities of the entries in the stack.

It has been shownin [42] that the second issue can be solved byattaching a heuris-
tic score with every partial hypothesis H that accounts for the remaining portion of
the speech not included in H. By “filling out” every partial hypothesis to the full
utterance length in this way, the entries in the stack can be compared to one another,
and expandedin a best-first manner. As long as the heuristic score attached to any
partial hypothesis H is an upper bound on the score of the best possible complete
recognition achievable from H, the A* algorithm is guaranteed to produce the correct
results.

The backward pass in the Sphinx-II baseline system provides an approximation to
the heuristic score needed by the A* algorithm. Sinceit is a time-synchronousViterbi
search, run in the backward direction from the end of the utterance, the path score
at any state corresponds to the best state sequence between it and the utterance end.
Hence it serves as the desired upper bound. It is an approximation since the path
score uses bigram probabilities and not the exact grammar that the A* search uses.

The backward pass also produces a wordlattice, similar to the forward Viterbi
search. The A* search is constrained to search only the words in the two lattices, and
is relatively fast.

The wordlattice produced by the backward pass has another desirable property.
Wenoted at the beginningof this chapter that for each word occurrence in the forward
pass word lattice, several successive end times are identified along with their scores,
whereas very often only the single most likely begin time is identified. The backward
pass word lattice produces the complementary result: several beginning times are

IPR2023-00037

Apple EX1033 Page 67

IPR2023-00037
Apple EX1033 Page 68

3.3. BACKWARD AND A* SEARCH 37

identified for a given word occurrence, while usually only the single mostlikely end
time is available. The two lattices can be combined to obtain acoustic probabilities
for a wider range of word beginning and ending times, which improves the recognition
accuracy.

In the following subsections, we briefly describe the backward Viterbi pass and
the A* algorithm used in the Sphinx-II baseline system.

3534 Backward Viterbi Search

The backward Viterbi search is essentially identical to the forward search, except that
it is completely reversed in time. The main differences are listed below:

e The input speech is processed in reverse.

e It is constrained to search only the words in the word lattice from the forward
pass. Specifically, at any time t, cross-word transitions are restricted to words
that exited at ¢ in the forward pass, as determined bythe latter’s word lattice.

e All HMMtransitions, as well as cross-HMMand cross-word NULLtransitions
are reversed with respect to the forward pass.

e Cross word triphone modelling is performed using left-context fanout and dy-
namic triphone mapping for right contexts.

e Only thebigram probabilities are used. Therefore, the Viterbi path score from
any point in the utterance up to the end is only an approximation to the upper
bounds desired by the A* search.

The result of the backward Viterbi search is also a wordlattice like that from the
forward pass. It is rooted at </s> that ends in the final frameofthe utterance, and
growing backward in time. The backwardpass identifies several beginning timesfor a
word, but typically only one ending time. Acoustic scores for each word segmentation
are available in the backward pass wordlattice.

3.3.2 A* Search

The A* search algorithmis describedin [42]. It works by maintaining an ordered stack
or list of partial hypotheses, sorted in descendingorder oflikelihood. Hypotheses are
word sequences and maybeofdifferent lengths, accounting for different lengths of
input speed. Figure 3.7 outlines the basic stack decodingalgorithm for finding V-best
hypotheses.

IPR2023-00037

Apple EX1033 Page 68

IPR2023-00037
Apple EX1033 Page 69

38 CHAPTER 3. THE SPHINX-II BASELINE SYSTEM

initialize stack with <s>;-

while (N> 0) f{

pop best hypothesis H off top of stack;
if H is a complete hypothesis f

output H, and decrement N;
} else {

find candidate list of successor words to H from backward pass lattice;

for (each word W in above candidate list) {
extend H by appending W to it, giving new partial hypothesis H’;
evaluate new score for H’ using forward and backward lattices;
insert H’ into the stack in accordance with its new score;

Figure 3.7: Outline of A* Algorithm in Baseline System

The specific details relevant to the Sphinx-II implementation are covered in [2].
Most of the additional details pertain to two steps: identifying candidate word ex-
tensions for a partial hypothesis H, and computing the score for each newlycreated
partial hypothesis H’. Candidate words are located by looking for lattice entries that
begin where the partial hypothesis ends. The score for the new hypothesis H" is
computed by factoring in the acoustic score for the new word W (obtained from the
forward and backward pass word lattices), a new heuristic score to the end of the
utterance from the end point of H’, and the language model probability for W, given
the preceding history, i.e., H.

The hypotheses produced by the A* algorithm are not truly in descending order
of likelihood since the heuristic score attached to each partial hypothesis is only an
approximation to the ideal. However, by producing a sufficiently large number of
N-best hypotheses, one can be reasonably sure that the best hypothesis is included
in the list. In our performance measurements described below, the value of N is 150.
The best output from that list is chosen as the decoding for the utterance. There is
no other post processing performed on the N-bestlist.

3.4 Baseline Sphinx-II System Performance

The performanceof the baseline Sphinx-II recognition system was measured onseveral
large-vocabulary, speaker-independent, continuous speech data sets of read speech*
from the Wall Street Journal and other North American business news domain. These

#As opposed to spontaneous speech.

IPR2023-00037

Apple EX1033 Page 69

IPR2023-00037
Apple EX1033 Page 70

3.4. BASELINE SPHINX-II SYSTEM PERFORMANCE 39

data sets have been extensively used by several sites in the past few years, including
the speech group at Carnegie Mellon University. But the principal goal of these ex-
periments has been improving the recognition accuracy. The work reported in this
thesis is focussed on obtaining other performance measures for the same data sets,
namely execution time and memory requirements. Wefirst describe the experimen-
tation methodology in the followingsection, followed by other sections containing a
detailed performance analysis.

3.4.1 Experimentation Methodology

Parameters Measured and Measurement Techniques

The performance analysis in this section provides a detailed look at all aspects of
computational efficiency, including a breakdown bythe various algorithmic steps in
each case. Two different vocabulary sizes—approximately 20,000 and 58,000 words,
referred to as the 20K and 58Ktasks, respectively—are considered for all experiments.
The major parameters measured include the following:

e Recognition accuracy from thefirst Viterbi pass result and the final A* result.
This is covered in detail in Section 3.4.2.

e Overall execution time and its breakdown among the major computational
steps. We also provide frequency counts of the most commonoperations that
account for most of the execution time. Section 3.4.3 deals with these mea-

surements. Timing measurements are performed over entire test sets, averaged
to per frame values, and presented in multiples of real time. For example, any
computation that takes 23msec to execute per frame, on average,is said to run
in 2.3 times real time, since a frame is 10msec long. This makes it convenient to
estimate the execution cost and usability of individual techniques. Frequency
counts are also normalized to per frame values.

e The breakdown of memory usage among various data structures. This is covered
in Section 3.4.4.

Clearly, the execution times reported here are machine-dependent. Even with a sin-
gle architecture, differences in implementations such as cache size, memory and bus
speeds relative to CPU speed, etc. can affect the speed performance. Furthermore,
for short events, the act of measuring them itself would perturb the results. It is
important to keep these caveats in mind in interpreting the timing results. Having
said that, we note that all experiments were carried out on one particular model of
Digital Equipment Corporation’s Alpha workstations. The Alpha architecture [61]
includes a special RPCC instruction that allows an application to time very short

IPR2023-00037

Apple EX1033 Page 70

IPR2023-00037
Apple EX1033 Page 71

40 CHAPTER 3. THE SPHINX-II BASELINE SYSTEM

events of as little as a few hundred machine cycles with negligible overhead. All
timing measurements are normalized to an Alpha processor running at 175MHz.

It should also be emphasized that the main computational loops in the Sphinx-II
system have been tunedcarefully for optimum speed performance. The measurements
reported in this work have been limited almost exclusively to such loops.

Test Sets and Experimental Conditions

The test sets used in the experiments have been taken from the various data sets
involved in the 1993 and 1994 ARPA hub evaluations. All the test sets consist of

clean speech recorded using high quality microphones. Specifically, they consist of
the following:

e Dev93: The 1993 development set (commonlyreferred to as si_dt_20).

e Dev9{: The 1994 development set (hi_dt_9/).

e Eval94: The 1994 evaluation set (h1_et_94).

The test sets are evaluated individually on the 20Kand the 58Ktasks. This is im-
portant to demonstrate the variation in performance, especially recognition accuracy,
with different test sets and vocabulary sizes. The individual performance results allow
an opportunity for comparisons with experiments performed elsewhere that might be
restricted to just someof the test sets. Table 3.1 summarizes the numberof sentences
and words in each testset.

 Foal] |Totala 503 310 316 1129
Words 8227 7387 8186||23800

Table 3.1: No. of Words and Sentences in Each Test Set

The knowledge bases used in each experimentare the following:

e Both the 20K and the 58K tasks use semi-continuous acoustic models of the

kind discussed in Section 3.1.1. There are 10,000 senones or tied states in this
system.

e The pronunciation lexicons in the 20K tasks are identical to those used by CMU

in the actual evaluations. The lexicon for the 58k task is derived partly from
the 20k task and partly from the 100K-word dictionary exported by CMU.

IPR2023-00037

Apple EX1033 Page 71

IPR2023-00037
Apple EX1033 Page 72

3.4. BASELINE SPHINX-II SYSTEM PERFORMANCE 41

e The Dev93 language model for the 20K task is the standard one used byall
sites in 1993. It consists of about 3.5M bigrams and 3.2M trigrams. The 20K
grammar for Dev94 and Eval94 test sets is also the standard one used byall
sites, and it consists of about 5.0M bigrams and 6.7M trigrams. The grammar
for the 58K task is derived from the approximately 230M words of language
model training data that becameavailable during the 1994 ARPA evaluations,
and it consists of 6.1M bigrams and 18.0M trigrams. The same grammar is used
with all test sets.

Thefollowing sections contain the detailed performance measurements conducted
on the baseline Sphinx-II recognition system.

3.4.2 Recognition Accuracy

Recognition results from the first pass (Viterbi beam search) as well as the final A*
pass are presented for both the 20K and 58Ktask. Table 3.2 lists the word error

rates on each of the test sets, individually and overall®*. Errors include substitutions.
insertions and deletions.

[|Dadi]Dest|ealTMean

Table 3.2: Percentage Word Error Rate of Baseline Sphinx-II System.

It is clear that the largest single factor that determines the worderrorrate is the
test set itself. In fact, if the input speech were broken down byindividual speakers. a
muchgreater variation would be observed [45, 46]. Part of this might be attributable
to different out-of-vocabulary (OOV) rates for the sets of sentences uttered by in-
dividual speakers. However, a detailed examination of a speaker-by-speaker OOV
rate and error rate does not showanystrong correlation between the two. The main
conclusion is that word error rate comparisons between different systems must be
restricted to the sametest sets.

’The accuracy results reported in the actual evaluations are somewhat better than those shown
here. The main reason is that the acoustic models used in the evaluations are more complex,
consisting of separate codebooks for individual phone classes. We used a single codebook in our
experiments instead, since the goal of our study is the cost of the search algorithm, which is about
the samein both cases.

SNote that in all such tables, the overall mean is computedoverall different sets put together.
Hence, it is not necessarily just the mean of the means for the individualtest sets.

IPR2023-00037

Apple EX1033 Page 72

IPR2023-00037
Apple EX1033 Page 73

42 CHAPTER 3. THE SPHINX-II BASELINE SYSTEM

3.4.3 Search Speed

In this section we present a summary of the computational load imposed bythe
Sphinx-II baseline search architecture. There are three main passes in the system:
forward Viterbi beam search, backward Viterbi search, and A* search. The first
presents the greatest load of all, and hence we also study the breakdown of that load
among its main components: Gaussian density computation, senone score computa-
tion, HMM evaluation, and cross-word transitions. These are the four main functions
in the forward pass that were introduced in Section 3.2.4. Although we present per-
formancestatistics for all components, the following functions in the forward Viterbi
search will be the main focus of our discussion:

e HMMevaluation. We present statistics on both execution times as well as the
number of HMMsevaluated per frame.

e Cross word transitions. Again, we focus on execution times and the number of
cross-word transitions carried out per frame.

The execution time for each step is presented in terms of multiples of real time
taken to process that step. As mentioned earlier, the machine platform for all experi-
ments is the DEC Alpha workstation. All timing measurements are carried out using
the RPCCinstruction, so that the measurement overhead is minimized. It should
again be emphasized that execution times are heavily influenced by the overall pro-
cessor, bus, and memory architecture. For this reason, all experiments are carried
out on a single machine model. The performancefigures presented in this section are
normalized to an Alpha processor running at 175MHz.

Overall Execution Times

Table 3.3 summarizes the execution times for both the 20K and 58Ktasks. As we

can see, the forward Viterbi search accounts for well over 90% of the computation. Its
four major components can be grouped into twoclasses: acoustic model evaluation
and search. The formerincludes the Gaussian density computation and senone output
probability evaluation. The latter consists of searching the network of HMMsto find
the best decoding—the main body of the Viterbi search algorithm.

Breakdown of Forward Viterbi Search Execution Times

Table 3.4 lists the breakdownof the forward pass execution times for the two vocab-
ularies. The important conclusion is that the absolute speed of the search component
is several tens of times slower than real time for both tasks. This shows that re-
gardless of other optimizations we may undertake to improve execution speed, the

IPR2023-00037

Apple EX1033 Page 73

IPR2023-00037
Apple EX1033 Page 74

3.4, BASELINE SPHINX-II SYSTEM PERFORMANCE

[____DevosDevs]

Forward 22.62|21.84 22.14||22.94
Backward 0.57 0.59 0.57
A* 1.02 L12 1.15

(a) 20K Task.

Forward 46.71|40.25|39.20||42.43
Backward 0.68 0.70 0.70 0.69

1.18 1.17 1.24 1.19

b) 58KTask.

(Eval0f|Mean|%Total|
92.8%

2.4%

4.8%

 [Dev|Deod|Bval0y|Mean|Total]
95.8%

1.5%

2.7%

43

Table 3.3: Overall Execution Times of Baseline Sphinx-II System (xRealTime).

0.16

3.74

10.24

8.29

 4
Senone Eval.

HMM Eval.

Word Trans.

(b) 20K Task.

0.16 0.16
3.81

19.64

22.90

g—
Senone Eval.

HMM Eval.

Word Trans.

(b) 58K Task.

[Mean|Forward)

0.4%

9.0%

42.0%

48.1%

Table 3.4: Baseline Sphinx-II System Forward Viterbi Search Execution Times (xRe-
alTime).

cost of search must be reducedsignificantlyin order to make large vocabulary speech
recognition practically useful.

Since we use semicontinuous acoustic models with just one codebook per feature
stream, the cost of computing senone output probabilities is relatively low. In fact.
over 80% of the total timeis spent in searching the HMM space in the case of the 20K
task. This proportion grows to over 90% for the 58Ktask. We can obtain significant
speed improvement by concentrating almostsolely on the cost of search.

IPR2023-00037

Apple EX1033 Page 74

IPR2023-00037
Apple EX1033 Page 75

44 CHAPTER 3. THE SPHINX-II BASELINE SYSTEM

Weconsider the search component—HMMevaluation and cross-word transitions—
in more detail below.

HMMs Evaluated Per Frame in Forward Viterbi Search

Table 3.5 summarizes the average number of HMMsevaluated per frame in each of
the test sets and the overall average, for both the 20K and 58Ktasks. The table also
shows the average number of word-initial HMMs computed per frame, in absolute
terms and as a percentage of the total number.

aesDaeeya)
[Total|16957| Word-initiala 9431 oar nT

(%Total) (63) (61) (60) (62)

(a) 20K Task.

a
[Total33201|26723|26700[29272| Word-initial|24576|18219|17831 50569

(%Total) (74) (68) (67) (70)

(b) 58K Task.

Table 3.5: HMMs Evaluated Per Frame in Baseline Sphinx-II System.

The moststriking aspect of the baseline Sphinx-II system is that in the 20K task
more than 60% of the total number of HMMsevaluated belong to thefirst position
in a word. In the case of the 58K task, this fraction grows to 70%. The reason
for this concentration is simple. Since there are no pre-defined word boundaries in
continuous speech, there are cross-word transitions to the beginning of every word in
the vocabulary in almost every frame. These transitions keep most of the word-initial
triphone models alive or active in every frame.

Cross-Word Transitions Per Frame in Forward Viterbi Search

A similar detailed examination of cross-word transitions shows a large number of
unigram, bigram and trigram transitions performed in each frame. As explained in
Section 3.2.4, there are three cases to be considered. If w is a word just recognized and
w’ its best Viterbi predecessor, we have the following sets of cross-word transitions:

1. Trigram followers of (w, w’),

IPR2023-00037

Apple EX1033 Page 75

IPR2023-00037
Apple EX1033 Page 76

3.4. BASELINE SPHINX-II SYSTEM PERFORMANCE 45

2. Bigram followers of (w), and

3. Unigram transitions to every word in the vocabulary.

Of course, many of them are unsuccessful because their low a priori likelihood,as
determined by the associated language model probabilities. In Table 3.6 we show
the number of successful cross-word transitions per frame in the baseline Sphinx-II
system.

[Dead]Doody|Eval] |Mean|Total|
Trigrams 996 662 708 807
Bigrams 5035|5079||5364
Unigrams 6848 6650||6944

(a) 20KTask.

|__|DevoDew9|Eval0f|Mean|Total]
Trigrams
Bigrams
Unigrams

(b) 58KTask.

Table 3.6: N-gram Transitions Per Frame in Baseline Sphinx-II System.

Weconclude that both bigram and unigram transitions contribute significantly to
the cost of cross-word transitions.

3.4.4 Memory Usage

It is somewhat hard to measure the true memory requirement of any system without
delving into the operating system details. There are two measures of memoryspace:
virtual memory imagesize, and the resident or working set size. The formeris easy
to measure, but the latter is not. We consider both aspects for each of the main data
structures in the baseline system.

Acoustic Model

In our experiments with Sphinx-II using semi-continuous acoustic models, the senone
mixture weights discussed in Sections 2.1.2 and 3.1.1 constitute the largest portion of
the acoustic models. The 10,000 senones occupy 40MBytes of memory, broken down
as follows. Each senone contains 256 32-bit weights or coefficients corresponding to

IPR2023-00037

Apple EX1033 Page 76

IPR2023-00037
Apple EX1033 Page 77

46 CHAPTER 3. THE SPHINX-II BASELINE SYSTEM

 Unigrams

 Bigramsfor w/

Figure 3.8: Language Model Structure in Baseline Sphinx-II System.

the 256 codewords in a codebook. There are four codebooks for the four feature

streams (Section 3.1.1).

The memoryresident size of the senone mixture weights is not significantlyless
than their total size. If all Gaussian densities were fully evaluated in every frame and
weighted by the senonecoefficients, the entire 40MB data structure would be touched
and resident in memory every frame. In practice, only the top 4 densities out of 256
are used in a given frame. Nevertheless, the identity of the top 4 densities varies
rapidly from frame to frame. Hence, most of the senone mixture weights are accessed
within a short period of time. That is, there isn’t very muchlocality of access to this
data structure to be exploited by the virtual memory system.

Language Model

The representation of the language model data structure has been quite well opti-
mized. The sets of unigrams, bigrams, and trigrams are organized into a tree struc-
ture wherein each unigram pointsto theset of its bigram successors, and each bigram
points to its trigram successors. Figure 3.8 illustrates this organization.

The memory requirement for unigramsin a large-vocabulary, word trigram gram-
mar is negligible, compared to the higher-order n-grams. A bigram entry includes
the following four components:

1. Word-id. A bigram is a two-word pair. Since all bigram followers of a single
unigram are grouped under the unigram, it is only necessary to record the
second word of the bigram in its data structure.

2. Bigram probability.

3. A backoff weight that is applied when a trigram successor of the bigram is not
in the language model and we have to back off to another bigram.

IPR2023-00037

Apple EX1033 Page 77

IPR2023-00037
Apple EX1033 Page 78

3.4. BASELINE SPHINX-II SYSTEM PERFORMANCE 47

4. Pointer to the trigram successors for the bigram.

Similarly, a trigram consists of 2 entries: a word-id andits trigram probability. By
meansof a set of indirect lookup tables, each of the componentsofa bigram or trigram
entry is compressed into 2 bytes. In other words, a single bigram requires 8 bytes,
and a single trigram 4 bytes.

Based on these figures, the two language models usedin the 20Ktask (see Section
3.4.1) occupy about 41MB and 67MBof memory,respectively. The 58Ktask language
model measures at about 121MB.

In this case, the difficulty faced by the virtual memory system in managing the
working set is that the granularityof access is usually much smaller than the physical
page size of modern workstations. Many words have just a few 10s to 100s of bigram
successors. For example, the average numberof bigrams per word in the case of the
98Kvocabulary is about 105. Whereas. the page size on a DEC Alpha is SKB, 16KB.
or more. Hence, muchof the contents of a page of bigrams might be unused.

Search Data Structures

Oneof the search data structures is the network of active word HMMsin each frame.

It is a dynamically varying quantity, The average number ofactive HMMsperframe,
shown in Table 3.5, is a rough measureof this parameter. Its peak value, however, can
be substantially higher. Since all of the active HMMsin a frame have to be evaluated,
they are all resident in memory. Other prominent search data structures include the
forward and backward pass word lattices, the sizes of which grows approximately
proportionately with the utterance length.

All of these data structures are relatively small compared to the acoustic and
language models, and we exclude them from further discussion.

Memory Usage Summary

In summary, the virtual memory requirement of the baseline system is well over
100MB for the 20K tasks and around 200MBfor the larger 58K task, excluding aux-
iliary data structures used in the three passes. It is worth noting that the 20Ktasks
are on the verge of thrashing on a system with 128MB of main memory,indicating
that most of the virtual pages are indeed being touched frequently.

IPR2023-00037

Apple EX1033 Page 78

IPR2023-00037
Apple EX1033 Page 79

48 CHAPTER 3. THE SPHINX-II BASELINE SYSTEM

3.5 Baseline System Summary

The purpose behind this chapter has been to outline the basic algorithms comprising
the baseline Sphinx-II speech recognition system, as well as to evaluate its perfor-
mance on large-vocabulary, continuous-speech tasks. We have obtained a measure of
its efficiency along three basic dimensions: recognition accuracy, speed, and memory
requirements. The evaluations were carried out on several test sets of read speech
from the Wall Street Journal and North American Business News domains. The tests

are run with two different vocabulary sizes of 20K and 58K words.

The immediate conclusion from these measurementsis that the baseline Sphinx-II
system cannot be used in practical, large vocabulary speech applications. Its compu-
tational and memory requirements are an order of magnitude beyondthecapabilities
of commonly available workstations. While it is possible to improve the recognition
speed by tightening the beam width(i.e., pruning the search more ruthlessly) and us-
ing less sophisticated acoustic models to reduce memoryrequirements, such measures
cannot overcomethe inherent algorithmic complexities of the system. Moreover, they
also result in an unacceptable increase in the recognition error rate.

