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CHAPTERS 

Introduction to Automatic Speech 
Recognition: Template Matching 

8.1 INTRODUCTION 

Much of the early work on automatic speech recognition (ASR), starting in the 
1950s, involved attempting to apply rules based either on acoustic/phonetic 
knowledge or in many cases on simple ad hoc measurements of properties of the 
speech signal for different types of speech sound. The intention was to decode the 
signal directly into a sequence of phoneme-like units. These early methods, 
extensively reviewed by Hyde ( 1972), achieved very little success. The poor results 
were mainly because co-articulation causes the acoustic properties of individual 
phones to vary very widely, and any rule-based hard decisions about phone identity 
will often be wrong if they use only local information. Once wrong decisions have 
been made at an early stage, it is extremely difficult to recover from the errors later. 

An alternative to rule-based methods is to use pattern-matching techniques. 
Primitive pattern-matching approaches were being investigated at around the same 
time as the early rule-based methods, but major improvements in speech recognizer 
performance did not occur until more general pattern-matching techniques were 
invented. This chapter describes typical methods that were developed for spoken 
word recognition during the 1970s. Although these methods were widely used in 
commercial speech recognizers in the 1970s and 1980s, they have now been largely 
superseded by more powerful methods ( to be described in later chapters), which 
can be understood as a generalization of the simpler pattern-matching techniques 
introduced here. A thorough understanding of the principles of the first successful 
pattern-matching methods is thus a valuable introduction to the later techniques. 

8.2 GENERAL PRINCIPLES OF PATTERN MATCHING 

When a person utters a word, as we saw in Chapter 1, the word can be considered 
as a sequence of phonemes ( the linguistic units) and the phonemes will be realized 
as phones. Because of inevitable co-articulation, the acoustic patterns associated 
with individual phones overlap in time, and therefore depend on the identities of 
their neighbours. Even for a word spoken ~ isolation, therefore, the acoustic 
pattern is related in a very complicated way to the word's linguistic structure. 

However, if the same person repeats the same isolated word on separate 
occasions, the pattern is likely to be generally similar, because the same phonetic 
relationships will apply. Of course, there will probably also be differences, arising 
from many causes. For example, the second occurrence might be spoken faster or 
more slowly; there may be differences in vocal effort; the pitch and its variation 
during the word could be different; one example may be spoken more precisely 
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110 Speech Synthesis and Recognition 

than the other, etc. It is obvious that the waveform of separate utterances of the 
same word may be very different. There are likely to be more similarities between 
spectrograms because (assuming that a short time-window is used, see Section 2.6), 
they better illustrate the vocal-tract resonances, which are closely related to the 
positions of the articulators. But even spectrograms will differ in detail due to the 
above types of difference, and timescale differences will be particularly obvious. 

A well-established approach to ASR is to store in the machine example 
acoustic patterns ( called templates) for all the words to be recognized, usually 
spoken by the person who will subsequently use the machine. Any incoming word 
can then be compared in tum with all words in the store, and the one that is most 
similar is assumed to be the correct one. In general none of the templates will match 
perfectly, so to be successful this technique must rely on the correct word being 
more similar to its own template than to any of the alternatives. 

It is obvious that in some sense the sound pattern of the correct word is likely 
to be a better match than a wrong word, because it is made by more similar 
articulatory movements. Exploiting this similarity is, however, critically dependent 
on how the word patterns are compared, i.e. on how the 'distance' between two 
word examples is calculated. For example, it would be useless to compare 
waveforms, because even very similar repetitions of a word will differ appreciably 
in waveform detail from moment to moment, largely due to the difficulty of 
repeating the intonation and timing exactly. 

It is implicit in the above comments that it must also be possible to identify 
the start and end points of words that are to be compared. 

8.3 DISTANCE METRICS 

In this section we will consider the problem of comparing the templates with the 
incoming speech when we know that corresponding points in time will be 
associated with similar articulatory events. In effect, we appear to be assuming that 
the words to be compared are spoken in isolation at exactly the same speed, and 
that their start and end points can be reliably determined. In practice these 
assumptions will very rarely be justified, and methods of dealing with the resultant 
problems will be discussed later in the chapter. 

In calculating a distance between two words it is usual to derive a short-term 
distance that is local to corresponding parts of the words, and to integrate this 
distance over the entire word duration. Parameters representing the acoustic signal 
must be derived over some span of time, during which the properties are assumed 
not to change much. In one such span of time the measurements can be stored as a 
set of numbers, or feature vector, which may be regarded as representing a point 
in multi-dimensional space. The properties of a whole word can then be described 
as a succession of feature vectors ( often referred to as frames), each representing a 
time slice of, say, 10-20 ms. The integral of the distance between the patterns then 
reduces to a sum of distances between corresponding pairs of feature vectors. To be 
useful, the distance must not be sensitive to small differences in intensity between 
otherwise similar words, and it should not give too much weight to differences in 
pitch. Those features of the acoustic signal that are determined by the phonetic 
properties should obviously be given more weight in the distance calculation. 
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8.3.l Filter-bank analysis 

The most obvious approach in choosing a distance metric which has some of the 
desirable properties is to use some representation of the short-term power spectrum. 
It has been explained in Chapter 2 how the short-term spectrum can represent the 
effects of moving formants, excitation spectrum, etc. 

Although in tone languages pitch needs to be taken into account, in Western 
languages there is normally only slight correlation between pitch variations and the 
phonetic content of a word. The likely idiosyncratic variations of pitch that will 
occur from occasion to occasion mean that, except for tone languages, it is 
normally safer to ignore pitch in whole-word pattern-matching recognizers. Even 
for tone languages it is probably desirable to analyse pitch variations separately 
from effects due to the vocal tract configuration. It is best, therefore, to make the 
bandwidth of the spectral resolution such that it will not resolve the harmonics of 
the fundamental of voiced speech. Because the excitation periodicity is evident in 
the amplitude variations of the output from a broad-band analysis, it is also 
necessary to apply some time-smoothing to remove it. Such time-smoothing will 
also remove most of the fluctuations that result from randomness in turbulent 
excitation. 

At higher frequencies the precise formant positions become less significant, 
and the resolving power of the ear ( critical bandwidth - see Chapter 3) is such that 
detailed spectral information is not available to human listeners at high frequencies. 
It is therefore permissible to make the spectral analysis less selective, such that the 
effective filter bandwidth is several times the typical harmonic spacing. The desired 
analysis can thus be provided by a set of bandpass filters whose bandwidths and 
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Figure 8.1 Spectrographic dis.plays of a 10-channel filter-bank analysis (with a non-linear 
frequency spacing of the channels), shown for one example of the word "three" and two 
examples of the word "eight". It can be seen that the examples of "eight" are generally similar, 
although the lower one has a shorter gap for the [t] and a longer burst. 
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8.3.1 Filter-bank analysis

The most obvious approach in choosing a distance metric which has some of the
desirable properties is to use somerepresentation of the short-term powerspectrum.
It has been explained in Chapter 2 how the short-term spectrum canrepresentthe
effects of moving formants, excitation spectrum, etc.

Although in tone languages pitch needs to be taken into account, in Western
languages there is normally only slight correlation between pitch variations and the
phonetic content of a word. The likely idiosyncratic variations of pitch that will
occur from occasion to occasion mean that, except for tone languages, it is
normally safer to ignore pitch in whole-word pattern-matching recognizers. Even
for tone languages it is probably desirable to analyse pitch variations separately
from effects due to the vocal tract configuration.It is best, therefore, to make the
bandwidth of the spectral resolution such that it will not resolve the harmonics of
the fundamental of voiced speech. Because the excitation periodicity is evident in
the amplitude variations of the output from a broad-band analysis, it is also
necessary to apply some time-smoothing to removeit. Such time-smoothing will
also remove most of the fluctuations that result from randomness in turbulent

excitation.

At higher frequencies the precise formant positions becomeless significant,
and the resolving powerofthe ear (critical bandwidth — see Chapter 3) is such that
detailed spectral informationis not available to humanlisteners at high frequencies.
It is therefore permissible to make the spectral analysis less selective, such that the
effective filter bandwidth is several times the typical harmonic spacing. The desired
analysis can thus be provided bya set of bandpass filters whose bandwidths and
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Figure 8.1 Spectrographic displays of a 10-channel filter-bank analysis (with a non-linear
frequency spacing of the channels), shown for one example of the word “three” and two
examples of the word “eight”. It can be seen that the examples of “eight” are generally similar,
although the lower one has a shorter gap for the [t] and a longerburst.
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112 Speech Synthesis and Recognition 

spacings are roughly equal to those of critical bands and whose range of centre 
frequencies covers the frequencies most important for speech perception (say from 
300 Hz up to around 5 kHz). The total number of band-pass filters is therefore not 
likely to be more than about 20, and successful results have been achieved with as 
few as 10. When the necessary time-smoothing is included, the feature vector will 
represent the signal power in the filters averaged over the frame interval. 

The usual name for this type of speech analysis is filter-bank analysis. 
Whether it is provided by a bank of discrete filters, implemented in analogue or 
digital form, or is implemented by sampling the outputs from short-term Fourier 
transforms, is a matter of engineering convenience. Figure 8.1 displays word 
patterns from a typical I 0-channel filter-bank analyser for two examples of one 
word and one example of another. It can be seen from the frequency scales that the 
channels are closer together in the lower-frequency regions. 

A consequence of removing the effect of the fundamental frequency and of 
using filters at least as wide as critical bands is to reduce the amount of information 
needed to describe a word pattern to much less than is needed for the waveform. 
Thus storage and computation in the pattern-matching process are much reduced. 

8.3.2 Level normalization 

Mean speech level normally varies by a few dB over periods of a few seconds, and 
changes in spacing between the microphone and the speaker's mouth can also cause 
changes of several dB. As these changes will be of no phonetic significance, it is 
desirable to minimize their effects on the distance metric. Use of filter-bank power 
directly gives most weight to more intense regions of the spectrum, where a change 
of 2 or 3 dB will represent a very large absolute difference. On the other hand, a 
3 dB difference in one of the weaker formants might be of similar phonetic 
significance, but will cause a very small effect on the power. This difficulty can be 
avoided to a large extent by representing the power logarithmically, so that similar 
power ratios have the same effect on the distance calculation whether they occur in 
intense or weak spectral regions. Most of the phonetically unimportant variations 
discussed above will then have much less weight in the distance calculation than the 
differences in spectrum level that result from formant movements, etc. 

Although comparing levels logarithmically is advantageous, care must be 
exercised in very low-level sounds, such as weak fricatives or during stop
consonant closures. At these times the logarithm of the level in a channel will 
depend more on the ambient background noise level than on the speech signal. If 
the speaker is in a very quiet environment the logarithmic level may suffer quite 
wide irrelevant variations as a result of breath noise or the rustle of clothing. One 
way of avoiding this difficulty is to add a small constant to the measured level 
before taking logarithms. The value of the constant would be chosen to dominate 
the greatest expected background noise level, but to be small compared with the 
level usually found during speech. 

Differences in vocal effort will mainly have the effect of adding a constant to 
all components of the log spectrum, rather than changing the shape of the spectrum 
cross-section. Such differences can be made to have no effect on the distance 
metric by subtracting the mean of the logarithm of the spectrum level of each frame 
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from all the separate spectrum components for the frame. In practice this amount of 
level compensation is undesirable because extreme level variations are of some 
phonetic significance. For e~ample, . a substa~tial part of the acoustic difference 
between [ f] and any vowel 1s the difference m level, which can be as much as 
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Figure 8.2 Graphical representation of the distance between frames of the spectrogr~ms 
shown in Figure 8.1. The larger the blob the smaller the distance. It can be seen that there 1s a 
continuous path of fairly small distances between the bottom left and top right when the two 
examples of "eight" are compared, but not when "eight" is compared with "three". 
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from all the separate spectrum componentsfor the frame. In practice this amountof
level compensation is undesirable because extreme level variations are of some
phonetic significance. For example, a substantial part of the acoustic difference
between [f] and any vowel is the difference in level, which can be as much as
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Figure 8.2 Graphical representation of the distance between frames of the spectrograms
shown in Figure 8.1. The larger the blob the smaller the distance.It can be seen that there is a
continuous path offairly small distances between the bottomleft and top right when the two
examples of “eight” are compared, but not when “eight” is compared with “three”.
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114 Speech Synthesis and Recognition 

30 dB. Recognition accuracy might well suffer if level differences of this 
magnitude were ignored. A useful compromise is to compensate only partly for 
level variations, by subtracting some fraction (say in the range 0.7 to 0.9) of the 
mean logarithmic level from each spectral channel. There are also several other 
techniques for achieving a similar effect. 

A suitable distance metric for use with a filter bank is the sum of the squared 
differences between the logarithms of power levels in corresponding channels (i.e. 
the square of the Euclidean distance in the multi-dimensional space). A graphical 
representation of the Euclidean distance between frames for the words used in 
Figure 8.1 is shown in Figure 8.2. 

There are many other spectrally based representations of the signal that are 
more effective than the simple filter bank, and some of these will be described in 
Chapter I 0. The filter-bank method, however, is sufficient to illustrate the pattern
matching principles explained in this chapter. 

8.4 END-POINT DETECTION FOR ISOLATED WORDS 

The pattern comparison methods described above assume that the beginning and 
end points of words can be found. In the case of words spoken in isolation in a 
quiet environment it is possible to use some simple level threshold to detennine 
start and end points. There are, however, problems with this approach when words 
start or end with a very weak sound, such as [ f1. In such cases the distinction in 
level between the background noise and the start or end of the word may be slight, 
and so the end points will be very unreliably defined. Even when a word begins and 
ends in a strong vowel, it is common for speakers to precede the word with slight 
noises caused by opening the lips, and to follow the word by quite noisy exhalation. 
If these spurious noises are to be excluded the level threshold will certainly have to 
be set high enough to also exclude weak unvoiced fricatives. Some improvement in 
separation of speech from background noise can be obtained if the spectral 
properties of the noise are also taken into account. However, there is no reliable 
way of determining whether low-level sounds that might immediately precede or 
follow a word should be regarded as an essential part of that word without 
simultaneously determining the identity of the word. 

Of course, even when a successful level threshold criterion has been found, it 
is necessary to take account of the fact that some words can have a period of silence 
within them. Any words (such as "containing" and "stop") containing unvoiced stop 
consonants at some point other than the beginning belong to this category. The 
level threshold can still be used in such cases, provided the end-of-word decision is 
delayed by the length of the longest possible stop gap, to make sure that the word 
has really finished. When isolated words with a final unvoiced stop consonant are 
used in pattern matching, a more serious problem, particularly for English, is that 
the stop burst is sometimes, but not always, omitted by the speaker. Even when the 
end points are correctly determined, the patterns being compared for words which 
are nominally the same will then often be inherently different. 

Although approximate end points can be found for most words, it is apparent 
from the above comments that they are often not reliable. 
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30 dB. Recognition accuracy might well suffer if level differences of this
magnitude were ignored. A useful compromise is to compensate only partly for
level variations, by subtracting some fraction (say in the range 0.7 to 0.9) ofthe
mean logarithmic level from each spectral channel. There are also several other
techniques for achieving a similareffect.

A suitable distance metric for use with a filter bank is the sum ofthe squared
differences between the logarithms of power levels in corresponding channels(i.e,
the square of the Euclidean distance in the multi-dimensional space). A graphical
representation of the Euclidean distance between frames for the words used in
Figure 8.1 is shown in Figure 8.2.

