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Although initially introduced and studied in the late 1960s and 
early 1970s, statistical methods of Markov source or hidden Markov 
modeling have become increasingly popular in the last several 
years. There are two strong reasons why this has occurred. First the 
models are very rich in mathematical structure and hence can form 
the theoretical basis for use in a wide range of applications. Sec- 
ond the models, when applied properly, work very well in practice 
for several important applications. In this paper we attempt to care- 
fully and methodically review the theoretical aspects of this type 
of statistical modeling and show how they have been applied to 
selected problems in machine recognition of speech. 

I. INTRODUCTION 

Real-world processes generally produce observable out- 
puts which can be characterized as signals. The signals can 
bediscrete in nature(e.g.,charactersfrom afinitealphabet, 
quantized vectors from a codebook, etc.), or continuous in 
nature (e.g., speech samples, temperature measurements, 
music, etc.). The signal source can be stationary (i.e., its sta- 
tistical properties do not vary with time), or nonstationary 
(i.e., the signal properties vary over time). The signals can 
be pure (i.e., coming strictly from a single source), or can 
be corrupted from other signal sources (e.g., noise) or by 
transmission distortions, reverberation, etc. 

A problem of fundamental interest i s  characterizing such 
real-world signals in terms of signal models. There are sev- 
eral reasons why one is interested in applying signal models. 
First of all, a signal model can provide the basis for a the- 
oretical description of a signal processing system which can 
be used to process the signal so as to provide a desired out- 
put. For example if we are interested in enhancing a speech 
signal corrupted by noise and transmission distortion, we 
can use the signal model to design a system which will opti- 
mally remove the noise and undo the transmission distor- 
tion. A second reason why signal models are important i s  
that they are potentially capable of letting us learn a great 
deal about the signal source (i.e., the real-world process 
which produced the signal) without having to have the 
sourceavailable. This property i s  especially important when 
the cost of getting signals from the actual source i s  high. 
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In this case, with a good signal model, we can simulate the 
source and learn as much as possible via simulations. 
Finally, the most important reason why signal models are 
important is that they often workextremelywell in practice, 
and enable us to realize important practical systems-e.g., 
prediction systems, recognition systems, identification sys- 
tems, etc., in a very efficient manner. 

These are several possible choices for what type of signal 
model i s  used for characterizing the properties of a given 
signal. Broadly one can dichotomize the types of signal 
models into the class of deterministic models, and the class 
of statistical models. Deterministic models generally exploit 
some known specific properties of the signal, e.g., that the 
signal is a sine wave, or a sum of exponentials, etc. In these 
cases, specification of the signal model is generally straight- 
forward;all that i s  required istodetermine(estimate)values 
of the parameters of the signal model (e.g., amplitude, fre- 
quency, phase of a sine wave, amplitudes and rates of expo- 
nentials, etc.). The second broad class of signal models i s  
the set of statistical models in which one tries to charac- 
terize only the statistical properties of the signal. Examples 
of such statistical models include Gaussian processes, Pois- 
son processes, Markov processes, and hidden Markov pro- 
cesses, among others. The underlying assumption of the 
statistical model i s  that the signal can be well characterized 
as a parametric random process, and that the parameters 
of the stochastic process can be determined (estimated) in 
a precise, well-defined manner. 

For the applications of interest, namely speech process- 
ing, both deterministic and stochastic signal models have 
had good success. In this paper we will concern ourselves 
strictlywith one typeof stochastic signal model, namelythe 
hidden Markov model (HMM). (These models are referred 
to as Markov sources or probabilistic functions of Markov 
chains in the communications literature.) We will first 
review the theory of Markov chains and then extend the 
ideas to the class of hidden Markov models using several 
simple examples. We will then focus our attention on the 
three fundamental problems' for HMM design, namely: the 

'The idea of characterizing the theoretical aspects of hidden 
Markov modeling in terms of solving three fundamental problems 
i s  due to Jack Ferguson of IDA (Institute for Defense Analysis) who 
introduced it in lectures and writing. 
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evaluation of the probability (or likelihood) of a sequence 
of observations given a specific HMM; the determination 
of a best sequence of model states; and the adjustment of 
model parameters so as to best account for the observed 
signal. We will show that once these three fundamental 
problems are solved, we can apply HMMs to selected prob- 
lems in speech recognition. 