We summarize our conclusions from this chapter:

e The main search of the full vocabulary, i.e. the forward Viterbi search, is
computationally the most expensive. It accounts for over 90% of the total time.
Postprocessing the word lattice is relatively inexpensive.

e The search component of the forward Viterbi search, even on modern high-end
workstations, is several tens of times slower than real time on large vocabulary,
continuous speech tasks.

e About half of the search cost is attributable to HMM evaluation. Moreover, the
active HMMsto be evaluated during search are concentrated near the beginning
of words. Specifically, over 60-70% of the active HMMsare word-initial models.
This is not a new result. It has also been pointed out before, for example in
[39, 43], although it has not been quantified as systematically.

e The other half of the search cost is attributable to the evaluation of cross-

word transitions, along with the need to perform several thousandsof language
model accesses in each frame. Both bigram and unigram transitions contribute
significantly to this cost.

e The memory requirements of large vocabulary speech recognition systems are
dominated by the two main databases: acoustic models and language models.
For large tasks they can run between 100-200MB.

It is clear that in order for the state-of-the-art speech recognition systems to become
useful, we must addressall of the above issues.

IPR2023-00037

Apple EX1033 Page 79

IPR2023-00037
Apple EX1033 Page 80

Chapter 4

Search Speed Optimization

4.1 Motivation

Most of the research effort on large vocabulary continuous speech recognition has
primarily been in improving recognition accuracy, exemplified by the baseline Sphinx-
II system. We have seen in the previous chapter that the Sphinx-II system is several
tens of times too slow and requires 100-200MB of memoryfor large vocabulary tasks.
In order to be practically useful, speech recognition systems have to be efficient in
their usage of computational resources as well.

Thereclearly are several real-time recognition systems around in the ARPA speech
research community (23, 60, 55, 24]. However, the published literature is relatively
bare regarding them. Their performance has never been formally evaluated with re-
spect to the research systems or with respect to one another, in the way that the
accuracy of research systems has been. One goal of this thesis is to demonstrate
that it is possible to achieve near real-time performance on large-vocabulary, contin-
uous speech recognition tasks without compromising the recognition accuracy offered
by research systems. This is a way of lending validity to the ongoing research on
improving accuracy.

Wecan also look at the current focus of speech research from the following angle.
Speech recognition systems consist of two main components:

e Modelling structure, consisting of acoustic and language models.

e Algorithmic or search structure. For example, the forward pass Viterbi beam
search algorithm described in the previous chapter.

Clearly, both components contribute to the various dimensions of efficiency of the
system—accuracy, speed, memory usage. But much of speech research has been
focussed on the modelling aspect, specifically towards improving recognition accuracy.

IPR2023-00037

49 Apple EX1033 Page 80

IPR2023-00037
Apple EX1033 Page 81

50 CHAPTER 4. SEARCH SPEED OPTIMIZATION

This chapter concentrates on improving the algorithmic structure of search, while
preserving the gains made in the modelling arena.

Another reason for concentrating on the search problem is the following. The
complexity of speech tasks is constantly growing, outpacing the growth in the power
of commonlyavailable workstations. Since the late 1980s, the complexity of tasks
undertaken by speech researchers has grown from the 1000-word Resource Manage-
ment (RM)task [51] to essentially unlimited vocabulary tasks such as transcription
of radio news broadcast in 1995 [48]. The RM task ran about an order of magnitude
slower than real time on processors of that day. The unlimited vocabulary tasks run
about two orders of magnitude slower than real time on modern workstations. At
least part of the increase in the computationalload is the increase in the search space.
It seems reasonable to expect that task complexity will continue to grow in the future.

In this chapter, we discuss several algorithms and heuristics for improving the
efficiency of a recognition system. We use the Sphinx-II research system described in
Chapter 3 as a baseline for comparison. Since the focus of this work is in improving
search algorithms, we use the same acoustic and language models as in the baseline
system. As mentioned above, there are two variables in speech recognition systems,
modelling and search algorithms. By keeping one of them constant, we also ensure
that comparisonsof the performance of proposedsearch algorithms with the baseline
system are truly meaningful.

Though the work reportedin this thesis has been carried out in the context of semi-
continuous acoustic models,it is also relevant to systems that employ fully continuous
models. At the time that this work was begun, the Sphinx-II semi-continuous acoustic
models were the best available to us. Overthe last two years fully continuousacoustic
models [66, 5, 18] have become much more widely used in the speech community.
They reduce the word error rate of recognition systems by a relative amountof about
20-30% compared to semi-continuous acoustic models! (46, 47]. The use of fully
continuous models doesnoteliminate the search problem. On the other hand, the cost
of computing output probabilities for each state in each frame becomes much more
significant that in the semi-continuous system. Hence, improving the speed of search
alone is not sufficient. We demonstrate that the proposed search algorithms using
semi-continuous models generate compact word lattices with lowlattice error rate.
Such lattices can be postprocessed efficiently using more complex acoustic models for
higher accuracy.

The outline of this chapter is as follows:

e In Section 4.2 we discuss lexical tree Viterbi search and all its design ramifica-

‘The contribution of acoustic modelling in different systems to recognition accuracy is hard to
estimate since some systems use not one butseveral sets of acoustic models, particularly for speaker
adaptation [64]. The overall accuracy resulting from the use of continuous HMMmodels plus several
cycles of mean and variance adaptation was about 50% better than semi-continuous HMM modelling
with little or no adaptation.

IPR2023-00037

Apple EX1033 Page 81

IPR2023-00037
Apple EX1033 Page 82

4.2. LEXICAL TREE SEARCH 51

tions. We show howthelexical tree can be used to not only take advantage of
the reduction in the number of active HMMs, butalso to significantly reduce
the numberof language model operations during cross-word transitions. Tree-

_ structured lexicons are increasingly being used in all speech recognition systems
to take advantage of the sharing of HMMsacross words, but this is the first
instance of reducing the language model operationssignificantly. The section
includes detailed performance measurements and comparisons to the baseline
Sphinx-II system.

In Section 4.3 we present an efficient word lattice search to find a globally
optimum path through thelattice using a trigram grammar. Even though the
lexical tree search is about 20% worse in recognition accuracyrelative to the
baseline system, most of the loss is recovered with this step. The global word
lattice search improves the recognition accuracyby considering alternative paths
that are discarded during the lexical tree Viterbi search.

In Section 4.4 we show that by rescoring the word lattice output of the tree
search using the conventional search algorithm of the baseline system, we es-
sentially regain the recognition accuracyof the baseline system. Though our
rescoring experiments are restricted to semi-continuous acoustic models, clearly
more sophisticated models can be used as well.

In Section 4.5 we propose a phonetic fast match heuristic that can be easily
integrated into the lexical tree search algorithm to reduce the search, with
virtually no loss of accuracy. The heuristic uses senone output probabilities in
each frame to predict a set of active basephones near that frame. All others are
considered inactive and pruned from search.

e There is a good deal of inherent parallelism at various levels in a speech recog-
nition system. As commercial processor architectures and operating systems
become capable of supporting multithreaded applications, it becomes possible
to take advantage of the applications’ inherent concurrency. In Section 4.6 we
explore the issues involved in exploiting them.

This chapter concludes with Section 4.7 that summarizes the performanceof all of
the techniques presented in this chapter.

4.2 Lexical Tree Search

The single largest source of computational efficiency in performing search is in or-
ganizing the HMMsto be searched as a phonetic tree, instead of the flat structure
described in Section 3.2.1. It is referred to as a tree-structured lexicon or lexical tree

IPR2023-00037

Apple EX1033 Page 82

IPR2023-00037
Apple EX1033 Page 83

or bo CHAPTER 4. SEARCH SPEED OPTIMIZATION

ABOUND AX B AW N DD

ABOUT AX B AW TD

ABOVE AX B AH V

BAKE B EY KD

BAKED B EY KD TD

BAKER B EY K AXR

BAKERY B EY K AXR IY

BAKING B EY K IX NG

(a) Example Pronunciation Lexicon.

(6) Basephone Lexical Tree.

Figure 4.1: Basephone Lexical Tree Example.

structure. In such an organization, if the pronunciations of two or more words con-
tain the same n initial phonemes, they share a single sequence of n HMM models
representing that initial portion of their pronunciation. Tree-structured lexicons have
often been used in the past, especially in fast-match algorithms as a precursor step to
a stack-decoding algorithm. Morerecently, tree search has come into widespread use
in the main decoding process [43, 39]. Figure 4.1 shows a simple base-phonelexical
tree* for a small example lexicon.

Thelexical tree offers a potential solution to the two main sources of computational
cost in the baseline system:

e Byintroducing a high degree of sharing at the root nodes, it reduces the number

Strictly speaking, the so-called lexical tree is actually a collection of trees or a forest, rather
than a single tree. Nevertheless, we will continue to use the term lerical tree to signify the entire
collection.

IPR2023-00037

Apple EX1033 Page 83

IPR2023-00037
Apple EX1033 Page 84

4.2. LEXICAL TREE SEARCH 53

of word initial HMMsthat need to be evaluated in each frame. As we sawin
Section 3.4.3, word-initial HMMsare the most frequently evaluated HMMsin
the baseline system.

e The tree structure also greatly reduces the number of cross-word transitions,
which is again a dominant part of search in the baseline system (see Section
3.4.3, Table 3.6).

Another advantage of the tree organization is that both the numberofactive HMMs
and the numberof cross-word transitions grow much more slowly with increasing
vocabulary size than in the case ofa flat lexical structure. On a per active HMM
basis, however, there is more work involved in thelexical tree search, since each active
HMM makes NULLtransitions to several successor nodes, rather than just a single
node as in the baseline system.

The main impedimentto the full realization of the above advantages of tree search
is the incorporation of a language model into the search. In the flat lexical structure,
each cross-word transition from word w; to w; is accompanied by a language model
probability P(w;|w;), assuming a bigram grammar. Thedifficulty with the tree struc-
ture is that individual words are not identifiable at the roots of the tree. The root
nodes represent the beginning ofseveral different words (and hence multiple gram-
mar states), which are related phonetically, but not grammatically. This can lead to
conflicts between different cross-word transitions that end up at the same root node.

Most of the current solutions rely on creating additional word HMM networks to
handle such conflicts. The prominent ones have been reviewed in Section 2.4. The
obvious drawback associated with these solutions is an increase in the number of
operations that the lexical tree structure is supposed to solve in thefirst place.

In this work we present a coherent solution that avoids the replication by post-
poning the computation of language modelprobability for a word until the end of the
word is reached. We show that this strategy improves the computational efficiency
of search as it takes full advantage of the tree structure to dramatically reduce not
only the number of HMMssearched but also the numberof cross-word transitions
and language model probabilities to be evaluated.

Wefirst present the structure of the lexical tree in Section 4.2.1, followed by the
main issue of treating language modelprobabilities across word transitions in Section
4.2.2. The overall tree search algorithm is discussed in Section 4.2.3. Section 4.2.4
contains a detailed performanceanalysis of this algorithm, and we finally conclude
with a summaryin Section 4.2.5.

IPR2023-00037

Apple EX1033 Page 84

IPR2023-00037
Apple EX1033 Page 85

54 CHAPTER 4. SEARCH SPEED OPTIMIZATION

4.2.1 Lexical Tree Construction

In Figure 4.1 we saw the construction of a lexical tree of base phone nodes. However,
we wish to use triphone acoustic models rather than simple base phone models for
high recognition accuracy. Hence, the lexical tree has to be built out of triphone nodes
rather than basephone nodes. This basically requires a trivial change to Figure 4.1,
except at the roots and leaf positions of the tree (corresponding to word beginnings
and endings), which have to deal with cross-word triphone models.

The issues that arise in dealing with cross-word triphone modelling have been
discussed in Section 3.2.3. The Sphinx-II tree-structured decoder also uses similar
strategies*. To summarize:

e In a time-synchronous search, the phonetic right contexts are unknownsince
they belong to words that would occur in the future. Therefore, all phonetic
possibilities have to be considered. This leads to a right context fanout at the
leaves of the lexical tree.

e The phonetic left context at the roots of the lexical tree is determined dynami-
cally at run time, and there maybe multiple contexts active at any time. How-
ever, a fanout at the roots, similar to that at the leaves, is undesirable since the
former are active much more often. Therefore, cross-word triphones at the root
nodes are modelled using the dynamic triphone mapping technique described in
Section 3.2.3. It multiplexes the states of a single root HMM between triphones
resulting from different phonetic left contexts.

Figure 4.2 depicts the earlier example shown in Figure 4.1, but this time as a
triphone lexical tree. The notation 6(/,r) in this figure refers to a triphone with base-
phone 6, left context phone /, and right context phone r. A question-mark indicates
an unknown context that is instantiated dynamically at run time.

The degree of sharing in a triphone lexical tree is not as much as in the basephone
version, butit is still substantial at or near the root nodes. Table 4.1 lists the number
of tree nodes at various levels, the corresponding numberof nodes in the flattened
lexicon (i.e., if there were no sharing), and the ratio of the former to the latter as a
percentage. Leaf nodes were not considered in these statistics since they have to be
modelled with a large right context fanout. The degree of sharing is very high at the
root nodes, but falls off sharply after about 3 levels into the tree.

In our implementation, the entire lexical tree, except for the leaf nodes with their
right context fanout, is instantiated as a data structure in memory.If the leaf nodes
were also allocated statically, their right context fanout would increase the total

3Unlike the baseline system, however, single-phone words have been modelled more simply, by
modelling different left contexts but ignoring the right context.

IPR2023-00037

Apple EX1033 Page 85

IPR2023-00037
Apple EX1033 Page 86

4.2. LEXICAL TREE SEARCH MS

 Hen]

Figure 4.2: Triphone Lexical Tree Example.

000

Tree Flat Ratio Tree Flat Ratio|
1 656 21527 3.0% 51 61657 1.4%

3531 21247 16.6%|3669 21430 17.1%|5782 61007 9.5%
8047 19523 41.2%|8339 19694 42.3%|18670 57219 32.6%
9455 16658 56.8%|9667 16715 57.8%|26382 49390 53.4%
8362 12880 64.9%|8493 12858 66.1%|24833 38254 64.9%
6359 9088 70.0%|6388 8976 71.2%]18918 26642 71.0%
4429 5910 74.9%|4441 5817 76.3%|13113 17284 75.9%
2784 3531 78.8% 5 10255 79.3%

 o-10ckwho

Table 4.1: No. of Nodes at Each Level in Tree and Flat Lexicons.

numberof triphone models enormously. Therefore, leaf nodes are onlyallocated on
demand;i.e., when these HMMs becomeactive during thesearch.

IPR2023-00037

Apple EX1033 Page 86

IPR2023-00037
Apple EX1033 Page 87

56 CHAPTER 4. SEARCH SPEED OPTIMIZATION

4.2.2 Incorporating Language Model Probabilities

The application of language model probabilities at word boundaries presents an inter-
esting dilemma. Traditionally, the language model probability for a transition from
word w; to w; is computed and accumulated during the transition into theinitial state
of w;. See, for example, the baseline system description in Section 3.2.4. As a result,
the initial score for the new word w; is “primed” with the appropriate expectation
for that word in the context of the preceding history. This approach fits neatly into
the Markov model and the Viterbi search algorithm, and has two main advantages:

e Byusing the language model probability upon word entry, the search process
is biased in favour of the grammatically morelikely words, and against the less
likely ones. This bias serves to prune away theless likely words, reducing the
dynamic search space.

e Frequently occurring short words or function words, such as a, the, an, of, etc..
which are generally poorly articulated, are given an initial boost by the language
model at the appropriate moments*. Thus, even though their poor articulation
might result in a poor acoustic match subsequently, the initial priming by the
language modeloften allows them to survive the beam search without getting
pruned.

The disadvantage of computing language model probabilities upon word entryis, of
course, the computational cost of evaluating a very large number of them in each
frame. This was seen in the previous chapter in Section 3.4.3, Table 3.4, making the
execution of cross-word transitions one of the most costly steps in the search process.

One would like to retain the advantages stated above, without incurring the asso-
ciated cost, if possible. The immediate problem with a tree-structured lexicon is that
one does not have distinct, identifiable initial states for each word in the lexicon. The

tree structure implies that the root nodes are shared among several words, related
phonetically, but quite unrelated grammatically. Hence it is not possible to determine
a meaningful language model probability upon transitioning to a root node.

The Language Modelling Problem

Let us see the problem in detail by referring to Figure 4.3(a) and the original algorithm
for cross-word transitions in the baseline system in Figure 3.6. Figure 4.3(a) depicts
cross-words NULLtransitions attempted from the final states of two words p; and p2
to the initial states of words w, and wz at time ¢t. Let us represent the path scores

*The correct thing to do is, of course, to improve the acoustic modelling of such events rather
than relying on the language model to overcome the former’s shortcomings. However, every bit
helps!

IPR2023-00037

Apple EX1033 Page 87

IPR2023-00037
Apple EX1033 Page 88

“Ior4.2. LEXICAL TREE SEARCH

etes Shared by

“ye

(a) (b)

Figure 4.3: Cross-Word Transitions With Flat and Tree Lexicons.

at the end of any p; at time t by P,,(t), and the bigram probability for the transition
from p; to w; by Prw(w;|p;). In the flat-lexical search of the baseline system, the
path score entering w; from p; at timetis:

P,:(t) - Pra (w;\|pi) (4.1)

The Viterbi algorithm chooses the better of the two arcs entering each word w) and w»,
and their history information is updated accordingly. In Figure 4.3(a), the “winning”
transitions are shown bybold arrows.

In particular, the presence of separate word-HMM models for w; and w2 allows
them to capture their distinct best histories. However, if w; and w2 share the same
root node in the tree lexicon, as shown in Figure 4.3(b), it is no longer possible to
faithfully retain the distinctions provided by the grammar. It should be emphasized
that the bigram grammaris the source of the problem.If only unigram probabilities
are used, Pry(w,|p;) is independent of p; and the best incomingtransition is the same
for all words w;.)

Suggested Solutions to Language Modelling Problem

Several attempts have been madeto resolve this problem, as mentioned in Section 2.4.
Onesolution to this problem has been to augment the lexical tree with a separate
flat bigram section. The latter is used for all bigram transitions and the lexical
tree only for unigram transitions [39]. The scheme is shown in Figure 4.4. Bigram
transitions, from the leaves of either the lexical tree or flat structure, always enter
the flat structure, preserving the grammarstate distinctions required, for example, in
Figure 4.3(a). Unigram transitions enter the roots of the lexical tree. This solution
has two consequences for the speed performance:

e Theaddition of the flat lexicon increases the dynamic number of HMM models
to be searched.

IPR2023-00037

Apple EX1033 Page 88

IPR2023-00037
Apple EX1033 Page 89

58 CHAPTER 4. SEARCH SPEED OPTIMIZATION

Bigram
Transitions

Flat

cise Lexical Lexicon
Transitions Tree Bigram (Bigram

Transitions Section)
Figure 4.4: Auxiliary Flat Lexical Structure for Bigram Transitions.

e The number of unigram transitions is reduced significantly because of the tree
structure. However, the number of bigram transitions is similar to that of the
baseline system (Section 3.4.3, Table 3.6), whichstill constitutes a significant
computational load.

Alternative solutions are proposed in [40, 3] that construct separate secondary
trees for the bigram section, instead of the flat lexical structure of Figure 4.4. Both
of them report results on 10,000 word vocabulary experiments. In the former, the
numberof tree copies that are active range between 20 and 30, causing an increase
in the numberofactive states by about a factor of 2. The latter have reported near
real-time performance on the 10,000 word task with a language modelof perplexity
27. It is not clear how the performance extends to tasks with a larger vocabulary and
grammars.

Computing Language Model Probability Upon Word Exit

The difficulties can be overcome simply by deferring the computation of the language
model probability for a word until we reach a node in thelexical tree that uniquely
represents that word; i.e., it is not shared with any other word. If there are multiple
words with identical pronunciations (homophones), they canstill be forced to become
distinct at the leaf nodes. Therefore, we can defer the computation of language model
score for a word until it exits its leaf node in the lexical tree. The advantage of this
approach is that the total number of such computations per frameis very small. The
number of words that survive the beam search all the way to their final state, on
average, is about two orders of magnitude smaller than the vocabularysize.

Let us see how this scheme works with respect to the example in Figure 4.3(b).

IPR2023-00037

Apple EX1033 Page 89

IPR2023-00037
Apple EX1033 Page 90

4.2. LEXICAL TREE SEARCH 59

a

Extract Hiemp from thefinal state of w;;
From Htemp find Premp, the initially chosen predecessor word;
Obtain t, the end time of Dremp;
Find all word lattice entries p; that ended at t;

(In this example, they are p; and p>.)
Find: f = max;((Pp;(t)/Preemp(t)) ° Pru(w;|pi));

ee

Figure 4.5: Path Score Adjustment Factor f for Word w; Upon Its Exit.

Since the transitions to the root node shared by w; and w2 no longer include their
language model probabilities, the incoming score into the root at time ¢ is simply:

max(Pp(t))

The root node also inherits a history information that points to the word lattice
entry for the best predecessor word, as described in Section 3.2.4. However, it is
a temporary value since it does not include a language model probability for the
transition. Let’s call this history Hiemp. It is propagated as usual by the Viterbi
algorithm and eventuallyreaches the final states of w, or w2 (assuming theyare not
pruned by the beam search). By our earlier assumption, the final states of the leaf
nodes belong to distinct words and are not shared. Therefore, their language model
probabilities can now beincluded, and the path scores and history information htemp
updated if necessary. Figure 4.5 summarizes this path score adjustment at the end
of word w,;. The value f computed in the figure is the adjustment factor applied to
the path score at the end of w;. The word lattice entry that maximizes f becomes
the adjusted history at the end of w;, replacing Htemp. (In our discussions we have
neglected to deal with cross-word triphone models. However,it is straightforward to
accommodate it into the expression P,,(t).)

There are some disadvantages that stem from deferring the accumulation of lan-
guage model probabilities until word exit:

® The initial “priming” or guidance provided by the language modelis absent.
Since all words are grammatically equal until their final state is reached, the
search pruning provided by the language modelis lost and the number of HMM
models to be searched increases.

e Short function words which occur frequently but are poorlyarticulated, are
more likely to be pruned by the beam search before their final state is ever
reached. If their language model probabilities had been included upon word
entry, on the other hand, they would have received an initial boost allowing
them to survive the beam pruning.

IPR2023-00037

Apple EX1033 Page 90

IPR2023-00037
Apple EX1033 Page 91

60 CHAPTER 4. SEARCH SPEED OPTIMIZATION

These concerns are addressed below.

Computing Language Model Probability When Entering Leaf Nodes

One obvious solution to the lack of guidance from a language model is to adopt an
intermediate solution between computing the language model probability at the very
beginning upon word entry and at the very end upon word exit. Since the degree
of sharing in the lexical tree drops rapidly beyond 3 or 4 phone positions, one might
as well flatten the lexical structure completely beyond that depth. For example, the
lexical tree of Figure 4.2 is essentially flat beginning at a depth of4.