There are many other spectrally based representations of the signal that are
more effective than the simple filter bank, and some of these will be describedin
Chapter 10. The filter-bank method, however,is sufficient to illustrate the pattern-
matching principles explained in this chapter.

8.4 END-POINT DETECTION FOR ISOLATED WORDS

The pattern comparison methods described above assume that the beginning and
end points of words can be found. In the case of words spoken in isolation ina
quiet environmentit is possible to use some simple level threshold to determine
start and end points. There are, however, problems with this approach when words
start or end with a very weak sound, such as [f]. In such cases the distinction in
level between the backgroundnoise and the start or end of the word maybeslight,
and so the end points will be very unreliably defined. Even when a word begins and
ends in a strong vowel, it is common for speakers to precede the word with slight
noises caused by openingthe lips, and to follow the word by quite noisy exhalation.
If these spurious noises are to be excluded the level threshold will certainly haveto
be set high enough to also exclude weak unvoiced fricatives. Some improvementin
separation of speech from background noise can be obtained if the spectral
properties of the noise are also taken into account. However,there is noreliable
way of determining whether low-level sounds that might immediately precede or
follow a word should be regarded as an essential part of that word without
simultaneously determining the identity of the word.

Of course, even when a successful level threshold criterion has been found,it
is necessary to take accountof the fact that some words can haveaperiod ofsilence
within them. Any words(suchas “containing” and “stop”) containing unvoicedstop
consonants at some point other than the beginning belong to this category. The
level threshold canstill be used in such cases, provided the end-of-word decisionis
delayed by the length of the longest possible stop gap, to make sure that the word
has really finished. When isolated words with a final unvoiced stop consonantare
used in pattern matching, a more serious problem,particularly for English,is that
the stop burst is sometimes, but not always, omitted by the speaker. Even when the
end points are correctly determined, the patterns being compared for words which
are nominally the same will then often be inherently different.

Although approximate end points can be found for most words,it is apparent
from the above comments that they are often notreliable.
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s.sALLOWING FOR TIMESCALE VARIATIONS 

1/5 

Up to now we have assum~d ~at a~y words to be compared will be of the same 
length, and that correspondmg tlmes m separate utterances of a word will represent 
the same phonetic features. In practice speakers vary their speed of speaking, and 
often do so non-uniformly so that equivalent words of the same total length may 
differ in the middle. This timescale uncertainty is made worse by the unreliability 
of end-point detection. It would not be unusual for two patterns of apparently very 
different length to have the underlying utterances spoken at the same speed, and 
merely to have a final fricative cut short by the end-point detection algorithm in one 
case as a result of a slight difference in level. 

Some early implementations of isolated-word recognizers tried to compensate 
for the timescale variation by a uniform time normalization to ensure that all 
patterns being matched were of the same length. This process is a great 
improvement over methods such as truncating the longer pattern when it is being 
compared with a shorter one, but the performance of such machines was 
undoubtedly limited by differences in timescale. In the 1960s, however, a technique 
was developed which is capable of matching one word on to another in a way 
which applies the optimum non-linear timescale distortion to achieve the best match 
at all points. The mathematical technique used is known as dynamic programming 
(DP), and when applied to simple word matching the process is often referred to as 
dynamic time warping (DTW). DP in some form is now almost universally used 
in speech recognizers. 

8.6 DYNAMIC PROGRAMMING FOR TIME ALIGNMENT 

Assume that an incoming speech pattern and a template pattern are to be compared, 
having n and N frames respectively. Some distance metric can be used to calculate 
the distance, d(i,j), between frame i of the incoming speech and frame j of the 
template. To illustrate the principle, in Figure 8.3 the two sets of feature vectors of 
the words have been represented by letters of the word "pattern". Differences in 
timescale have been indicated by repeating or omitting letters of the word, and the 
fact that feature vectors will not be identical, even for corresponding points of 
equivalent words, is indicated by using different type styles for the letters. It is, of 
course, assumed in this explanation that all styles of the letter "a" will yield a lower 
value of distance between them than, say, the distance between an "a" and any 
example of the letter "p". To fmd the total difference between the two patterns, one 
requires to find the sum of all the distances between the individual pairs of frames 
along whichever path between the bottom-left and top-right comers in Figure 8.3 
that gives the smallest distance. This definition will ensure that corresponding 
frames of similar words are correctly aligned. 

One way of calculating this total distance is to consider all possible paths, and 
add the values of d(i,j) along each one. The distance measure between the patterns 
is then taken to be the lowest value obtained for the cumulative distance. Although 
this method is bound to give the correct answer, the number of valid paths becomes 
so large that the computation is impossible for any practical speech recognition 
machine. Dynamic programming is a mathematical technique which guarantees to 
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3.5 ALLOWING FOR TIMESCALE VARIATIONS

Up to now we have assumed that any words to be compared will be of the same
length, and that corresponding timesin separate utterances of a word will represent
ihe same phonetic features. In practice speakers vary their speed of speaking, and
often do so non-uniformly so that equivalent words of the sametotal length may
differ in the middle. This timescale uncertainty is made worse bythe unreliability
of end-point detection. It would not be unusualfor two patterns of apparently very
different length to have the underlying utterances spoken at the same speed, and
merely to have a final fricative cut short by the end-pointdetection algorithm in one
case as a result of a slight differencein level.

Some early implementations of isolated-word recognizerstried to compensate
for the timescale variation by a uniform time normalization to ensure that all
pattems being matched were of the same length. This process is a great
improvement over methods such astruncating the longer pattern whenit is being
compared with a shorter one, but the performance of such machines was
undoubtedly limited by differences in timescale. In the 1960s, however, a technique
was developed which is capable of matching one word on to another in a way
which applies the optimum non-linear timescale distortion to achieve the best match
at all points. The mathematical technique used is known as dynamic programming
(DP), and when applied to simple word matching the processis often referred to as
dynamic time warping (DTW). DP in some form is now almost universally used
in speech recognizers.

8.6 DYNAMIC PROGRAMMING FOR TIME ALIGNMENT

Assume that an incoming speechpattern and a template pattern are to be compared,
having n and N frames respectively. Some distance metric can be usedto calculate
the distance, d(i, 7), between frame i of the incoming speech and frame j of the
template. To illustrate the principle, in Figure 8.3 the twosets of feature vectors of
the words have been represented by letters of the word “pattern”. Differences in
timescale have been indicated by repeating or omitting letters of the word, and the
fact that feature vectors will not be identical, even for corresponding points of
equivalent words, is indicated by using different type styles for the letters. It is, of
course, assumed in this explanation that all styles of the letter “a” will yield a lower
value of distance between them than, say, the distance between an “a” and any
example of the letter “‘p”. To find the total difference between the two patterns, one
requires to find the sum ofall the distances between the individual pairs of frames
along whichever path between the bottom-left and top-right corners in Figure 8.3
that gives the smallest distance. This definition will ensure that corresponding
frames of similar words are correctly aligned.

One wayof calculating this total distance is to considerall possible paths, and
add the values of d(i, ;) along each one. The distance measure betweenthe patterns
is then taken to be the lowest value obtained for the cumulative distance. Although
this method is bound to give the correct answer, the numberofvalid paths becomes
80 large that the computation is impossible for any practical speech recognition
machine. Dynamic programming is a mathematical technique which guaranteesto
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Figure 8.3 Illustration of a time-alignment path between two words that 
differ in their timescale. Any point i,j can have three predecessors as shown. 

find the cumulative distance along the optimum path without having to calculate the 
cumulative distance along all possible paths. 

Let us assume that valid paths obey certain common-sense constraints, such 
that portions of words do not match when mutually reversed in time (i.e. the path 
on Figure 8.3 always goes forward with a non-negative slope). Although skipping 
single frames could be reasonable in some circumstances, it simplifies the 
explanation if, for the present, we also assume that we can never omit from the 
comparison process any frame from either pattern. In Figure 8.3, consider a point 
i,j somewhere in the middle of both words. If this point is on the optimum path, 
then the constraints of the path necessitate that the immediately preceding point on 
the path is i- 1,j or i- 1,j- 1 or i,j- 1. These three points are associated with a 
horizontal, diagonal or vertical path step respectively. Let D(i,j) be the cumulative 
distance along the optimum path from the beginning of the word to point i,j, thus: 

i,j 

D(i, j) = L d(x, y) 
x,y=l,I 
along the 
best path 

(8.1) 

As there are only the three possibilities for the point before point i,j it follows that 

D(i, j) = min[D(i -1, }), D(i -1, j -1), D(i, j -1) ]+ d(i, j) . (8.2) 

The best way to get to point i,j is thus to get to one of the immediately 
preceding points by the best way, and then take the appropriate step to i,j. The 
value of D( 1, 1) must be equal to d( 1, 1) as this point is the beginning of all possib~e 
paths. To reach points along the bottom and the left-hand side of Figure 8.3 ther~ 15 

only one possible direction (horizontal or vertical, respectively). Therefore, starn~g 
with the value of D(l, 1), values of D(i, 1) or values of D(l,j) can be calculate~ lll 
tum for increasing values of i or j. Let us assume that we calculate the vertical 
column, D(I,j), using a reduced form of Equation (8.2) that does not have to 
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find the cumulative distance along the optimum path without havingto calculate the
cumulative distance along all possible paths.

Let us assume that valid paths obey certain common-senseconstraints, such
that portions of words do not match when mutually reversed in time(i.e. the path
on Figure 8.3 always goes forward with a non-negative slope). Although skipping
single frames could be reasonable in some circumstances, it simplifies the
explanation if, for the present, we also assume that we can never omit from the
comparison process any frame from either pattern. In Figure 8.3, consider a point
i,j somewhere in the middle of both words. If this point is on the optimum path,
then the constraints of the path necessitate that the immediately precedingpointon
the path is i-1,7 or i-1,7-1 or i, j—1. These three points are associated with a
horizontal, diagonal or vertical path step respectively. Let D(i,7) be the cumulative
distance along the optimum path from the beginning of the wordto pointi,j, thus:

i,j

Di, j)= >id(x,y). (8.1)
anette
best path

Asthere are only the three possibilities for the point before pointi,jit followsthat

D(i, j) = min[D(i -1, j), DG -1, 7-1), Di, j-D]+ di, /)- (8.2)

The best way to get to point i,7 is thus to get to one of the immediately
preceding points by the best way, and then take the appropriate step to i, j. The
value of D(1, 1) must be equalto d(1, 1) as this point is the beginningofall possible
paths. To reach points along the bottom and the left-hand side of Figure 8.3 theres
only one possible direction (horizontal or vertical, respectively). Therefore,starting
with the value of D(1, 1), values of D(i, 1) or values of D(1, /) can be calculated in
turn for increasing values of i or j. Let us assume that we calculate the vertical
column, D(1,/), using a reduced form of Equation (8.2) that does not have to
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consider values of D(i-1,j) or D(i- l,j-1). (As the scheme is symmetrical we 
could equally well have chosen the horizontal direction instead.) When the first 
column values for D(l,j) are known, Equation (8.2) can be applied successively to 
calculate D(i,j) for columns 2 to n. The value obtained for D(n, N) is the score for 
the best way of matching the two words. For simple speech recognition 
applications, just the final score is required, and so the only working memory 
needed during the calculation is a one-dimensional array for holding a column ( or 
row) of D(i,j) values. However, there will then be no record at the end of what the 
optimum path was, and if this information is required for any purpose it is also 
necessary to store a two-dimensional array of back-pointers, to indicate which 
direction was chosen at each stage. It is not possible to know until the end has been 
reached whether any particular point will lie on the optimum path, and this 
infonnation can only be found by tracing back from the end. 

8.7 REFINEMENTS TO ISOLATED-WORD DP MATCHING 

The DP algorithm represented by Equation (8.2) is intended to deal with variations 
of timescale between two otherwise similar words. However, if two examples of a 
word have the same length but one is spoken faster at the beginning and slower at 
the end, there will be more horizontal and vertical steps in the optimum path and 
fewer diagonals. As a result there will be a greater number of values of d(i, j) in the 
final score for words with timescale differences than when the timescales are the 
same. Although it may be justified to have some penalty for timescale distortion, on 
the grounds that an utterance with a very different timescale is more likely to be the 
wrong word, it is better to choose values of such penalties explicitly than to have 
them as an incidental consequence of the algorithm. Making the number of 
contributions of d(i,j) to D(n, N) independent of the path can be achieved by 
modifying Equation (8.2) to add twice the value of d(i,j) when the path is diagonal. 
One can then add an explicit penalty to the right-hand side of Equation (8.2) when 
the step is either vertical or horizontal. Equation (8.2) thus changes to: 

D(i,j) = min[D(i -1,j) + d(i,j) + hdp, 
D(i -1,j -1) + 2d(i,j), 
D(i,j -1) + d(i,j) + vdp]. (8.3) 

Suitable values for the horizontal and vertical distortion penalties, hdp and vdp, 
would probably have to be found by experiment in association with the chosen 
distance metric. It is, however, obvious that, all other things being equal, paths with 
appreciable timescale distortion should be given a worse score than diagonal paths, 
and so the values of the penalties should certainly not be zero. 

Even in Equation (8.3) the number of contributions to a cumulative distance 
will depend on the lengths of both the example and the template, and so there will 
be a tendency for total distances to be smaller with short templates and larger with 
long templates. The final best-match decision will as a result favour short words. 
This bias can be avoided by dividing the total distance by the template length. 

The algorithm described above is inherently symmetrical, and so makes no 
distinction between the word in the store of templates and the new word to be 
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identified. DP is, in fact, a much more general technique that can be applied to a 
wide range of applications, and which has been popularized especially by the work 
of Bellman ( 1957). The number of choices at each stage is not restricted to three, as 
in the example given in Figure 8.3. Nor is it necessary in speech recognition 
applications to assume that the best path should include all frames of both patterns. 
If the properties of the speech only change slowly compared with the frame 
interval, it is permissible to skip occasional frames, so achieving timescale 
compression of the pattern. A particularly useful alternative version of the 
algorithm is asymmetrical, in that vertical paths are not permitted. The steps have a 
slope of zero (horizontal), one (diagonal), or two (which skips one frame in the 
template). Each input frame then makes just one contribution to the total distance, 
so it is not appropriate to double the distance contribution for diagonal paths. Many 
other variants of the algorithm have been proposed, including one that allows 
average slopes of 0.5, 1 and 2, in which the 0.5 is achieved by preventing a 
horizontal step if the previous step was horizontal. Provided the details of the 
formula are sensibly chosen, all of these algorithms can work well. In a practical 
implementation computational convenience may be the reason for choosing one in 
preference to another. 

8.8 SCORE PRUNING 

Although DP algorithms provide a great computational saving compared with 
exhaustive search of all possible paths, the remaining computation can be 
substantial, particularly if each incoming word has to be compared with a large 
number of candidates for matching. Any saving in computation that does not affect 
the accuracy of the recognition result is therefore desirable. One possible 
computational saving is to exploit the fact that, in the calculations for any column 
in Figure 8.3, it is very unlikely that the best path for a correctly matching word 
will pass through any points for which the cumulative distance, D(i,j), is much in 
excess of the lowest value in that column. The saving can be achieved by not 
allowing paths from relatively badly scoring points to propagate further. (This 
process is sometimes known as pruning because the growing paths are like 
branches of a tree.) There will then only be a small subset of possible paths 
considered, usually lying on either side of the best path. If this economy is applied 
it can no longer be guaranteed that the DP algorithm will find the best-scoring path. 
However, with a value of score-pruning threshold that reduces the average amount 
of computation by a factor of 5-10 the right path will almost always be obtained if 
the words are fairly similar. The only circumstances where this amount of pruning 
is likely to prevent the optimum path from being obtained will be if the words are 
actually different, when the resultant over-estimate of total distance would not 
cause any error in recognition. 