Neither the theory of hidden Markov models nor its 
applications to speech recognition i s  new. The basic theory 
was published in a series of classic papers by Baum and his 
colleagues [I]-[5] in the late 1960s and early 1970s and was 
implemented for speech processing applications by Baker 
161 at CMU, and by Jelinek and his colleagues at IBM [7-[13] 
in the 1970s. However, widespread understanding and 
application of the theory of HMMs to speech processing 
has occurred only within the past several years. There are 
several reasons why this has been the case. First, the basic 
theory of hidden Markov models was published in math- 
ematical journals which were not generally read by engi- 
neers working on problems in speech processing. The sec- 
ond reason was that the original applications of the theory 
to speech processing did not provide sufficient tutorial 
material for most readers to understand the theory and to 
be able to apply it to their own research. As a result, several 
tutorial papers were written which provided a sufficient 
level of detail for a number of research labs to begin work 
using HMMs in individual speech processing applications 
[14]-[19]. This tutorial i s  intended to provide an overview 
of the basic theory of HMMs (as originated by Baum and 
his colleagues), provide practical details on methods of 
implementation of the theory, and describe a couple of 
selected applications of the theory to distinct problems in 
speech recognition. The paper combines results from a 
number of original sources and hopefully provides a single 
source for acquiring the background required to pursue 
further this fascinating area of research. 

The organization of this paper is as follows. In Section I1 
we review the theory of discrete Markov chains and show 
how the concept of hidden states, where the observation 
i s  a probabilistic function of the state, can be used effec- 
tively. We illustrate the theory with two simple examples, 
namely coin-tossing, and the classic balls-in-urns system. 
In Section I l l  we discuss the three fundamental problems 
of HMMs, and give several practical techniques for solving 
these problems. In Section IV we discuss the various types 
of HMMs that have been studied including ergodic as well 
as left-right models. In this section we also discuss the var- 
ious model features including the form of the observation 
density function, the state duration density, and the opti- 
mization criterion for choosing optimal HMM parameter 
values. In Section Vwe discuss the issues that arise in imple- 
menting HMMs including the topics of scaling, initial 
parameter estimates, model size, model form, missingdata, 
and multiple observation sequences. In Section VI we 
describean isolated word speech recognizer, implemented 
with HMM ideas, and show how it performs as compared 
to alternative implementations. In Section VI1 we extend 
the ideas presented in Section VI to the problem of recog- 
nizing a string of spoken words based on concatenating 
individual HMMsofeachword in thevocabulary. In Section 
V l l l  we briefly outline how the ideas of HMM have been 
applied to a largevocabulary speech recognizer, and in Sec- 

tion I X  we summarize the ideas discussed throughout the 
paper. 

11. DISCRETE MARKOV PROCESSES~ 

Consider a system which may be described at any time 
as being in one of a set of N distinct states, S1, SzI . . . , SN, 
as illustrated in Fig. 1 (where N = 5 for simplicity). At reg- 

Fig. 1. A Markov chain with 5 states (labeled S, to S,) with 
selected state transitions. 

ularlyspaced discrete times, the system undergoesachange 
of state (possibly back to the same state) according to a set 
of probabilities associated with the state. We denote the 
time instants associated with state changes as t = 1, 2, 
. . . , and we denote the actual state at time t as qr. A full 
probabilistic description of the above system would, in gen- 
eral, require specification of the current state (at time t), as 
well as all the predecessor states. For the special case of a 
discrete, first order, Markov chain, this probabilistic 
description is truncated to just the current and the pre- 
decessor state, i.e., 

99, = qq t -1  = SI, q t - 2  = S k r  . . . I  
= 9s: = S&: = SJ. (1 ) 

