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PREFACE 

This book is an outgrowth of an association between the authors which started over 10 
years ago when one of us (BHJ) was a graduate student at the University of California at 
Santa Barbara and the other (LRR) was a supervisor at AT&T Bell Laboratories. We began 
our relationship with a mutual interest in the problem of designing and implementing 
vector quantization for speech processing. This association turned into a full technical 
partnership and strong friendship when Fred Juang joined Bell Laboratories, initially in 
the development area and subsequently in research. The spark that ignited formal work on 
this book was a series of short courses taught by one of us (LRR) on speech recognition. 
After several iterations of teaching, it became clear that the area of speech recognition, 
although still changing and growing, had matured to the point where a book that covered 
its theoretical underpinnings was warranted. 

Once we had decided to write this book, there were several key issues that had to be 
resolved, including how deep to go into areas like linguistics, natural language processing, 
and the practical side of the problem; whether to discuss individual systems proposed 
by various research labs around the world; and how extensively to cover applications. 
Although there were no simple answers to these questions, it rapidly became obvious 
to us that the fundamental goal of the book would be to provide a theoretically sound, 
technically accurate, and reasonably complete description of the basic knowledge and 
ideas that constitute a modem system for speech recognition by machine. With these basic 
guiding principles in mind, we were able to decide consistently (and hopefully reasonably) 
what material had to be included, and what material would be presented in only a cursory 

xxxi 
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xxxii Preface 

manner. We leave it up to you, the reader, to decide if our choices have been wise ones. 
The formal organization of the book is as follows. Chapter 1, called "Fundamentals 

of Speech Recognition," provides an overview of the entire field with a discussion of the 
breadth and depth of the various disciplines that are required for a deep understanding of all 
aspects of speech recognition. The concept of a task-oriented, speech-recognition system 
is introduced and it is shown that "base level" speech or sound recognition is only one 
step in a much larger process where higher-level task information, in the form of syntax, 
semantics, and pragmatics, can often play a major role. After a formal description of the 
material to be covered in each of the chapters, we give a brief history of speech recognition 
research in order to put the material presented in this book in its proper perspective. 

Chapter 2, entitled the "The Speech Signal: Production, Perception, and Acoustic
Phonetic Characterization," provides a review of the theory of acoustic-phonetics in which 
we try to characterize basic speech sounds according to both their linguistic properties and 
the associated acoustic measurements. We show that although there is a solid basis for the 
linguistic description of sounds and a good understanding of the associated acoustics of 
sound production, there is, at best, a tenuous relationship between a given linguistic sound 
and a repeatable, reliable, measureable set of acoustic parameters. As such a wide variety of 
approaches to speech recognition have been proposed, including those based on the ideas 
of acoustic-phonetics, statistical pattern-recognition methods, and artificial intelligence 
(so-called expert system) ideas. We discuss the relative advantages and disadvantages of 
each of these approaches and show why, on balance, the pattern-recognition approach has 
become the method of choice for most modem systems. 

In Chapter 3, entitled "Signal Processing and Analysis Methods for Speech Recog
nition," we discuss the fundamental techniques used to provide the speech features used in 
all recognition systems. In particular we discuss two well-known and widely used methods 
of spectrum analysis, namely the filter bank approach and the linear prediction method. We 
also show how the method of vector quantization can be used to code a spectral vector into 
one of a fixed number of discrete symbols in order to reduce the computation required in a 
practical system. Finally we discuss an advanced spectral analysis method that is based on 
processing within the human auditory system-an ear model. The ultimate goal of such 
a system is to increase the robustness of the signal representation and make the system 
relatively insensitive to noise and reverberation, in much the same way as the human ear. 

Chapter 4, entitled "Pattern-Comparison Techniques," deals with the fundamental 
problems of defining speech feature vector patterns (from spoken input), and comparing 
pairs of feature vector patterns both locally (i.e., at some point in time), and globally (i.e., 
over the entire pattern) so as to derive a measure of similarity between patterns. To solve this 
pattern-comparison problem requires three types of algorithms, namely a speech-detection 
method (which essentially separates the speech signal from the background), a spectral 
vector comparison method (which compares two individual spectral vectors), and a global 
pattern comparison method which aligns the two patterns locally in time and compares the 
aligned patterns over the entire duration of the patterns. It is shown that a key issue is the 
way in which time alignment between patterns is achieved. 

Chapter 5, entitled "Speech Recognition System Design and Implementation Issues," 
discusses the key issues of training a speech recognizer and adapting the recognizer pa-
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rameters to different speakers, transmission conditions, and speaking environments. A 
key concept in most modem systems is that of learning, namely improving recognizer 
performance over time based on additional training provided by the user of the system. 
Adaptation methods provide a formalism for such learning. 

In Chapter 6, "Theory and Implementation of Hidden Markov Models," we discuss 
a basic set of statistical modeling techniques for characterizing speech. The collection of 
methods, popularly called Hidden Markov Models, is a powerful set of tools for providing 
a statistical model of both the static properties of sounds and the dynamical changes that 
occur across sounds. Methods for time aligning patterns with models are discussed along 
with different ways of building the statistical models based on the type of representation, 
the sound being modeled, the class of talkers, and so forth. 