Figures 8.4(a), 8.5 and 8.6 show DP paths using the symmetrical algorithm 
for the words illustrated in Figures 8.1 and 8.2. Figure 8.4(b) illustrates the 
asymmetrical algorithm for comparison, with slopes of 0, 1 and 2. In Figure 8.4 
there is no time-distortion penalty, and Figure 8.5 with a small distortion penalty 
shows a much more plausible matching of the two timescales. The score pruning 
used in these figures illustrates the fact that there are low differences in cumulative 
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Figure 8.4 (a) DP alignment between two examples of the word "eight", with no 
timescale distortion penalty but with score pruning. The optimum path, obtained by 
tracing back from the top right-hand comer, is shown by the thick line. (b) Match between 
the same words as in (a), but using an asymmetric algorithm with slopes of 0, l and 2. 

1/9 

?istance only along a narrow band around the optimum path. When time alignment 
1s attempted between dissimilar words, as in Figure 8.6, a very irregular path is 
obtained, with a poor score. Score pruning was not used in this illustration, because 
any path to the end of the word would then have been seriously sub-optimal. 
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Figure 8.4 (a) DP alignment between two examples of the word “eight”, with no
timescale distortion penalty but with score pruning. The optimum path, obtained by
tracing back from thetop right-hand corner, is shown bythethick line. (b) Match between
the same wordsasin (a), but using an asymmetric algorithm with slopes of 0,1 and 2.

distance only along a narrow band around the optimum path. When time alignment
is attempted between dissimilar words, as in Figure 8.6, a very irregular path is
obtained, with a poor score. Score pruning wasnotusedin this illustration, because
any path to the end of the word would then have beenseriously sub-optimal.
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Figure 8.5 As for Figure 8.4(a), but with a small timescale distortion penalty. 
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Figure 8.6 The result of trying to align two dissimilar words ("three" and "eight") 
within the same DP algorithm as was used for Figure 8.5. The score pruning was 
removed from this illustration, because any path to the end of the word would then have 
been seriously sub-optimal. It can be seen that if the last frame had been removed from 
the template, the path would have been completely different, as marked by blobs. 
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Figure 8.6 The result of trying to align two dissimilar words (“three” and “eight”)
within the same DP algorithm as was used for Figure 8.5. The score pruning was
removed from this illustration, because any path to the end of the word would then have
been seriously sub-optimal. It can be seen thatif the last frame had been removed from
the template, the path would have been completely different, as marked by blobs.

IPR2023-00037

Apple EX1016 Page 23



Introduction to Automatic Speech Recognition: Template Matching 121 

8.9 ALLOWING FOR END-POINT ERRORS 

If an attempt is made to match two intrinsically similar words when one has its 
specified end point significantly in error, the best-matching path ought to align all 
the frames of the two words that really do correspond. Such a path implies that the 
extra frames of the longer word will all be lumped together at one end, as illustrated 
in Figure 8. 7. As this extreme timescale compression is not a result of a genuine 
difference between the words, it may be better not to have any timescale distortion 
penalty for frames at the ends of the patterns, and in some versions of the algorithm 
it may be desirable not to include the values of d(i,j) for the very distorted ends of 
the path. If the chosen DP algorithm disallows either horizontal steps or vertical 
steps, correct matching of words with serious end-point errors will not be possible, 
and so it is probably better to remove the path slope constraints for the end frames. 
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Figure 8.7 An example of the word "one" followed by breath noise, being aligned with a "one" 
template. A timescale distortion penalty was used except for the beginning and end frames. 

8.10 DYNAMIC PROGRAMMING FOR CONNECTED WORDS 

Up to now we have assumed that the words to be matched have been spoken in 
isolation, and that their beginnings and ends have therefore already been identified 
(although perhaps with difficulty). When words are spoken in a normal connected 
fashion, recognition is much more difficult because it is generally not possible to 
determine where one word ends and the next one starts independently of identifying 
what the words are. For example, in the sequence "six teenagers,, it would be 
difficult to be sure that the first word was "six" rather than "sixteen,, until the last 
syllable of the phrase had been spoken, and "sixty,, might also have been possible 
before the [n] occurred. In some cases, such as the "grade A,, example given in 
Chapter 1, a genuine ambiguity may remain, but for most tasks any ambiguities are 
resolved when at most two or three syllables have followed a word boundary. 

There is another problem with connected speech as a result of co-articulation 
between adjacent words. It is not possible even to claim the existence of a clear 
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8.9 ALLOWING FOR END-POINT ERRORS

If an attempt is made to match twointrinsically similar words when onehasits
specified end point significantly in error, the best-matching path oughtto alignall
the frames of the two words that really do correspond. Such a path implies that the
extra frames of the longer word will all be lumped together at one end,asillustrated
in Figure 8.7. As this extreme timescale compression is not a result of a genuine
difference between the words, it may be better not to have anytimescale distortion
penalty for frames at the ends ofthe patterns, and in someversionsof the algorithm
it may be desirable not to include the values of d(i, j) for the very distorted ends of
the path. If the chosen DP algorithm disallows either horizontal steps or vertical
steps, correct matching of words with serious end-pointerrors will not be possible,
and so it is probably better to remove the path slope constraints for the end frames.
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Figure 8.7 An example of the word “one” followed by breath noise, being aligned with a “one”
template. A timescale distortion penalty was used except for the beginning and end frames.

8.10 DYNAMIC PROGRAMMING FOR CONNECTED WORDS

Up to now we have assumed that the words to be matched have been spoken in
isolation, and that their beginnings and ends havetherefore already beenidentified
(although perhaps with difficulty). When words are spoken in a normal connected
fashion, recognition is much moredifficult because it is generally not possible to
determine where one word endsandthe next onestarts independently of identifying
what the words are. For example, in the sequence “six teenagers” it would be
difficult to be sure that the first word was ‘“‘six” rather than “sixteen”until the last

syllable of the phrase had been spoken, and “‘sixty” might also have been possible
before the [n] occurred. In some cases, such as the “grade A” example given in
Chapter 1, a genuine ambiguity may remain,but for most tasks any ambiguities are
resolved when at most two orthree syllables have followed a word boundary.

There is another problem with connected speechasa result of co-articulation
between adjacent words. It is not possible even to claim the existenceofa clear
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point where one word stops and the next one starts. However, it is mainly the ends 
of words that are affected and, apart from a likely speeding up of the timescale 
words in a carefully spoken connected sequence do not normally differ greatly fro~ 
their isolated counterparts except near the ends. In matching connected sequences 
of words for which separate templates are already available one might thus defme 
the best-matching word sequence to be given by the sequence of templates which 

' when joined end to end, offers the best match to the input. It is of course assumed 
that the optimum time alignment is used for the sequence, as with DP for isolated 
words. Although this model of connected speech totally ignores co-articulation, it 
has been successfully used in many connected-word speech recognizers. 

As with the isolated-word time-alignment process, there seems to be a 
potentially explosive increase in computation, as every frame must be considered as 
a possible boundary between words. When each frame is considered as an end point 
for one word, all other permitted words in the vocabulary have to be considered as 
possible starters. Once again the solution to the problem is to apply dynamic 
programming, but in this case the algorithm is applied to word sequences as well as 
to frame sequences within words. A few algorithms have been developed to extend 
the isolated-word DP method to work economically across word boundaries. One 
of the most straightforward and widely used is described below. 

In Figure 8.8 consider a point that represents a match between frame i of a 
multi-word input utterance and frame j of template number k. Let the cumulative 
distance from the beginning of the utterance along the best-matching sequence of 
complete templates followed by the first j frames of template k be D(i,j, k). The 
best path through template k can be found by exactly the same process as for 
isolated-word recognition. However, in contrast to the isolated-word case, it is not 
known where on the input utterance the match with template k should finish, and 
for every input frame any valid path that reaches the end of template k could join to 
the beginning of the path through another template, representing the next word. 
Thus, for each input frame i, it is necessary to consider all templates that may have 
just ended in order to find which one has the lowest cumulative score so far. This 
score is then used in the cumulative distance at the start of any new template, m: 

D(i, 1, m) = min [D(i -1, L(k),k)]+ d(i, 1, m), (8.4) 
overk 

where L(k) is the length of template k. The use of i - 1 in Equation (8.4) implies 
that moving from the last frame of one template to the first frame of another always 
involves advancing one frame on the input ( i.e. in effect only allowing diagonal 
paths between templates). This restriction is necessary, because the scores for the 
ends of all other templates may not yet be available for input frame i when the path 
decision has to be made. A horizontal path from within template m could have been 
included in Equation (8.4), but has been omitted merely to simplify the explanation. 
A timescale distortion penalty has not been included for the same reason. 

In the same way as for isolated words, the process can be started off at the 
beginning of an utterance because all values of D(O, L(k), k) will be zero. At the end 
of an utterance the template that gives the lowest cumulative distance is assumed to 
represent the final word of the sequence, but its identity gives no indication of the 
templates that preceded it. These can only be determined by storing pointers to the 
preceding templates of each path as it evolves, and then tracing back when the final 
point is reached. It is also possible to recover the positions in the input sequence 
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Figure 8.8 Diagram indicating the best-matching path from the beginning of an utterance to the j th 

frame of template T3 and the ith frame of the input. ln the example shown i is in the middle of the 
second word of the input, so the best path includes one complete template (T1) and a part of T3. The 
cumulative distance at this point is denoted by D(i,j, 3), or in general by D(i,j, k) for the k th template. 

where the templates of the matching sequence start and finish, so segmenting the 
utterance into separate words. Thus we solve the segmentation problem by delaying 
the decisions until we have seen the whole utterance and decided on the words. 

The process as described so far assumes that any utterance can be modelled 
completely by a sequence of word templates. In practice a speaker may pause 
between words, so giving a period of silence ( or background noise) in the middle of 
an utterance. The same algorithm can still be used for this situation by also storing 
a template for a short period of silence, and allowing this silence template to be 
included between appropriate pairs of valid words. If the silence template is also 
allowed to be chosen at the start or end of the sequence, the problem of end-point 
detection is greatly eased. It is only necessary to choose a threshold that will never 
be exceeded by background noise, and after the utterance has been detected, to 
extend it by several frames at each end to be sure that any low-intensity parts of the 
words are not omitted. Any additional frames before or after the utterance should 
then be well modelled by a sequence of one or more silence templates. 

When a sequence of words is being spoken, unintentional extraneous noises 
(such as grunts, coughs and lip smacks) will also often be included between words. 
In an isolated-word recognizer these noises will not match well to any of the 
templates, and can be rejected on this basis. In a connected-word algorithm there is 
no provision for not matching any part of the sequence. However, the rejection of 
these unintentional insertions can be arranged by having a special template, often 
called a wildcard template, that bypasses the usual distance calculation and is 
deemed to match with any frame of the input to give a standard value of distance. 
This value is chosen to be greater than would be expected for corresponding frames 
of equivalent words, but less than should occur when trying to match quite different 
sounds. The wildcard will then provide the best score when attempting to match 
spurious sounds and words not in the stored template vocabulary, but should not 
normally be chosen in preference to any of the well-matched words in the input. 
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frame of template T; and the i" frameof the input. In the example showniis in the middle ofthe
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where the templates of the matching sequencestart and finish, so segmenting the
utterance into separate words. Thus we solve the segmentation problem by delaying
the decisions until we have seen the whole utterance and decided on the words.

The process as described so far assumes that any utterance can be modelled
completely by a sequence of word templates. In practice a speaker may pause
between words, so giving a period of silence (or background noise) in the middle of
an utterance. The same algorithm canstill be used for this situation by also storing
a template for a short period ofsilence, and allowing this silence template to be
included between appropriate pairs of valid words. If the silence template is also
allowed to be chosenat the start or end of the sequence, the problem of end-point
detection is greatly eased. It is only necessary to choose a threshold that will never
be exceeded by background noise, and after the utterance has been detected, to
extend it by several frames at each endto be sure that any low-intensity parts of the
words are not omitted. Any additional frames before or after the utterance should
then be well modelled by a sequenceof one or more silence templates.

When a sequence of wordsis being spoken, unintentional extraneous noises
(such as grunts, coughs andlip smacks) will also often be included between words.
In an isolated-word recognizer these noises will not match well to any of the
templates, and can berejected onthis basis. In a connected-wordalgorithm there is
no provision for not matching any part of the sequence. However, the rejection of
these unintentional insertions can be arranged by having a special template, often
called a wildcard template, that bypasses the usual distance calculation and is
deemed to match with any frame of the input to give a standard value of distance.
This value is chosen to be greater than would be expected for corresponding frames
of equivalent words, but less than should occur whentrying to match quite different
sounds. The wildcard will then provide the best score when attempting to match
spurious sounds and words not in the stored template vocabulary, but should not
normally be chosenin preference to any of the well-matched wordsin the input.
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8.11 CONTINUOUS SPEECH RECOGNITION 

In the connected-word algorithm just described, start and finish points of the input 
utterance must at least be approximately determined. However it is not generally 
necessary to wait until the end of an utterance before identifying the early word·s. 
Even before the end, one can trace back along all current paths through the tree that 
represents the candidates for the template sequence. This tree will always involve 
additional branching as time goes forward, but the ends of many of the 'twigs' will 
not represent a low enough cumulative distance to successfully compete with other 
twigs as starting points for further branching, and so paths along these twigs will be 
abandoned. It follows that tracing back from all currently active twigs will normally 
involve coalescence of all paths into a single 'trunk', which therefore represents a 
uniquely defined sequence of templates (see Figure 8.9). The results up to the first 
point of splitting of active paths can therefore be output from the machine, after 
which the back-pointers identifying that part of the path are no longer needed, nor 
are those representing abandoned paths. The memory used for storing them can 
therefore be released for re-use with new parts of the input signal. 

The recognizer described above can evidently operate continuously, with a 
single pass through the input data, outputting its results always a few templates 
behind the current best match. Silence templates are used to match the signal when 
the speaker pauses, and wildcards are used for extraneous noises or inadmissible 
words. The time lag for output is determined entirely by the need to resolve 
ambiguity. When two alternative sequences of connected words both match the 
input well, but with different boundary points ( e.g. "grey day" and "grade A") it is 
necessary to reach the end of the ambiguous sequence before a decision can be 
reached on any part of it. (In the example just given, the decision might even then 

------ Unambiguous paths 
------Currently active paths 

- - - - - - - Abandoned paths 

Current point 
in time 

Figure 8.9 Trace-back through a word decision tree to identify unambiguous paths for a three-word 
vocabulary continuous recognizer. Paths are abandoned when the cumulative distances of all routes 
to the ends of the corresponding templates are greater than for paths to the ends of different template I 
sequences at the same points in the input. Template sequences still being considered are T1-T1-Tr I 
T1, T1-T1-T3-T2and T1-T3-T1-T2. Thus T2 is being scored separately for two preceding sequences. ~ 

I 
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which the back-pointers identifying that part of the path are no longer needed, nor
are those representing abandoned paths. The memory used for storing them can
therefore be released for re-use with new parts of the inputsignal.