Since individual words are identifiable beyond a level of 3 or 4 from the roots,
language model scores can be computed during the NULLtransitions at these points
in a similar fashion to that described above. Thus, the computational savings afforded
by the tree structure are retained near the root where it matters most, and the
guidance and search pruning provided by the language modelis available when the
tree structure ceases to be as effective.

However, the above solution still doesn’t address the problem of poorly articulated
function words which are typicallyjust 1-3 phones long. Secondly, the shorter we make

. the depth of the actual tree structure and the earlier we compute language model
probabilities, the more HMMsare actively being searched at that point, increasing
the cost of the path score adjustments.

For these reasons, in the final implementation of our tree search algorithm, the
language model probability for a word is computed upon entering the final leaf node®
for that word, rather than when exiting it. The algorithm is basically identical to
that shown in Figure 4.5, except that the path score adjustment is performed when
entering thefinal phone of w;, rather than exiting w;. Furthermore,it does not apply
to single-phone words, which have to be treated essentially as in the baseline Sphinx-
II system, outside the lexical tree structure. But this is not a major issue since the
numberof single-phone words in the vocabularyis only about 10.

For a short function word, this organization has the effect of accumulating the
language model probability early into the word, reducing the chances of its having
been pruned because of poor acoustic match. In particular, in the case of single
phone words, the language model probability is computed and accumulated upon
word entry. This compromise partly retains the guidance provided by the language
model for poorly articulated short function words, while preserving computational
efficiency for the vast majority of the remaining words.

>Note that there are really several leaf nodes for any given word, caused bythe right context
fanout for cross-word triphone modelling. However, we shall continue to speak looselyof a leaf node
in the singular, with the right context fanout being implicitly understood.

IPR2023-00037

Apple EX1033 Page 91

IPR2023-00037
Apple EX1033 Page 92

4.2. LEXICAL TREE SEARCH 61

Optimization of Path Score Adjustment

We can further reduce the cost of path score adjustment operations shown in Figure
4.5 using the following optimization.

We observe that in the Viterbi algorithm,if a triphone model survives the beam
pruning through to its exit state at a certain frame, it is very likely to continue to
survive in the next several frames. This is particularly true of triphones near word-
ends. Thus, if we make a transition into a given leaf node of the lexical tree at time
te, we are likely to make that transition again at ¢, + 1. This is because speech
corresponding to a phone lingers for several frames.

Wenote that the path score adjustmentfor a transition into a leaf node at t.+1 is
identical to the adjustment at t., provided the temporary history information iewp
is identical in both cases (see previous discussion and Figure 4.5). This is obvious
because the final expression in Figure 4.5 for the adjustment factor f:

max((Pp;(t)/Poeemp(t)) * Pua (ws|pi))

is independent oft,; all the variables involved depend only on Hremp-

Therefore, we can eliminate many path score adjustment operations as follows.
When weenter the leaf node of a word w; with a new temporary history information
H:emp for thefirst time, we compute the complete path score adjustment factor and
cache the result. If we transition to the leaf node again in subsequent frames with the
same history, we simply re-use the cached result. Some rough measurements indicate
that this optimization eliminates approximately 50% of the adjustment operations in
our benchmarks.

4.2.3 Outline of Tree Search Algorithm

The lexical tree search is implemented as a time-synchronous, Viterbi beam search
algorithm®. It is similar to the baseline Sphinx-II decoder in many ways:

e It uses the samesignal processing front end and semi-continuous phonetic HMM
models as the baseline system, described in Section 3.1.1. The HMM topology
is the 5-state Bakis model shown in Figure 3.2.

e The pronunciation lexiconis also identical to that used in the baseline system
(Section 3.1.2).

e It uses backed off word trigram language models.

6The tree-search decoder is known within CMU as FBS8.

IPR2023-00037

Apple EX1033 Page 92

IPR2023-00037
Apple EX1033 Page 93

62 CHAPTER 4. SEARCH SPEED OPTIMIZATION

e Cross-word modelling at word ends is accomplished by right context fanout,
and at word beginnings by multiplexing a single HMM with dynamic triphone
mapping (Section 3.2.3).

e The vector quantization step is identical to the baseline system (Section 3.2.4).
In particular, only the top 4 densities in each feature codebook are fully evalu-
ated and used.

e Senone output probability evaluation is similar to the baseline system, except
that we have the option of evaluating only the active senones in a given frame.
These are identified by scanning the active HMMsin that frame. It is not
worthwhile in the baseline system because of the overhead of scanning the much
larger numberof active HMMs.

e The result of the Viterbi search is a single recognition hypothesis, as well as a
word lattice that contains all the words recognized during the decoding, their
time segmentations, and corresponding acoustic scores. The wordlattice typi-
cally contains several alternative end times for each word occurrence, but usually
only a single beginning time.

As with the baseline system, the decoding of each utterance is begun with the
path probability at the start state of the distinguished word <s> set to 1, and 0
everywhere else. An active HMM list that identifies the set of active HMMsin the

current frameis initialized with this first HMMof <s>. From then on, the processing
of each frame of speech, given the input feature vector for that frame, is outlined by
the pseudo-code in Figure 4.6. Some of the details, such as pruning out HMMsthat
fall below the beam threshold, have been omitted for the sake ofclarity.

The Viterbi recognition result is obtained by backtracking through the wordlat-
tice, starting from the lattice entry for the distinguished end symbol </s>in thefinal
frame and following the history pointers all the way to the beginning.

4.2.4 Performance of Lexical Tree Search

The lexical tree search implementation was evaluated on the same large vocabulary,
continuous speech test sets of read speech from the Wall Street Journal and North
American Business News domains as the baseline Sphinx-II system. To recapitulate,
they include the clean speech development test sets from the Dec.’93 and Dec.’94
DARPAspeech evaluations, as well as the evaluation test set of the latter.

The experiments are carried out on two different vocabulary sizes of 20K and 58K
words. The main parameters measured includethe following:

e Overall execution time and its breakdown among major components,as well as

IPR2023-00037

Apple EX1033 Page 93

IPR2023-00037
Apple EX1033 Page 94

4.2. LEXICAL TREE SEARCH 63

tree_forward_frame (input feature vector for current frame) {
VQ (input feature); /* Find top 4 densities closest to input feature +/
senone_evaluate (); /* Find senone output probabilities using VQ results */

hmm_evaluate (); /* Within-HMM/cross-HMM (except leaf transitions) */
leaf_transition (); /* Transitions to tree leaf nodes, with LM adjustment */
word_transition (); /* Cross-word transitions */

/* HMM pruning using a beam omitted for simplicity */

update active HMM list for next frame;
}

hmm_evaluate () {
for (each active HMM h)

for (each state s in h)

update path probability of s using senone output probabilities;

/* Cross-HMM and tree-exit NULL transitions */

L = NULL; /* List of leaf transitions in this frame */
for (each active HMM h with final state score within beam) {

if (h is leaf node or represents a single phone word) {
create word lattice entry for word represented by h; /* word exit */

} else {
for (each descendant node h’ of h) {

if (h’ is NOT leaf node)

NULL transition (final-state(h) -> start-state(h’));
else

add transition h->h’ to L;

*

}

leaf_transition () {
for (each transition t in L) {

let transition t be from HMM h to h’, and w the word represented by h’;
compute path score adjustment entering h’, INCLUDING LM probability of w;
update start state of h’ with new score and history info, if necessary;

$

+

word_transition () {

let {w} = set of words entered into word lattice in this frame;
for (each single phone word w’)

compute best transition ({w} -> w’), INCLUDING LM probabilities;
for (each root node r in lexical tree)

compute best transition ({w} -> r), EXCLUDING LM probabilities;

Figure 4.6: One Frame of Forward Viterbi Beam Search in Tree Search Algorithm.

IPR2023-00037

Apple EX1033 Page 94

IPR2023-00037
Apple EX1033 Page 95

64 CHAPTER 4. SEARCH SPEED OPTIMIZATION

frequency counts of the most common operations that account for most of the
execution time.

e Worderror rates for each test set and vocabularysize.

The experimentation methodologyis also similar to that reported for the baseline
system. In particular, the execution times are measured on DEC’s Alpha workstations
using the RPCCinstruction to avoid measurement overheads. See Section 3.4.1 for
complete details.

Recognition Speed

Table 4.2” lists the execution times of the lexical tree search on the 20K and 58K

tasks, and also showsthe overall speedup obtained over the baseline Sphinx-II recog-
nition system (see Table 3.3 for comparison). Clearly, tree search decoding is several

[Task|Dev|Dewd|Boaldy |Mean|

20K|4.68 4.66 4.75 4.70

58K|8.93 8.36 8.68 8.69

(a) Absolute Speeds (xRealTime).

[Task|Devo|Dew|Boal04|Mean|

 20K 4.8 4.7 4.7 4.7

58K 5.2 4.8 4.5 4.9

(6) Speedup Over Forward Viterbi Pass of Baseline System.

Table 4.2: Execution Times for Lexical Tree Viterbi Search.

times faster than the baseline system on the given 20K and 58Ktasks. As mentioned
at the beginning of this chapter, however, there are two main aspects to the decod-
ing procedure, acoustic model evaluation, and searching the HMM space, of which
the latter has been our main emphasis. Therefore, it is instructive to consider the
execution speeds of individual components of the lexical tree search implementation.

Table 4.3 shows the breakdown of the overall execution time of the lexical search

algorithm into five major components corresponding to the main functions listed in
Figure 4.6. It is also instructive to examine the number of HMMs and language
model operations evaluated per frame. These are contained in Tables 4.4 and 4.5,
respectively.

“Note that in all these tables, the mean value is computed overall test sets put together. Hence.
it is not necessarily just the mean of the means for the individualtest sets.

IPR2023-00037

Apple EX1033 Page 95

IPR2023-00037
Apple EX1033 Page 96

4.2. LEXICAL TREE SEARCH 65

on Eval.
HMM Eval.

Leaf Trans.

Word Trans.

ca Eval.
HMMEval.

Leaf Trans.

Word Trans.

(b) 58K System.

Table 4.3: Breakdown of Tree Viterbi Search Execution Times (xRealTime).

areaSeenetBarreeee
P_26.6%|te 551 556 557 354 5.er

(%Total)|(12.8)|(13.3)|(13.0)||(13.0)

(a) 20K System.

[|Dew]Dev0]|Boal|Mean|%Baseline|
[Total___|7561|7122|7358|7369|25.2%||

Word-initial 711 680 683 693 3.4%

%Total|(9.4)|(9.5)|(9.3)||(9.4)

(6) 58K System.

Table 4.4: No. of HMMs Evaluated Per Frame in Lexical Tree Search.

[Devs|Devo|Eval] |Mean|Baseline|
20K 663 591 609 625 4.8%

58k 1702 1493 1558 1595 6.2%

Table 4.5: No. of Language Model Operations/Frame in Lexical Tree Search.

IPR2023-00037

Apple EX1033 Page 96

IPR2023-00037
Apple EX1033 Page 97

66 CHAPTER 4. SEARCH SPEED OPTIMIZATION

In summary, the lexical tree search has reduced the total number of HMMsevalu-
ated per frame to about a quarter of that in the baseline system. More dramatically,
the numberof language model operations have been reduced to about 5-6%, mainly
because of the decision to defer the inclusion of language model probabilities until
the leaves of the lexical tree.

Accuracy

Table 4.6(a) shows the word error rates resulting from the lexical tree search on the
different test sets individually and overall. Table 4.6(6) provides a comparison with
the baseline system results from both the forward Viterbi search and the final A*
algorithm.

Foal|Mean]M3qC 21.2 18.9 18.0 19.4
58K|19.2 17.5 17.1 18.0

(a) Absolute Word Error Rates(%).

Bald] |Mean]oe(Vit.)|20.6 19.6 13.4 17.8
20K(A*) 28.8 24.3 18.0 23.7
58K(Vvit.)|27.9|224|183||23.1
58K(A*)|39.4|26.6|24.1||30.3

(6) %Degradation w.r.t. Baseline System Error Rates.

Table 4.6: Word Error Rates for Lexical Tree Viterbi Search.

The relative increase in recognition errors, compared to the baseline system,is
unquestionably significant. The appropriate baseline for comparison is the output
of the first Viterbi search pass, for obvious reasons, but even then the tree search is
about 20% worse in relative terms. However, it can be argued that the nearly five
fold speedup afforded by the lexical tree search is well worth the increase in error
rate. In practical terms, the absolute word error rate translates, very roughly, into 1
error about every 5 words, as opposed to the baseline case of 1 error about every6
words.

More importantly, we shall see in the subsequent sections of this chapter that the
loss in accuracy can be completely recovered by efficiently postprocessing the word
lattice output of the tree Viterbi search.

Weattribute the increase in word error rate to occasionally poorer word segmen-
tations produced by the tree search, compared to the baseline system. One problem

IPR2023-00037

Apple EX1033 Page 97

IPR2023-00037
Apple EX1033 Page 98

4.2. LEXICAL TREE SEARCH 67

is that Viterbi search is a greedy algorithm that follows a local maximum. In each
frame, the root nodesof the lexical tree receive several incoming, cross-word transi-
tions (from the final states of the leaves of the tree), of which the best is chosen by
the Viterbi algorithm. The sameis true in the case of the baseline system with a
flat lexical structure. However, in the latter, each cross-word transition is augmented
with a grammar probability so that the effective fan-in is reduced. This is not possible
with the tree structure, with the result that the Viterbi pruning behaviour at tree
roots is modified.

4.2.5 Lexical Tree Search Summary

Clearly, the results from the lexical tree search algorithm are mixed. On the one hand,
there is a nearly 5-fold overall increase in recognition speed, but it is accompanied by
an approximately 20% increasein worderrorrate, relative to the baseline system. We
shall see in subsequent sections that we can, not surprisingly, recover from the loss
in accuracy by postprocessing the word lattice output of the tree search algorithm.
Someof the other conclusions to be drawn in this section are the following:

e While the overall speedupis slightly under 5, the search speed alone, excluding
senone output probability computation, is over 6 times faster than the baseline
case (comparing Tables 4.3 and 3.4). This is an importantresult since our focus
in this section has been improving the speed of searching the HMM space.

e It should be pointed out that the reduction in search speed is irrelevant if
the cost of computing state output probabilities is overwhelming. Thus,it is
appropriate to rely on a detailed tree search if we are using semi-continuous or
even discrete acoustic models, but it is less relevant for fully continuous ones.

e Using semi-continuous acoustic models, we obtain a word lattice that is ex-
tremely compact. The total numberof wordsin thelattice is, on average, sev-
eral hundreds to a few thousand for an average sentence of 10sec duration (1000
frames). Furthermore, the lattice error rate—the fraction of correct words not
found in the lattice around the expected time—is extremely small. It is about
2%, excluding out-of-vocabulary words. This is substantially the same as the
lattice error rate of the baseline Sphinx-II system, and similar to the results
reported in [65]. The compact nature of the word lattice, combined with its
low error rate, makes it an ideal input for further postprocessing using more
detailed acoustic models and search algorithms.

Thelexical tree described in this section can be contrasted to those described in
(40, 3, 39, 43] in their treatmentof the language model. By deferring the application of
language model probabilities to the leaves of the tree, we gain a significant reduction
in computation.

IPR2023-00037

Apple EX1033 Page 98

IPR2023-00037
Apple EX1033 Page 99

68 CHAPTER 4. SEARCH SPEED OPTIMIZATION

4.3. Global Best Path Search

In Section 4.2.4 we saw that although the lexical tree search algorithm improves the
execution efficiency of large vocabulary continuous speech recognition, there is also
a significant degradation in the recognition accuracy of about 20% relative to the
baseline Sphinx-II system using the same acoustic, lexical and grammar models. We
also observed that much of this degradation could be attributed to the following
factors:

e Greedy nature of the Viterbi algorithm in following a locally optimum path that
is globally suboptimal; and more so than in the case of the baseline system.

e Poorer word segmentations along the best Viterbi decoding.

However, the lexical tree search algorithm produces not only the single best Viterbi
decoding, but also a word lattice containing other candidate words recognized. An
examination of the word lattices from both the lexical tree Viterbi search and the

flat-lexical Viterbi search in the baseline system reveals that the correct words are
predominantly present in both lattices at the expected times. Therefore,it is possible
to extract a more accurate recognition result from the word lattice.

In this section we present a simple and efficient algorithm to search the word
lattice produced by the lexical tree search for a globally optimum decoding. This
is accomplished by casting the word lattice as a directed acyclic graph (DAG) such
that the problem is reduced to that of finding the least-cost path from end to end.
Therefore, any of the well-known andefficient shortest-path graph search algorithms
can be used. Weshow that the algorithm brings the recognition accuracy significantly
closer to that of the baseline system, at an almost negligible computational cost.

4.3.1 Best Path Search Algorithm

Global Best Path Search Using Bigram Grammar

The word lattice output from the lexical tree Viterbi search algorithm contains in-
stances of all candidate words that were recognized during the search. In particular,
there may be several candidates at any point in time. Each unique word instanceis
identified by two quantities: the word itself, and a start time for that instance of the
word. Figure 4.7 shows an example of such a word lattice, where each word instance
is identified by one of the line segments representing a word starting at a specific time
frame. Note that the Viterbi search algorithm produces a range of end times for each
word instance, as observed earlier at the beginning of Chapter 3 and in Section 4.2.3.

IPR2023-00037

Apple EX1033 Page 99

IPR2023-00037
Apple EX1033 Page 100

4.3. GLOBAL BEST PATH SEARCH 69

Time =

0 20 40 60 80 100 120 140 160 i 80 200 220 240

TAKE CASE AN

KATE DELL CAISSE EXAMPLE
THEY TS: KAY EXAM
K, K. SNAGS

FIDELITY’S AS EX

FIDELITY SAYS

FIDEL HASa ae

VALLEY’S

start time first end time last end time

Figure 4.7: Word Lattice for Utterance: Take Fidelity’s case as an example.

Thus, the information contained in the word lattice can be converted into as a

DAGas follows: Each word instance represented by a pair, (w,t), is a DAG node,
where w is a word-id and t the start time corresponding to this instance of w. There
can be a range of end-times for this word instance or DAG node, as just mentioned.
Wecreate anedge from anode (w;,t;) to node (w;,t;) iff t; —1 is one of the end
timesof (w;, t;); i-e., there is a word lattice entry for w; at t; — 1 and soit is possible
for (w;,t;) to follow (w;,t;) in time. Such a DAG representation of the example in
Figure 4.7 is shown in Figure 4.8. It is easy to see that the graph is indeed a DAG:

e The edges are directed.

e The DAG cannot contain any cycles since edges always proceed in the direction
of increasing start time.

The DAG is rooted at (<s> ,0), since the Viterbi search algorithm is initialized to
start recognition from the beginning silence <s> at time 0. We can also identify a
final node in the DAG which mustbe an instance of the end silence word </s> that
has an end time of JT, where T is the end timefor the entire utterance®.

Wecan nowassociate a cost with each edge in the DAG. Consider an edge from
a node (w;,t;) to (w;,t;). The cost for this edge is the product of two components:
an acoustic score or probability and a grammar probability®. The acoustic score is
obtained as follows. The edge represents a time segmentation of w; from frame?;

SWe can be sure that there will only be one such instance of </s> , since there can only be one
entry for </s> ending at T in the wordlattice.

* Actually, the cost is computed from the reciprocal of the probabilities, since an increase in the
latter implies a reduction in the former.

IPR2023-00037

Apple EX1033 Page 100

IPR2023-00037
Apple EX1033 Page 101

70 CHAPTER 4. SEARCH SPEED OPTIMIZATION

EXAMPLE
14

VALLEY’S

Figure 4.8: Word Lattice Example Represented as a DAG.

and ending at t; — 1, as discussed above. Since the word lattice produced by the
Viterbi search contains all the word-ending scores of interest, we can easily compute
the acoustic score for this segmentation of w;. In fact, the word lattice contains path
scores for all possible phonetic right contexts of w;, and we can choose exactly the
right one depending onthefirst base phone of wy.

Asfor the language model probability component for the edge, let us first consider
the case of a simple bigram grammar. The grammar probability component for the
edge underconsideration is just P(w,;|w;). In particular, it is independent of the path
taken through the DAGto arrive at (w;,t;).

We have now obtained a cost for each edge of the graph. The cost of any path
through the DAG from the root nodeto the final nodeis just the product of the costs
of the individual edges making up the path. The path that has the least cost is the
globally optimum one, given the input word lattice, acoustic models and (bigram)
grammar. The word sequence making up this path has to be the globally optimum
one. Given the above formulation of the problem, anyof the textbook algorithmsfor
finding the least-cost path can be applied [17]. Given a graph with N nodes and E
edges, the least-cost path can be found in timeproportional to N + E£.

Global Best Path Search Using Trigram Grammar

The above formulation of edge costs is no longer valid if we use a trigram grammar
since the grammarprobability of an edge is not solely dependent on the edge. Con-

IPR2023-00037

Apple EX1033 Page 101

IPR2023-00037
Apple EX1033 Page 102

4.3. GLOBAL BEST PATH SEARCH 71

(b) Modified DAG for Trigram Grammar.

Figure 4.9: Word Lattice DAG Example Using a Trigram Grammar.

sider an edge from node (w;,t;) to (w;,t;) again. The trigram probability for the
transition depends also on the predecessor of w;. Since there can be more than one
such predecessor in the DAG, the grammarprobability for the edge under consider-
ation is not uniquely determined.

Thedifficulty is easily resolved by the usual methodof replicating a node for each
distinct predecessor, i.e., creating distinct grammar states in the DAG. Weillustrate
this process with an example in Figure 4.9. (The start time information at each
node has been omitted from the figure since it is superfluous and only clutters up
the picture, as long as it is understood that each node has a specific start time
associated with it. We shall also omit the time componentin labelling nodes below,
under the assumption that nodes can beidentified uniquely even after this omission.)
Modification to the DAG is straightforward:

1. If a node (w) has n distinct predecessors (w;),2 = 1,2,...,n in the original
DAG, it is replicated n times in the new DAG,labelled (wiw),2 = 1,2,...,n
respectively; i.e., the first component of the label identifies a predecessor word.
Instances of such replication where n > 1 are marked by dashed rectangles in
Figure 4.9(6).

IPR2023-00037

Apple EX1033 Page 102

IPR2023-00037
Apple EX1033 Page 103

—] bo CHAPTER 4. SEARCH SPEED OPTIMIZATION

2. If there was an edge from (w;) to (w;) in the original DAG,the new DAGhas an
edge from everyreplicated copyof (w;) to (w;w;). Note that by the replication
and labelling process, if the new DAG has an edge from (w;w;) to (w,w7), then
w= Wk.