Furthermoreweonlyconsider those processes in which the 
right-hand side of (1) i s  independent of time, thereby lead- 
ing to the set of state transition probabilities a,, of the form 

(2) 

with the state transition coefficients having the properties 

a,, = 99, = S,(q,-, = S,], 1 5 i , j  5 N 

a,, 2 0 

C a,, = I 
N 

/ = 1  

(3a) 

(3b) 

since they obey standard stochastic constraints. 
The above stochastic process could be called an observ- 

able Markov model since the output of the process is the 
set of states at each instant of time, where each state cor- 
responds to a physical (observable) event. To set ideas, con- 
sider a simple 3-state Markov model of the weather. We 
assume that once a day (e.g., at noon), the weather i s  

'A good overview of discrete Markov processes is in [20, ch. 51. 
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observed as being one of the following: 

State 1: rain or (snow) 
State 2: cloudy 
State 3: sunny. 

We postulate that the weather on day t is characterized by 
a single one of the three states above, and that the matrix 
A of state transition probabilities i s  

0.4 0.3 0.3 

LO.1 0.1 0.81 

Given that the weather on day 1 ( t  = 1) is sunny (state 3), 
we can ask the question: What is the probability (according 
to the model) that the weather for the next 7 days will be 
"sun-sun-rain-rain-sun-cloudy-sun * * a " ?  Stated more for- 
mally, we define the observation sequence 0 as 0 = {S3 ,  
S3, S3, S1, S1, S3, Sz, S3} corresponding to t = 1, 2, . . . , 8, 
and we wish to determine the probability of 0, given the 
model. This probability can be expressed (and evaluated) 
as 

P(0IModel) = RS,, S3, S3, S1, S1, S3, Sz, S31Modell 

= SS31 . RS3lS3l SS3lS3l RSlIS31 

= 7r3 

= 1 . (0.8)(0.8)(0.1)(0.4)(0.3)(0.1)(0.2) 
= 1.536 X 

a33 * a33 . a31 * all . a13 . a32 . aZ3 

where we use the notation 

K, = 491 = S;], 1 5 i 5 N (4) 
to denote the initial state probabilities. 

Another interesting question we can ask (and answer 
using the model) is: Given that the model i s  in a known state, 
what i s  the probabilityit stays in that stateforexactlyddays? 
This probability can be evaluated as the probability of the 
observation sequence 

0 = {Si, Si, Si, . * * , S. s # S;}, 
1 2 3  d' dkl 

given the model, which i s  

P(OIMode1, ql = S;) = (aJd-'(l - a;;) = p,(d). (5) 

The quantityp;(d) i s  the (discrete) probability density func- 
tion of duration d i n  state i. This exponential duration den- 
sity is characteristic of the state duration in a Markovchain. 
Based on pi(d), we can readily calculate the expected num- 
ber of observations (duration) in a state, conditioned on 
starting in that state as 

m - 
d; = c dpi(d) 

d = l  
(6a) 

m 

(6b) 
1 

= c d(ajJd-'(1 - a;,) = -. 
d = l  1 - ai; 

Thus the expected number of consecutive days of sunny 
weather, according to the model, i s  140.2) = 5; for cloudy 
it is 2.5; for rain it is 1.67. 

A. Extension to Hidden Markov Models 

So far we have considered Markov models in which each 
state corresponded to an observable (physical) event. This 
model is too restrictive to be applicable to many problems 
of interest. In this section we extend the concept of Markov 
models to include the case where the observation i s  a prob- 
abilistic function of the state-i.e., the resulting model 
(which iscalled a hidden Markovmodel) isadoublyembed- 
ded stochastic process with an underlying stochastic pro- 
cess that i s  not observable (it is hidden), but can only be 
observed through another set of stochastic processes that 
produce the sequence of observations. To fix ideas, con- 
sider the following model of some simple coin tossing 
experiments. 