The recognizer described above can evidently operate continuously, with a
single pass through the input data, outputting its results always a few templates
behind the current best match. Silence templates are used to match the signal when
the speaker pauses, and wildcards are used for extraneous noises or inadmissible
words. The time lag for output is determined entirely by the need to resolve
ambiguity. When two alternative sequences of connected words both match the
input well, but with different boundary points (e.g. “grey day” and “grade A”)it is
necessary to reach the end of the ambiguous sequence before a decision can be
reached on anypart ofit. (In the example just given, the decision might even then
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Figure 8.9 Trace-back through a word decision tree to identify unambiguouspathsfor a three-word
vocabulary continuous recognizer. Paths are abandoned when the cumulative distancesofall routes
to the ends of the corresponding templates are greater than for paths to the endsof different template
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Ts, T\-T3-T3-T2 and T\-T3-T|-T2. Thus T2 is being scored separately for two preceding sequences.
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be wrong because of inherent ambiguity in the acoustic signal.) On the other hand, 
if the input matches very badly to all except one of the permitted words, all paths 
not including that word will be abandoned as soon as the word has finished. In fact, 
if score pruning is used to cause poor paths to be abandoned early, the path in such 
a case may be uniquely detennined even at a matching point within the word. There 
is plenty of evidence that human listeners also often decide on the identity of a long 
word before it is complete if its beginning is sufficiently distinctive. 

8.12 SYNTACTIC CONSTRAINTS 

The rules of grammar often prevent certain sequences of words from occurring in 
human language, and these rules apply to particular syntactic classes, such as 
nouns, verbs, etc. In the more artificial circumstances in which speech recognizers 
are often used, the tasks can sometimes be arranged to apply much more severe 
constraints on which words are permitted to follow each other. Although applying 
such constraints requires more care in designing the application of the recognizer, it 
usually offers a substantial gain in recognition accuracy because there are then 
fewer potentially confusable words to be compared. The reduction in the number of 
templates that need to be matched at any point also leads to a computational saving. 

8.13 TRAINING A WHOLE-WORD RECOGNIZER 

In all the algorithms described in this chapter it is assumed that suitable templates 
for the words of the vocabulary are available in the machine. Usually the templates 
are made from speech of the intended user, and thus a training session is needed 
for enrolment of each new user, who is required to speak examples of all the 
vocabulary words. If the same user regularly uses the machine, the templates can be 
stored in some back-up memory and re-loaded prior to each use of the system. For 
isolated-word recognizers the only technical problem with training is end-point 
detection. If the templates are stored with incorrect end points the error will affect 
recognition of every subsequent occurrence of the faulty word. Some systems have 
tried to ensure more reliable templates by time aligning a few examples of each 
word and averaging the measurements in corresponding frames. This technique 
gives some protection against occasional end-point errors, because such words 
would then give a poor match in this alignment process and so could be rejected. 

If a connected-word recognition algorithm is available, each template can be 
segmented from the surrounding silence by means of a special training syntax that 
only allows silence and wildcard templates. The new template candidate will 
obviously not match the silence, so it will be allocated to the wildcard. The 
boundaries of the wildcard match can then be taken as end points of the template. 

In acquiring templates for connected-word recognition, more realistic training 
examples can be obtained if connected words are used for the training. Again the 
recognition algorithm can be used to determine the template end points, but the 
syntax would specify the preceding and following words as existing templates, with 
just the new word to be captured represented by a wildcard between them. Provided 
the surrounding words can be chosen to give clear acoustic boundaries where they 
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join to the new word, the segmentation will then be fairly accurate. This process is 
often called embedded training. More powerful embedded training procedures for 
use with statistical recognizers are discussed in Chapters 9 and 11. 

CHAPTER 8 SUMMARY 

• Most early successful speech recogrution machines worked by pattern 
matching on whole words. Acoustic analysis, for example by a bank of band
pass filters, describes the speech as a sequence of feature vectors, which can be 
compared with stored templates for all the words in the vocabulary using a 
suitable distance metric. Matching is improved if speech level is coded 
logarithmically and level variations are normalized. 

• Two major problems in isolated-word recognition are end-point detection and 
timescale variation. The timescale problem can be overcome by dynamic 
programming (DP) to find the best way to align the timescales of the incoming 
word and each template (known as dynamic time warping). Performance is 
improved by using penalties for timescale distortion. Score pruning, which 
abandons alignment paths that are scoring badly, can save a lot of computation. 

• DP can be extended to deal with sequences of connected words, which has the 
added advantage of solving the end-point detection problem. DP can also 
operate continuously, outputting words a second or two after they have been 
spoken. A wildcard template can be provided to cope with extraneous noises 
and words that are not in the vocabulary. 

• A syntax is often provided to prevent illegal sequences of words from being 
recognized. This method increases accuracy and reduces the computation . 

CHAPTER 8 EXERCISES 

ES.I Give examples of factors which cause acoustic differences between 
utterances of the same word. Why does simple pattern matching work 
reasonably well in spite of this variability? 

ES.2 What factors influence the choice of bandwidth for filter-bank analysis? 

ES.3 What are the reasons in favour of logarithmic representation of power in 
filter-bank analysis? What difficulties can arise due to the logarithmic scale? 

ES.4 Explain the principles behind dynamic time warping, with a simple diagram. 

E8.5 Describe the special precautions which are necessary when using the 
symmetrical DTW algorithm for isolated-word recognition. 

ES.6 How can a DTW isolated-word recognizer be made more tolerant of end
point errors? 

E8.7 How can a connected-word recognizer be used to segment a speech signal 
into individual words? 

E8.8 What extra processes are needed to tum a connected-word recognizer into a 
continuous recognizer? 

E8.9 Describe a training technique suitable for connected-word recognizers. 
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CHAPTER9 

Introduction to Stochastic 
Modelling 

9.1 FEATURE VARIABILITY IN PATTERN MATCHING 

The recognition methods described in the previous chapter exploit the fact that 
repeated utterances of the same word normally have more similar acoustic patterns 
than utterances of different words. However, it is to be expected that some parts of 
a pattern may vary more from occurrence to occurrence than do other parts. In the 
case of connected words, the ends of the template representing each word are likely 
to have a very variable degree of match, depending on the amount that the input 
pattern is modified by co-articulation with adjacent words. There is also no reason 
to assume that the individual features of a feature vector representing a particular 
phonetic event are of equal consistency. In fact, it may well occur that the value of 
a feature could be quite critical at a particular position in one word, while being 
very variable and therefore not significant in some part of a different word. 

Timescale variability has already been discussed in Chapter 8. It must always 
be desirable to have some penalty for timescale distortion, as durations of speech 
sounds are not normally wildly different between different occurrences of the same 
word. However, there is no reason to assume that the time distortion penalty should 
be constant for all parts of all words. For example, it is known that long vowels can 
vary in length a lot, whereas most spectral transitions associated with consonants 
change in duration only comparatively slightly. 

From the above discussion it can be seen that the ability of a recognizer to 
distinguish between words is likely to be improved if the variability of the patterns 
can be taken into account. We should not penalize the matching of a particular 
word if the parts that match badly are parts which are known to vary extensively 
from utterance to utterance. To use information about variability properly we need 
to have some way of collecting statistics which represent the variability of the word 
patterns, and a way of using this variability in the pattern-matching process. 

The basic pattern-matching techniques using DTW as described in Chapter 8 
started to be applied to ASR in the late 1960s and became popular during the 
1970s. However, the application of statistical techniques to this problem was also 
starting to be explored during the 1970s, with early publications being made 
independently by Baker (1975) working at Carnegie-Mellon University (CMU) and 
by Jelinek (1976) from IBM. These more powerful techniques for representing 
variability have gradually taken over from simple pattern matching. In the period 
since the early publications by Baker and by Jelinek, there has been considerable 
research to refine the use of statistical methods for speech recognition, and some 
variant of these methods is now almost universally adopted in current systems. 

This chapter provides an introduction to statistical methods for ASR. In order 
to accommodate pattern variability, these methods use a rather different way of 
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128 Speech Synthesis and Recognition 

defining the degree of fit between a word and some speech data, as an alternative to 
the 'cumulative distance' used in Chapter 8. This measure of degree of fit is based 
on the notion of probability, and the basic theory is explained in this chapter. For 
simplicity in introducing the concepts, the discussion in this chapter will continue 
to concentrate on words as the recognition unit. In practice, the majority of current 
recognition systems represent words as a sequence of sub-word units, but the 
underlying theory is not affected by the choice of unit. The use of sub-word units 
for recognition, together with other developments and elaborations of the basic 
statistical method will be explained in later chapters. In the following explanation, 
some elementary knowledge of statistics and probability theory is assumed, but 
only at a level which could easily be obtained by referring to a good introductory 
textbook ( see Chapter 1 7 for some references). 

9.2 INTRODUCTION TO HIDDEN MARKOV MODELS 

Up to now we have considered choosing the best matching word by finding the 
template which gives the minimum cumulative 'distance' along the optimum 
matching path. An alternative approach is, for each possible word, to postulate 
some device, or model, which can generate patterns of features to represent the 
word. Every time the model for a particular word is activated, it will produce a set 
of feature vectors that represents an example of the word, and if the model is a 
good one, the statistics of a very large number of such sets of feature vectors will be 
similar to the statistics measured for human utterances of the word. The best 
matching word in a recognition task can be defined as the one whose model is most 
likely to produce the observed sequence of feature vectors. What we have to 
calculate for each word is thus not a 'distance' from a template, but the a posteriori 
probability that its model could have produced the observed set of feature vectors. 
We do not actually have to make the model produce the feature vectors, but we use 
the known properties of each model for the probability calculations. We will 
assume for the moment that the words are spoken in an 'isolated' manner, so that 
we know where the start and end of each word are, and the task is simply to identify 
the word. Extensions to sequences of words will be considered in Section 9.11. 

We wish to calculate the a posteriori probability, P(wlY), of a particular 
word, w, having been uttered during the generation of a set of feature observations, 
Y. We can use the model for w to calculate P(Ylw), which is the probability of Y 
conditioned on word w (sometimes referred to as the likelihood of w). To obtain 
P(wlY), however, we must also include the a priori probability of word w having 
been spoken. The relationship between these probabilities is given by Bayes' rule: 

P(wl Y) = P(Y I w)P(w). 
P(Y) 

(9.1) 

This equation states that the probability of the word given the observations is 
equal to the probability of the observations given the word, multiplied by the 
probability of the word (irrespective of the observations), and divided by the 
probability of the observations. The probability, P( Y ), of a particular set of feature 
observations, Y, does not depend on which word is being considered as a possible 
match, and therefore only acts as a scaling factor on the probabilities. Hence, if the 
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goal is to find the word w which maximizes P( wl Y ), the P( Y) term can be ignored, 
because it does not affect the choice of word. If for the particular application all 
pennitted words are equally likely, then the P(w) term can also be ignored, so we 
merely have to choose the word model that maximizes the probability, P(Y lw), of 
producing the observed feature set, Y. In practice for all but the simplest speech 
recognizers the probability of any particular word occurring will depend on many 
factors, and for large vocabularies it will depend on the statistics of word 
occurrence in the language. This aspect will be ignored in the current chapter, but 
will be considered further in Chapter 12. 

The way we have already represented words as sequences of template frames 
gives us a starting point for the form of a possible model. Let the model for any 
word be capable of being in one of a sequence of states, each of which can be 
associated with one or more frames of the input. In general the model moves from 
one state to another at regular intervals of time equal to the frame interval of the 
acoustic analysis. However, we know that words can vary in timescale. In the 
asymmetrical DP algorithm mentioned in Chapter 8 (Figure 8.4(b ), showing slopes 
of 0, 1 and 2) the timescale variability is achieved by repeating or skipping frames 
of the template. In our model this possibility can be represented in the sequence of 
states by allowing the model to stay in the same state for successive frame times, or 
to bypass the next state in the sequence. The form of this simple model is shown in 
Figure 9 .1. In fact, if a word template has a sequence of very similar frames, such 
as might occur in a long vowel, it is permissible to reduce the number of states in 
the model by allowing it to stay in the same state for several successive frames. 

The mathematics associated with a model such as the one shown in Figure 9.1 
can be made more tractable by making certain simplifying assumptions. To be more 
specific, it is assumed that the output of the model is a stochastic process (i.e. its 
operation is governed completely by a set of probabilities), and that the 
probabilities of all its alternative actions at any time t depend only on the state it is 
in at that time, and not on the value oft. The current output of the model therefore 
depends on the identity of the current state, but is otherwise independent of the 
sequence of previous states that it has passed through to reach that state. Hence the 
model's operation is a first-order Markov process, and the sequence of states is a 
first-order Markov chain. Although the model structure shown in Figure 9.1 is 
quite appropriate for describing words that vary in timescale, the equations that 
represent the model's behaviour have exactly the same form in the more general 
case where transitions are allowed between all possible pairs of states. 

At every frame time the model is able to change state, and will do so 
randomly in a way determined by a set of transition probabilities associated with 
the state it is currently in. By definition, the probabilities of all transitions from a 

Figure 9.1. State transitions for a simple word model, from an initial state, I, to a final state, F. 

IPR2023-00037 
Apple EX1016 Page 32

 

Introduction to Stochastic Modelling 129

goalis to find the word w which maximizes P(w|Y ), the P(Y ) term can beignored,
because it does not affect the choice of word. If for the particular application all
permitted words are equally likely, then the P(w) term can also be ignored, so we
merely have to choose the word model that maximizes the probability, P(Y |w), of
producing the observed feature set, Y. In practice for all but the simplest speech
recognizers the probability of any particular word occurring will depend on many
factors, and for large vocabularies it will depend on the statistics of word
occurrence in the language. This aspect will be ignored in the current chapter, but
will be considered further in Chapter 12.

The way we have already represented words as sequences of template frames
gives us a Starting point for the form of a possible model. Let the model for any
word be capable of being in one of a sequence ofstates, each of which can be
associated with one or more frames of the input. In general the model moves from
one state to another at regular intervals of time equal to the frame interval of the
acoustic analysis. However, we know that words can vary in timescale. In the
asymmetrical DP algorithm mentioned in Chapter 8 (Figure 8.4(b), showing slopes
of 0, 1 and 2) the timescale variability is achieved by repeating or skipping frames
of the template. In our model this possibility can be represented in the sequence of
states by allowing the modelto stay in the samestate for successive frame times, or
to bypass the next state in the sequence. The form ofthis simple model is shown in
Figure 9.1. In fact, if a word template has a sequence of very similar frames, such
as might occur in a long vowel, it is permissible to reduce the numberofstates in
the model by allowingit to stay in the samestate for several successive frames.

The mathematics associated with a model such as the one shown in Figure 9.1
can be made moretractable by makingcertain simplifying assumptions. To be more
specific, it is assumed that the output of the modelis a stochastic process(i.e.its
operation is governed completely by a set of probabilities), and that the
probabilities ofall its alternative actions at any time ¢ depend only onthestate it is
in at that time, and not on the value of ¢. The current output of the model therefore
depends on the identity of the current state, but is otherwise independent of the
sequence of previousstates that it has passed through to reach that state. Hence the
model’s operationis a first-order Markov process, and the sequenceofstates is a
first-order Markov chain. Although the model structure shown in Figure 9.1 is
quite appropriate for describing words that vary in timescale, the equations that
represent the model’s behaviour have exactly the same form in the more general
case wheretransitions are allowed betweenall possiblepairsofstates.