3. The acoustic score componentof the cost of an edge from node (w;w;) to (w;w;)
in the new DAGis the same as that of edge (w;) to (w,) in the original DAG.

4. The language model component of the cost of an edge from node (w;w;) to
(w;w,) in the new DAGis the trigram probability: P(w,|w;wj).

In particular, it should be noted that the language model probability component of
the cost of an edge in the new DAG is no longer dependent on other edges in the
DAG.

It should be easy to convince ourselves that the new DAGis equivalent to the
original one. For any path from the root nodeto the final node in the original DAG,
there is a corresponding path in the new DAG, and vice versa. Thus, we have again
reduced the task to the canonical shortest path graph problem and the standard
methods can be applied.

It is, in principle, possible to extend this approach to arbitrary language models,
but it quickly becomes cumbersome and expensive with higher order n-gram gram-
mars. With n-gram grammars, the size of the graph grows exponentially with n, and
this is one of the drawbacks of this approach. Nevertheless, it is still valuable since
bigram and trigram grammars are the most popular and easily constructed for large
vocabulary speech recognition.

Suboptimality of Viterbi Search

At this point we consider the question of why we should expect the global best path
algorithm to find a path (i.e., word sequence) that is any better than that found
by the Viterbi search. One reason has to do with the approximation in applying
the trigram grammar during Viterbi search as explained in Section 3.2.2. The same
approximation is also used in the lexical tree Viterbi search. The suboptimal nature
of this approximation can be understood with the help of Figure 4.10.

Let us say that at some point in the Viterbi tree search, there were two possible
transitions into the root node for word w, from the final states of w2 and w3. And
let us say that the Viterbi algorithm deemed the path w,w2w, (including acoustic
and grammar probabilities) to be more likely and discarded transition w3w4, shown
by the dashed arrow in the figure. It could turn out, later when we reach word
ws, that perhaps w3w4ws is a morelikely trigram than w2w4ws, and in the global
picture transition w3w, is a better choice. However, given that the Viterbi algorithm
has already discarded transition w3w,4, the global optimum is lost. The shortest

IPR2023-00037

Apple EX1033 Page 103

IPR2023-00037
Apple EX1033 Page 104

4.3. GLOBAL BEST PATH SEARCH 73

Figure 4.10: Suboptimal Usage of Trigrams in Sphinx-II Viterbi Search.

path algorithm described here considersall such alternatives discarded by the Viterbi
algorithm and finds the globally optimum path.

The second reason for the improvement in accuracy follows from the above. We
noted in Section 4.2.4 that the Viterbi algorithm, owing to its greedy nature, produces
suboptimal word segmentations along the best Viterbi path. However. the word
lattice often also contains other word segmentations that have been discarded along
the best Viterbi path. The global DAG search uncovers such alternatives in finding
a global optimum, as described above.

4.3.2 Performance

We now summarize the improvementin recognition accuracy obtained by applying
the global best path search algorithm to the word lattice produced by the lexical
tree search. We also examine the computational overhead incurred because of this
additional step.

Accuracy

Table 4.7 shows the word errorrate figures on our benchmarktest sets resulting from
applying the best path DAG search algorithm to the word lattice output of the lexical
tree Viterbi search.

As we can see from Table 4.7(b), there is a significant improvement of over 10%
in accuracy relative to the tree search. Correspondingly, Table 4.7(c) shows that
comparedto thefirst pass of the baseline Sphinx-I] system, the word error rate is now
less than 10% worse, in relative terms. In practical terms, this is almost insignificant
given their absolute word error rates of 15%. We surmise that this difference in
recognition accuracy is partly attributable to incorrect word segmentations for which
no alternatives were available in the word lattice, and partly to pruning errors during
the tree search.

IPR2023-00037

Apple EX1033 Page 104

IPR2023-00037
Apple EX1033 Page 105

74 CHAPTER 4. SEARCH SPEED OPTIMIZATION

[|Ded|Deedy|Beal|Mean]
20K|18.5 16.9 16.5 17.3

58K|16.5 15.4 15.2 15.7

(a) Absolute Word Error Rates.

[|Dex|Deody|Eval|Mean|
20K|12.z 10.9 8.4 10.5
58K|14.3 12.1 1 12.5

(6) %Improvement Over Lexical Tree Search.

[Devs|Devo]|Eval]|Mean|sae 5.3 7.0 4.0 5.4ra ior|58K(oe 9. 9 (€ 7 5.3 CaeSKA EET
(c) %Degradation w.r.t. Baseline System.

Table 4.7: Word Error Rates from Global Best Path Search of Word Lattice Produced

by Lexical Tree Search.

Recognition Speed

Table 4.8 summarizes the average execution times of the shortest path algorithm.
The computational overhead associated with this step is negligible. This is to be
expected since the DAGsize is usually small. For a 10sec long sentence, it typically
consists of a few hundred nodes and a few thousand edges.

|__|Dev93|Dev94|Evald4||Mean| 20K|0.04 0.05 0.05 0.05

58K|0.07 0.08 0.09 0.08

Table 4.8: Execution Times for Global Best Path DAG Search (x RealTime).

4.3.3 Best Path Search Summary

Performing a global best path search over the word lattice output of the lexical
tree Viterbi search is unquestionably advantageous. The resulting accuracy is not

IPR2023-00037

Apple EX1033 Page 105

IPR2023-00037
Apple EX1033 Page 106

4.3. GLOBAL BEST PATH SEARCH cn

significantly worse than that of the baseline system, and it is achieved at an almost
negligible cost.

The DAGsearchis similar to the A* search of the baseline system in thatit finds a
globally optimum path, but it does so at a much lower computational cost, as seen by
comparing Tables 4.8 and 3.3. On the other hand, the A* passin the baseline system is
not restricted to low-order n-gram grammars, and uses additional word segmentation
information from the backward Viterbi pass, which is the main reason for its superior
word accuracy. We note that we are not precluded from applying the latter passes
of the baseline system to the word lattice output of the lexical tree Viterbi search.
Likewise, we can apply the shortest path algorithm to the word lattice output of the
forward Viterbi pass of the baseline system. One reason to avoid a backward passis
that many practical systems need online operation, and it is desirable not wait for
the end of the utterance before beginning a search pass.

The DAGsearch algorithm, while sufficiently fast to be unobservable for short
sentences, can cause noticeable delay for a long sentence. But this can be avoided by
overlapping the search with the forward pass. The nodes of the DAG can bebuilt
incrementally as the forward Viterbi pass produces new word lattice entries. The
addition of a node onlyaffects existing nodes that immediately precede the new one
and nodes that occur later in time. Since the Viterbi search is a time-synchronous
algorithm, it is likely to add new nodes towards the end of the DAG, and hence the
update to the DAGfor the addition of each new node is minimal.

There are several other uses for the DAG structure. For example, once the word
lattice is created,it is possible to searchit efficiently using several different parameters
for language weight, word insertion penalties, etc. in order to tune such parameters.
Onecan also search the DAGseveral times using different language models,effectively
in parallel. The result is a measure of the posterior probability of each language
model, given the input speech. This can be useful when users are allowed speak
phrases from different domains without explicit prior notification, and the system has
to automatically identify the intended domain by trying out the associated language
models in parallel.

The creation of word graphs and some of their uses as described here, has also
been reported in [65]. However, they do not report on the performance issues or on
the use of the shortest path algorithm to find a global optimum that overcomes the
suboptimality of the Viterbi search algorithm. A final word on the use of the global
path search is that it essentially eliminates the needfor a full trigram search during
the first pass Viterbi search. Thus, the approximate use of a trigram grammarin the
forward pass, in the manner described in Section 3.2.2 is quite justified.

IPR2023-00037

Apple EX1033 Page 106

IPR2023-00037
Apple EX1033 Page 107

76 CHAPTER 4. SEARCH SPEED OPTIMIZATION

4.4 Rescoring Tree-Search Word Lattice

4.4.1 Motivation

We noted in Section 4.2.5 that the word lattice output of the lexical tree Viterbi
search is quite compact, consisting of only several hundreds or thousands of words
for a 10sec sentence, on average, and that its low lattice error rate makes it an ideal
input for postprocessing with models and algorithms of higher sophistication.

The main purpose of this section is to obtain a measure of the quality of the word
lattice produced by the lexical tree search. This is relevant for understanding what
we lose or gain by postprocessing the word lattice with detailed models instead of
performing a complete search with such models. The parameters that determine the
quality of the word lattice include its size and the lattice error rate. The former
measures the work needed to search the lattice, while the latter sets an upper bound
on the recognition accuracy.

We measure these parameters indirectly by rescoring the lexical tree word lattice
with the forward pass Viterbi search of the baseline Sphinx-II system. The main
difference between the two is that the rescoring pass is restricted to searching words
in the lattice. By comparing the recognition accuracy and search time overhead with
the baseline system results in Section 3.4, we ascertain the quality of the lexical tree
word lattice output.

Webelieve that the suboptimality of the tree search word lattice manifestsitself as
occasionally poor word segmentations that we observe by manually comparing them
with the baseline Sphinx-II system. To overcomethis shortcoming, we allow the word
boundaries in the input lattice to be treated in a fuzzy manner. In other words, at
any time ¢ in the rescoring pass, we allowcross-word transitions to those words in
the tree search wordlattice that begin within a given window of t. We can afford to
be generous with the windowsince the size of the input word lattice is small anyway.
In our experiments we use a windowof 25 frames although that is probably an order
of magnitude larger than necessary.

The output of the rescoring pass is another word lattice that presumably has
correct word segmentations. This lattice is then searched using the global best path
algorithm described in Section 4.3 to produce thefinal recognition result.

4.4.2 Performance

The newconfiguration consisting of three passes—lexical tree search, rescoring its
word lattice output, and global best path search of the rescored word lattice—has
been tested on our benchmark test sets. We use the sameset of acoustic and language
models in the rescoring pass as in the lexical tree search and the baseline system.

IPR2023-00037

Apple EX1033 Page 107

IPR2023-00037
Apple EX1033 Page 108

4.4. RESCORING TREE-SEARCH WORD LATTICE 77

 [__|Deob|Deed]|Boal0y |Mean]
20K] 174|16.0|15.9||164
58K|15.0|144|14.5||14.7

(a) Absolute Word Error Rates(%).

CeeDeaDeeealer

20Ka “i.: 1. 3 0.2258K(72) 7 0. 7 0.3 7zBe clonsated
(6) %Degradation w.r.t. Baseline System. (Negative values indicate improvement

over baseline system.)

Table 4.9: Word Error Rates From Lexical Tree+Rescoring+Best Path Search.

[|Ded|Deed|Boaldy |Mean|

20K|0.72 0.76 0.80 0.76

58K|1.25 1.26 1.35 1.28

) Rescoring Pass Alone (xRealTime).

Dev93|Dev94|Eval9{||Mean|Speedup Over
Baseline Fwd.Vit.

20K 5.4 5.5 5.5 4.0458K 10.2 0.0 10.0||10.0 4.24

(6) Lexical Tree+Rescoring+Best Path Search (xRealTime).

Table 4.10: Execution Times With Rescoring Pass.

Table 4.9 summarizes the word error rates obtained by using all three passes,
and compares them to the baseline system. The bottom line is that there is no
difference in accuracy between the newthree-pass search and the baseline one-pass
search. One reason the three-pass baseline system is still better is that the backward
pass provides additional word segmentations to the A* pass, that are lacking in the
lexical tree-based system.

Table 4.10 shows the execution times with the rescoring pass. We note that our
implementation has not been optimized or tuned. Hence, the costs shown in the table
are somewhaton thehigherside.

IPR2023-00037

Apple EX1033 Page 108

IPR2023-00037
Apple EX1033 Page 109

78 CHAPTER 4. SEARCH SPEED OPTIMIZATION

4.4.3 Summary

The main conclusion from this section is that the word lattice output of the lexical
tree is compact and has a lowlattice-error rate. We are able to recover the baseline

system recognition accuracy at the cost of about 15% increase in computation. The
computational overheadis less than 5% compared to the forward pass of the baseline
system. The 3-pass tree-based recognizer is about 4.1 times faster than the forward
pass of the baseline system on our benchmarks.

Wealso conclude that though the tree search is sub-optimal in that the output
word segmentationsare occasionally incorrect, it is possible to recovertheloss using
a second rescoring pass similar to the first pass of the baseline Sphinx-II system. The
A* accuracy of the baseline system is still slightly better because of the additional
word segmentations provided byits backward pass.

4.5 Phonetic Fast Match

4.5.1 Motivation

We have described the senone as the acoustic model shared by a cluster of phonetic
HMMstates (Sections 2.1.2 and 3.1.1). Mei-Yuh Hwang in her dissertation [27]
has pointed out that “...each senone describes a very short distinct acoustic event
(shorter than a phoneme)... ,” and “...it can be used to construct modelsof all kinds
of acoustic phenomena.” Oneof the phenomena modelled bysenonesis the relative
activity of the different phonemes at any given time.

Let us see howsenonescan beused to predict the presence or absence ofa given
basephone at a given point in the input speech. In Sphinx, clusters of HMMstates
that form a senone can only belong to a single parent basephone. That is, senones are
partitioned among basephones. Considerall basephones p;,i = 1,2,.... Let CD(p;)
represent the collection of context dependent triphones derived from p; as well as p;
itself. We say that senone s « CD(p;), if s models any state of any phone in CD(p;).
(Similarly, s € p;, if s models any of the states of the basephone pi-) At each time
instant t, we compute base phone scores given by:

P,,(t) = i maeaile))i8 = 1,2,... (4.2)
where 6,(t) is the output probability of senone s at t. That is, P,,(t) is the output
probability, at time t, of the best scoring senone belonging to basephone p; or any
triphone derived from it. Equation 4.2 defines an ordering or ranking amongall
basephones, as well as the acoustic separation between them,in each frame.

Wecan use the above ranking as a measure oftherelative activity of the individual
basephones at any point in time. The basic understandingis that if P,,(t) >> P,,(t)

IPR2023-00037

Apple EX1033 Page 109

IPR2023-00037
Apple EX1033 Page 110

4.5. PHONETIC FAST MATCH 79

for some two basephones p; and p;, then noneofthe states derived from p; will score
well at ¢, and all instances of HMMs derived from p; can be pruned from search.
In other words, by setting a pruning threshold or beam width relative to the best
scoring basephone, we can limit the search at time t to just those falling within the
threshold. The phones within the beamwidth at ¢ are thelist of active candidates to
be searched at t. Because of this similarity to word-level fast match techniques that
identify candidate words active at a given time, wecall this the phonetic fast match
heuristic.

The proposed heuristic raises the following issues:

e Like other fast match techniques, the phonetic fast match can cause pruning
errors during search. This occurs because senone scores are noisy, as we shall
see later in Section 4.5.2, and they occasionally mispredict the active phones.
Weexploreefficient ways of minimizing pruningerrors later underthis section.

e Equation 4.2 requires the computation of all senone output probabilities in
order to determine the base phone scores. Thatis relatively expensivefor a fast
match heuristic. We can also obtain base phone scores from just the context
independent senones; i.e., s € p; instead of s e CD(p;) in equation 4.2. However,
by omitting the more detailed context dependent senones from the heuristic, we
make the phone scores and rankingless reliable, and the beamwidth must be
increased to avoid pruning errors. We explore the trade-offs presented by these
alternatives.

A somewhatsimilar approach to search pruning hasalso been suggested in (56, 31].
In their work, phones are pruned from the search process based on their posterior
probabilities estimated using neural network models. It is also different in that the
pruning mechanism is embedded in a hybrid Viterbi-stack decoding algorithm. Fi-
nally, we use the phone prediction mechanism to activate new phones at a given
point in the search, and not to deactivate already active ones, unlike in their case.
Webelieve that this leads to a more robust pruning heuristic given the nature of our
semi-continuous acoustic models.

In Section 4.5.2, we present the details of the heuristic and its incorporation as a
fast match front end into thelexical tree search. This description is primarily based
on equation 4.2, i.e., using all senones to compute the base phone scores. But most
of it also applies to the alternative scheme of using only the context independent
senones. We present details of the performance of both schemes on our benchmarks
in Sections 4.5.3 and 4.5.4, respectively.

IPR2023-00037

Apple EX1033 Page 110

IPR2023-00037
Apple EX1033 Page 111

80 CHAPTER 4. SEARCH SPEED OPTIMIZATION

4.5.2 Details of Phonetic Fast Match

Phones Predicted by Best Scoring Senones

Wefirst consider an example of the base phone ranking produced by equation 4.2.
Figure 4.11 illustrates the heuristic with an example extracted from one of our bench-
mark tests. Each row represents one frame of speech. All senone output probabilities
are computed in each frame to obtain a base phone score. The base phones are ranked
accordingly and pruned with a certain threshold. Welist the remaining active phones
in each frame in descending order of their scores. (See Appendix A for a complete
list of the 50 context independent phones used in Sphinx-II.) The figure underscores
several points:

e The candidate basephonelist in each frame, even though quite short, appears
to contain the correct base phone, and quite often at the head ofthe list. We
emphasize appears because, a priori, it is by no meansclear which base phoneis
the “correct” one in any given frame. At this point we can onlyvisually discern
a pattern in the candidate lists that seems to match the expected basephone
sequencefairly well.

e It is obvious that the best phone in a frame is certainly not always the correct
one, whatever that may be, since we sometimes observe a best phonethat is
not any of the correct ones. Hence, it is necessary to look further downthelist
for the correct basephone.

e The choice of the pruning threshold is crucial. Too tight a threshold causes the
correct phone to be pruned entirely from the list. On the other hand,if it is
too wide, we end up with too many unnecessary candidates.

e The length of the list varies from frame to frame, indicating the acoustic con-
fusability within each frame. The confusion is higher around phone boundaries.

Quality of Phone Prediction

We can estimate the quality of this heuristic by measuring the position of the correct
base phone in the candidate list in each frame. But wefirst need to know what the
correct phoneis in a given frame. For that we use the Viterbi alignment [52] of the
correct sequence of phones to the input speech’. Specifically, the experimentconsists
of the following steps:

1. Obtain the Viterbi alignment for an entire test set. This gives us a correct
basephone mapping for each framein thetestset.

1°The choice of Viterbi alignmentas the reference is debatable. But we believe that any other
alignment process will not makea significant difference to the resulting phone segmentations.

IPR2023-00037

Apple EX1033 Page 111

IPR2023-00037
Apple EX1033 Page 112

4.5. PHONETIC FAST MATCH 81

331] dh b pth dax ix k td
332] dh bth p ix ax iheh kaeey d gtd
333] dh bth p ax ix ey ih eh
334] dh th ey ih ax eh bix pae t d
335] ih ax ey t dh ix eh daeth b p
336] ih ix ey ax ae eh t d

i ey ae eh er
ax

ax

339] ih ix ax ey eh er uw ah
ax

ax

s

ts td

zts t dd

w >oawu oo”©NNN
349] ta ct w N

td ch jh
ch

td kdd pd
td k dd

f ch hh td sh KE jh
356] ch sh t f jh hh = &k

yhh p sth kK
ae hh f peh kth ax sherix d s

wontNws etoctoctoctct.ct ct mu aa a

iw on oO Li H oO= ct £n dpe
360] eh ae r ey aw ah aa ih ax ow ix
361] ae eh aw ey ax ah ih row ay
362] ae eh ax ih ey ix aw
363] ax ae eh ih ix aw ey
364] eh ax ae ih ix aw

365] eh ax ae ix ih ah

366] eh ax ah ix ih ae n ay

BBi
iy

ng

ng 4
m ng dh td

[374] a dh ng m y td
C 375] a i

mo w ~] - wu QBaapeABRPPHS Q.AQ.a.A. pPpPAEBESs
oooF H

Figure 4.11: Base Phones Predicted by Top Scoring Senones in Each Frame: Speech
Fragment for Phrase THIJS TREND, Pronounced DH-IX-S T-R-EH-N-DD.

IPR2023-00037

Apple EX1033 Page 112

IPR2023-00037
Apple EX1033 Page 113

82 CHAPTER 4. SEARCH SPEED OPTIMIZATION

100

90 + histogram ©
cumulative distribution +

g 80

: 70
60

< 50
o a
=> 40
5

z 30
= 20

Figure 4.12: Position of Correct Phone in Ranking Created by Phonetic Fast Match.

2. Use the heuristic of equation 4.2 to obtain an ordering ofall basephones in each
frame (without any pruning).

3. In each frame, identify the position of the correct base phone in the rankedlist.

This test was run on a random sampling of sentences chosen from our benchmark
test sets described in Section 3.4.1. Figure 4.12 shows the resulting histogram of the
position of the correct base phone" in the orderedlist created by equation 4.2. For
example, we note that the correct base phone occurs at the very head of the ordered
list created by the phonetic fast match over 40% of the time.It is just one away from
the head of the list 20% of the time.

The figure also includes the cumulative distribution corresponding to the his-
togram. It shows that the correct phonein a given frameis missing from the top 10
phones only about 5% of the time, and from the top 20 phones only 1% of the time.
The numberof pruning errors is proportional to the frequency of misses.

Clearly, we should use as tight a pruning threshold as possible without incurring
an excessive number of pruning errors. Such errors occur if the correct base phone
is not within the pruning threshold in some frame. With a tight threshold, they can
occurfairly often. For a given threshold, pruning errors are morelikely around phone
boundaries, where the degree of confusability between phonesis higher.

“The figure shows 63 basephones instead of the 50 listed in Appendix A. The remaining 13
correspond to various noise phones.

IPR2023-00037

Apple EX1033 Page 113

IPR2023-00037
Apple EX1033 Page 114

4.5. PHONETIC FAST MATCH 83

Current Frame Being Searched

pe=l EE: 1 t+ pe+2 | 143 pt+4 Frames

Lookahead window (4 framesin this example):

Active set of base phones determinedin each frame in window
and combinedto predict base phonesto activate in frame t +1.

Figure 4.13: Lookahead Windowfor Smoothing the Active PhoneList.

Reducing Pruning Errors Through Smoothing

Pruning errors can be reduced if we use the candidate list to determine when to

activate new phones, but not to de-activate them. That is, once activated, a phone
is searched as usual by the Viterbi beam search algorithm.

Secondly, the candidate list can also be made more robust by smoothing it by
consideringall candidate phones from a window of neighbouring frames.If the candi-
date list is used only to activate new phones to be searched in the future, the window
should be positioned to look ahead into the future as well. Hence, we call it a looka-
head window. The twostrategies together overcome the problem of sporadic holesin
the active phonelist, especially around phone boundaries.

Figure 4.13 summarizes the lookahead window scheme used in our experiments.
A windowof 2 or 3 framesis usually sufficient, as we shall see in the experimental
results.

Algorithm Summary

The phonetic fast match heuristic has been incorporated into the lexical tree search
pass of the decoder. The resulting modification to the original algorithm (see Figure
4.6) is straightforward:

1. We compute all senones scores in each frame instead of just the active ones,
since the base phone scores are derived from all senones (equation 4.2).