Coin Toss Models: Assume the following scenario. You 
are in a room with a barrier (e.g., a curtain) through which 
you cannot see what i s  happening. On the other side of the 
barrier i s  another person who is performing a coin (or mul- 
tiplecoin) tossing experiment. Theother person will not tell 
you anything about what he i s  doing exactly; he will only 
tell you the result of each coin flip. Thus a sequence of hid- 
den coin tossing experiments i s  performed, with the obser- 
vation sequence consisting of a series of heads and tails; 
e.g., a typical observation sequence would be 

0 = O1 O2 O3 . . . OT 

= x x333x 3 3  x . . .  x 
where X stands for heads and 3 stands for tails. 

Given the above scenario, the problem of interest i s  how 
do we build an HMM to explain (model) the observed 
sequence of heads and tails. The first problem one faces i s  
deciding what the states in the model correspond to, and 
then deciding how many states should be in the model. One 
possiblechoicewould betoassumethatonlyasingle biased 
coin was being tossed. In this case we could model the sit- 
uation with a 2-state model where each state corresponds 
to a side of the coin (i.e., heads or tails). This model i s  
depicted in Fig. 2(a).3 In this case the Markov model i s  
observable, and the only issue for complete specification 
of the model would be to decide on the best value for the 
bias (i.e., the probability of, say, heads). Interestingly, an 
equivalent HMM to that of Fig. 2(a) would be a degenerate 
I-state model, where the state corresponds to the single 
biased coin, and the unknown parameter i s  the bias of the 
coin. 

A second form of HMM for explaining the observed 
sequence of coin toss outcome is  given in Fig. 2(b). In this 
case there are 2 states in the model and each state corre- 
sponds to a different, biased, coin being tossed. Each state 
is characterized by a probability distribution of heads and 
tails, and transitions between states are characterized by a 
state transition matrix. The physical mechanism which 
accounts for how state transitions are selected could itself 
be a set of independent coin tosses, or some other prob- 
abilistic event. 

A third form of HMM for explaining the observed 
sequence of coin toss outcomes is  given in Fig. 2(c). This 
model corresponds to using 3 biased coins, and choosing 
from among the three, based on some probabilistic event. 

3The model of Fig. 2(a) is  a memoryless process and thus is a 
degenerate case of a Markov model. 
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P(H1 4 - P(HI 

HEADS TAILS 

0 33 

STATE 
t 2 3  

P(H1 PI Pp P3 
P(T)  I-P, i-Pp I-P3 

--- 

0 - H H T T H T H H T T H  ... 
S = l 1 2 2 4 2 1 1 2 2 i  ... 

0 = H H T T H T H H T T H  ... 
S = 2 1 I 2 2 2 1 2 2 1 2  ... 

O =  H H T T H T H H T T H  ... 
s = 3 1 2 3 3 1 4  2 3 1  3... 

Fig. 2. Three possible Markov models which can account 
for the resultsof hidden coin tossing experiments. (a) I-coin 
model. (b) 2-coins model. (c) 3-coins model. 

Given the choice among the three models shown in Fig. 
2 for explaining the observed sequence of heads and tails, 
a natural question would bewhich model best matches the 
actual observations. It should beclearthat the simple I-coin 
model of Fig. 2(a) has only 1 unknown parameter; the 2-coin 
model of Fig. 2(b) has4 un known parameters; and the 3-coin 
model of Fig. 2(c) has 9 unknown parameters. Thus, with 
the greater degrees of freedom, the larger HMMs would 
seem to inherently be more capable of modeling a series 
of coin tossing experiments than would equivalently smaller 
models. Although this is theoretically true, we will see later 
in this paper that practical considerations impose some 
strong limitations on the size of models that we can con- 
sider. Furthermore, it might just be the case that only a sin- 
glecoin i s  being tossed. Then using the 3-coin model of Fig. 
2(c) would be inappropriate, since the actual physical event 
would not correspond to the model being used-i.e., we 
would be using an underspecified system. 