At every frame time the model is able to change state, and will do so
randomly in a way determinedbya set of transition probabilities associated with
the state it is currently in. By definition, the probabilities ofall transitions from a

Figure 9.1. State transitions for a simple word model, from aninitial state,I, to a finalstate,F.
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state at any frame time must sum to 1, but the sum includes the probability of a 
transition that re-enters the same state. When the model is activated a sequence of 
feature vectors is emitted, in the same form as might be observed when a word is 
spoken. However, in the type of model considered here, observing the feature 
vectors does not completely determine what the state sequence is. In addition to its 
transition probabilities, each state also has associated with it a probability density 
function (p.d.f.) for the feature vectors. Each p.d.f. can be used to calculate the 
probability that any particular set of feature values could be emitted when the 
model is in the associated state. This probability is usually known as the emission 
probability. The actual values of the observed features are, therefore, probabilistic 
functions of the states, and the states themselves are hidden from the observer. For 
this reason this type of model is called a hidden Markov model (HMM). 

The emission p.d.f. for a state may be represented as a discrete distribution, 
with a probability specified separately for each possible feature vector. 
Alternatively, it is possible to use a parameterized continuous distribution, in which 
feature vector probabilities are defined by the parameters of the distribution. 
Although there are significant advantages, which will be explained in Section 9.7, 
in modelling feature probabilities as continuous functions, it will simplify the 
following explanation if we initially consider only discrete probability distributions. 

9.3 PROBABILITY CALCULATIONS IN HIDDEN MARKOV MODELS 

In order to explain the HMM probability calculations, we will need to introduce 
some symbolic notation to represent the different quantities which must be 
calculated. Notation of this type can be found in many publications on the subject 
of HMMs for ASR. Certain symbols have come to be conventionally associated 
with particular quantities, although there is still some variation in the details of the 
notation that is used. In choosing the notation for this book, our aims were to be 
consistent with what appears to be used the most often in the published literature, 
while also being conceptually as simple as possible. 

We will start by assuming that we have already derived good estimates for the 
parameters of all the word models. (Parameter estimation will be discussed later in 
the chapter.) The recognition task is to determine the most probable word, given the 
observations (i.e. the word w for which P(wlY) is maximized). As explained in 
Section 9 .2, we therefore need to calculate the likelihood of each model emitting 
the observed sequence of features (i.e. the value of P(Y lw) for each word w). 

Considering a single model, an output representing a whole word arises from 
the model going through a sequence of states, equal in length to the number of 
observed feature vectors, T, that represents the word. Let the total number of states 
in the model be N, and let s, denote the state that is occupied during frame t of the 
model's output. We will also postulate an initial state, / and a final state, F, which 
are not associated with any emitted feature vector and only have a restricted set of 
possible transitions. The initial state is used to specify transition probabilities from 
the start to all permitted first states of the model, while the final state provides 
transition probabilities from all possible last emitting states to the end of the word. 
The model must start in state I and end in state F, so in total the model will go 
through a sequence of T + 2 states to generate T observations. The use of non-
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state at any frame time must sum to 1, but the sum includes the probability of a
transition that re-enters the same state. When the modelis activated a sequence of
feature vectors is emitted, in the same form as might be observed when a wordis
spoken. However, in the type of model considered here, observing the feature
vectors does not completely determine what the state sequenceis. In additiontoits
transition probabilities, each state also has associated with it a probability density
function (p.d.f.) for the feature vectors. Each p.d.f. can be used to calculate the
probability that any particular set of feature values could be emitted when the
modelis in the associated state. This probability is usually known as the emission
probability. The actual values of the observed features are, therefore, probabilistic
functions of the states, and the states themselves are hidden from the observer.For
this reason this type of model is called a hidden Markov model (HMM).

The emission p.d.f. for a state may be represented as a discrete distribution,
with a probability specified separately for each possible feature vector.
Alternatively,it is possible to use a parameterized continuousdistribution, in which
feature vector probabilities are defined by the parameters of the distribution.
Although there are significant advantages, which will be explained in Section 9.7,
in modelling feature probabilities as continuous functions, it will simplify the
following explanationif weinitially consider only discrete probability distributions.

9.3 PROBABILITY CALCULATIONSIN HIDDEN MARKOV MODELS

In order to explain the HMM probability calculations, we will need to introduce
some symbolic notation to represent the different quantities which must be
calculated. Notation of this type can be found in many publications on the subject
of HMMsfor ASR. Certain symbols have come to be conventionally associated
with particular quantities, although there is still some variation in the details of the
notation that is used. In choosing the notation for this book, our aims were to be
consistent with what appears to be used the most often in the publishedliterature,
while also being conceptually as simple as possible.

Wewill start by assuming that we have already derived good estimatesfor the
parameters ofall the word models. (Parameter estimation will be discussedlater in
the chapter.) The recognition task is to determine the most probable word,given the
observations (i.e. the word w for which P(w|Y) is maximized). As explained in
Section 9.2, we therefore need to calculate the likelihood of each model emitting
the observed sequenceoffeatures(i.e. the value of P(Y |w) for each word w).

Considering a single model, an output representing a whole word arises from
the model going through a sequence of states, equal in length to the number of
observed feature vectors, 7, that represents the word. Let the total numberofstates
in the model be N,andlet s, denote the state that is occupied during frame¢ ofthe
model’s output. We will also postulate aninitial state, / and a final state, F, which
are not associated with any emitted feature vector and only havea restricted set of
possible transitions. The initial state is used to specify transition probabilities from
the start to all permitted first states of the model, while the final state provides
transition probabilities from all possible last emitting states to the end of the word.
The model muststart in state / and end in state F, so in total the model will go
through a sequence of 7+2 states to generate T observations. The use of non-
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emitting initial and final states provides a convenient method for modelling the fact 
that some states are more likely than others to be associated with the first and the 
last frame of the word respectively 1

. These compulsory special states will also be 
useful in later discussions requiring sequences of models. 

The most widely used notation for the probability of a transition from state i 
to state j is ai.i. The emission probability of state j generating an observed feature 
vector y, is usually denoted bj (y,). 

We need to compute the probability of a given model producing the observed 
sequence of feature vectors, Yi to Yr· We know that this sequence of observations 
must have been generated by a state sequence of length T (plus the special initial 
and final states) but, because the model is hidden, we do not know the identities of 
the states. Hence we need to consider all possible state sequences of length T. The 
probability of the model generating the observations can then be obtained by 
finding the joint probability of the observations and any one state sequence, and 
summing this quantity over all possible state sequences of the correct length: 

L P(y1,Y2, .. ,Yr,s1,s2,··,sr) 
over all possible 
state sequences 

of length T 

L P(y1,Y2,··,Yr,l 51,s2,··,sr)P(s1,s2, ... ,sr), (9.2) 
over all possible 
state sequences 

of length T 

where, for notational convenience, in the equations we are omitting the dependence 
of all the probabilities on the identity of the model. 

Now the probability of any particular state sequence is given by the product 
of the transition probabilities: 

(9.3) 

where a is the probability of a transition from the state occupied at frame t to 
s,st+I 

the state at frame t + 1; a, and a F similarly define the transition probabilities 
SI ST 

from the initial state / and to the final state F. If we assume that the feature vectors 
are generated independently for each state, the probability of the observations given 
a particular state sequence of duration T is the product of the individual emission 
probabilities for the specified states: 

T 

P(Y1>Y2,··,Yr I S1>S2,··,Sr) = ITbs, (y,) · 
t=I 

(9.4) 

1 Some published descriptions of HMM theory do not include special initial and final states. Initial 
conditions are sometimes accommodated by a vector of probabilities for starting in each of the states 
(e.g. Levinson et al., I 983), which has the same effect as the special initial state used here. For the last 
frame of the word, approaches include allowing the model to end in any state (e.g. Levinson et al., 
1983) or enforcing special conditions to only allow the model to end in certain states. The treatment of 
the first and last frames does not alter the basic fonn of the probability calculations, but it may affect 
the details of the expressions associated with the start and end of an utterance. 
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emitting initial and final states provides a convenient method for modelling the fact
that some states are more likely than others to be associated with the first and the
last frame of the word respectively'. These compulsory specialstates will also be
useful in later discussions requiring sequences of models.

The most widely used notation for the probability of a transition from state i
to state j is ay. The emission probability of state j generating an observed feature
vectory, is usually denoted ;(y,)

We need to compute the probability of a given model producing the observed
sequence of feature vectors, y, to yr. We know that this sequence of observations
must have been generated by a state sequence of length 7 (plus the specialinitial
and final states) but, because the modelis hidden, we do not knowthe identities of
the states. Hence we needto consider all possible state sequences of length 7. The
probability of the model generating the observations can then be obtained by
finding the joint probability of the observations and any one state sequence, and
summing this quantity overall possible state sequencesofthe correct length:

P(Y, V2. Vr) = » PCV, 25°73 Vr 8495997 Sp)
overall possible
state sequences

of length T

= ¥ PCY 2 Y20°°'> Vol $12829°°7» Sp )P(S1,595°°° Sz) > (9.2)
overall possible
state sequences

oflength T

where, for notational convenience, in the equations we are omitting the dependence
ofall the probabilities on the identity of the model.

Now the probability of any particular state sequence is given by the product
of the transition probabilities:

T-1

P(5,,535°°*557) =a, (J[a )a,p> (9.3)
t=l S41

where a, . is the probability of a transition from the state occupied at frame ¢ tot+

the state at frame ¢+ 1; a Is, and a, similarly define the transition probabilities
from the initial state / and to the final state F. If we assumethat the feature vectors

are generated independently for eachstate, the probability of the observations given
a particular state sequence of duration 7 is the product of the individual emission
probabilities for the specifiedstates:

T

PUY: Jas? o Ir | $)s8o5°° 3S) =[[4,0 7 (9.4)
t=1

' Some published descriptions of HMM theory do not include special initial and final states. Initial
conditions are sometimes accommodated by a vectorofprobabilities for starting in each ofthe states
(e.g. Levinson et al., 1983), which has the sameeffect as the special initial state used here. For the last
frame of the word, approaches include allowing the model to end in any state (e.g. Levinson et al.,
1983) or enforcing special conditions to only allow the modelto endin certain states. The treatment of
the first and last frames does notalter the basic form of the probability calculations, but it mayaffect
the details of the expressions associated with the start and end ofan utterance.
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Thus the probability of the model emitting the complete observation sequence is: 

P(Yi ,Y2,··,Yr) = L a1s1 [ft b,, (y,)a,,,,.
1 
J bsr (Yr )asrF • (9.5) 

over all possible /=I 
state sequences 

of length T 

Unless the model has a small number of states and Tis small, there will be an 
astronomical number of possible state sequences, and it is completely impractical to 
make the calculations of Equation (9.5) directly for all sequences. One can 

' however, compute the probability indirectly by using a recurrence relationship. We 
will use the symbol a j(t) to be the probabilit/ of the model having produced the 
first t observed feature vectors and being in state j for frame t. The recurrence can 
be computed in terms of the values of a; ( t- 1) for all possible previous states, i. 

a /t) = P(y" Yi,··, Y, , s, = }) (9.6) 

= [ ta;(I-I)aij Jb/y,) for I< I< T (9.7) 

The value of aj ( 1 ), for the first frame, is the product of the transition probability a0 
from the initial state/, and the emission probability bj (y 1). 

a/1) = a/jb/y,) (9.8) 

The value of ai(T), for the last frame in the observation sequence, can be 
computed for any of the emitting states by repeated applications of Equation (9.7), 
starting from the result of Equation (9.8). 

The total probability of the complete set of observations being produced by 
the model must also include the transition probabilities into the final state F. We 
will define this quantity as aF (T ), thus: 

N 

P(y1,Y2,··,Yr) = aF(T) = La;(T)aiF • (9.9) 
i=I 

Equation (9.9) gives the probability of the model generating the observed 
data, taking into account all possible sequences of states. This quantity represents 
the probability of the observations given the word model ( the P( Y lw) term in 
Equation (9.1)). Incorporating the probability of the word, P(w), gives a probability 
that is a scaled version of P( wl Y ), the probability of the word having been spoken. 
Provided that the model is a good representation of its intended word, this 
probability provides a useful measure which can be compared with the probability 
according to alternative word models in order to identify the most probable word. 

' • - In the literature, this probability is almost universally represented by the symbol a. However, there ts 
some variation in the way in which the a symbol is annotated to indicate dependence on state and time. 
In particular, several authors (e.g. Rabiner and Juang (1993)) have used a,(j), whereas we have chosen 
ai(t) (as used by Knill and Young ( I 997) for example). The same variation applies to the quantities P, Y 

and ~. which will be introduced later. The differences are only notational and do not affect the meaning 
of the expressions, but when reading the literature it is important to be aware that such differences exist• 
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9.4 THE VITERBI ALGORITHM 

The probability of the observations, given the model, is made up of contributions 
from a very large number of alternative state sequences. However, the probability 
distributions associated with the states will be such that the probability of the 
observed feature vectors having been produced by many of the state sequences will 
be microscopically small compared with the probabilities associated with other 
state sequences. One option is to ignore all but the single most probable ~tate 
sequence. Equation (9.2) can be modified accordingly to give the probability, P, of 
the observations for this most probable state sequence: 

P(y1,Y2,···,yr)= max (P(y1,Y2,···,yr,s1,s2,···,sr)). (9.10) 
over all possible 
state sequences 

of length T 

The probability associated with the most probable sequence of states can be 
calculated using the Viterbi algorithm (Viterbi, 1967), which is a dynamic 
programming algorithm applied to probabilities. Let us define a new probability, 
a i (t) as the probability of being in the j th state, after having emitted the first t 
feature vectors and having been through the most probable sequence of t- 1 
preceding states in the process. Again we have a recurrence relation, equivalent to 
the one shown in Equation (9.7): 

a/t)= ma~(a;(t-l)au)b 1 (y,) for l<t~T. (9.11) 
over, 

The conditions for the first state are the same as for the total probability, which was 
given in Equation (9.8): 

a/1) = ai(l) = alibi(y 1). (9.12) 

Successive applications of Equation (9 .11) will eventually yield the values for 
a /T) . Defining a F (T) as the probability of the full set of observations being 
given by the most probable sequence of states, its value is given by: 

(9.13) 

The difference between the total probability and the probability given by the 
Viterbi algorithm depends on the magnitude of the contribution of the 'best' state 
sequence to the total probability summed over all possible sequences. If the feature
vector p.d.f.s of all states are substantially different from each other, the probability 
of the observations being produced by the best sequence might not be appreciably 
less than the total probability including all possible sequences. The difference 
between the total probability and the probability for the best sequence will, 
however, be larger if the best path includes several consecutive frames shared 
between a group of two or more states which have very similar p.d.f.s for the 
feature vectors. Then the probability of generating the observed feature vectors 
would be almost independent of how the model distributed its time between the 
states in this group. The total probability, which is the sum over all possible 
allocations of frames to states, could then be several times the probability for the 
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9.4 THE VITERBI ALGORITHM