2. Since the active phones are determined by looking ahead into future frames.
senone output probability evaluation (and hence Gaussian density or VQ com-
putation) has to lead the rest by the size of the lookahead window.

3. In each frame, before we handle any cross-HMMorcross-word transition. thelist
of new candidate phones that can be activated is obtained by the phonetic fast

IPR2023-00037

Apple EX1033 Page 114

IPR2023-00037
Apple EX1033 Page 115

84 . CHAPTER 4. SEARCH SPEED OPTIMIZATION

match heuristic together with the lookahead window mechanism.If a basephone
is active, all triphones derived from it are also considered to be active.

4. In each frame, cross-HMMand cross-word transitions are made only to the
membersin the active phone list determined above.

The main drawback of this heuristic is that one needs to compute the output
probabilities of all senones in each frame in order to determine the phones to be
activated in that frame. This overhead is partly offset by the fact that we no longer
need to track down the active senones in each frame by scanningthelist of active
HMMs. The alternative heuristic proposed at the end of Section 4.5.1 determines the
active phones from just the context-independent senone, and does not require all of
the context-dependent senone scores.

4.5.3. Performance of Fast Match Using All Senones

We measure the performance of the decoder in its full configuration—lexical tree
search augmented with the phonetic fast match heuristic, followed by the rescoring
pass (Section 4.4) and global best path search (Section 4.3). The benchmarktest sets
and experimental conditions have been defined in Section 3.4.1.

The two main parameters for this performance evaluation are the lookahead win-
dow width and the active phone pruning threshold. The benchmark test sets are
decoded for a range of these parameters values. Since listing the performance on each
test set individually for all parametric runs makes the presentation too cluttered, we
only show the performance aggregated overall testsets.

20K Task

Figure 4.14 shows twosets of performance curves for the 20K task. In Figure 4.14(a),
each curve showsthe variation in word error rate with changing pruning thresholdfor
a fixed lookahead window size. (The pruning threshold is in negative log-probability
scale, using a log-base of 1.0001.) With the fast match heuristic we asymptotically
reach the baseline word error rate of 16.4% as the pruning beamdwidth is widened.
It is also clear that increasing the lookahead windowsize for a fixed beamwidth helps
accuracy.

Figure 4.14(b) shows the same data points, but instead of the pruning beamdwidth,
weplot the numberof active HMMsperframe along the z-axis. Comparingthis graph
to the statistics for the lexical tree search without phonetic fast match (Section 4.2.4,
Table 4.4), it is clear that we can essentially attain the baseline word error rate of
16.4% while reducing the numberof active HMMsbyabout 50%.

IPR2023-00037

Apple EX1033 Page 115

IPR2023-00037
Apple EX1033 Page 116

4.5. PHONETIC FAST MATCH 85

Window-size=2 Se
—-+--

-E}--

%WordErrorRate
17.5 ~ Baseline WER = 16.4%

an, =

tea ld =
Secersry ——

16.5 eee Sa aa
40000 45000 50000 55000 60000 65000 70000 75000 80000

Phonetic Fast Match Pruning Beamwidth

(a) Word Error Rate vs Fast Match Pruning Beam Width.

20

Window-size=2 <—
19.5 3 ++--

4 -B--
otereeewae 19 :

SS
~

S 18.5
= ,
e 18 Ay
s wee HMM/Frame(no fastmatch) = 4259
x s ax :

17.5 ui Baseline WER = 16.4%

17

16.5 Fe

500 1000 1500 2000 2500 3000
Active HMMs/Frame

(6) Word Error Rate vs Active HMMs/Framein Tree Search.

Figure 4.14: Phonetic Fast Match Performance Using All Senones (20KTask).

IPR2023-00037

Apple EX1033 Page 116

IPR2023-00037
Apple EX1033 Page 117

86 CHAPTER 4. SEARCH SPEED OPTIMIZATION

Figure 4.14(6) also demonstrates that increasing the window size beyond 2 or 3
frames is not worthwhile. We conclude this from the fact that to achieve a given
recognition accuracy, we do more work as the windowsize grows larger. It also makes
intuitive sense that a smoothing windowof 2-3 framesis all that is needed since the
windowis needed to cover “holes” in the active phones predicted by the heuristic.
These holes occur at random and not in long bursts. In the following discussion, we
use a windowof size of 3 frames, which seems to be an optimal choice considering
Figure 4.14.

Table 4.11 summarizes the performanceresults on the 20K task from including
the phonetic fast match heuristic. It corresponds to a fixed lookahead windowsize
of 3 frames. With the incorporation of the phonetic fast match heuristic in the

[Pruningbeamwidth|40K|50K|60K|70K|80K|Nofastmatch|
[%WordErrorRate[188174]167/165]165]164_—|
[No.HMMs/Frame|1019|1340[1728|2134|2538|4259__|
[No.IMOps/Frame|151|193|245|302|360|625—+|

been Peete |epale|(All Three Passes) Sailelse)
Speedup Over Baseline|6.86|6.39|5.90|5.48 4.04peseeeeae

Table 4.11: Fast Match Using All Senones; Lookahead Window=3 (20KTask).

tree Viterbi search, there is a significant speedup in the total execution time, with
a negligible increase in the word error rate. If we consider only the search time,
excluding the acoustic output probability computation, the improvement in speed is
between a factor of 2 to 3.

58K Task

We show similar performancefigures for the 58Ktask in Table 4.12, with the looka-
head window fixed once again at 3 frames. The conclusions are quite similar to those
in the 20K task. There is a factor of 2 reduction in the number of active HMMs

per frame and in the search time, with no appreciable increase in recognition errors.
The reduction in the overall execution time is more marked since the acoustic model

evaluation is a relatively smaller fraction of the total computation.

IPR2023-00037

Apple EX1033 Page 117

IPR2023-00037
Apple EX1033 Page 118

4.5. PHONETIC FAST MATCH 87

[Pruningbeamwidth|40K|50K|60K|10K|80K| No fastmatch |
[%WordErrorRate|17.0|15.7|151|149|148|

[No.HMMs/Frame|1636|2195|2883|3604|4322|
[[No.LMOps/Frame|457|559|685|820|958|

Total Time (xRealTime)|4.42|4.75|5.36|5.99|6.50GTiPaws) |||||
Speedup Over Baseline 8.93|7.92|7.08|6.53fondView|p|Ll

Table 4.12: Fast Match Using All Senones; Lookahead Window=3 (58K Task).

4.5.4 Performance of Fast Match Using CI Senones

The main drawback of the fast match heuristic discussed in Section 4.5.2 is that all

senones have to be computed in every frame in order to determine the active base
phones. In this section we consider predicting the active basephones from just the
context-independent senones. That is, equation 4.2 now becomes:

Pin= max(bs(t)), 7 = eZsas (4.3)
Thus, westill have to evaluate all senones of all basephones in every framein order
to determine the active phonelist, but this is a much smaller number than the total
number of senones. The context dependent senones can be evaluated on demand.

Weexpectthelist of candidate phones indicated by this heuristic to be somewhat
less reliable than the earlier one since context independent senones are cruder mod-
els of speech. In particular, coarticulation effects across phone boundaries in fluent
speech are captured by triphone models but might be missed by the broader mono-
phone models. On the other hand, westill use the lookahead window to smooth the
candidate list from neighbouring frames. Overall, it is a tradeoff between a poten-
tial increase in the number of active HMMsin order to retain the original level of
recognition accuracy, and a reduction in the numberof senones evaluated per frame.

Table 4.13 shows a summaryof the performance of this scheme on the 20Kand
58Ktasks. The lookahead windowsize is fixed at 3 frames. As we expected, the
pruning threshold has had to be widened, compared to the previous scheme.

A Comparison with the results in Section 4.5.3 brings out the following observa-
tions:

e Weare able to match the baseline recognition accuracy with a further reduction
in computation. In both the 20K and 58Ktasks, there is a reduction in total
execution time of about 45% for a less than 2% relative increase in word error

rate, compared to not using the fast match heuristic.

IPR2023-00037

Apple EX1033 Page 118

IPR2023-00037
Apple EX1033 Page 119

88 CHAPTER 4. SEARCH SPEED OPTIMIZATION

[Pruning beamwidth|65K|75K|85K|95K|105K[| Nofastmatch|
[%Word Error Rate|181/171[167[166]165|164|
[No.HNIMG/Frame[Tao[ior[pore[aoe0[358-50

Total Time (xRealTime)|2.41|2.72|3.02|3.29|3.55 5.50
(All Three Passes)—_ Over ieee 9.23|8.18|7.36|6.76|6.26
Forward Viterbi

(a) 20K Task.

[Praning beamwidth [05K [Nofastmatch|

| ToWord Error Rate MesseareaTesTer|[No.HMMs/Frame|2384|2878[3430|3019|4438|.7360Total Time (xRealTime)|4.20|4.82|5.45|5.84|6.58 10.0(All Three Pasta) fenerst
Speedup Over Baseline|10.1|8.80|7.79|7.27|6.45PemaCMelpianesisCheatereee|

(b) 58K Task.

Table 4.13: Fast Match Using CI Senones; Lookahead Window=3.

e There is some increase in the numberof active HMMsneeded to achieve the

same recognition accuracy, compared to the fast match based on all senones.
But it is partially offset by the reduction in the numberof senones evaluated.
The balance, of course, depends on the relative costs of the two.

e Using context independent senones for the fast match is more beneficial to the
smaller vocabulary system. As vocabulary size increases, the increase in the
numberof active HMMsaffects larger vocabulary systems more. The reduction
in the cost of computing senone output probabilities is offset by the need to
scan the active HMMstofind the active senones in each frame.

4.5.5 Phonetic Fast Match Summary

The conclusion is that using the phonetic fast match heuristic, the speed of thelexical
tree decoder can be improved by almost a factor of two, with negligible increase in
recognition errors. The heuristic can be further tuned in ways that we have not
explored. For example, one can use basephone-specific pruning beamwidths. The
graph in Figure 4.12 is averaged over all 50 phones in the Sphinx-II system. However,
certain base phones, such as fricatives and long vowels, are predicted much better
than others. It is possible to tighten the pruning threshold for these phones.

IPR2023-00037

Apple EX1033 Page 119

IPR2023-00037
Apple EX1033 Page 120

4.6. EXPLOITING CONCURRENCY oA .o

The phonetic fast match also has several other potential uses. These need to be
explored:

e The active base phones usually occur clustered in time. One can create a phone
lattice in which each nodeis a phone that is active for some contiguous set of
frames. Such a phonemelattice could be searched very efficiently for producing
a candidatelist of active words to be searched.

e A phonelattice such as described above can be used for word spotting. We may
consider the word to bepresent if we can trace a sequence of nodes through the
phonelattice corresponding to the word’s pronunciation.

e Obtaining confidence measures. Whereverthe phonelattice is sparse,i.e., very
few phonesareidentified as being active, we can conclude that we have a high
degree of confidence about which phonesare active. If a region of frames has
manyphonesactivein it, on the other hand,it indicates a high degree of acoustic
confusion in that region. The acoustic modelling in that segmentis less reliable.

The technique of identifying active phones has been discussed in [22], however.
only in the context of applying it to a fast match. They have reported a reduction
in fast-match computation of about 50% with a slightly under 10% increase in error
rate. A similar technique using phone posterior probabilities has also been reported
in [56]. It is also in the phase of the fastmatch step that generates word candidates
and posterior probabilities to a stack-decoding algorithm. The phonetic HMMstates
are modelled by neural network that directly estimate phone posterior probabilities
that are used to identify and deactivate inactive phones during the fast match step.
They report an order of magnitude increase in search speed for a nearly real-time
performance, while incurring a 7% relative increase in word error rate on a 20K task.
Part of the large increase in speed in probably owing tothe fact that the basic decoder
is based on stack-decoding algorithm. They do not report frequency counts for the
reduction in the numberof active models per frame.

4.6 Exploiting Concurrency

Our main purposein this section is to explore the potential for speeding up the recog-
nition architecture via concurrency. It is relevant since modern commercial processor
architectures are increasingly capable of multiprocessor operation and commercial op-
erating systems support concurrency and multithreading within single applications.
It is possible to take good advantage ofthis facility.

Oneof the early attempts at speeding up the Sphinx-II baseline system exploited
the large degree of concurrency within its algorithmic steps [54]. In a parallel imple-
mentation on the PLUS multiprocessor designed at CMU[13], a speed up of 3.9 was

IPR2023-00037

Apple EX1033 Page 120

IPR2023-00037
Apple EX1033 Page 121

90 CHAPTER 4. SEARCH SPEED OPTIMIZATION

obtained on a 5 node configuration. The parallelization involved static partitioning
of data and computation among multiple threads using the Mach C-threadsfacility
[16]. Though the lexical tree decoder has significant structural differences compared
to the baseline system, someof the parallelization techniques can still be applied to
it. We explore this question in somedetail in this section.

In parallelizing any application, there are two broad options: dynamic load bal-
ancing using a central task queue model, or static load balancing based on some
suitable static data and computation partitioning. The former presumably achieves
the best (most even) load balance amongthe active threads. But it is more complex
to implement, and harder to maintain and modify for experimentation purposes. We
consider static partitioning schemes which are easier to manipulate in a coarse-grained
fashion on small-scale multiprocessors.

In the following discussion we assume a shared-memory multiprocessor configu-
ration with an application running in a single address space shared by multiple con-
current threads. The discussion is hypothetical. We have not actually implemented
a parallel version of the tree search decoder. But we do address the relevantissues.

4.6.1 Multiple Levels of Concurrency

There are several levels of concurrency in the decoder as discussed so far, which can
be exploited individually and in combination. We review the main onesbriefly.

Pipelining Between Search Passes

The lexical tree search and rescoring passes can be pipelined and executed concur-
rently. If the latter is time synchronous, the only constraint is that it cannot proceed
beyond timet until the lexical tree search has completed emitting all its word lattice
entries that correspond to a begin time of ¢ or earlier. This is easily established by
checking the history information H™ in each active HMM(see Section 3.2.4). If all
of them point to word lattice entries with end times greater than t, the rescoring pass
can proceed beyondt??.

The potential speedup obviously depends on the relative costs of the two passes.
In our benchmark system, the lexical tree search is the dominant pass. However,it
can be parallelized internally, so pipelining the later pass becomes useful.

The communication bandwidth between the two passes is minimal. It only involves
the exchange of wordlattice information, which consists of a few tens of words every
frame, on average. The two passes must also synchronize to ensure that the rescoring
pass does not overtake the other.

12Actually, the rescoring pass treats the word segmentations in the tree search word lattice fuzzily,
using a window,as described in Section 4.4.1. We must also allowfor the window.

IPR2023-00037

Apple EX1033 Page 121

IPR2023-00037
Apple EX1033 Page 122

4.6. EXPLOITING CONCURRENCY 91

Pipelining Between Acoustic and HMM Evaluation in Tree Search

We can pipeline the VQ and senone output probability computation with the HMM
search if there is no feedback from the latter to the former. That is the case if we

decide to evaluate all senones every frame, instead of computing just the active ones.
The latter requires feedback from the active HMMs. The phonetic fast match heuristic
presented in Section 4.5.2 requires the evaluation of all senone output probabilities
every frame anyway. Hencethis pipelining is suitable in that context.

Again, the potential speedup depends on the costs of the individual steps. In
our lexical tree search using semi-continuous acoustic models, the execution times
for senone output probability computation and searching the active HMMsarefairly
even for the 20K task. This is seen from Tables 4.3(a) and 4.11. Even otherwise,
each component has a fair amount of internal parallelism which can be exploited to
balance the computation.

We consider the communication bandwidth between the two components. The
data exchanged between the pipeline components consists of the senone output prob-
abilities in each frame. In our system, it amounts to 10K 4-byte values in each frame,
or about 4MB/sec, andit is notlikely to be significantly different for most systems.
This volume is well within the capabilities of modern memory-bus systems.

The two pipeline components have a producer-consumerrelationship. The pro-
ducer, senone evaluation, must stay ahead of the consumer, the search component.
The execution time for the formeris fairly constant from frame to frame, but the
search cost can vary by an order of magnitude or more. Hence, for a proper balance
in computation, the two cannot be simply run in lockstep. We need a queueof frames
between the two to smooth out variations in execution times. However, the queue
cannot be arbitrarily large since it has to contain 40KB of senone output probability
data per frame. We surmise that a queue depth of about 10 frames is sufficient to
keep the pipeline flowing relatively smoothly without hiccups.

Partitioning Acoustic Output Probability Computation

The computation of senone output probabilities can be trivially partitioned in most
instances. Basically, there is no dependency between the output probabilities of
different senones within a given frame. Every senone can be evaluated concurrently
with the others.

Partitioning the senone output probability computation creates a multiple-producer
and consumerrelationship with the search module. Hencethe latter must synchronize
with all of the producer partitions to ensure integrity.

IPR2023-00037

Apple EX1033 Page 122

IPR2023-00037
Apple EX1033 Page 123

92 CHAPTER 4. SEARCH SPEED OPTIMIZATION

Concurrency in Searching the Lexical Tree HMM Network

Parallelism inside the Viterbi tree search algorithm is the hardest to control and
exploit effectively for several reasons:

e The beam search heuristic restricts the active HMMsto a small fraction of the

total number. The actual identity of the active HMMsis time varying. It is
necessary to balance the computation among parallel components in spite of
this variation.

e The amount of search computation varies by orders of magnitude from frame
to frame.

e There is global dependency from one frame to the next. This follows from
the time-synchronous nature of the Viterbi algorithm. For example, the word
lattice must be completely updated with new word entries in a given frame
before moving on to attempt cross-word transitions in that frame.

e The search componentis the most memory intensive. The memoryaccess pat-
tern is highly unstructured since the set of active HMMsvaries over time. The
memory bottleneck is probably the largest impediment to the effective paral-
lelization of this component.

The most natural way to parallelize the lexical tree search is by partitioning the
collection of trees among concurrent threads. For example, the two trees in Figure
4.2 can be assigned to separate threads. This approach has the following advantages:

e The computation within each thread is largely the same as in the sequential
algorithm. It is important to retain the simplicity of structure offered by se-
quential implementations for ease of modification and experimentation. The
main difference is that threads need to synchronize with each other once in
each frame to exchange updates to the wordlattice.

e Since the HMM data structures to be searched are partitioned, there is no
conflict during access to them, except for cross-word transition updates. These
are handled by exchanging updates to the word lattice as mentioned above.

e The large number of trees offer sufficient parallelism and scope for effective
load balancing in spite of the level of activity within individual trees varying
substantially with time. In the 20K task, there are about 650 trees (see Table
4.1).

It is important to distribute the trees with some care, in order to maintain a
proper load balance among threads. The phonetic fast match heuristic restricts the
activity at the root nodes by allowing only the predicted phones to becomeactive at

IPR2023-00037

Apple EX1033 Page 123

IPR2023-00037
Apple EX1033 Page 124

4.7. SUMMARY OF SEARCH SPEED OPTIMIZATION 93

a given point in time. Hence,it is advantageous to scatter trees with root nodes that
have the same parent basephone among different threads. In general, it is desirable
to spread trees with acoustically similar initial prefixes among threads, ensuring a
more even distribution of the computation load.

4.6.2 Parallelization Summary

We have reviewed the potential for speedup through parallelism at several levels.
Even with a static partitioning of the task, the available concurrencycan be effectively
exploited on small-scale shared-memory multiprocessors.

It is possible to pipeline individual passes of the decoder with one another. Within
the lexical tree search, we can exploit pipelining between the acoustic output prob-
ability evaluation for senones and the HMM search algorithm. This is especially
advantageous since they are fairly evenly matched in our lexical tree decoder using
semi-continuous models. Finally, both acoustic output probability computation and
HMMsearch can be partitioned into concurrent threads. However, the latter requires
a careful static assignment of the overall search space to threads in order to balance
the computational load among them.

However, the effectiveness of a parallel implementation is limited by the available

processor-memory bandwidth. Since certain portions of the original sequential algo-
rithm, especially HMM evaluation, are heavily memory bound, the actual speedup
possible through concurrency remainsto be seen.

4.7 Summary of Search Speed Optimization

The contents of this chapter can be summarized by comparing the performances of
various approaches along two axes: word error rate vs recognition speed. Figure 4.15
captures this information succinctly.

The figure shows that we can very nearly attain the recognition accuracyof the
baseline system while speeding up the system by a factor of about 8. It also brings
out the relative contributions and costs of each technique. Appendix B contains a
summary of the results of significance tests on the differences between the recognition
accuracies of the various systems.

Webriefly reviewthe results from this chapter:

e The lexical tree search algorithm is about 5 times faster than the baseline
Sphinx-II system. The search component alone, excluding the computation of
acoustic output probabilities of senones, is over 7 times faster than the baseline
system.

IPR2023-00037

Apple EX1033 Page 124

IPR2023-00037
Apple EX1033 Page 125

94

WordErrorRate(%)

WordErrorRate(%)

19.5

19

18.5

— —

16.5

16

15.5

CHAPTER 4. SEARCH SPEED OPTIMIZATION

©Tree+Bestpath

©Fastmatch+Tree+Rescore+Bestpath

©Tree+Rescore+Bestpath Baseline(Vit.)©

Baseline(A*)©

5 10 15 20 25

Recognition Speed (x RealTime)

(a) 20K Task.

©Tree+Bestpath

Fastmatch+Tree+Rescore+Bestpath
°Tree+Rescore+Bestpath Baseline(Vit.©
10 15 20 25 30 35 40 45

Recognition Speed (x RealTime)

(b) 58K Task.

Figure 4.15: Word Error Rate vs Recognition Speed of Various Systems.

IPR2023-00037

Apple EX1033 Page 125

IPR2023-00037
Apple EX1033 Page 126

4.7. SUMMARY OF SEARCH SPEED OPTIMIZATION 95

e During the lexical tree search, deferring the computation of language model
probabilities until the leaves of the lexical reduces the cost of such accesses by
about an order of magnitude comparedto the baseline system. It also leads to
an optimization whereby about half of these computations can be eliminated
by reusing results from an earlier time.

e The lattice error rate of the word lattice produced by the lexical tree searchis
about 2%, and is highly compact, makingit ideal for postprocessing steps using
more sophisticated searches and models. The numberof entries in the word
lattice for a 10sec sentence is typically about 1000. The word lattice size and
error rate is comparable to that of the baseline system.

Even though the lexical tree search suffers an increase in word error rate of
about 20% relative to the baseline system, the loss can be largely recovered by
searching the word lattice for a globally optimum path. The resulting word
error rate is within 7% relative to the baseline system. The computationalcost
of the best path search is negligible.

e The compact word lattice produced by the tree search can be efficiently postpro-
cessed using detailed acoustic models and/or search algorithms. By applying
the forward Viterbi search algorithm of the baseline system to the word lat-
tice, followed by the best path search, we equal the recognition accuracyof the
baseline system. The overall increase in computation with the addition of the
postprocessing step is about 15%.

e The phonetic fast match heuristic improves recognition speed by identifying a
limited set of candidate phonesto be activated at each frame. Incorporating this
step into the lexical tree search leads to a further speedup in overall execution
time by a factor of about 1.8 with less than 2%relative increase in word error
rate.