The Urn and BallMode14:To extend the ideas of the HMM 
to a somewhat more complicated situation, consider the 
urn and ball system of Fig. 3. We assume that there are N 
(1arge)glassurnsin aroom. Withineach urntherearealarge 
number of colored balls. We assume there are M distinct 
colorsofthe balls. The physical processforobtainingobser- 
vations i s  as follows. A genie is in the room, and according 
to some random process, he (or she) chooses an initial urn. 
From this urn, a ball i s  chosen at random, and i t s  color i s  
recorded as theobservation.The ball i s  then replaced in the 
urn from which it was selected. A new urn is then selected 

4The urn and ball model was introduced by Jack Ferguson, and 
his colleagues, in lectures on HMM theory. 

os  {GREEN, GREEN, BLUE, RED, YELLOW, RED, .. . . . ... BLUE} 

Fig. 3. An N-state urn and ball model which illustrates the 
general case of a discrete symbol HMM. 

according to the random selection process associated with 
the current urn, and the ball selection process is repeated. 
This entire process generates afinite observation sequence 
of colors, which we would like to model as the observable 
output of an HMM. 

It should be obvious that the simplest HMM that cor- 
responds to the urn and ball process i s  one in which each 
state corresponds to a specific urn, and for which a (ball) 
color probability i s  defined for each state. The choice of 
urns i s  dictated by the state transition matrix of the HMM. 

5. Elements of an  HMM 

The above examples give us a pretty good idea of what 
an HMM is and how it can be applied to some simple sce- 
narios. We now formally define the elements of an HMM, 
and explain how the model generates observation 
sequences. 

An HMM i s  characterized by the following: 
1) N, the number of states in the model. Although the 

states are hidden, for many practical applications there i s  
often some physical significance attached to the states or 
to sets of states of the model. Hence, in the coin tossing 
experiments, each state corresponded to a distinct biased 
coin. In the urn and ball model, the states corresponded 
to the urns. Generally the states are interconnected in such 
a way that any state can be reached from any other state 
(e.g., an ergodic model); however, we will see later in this 
paper that other possible interconnections of states are 
often of interest. We denote the individual states as S = {Sl, 
S2, . . . , S N } ,  and the state at time t as g,. 

2) M, the number of distinct observation symbols per 
state, i.e., the discrete alphabet size. The observation sym- 
bols correspond to the physical output of the system being 
modeled. For the coin toss experiments the observation 
symbols were simply heads or tails; for the ball and urn 
model they were the colors of the balls selected from the 
urns. We denote the individual symbols as V = {vl, v,, 

3) The state transition probability distribution A = { a , }  

(7) 

For the special case where any state can reach any other 
state in a single step, we have a, > 0 for all i, j .  For other 
types of HMMs, we would have a,] = 0 for one or more (i, 
j )  pairs. 

* .  * , V M ) .  

where 

a,, = p[q,+l = S,lq, = S,], 1 5 i, j I N. 
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4) The observation symbol probability distribution in 
statej, B = {b,(k)}, where 

b,(k) = p[vk at t )q t  = S,], 1 I j 5 N 

I i k i M .  (8) 

5) The initial state distribution T = { T ~ }  where 

T ,  = p[ql = SI], 1 i i i N. (9) 

Given appropriate values of N, M, A, B, and ir, the HMM 
can be used as a generator to give an observation sequence 

0 = 0 1 O ~ ~ ~ ~ o J  (10) 

(where each observation 0, is  one of the symbols from V, 
and Tis the number of observations in the sequence) as 
follows: 

1) Choose an initial state q, = SI according to the initial 
state distribution T .  

2 )  Set t = 1 .  
3) Choose 0, = vk according to the symbol probability 

distribution in state SI, i.e., b,(k). 
4) Transit to a new state q,,, = S, according to the state 

transition probability distribution for state S,, i.e., a,. 
5) Set t = t + 1; return to step 3)if t < T; otherwise ter- 

minate the procedure. 

The above procedure can be used as both a generator of 
observations, and as a model for how a given observation 
sequence was generated by an appropriate HMM. 

It can be seen from the above discussion that a complete 
specification of an HMM requires specification of two 
model parameters (N and M), specification of observation 
symbols, and the specification of the three probability mea- 
sures A, B, and T.  For convenience, we use the compact 
notation 

A = (A, 6, T )  (11) 

to indicate the complete parameter set of the model. 