The probability of the observations, given the model, is made up of contributions
from a very large numberofalternative state sequences. However, the probability
distributions associated with the states will be such that the probability of the
observed feature vectors having been produced by manyofthe state sequenceswill
be microscopically small compared with the probabilities associated with other
state sequences. One option is to ignore all but the single most probable state
sequence. Equation (9.2) can be modified accordingly to give the probability, P, of
the observations for this most probable state sequence:

PUY, Y20° Yr) = max (PUY, Yo0e Vrs Sy Sage Sp))- (9.10)
overall possible
State sequences

oflength 7

The probability associated with the most probable sequence ofstates can be
calculated using the Viterbi algorithm (Viterbi, 1967), which is a dynamic
programming algorithm applied to probabilities. Let us define a new probability,
a,(t)as the probability of being in the j " state, after having emitted the first 1
feature vectors and having been through the most probable sequence of t-1
preceding states in the process. Again we havea recurrencerelation, equivalent to
the one shown in Equation (9.7):

G,(t) = max(é;(t—1)ay )b;(y,) for l<t<T. (9.11)
The conditions for the first state are the same asfor the total probability, which was
given in Equation (9.8):

é,(1) =a, (1) = a,b, (y,). (9.12)

Successive applications of Equation (9.11) will eventually yield the values for
a(T). Defining @,(T) as the probability of the full set of observations being
given by the most probable sequenceofstates, its value is given by:

POY Das Yr) = Ge (T) = max(4;(7)aj¢ ). (9.13)
The difference between the total probability and the probability given by the

Viterbi algorithm depends on the magnitude of the contribution of the ‘best’ state
sequence to the total probability summedoverall possible sequences.If the feature-
vector p.d.f.s of all states are substantially different from each other, the probability
of the observations being produced by the best sequence might not be appreciably
less than the total probability including all possible sequences. The difference
between the total probability and the probability for the best sequence will,
however, be larger if the best path includes several consecutive frames shared
between a group of two or more states which have very similar p.d.f.s for the
feature vectors. Then the probability of generating the observed feature vectors
would be almost independent of how the model distributed its time between the
states in this group. The total probability, which is the sum overall possible
allocations of frames to states, could then be several times the probability for the
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best sequence. This point will be considered again in Section 9.14. However, the 
design of models used in current recognizers is such that sequences of states with 
similar emission p.d.f.s generally do not occur. As a consequence, in spite of the 
theoretical disadvantage of ignoring all but the best path, in practice the differences 
in performance between the two methods are usually small. Some variant of the 
Viterbi algorithm is therefore usually adopted for decoding in practical speech 
recognizers, as using only the best path requires less computation. (There can also be 
considerable advantages for implementation, as will be discussed in Section 9.12.) 

9.5 PARAMETER ESTIMATION FOR HIDDEN MARKOV MODELS 

So far, we have considered the probability calculations required for recognition. 
We have assumed that the parameters of the models, i.e. the transition probabilities 
and emission p.d.f.s for all the states, are already set to their optimum values for 
modelling the statistics of a very large number of human utterances of all the words 
that are to be recognized. In the discussion which follows we will consider the 
problem of deriving suitable values for these parameters from a quantity of training 
data. We will assume for the moment that the body of training data is of sufficient 
size to represent the statistics of the population of possible utterances, and that we 
have sufficient computation available to perform the necessary operations. 

The training problem can be formulated as one of determining the values of 
the HMM parameters in order to maximize the probability of the training data 
being generated by the models (P(Y lw) in Equation (9.1)). Because this conditional 
probability of the observations Y given word w is known as the 'likelihood' of the 
word w, the training criterion that maximizes this probability is referred to as 
maximum likelihood ( other training criteria will be considered in Chapter 11 ). If 
we knew which frames of training data corresponded to which model states, then it 
would be straightforward to calculate a maximum-likelihood estimate of the 
probabilities associated with each state. The transition probabilities could be 
calculated from the statistics of the state sequences, and the emission probabilities 
from the statistics of the feature vectors associated with each state. However, the 
'hidden' nature of the HMM states is such that the allocation of frames to states 
cannot be known. Therefore, although various heuristic methods can be formulated 
for analysing the training data to give rough estimates of suitable model parameters, 
there is no method of calculating the optimum values directly. 

If, however, one has a set of rough estimates for all the parameters, it is 
possible to use their values in a procedure to compute new estimates for each 
parameter. This algorithm was developed by Baum and colleagues and published in 
a series of papers in the late 1960s and early 1970s. It has been proved by Baum 
( 1972) that new parameter estimates derived in this way always produce a model 
that is at least as good as the old one in representing the data, and in general the 
new estimates give an improved model. If we iterate these operations a sufficiently 
large number of times the model will converge to a locally optimum solution. 
Unfortunately, it is generally believed that the number of possible local optima is so 
vast that the chance of finding the global optimum is negligible. However, it is 
unlikely that the global optimum would in practice be much better than a good local 
optimum, derived after initialization with suitable starting estimates for the models. 
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Baum's algorithm is an example of a general method which has come to be 
known as the expectation-maximization (EM) algorithm (Dempster et al., 1977). 
The EM algorithm is applicable to a variety of situations in which the task is to 
estimate model parameters when the observable data are 'incomplete', in the sense 
that some information (in this case the state sequence) is missing. 

The detailed mathematical proofs associated with the derivation of the 
re-estimation formulae for HMMs are beyond the scope of this book, although 
Chapter 17 gives some references. In the current chapter, we will describe the re
estimation calculations and give son1e intuitive explanation. The basic idea is to use 
some existing estimates for the model parameters to calculate the probability of 
being in each state at every frame time, given these current estimates of the model 
parameters and the training data. The probabilities of occupying the states can then 
be taken into account when gathering the statistics of state sequences and of feature 
vectors associated with the states, in order to obtain new estimates for the transition 
probabilities and for the emission probabilities respectively. In the re-estimation 
equations we will use a bar above the symbol to represent a re-estimated value, and 
the same symbol without the bar to indicate its previous value. 

9.5.1 Forward and backward probabilities 

Suppose for the moment that we have just a single example of a word, and that this 
example comprises the sequence of feature vectors y 1 to YT· Also, assume that the 
word has been spoken in isolation and we know that y 1 corresponds to the first 
frame of the word, with YT representing the last frame. In Equation (9. 7) we showed 
how to compute a1 (t), which is the probability of the model having emitted the first 
t observed feature vectors and being in state}. The values of a1 (t) are computed for 
successive frames in order, going forward from the beginning of the utterance. 
When estimating parameters for state}, we will need to know the probability of 
being in the state at time t, while the model is in the process of emitting all the 
feature vectors that make up the word. For this purpose we also need to compute 
/Jj(t), which is defined as the backward probability of emitting the remaining T- t 
observed vectors that are needed to complete the word, given that the j th state was 
occupied for frame t : 

(9.14) 

When calculating the backward probabilities, it is necessary to start applying 
the recurrence from the end of the word and to work backwards through the 
sequence of frames. Each backward probability at time t is therefore derived from 
the backward probabilities at time t + 1. Because the notation convention is to move 
from state i to state}, it is usual to specify the recurrence relationship for the 
backward probabilities with the i th state occupied at time t. Thus the value of /3; (t) 
is computed in tenns of the values of /Ji (t + 1) for all possible following states j : 

N 

P;(t)= Laijbj(Y 1+1)/3j(t+1) 
j=I 

for T > t > 1. (9.15) 
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Baum’s algorithm is an example of a general method which has cometo be
knownas the expectation-maximization (EM)algorithm (Dempster et al., 1977).
The EM algorithm is applicable to a variety of situations in which the task is to
estimate model parameters whenthe observable data are ‘incomplete’, in the sense
that some information (in this case the state sequence) is missing.

The detailed mathematical proofs associated with the derivation of the
re-estimation formulae for HMMsare beyond the scope of this book, although
Chapter 17 gives some references. In the current chapter, we will describe the re-
estimation calculations and give someintuitive explanation. The basic idea is to use
some existing estimates for the model parameters to calculate the probability of
being in each state at every frame time, given these current estimates of the model
parameters and the training data. The probabilities of occupying the states can then
be taken into account when gatheringthestatistics of state sequences and offeature
vectors associated with the states, in order to obtain new estimates for the transition
probabilities and for the emission probabilities respectively. In the re-estimation
equations we will use a bar above the symbolto represent a re-estimated value, and
the same symbol withoutthe barto indicate its previous value.

9.5.1 Forward and backwardprobabilities

Suppose for the moment that we have just a single example of a word,andthatthis
example comprises the sequence of feature vectors y, to y,. Also, assume that the
word has been spoken in isolation and we know that y, correspondsto the first
frame of the word, with y, representing the last frame. In Equation (9.7) we showed
how to compute @; (t), which is the probability of the model having emitted thefirst
t observed feature vectors and beingin state7. The values of @;(#) are computed for
successive frames in order, going forward from the beginning of the utterance.
When estimating parameters for state 7, we will need to know the probability of
being in the state at time ¢, while the modelis in the process of emitting a// the
feature vectors that make up the word. For this purpose we also need to compute
£;(t), which is defined as the backwardprobability of emitting the remaining T— ft
observed vectors that are needed to complete the word, given that the / * state was
occupied for frame¢:

B(t) = PW Dis20 9 Vr | s, =j). (9.14)

When calculating the backward probabilities, it is necessary to start applying
the recurrence from the end of the word and to work backwards through the
sequence of frames. Each backward probability at time ¢ is therefore derived from
the backward probabilities at time t+ 1. Because the notation convention is to move
from state i to state j, it is usual to specify the recurrence relationship for the
backward probabilities with the i" state occupiedat time ¢. Thusthe value of G;(f)
is computed in terms of the values of(t+ 1) for all possible followingstates7 :

N

BiO= 145);)BjC+1) fort >r21. sak)
j=l

Sie
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In contrast to Equation (9.7), it will be noticed that Equation (9.15) does 
inclu~~ the emission probabili~ for frame t. This difference in form between:; 
defirutJ.ons of a; ( t) and /3; ( t) 1s necessary because of the way we will comb· 
these quantities in Equation (9 .17). me 
. The first application of Equation (9 .15) us~s th~ fact that the model must be 
m the final state, F, at the end of the word. At this point all features will have bee 
emitted, so the value of /3; ( 1) is just the probability of a transition from state; 1: 1~ 
state F: 

1
~ 

I 

The probability of the model emitting the full set of T feature vectors and 
being in the j th state for the t th observed frame must be the product of the forward 
and backward probabilities for the given state and frame pair, thus: 

~ 

(9.17) <i 

Although it is not relevant to parameter re-estimation, it is interesting to note 
that, as the probability of generating the full set of feature vectors and being in state 
j for frame t is given by a J (t) /31 (t) , the probability of the observations 
irrespective of which state is occupied in frame t must be the value of this product 
summed over all states. We can write this probability as: 

N 

P(y1,Y2,···,yT)= La;(t)/J;(t) 
i=I 

for any value oft, (9.18) ( 
l.1 

I 

lr.i 
I 

where here we use i as the state index for ease of comparison with Equation (9.9). l~ 

Equation (9 .18) is true for any value of the frame time, t, and Equation (9.9) is thus I 
just a special case for the last frame, where t = T and in consequence /3; (T) = aif, 1~ 

9.5.2 Parameter re-estimation with forward and backward probabilities 

In practice when training a set of models there would be several ( say E) examples 
of each word, so the total number of feature vectors available is the sum of the 
numbers of frames for the individual examples. The re-estimation should use all the 
training examples with equal weight. For this purpose it is necessary to take into 
account that the current model would be expected to fit some examples better than 
others, and we need to prevent these examples from being given more weight in the 
re-estimation process. The simple product a 1 (t)f31 (t) does not allow for these 
differences, as it represents the joint probability of being in state j at time t aorl 
generating a particular set of feature vectors representing one example. In order to 
be able to combine these quantities for different examples, we require tbe 

;--, 

conditional probability of occupying state j given the feature vectors. . fi 
We will define a quantity /J (t), which is the probability of being in state) ir 

frame t, given the feature vectors for one example of the word. This quantity can ul~ 
?erived fr_om a/t)f3 1(_t)_ using Bayes' rule, and it ~~n be seen that the r::ing 
mvolves simply normahzmg a 

1 
(t) /3

1 
(t) by the probab1hty of the model gener • ' 

the observations. \ 
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In contrast to Equation (9.7), it will be noticed that Equation (9.15) does tay
include the emission probability for frame ¢. This difference in form between i |
definitions of a;(f) and #;(f) is necessary because of the way wewill combin
these quantities in Equation (9.17). '

The first application of Equation (9.15) uses the fact that the mode] MUSt be
in the final state, F, at the end of the word. Atthis pointall features will have heey
emitted, so the value of #;(7) is just the probability ofa transition fromstate jg
state F:

B(T) =a; . (9.16)

The probability of the model emitting the full set of T feature vectors ang
being in the j" state for the t' observed frame must be the productofthe forward
and backward probabilities for the given state and framepair,thus:

PUY V2IS, = J) =a, (OB(O- (9.17)

Althoughit is not relevant to parameter re-estimation,it is interesting to note
that, as the probability of generating the full set of feature vectors andbeingin state
j for frame ¢ is given by a;(t)f;(t), the probability of the observations
irrespective of which state is occupied in frame ¢ must be the value ofthis product
summedoverall states. We can write this probability as:

N

P01, 920-97) = >ai(Bi(t) for anyvalue oft, (018)
i=l

where here we use i as the state index for ease of comparison with Equation(9.9).
Equation (9.18) is true for any value of the frametime, t, and Equation (9.9) is thus
just a special case for the last frame, where ¢ = T and in consequence /;(T) = 4p.

9.5.2 Parameter re-estimation with forward and backward probabilities

In practice whentraining a set of models there would be several (say £) examples
of each word, so the total number of feature vectors available is the sum of the
numbers of frames for the individual examples. The re-estimation should use allthe
training examples with equal weight. For this purpose it is necessary to take i
accountthat the current model would be expected to fit some examplesbetter than
others, and we needto prevent these examples from being given more weight in the
re-estimation process. The simple product a;(t)f;(t) does notallow for these
differences, as it represents the joint probability of being in state j at time !™
generating a particular set of feature vectors representing one example. In order 0
be able to combine these quantities for different examples, we requilt i
conditional probability of occupying statej given the feature vectors. _ it

Wewill define a quantity 7;(t), which is the probability of being in state/ :
frame f, given the feature vectors for one example of the word. This quantity aa
derived from a@,(t)f;(t) using Bayes’ rule, and it can be seen that the a
involves simply normalizing @,(t)$,(t) by the probability ofthe model genet
the observations.
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yj(t)=P(s, =JIY1,Y2,··,yT)= P(y1,Y2,··,yT Is, =J)P(s, =}) 
P(y1 , Y2, ···,YT) 

_ P(y 1,y 2,-··,yr,s, = j) _ a1(t)/3 1(t) 
- -

P(Yi,Y2, .. ,Yr) aF(T) 

137 

(9.19) 

The normalization by aF (T) thus ensures that when there are several examples of 
the word, all frames of all examples will contribute equally to the re-estimation. 