Chapters 7 and 8, entitled "Speech Recognition Based on Connected Word Models" 
and "Large Vocabulary Continuous Speech Recognition," extend the speech-recognition 
problem from single word sequences to fluent speech. Modeling techniques based on 
whole word models are discussed in Chapter 7 where we assume that we are interested 
in recognizing sequences of digits, alphanumerics. and so forth. For this type of system 
whole-word models are most reasonable since the vocabulary is typically small and highly 
constrained. Hence the statistical properties of the word models, in all word contexts, can 
be learned from a reasonably sized training set. Modeling techniques based on subword 
units are discussed in Chapter 8 where we assume unlimited size vocabulary. Hence a 
key issue is what units are used, how context dependent the units should be, how unit 
models are trained reliably (and robustly to different vocabularies and tasks), and how 
large vocabulary recognition systems based on such units are efficiently implemented. 

Finally, in Chapter 9, entitled "Task-Oriented Applications of Automatic Speech 
Recognition," we come full circle and return to the concept of a task-oriented system. We 
discuss the basic principles that make some tasks successful while others fail. By way of 
example we discuss, in fairly general terms, a couple of task-oriented recognizers and show 
how they perform in practice. 

The material in this book is primarily intended for the practicing engineer, scientist, 
linguist, programmer, and so forth, who wants to learn more about this fascinating field. 
We assume a basic knowledge of signal processing and linear system theory as provided 
in an entry level course in digital signal processing. Although not intended as a formal 
university course, the material in this book is indeed suitable for a one-semester course at 
the graduate or high undergraduate level. Within almost every chapter we have provided 
"exercises" for the student to assess how well he or she understands the material. Solutions 
to the exercises are provided immediately following the exercise. Hence, for maximum 
effectiveness, each student must exercise self-discipline to work through an answer before 
comparing it with the published solution. 

In order to truly understand the fundamentals of speech recognition, a person needs 
hands-on experience with the software, hardware, and platforms. Hence we strongly 
encourage all serious readers of this book to program the algorithms, implement the systems, 
anJ literally build applications. Without such practical experience the words in this book 
will not come alive for most people. 
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{;filapter 1 

FUNDAMENTALS OF 
SPEECH RECOGNITION 

1.1 INTRODUCTION 

Automatic recognition of speech by machine has been a goal of research for more than four 
decades and has inspired such science fiction wonders as the computer HAL in Stanley 
Kubrick's famous movie 2001-A Space Odyssey and the robot R2D2 in the George Lucas 
classic Star Wars series of movies. However, in spite of the glamour of designing an 
intelligent machine that can recognize the spoken word and comprehend its meaning, and 
in spite of the enormous research efforts spent in trying to create such a machine, we are 
far from achieving the desired goal of a machine that can understand spoken discourse on 
any subject by all speakers in all environments. Thus, an important question in this book 
is, What do we mean by "speech recognition by machine." Another important question is, 
How can we build a series of bridges that will enable us to advance both our knowledge 
as well as the capabilities of modem speech-recognition systems so that the "holy grail" of 
conversational speech recognition and understanding by machine is attained? 

Because we do not know how to solve the ultimate challenge of speech recognition, 
our goal in this book is to give a series of presentations on the fundamental principles of 
most modem, successful speech-recognition systems so as to provide a framework from 
which researchers can expand the frontier. We will attempt to avoid making absolute 
judgments on the relative merits of various approaches to particular speech-recognition 
problems. Instead we will provide the theoretical background and justification for each 
topic discussed so that the reader is able to understand why the techniques have proved 
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valuable and how they can be used to advantage in practical situations. 
One of the most difficult aspects of performing research in speech recognition by 

machine is its interdisciplinary nature, and the tendency of most researchers to apply 
a monolithic approach to individual problems. Consider the disciplines that have been 
applied to one or more speech-recognition problems: 

1. signal processing-the process of extracting relevant information from the speech 
signal in an efficient, robust manner. Included in signal processing is the form of 
spectral analysis used to characterize the time-varying properties of the speech signal 
as well as various types of signal preprocessing (and postprocessing) to make the 
speech signal robust to the recording environment (signal enhancement). 

2. physics (acoustics)-the science of understanding the relationship between the phys
ical speech signal and the physiological mechanisms (the human vocal tract mecha
nism) that produced the speech and with which the speech is perceived (the human 
hearing mechanism). 

3. pattern recognition-the set of algorithms used to cluster data to create one or more 
prototypical patterns of a data ensemble, and to match (compare) a pair of patterns 
on the basis of feature measurements of the patterns. 

4. communication and information theory-the procedures for estimating parameters 
of statistical models; the methods for detecting the presence of particular speech 
patterns, the set of modem coding and decoding algorithms (including dynamic 
programming, stack algorithms, and Viterbi decoding) used to search a large but 
finite grid for a best path corresponding to a "best" recognized sequence of words. 