Based on our experiences reported in this chapter, we believe that a practical
organization for the decoder is as shown in Figure 4.16.

Phonetic Lexical Tree ¢ Global
Best Path

Fast Match
(Optional)

Figure 4.16: Configuration of a Practical Speech Recognition System.

Each of the blocks in the linear pipeline operates in the forward direction in time.
and hence the entire configuration can be overlappedtoalarge extent, avoiding delays
that would be inherent if any of the blocks involved a backward pass, for instance.

IPR2023-00037

Apple EX1033 Page 126

IPR2023-00037
Apple EX1033 Page 127

96 CHAPTER 4. SEARCH SPEED OPTIMIZATION

The lexical tree search module, using fairly detailed acoustic and grammar models
but simple enough to allow near real-time operation, produces a compact wordlattice
with a low lattice error rate. It is the key to the overall organization of a practical
speech recognition system.

Additional improvements in speed can be obtained by exploiting parallelism be-
tween and within the individual blocks in Figure 4.16. The pipelined organization
lends itself naturally to a parallel implementation, operating asynchronously in a
data-driven fashion. There is also a large amount of parallelism within some of the
modules. For example, the evaluation of acoustic models and the HMM network
search can be performed in parallel, with very simple communication between them.
One of the early work in this area was in parallelizing the forward Viterbi pass of
the baseline Sphinx-II system on a 5-node shared-memory multiprocessor [14, 13] on
the 1000-word Resource Managementtask [51], which yielded a speedup of about 3.8
[54]. Parallelizing the lexical tree search is a little different, but the potential exists,
nevertheless.

IPR2023-00037

Apple EX1033 Page 127

IPR2023-00037
Apple EX1033 Page 128

Chapter 5

Memory Size Reduction

The second important computational resource needed by modern speech recognition
systems, after CPU power, is main memory size. Most research systems require
hundreds of megabytes of main memorythat are only found on high-end workstations.
Clearly, practical applications of speech recognition must be able to run on much
smaller memory configurations.

The work reported in this chapter is once again in the context of the baseline
Sphinx-IT system described in Chapter 3. It is typical of most other research systems
in use in the speech community. The two main candidates for memory usage in
the baseline Sphinx-II system are the acoustic and language models. The former
is dominated by the senone mixture weights (see Sections 2.1.2, 3.1.1, and 3.4.4).
The latter primarily consists of the bigram and trigram data structures described in
Section 3.4.4, Figure 3.8.

In this chapter we describe the approaches taken to reducetheir sizes in the lexical
tree decoder. In Section 5.1 we discuss the reduction of acoustic model size and in

Section 5.2 that of the language model. Someof the techniques presented here have
also been incorporated into the baseline decoder with similar results.

5.1 Senone Mixture Weights Compression

The main hypothesis in designing a scheme for reducing the memorysize requirement
of acoustic models is that the exact state score (or senone score) in each frameis not as
important to the detailed search as is the relative ranking of the models. Furthermore,
short-term fine distinctions in the scores of states in a given frame are misleading,
because of the inherent uncertainty in the statistical models underlying those states.
These observations lead to the simple solution of clustering acoustic modelling values
into a small number of bins which can beindirectly addressed using a small number
of bits.

IPR2023-00037

97 Apple EX1033 Page 128

IPR2023-00037
Apple EX1033 Page 129

98 CHAPTER 5. MEMORY SIZE REDUCTION

This approach is applied to the Sphinx-II semi-continuous acoustic models in the
case of the senone weights. As we saw in Section 3.4.4, the senone mixture weights
or coefficients account for about 40MB of memory usage, where each coefficient is a
4-byte value. These coefficients are reduced to 1 byte by simply truncating their least
significant bits until the entire dynamic range can befit into 8 bits. Thus, we obtain
a 4-fold reduction in their memory requirement.

Most benchmark evaluations described in this thesis have been carried out with

this memory organization. The impact of this truncation on recognition accuracy is
virtually non-existent. More important, only about 1% of the individual sentences
have different recognition results in the two cases. In other words, the reduction in
precision makeslittle difference not just on average, but even in detail. In fact. the
overall recognition accuracy is actually slightly better after the truncation.

There is also an execution speed benefit to this compaction. Equation 2.1 in
Section 2.1.2 defines the expression for the output probability of a senone in a given
frame. In Sphinx-IJ, as in many other speech recognition systems, all probability
calculations are carried out in log-space, so that multiplication operations can be
reduced to additions in log-space. But the summation term in equation 2.1 poses a
difficulty. By truncating all log-probability values to 8-bits, however, the addition
operation can be achieved in log-space by simply implementing it as a table-lookup
operation. This optimization reduces the execution time for senone output probability
computation bya factorof 2.

5.2 Disk-Based Language Models

In the case of the language model, a totally different approach is necessary. It is
indeed feasible to reduce the probability values and backoff weights to 8-bit values
without any effect on recognition accuracy. But in this case, the probability values
have already been compacted to 16-bits as mentioned in Section 3.4.4. Hence, the
payoff in reducing them to 8 bits is less. Furthermore, there are other fields in each
bigram and trigram, such as the word-id, which are much harder to compress further.

The observation in this case is that in decoding any given utterance, only a very
small portion of the language model is actually used. Hence, we can consider main-
taining the language model entirely on disk, and retrieving only the necessary pieces,
on demand. One would expect the virtual memory system to effectively accomplish
this for free. But, as we noted in Section 3.4.4, the granularity of access to the bi-
gram and trigram data structures is much smaller than a physical page size on most
modern workstations. For example, the average number of bigrams per word in the
case of the 58Kvocabulary is about 105. The average numberof trigrams per word
pair is at least an order of magnitude smaller. Hence, the virtual memory system is
relatively ineffective in managing the working set for these data structures.

IPR2023-00037

Apple EX1033 Page 129

IPR2023-00037
Apple EX1033 Page 130

5.2. DISK-BASED LANGUAGE MODELS 99

It is possible to maintain the language model on disk and explicitly load the
necessary bigrams and trigrams on demand. However, to avoid excessive delays due
to disk access, we must resort to some caching strategy. For this, we observe that
if we are required to compute a bigram probability P(w;|w;) during some frame. we
are verylikely to have to compute other bigram probabilities P(w,|w;),& #7, in the
same frame. We can make a similar case for trigram probabilities. The reason for
this phenomenonis that typically several words arrive at their ends in a given frame,
and we need to compute each of their language model probabilities with respect to
each of some set of predecessor words.

The caching policy implemented in our system is quite straightforward:

e Since unigrams are a small portion of the large vocabulary language models,
they are always kept in memory. Only bigrams and trigrams are read from disk,
and they are cached in logical chunks. That is, all bigram followers of a word
or all trigram followers of a word pair are cached at a time.

e Whenever a bigram probability P(w;|w;) is needed, and it is not in memory,all
bigram followers of w; are read from disk and cached into memory.

e Likewise, whenever a trigram probability P(w;|w;, w;) is needed, andit is not in
memory,all trigram followers of w;,w; are read and cached in memory. Further-
more,all bigram followers of w; are also read from disk and cached in memory,
if not already there.

e To avoid a continual growth in the amount of cached language model data,it is
necessary to garbage collect them periodically. Since the decoder processes input
speech one sentence at a time (which are at the most a fewtens of seconds long),
the cached data are flushed as follows. At the end of each utterance, we simply
free the memory space for those cached entries which were not accessed during
the utterance. This ensures that we recycle the memory occupied byrelatively
rare words, but retain copies of frequently occurring words such as function
words (A, THE, IS, etc.). The “cache lines” associated with the functions words
are also relatively large, and hence more expensive to read from disk.

All the benchmark evaluations with the lexical tree decoder have been carried

out using the disk-based language model with the above caching scheme. We have
measured the numberof bigrams and trigrams resident in memory duringall of our
benchmark evaluations. In both the 20K and 58Ktasks, only about 15-25% of bigrams
and about 2-5% of all trigrams are resident in memory on average, depending on the
utterance.

The impactof the disk-based language model onelapsed time is minimal, implying
that the caching schemeis highly effective in avoiding disk access latency. Measuring
elapsed timeis tricky becauseit is affected by factors beyond our control, such as otherceeeeeeeeeecereeeeeneeeeeeeeener

IPR2023-00037

Apple EX1033 Page 130

IPR2023-00037
Apple EX1033 Page 131

100 CHAPTER 5. MEMORY SIZE REDUCTION

processes contending for the CPU, and network delays. However, on at least some
experimental runs on entire benchmark test sets, the difference between the CPU
usage and elapsed time is no more than if the entire language modelis completely
memory-resident. The elapsed time exceeds the CPU usage by less than 5%, andit
is the existence proof for the effectiveness of the caching policy.

5.3 Summary of Experiments on Memory Size

We have presented two simple schemes for reducing the memorysizes of large acoustic
and language models, respectively. The former is compressed by simply truncating
the representation from 32 to 8 bits. This granularity appears to be quite sufficient
in terms of retaining the original recognition accuracy, sentence for sentence.

The memory-resident size of the language model is reduced by maintaining it
on disk, with an effective caching policy for eliminating disk access latency. The
fraction of bigrams in memory is reduced by a factor of between 4 and 6, and that of
trigrams by a factor of almost 20-50. Clearly, there is no question of loss of recognition
accuracy, since there is no change in the data representation.

Webelieve that several other implementations use 8-bit representations for acous-
tic models, although the literature hasn’t discussed their effect on recognition, to
our knowledge. We do not knowof any work dealing with the language model in
the way described here. Other approaches for reducing the size of language models
include various forms of clustering, for example into class-based language models,
and eliminating potentially useless bigrams and trigrams from the model [58]. These
approaches generally suffer from someloss of accuracy. The advantage of simple word
bigram and trigram grammarsis that they are easy to generate from large volumes
of training data.

IPR2023-00037

Apple EX1033 Page 131

IPR2023-00037
Apple EX1033 Page 132

Chapter 6

Small Vocabulary Systems

6.1 General Issues

Although we have mainly concentrated on large vocabulary speech recognition in
this thesis, it is interesting to consider how the techniques developed here extend
to smaller vocabulary tasks. There are two cases: tiny vocabulary tasks of a few
tens to a hundred words, and medium vocabularyof a few thousands of words. The
former are typical of command and control type applications with highly constrained
vocabularies. The latter are representative of applications in constrained domains,
such as queries to a financial database system.

For a really small vocabulary of a few tens of words, search complexity is not a
major issue. In a Viterbi beam search implementation, at most a few hundred HMMs
may be active during each frame. Similarly there may be at most a few hundred
cross-word transitions. (These are the two most prominent subcomponents of search
in large vocabulary recognition, and our main focus.) The acoustic output probability
computation, and questions of recognition accuracy are much more dominantissues
in such small vocabulary tasks. The nature of the problem also allows the use of ad
hoc techniques, such as word HMM modelsfor improving recognition accuracy. The
wide range of options in the extremely small vocabulary domain makesthe efficiency
measures for large vocabulary recognition less relevant.

Secondly, as the vocabulary size decreases, words tend to have fewer common
pronunciation prefixes. For example, the triphone lexical tree for the digits lexicon
in Section 3.1.2 is not a tree at all. It is completely flat. The tree structure is largely
irrelevant in such cases. We do not consider extremely small vocabulary tasks any
further.

Even when the vocabulary is increased to a few thousands of words, the cost of
search does not dominateas in the case of large vocabulary tasks. The computation
of HMMstate output probabilities is about equally costly. Hence, even an infinite

IPR2023-00037

101 Apple EX1033 Page 132

IPR2023-00037
Apple EX1033 Page 133

102 CHAPTER 6. SMALL VOCABULARYSYSTEMS

speedup of the search algorithm produces an overall speedup of only a small factor.

In this chapter we compare the baseline Sphinx-II system and the lexical tree
search system on the speech recognition component of the ATIS (Airline Travel In-
formation Service) task? (45, 46], which has a vocabulary of about 3K words.

Section 6.2 contains the details of the performanceof the baseline Sphinx-II system
and the lexical tree decoder on the ATIS task.

6.2 Performance on ATIS

6.2.1 Baseline System Performance

ATIS is a small-vocabulary task in which the utterances are mainly queries to an
air travel database regarding flight and other travel-related information. The test
conditions for the ATIS task are as follows:

e 3000 word vocabulary, including several compound words, such as I_WANT,
WHAT_IS,etc.

e 10,000 senone semi-continuous acoustic models trained for ATIS from both the
large vocabulary Wall Street Journal and ATISdata.

e Word bigram language model, with about 560,000 bigrams. It is a fairly con-
strained grammar with a much lower perplexity than the large vocabulary ones.

e Test set consisting of 1001 sentences, 9075 words.

The style of speaking in ATISis a little more conversational than in the large vocab-
ulary test sets from the previous chapters.

The performanceof the baseline Sphinx-II system on the ATIS task is summarized
in Table 6.1. The noteworthy aspects of this test are the following (we focus mainly
on the forward Viterbi pass):

e The cost of output probability computation (VQ and senone evaluation) is
almost half of the total execution time of the forward Viterbi search. Hence

speeding up the other half, i.e. search alone, by an order of magnitude has
much less impact on the overall speed.

e The number of HMMsevaluated per frameis still sufficiently large that it is
not worth while computing the senone output probabilities on demand. It is
less expensive to computeall of them in each frame.

‘The overall ATIS task has other componentsto it, such as natural language understanding of
the spoken sentence. We ignore them in this discussion.

IPR2023-00037

Apple EX1033 Page 133

IPR2023-00037
Apple EX1033 Page 134

6.2, PERFORMANCE ON ATIS 103

[sdwdVit. [FwdBw]
[WortEmorRate|-S1%[4.95
[RealTime|866|10.73

(a) Word Error Rates, Execution Times (x RealTime).

VQ+Senone HMM Word
Evaluation|Evaluation|Transition

x RealTime 4.06 2.88 1.54
%Forward Pass 46.9% 33.3% 17.8%

(b) Breakdown of Forward Pass Execution Times.

Table 6.1: Baseline System Performance on ATIS.

e Cross word transitions are only half as computationally costly as HMMevalua-
tion, whereas in the large vocabularytasks they are about evenly balanced (Ta-
ble 3.4). Part of the reason is that the ATIS language modelprovides stronger
constraints on word sequences, so that fewer cross-word transitions have to be
attempted. The pruning behaviour of the language modelis significantin this
case.

6.2.2 Performance of Lexical Tree Based System

In this section we evaluate the lexical tree search and the associated postprocessing
steps on the ATIS task. First of all, we compare the numberof root nodes in the
triphonelexical tree in the ATIS task with the other large vocabulary tasks. Table 6.2
showsthese figures. (There are multiple alternative pronunciations for certain words,
which increase the total numberoflexical entries over the vocabulary size.) Clearly,

AIS 20Ktask|38KTask
[No-one———[00]iso[61000

[No-tootHIN—[-as0-|—e850—[—850—]
Ratio(%) 14.1 3.0 1.4
(root HMMs/words)

Table 6.2: Ratio of Number of Root HMMsin Lexical Tree and Words in Lexicon
(approximate).

the degree of sharing at the root of the tree structure decreases as the vocabularysize

IPR2023-00037

Apple EX1033 Page 134

IPR2023-00037
Apple EX1033 Page 135

104 CHAPTER 6. SMALL VOCABULARY SYSTEMS

decreases. Hence, we may expect that the lexical tree structure will give a smaller
improvement in recognition speed compared to large vocabularysituations.

Recognition Speed

The recognition speed for various configurations of the experimental decoderis re-
ported in Table 6.3. The phonetic fast match heuristic in this case is based on
context-independent HMMstate scores. (We have observed in Section 4.5.4 that it
is advantageous to do so for smaller vocabulary systems.) As expected, the overall
speedup is less compared to the large vocabulary case (Figure 4.15).

eeeRarpoeere eee
[gRaltme[aa[asspoear

Speedup Over 3.46 3.40 3.00 5.52
Baseline Viterbi

(T=Tree Search, B=Bestpath, R=Rescoring, F=Phonetic Fastmatch)

Table 6.3: Execution Times on ATIS.

The main reason for the limited speedup over the baseline system is clearly the
cost of acoustic probability computation, which is nearly 50% of the total in the
baseline system. The tree search algorithm is primarily aimed at reducing the cost of
the search component, and not at the acoustic model evaluation. Secondly, as noted
earlier in Table 6.2, there is less sharing in the ATIS lexical tree than in the larger
vocabulary tasks. Hence, even the potential speedup in searchis limited.

Let us first consider the situation in further detail without the phonetic fast match
heuristic. Table 6.4 summarizes the breakdown of the lexical tree search execution

time on the ATIS task when the fast match step is not employed. Comparing these

VQ+Senone Se Leaf Node Wordbearer{Entmtin|lion|sts|Man|xRealTime|heela(= aeeEe|eeeeoee|ee|

Table 6.4: Breakdown of Tree Search Execution Times on ATIS (Without Phonetic
Fast Match).

figures to Table 4.3 for the large vocabulary case, we see the relative dominance of
the cost of acoustic model evaluation.

IPR2023-00037

Apple EX1033 Page 135

IPR2023-00037
Apple EX1033 Page 136

6.2. PERFORMANCEONATIS 105

In spite of the large cost of acoustic model evaluation, wearestill able to obtain a
speedupof over a factor of 3 for two reasons. First, the fewer numberof active HMMs
in the tree search, compared to the baseline system, allows us to scan for and evaluate
just the active senones, instead ofall of them. Second, the reduction in the precision
of senone mixture weights allows us to implement some of the output probability
computation with simple table-lookup operations, as discussed in Section 5.1. Hence,
the larger than expected gain in speedup is only partly owing to improvement in
search.

The phonetic fast match heuristic, however, is as effective as before. When the
heuristic is included in the lexical tree search, it reduces the number of HMMseval-
uated. Since it is based only on context-independent state scores, the reduction in
the number of active HMMsalso translates to a reduction in the numberof active

context-dependent senones. In other words, this technique helps both the search and
acoustic model evaluation components. As a result, we are able to further reduce the
total execution time by about 45%.

Recognition Accuracy

Table 6.5 lists the recognition accuracyof various configurations of the experimental
decoder. As noted earlier, the phonetic fast match heuristic is based on context-
independent HMMstate scores. As in the case of the large vocabulary tasks, the

[oRPIR]
| %Word Error Rate|6.31|5.70|5.27|5.34|

%Degradation w.r.t.|23.5 11.5 3.1 4.5Baseline Viterbi aale
%Degradation w.r.t.|27.5 172 6.5 7.9Basle A eraae

(T=Tree Search, B=Bestpath, R=Rescoring, F=Phonetic Fastmatch)

Table 6.5: Recognition Accuracy on ATIS.

rescoring and global best path searches are able to recover the loss in accuracy from
the lexical tree search. Thereis still a resultant loss of about 3-5% relative to the

forward search of the baseline system. It is probably due to a larger degree of pruning
errors in the tree search. Since the lexical tree is searched without the benefit of prior
language model probabilities, a word must survive acoustic mismatches until the leaf
node. Thereis a greaterlikelihood of poor acoustic matches in the ATIS task because
of its more conversational nature and associated fluent speech phenomena.

IPR2023-00037

Apple EX1033 Page 136

IPR2023-00037
Apple EX1033 Page 137

106 CHAPTER 6. SMALL VOCABULARYSYSTEMS.

Memory Size

As in the case of large vocabulary systems, truncating senone mixture weights down
to 8 bit representation has no effect on recognition accuracy. The language model
size, while not a major issue at 560K bigrams,is also significantly reduced by the
disk-based implementation outlined in Section 5.2. The average numberof bigrams
in memoryis reduced to about 10% of the total. Once again, the caching strategy
effectively eliminates the cost of disk access latency.

6.3 Small Vocabulary Systems Summary

Recognition speed and memorysize are typically not a serious issue in the case of
extremely small vocabulary tasks of a few tens or hundreds of words. Theyare
dominated by concerns of modelling for high accuracy. The lexical tree structureis
entirely irrelevant because of the limited amountof sharing in the pronunciation of
individual words.

In the case of medium vocabularytasks consisting of a few thousand words, the
cost of search does become an issue, but the cost of acoustic model evaluation is an
equally important concern.

The techniques described in this thesis are together able to improve the speed of
recognition on the 3K word ATIS task bya factor of about 5.5, with a 4.5% relative
increase in word error rate over the forward Viterbi result of the baseline Sphinx-I]
system. The speedup in search is limited by the relative dominance of the acoustic
output probability computation in the small vocabulary environment. Furthermore,
the lesser degree of sharing in the lexical tree structure reduces the effectiveness of
the tree search algorithm. Hence,it is also necessary to speed up the acoustic model
evaluation.

The smaller number of active HMMsper frame allows us to compute only the
active senones per frame. This is not useful in the baseline system as the reduction

in computing active senonesis offset by the need to scan a large numberof active
HMMsto determine the set of active senones. Clearly, there is a tradeoff, depending
on the relative costs of the two operations.

The phonetic fast match heuristic is able to provide a speedup comparable to
that in the large vocabularysituation, demonstrating the effectiveness and power of
the heuristic. When it is based on context-independent state scores, it is effective in
reducing both the search and context-dependent acoustic model evaluation times.

IPR2023-00037

Apple EX1033 Page 137

IPR2023-00037
Apple EX1033 Page 138

Chapter 7

Conclusion

This thesis work has focussed on the problemsrelating to the computationalefficiency
of large vocabulary, continuous speech recognition. The foremost concern addressed
in this thesis is that of dealing with the large search space associated with this task.
This space is so large that brute force approaches can be several orders of magnitude
slower than real-time. The beam search heuristic is able to narrow down the search

space dramatically by searching only the mostlikely states at any time. However.
searching even this reduced space requires several tens of times real time on current
computers. A reduction in the computational load must come from algorithmic and
heuristic improvements.

The second issue addressed in this thesis is efficiency of memory usage. In partic-
ular, the acoustic and language modelsare the largest contributors to memorysize
in modern speech recognition systems. .

In order to translate the gains made by research systems in recognition-accuracy
into practical use, it is necessary to improve the computational and memoryefficiency
of speech recognition systems. It is relatively easy to improve recognition speed
and reduce memoryrequirements while trading away some accuracy, for example by
using tighter beamwidths for most drastic pruning, and by using simpler or more
constrained acoustic and language models. But it is much harder to improve both
the recognition speed and reduce main memory requirements while preserving the
original accuracy.

The main contributions of this thesis are an 8-fold speedup and a4-fold reduction
in the memorysize of the CMU Sphinx-II system. We have used the Sphinx-II system
as a baseline for comparison purposessince it has been extensively used in the yearly
ARPAevaluations. It is also one of the premier systems, in terms of recognition
accuracy, of its kind. On large vocabulary tasks the system requires several tens
of times real time and 100-200MB of main memory to perform its function. The
experiments have been performend on several commonly used benchmark test sets
and two different vocabulary sizes of about 20K and 58K words.