The probability, bj (k), of observing some particular feature vector, k, when 
the model is in state j can be derived as the probability of the model being in state J 
and observing k, divided by the probability of the model being in state j. In order to 
take into account the complete set of training examples of the word, we need to sum 
both the numerator and the denominator over all frames of all examples. Hence, 
assuming E examples of the word, the re-estimate for the emission probability is 
given by: 

(9.20) 

e=I t=l 

In Equation (9.20), quantities for the eth example of the word are denoted by Te for 
the number of frames in the example and Y,e for the feature vector at the t th frame of 
the example, with yj(t, e) being used for the value of Y.J·(t) for the eth example. 

The denominator in Equation (9 .20) is the sum of the individual probabilities 
of being in state j for each frame time, given the complete set of training data, and 
is sometimes referred to as the state occupancy. In some publications, the term 
count is also used when referring to this quantity. Although it is in fact a sum of 
probabilities, because it has been summed over the complete data set it is 
equivalent to the expected number, or count, of frames for which the state is 
occupied (although it will not in general be an integer number of frames). 

In order to re-estimate the transition probabilities, we need to calculate the 
probability of a transition between any pair of states. This calculation is basically 
straightforward, but care needs to be taken to treat the start and end of the word 
correctly3. In the following explanation, transitions from the initial state and to the 
final state will be treated separately from transitions between emitting states. 

Returning for the moment to considering only a single example of the word, 
let us define ~ij (t) to be the probability that there is a transition from state i to state j 
at time t, given that the model generates the whole sequence of feature vectors 
representing the example of the word: 

a;(t)aub1(Yr+i) [J1(t + 1) 
~u(t) = aF(T) for 1 ~ t < T. (9.21) 

3 
The details of the equations given here apply to the use of special initial and final states and there will 

be slight differences if, for example, the model is allowed to end in any state (as in some publications). 
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PCW, Y25°°°, YT | Sy = J)P(s; mt)
P(V1, 25's Yr)

PIV VaIS, = J)_—Aj (OB; (0)
eam8 9.19PCY) Vo0°7* Vr) a,-(T) ( )

70 = Pls = JY Yae-s Yr) =

The normalization by a@,(7) thus ensures that when there are several examples of
the word, all frames of all examples will contribute equally to the re-estimation.

The probability, b;(&), of observing someparticular feature vector, k, when
the modelis in state 7 can be derived as the probability of the model beinginstatej
and observing k, divided by the probability of the modelbeing in state7. In order to
take into account the complete set of training examples of the word, we need to sum
both the numerator and the denominator overall frames of all examples. Hence,
assuming E examples of the word, the re-estimate for the emission probability is
given by:

y >: yj (te)
bj (k) =Steph) (9.20)

Syyie)
ée=1. t=1

In Equation (9.20), quantities for the e example of the word are denotedd by T, for
the number of frames in the example andy,, for the feature vectorat the ¢ " frame of
the example, with 7; (t, e) being used for the value of y;(¢) for the e" example.

The denominator in Equation (9.20) is the sum ofthe individual probabilities
of being in state 7 for each frame time, given the complete set of training data, and
is sometimes referred to as the state occupancy. In some publications, the term
count is also used whenreferring to this quantity. Although it is in fact a sum of
probabilities, because it has been summed over the complete data set it is
equivalent to the expected number, or count, of frames for which thestate is
occupied(althoughit will not in general be an integer numberofframes).

In order to re-estimate the transition probabilities, we need to calculate the
probability of a transition between any pair of states. This calculation is basically

straightforward, but care needs to be taken to treat the start and end of the word
correctly’. In the following explanation,transitions from theinitial state and to the
final state will be treated separately from transitions between emittingstates.

Returning for the moment to considering only a single example of the word,
let us define &(t) to be the probability that there is a transition from state /to state
at time t, given that the model generates the whole sequence of feature vectors
representing the example of the word:

OGWIPED reper, (9.21)no a;(1)
 

3 ° . . . . "of .
The details of the equations given here apply to the use of specialinitial andfinal states and there will

be slight differences if, for example, the modelis allowed to end in anystate (as in some publications).
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Equation (9 .21) can be applied to calculate the probability of a transition betwe 
any pair of emitting states at frame times starting from t = 1 up until t = T _ 1 Fen 
the final frame, t = T, there cannot be a transition to another emitting state and ;r 
only possible transition is to the final state, F, with probability 4iF(7), thus: e 

a-(T)a•F 
4iF(T) = ~F(T) • (9.22) 

For the initial state, we need to calculate the probability of a transition to each of 
the emitting states. This transition from the initial state is only possible at the start 
of the word, before any observations have been generated. If we regard this time as 
being t = 0 then, given that the model must start in state I, another special instance 
of Equation (9 .21) can be derived for all transitions out of state /, thus: 

q -(0) = a1jbJ(Y1)/J1(1) 
lJ aF(T) 

(9.23) )· 

The total probability of a transition between any pair of states i and j is obtained by 
summing the values of qi.i ( t) over all frames for which the relevant transition is 
possible. Dividing this quantity by the total probability y; of occupying state i gives 
the re-estimate for the transition probability aiJ. Assuming E examples of the word, 
for a transition between any two emitting states we have: 

E Te-l 

L L4u(t,e) 
- e=l t=I a .. =------

IJ E Te 
&'. t<· "<N 1or _ i, J _ , (9.24) 

LLri(t,e) 
e=I t=I 

where qiJ (t, e) denotes the value of qiJ (t) for the eth training example. Note that the 
summation of qiJ (t, e) over time only includes frames up until time Te - 1. The last 
frame is not included as it cannot involve a transition to another-emitting state, and 
so by definition the value of qiJ ( T, e) is zero for all pairs of emitting states. . 

Transitions from an emitting state to the final state F can only occur at time Te 
and so the transition probability aiF may be re-estimated as: 

E 

L4iF(Te,e) 
e=I aiF = 
E Te 

LLr/t,e) 
e=I t=I 

for 1 < i ~ N. (9.25) 

Transitions from the initial state I can only occur at the start (time 1:::: O), 
when the model must be in state/, so r,(O, e) = 1 for all examples and hence: 

- e=I 
alj =----

E 
for 1 < j < N. 

(9.26) 

- --

I, 

;J 

,· 
J 
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Equation (9.21) can be applied to calculate the probability ofa transition between
any pair of emitting states at frame times starting from ¢=1 up until t=7- 1. For
the final frame, ¢ = 7, there cannot beatransition to another emittingstate anq the
only possibletransition is to the final state, F, with probability &;(7), thus:

a;(T)air

ap (T)

For the initial state, we need to calculate the probability of a transition to each of
the emitting states. This transition from theinitial state is only possibleat thestay
of the word, before any observations have been generated.If we regardthis time as
being t= 0 then, given that the model muststart in state /, anotherspecialinstance
of Equation (9.21) can be derived forall transitions outofstate /, thus:

apr(T)

Thetotal probability of a transition between anypair ofstates i and/ is obtainedby
summing the values of ¢;(t) over all frames for which the relevant transition is
possible. Dividing this quantity by the total probability 7; of occupyingstateigives
the re-estimate for the transition probability a. Assuming E examplesofthe word,
for a transition between any two emitting states we have:

cir (F) = (9.22)

6(0) = (9.23)

gE T,-l

>» >£2)
q,=t&ssforl <i, j<Nn, (9.24)

ij gr Tt

da Durithe)
e=1 f=l

where &(t, e) denotes the value of &;(f) for the e'" training example. Notethat the
summation of &;(t, e) over time only includes frames up until time 7,—1. The last
frameis not included as it cannot involvea transition to another: emittingstate, and
so by definition the value of &;(7, e) is zero for all pairs of emitting states. _

Transitions from an emitting state to the final state F can only occurat time F
and so the transition probability a,- may be re-estimatedas:

E

> Cir (7; €)
(9.25)= —=!_______ forlsi<N.

T

2. 7;(t, e)
t=

|
9

Gir im

Ms
2

2 4) sorta 1 = 0),Transitions from the initial state / can only occur at the start (time ¢ )
whenthe model must be in state /, so (0, e) = 1 for all examples and hence:

E

(0, é)dS | (9.26)
E forlsj<sN.ay =
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The use of forward and backward probabilities to re-estimate model 
parameters is usually known either as the forward-backward algorithm or as the 
Baum-Welch algorithm. The second name in "Baum-Welch" recognizes the fact 
that Lloyd Welch was working with Baum on this subject in the early 1960s. 

After re-estimation using the Baum-Welch algorithm, the probability of the 
training data given the new set of models is guaranteed to be higher than the 
probability for the previous model set, except at the critical point at which a local 
optimum has been reached and therefore the models (and hence the probability) are 
unchanged. The procedure can thus be repeated in an iterative manner until the 
difference between the new and old probabilities is sufficiently small that the 
training process can be regarded as being close enough to its local optimum. 

It can be seen from the expression of Equations (9 .24 ), (9 .25) and (9 .26) 
using the quantities defined in Equations (9.21), (9.22) and (9.23) that, if any of the 
aij are initially given values of zero, their re-estimated values will also always be 
zero. Setting initial values of some transition probabilities to zero is thus a 
convenient way of constraining the structure of the word model to prevent it from 
producing intrinsically implausible state sequences. For example, it would not seem 
reasonable to allow the model to occupy a state early in the word, and then return to 
it after having been through several succeeding states. The sequence possibilities in 
Figure 9 .1 are very limited, only allowing three non-zero values of aij for any state 
i, yet this structure is very plausible as a word model. Constraining the possible 
state sequences by setting most of the initial values of the transition probabilities to 
zero has the added benefit of greatly reducing the computation required for both 
recognition and training. 

Model initialization issues, including the choice of initial conditions for the 
emission p.d.f.s, will be discussed in more detail later on in this chapter. 

9.5.3 Viterbi training 

It is also possible to re-estimate the model parameters using only the most likely 
path through the states, as given by the Viterbi algorithm. The calculations are 
substantially simplified by just considering a single path. For any frame of input 
data the probability of a state being occupied can only be unity or zero, depending 
on whether that state is on the path. The most likely path can be found by 
calculating the values of a j (t) for all states and frames to the end of the word using 
Equation (9 .11 ), and then tracing back from the final state in the same way as for 
the DTW method described in Chapter 8. In contrast to Baum-Welch 
re-estimation, the backward probabilities are not required. 

Having identified the most likely path, each input frame will have been 
allocated to a single state to provide a state-level segmentation of the training data. 
It will therefore be known which state produced each observed feature vector, and 
also which states preceded and followed each state along the path. For the re
estimation it is then only necessary, for all examples of each training word, to 
accumulate the statistics of the feature vectors that occur for each occupied state, 
and of the transitions between states along the most likely path. Using the identified 
path, there will need to be counts of the following events, totalled over all E 
examples of the word: 
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The use of forward and backward probabilities to re-estimate model
parameters is usually known either as the forward—backward algorithm or as the
Baum-Welch algorithm. The second namein “Baum—Welch”recognizes the fact
that Lloyd Welch was working with Baum onthis subjectin the early 1960s.

After re-estimation using the Baum—Welch algorithm, the probability of the
training data given the new set of models is guaranteed to be higher than the
probability for the previous modelset, except at the critical point at which a local
optimum has been reached and therefore the models (and hencethe probability) are
unchanged. The procedure can thus be repeated in an iterative manner until the
difference between the new and old probabilities is sufficiently small that the

" training process can be regardedas being close enoughto its local optimum.
It can be seen from the expression of Equations (9.24), (9.25) and (9.26)

using the quantities defined in Equations (9.21), (9.22) and (9.23) that, if any of the
a, are initially given values of zero, their re-estimated values will also always be
zero. Setting initial values of some transition probabilities to zero is thus a
convenient way of constraining the structure of the word modelto preventit from
producing intrinsically implausible state sequences. For example, it would not seem
reasonable to allow the model to occupya state early in the word, and then return to
it after having been through several succeeding states. The sequence possibilities in
Figure 9.1 are very limited, only allowing three non-zero values of a, for anystate
i, yet this structure is very plausible as a word model. Constraining the possible
state sequences by setting mostofthe initial values of the transition probabilities to
zero has the added benefit of greatly reducing the computation required for both
recognition andtraining.

Modelinitialization issues, including the choice ofinitial conditions for the
emission p.d.f.s, will be discussed in more detail later on in this chapter.

 

9.5.3 Viterbi training

It is also possible to re-estimate the model parameters using only the mostlikely
path through the states, as given by the Viterbi algorithm. The calculations are
substantially simplified by just considering a single path. For any frame of input
data the probability of a state being occupied can only be unity or zero, depending
on whether that state is on the path. The most likely path can be found by
calculating the values of @;(t) for all states and framesto the end of the word using
Equation (9.11), and then tracing back from the final state in the same wayas for
the DTW method described in Chapter8. In contrast to Baum—Welch
re-estimation, the backward probabilities are not required.

Having identified the most likely path, each input frame will have been
allocated to a single state to provide a state-level segmentation of the training data.
It will therefore be known whichstate produced each observed feature vector, and
also which states preceded and followed each state along the path. For the re-
estimation it is then only necessary, for all examples of each training word, to
accumulate the statistics of the feature vectors that occur for each occupiedstate,
and of the transitions between states along the mostlikely path. Using the identified
path, there will need to be counts of the following events, totalled over all £
examples of the word:
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1. the number of frames for which each state gives rise to each of the possibl 
feature vectors, with the count for state j and feature vector k being denoted b; 
nj(y, = k); 

ii. the number of frames for which a transition occurs between each pair of states 
which for transitions between states i and j will be denoted by nu; ' 

iii. the number of occasions for which each state is occupied for the first frame of 
each example of the word, which for state j will be denoted by n/J; 

iv. the number of occasions for which each state is occupied for the last frame of 
each example of the word, which for state i will be denoted by niF; 

v. the number of frames for which each state is occupied, which will be denoted by 
n; and nj for states i and} respectively. 

The re-estimation formulae are then simply given by: 

b-(k) = nj(Y, = k) 
J n-

J 

n .. 
a ij = .....!!_ for all pairs of emitting states, 1 < i, j < N , 

n. 
I 

n-F 
a;F = -'- for all i such that 1 :s; i :s; N, 

n; 

nr 
alj = _r.1 for all j such that 1 :s; j :s; N. 

E 

(9.27) 

(9.28) 

(9.29) 

(9.30) 

Note that the above re-estimation equations for Viterbi training are in fact 
equivalent to the corresponding Baum-Welch equations (9.20, 9.24, 9.25, 9.26) 
with the values of all the frame-specific state occupancy probabilities (rj (t, e), etc.) 
set either to one or to zero, depending on whether or not the relevant states are 
occupied at the given frame time. As with the Baum-Welch re-estimation, the 
Viterbi training procedure ( determination of the most likely state sequence 
followed by estimation of the model parameters) can be applied in an iterative 
manner until the increase in the likelihood of the training data is arbitrarily small. 

Because the contribution to the total probability is usually much greater for 
the most likely path than for all other paths, an iterative Viterbi training procedure 
usually gives similar models to those derived using the Baum-Welch recursions. 
However, the Viterbi method requires much less computation and it is therefore 
often (and successfully) adopted as an alternative to full Baum-Welch training. 