5. linguistics-the relationships between sounds (phonology), words in a language 
(syntax), meaning of spoken words (semantics), and sense derived from meaning 
(pragmatics). Included within this discipline are the methodology of grammar and 
language parsing. 

6. physiology-understanding of the higher-order mechanisms within the human cen
tral nervous system that account for speech production and perception in human 
beings. Many modem techniques try to embed this type of knowledge within the 
framework of artificial neural networks (which depend heavily on several of the 
above disciplines). 

7. computer science-the study of efficient algorithms for implementing, in software 
or hardware, the various methods used in a practical speech-recognition system. 

8. psychology-the science of understanding the factors that enable a technology to be 
used by human beings in practical tasks. 

Successful speech-recognition systems require knowledge and expertise from a wide range 
of disciplines, a range far larger than any single person can possess. Therefore, it is 
especially important for a researcher to have a good understanding of the fundamentals of 
speech recognition (so that a range of techniques can be applied to a variety of problems), 
without necessarily having to be an expert in each aspect of the problem. It is the purpose 
of this book to provide this expertise by giving in-depth discussions of a number of 
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Figure I.I General block diagram of a task-orienied speech-recognition system. 

fundamental topics in speech-recognition research. 

1.2 THE PARADIGM FOR SPEECH RECOGNITION 

3 

A general model for speech recognition, shown in Figure 1.1, is used throughout this book. 
The model begins with a user creating a speech signal (speaking) to accomplish a given 
task. The spoken output is first recognized in that the speech signal is decoded into a series 
of words that are meaningful according to the syntax, semantics, and pragmatics of the 
recognition task. The meaning of the recognized words is obtained by a higher-level pro
cessor that uses a dynamic knowledge representation to modify the syntax, semantics, and 
pragmatics according to the context of what it has previously recognized. In this manner, 
things such as non sequitors are omitted from consideration at the risk of misunderstanding, 
but at the gain of minimizing errors for sequentially meaningful inputs. The feedback from 
the higher-level processing box reduces the complexity of the recognition model by limiting 
the search for valid (acceptable) input sentences (speech) from the user. The recognition 
system responds to the user in the form of a voice output, or equivalently, in the form of 
the requested action being performed, with the user being prompted for more input. 

1.3 OUTLINE 

The material in this book is organized into nine chapters. Chapters 2 through 9 each 
deals with a basic concept or a fundamental technique used in various speech-recognition 
systems. The material discussed in these chapters is as follows. 

Chapter 2-The Speech Signal: Production, Perception, and Acoustic-Phonetic 
Characterization. In this chapter we review the speech production/perception process 
in human beings. We show how different speech sounds can be characterized by a set of 
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spectral and temporal properties that depend on the acoustic-phonetic features of the sound 
and are manifest in the waveform, the sound spectrogram, or both. Included in the chapter 
is an overview of the three most common approaches to speech recognition, namely the 
acoustic-phonetic approach (which tries to directly exploit individual sound properties), the 
pattern recognition approach (which relies only on gross spectral and temporal properties 
of speech sounds and uses conventional as well as neural network pattern recognition 
technology to classify sounds), and the artificial intelligence (Al) approach in which an 
expert system or a self-organizing (learning) system, as implemented by neural networks, 
is used to classify sounds. We discuss the strengths and weaknesses of each approach and 
explain why the pattern-recognition approach is the one most heavily relied on in practical 
systems. We conclude the chapter with a discussion of the fundamental issues in speech 
recognition (i.e., those factors that most influence overall system performance), and with a 
brief overview of current applications. 

Chapter 3-Signal Processing and Analysis Methods for Speech Recognition. 
In this chapter we present the two fundamental signal-processing approaches to speech 
spectral analysis: filter bank and linear predictive methods. We specialize the presentation 
of these two fundamental techniques to aspects related to speech analysis and compare and 
contrast the two methods in tenns of robustness to speech sounds and required computation. 
For completeness we also discuss the popular source-coding technique referred to as 
vector quantization (VQ). Here, a codebook is created to represent the anticipated range 
of spectral vectors. This enables us to code an arbitrary continuous speech spectral vector 
into one of a fixed number of discrete codebook symbols at the cost of increased error 
in signal representation but with the benefit of significantly reduced computation in the 
recognition process. We conclude this chapter with a discussion of a spectral analysis 
model that attempts to mimic the processing in the human auditory system-the so-called 
ear model. Although our knowledge of the higher-order processing in the central nervous 
system is rudimentary, the importance of ear models is related to their robustness to noise, 
reverberation, and other environmental factors that often seriously degrade perfonnance of 
current speech recognizers. 

Chapter 4-Pattern-Comparison Techniques. In this chapter we discuss three 
fundamental aspects of comparing a pair of speech patterns. These are the basic concept of 
detecting speech (i.e., finding the speech signal in a background of noise or other acoustic 
interference), the idea of computing a measure of the local distance (or similarity) of a pair 
of spectral representations of a short-time piece of speech signal (a distance or distortion 
measure), and the concept of temporally aligning and globally comparing a pair of speech 
patterns corresponding to different speech utterances that may or may not be the same 
sequence of sounds or words (dynamic time warping algorithms). We show .in this chapter 
how the basic pattern-comparison techniques can be combined in a uniform framework for 
speech-recognition applications. 