IPR2023-00037

107 Apple EX1033 Page 138

IPR2023-00037
Apple EX1033 Page 139

108 CHAPTER 7. CONCLUSION

Wefirst present a brief description of the lessons learnt from this work, followed
by a summaryof its contributions, concluding with some directions for future work
based on this research.

7.1 Summary of Results

The results in this thesis are based on benchmarktests carried out on the Wall Street

Journal and North American Business News development and test sets from the Nov.
1993 and Nov. 1994 ARPA evaluations. They consist of read speech in a clean
environment using high quality, close-talking microphones, and are widely used in
the ARPA speech community. The experiments are carried out using two different
vocabulary sizes, of 20,000 words and 58,000 words, respectively. We now summarize
the main results from this thesis below.

e The lexical tree search algorithm is about 5 times faster than the baseline
Sphinx-II system. The search component alone, excluding the computation of
acoustic output probabilities of senones, is over 7 times faster than the baseline
system.

e During the lexical tree search, deferring the computation of language model
probabilities until the leaves of the lexical reduces the cost of such accesses by
about an order of magnitude, compared to the baseline system. It also leads to
an optimization whereby about half of these computations in a given frame can
be eliminated by reusing results from an earlier frame.

e The lattice error rate of the word lattice produced by the lexical tree search is
about 2% (excluding out of vocabulary words), and is highly compact. This
makes it an ideal input for postprocessing steps using more detailed models and
search algorithms. The numberof entries in the word lattice for a 10sec sentence
is typically about 1000. The wordlattice size and error rate are comparable to
that of the baseline system.

e Even though the lexical tree search suffers an increase in word error rate of
about 20% relative to the baseline system, the loss can be largely recovered
from the word lattice. The best path algorithm presented in this thesis finds a
globally optimum path through the word lattice and brings the word error rate
down to within 7% relative to the baseline system. The computational cost of
the best path search is negligible.

e The compact word lattice produced by the tree search can beefficiently postpro-
cessed using detailed acoustic models and/or search algorithms. By applying
the forward Viterbi search algorithm of the baseline system to the wordlat-
tice, followed by the best path search, we equal the recognition accuracy of the

IPR2023-00037

Apple EX1033 Page 139

IPR2023-00037
Apple EX1033 Page 140

7.2. CONTRIBUTIONS 109

baseline system. The overall increase in computation with the addition of the
postprocessing step is about 15%.

e The phonetic fast match heuristic improves recognition speed by identifying a
limited set of candidate phones to be activated at each frame. Incorporatingthis
step into the lexical tree search leads to a further speedup in overall execution
time by a factor of about 1.8 with less than 2% relative increase in word error
rate.

It is possible to reducethe precision of representation of the statistical databases.
and thus reduce their memory requirement, with no significant effect on recog-
nition accuracy. Thus, a reduction in the precision of senone weight values from
32 bits to 8 bits reduces the acoustic model size from about 40MB to about

10MB. This result has also been observed by several other sites such as IBM.
BBN and Microsoft.

e The compact representation of senone weights in § bits enables the computa-
tion of senone output probabilities to be implemented by simple table look up
operations. This speeds up the computation by about a factor of2.

e A disk-based language model, coupled with a simple software caching scheme to
load bigrams and trigrams into memory on demandleads to a reduction in its
memory requirements byover a factor of 5. The fraction of bigrams resident in
memoryis reduced to around 15-25% of the total, and that of trigrams to 2-5%
of the total number, on average. The caching schemeis effective in neutralizing
the cost of disk access latencies. Since there is no change in data representation,
there is no loss of accuracy.

In summary, it is possible to reduce the computation time of the Sphinx-II recog-
nizer by nearly an order of magnitude and the memorysize requirements by a factor
of about 4 for large vocabulary continuous speech recognition, with verylittle loss of
accuracy. Appendix B contains a summaryof the results of significance tests on the
differences between the recognition accuracies of the various systems.

As an additional benchmark result, we note that the techniques described in this
thesis are sufficiently robust that the lexical tree based recognizer was used by CMU
during the Nov. 1995 ARPA evaluations.

7.2 Contributions

One of the main contributionsof this thesis is in providing a comprehensive account
of the design of a high-performance speech recognition system in its various aspects
of accuracy, speed, and memoryusage. One of the underlying questions concerning

IPR2023-00037

Apple EX1033 Page 140

IPR2023-00037
Apple EX1033 Page 141

110 CHAPTER 7. CONCLUSION

research systems that focus mainly on accuracy, and require large amounts of com-
putational power is whether the approaches taken will ever be of practical use. This
work suggests that concerns of accuracy and efficiency are indeed separable compo-
nents of speech recognition technology, and lends validity to the ongoing effort in
improving accuracy.

The second major contribution of the thesis is the presentation an overall or-
ganization of a speech recognition system for large vocabulary, continuous speech
recognition. We contend that a fast but detailed search, such as that provided by
the lexical tree search described in this thesis, is the key step in obtaining a highly
compact and accurate word lattice. The lattice can be searched using more detailed
and sophisticated models and search algorithms efficiently. The use of multi-pass
systems is not new. Most current speech recognition systems are of that nature
(41, 65, 5, 15, 19, 38]. Manyreports cite the savings to be had by postprocessing a
word lattice [65, 38] instead of the entire vocabulary. However, the task of actually
producing such lattices efficiently has been relatively unexplored. This is necessary
for the practical application of accurate, large vocabulary speech recognition andit
is addressed in this thesis.

Technically, the thesis presents several other contributions:

e The design and implementation of search using lexical trees. It analyzes the
technique of deferring the application of language model probabilities until the
leaves of the lexical tree in an efficient way, and reduces the cost of computing
these probabilities by an order of magnitude. Other tree-based searches [39,
43, 65, 66, 40] attempt to overcome the problem by creating bigram copies of
the search tree. This has three problems: the search space is increased, the
cost of language modelaccess is still substantial, and the physical memorysize
requirements also increase. Though the lexical tree search presented in this
thesis suffers someloss of accuracy, the loss is recovered by postprocessing the
word lattice output, which can be doneefficiently since the lattice is highly
compact.

e A best path search for global optimization of word lattices. This technique
searches the word graph formed from word segmentations and scores produced
by an earlier pass. It finds a globally optimum path through the graph, which
can be accomplished by any textbook shortest path algorithm. Whenapplied to
the word lattice produced by the lexical tree search, it brings the final accuracy
much closer to that of the baseline system, largely overcoming the degradation
in accuracy incurred bythe lexical tree search. Furthermore, it operates in a
small fraction of real time and its cost is negligible. Word lattice searches have
been proposedin (65, 39], for example, but they are directed more towards using
the lattice for driving later search passes with more detailed models.

e Use of HMMstate output probabilities as a fast match to produce candidate

IPR2023-00037

Apple EX1033 Page 141

IPR2023-00037
Apple EX1033 Page 142

7.3. FUTURE WORK ONEFFICIENT SPEECH RECOGNITION 111

list of active phones to be searched. This heuristic has the potential to reduce
the active search space substantially, depending on the sharpness of the under-
lying acoustic models. We have tried two different approaches for determining
the set of active phones: based on all HMMstates, and based on only the
context-independent states. The former leads to better phone prediction and
more effective search pruning, but incurs a fixed cost of evaluating all HMM
state probabilities. The latter does not have this limitation but is somewhat
less accurate in predicting active phones. It is more appropriate for smaller
vocabularies since senone evaluation does not becomea bottleneck.

e Precision of representation of statistical models is largely irrelevant for recogni-
tion accuracy. Substantial savings in memory space can be obtained by quantiz-
ing, clustering, or truncating probability values into few bits. When probability
values are represented in this compactfashion,it is sometimes possible to imple-
ment complex operations on them by meansof simple table-lookup operations.
The space reduction is not specific to the lexical tree search algorithm. It has
been implementedin the baseline Sphinx-II system as well, with similar results.

e Use of disk-based language models in reducing memory requirements. Bigrams
and trigrams are read into memory on demand, but a simple software caching
policy effectively hides long disk access latencies. The technique is not specific
to the lexical tree search algorithm. It has been implemented in the baseline
Sphinx-II system as well, and has proven to beas effective.

7.3 Future Work on Efficient Speech Recognition

The efficiency of speech recognition is ultimately judged by the end application.
Transforming today’s laboratory versions of speech recognition systems into practical
applications requires solutions to many other problems. The resource requirements of
current systems—CPU power and memory—arestill beyond the capabilities of com-
monly available platforms for medium and large vocabulary applications. Further-
more, the notion of “performance” extends beyond accuracy, speed and memorysize.
These factors include, for example, robustness in the presence of noise, adaptation
to varying speaking styles and accents, design issues dealing with human-computer
interfaces that are appropriate for speech-based interaction, speech understanding.
etc. We consider how research on the following might be useful in this respect.

Combining Word-Level Fast Match With Lexical Tree Search

The speed of recognition systems could be improved by a combination of a word-
level fast match algorithm and a lexical tree search. The former typically reduces
the number of candidate words to be searched by at least an order of magnitude.

IPR2023-00037

Apple EX1033 Page 142

IPR2023-00037
Apple EX1033 Page 143

112 CHAPTER 7. CONCLUSION

Furthermore, the candidates produced at a given instant are likely to be phonetically
closely related, which can be exploited effectively by the lexical tree search algorithm.
We do not knowof anydetailed report on a system that takes advantage of the two
together. It is worthwhile studying this problem further. The results presented in
this thesis provide a baseline for comparison purposes.

Robustness to Noise Using Phone Lattices

Normal speech is often interrupted or overshadowed by noise, and recognition during
such periodsis highly unreliable. The need for confidence measures attached to recog-
nition results has often been felt. The phone lattices produced by the phonetic fast
match heuristic described in Section 4.5 could be adapted for this purpose. During
clean speech, there is a distinct separation between the leading active phones and
the remaining inactive ones. Few phonesfall within the beam and theyare generally
closely related or readily confusable. Also there is a good correlation between neigh-
bouring frames. In the presence of noise, especially non-speech noise, the numberof
active phones within the beamwidth increasessignificantly. The reason is that the un-
derlying acoustic models are unable to classify the noisy speech with any confidence.
There is a much greater degree of confusability within a frame, andlittle correlation
among active phones between neighbouring frames. One could use these measures to
detect regions where the recognition is potentially unreliable. The advantage of this
approach is that it is inexpensive to compute.

Postprocessing Word Lattices Using Multiple Language Models

This technique pertains to good user interface design. Several practical applications
of speech recognition deal with the handling of a numberof well-defined but distinct
tasks. For example, in a dictation task text input through speech might be inter-
spersed with spoken commands to manipulate the document being edited, such as
“scroll-up”, “previous paragraph”, etc. However, it is cumbersome for the user to
constantly have to indicate to the system the type of command or speech that is
forthcoming. It is desirable for the system to make that decision after the fact. Such
a task can be accomplished by searching the word lattice output of the lexical tree
search using multiple language models. The dictation task would use two language
models, a general purpose one, and a restricted one for editing commands. Initial
speech recognition is always carried out using the general purpose model. Once a
sentence is recognized and the wordlattice is built, it can be searched again, this
time using the constrained language model. If a path through the wordlattice is
found, the sentence can be interpreted as an editing command. The compact nature
of the word lattice allows such searches to be carried out rapidly.

IPR2023-00037

Apple EX1033 Page 143

IPR2023-00037
Apple EX1033 Page 144

7.32. FUTURE WORK ON EFFICIENT SPEECH RECOGNITION 113

Rescoring Word Lattices Using Prosodic Models

Wordlattices often contain alternative paths that are phonetically identical. Rescor-
ing these using conventional acoustic models, however detailed, is unlikely to resolve
them. However, word or context-dependent prosodic models applied to longer units
such as syllables can help discriminate between the alternatives. Once again, the com-
pact nature of the lattices enables such postprocessing to be performedefficiently.

Disk-Based Acoustic Models

With the emergence of continuous HMMsfor acoustic modelling, demands on CPU
power and memory capacities increase. The availability of compact lattices that can
be rescored with detailed acoustic models alleviates the CPU powerproblem.It also
implies that fewer HMMstates are active at any given instant. Furthermore, once
a state becomes active, it remains active for a few more frames. Thus, it may be
possible to use disk-based acoustic models to reduce their memory requirements as
well. One needs to explore caching mechanisms and their effectiveness in overcoming
disk access latencies for this purpose.

Design of Scalable Systems

It is important to consider the problem of designing a speech application on a specific
platform with given resource constraints. The main criteria are that the application
should perform in real time within the CPU and memory capacities of the system.
Therefore, it is generally necessary to make trade-offs regarding the level of sophisti-
cation of modelling and search that may be employed. The memorysize problem can
be attacked by using less detailed models during the initial search to create a word
lattice, as well as using disk-based mechanisms. The cost of search can be reduced
by increasing the degree of sharing in the lexical tree, for example, by using diphone
or even monophone models instead of triphones. The word lattice output may have
to be larger in order to provide an acceptably lowlattice error rate, and hence the
postprocessing costs also increase. It is worth investigating the tradeoffs that are
possible in this respect.

IPR2023-00037

Apple EX1033 Page 144

IPR2023-00037
Apple EX1033 Page 145

114 CHAPTER 7. CONCLUSION

IPR2023-00037

Apple EX1033 Page 145

IPR2023-00037
Apple EX1033 Page 146

Appendix A

The Sphinx-II Phone Set

 [eesaneieneeee
TAA[odd[EY[ate||P[pee|
eaehe
[AH[hut|G|greenR__|read|
[AO[ought|[GD__|bag[S|sea__|
[AW[cow[HH[heSH[she_|
[eeeshiaalee
[AXR[user[IX[acid|TD__[ie_|AY[aide—[1— [eat—[1[ataJ
[B[te[JH[gee[TS[bits_|
[BD[dub[K[key|UH[hood_|
[CH[cheese[KD[lick|UW_[two|
[D[dee|L[lee_[|V[vee_|
[DD[dud[M__[me|W__|we__|
[DH|thee|N[knee]Y___|yield_]
[DX__|mailer[NG_|ping|Z|zee|
[EH[Ed[OW[oat||ZH|seizure_|
[ER[hurtoy[ty|}|+i

Table A.1: The Sphinx-II Phone Set.

: IPR2023-00037
115 Apple EX1033 Page 146

IPR2023-00037
Apple EX1033 Page 147

Appendix B

Statistical Significance Tests

We have conductedstatistical significance tests using the scoring and stats packages
from NIST. They were run on recognition results from all test sets put together. We
have reproduced the results from these significance tests on the 20K and 58Ktasks
below?. In these tables, five different systems are identified:

e f6pi.m: Baseline system; forward Viterbi pass.

e £6p3.m: Baseline system; all three passes.

e £8pi.m: Lexical tree search.

e £8p2.m: Lexical tree search and global best path search.

e £8p3.m: Lexical tree, rescoring, and global best path search.

The conclusion from these tests is that the new system with three passes (lexical
tree search, rescoring, and best path search) is essentially identical to the baseline
Viterbi search in recognition accuracy.

1The recognition accuracyresults are a little bit better here from the figures reported in the main
thesis sections because of small differences in the scoring packages used in the two cases.

IPR2023-00037

116 Apple EX1033 Page 147

IPR2023-00037
Apple EX1033 Page 148

B.1. 20K TASK

B.1 20K Task

COMPARISON MATRIX: FOR THE MATCHED PAIRS TEST

PECENTAGES ARE MEAN PCT ERROR/SEGMENT.

STATS from std_stats

Minimum Number of Correct Boundary words 2

+

+—+-
+—+

FIRST # IS LEFT SYSTEM

IPR2023-00037

Apple EX1033 Page 148

IPR2023-00037
Apple EX1033 Page 149

118 APPENDIX B. STATISTICAL SIGNIFICANCE TESTS

COMPARISON MATRIX: McNEMAR’S TEST ON CORRECT SENTENCES FOR THE TEST:

STATS from std_stats

For all systems
JettTSaaa|

| £6pi.m(209)| f6p3.m(228)| f8pi.m(i57)| f£8p2.m(202)| £8p3.m(215) |
| ------------+------------

I
|

|

|

|

£6p1.m(209)|
|

——_eeeeeeeepeneeee

£6p3.m(228) |
|

| ------------$------------

| £8pi.m(157) |
| |

| ------------to--------

£8p2.m(202)|
|

eeeeepaaeeeeeee

toon-------------$e-----------+------------ |

| D=(i9) | D=(52) | D=(7) | D=C 6) J

[St6ps.m° J f6piim> | same | same |
+--<—==—=---—=Saeeea$aeenteenee |

| | D=(71) | D=(26) | D=(13) |

| | f£6p3.m | f6p3.m_ | same |
ponefa+$------------$------------

| | | D=(45) | D=(58)

| | | £f8p2.m | £f8p3.m
+------------one+------------a=----

| | | } DC 13)
| | | | same |
po$oee---------one—+------------ |

Comparison Matrix for the Sign Test
Using the Speaker Word Accuracy Rate (/,) Percentage per Speaker

as the Comparison Metric

| | £6pi.m | f6p3.m | £8pi.m | f8p2.m | f8p3.m |
| --------+--------+--------+--------+--------+-------- |

| #6pi.m | | f£6p3.m | f6pi.m | f6épi.m | same |
|--------+--------+--------+--------+--------+-------- |

| £6p3.m | | | £6p3.m | £6p3.m | £6p3.m |
| --------+—--------$oo------$a-------{==-== —-———--=== |

| £8pi.m | | | | £8p2.m | £8p3.m |
| --------+--------+--------$--------$--------+-------- |

| #8p2.m | | | | | £8p3.m |
| --------+--------+--------+--------+--------+-------- |

Comparison Matrix for the Wilcoxon Test
Using the Speaker Word Accuracy Rate (/%) Percentage per Speaker

as the Comparison Metric

|
+

f6pi.m | f6p3.m | f8pi.m | f8p2.m
| --------+--------$--------$--------+--------

| £6pi.m | | £6p3.m | f6pi.m | f6pi.m
|--------+--------+--------+--------+--------

| £6p3.m | | | £6p3.m | f6p3.m
|--------+--------+--------+--------+--------

| #8pi.m | | | | £8p2.m
| --------$oo------poon-----ponoe----$a-------

| £8p2.m | | | |
|--------+$—--------+--------+--------+--------

£8p3.m |

IPR2023-00037

Apple EX1033 Page 149

IPR2023-00037
Apple EX1033 Page 150

B.1. 20K TASK 119

RANGE ANALYSIS ACROSS RECOGNITION SYSTEMS FOR THE TEST:

STATS from std_stats

by Speaker Word Accuracy Rate (%)

| sys | high | low [| std dev | mean |
| --------+--------+--------hom$--- |

| f6p3.m | 95.1 | 50.3 II 8.0) 4] 284. 5eel
| £6pi.m | 94.9 | 48.5 || 3.3 |) 83-87 |
| f8p3.m | 95.4 | 46.6 II SvGioefh) (Baxeiey
| f8p2.m | 95.4 | 46.3 II 6.8) [+ e220" 4
| f8pi.m| 94.1 | 45.1 II Sov lt -SsOse4
ere|

aa|
| | PERCENTAGES |
peeeee5BaNOEarraWreneraTagcaegnaerySma I
| lo 10 20 30 40 50 60 70 80 90 100!
i "s¥s- Wl | | | | | | | | | 1]
(SSee|
P £6p3.m Po nnnnme+---|---+— |
P £6ptemPaaSe|amt
PfSpSim Peeemer<n
PSSp2im 1 meenaecesessde
[$Sptem Pe6Feaeieaease

| -> shows the mean

+ -> shows plus or minus one standard deviation

IPR2023-00037

Apple EX1033 Page 150

IPR2023-00037
Apple EX1033 Page 151

120 APPENDIX B. STATISTICAL SIGNIFICANCE TESTS

Composite Report of All Significance Tests
For the STATS from std_stats Test

Test Name Abbrev.