C. The Three Basic Problems for HMMs5 

Given the form of HMM of the previous section, there are 
three basic problems of interest that must be solved for the 
model to be useful in real-world applications. These prob- 
lems are the following: 

Problem 7: Given the observation sequence 0 = O1 O2 
. . * Or, and a model A = (A, 6, ir), how do 
we efficiently compute P(OIA), the proba- 
bilityof theobservation sequence,given the 
model? 

Problem 2: Given the observation sequence 0 = 0, O2 
. . . Or, and the model A, how do we choose 
a corresponding state sequence Q = q1 q2 
. . . qJwhich i s  optimal in some meaningful 
sense (i.e., best “explains” the observa- 
t ion s)? 

Problem 3: How do we adjust the model parameters A 
= (A, B, T )  to maximize P(OJA)? 

5The material in this section and in Section I l l  is based on the 
ideas presented by Jack Ferguson of IDA in lectures at Bell Lab- 
oratories. 

Problem 1 i s  the evaluation problem, namely given a 
model and asequenceof observations, how dowecompute 
the probability that the observed sequence was produced 
by the model. We can also view the problem as one of scor- 
ing how well a given model matches a given observation 
sequence. The latter viewpoint i s  extremely useful. For 
example, if we consider the case in which we are trying to 
choose among several competing models, the solution to 
Problem 1 allows us to choose the model which best 
matches the observations. 

Problem 2 is the one in which we attempt to uncover the 
hidden part of the model, i.e., to find the “correct” state 
sequence. It should be clear that for all but the case of 
degenerate models, there i s  no “correct” state sequence 
to be found. Hence for practical situations, we usually use 
an optimality criterion to solve this problem as best as pos- 
sible. Unfortunately, as we will see, there are several rea- 
sonable optimality criteria that can be imposed, and hence 
the choice of criterion is a strong function of the intended 
use for the uncovered state sequence. Typical uses might 
be to learn about the structure of the model, to find optimal 
state sequences for continuous speech recognition, or to 
get average statistics of individual states, etc. 

Problem 3 i s  the one in which we attempt to optimize the 
model parameters so as to best describe how a given obser- 
vation sequence comes about. The observation sequence 
used to adjust the model parameters i s  called a training 
sequence since it is used to “train” the HMM. The training 
problem is the crucial one for most applications of HMMs, 
since it allows us to optimally adapt model parameters to 
observed training data-i.e., to create best models for real 
phenomena. 

To fix ideas, consider the following simple isolated word 
speech recognizer. For each word of a Wword vocabulary, 
we want to design a separate N-state HMM. We represent 
the speech signal of a given word as a time sequence of 
coded spectral vectors. We assume that the coding i s  done 
using a spectral codebook with M unique spectral vectors; 
hence each observation i s  the index of the spectral vector 
closest (in some spectral sense) to the original speech sig- 
nal. Thus, for each vocabulary word, we have a training 
sequence consisting of a number of repetitions of 
sequencesofcodebook indicesoftheword (byoneor more 
talkers). The first task is to build individual word models. 
This task i s  done by using the solution to Problem 3 to opti- 
mally estimate model parameters for each word model. To 
develop an understanding of the physical meaning of the 
model states, we use the solution to Problem 2 to segment 
each of the word training sequences into states, and then 
study the properties of the spectral vectors that lead to the 
observations occurring in each state. The goal here would 
be to make refinements on the model (e.g., more states, 
different codebook size, etc.) so as to improve its capability 
of modeling the spoken word sequences. Finally, once the 
set of W HMMs has been designed and optimized and thor- 
oughly studied, recognition of an unknown word i s  per- 
formed using the solution to Problem 1 to score each word 
model based upon the given test observation sequence, 
and select the word whose modelscore is highe5t [k,? the 
highest I i kel i hood). 

In the next section we present formal mathematical solu- 
tionstoeachofthethreefundamental problemsfor HMMs. 
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