Chapter 5-Speech-Recognition System Design and Implementation Issues. In 
this chapter we discuss the remaining pieces (after signal processing and pattern compari
son) that enable us to build and study perfonnance of a practical speech-recognition system. 
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In particular we discuss how speech recognizers are trained and how we can enhance the 
basic recognition procedure by adding features, by exploiting a preprocessor, by the use of 
methods of adaptation or by postprocessing the recognizer outputs using a set of pattern 
discriminators (as opposed to the pattern classifiers used in a conventional implementa
tion). We conclude the chapter with a discussion of various ways of recognizing speech 
in adverse environments (e.g., noise, stress conditions, or mismatch between training and 
testing). 

Chapter 6-Theory and Implementation of Hidden Markov Models. In this 
chapter we discuss aspects of the theory and implementation of the set of statistical modeling 
techniques collectively referred to as hidden Markov modeling. Included within these 
techniques are the algorithms for scoring a statistical (Markovian) model against a speech 
pattern, the techniques for aligning the model with the speech pattern so as to recover 
an estimate of the alignment path between different speech sounds and different model 
states. and the techniques for estimating parameters of the statistical models from a training 
set of utterances of the sounds being modeled. Also included is a discussion of the 
practical aspects of building hidden Markov models, including the issues of scaling of 
data, handling of multiple observation sequences. providing initial estimates of model 
parameters, and combating the problems of insufficient training data. We conclude the 
chapter with a practical example illustrating how a simple, isolated word recognizer would 
be implemented using hidden Markov models. 

Chapter 7-Speech Recognition Based on Connected Word Models. In this 
chapter we show how the basic set of techniques developed for recognizing an isolated 
word or phrase can be readily extended to recognizing a sequence of words (e.g., a string 
of digits of a credit card number) spoken in a fluent or connected manner. We make the 
simplifying assumption that the connected word string is recognized by finding the optimal 
sequence of word models that best matches the spoken string. Hence we assume that the 
word is the basic recognition unit for these systems, and therefore the training problem is 
one of estimating the optimal parameters of word models on the basis of training data, which 
need not contain isolated versions of the words. We describe three "optimal" approaches 
to solving the recognition part of connected word-recognition problems: ( 1) the two-level 
dynamic programming method, (2) the level building method, and (3) the time synchronous 
level building (or the one-pass) method and discuss the properties, and the relative strengths 
and weaknesses of each method. We then show how we can optimally train connected 
word systems, even if isolated versions of the vocabulary words are not available. We 
conclude the chapter with a discussion of a connected digit recognizer implemented using 
the methods described in the chapter. 

Chapter 8-Large Vocabulary Continuous Speech Recognition. In this chapter 
we discuss the issues in applying speech-recognition technology to the problem of recog
nizing fluently spoken speech with vocabulary sizes of 1000 or more words (with unlimited 
vocabularies as the ultimate goal). It is shown that a number of fundamental problems 
must be solved to implement such a system, including the choice of a basic subword 
speech unit (from which words, phrases, and sentences can be built up), an effective way 
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of modeling the basic speech unit, a way of deriving models of the unit, a way of designing 
and implementing a word lexicon (which provides a mapping between words and subword 
units), a way of implementing task syntax (the system grammar), a way of implementing 
the overall recognition part of the system (via some type of network search), and a way of 
imposing task semantics onto the solution. We concentrate primarily on the issues involved 
in building large vocabulary recognition systems. For illustrative purposes we describe 
one reasonable way of building such a system and discuss the resulting performance on a 
standard database management task. 

Chapter 9-Task Oriented Applications of Automatic Speech Recognition. The 
final chapter of the book provides a brief overview of how one might apply the ideas 
discussed in the book to building a real, task-oriented, speech recognition system. It 
includes discussions of how one would evaluate recognizer performance and how one 
might decide whether a proposed task is viable for speech recognition. We also discuss a 
set of broad classes of applications, which appear to be the most promising ones at this time, 
along with typical examples of how recognizers have been successfully employed within 
these broad classes. The chapter concludes with some broad performance projections 
through the year 2000. 

1.4 A BRIEF HISTORY OF SPEECH-RECOGNITION RESEARCH 

Research in automatic speech recognition by machine has been done for almost four 
decades. To gain an appreciation for the amount of progress achieved over this period, it is 
worthwhile to briefly review some research highlights. The reader is cautioned that such 
a review is cursory, at best, and must therefore suffer from errors of judgment as well as 
omission. 