9.6 VECTOR QUANTIZATION 

In the discussion above it was assumed that the data used for training the models 
include a large enough number of words for reliable values to be obtained for all 
the parameters. For any statistical estimation to give sensible results it is obvious 
that the total number of data items must be significantly larger than the number of 
separate parameters to be estimated for the distribution. If the number of possible 
feature vectors is very large, as a result of many possible values for each of several 
individual features, many feature vectors will not occur at all in a manageable 
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amount of training data. In consequence all the generation probabilities for these 
feature vectors will be estimated as zero. If such a feature vector then occurred in 
the input during operational use of the recognizer, recognition would be impossible. 

The multi-dimensional feature space for any practical method of speech 
analysis is not uniformly occupied. The types of spectrum cross-section that occur 
in speech signals cause certain regions of the feature space, for example those 
corresponding to the spectra of commonly occurring vowels and fricatives, to be 
highly used, and other regions to be only sparsely occupied. It is possible to make a 
useful approximation to the feature vectors that actually occur by choosing just a 
small subset of vectors, and replacing each measured vector by the one in the subset 
that is 'nearest' according to some suitable distance metric. This process of vector 
quantization (VQ) is also used in systems for efficient speech coding (see 
Section 4.3.5). 

Setting up a vector quantizer usually involves first applying a clustering 
algorithm to group similar vectors together, then choosing a representative 
quantized vector for each cluster. The performance of such a quantizer depends on 
the number of different vectors and how they are chosen, but the details of these 
decisions are outside the scope of this book. It is, however, clear that if a fairly 
small codebook of vectors is chosen to represent the well-occupied parts of the 
feature space, all of these quantized vectors will occur frequently in a training 
database of moderate size. For each model state it will thus be possible to obtain 
good estimates for the probability of all feature vectors that are likely to occur. 

Even after vector quantization, a fully trained model for a particular word will 
often have some feature vectors that are given zero probability for all states of the 
word. For example, the word "one" would not be expected to contain any examples 
of a feature representing the typical spectrum of an [ s] sound. It is, however, 
important not to allow the probabilities to remain exactly at zero. Otherwise there is 
the danger of error on an input word that matches fairly well to the properties of 
one of the models except for just one non-typical frame that is represented by a 
zero-probability feature vector. In such a case the model will yield zero probability 
for that sequence of vectors, and the recognizer will therefore not be able to choose 
the correct word. A simple solution is to replace the zero value by a very small 
number. The model will then yield a low probability of generating the observed 
features, but if the rest of the word is sufficiently distinctive even this low value can 
be expected to be greater than the probability of generating the same set of features 
from any of the competing models. Better estimates for the probability of an unseen 
feature vector can be obtained by using a measure of distance from the vectors that 
are observed for the word, so that the unseen vector is given a higher probability if 
it is similar to those vectors which do occur in the training examples. 

9.7 MUL TI-VARIATE CONTINUOUS DISTRIBUTIONS 

Vector quantization involves an approximation which unavoidably loses some 
infonnation from the original data, and any method for estimating the probability of 
an unseen feature vector will inevitably be somewhat ad hoc. These limitations 
associated with discrete distributions can be overcome by representing the 
distribution of feature vectors by some suitable parametric description. Provided 
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amount of training data. In consequenceall the generation probabilities for these
feature vectors will be estimated as zero. If such a feature vector then occurred in

the input during operationaluse of the recognizer, recognition would be impossible.
The multi-dimensional feature space for any practical method of speech

analysis is not uniformly occupied. The types of spectrum cross-section that occur
in speech signals cause certain regions of the feature space, for example those
corresponding to the spectra of commonly occurring vowels andfricatives, to be
highly used, and other regions to be only sparsely occupied.It is possible to make a
useful approximation to the feature vectors that actually occur by choosing just a
small subset of vectors, and replacing each measured vector by the one in the subset
that is ‘nearest’ according to somesuitable distance metric. This process of vector
quantization (VQ) is also used in systems for efficient speech coding (see
Section 4.3.5).

Setting up a vector quantizer usually involves first applying a clustering
algorithm to group similar vectors together, then choosing a representative
quantized vector for each cluster. The performance of such a quantizer depends on
the number of different vectors and how they are chosen, but the details of these
decisions are outside the scope of this book. It is, however, clear that if a fairly
small codebook of vectors is chosen to represent the well-occupied parts of the
feature space, all of these quantized vectors will occur frequently in a training
database of moderate size. For each modelstate it will thus be possible to obtain
good estimates for the probability ofall feature vectors that are likely to occur.

Even after vector quantization, a fully trained model for a particular word will
often have some feature vectors that are given zero probability for all states of the
word. For example, the word “one” would not be expected to contain any examples
of a feature representing the typical spectrum of an [s] sound. It is, however,
important not to allow the probabilities to remain exactly at zero. Otherwisethere is
the danger of error on an input word that matches fairly well to the properties of
one of the models except for just one non-typical frame that is represented by a
zero-probability feature vector. In such a case the modelwill yield zero probability
for that sequence of vectors, and the recognizerwill therefore not be able to choose
the correct word. A simple solution is to replace the zero value by a very small
number. The model will then yield a low probability of generating the observed
features, but if the rest of the word is sufficiently distinctive even this low value can
be expected to be greater than the probability of generating the sameset of features
from any of the competing models. Better estimates for the probability of an unseen
feature vector can be obtained by using a measure of distance from the vectors that
are observed for the word, so that the unseen vectoris given a higher probability if
it is similar to those vectors which do occur in the training examples.

9.7 MULTI-VARIATE CONTINUOUS DISTRIBUTIONS

Vector quantization involves an approximation which unavoidably loses some
information from the original data, and any method for estimating the probability of
an unseen feature vector will inevitably be somewhat ad hoc. These limitations
associated with discrete distributions can be overcome by representing the
distribution of feature vectors by some suitable parametric description. Provided
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that an appropriate parametric distribution can be found for describing the true 
distribution of the features, a useful estimate can be computed for the probability of 
any feature vector that may occur in the training and recognition processes. 

Many natural processes involve variable quantities which approximate 
reasonably well to the normal ( or Gaussian) distribution. The nonnal distribution 
has only two independently specifiable parameters, the mean, µ, and the standard 
deviation, a: For a quantity x, the probability density, ¢ (x), is given by: 

1 (-(x-µ)2J ¢( x) = ~ exp 2 . 
av21r 2a 

(9.31) 

When quantities are distributed normally, this simple mathematical description of 
the distribution makes it possible to calculate the probability of the quantity lying in 
any range of values provided the mean and standard deviation of the distribution 
are known. To calculate the probability of one particular value (i.e. a measured 
acoustic feature vector) occurring, we need to consider the limiting case in which 
the size of the interval for the range of values is infinitesimally small. 

The definition of the continuous probability density function, ¢ (x), of a 
variate, x, is such that the probability of an observation lying in an infinitesimal 
interval of size dx centred on x is ¢ (x)dx, and is thus infinitesimally small. 
However, if continuous probability density functions are used instead of discrete 
probability distributions in the HMM equations given in Sections 9 .3 to 9 .5, the 
computation will still give the correct relative likelihoods of the different words, as 
the infinitesimal interval, dx, is common to all probability calculations. The 
probability of observing the features, P( Y ), independently of which word is 
spoken, is also affected in the same way by the size of dx. The probability of the 
word given the features is therefore still correctly given by the formula expressed in 
Equation (9. I), even if these probability densities are used instead of actual 
probabilities for P(Y) and P(Y lw). Although their theoretical interpretations are 
different, it is thus equally suitable to use either discrete or continuous probability 
distributions in the calculations of word probability and in parameter re-estimation. 
In the following discussion of continuous distributions, it will be convenient to 
continue to use the term "probability" even where the quantities are, strictly 
speaking, probability densities. 

9.8 USE OF NORMAL DISTRIBUTIONS WITH HMMS 

It is obvious that many naturally occurring quantities are not normally distributed. 
For example, speech intensity measured over successive fixed time intervals of, 
say, 20 ms during continuous speech will certainly not approximate to a normal 
distribution because it clearly has a hard limit of zero during silences, will be low 
for much of the time during weak sounds, but will go up to quite high values during 
more intense vowels. The intensity on a logarithmic scale would have a more 
symmetrical distribution, which might be nearer to normal, but in this case the low
level end of the distribution will be very dependent on background noise level. 

Normal distributions usually fit best to measurements which can be expected 
to have a preferred value, but where there are various chance factors that may cause 
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that an appropriate parametric distribution can be found for describing the try
distribution of the features, a useful estimate can be computed for the probability of
any feature vector that may occurin the training and recognition processes,

Many natural processes involve variable quantities which approximate
reasonably well to the normal (or Gaussian) distribution. The normaldistribution
has only two independently specifiable parameters, the mean, yu, and the standard
deviation, o. For a quantity x, the probability density, ¢ (x), is givenby:

1 —(x-p)’O(x)=—Fon| (9.31)
When quantities are distributed normally, this simple mathematical description of
the distribution makesit possible to calculate the probability of the quantity lyingin
any range of values provided the mean andstandard deviation ofthe distribution
are known. To calculate the probability of one particular value (i.e. a measured
acoustic feature vector) occurring, we need to consider the limiting case in which
the size of the interval for the range of valuesis infinitesimally small.

The definition of the continuous probability density function, ¢(x), of a
variate, x, is such that the probability of an observation lying in an infinitesimal
interval of size dx centred on x is ¢(x)dx, and is thus infinitesimally small.
However, if continuous probability density functions are used instead of discrete
probability distributions in the HMM equations given in Sections 9.3 to 9.5, the
computation will still give the correct relative likelihoodsof the different words, as
the infinitesimal interval, dx, is common to all probability calculations. The
probability of observing the features, P(Y), independently of which word is
spoken,is also affected in the same wayby the size of dx. The probability ofthe
word given the features is therefore still correctly given by the formula expressedin
Equation (9.1), even if these probability densities are used instead of actual
probabilities for P(Y) and P(Y|w). Although their theoretical interpretations are
different, it is thus equally suitable to use either discrete or continuousprobability
distributions in the calculations of word probability and in parameter re-estimation.
In the following discussion of continuous distributions, it will be convenientto
continue to use the term “probability” even where the quantities are, strictly
speaking, probability densities.

 

9.8 USE OF NORMAL DISTRIBUTIONS WITH HMMS

It is obvious that many naturally occurring quantities are not normally distributed.
For example, speech intensity measured over successive fixed time intervals of,
say, 20 ms during continuous speech will certainly not approximate to a normal
distribution because it clearly has a hard limit of zero duringsilences, will be low
for much ofthe time during weak sounds,but will go up to quite high values during
more intense vowels. The intensity on a logarithmic scale would have a more
symmetrical distribution, which might be nearerto normal, butin this casethe low-
level endofthe distribution will be very dependent on backgroundnoiselevel.

Normaldistributions usually fit best to measurements which can be expected
to have a preferred value, but where there are various chancefactors that may caus¢
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deviation either side of that value, with the probability progressively decreasing as 
the distance either side of the preferred value increases. Thus it might be reasonable 
to use a normal distribution to approximate a distribution of speech features which 
are derived from the same specific part of a specific word spoken in the same way 
by the same person. When it is assumed that features are normally distributed for 
each state of an HMM, the distributions are often termed single Gaussian. 

When different speakers are combined in the same distribution the departures 
from normal will be greater, and for different regional accents there is a fairly high 
probability that the distribution will be multi-modal, and therefore much less 
suitable for modelling as a normal distribution. However, when multi-modal 
distributions are likely, as is the case with many current speech recognition systems, 
it is now almost universal to model the distributions with a weighted sum, or 
mixture, of several normal distributions with different means and variances 
(usually referred to as Gaussian mixtures). Provided that there is a sufficient 
number of mixture components, any shape of distribution can be approximated very 
closely. This characteristic of sums of Gaussian distributions, combined with the 
attractive mathematical properties of the Gaussian itself, is largely responsible for 
their widespread and successful use for describing emission probability 
distributions in HMM-based speech recognition systems. 

The theory underlying the use of mixture distributions is a straightforward 
extension of the single-Gaussian case and will be discussed in Section 9. I 0, after 
first introducing the probability calculations and model parameter re-estimation 
equations using single Gaussian distributions. 

9.8.1 Probability calculations 

The features are multi-dimensional and so, in the case of single-Gaussian 
distributions, they will form a multi-variate normal distribution. In general the 
features may not vary independently, and their interdependence is specified by a 
covariance matrix. The entries along the main diagonal of this matrix represent 
the variance of each feature, while the remaining entries indicate the extent to 
which the separate feature distributions are correlated with each other. 

Let us first consider the output probability b1 (y) for the j th state, where y is a 
single feature vector. Assume that the column vector y comprises K features, 
y1,y2, .. ,,YK· Let µ 1 be the column vector of means, µ 11, µ 12, ... , µ 1K, and I 1 be the 
covariance matrix for the distribution of features associated with that state. The 
definition of the multi-variate normal distribution gives the output probability 
compactly in matrix notation: 

(9.32) 

where l~I is the determinant of I.i and (y- µ ) 7 is the transpose of (y- µ j). In the 
special case when the features are uncorrelated, the covariance matrix becomes 
zero except along its main diagonal ( and is therefore often referred to as a diagonal 
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deviation either side of that value, with the probability progressively decreasing as
the distance either side of the preferred value increases. Thusit might be reasonable
to use a normaldistribution to approximate a distribution of speech features which
are derived from the same specific part of a specific word spoken in the same way
by the same person. Whenit is assumedthat features are normally distributed for
each state of an HMM,thedistributions are often termed single Gaussian.

Whendifferent speakers are combinedin the samedistribution the departures
from normal will be greater, and for different regional accentsthereis a fairly high
probability that the distribution will be multi-modal, and therefore much less
suitable for modelling as a normal distribution. However, when multi-modal
distributions are likely, as is the case with many current speech recognition systems,
it is now almost universal to model the distributions with a weighted sum, or
mixture, of several normal distributions with different means and variances
(usually referred to as Gaussian mixtures). Provided that there is a sufficient
number of mixture components, any shapeofdistribution can be approximated very
closely. This characteristic of sums of Gaussian distributions, combined with the
attractive mathematical properties of the Gaussianitself, is largely responsible for
their widespread and successful use for describing emission probability
distributions in HMM-basedspeechrecognition systems.

The theory underlying the use of mixture distributions is a straightforward
extension of the single-Gaussian case and will be discussed in Section 9.10, after
first introducing the probability calculations and model parameter re-estimation
equations using single Gaussian distributions.

9.8.1 Probability calculations

The features are multi-dimensional and so, in the case of single-Gaussian
distributions, they will form a multi-variate normal distribution. In general the
features may not vary independently, and their interdependenceis specified by a
covariance matrix. The entries along the main diagonal of this matrix represent
the variance of each feature, while the remaining entries indicate the extent to
which the separate feature distributions are correlated with each other.

Let us first consider the output probability b;(y) for thej "state, where y is a
single feature vector. Assume that the column vector y comprises K features,
Vis Ya ---5 Vx. Let 2; be the column vector of means, sj), {4 j2, ..., jx, and 2; be the
covariance matrix for the distribution of features associated with that state. The

definition of the multi-variate normal distribution gives the output probability
compactly in matrix notation:

—(y-H;)'2; (y-H;)]
pttBap (9.32)

|Z, iV? (2x)*? 4
b(y)

where |¥;| is the determinant of 2; and (y — ua is the transpose of (y — 2;). In the
special case when the features are uncorrelated, the covariance matrix becomes

zero except alongits main diagonal(andis therefore often referred to as a diagonal
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