Matched Pair Sentence Segment (Word Error) Test MP
Signed Paired Comparison (Speaker Word Accuracy Rate (%)) Test SI

Wilcoxon Signed Rank (Speaker Word Accuracy Rate (%)) Test WI
McNemar (Sentence Error) Test MN

Ne|

| | f£6pi.m | f6p3.m [| £f8pi.m | £f8p2.m [| £8p3.m_ |
|-----------+—-===atone+-----------+-----------+----------- |

£6pi.m		MP £6p3.m	MP £6pi.m	MP f6pi.m	MP same
		SI f6p3.m	SI f6pi.m	SI f6pi.m	SI same
		WI £6p3.m	WI f6pi.m	WI #6pi.m	WI same
		MN f6p3.m	MN f6pi.m	MN same	MN same
-----------+-----------+-----------+-----------t+-----------+-----------					

) 86p3za 0]		MP £6p3.m	MP £6p3.m	MP £6p3.m	
			SI £f6p3.m	SI f6p3.m	SI f6p3.m
			WI £6p3.m	WI f6p3.m	WI f6p3.m
			MN f6p3.m	MN f6p3.m	MN same
-----------$-----------onanoon--------$a----------pone					

	Spica. 4I			MP f8p2.m	MP £8p3.m
				SI £8p2.m	SI £8p3.m
				WI £8p2.m	WI £8p3.m
				MN £8p2.m	MN £8p3.m
-----------4+-----------+-----------+-----------+-----------4+-----------					

| £8p2.m | | | | | MP f8p3.m |
I | | | | | SI £8p3.m |
| | | | | | WI £8p3.m |
| | | | | | MN same |

| -----------+-----------t-----------+-----------4+-----------+----------- |

IPR2023-00037

Apple EX1033 Page 151

IPR2023-00037
Apple EX1033 Page 152

B.2. 58K TASK 121

B.2 58K Task

COMPARISON MATRIX: FOR THE MATCHED PAIRS TEST

PECENTAGES ARE MEAN PCT ERROR/SEGMENT. FIRST # IS LEFT SYSTEM
STATS from std_stats

Minimum Number of Correct Boundary words 2

| | £6pi.m | f6p3.m | £8pi.m | f8p2.m | f8p3.m |
| --------+--------+--------+--------+--------+-------- |
| f6pi.m | | £6p3.m | f6pi.m | f6pi.m | same |
| --------+--------+--------+$--------+--------+-------- |

| £6p3.m | | | #6p3.m | £6p3.m | f6p3.m |
| --------+--------+--------+--------$--------$-------- |
| £8pi.m | | | | £8p2.m | £8p3.m |
|--------+--------+-------—$--------+-------—+-------- |
| £8p2.m | | | | | £8p3.m |
| --------+--------+--------+--------+--------+-------- |

IPR2023-00037

Apple EX1033 Page 152

IPR2023-00037
Apple EX1033 Page 153

bo APPENDIX B. STATISTICAL SIGNIFICANCE TESTS

COMPARISON MATRIX: McNEMAR’S TEST ON CORRECT SENTENCES FOR THE TEST:

STATS from

For all
std_stats

systems

| ------------+----------=-eens=$9-===$—<==-—=====$------------ |

| £6p1.m(220) | | D=(36) | D=(65) | D=(7) +'I| D=(10) |
| | [| eGpSTa” If) “tepid 7] same | same |
| ------------$aoeeee$2—==----=+------------$------------to---------- |
| £6p3.m(256)| | | D=(101) | D=(43) | D=(26) |
| | | | f£6p3.m | £f6p3.m | f6p3.m |
| ------------$o------------a+------------+——-=-—----——$------------ |

| £8pi.m(i55)| | | | D=(58) | D=(75) |
| | | | | #f8p2.m [£f8p3.m_ |
| ------------$——=-------==+------------pr+------------ton|
| £8p2.m(213) | | | I | D=(17) |
| | I | | | “#8p3sm. |
| ------------$oo----------honennn+------------+------------$------------ |

Comparison Matrix
the Speaker Word Accuracy

for the Sign Test
Rate (%) Percentage per Speaker

as the Comparison Metric

f6pi.m | f6p3.m|

|--------+--------+--------

| £6pi.m | | £6p3.m
(aeeeeeee

| £6p3.m | |
|--------+--------+--------

| £8pi.m | |
|--------+--------$------==

| £8p2.m | |
|--------+--------$--------

| £8pi.m | £8p2.m | #8p3.m |
+--------+--------+-------- |

| f6pi.m | f6pi.m |
$--------ae+-------— |

| £6p3.m | £6p3.m | £6p3.m |

Comparison Matrix for the Wilcoxon Test
the Speaker Word Accuracy Rate (%) Percentage per Speaker

as the Comparison Metric

| | f6pi.m | £6p3.m | f8pi.m | £8p2.m | £8p3.m |
| --------+--------+--------+--------+--------+-------- |

| £6pi.m | | £6p3.m | f6pi.m | f£6pi.m | same |
|--------+--------+--------+--------$--------4+-------- |

| £6p3.m | | | £6p3.m | £6p3.m | f£6p3.m |
| --------+--------$--------$------==poe+$-------- |

| £8pi.m | | | | £8p2.m | f8p3.m |
| --------+$--------$--------+--------$--------+-------- |

| #8p2.m | | | | | #8p3.m |
| --------+--------+--------$--------+--------4+-------- |

IPR2023-00037

Apple EX1033 Page 153

IPR2023-00037
Apple EX1033 Page 154

RANGE ANALYSIS ACROSS RECOGNITION SYSTEMS FOR THE TEST:

STATS from std_stats

by Speaker Word Accuracy Rate (%)

| syS | high | low || std dev mean |
| --------+o-------+--------+4+---------+--------- |

| f£6p3.m | 96.7 | 41.4 II ore!) Se6zsawl
| f£6pi.m | 96.2 | 47.2 II S220 [&Sb260 a)
| f8p3.m | 96.7 | 47.2 II 8.4 | 85.4 |
| f8p2.m | 95.9 | 43.3 |] 8.9 | 84.4 |
| £8pi.m | 94.4 | 39.6 || 953 | “B2t2 ih
SSee|

aaaaeneta|

| | PERCENTAGES |

[===-4=—=aaaoe|

| JO "40 20 30° 40 50 60 "70 80 90° 100|

b syst | | | | | | | | | I |

eeaae

PESOS 6eePe8ODJennea$a
Petcpists|se=)aeeeetao) 1
Petopoe |eeOe)eeBeRenanSheed.
[PES2 oeenSeesoeeSea
P2optemh99mesesenercrer===|al

| -> shows the mean

+ -> shows plus or minus one standard deviation

IPR2023-00037

Apple EX1033 Page 154

IPR2023-00037
Apple EX1033 Page 155

124 APPENDIX B. STATISTICAL SIGNIFICANCE TESTS

Composite Report of All Significance Tests
For the STATS from std_stats Test

Test Name Abbrev.

Matched Pair Sentence Segment (Word Error) Test MP
Signed Paired Comparison (Speaker Word Accuracy Rate (%)) Test SI

Wilcoxon Signed Rank (Speaker Word Accuracy Rate (%)) Test WI
McNemar (Sentence Error) Test MN

[Rae|

| | f6pi.m | f6p3.m | f8pi.m | f£8p2.m | f8p3.m_ |
| -----------ee--------stone$-----------panna+----------- |

f6pi.m		MP £6p3.m	MP f6pi.m	MP f6pi.m	MP same
		SI #6p3.m	SI f6épi.m	SI f6pi.m	SI same
		WI f6p3.m	WI f6pi.m	WI f6pi.m	WI same
		MN f6p3.m	MN f6épi.m	MN same	MN same
----------—feaeSssseeSe—-<<=--------+-----------					

f£6p3.m_			MP £6p3.m	MP f6p3.m	MP f6p3.m
			SI f6p3.m	SI f6p3.m	SI f6p3.m
			WI f6p3.m	WI f6p3.m	WI f6p3.m
	I	MN f6p3.m	MN f6p3.m	MN f6p3.m	
-----------+----------atone------$$---==-----4-----------+-----------					

f£8pi.m				MP f8p2.m	MP f£8p3.m
				SI £8p2.m	SI f£8p3.m
				WI £8p2.m	WI £8p3.m
				MN £8p2.m	MN £8p3.m
-----------+-----------+-----------+-----------+-----------+-----------					

| f£8p2.m | I | | | MP f8p3.m |
I | | | | | SI £8p3.m |
| | | | | | WI £8p3.m |
| | | I | | MN £#8p3.m |
| -----------$aeeeae$e-==$e----------+-----------+----------- |

IPR2023-00037

Apple EX1033 Page 155

IPR2023-00037
Apple EX1033 Page 156

Bibliography

[1] Alleva, F., Hon, H., Hwang, M., Rosenfeld, R. and Weide, R. Applying
SPHINX-II to the DARPA Wall Street Journal CSR Task. In Proceed-

ings of Speech and Natural Language Workshop, Feb. 1992, pp
393-398.

[2] Alleva, F., Huang, X., and Hwang, M. An Improved Search Algorithm for
Continuous Speech Recognition. In IEEE International Conference on
Acoustics, Speech, and Signal Processing, 1993.

[3] Antoniol, G., Brugnara, F., Cettolo, M. and Federico, M. Language Model
Representation for Beam-Search Decoding. In IEEE International Con-
ference on Acoustics, Speech, and Signal Processing, May 1995, pp
588-591.

[4] Bahl, L.R., Bakis, R., Cohen, P.S., Cole, A.G., Jelinek, F., Lewis, B.L. and
Mercer, R.L. Further Results on the Recognition of a Continuously Read
Natural Corpus. In IEEE International Conference on Acoustics,
Speech, and Signal Processing, Apr. 1980, pp 872-876.

(5) Bahl, L.R., Balakrishnan-Aiyer, S., Franz, M., Gopalakrishnan. P.S..
Gopinath, R., Novak, M., Padmanabhan, M. and Roukos, S. The IBM
Large Vocabulary Continuous Speech Recognition System for the ARPA
NAB News Task. In Proceedings of ARPA Spoken Language Sys-
tem Technology Workshop, Jan. 1995, pp 121-126.

[6] Bahl, L.R., Brown, P.F., DeSouza, P.V. and Mercer, R.L. Obtaining Candidate
Words by Polling in a Large Vocabulary Speech Recognition System. In
IEEE International Conference on Acoustics, Speech, and Signal
Processing,1988.

[7] Bahl, L.R., De Gennaro, V., Gopalakrishnan, P.S. and Mercer, R.L. A Fast Ap-
proximate Acoustic Match for Large Vocabulary Speech Recognition. IEEE
Transactions on Speech and Audio Processing, Vol. 1, No, 1. Jan
1993, pp 59-67.

IPR2023-00037

125 Apple EX1033 Page 156

IPR2023-00037
Apple EX1033 Page 157

126 Bibliography

[8] Bahl, L.R., DeSouza, P.V., Gopalakrishnan, P.S., Nahamoo, D. and Pich-
eney, M. A Fast Match for Continuous Speech Recognition Using Allophonic
Models. In IEEE International Conference on Acoustics, Speech,
and Signal Processing, 1992, vol.I, pp. I-17 — I-21.

[9] Bahl, L.R., Jelinek, F. and Mercer, R. A Mazimum Likelihood Approach
to Continuous Speech Recognition. In IEEE Transactions on Pattern
Analysis and Machine Intelligence, Vol. PAMI-5, No. 2, Mar. 1983,
pp. 179-190.

{10} Baker, J.K. The DRAGONSystem-An Overview. In IEEE Transactions on
Acoustics, Speech, and Signal Processing, ASSP-23(1), Feb. 1975,
pp. 24-29.

[11] Baum, L.E. An Inequality and Associated Mazimization Technique in Statis-
tical Estimation of Probabilistic Functions of Markov Processes. Inequal-
ities 3:1-8, 1972.

[12] Bellegarda, J. and Nahamoo, D. Tied Mirture Continuous Parameter Modeling
for Speech Recognition. In IEEE Transactions on Acoustics, Speech,
and Signal Processing, Dec. 1990, pp 2033-2045.

[13] Bisiani, R. and Ravishankar, M PLUS: A Distributed Shared-Memory System.
17th International Symposium on Computer Architecture, May 1990, pp.
115-124.

[14] Bisiani, R. and Ravishankar, M Design and Implementationof the PLUS Mul-
tiprocessor Internal report, School of Computer Science, Carnegie Mellon
University, Pittsburgh, Jan. 1991.

[15] Chase, L., Rosenfeld, R., Hauptmann, A., Ravishankar, M., Thayer, E., Place-
way, P., Weide, R. and Lu, C. Improvements in Language, Lezical, and
Phonetic Modeling in Sphinz-IJ. In Proceedings of ARPA Spoken Lan-
guage Systems Technology Workshop,Jan. 1995, pp. 60-65.

[16] Cooper, E.C. and Draves, R.P. C Threads. Technical Report, School of Com-
puter Science, Carnegie Mellon University, Nov. 1990.

[17] Coremen, T.H., Leiserson, C.E. and Rivest, R.L. Introduction to Algo-
rithms, The MIT Press, Cambridge, Massachusetts, 1992.

(18] Gauvain, J.L., Lamel, L.F., Adda, G., and Adda-Decker, M. The LIMSI Nov93
WSJ System. In Proceedings of ARPA Speech and Natural Lan-
guage Workshop,Mar. 1994, pp 125-128.

IPR2023-00037

Apple EX1033 Page 157

IPR2023-00037
Apple EX1033 Page 158

Bibliography 127

[19] Gauvain, J.L., Lamel, L. and Adda-Decker, M. Developments in Large Vo-
cabulary Dictation: The LIMSI Nov94 NAB System. In Proceedings
of ARPA Spoken Language Systems Technology Workshop, Jan.
1995, pp. 131-138.

20] Gillick, L.S. and Roth, R. A Rapid Match Algorithm for Continuous Speech'p

Recognition. In Proceedings of DARPA Speech and Natural Lan-
guage Workshop, Jun. 1990, pp. 170-172.

[21] Gopalakrishnan, P.S., Bahl, L.R., and Mercer, R.L. A Tree Search Strategy
for Large- Vocabulary Continuous Speech Recognition. In IEEE Interna-
tional Conference on Acoustics, Speech, and Signal Processing,
May 1995, pp 572-575.

[22] Gopalakrishnan, P.S., Nahamoo, D., Padmanabhan, M.and Picheny, M.A. A
Channel-Bank-Based Phone Detection Strategy. In IEEE International
Conference on Acoustics, Speech, and Signal Processing, April
1994, Vol II, pp 161-164.

[23] Gopinath, R. et al. The IBM continuous speech recognition system on demon-
stration. ARPA Spoken Language Systems Technology Workshop.
Jan. 1995.

[24] Hauptmann, A. et al. The News-on-Demand demonstration. In ARPA
Speech Recognition Workshop,Feb. 1996.

[25] Huang, X., Acero, A., Alleva, F., Beeferman, D., Hwang, M. and Mahajan.
M. From CMU Sphinz-II to Microsoft Whisper-Making Speech Recognition
Usable. In Automatic Speech and Speaker Recognition—Advanced
Topics, Lee, Paliwal, and Soong, editors, Kluwer Publishers, 1994.

[26] Huang, X., Acero, A., Alleva, F., Hwang, M., Jiang, L. and Mahajan, M. Mi-
crosoft Windows Highly Intelligent Speech Recognizer: Whisper. In IEEE
International Conference on Acoustics, Speech, and Signal Pro-
cessing, May 1995, Vol. 1, pp. 93-96.

[27] Hwang, Mei-Yuh. Subphonetic Acoustic Modeling for Speaker-Independent
Continuous Speech Recognition. Ph.D. thesis, Tech Report No. CMU-CS-
93-230, Computer Science Department, Carnegie Mellon University, Dec.
1993.

[28] Hwang, M. and Huang X. Shared-Distribution Hidden Markov Models for
Speech Recognition. In IEEE Transactions on Speech and Audio Pro-
cessing, Oct. 1993, pp 414-420.

IPR2023-00037

Apple EX1033 Page 158

IPR2023-00037
Apple EX1033 Page 159

128 Bibliography

[29] Jelinek, F. Continuous Speech Recognition by Statistical Methods. In Proceed-
ings of the IEEE,Vol. 64, No. 4, Apr. 1976, pp. 532-556.

[30] Katz, S.M. Estimation of Probabilities from Sparse Data for the Language
Model Component of a Speech Recognizer. In IEEE Transactions on
Acoustics, Speech and Signal Processing, vol. ASSP-35, Mar. 87, pp.
400-401.

[31] Kershaw, D.J., Robinson, A.J., and Renals, S.J. The 1995 ABBOT Hy-
brid Connectionist-HMMLarge-Vocabulary Recognition System. In ARPA
Speech Recognition Workshop,Feb. 1996.

i

[32] Lee, K. Large Vocabulary Speaker-Independent Continuous Speech Recogni-
tion: The SPHINX System. Ph.D. thesis, Computer Science Department,
Carnegie Mellon University, April 1988.

[33] Lee, K. Context-Dependent Phonetic Hidden Markov Models for Continuous
Speech Recognition. In IEEE Transactions on Acoustics, Speech, and
Signal Processing, Apr. 1990, pp 599-609.

[34] Lee, K. Context-Dependent Phonetic Hidden Markov Models for Speaker-
Independent Continuous Speech Recognition. In Readings in Speech
Recognition, ed. Waibel, A. and Lee, K. Morgan Kaufmann Publishers,
San Mateo, CA, 1990, pp. 347-365.

[35] Lee, K., Hon, H., and Reddy, R. An Overview of the SPHINX Speech Recogni-
tion System. In IEEE Transactions on Acoustics, Speech, and Signal
Processing, Jan 1990, pp 35-45.

[36] Ljolje, A., Riley, M., Hindle, D. and Pereira, F. The AT&T 60,000 Word
Speech-To-Tezt System. In Proceedings of ARPA Spoken Language
System Technology Workshop, Jan. 1995, pp. 162-165.

[37] Lowerre, B. The Harpy Speech Understanding System. Ph.D. thesis, Computer
Science Department, Carnegie Mellon University, Apr 1976.

[38] Murveit, H., Butzberger, J., Digalakis, V. and Weintraub, M. Large-
Vocabulary Dictation Using SRI’s Decipher Speech Recognition System:
Progressive Search Techniques. In IEEE International Conference on
Acoustics, Speech, and Signal Processing, Apr. 1993, vol.II, pp. I-
319 — [I-322.

[39] Murveit, H., Monaco, P., Digalakis, V. and Butzberger, J. Techniques to
Achieve an Accurate Real-Time Large-Vocabulary Speech Recognition Sys-
tem. In Proceedings of ARPA Human Language Technology Work-
shop, Mar. 1994, pp 368-373.

IPR2023-00037

Apple EX1033 Page 159

IPR2023-00037
Apple EX1033 Page 160

Bibliography 129

[40] Ney, H., Haeb-Umbach, R. and Tran, B.-H. Improvements in Beam Search
for 10000-Word Continuous Speech Recognition. In IEEE International
Conference on Acoustics, Speech, and Signal Processing, Mar.
1992, vol.I, pp. 1-9 - I-12.

[41] Nguyen, L., Anastasakos, T., Kubala, F., LaPre, C., Makhoul, J., Schwartz.
R., Yuan, N., Zavaliagkos, G. and Zhao, Y. The 1994 BBN/BYBLOS
Speech Recognition System. In Proceedings of ARPA Spoken Lan-
guage Systems Technology Workshop,Jan. 1995, pp. 77-81.

[42] Nilsson, N.J. Problem Solving Methods in Artificial Intelligence. McGraw-Hill,
New York, 1971.

[43] Normandin, Y., Bowness, D., Cardin, R., Drouin, C., Lacouture, R. and
Lazarides, A. CRIM’s November 94 Continuous Speech Recognition Sys-
tem. In Proceedings of ARPA Speech and Natural Language
Workshop, Jan. 1995, pp 153-155.

[44] Odell, J.J., Valtchev, V., Woodland, P.C. and Young, S.J. A One Pass De-
coder Design for Large Vocabulary Recognition. In Proceedings of ARPA
Human Language Technology Workshop,Princeton, 1994.

[45] Pallett, D.S., Fiscus, J.G., Fisher, W.M., Garofolo, J.S., Lund, B.A., and
Przybocki, M.A. 1993 Benchmark Tests for the ARPA Spoken Language
Program. In Proceedings of ARPA Speech and Natural Language
Workshop, Mar. 1994, pp 15-40.

[46] Pallett, D.S., Fiscus, J.G., Fisher, W.M., Garofolo, J.S., Lund, B.A., Martin,
A. and Przybocki, M.A. 1994 Benchmark Tests for the ARPA Spoken Lan-
guage Program. In Proceedings of ARPA Spoken Language Systems
Technology Workshop, Jan. 1995, pp 5-38.

[47] Pallett, D.S., Fiscus, J.G., Fisher, W.M., Garofolo, J.S., Martin. A. and Przy-
bocki, M.A. 1995 HUB-3 NIST Multiple Microphone Corpus Benchmark
Tests. In ARPA Speech Recognition Workshop,Feb. 1996.

[48] Pallett, D.S., Fiscus, J.G., Garofolo, J.S., and Przybocki, M.A. 1995 Hué-
4 “Dry Run” Broadcast Materials Benchmark Tests. In ARPA Speech
Recognition Workshop,Feb. 1996.

[49] Patel, S. A Lower-Complezity Viterbi Algorithm. In IEEE International
Conference on Acoustics, Speech, and Signal Processing, May
1995, Vol. 1, pp. 592-595.

IPR2023-00037

Apple EX1033 Page 160

IPR2023-00037
Apple EX1033 Page 161

130 Bibliography

[50] Paul, Douglas B. An Efficient A* Stack Decoder Algorithm for Continuous
Speech Recognition with a Stochastic Language Model. In Proceedings of
DARPA Speech and Natural Language Workshop,Feb. 1992, pp
405-409.

[51] Price, P., Fisher, W.M., Bernstein, J. and Pallet, D.S. The DARPA 1000-
Word Resource Management Database for Continuous Speech Recognition.
In IEEE International Conference on Acoustics, Speech, and Sig-
nal Processing, 1988.

(52) Rabiner, L.R. A Tutorial on Hidden Markov Models and Selected Applications
in Speech Recognition. In Readings in Speech Recognition, ed. Waibel,
A. and Lee, K. Morgan Kaufmann Publishers, San Mateo, CA, 1990, pp.
267-296.

[53] Rabiner, L.R. Applications of Voice Processing to Telecommunications. In
Proceedings of the IEEE,Vol. 82, No. 2, Feb. 1994, pp. 199-228.

[54] Ravishankar, M. Parallel Implementation of Fast Beam Search for Speaker-
Independent Continuous Speech Recognition. Technical report submitted to
Computer Science and Automation,Indian Institute of Science, Bangalore,
India, Apr. 1993.

(55) Ravishankar, M. et al. The CMUcontinuous speech recognition system demon-
stration. ARPA Spoken Language Technology Workshop, Mar.
1994,

[56] Renals, S. and Hochberg, M. Efficient Search Using Posterior Phone Prob-
ability Estimates. In IEEE International Conference on Acoustics,
Speech, and Signal Processing, May 1995, pp 596-599.

[57] Rosenfeld, R. Adaptive Statistical Language Modeling: A Mazimum Entropy
Approach. Ph.D. thesis, School of Computer Science, Carnegie Mellon Uni-
versity, 1994.

[58] Rosenfeld, R. and Seymore, K. Personal communication. School of Computer
Science, Carnegie Mellon University, Mar. 1996.

[59] Schwartz, R. and Chow, Y.L. The Optimal N-Best Algorithm: An Efficient
Procedure for Finding Multiple Sentence Hypotheses. In IEEE Interna-
tional Conference on Acoustics, Speech, and Signal Processing,
Apr. 1990.

[60] Schwartz, R.M.et al. The BBN continuous speech recognition system demon-
stration. ARPA Spoken Language Technology Workshop, Mar.
1994.

IPR2023-00037

Apple EX1033 Page 161

IPR2023-00037
Apple EX1033 Page 162

Bibliography 131

[61] Sites, R.L., editor. Alpha Architecture Reference Manual. Digital Press, 1992.

[62] Viterbi, A.J. Error Bounds for Convolutional Codes and an Asymptotically
Optimum Decoding Algorithm. In IEEE Transactions on Information
Theory,vol. IT-13, Apr. 1967, pp. 260-269.

[63] Weide, R. Personal communication. School of Computer Science, Carnegie
Mellon University.

[64] Woodland, P.C., Gales, M.J.F., Pye, D., and Valtchev, V. The HTK Large Vo-
cabulary Recognition System for the 1995 ARPA H3 Task. ARPA Speech
Recognition Workshop,Feb. 1996.

[65] Woodland, P.C. Leggetter, C.J., Odell, J.J., Valtchev, V. and Young, S.J.
The Development of the 1994 HTK Large Vocabulary Speech Recognition
System. In Proceedings of ARPA Spoken Language System Tech-
nology Workshop,Jan. 1995, pp 104-109.

[66] Woodland, P.C., Odell, J.J., Valtchev, V. and Young, S.J. The HTKLarge
Vocabulary Continuous Speech Recognition System: An Overview. In Pro-
ceedings of ARPA Speech and Natural Language Workshop, Mar.
1994, pp 98-101.

IPR2023-00037

Apple EX1033 Page 162

IPR2023-00037
Apple EX1033 Page 163

Bibliography

IPR2023-00037

Apple EX1033 Page 163

IPR2023-00037
Apple EX1033 Page 164

IPR2023-00037

Apple EX1033 Page 164