The earliest attempts to devise systems for automatic speech recognition by machine 
were made in the 1950s, when various researchers tried to exploit the fundamental ideas 
of acoustic-phonetics. In 1952, at Bell Laboratories, Davis, Biddulph, and Balashek built 
a system for isolated digit recognition for a single speaker [ 1]. The system relied heavily 
on measuring spectral resonances during the vowel region of each digit. In an independent 
effort at RCA Laboratori~s in 1956, Olson and Belar tried to recognize 10 distinct syllables 
of a single talker, as embodied in 10 monosyllabic words [2]. The system again relied 
on spectral measurements (as provided by an analog filter bank) primarily during vowel 
regions. In 1959, at University College in England, Fry and Denes tried to build a phoneme 
recognizer to recognize four vowels and nine consonants [3]. They used a spectrum analyzer 
and a pattern matcher to make the recognition decision. A novel aspect of this research 
was the use of statistical information about allowable sequences of phonemes in English 
(a rudimentary form of language syntax) to improve overall phoneme accuracy for words 
consisting of two or more phonemes. Another effort of note in this period was the vowel 
recognizer of Forgie and Forgie, constructed at MIT Lincoln Laboratories in 1959, in which 
IO vowels embedded in a /b/-vowel-/t/ format were recognized in a speaker-independent 
manner [4]. Again a filter bank analyzer was used to provide spectral information, and a 
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time varying estimate of the vocal tract resonances was made to decide which vowel was 
spoken. 

In the 1960s several fundamental ideas in speech recognition surfaced and were 
published. However, the decade started with several Japanese laboratories entering the 
recognition arena and building special-purpose hardware as part of their systems. One 
early Japanese system, described by Suzuki and Nakata of the Radio Research Lab in 
Tokyo [5], was a hardware vowel recognizer. An elaborate filter bank spectrum analyzer 
was used along with logic that connected the outputs of each channel of the spectrum 
analyzer (in a weighted manner) to a vowel-decision circuit, and a majority decision logic 
scheme was used to choose the spoken vowel. Another hardware effort in Japan was the 
work of Sakai and Doshita of Kyoto University in 1962, who built a hardware phoneme 
recognizer [6]. A hardware speech segmenter was used along with a zero-crossing analysis 
of different regions of the spoken input to provide the recognition output. A third Japanese 
effort was the digit recognizer hardware of Nagata and coworkers at NEC Laboratories in 
1963 [7]. This effort was perhaps most notable as the initial attempt at speech recognition 
at NEC and led to a long and highly productive research program. 

In the 1960s three key research projects were initiated that have had major implica
tions on the research and development of speech recognition for the past 20 years. The 
first of these projects was the efforts of Martin and his colleagues at RCA Laboratories, 
beginning in the late 1960s, to develop realistic solutions to the problems associated with 
nonuniformity of time scales in speech events. Martin developed a set of elementary 
time-normalization methods, based on the ability to reliably detect speech starts and ends, 
that significantly re9uced the variability of the recognition scores [8]. Martin ultimately 
developed the method and founded one of the first companies, Threshold Technology, 
which built, marketed, and sold speech-recognition products. At about the same time, in 
the Soviet Union, Vintsyuk proposed the use of dynamic programming methods for time 
aligning a pair of speech utterances [9]. Although the essence of the concepts of dynamic 
time warping, as well as rudimentary versions of the algorithms for connected word recog
nition, were embodied in Vintsyuk 's work, it was largely unknown in the West and did 
not come to light until the early 1980s; this was long after the more formal methods were 
proposed and implemented by others. 

A final achievement of note in the 1960s was the pioneering research of Reddy in 
the field of continuous speech recognition by dynamic tracking of phonemes [ 10]. Reddy's 
research eventually spawned a long and highly successful speech-recognition research 
program at Carnegie Mellon University (to which Reddy moved in the late 1960s) which, 
to this day, remains a world leader in continuous-speech-recognition systems. 

In the 1970s speech-recognition research achieved a number of significant milestones. 
First the area of isolated word or discrete utterance recognition became a viable and usable 
technology based on fundamental studies by Velichko and Zagoruyko in Russia [11], 
Sakoe and Chiba in Japan [12], and ltakura in the United States [13]. The Russian studies 
helped advance the use of pattern-recognition ideas in speech recognition; the Japanese 
research showed how dynamic programming methods could be successfully applied; and 
Itakura's research showed how the ideas of linear predictive coding (LPC), which had 
already been successfully used in low-bit-rate speech coding, could be extended to speech-
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recognition systems through the use of an appropriate distance measure based on LPC 
spectral parameters. 

Another milestone of the 1970s was the beginning of a longstanding, highly successful 
group effort in large vocabulary speech recognition at IBM in which researchers studied 
three distinct tasks over a period of almost two decades, namely the New Raleigh language 
[ 14] for simple database queries, the laser patent text language [ 15] for transcribing laser 
patents, and the office correspondence task, called Tangora [ 16], for dictation of simple 
memos. 

Finally, at AT&T Bell Labs, researchers began a series of experiments aimed at 
making speech-recognition systems that were truly speaker independent [ 17]. To achieve 
this goal a wide range of sophisticated clustering algorithms were used to determine the 
number of distinct patterns required to represent all variations of different words across a 
wide user population. This research has been refined over a decade so that the techniques 
for creating speaker-independent patterns are now well understood and widely used. 

Just as isolated word recognition was a key focus of research in the 1970s, the problem 
of connected word recognition was a focus of research in the 1980s. Here the goal was 
to create a robust system capable of recognizing a fluently spoken string of words (e.g., 
digits) based on matching a concatenated pattern of individual words. A wide variety of 
connected word-recognition algorithms were formulated and implemented, including the 
two-level dynamic programming approach of Sakoe at Nippon Electric Corporation (NEC) 
[ 18], the one-pass method of Bridle and Brown at Joint Speech Research Unit (JSRU) in 
England [ 19], the level building approach of Myers and Rabiner at Bell Labs [20), and the 
frame synchronous level building approach of Lee and Rabiner at Bell Labs [21]. Each 
of these "optimal" matching procedures had its own implementational advantages, which 
were exploited for a wide range of tasks. 

Speech research in the 1980s was characterized by a shift in technology from 
template-based approaches to statistical modeling methods-especially the hidden Markov 
model approach [22, 23]. Although the methodology of hidden Markov modeling (HMM) 
was well known and understood in a few laboratories (primarily IBM, Institute for Defense 
Analyses (IDA), and Dragon Systems), it was not until widespread publication of the meth
ods and theory of HMMs, in the mid- l 980s, that the technique became widely applied in 
virtually every speech-recognition research laboratory in the world. 

Another "new" technology that was reintroduced in the late 1980s was the idea of 
applying neural networks to problems in speech recognition. Neural networks were first 
introduced in the 1950s, but they did not prove useful initially because they had many 
practical problems. In the 1980s, however, a deeper understanding of the strengths and 
limitations of the technology was obtained, as well as the relationships of the technology to 
classical signal classification methods. Several new ways of implementing systems were 
also proposed [24, 25]. 

Finally, the 1980s was a decade in which a major impetus was given to large vocab
ulary, continuous-speech-recognition systems by the Defense Advanced Research Projects 
Agency (DARPA) community, which sponsored a large research program aimed at achiev
ing high word accuracy for a 1000-word, continuous-speech-recognition, database man
agement task. Major research contributions resulted from efforts at CMU (notably the well-
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known SPHINX system) [26], BBN with the BYBLOS system [27], Lincoln Labs [28], 
SRI [29], MIT [30], and AT&T Bell Labs [31]. The DARPA program has continued into 
the 1990s, with emphasis shifting to natural language front ends to the recognizer, and the 
task shifting to retrieval of air travel infonnation. At the same time, speech-recognition 
technology has been increasingly used within telephone networks to automate as well as 
enhance operator services. 
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Chapter 2 

THE SPEECH SIGNAL: 
PRODUCTION, PERCEPTION, 
AND ACOUSTIC-PHONETIC 

CHARACTERIZATION 

2.1 INTRODUCTION 

In this chapter we discuss the mechanics of producing and perceiving speech in human 
beings, and we show how an understanding of these processes leads naturally to several 
different approaches to speech recognition by machine. We begin by showing how the 
different classes of speech sounds, or phonetics, can each be characterized in terms of 
broad acoustic features whose properties are relatively invariant across words and speakers. 
The ideas of acoustic-phonetic characterization of sounds lead naturally to straightforward 
implementation of a speech-recognition algorithm based on sequential detection of sounds 
and sound classes. The strengths and weaknesses of such an approach are discussed. An 
alternative approach to speech recognition is to use standard pattern-recognition techniques 
in a framework in which all speech knowledge is "learned" via a training phase. We show 
that such a "blind" approach has some natural advantages for a wide range of speech
recognition systems. Finally we show how aspects of both the acoustic-phonetic approach 
and the pattern-recognition approach can be integrated into a hybrid method that includes 
techniques from artificial intelligence as well as neural network methods. 

2.1.1 The Process of Speech Production and Perception in Human Beings 

Figure 2.1 shows a schematic diagram of the speech-production/speech-perception process 
in human beings. The production (speech-generation) process begins when the talker 
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Figure 2.1 Schematic diagram of speech-production/speech-perception process (after Flanagan [ unpublished]). 

formulates a message (in his mind) that he wants to transmit to the listener via speech. 
The machine counterpart to the process of message formulation is the creation of printed 
text expressing the words of the message. The next step in the process is the conversion 
of the message into a language code. This roughly corresponds to converting the printed 
text of the message into a set of phoneme sequences corresponding to the sounds that 
make up the words, along with prosody markers denoting duration of sounds, loudness of 
sounds, and pitch accent associated with the sounds. Once the language code is chosen, 
the talker must execute a series of neuromuscular commands to cause the vocal cords to 
vibrate when appropriate and to shape the vocal tract such that the proper sequence of 
speech sounds is created and spoken by the talker, thereby producing an acoustic signal 
as the final output. The neuromuscular commands must simultaneously control all aspects 
of articulatory motion including control of the lips, jaw, tongue, and velum (a "trapdoor" 
controlling the acoustic flow to the nasal mechanism). 

Once the speech signal is generated and propagated to the listener, the speech
perception (or speech-recognition) process begins. First the listener processes the acoustic 
signal along the basilar membrane in the inner ear, which provides a running spectrum 
analysis of the incoming signal. A neural transduction process converts the spectral signal at 
the output of the basilar membrane into activity signals on the auditory nerve, corresponding 
roughly to a feature extraction process. In a manner that is not well understood, the neural 
activity along the auditory nerve is converted into a language code at the higher centers 
of processing within the brain, and finally message comprehension (understanding of 
meaning) is achieved. 

A slightly different view of the speech-production/speech-perception process is 
shown in Figure 2.2. Here we see the steps in the process laid out along a line corre
sponding to the basic information rate of the signal ( or control) at various stages of the 
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Figure 2.2 Alternative view of speech-production/speech-perception process (after Rabiner and Levinson [I)). 

process. The discrete symbol infonnation rate in the raw message text is rather low (about 
50 bps [bits per second] corresponding to about 8 sounds per second, where each sound is 
one of about 50 distinct symbols). After the language code conversion, with the inclusion 
of prosody information, the infonnation rate rises to about 200 bps. Somewhere in the next 
stage the representation of the infonnation in the signal ( or the control) becomes continuous 
with an equivalent rate of about 2000 bps at the neuromuscular control level, and about 
30,000-50,000 bps at the acoustic signal level. 

A transmission channel is shown in Figure 2.2 [ l ], indicating that any of several 
well-known coding techniques could be used to transmit the acoustic wavefonn from the 
talker to the listener. The steps in the speech-perception mechanism can also be interpreted 
in tenns of infonnation rate in the signal or its control and follows the inverse pattern 
of the production process. Thus the continuous infonnation rate at the basilar membrane 
is in the range of 30,000-50,000 bps, while at the neural transduction stage it is about 
2000 bps. The higher-level processing within the brain converts the neural signals to a 
discrete representation, which ultimately is decoded into a low-bit-rate message. 

To illustrate, in a trivial way, how the speech-production/speech-perception process 
works, consider that the speaker has a goal of finding out whether his office mate has eaten 
his lunch yet. To express this thought, the speaker formulates the message "Did you eat 
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yet?" In the process of converting the message to a language code, the text becomes a 
phonetic sequence of sounds of the form /did yu it y£t? /, in which each word is expressed 
as a sequence of phonemes constituting the ideal pronunciation of the sounds of the word 
(as spoken in isolation) within the spoken language. However, because the words are 
not spoken in isolation, and a physical mechanism is used to produce the sounds (the 
human vocal tract system), and because physical systems obey continuity and smoothness 
constraints, by the time the message is spoken the sounds become more like the phonetic 
string /di jd it jf:t? /. The final din did is dropped, the word you becomes converted to a word 
that sounds a lot like "juh," and finally the word yet is pronounced as "jet." Remarkably, 
through the speech-perception process, human beings are usually able to decode this highly 
stylized version of the text into the correct string; sadly, however, this remains a most 
difficult task for almost all speech-recognition machines. 

2.2 THE SPEECH-PRODUCTION PROCESS 

Figure 2.3 shows a mid-sagittal plane (longitudinal cross-section) X-ray of the human vocal 
apparatus [2]. The vocal tract, outlined by the dotted lines in Figure 2.3, begins at the 
opening of the vocal cords, or glottis, and ends at the lips. The vocal tract consists of the 
pharynx (the connection from the esophagus to the mouth) and the mouth, or oral cavity. In 
the average male, the total length of the vocal tract is about 17 cm. The cross-sectional area 
of the vocal tract, determined by the positions of the tongue, lips, jaw, and velum, varies 
from zero (complete closure) to about 20 cm2. The nasal tract begins at the velum and 
ends at the nostrils. When the velum, (a trapdoor-like mechanism at the back of the mouth 
cavity) is lowered, the nasal tract is acoustically coupled to the vocal tract to produce the 
nasal sounds of speech. 

A schematic diagram of the human vocal mechanism is shown in Figure 2.4 [3]. Air 
enters the lungs via the normal breathing mechanism. As air is expelled from the lungs 
through the trachea (or windpipe), the tensed vocal cords within the larynx are caused to 
vibrate (in the mode of a relaxation oscillator) by the air flow. The air flow is chopped 
into quasi-periodic pulses which are then modulated in frequency in passing through the 
pharynx (the throat cavity), the mouth cavity, and possibly the nasal cavity. Depending 
on the positions of the various articulators (i.e., jaw, tongue, velum, lips, mouth), different 
sounds are produced. 

Figure 2.5 shows plots of the glottal air flow (volume velocity waveform) and the 
resulting sound pressure at the mouth for a typical vowel sound [4]. The glottal waveform 
shows a gradual build-up to a quasi-periodic pulse train of air, taking about 15 msec to 
reach steady state. This build-up is also reflected in the acoustic wavefonn shown at the 
bottom of the figure. 

A simplified representation of the complete physiological mechanism for creating 
speech is shown in Figure 2.6 [3]. The lungs and the associated muscles act as the source 
of air for exciting the vocal mechanism. The muscle force pushes air out of the lungs 
(shown schematically as a piston pushing up within a cylinder) and through the bronchi 
and trachea. When the vocal cords are tensed, the air flow causes them to vibrate, producing 
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Figure 2.3 Mid-sagittal plane X-ray of the human vocal apparatus (after Flanagan et al. [21). 
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so-called voiced speech sounds. When the vocal cords are relaxed, in order to produce a 
sound, the air flow either must pass through a constriction in the vocal tract and thereby 
become turbulent, producing so-called unvoiced sounds, or it can build up pressure behind 
a point of total closure within the vocal tract, and when the closure is opened, the pressure 
is suddenly and abruptly released, causing a brief transient sound. 

Speech is produced as a sequence of sounds. Hence the state of the vocal cords, as 
well as the positions, shapes, and sizes of the various articulators, changes over time to 
reflect the sound being produced. The manner in which different sounds are created will be 
described later in this chapter. First we divert to a brief discussion of the speech waveform 
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and its spectral representation. 
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17 

The speech signal is a slowly time varying signal in the sense that, when examined over 
a sufficiently short period of time (between 5 and 100 msec), its characteristics are fairly 
stationary; however, over long periods of time ( on the order of 1 / 5 seconds or more) the 
signal characteristics change to reflect the different speech sounds being spoken. An illus
tration of this effect is given in Figure 2.7, which shows the time waveform corresponding 
to the initial sounds in the phrase, "It's time ... " as spoken by a male speaker. Each line 
of the waveform corresponds to 100 msec (1 / 10 second) of signal; hence the entire plot 
encompasses about 0.5 sec. 
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Figure 2.7 Wavefonn plot of the beginning of the utterance "It's time." 

The slowly time varying nature of the signal can be seen by contrasting the first 
I 00 msec of the wavefonn (the first line), which corresponds to background silence and is 
therefore low in amplitude, to the next 100 msec of the wavefonn (the second line), which 
first shows a small increase in level, and then a sharp increase in level and a gross change 
in wavefonn shape and regularity (it becomes almost periodic). 

There are several ways of classifying (labeling) events in speech. Perhaps the simplest 
and most straightforward is via the state of the speech-production source-the vocal cords. 
It is accepted convention to use a three-state representation in which the states are (1) 
silence (S), where no speech is produced; (2) unvoiced (U), in which the vocal cords are 
not vibrating, so the resulting speech wavefonn is aperiodic or random in nature; and (3) 
voiced (V), in which the vocal cords are tensed and therefore vibrate periodically when air 
flows from the lungs, so the resulting speech wavefonn is quasi-periodic. The result of 
applying this type of classification to the wavefonn of Figure 2. 7 is shown in the figure. 
Initially, before speaking begins, the wavefonn is classified as silence (S). A brief period of 
unvoiced (U) sound (whisper or aspiration) is seen prior to the voicing (V) corresponding 
to the initial vowel in the word It's. Following the voicing region, there is a brief, unvoiced 
aspiration (devoicing of the vowel), followed by a silence region (prior to the /ti in It's), and 
then a relatively long, unvoiced (U) region corresponding to the /t/ release, followed by the 
/s/, followed by the /t/ in time. Finally there is a long voicing (V) region corresponding to 
the diphthong /aY / in time. 

It should be clear that the segmentation of the wavefonn into well-defined regions of 
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Figure ~.8 Wideband and narrowband spectrograms and speech amplitude for the utterance 
"Every salt breeze comes from the sea." ' 
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silence, unvoiced, and voiced signals is not exact; it is often difficult to distinguish a weak, 
unvoiced sound (like /f/ or /th/) from silence, or a weak, voiced sound (like /v/ or /m/) from 
unvoiced sounds or even silence. However, it is usually not critical to segment the signal to 
a precision much less than several milliseconds; hence, small errors in boundary locations 
usually have no consequence for most applications. 

An alternative way of characterizing the speech signal and representing the informa
tion associated with the sounds is via a spectral representation. Perhaps the most popular 
representation of this type is the sound spectrogram in which a three-dimensional rep
resentation of the speech intensity, in different frequency bands, over time is portrayed. 
An example of this type of speech representation is given in Figure 2.8, which shows a 
wideband spectrogram in the first panel, a narrowband spectrogram in the second panel, 
and a waveform amplitude plot in the third panel, of a spoken version of the utterance 
"Every salt breeze comes from the sea" by a male speaker. The wideband spectrogram 
corresponds to performing a spectral analysis on 15-msec sections of waveform using a 
broad analysis filter (125 Hz bandwidth) with the analysis advancing in intervals of l msec. 
The spectral intensity at each point in time is indicated by the intensity (darkness) of the 
plot at a particular analysis frequency. Because of the relatively broad bandwidth of the 
analysis filters, hence the relatively short duration of the analysis window, the spectral 
envelope of individual periods of the speech waveform during voiced sections are resolved 
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