
sec. 7.4 The Level Building (LB) Algorithm 403

(7.17)

and for each frame, m, in the composite ending range, m1 (l) ~ m ~ mz(l), we need to
store

D1(m) = min [De(m)]
l~v~V

Flf (m) = arg min [De(m)]
l~vSV

- best distance at level e to frame m (7.18)

- reference pattern index which gave dis- (7 .19)
tance at level e to frame m

- back pointer to best ending frame at pre- (7 .20)
vious level that achieves D1(m)

(By definition Ff (m) = 0 for all m since the ending frame of the 0th level is 0.) By storing
only D1(m), N1(m) and F1(m), we significantly reduce the storage at each level and yet
we retain all the information required to pick up the optimal path through the entire grid as
shown below.

The second-level computation does not begin until the first-level computation is
finished. To see how the computation is picked up at level 2, consider Figure 7.9, which
shows a series of time warps that span a set of beginning frames and provide a new set of
ending frames.

For each reference pattern, Rv, the range of starting frames is m 1 (1) ~ m ~ m2(1)
because every ending point of the first level is a possible starting point in the second level.
Hence for each frame m in the beginning range, and for each frame at the beginning of the
reference pattern, we must consider paths coming from both the current reference pattern
and the previous level. Other than the broadened beginning region, each DTW at level 2 is
essentially identical to those at level 1. Thus for reference 'R.1 the range of ending frames
at level 2 is m 11 (2) < m < m12(2); for reference 'R.2 the range of ending frames at level 2
is m21 (2) < m < m22 (2), etc. We again derive the ending range at the end of level 2 as

m1(2) = min [mv1(2)]
1vV

m2(2) = max [mv2(2)]
1vV

(7.21)

(7.22)

and for each frame in m 1 (2) ~ m ~ m2(2) we determine the best distance D~(m), the
reference with the best distance, Nf (m), and the backpointer F~(m).

We can continue the level building procedure through all levels until level lmax in
the above manner and we obtain, as the final solution, D* as

(7.23)

It should be clear that by performing the computation in levels (i.e., a word at a time)
and by doing appropriate minimization within levels, we avoid much of the computation
of the two-level DP algorithm described in the previous section. However, the negative
feature of the level building algorithm is that the computation is level synchronous, not
time synchronous; that is, we can go back to a given test frame at many levels. Hence,
real-time hardware implementations of level building are difficult, if not impossible, to

IPR2023-00037
Apple EX1013 Page 254

404

n
REFERENCE

1

REFERENCE
2 n

Chap. 7 Speech Recognition Based on Connected Word Models

g:J e =2

m1CO m2<0 m
m21<2l

m

REFE~ENC~ L.__Jj~~:L.L.:.i..r::::_-+-i _________ ----:~----

m t (1) : m2(1l : m
I '
' '

---LEVEL 2--
ENDING RANGE

m

Figure 7.9 Implementation of level 2 of the level building algorithm (after Myers and Rabiner
[4]).

implement. (We will return to these issues later in this section.)
To gain a better understanding of the basic concepts of the level building algorithm,

consider the simple example shown in Figure 7 .10. Here we assume that the vocabulary
consists of two words (which we call A and B for simplicity) and that the two reference
patterns, 'RA and 'R8 , are of equal length. We also assume we are only interested in an
f. = 4 level solution. (This greatly simplifies the range of the dynamic programming
search parallelogram which, as seen in Figure 7. I 0, is essentially identical to the case for
isolated word template matching. In the next section, where multiple level considerations
are discussed, the dynamic programming search range will be shown to be significantly
more complicated to specify.) Since both patterns are of equal length, the ending regions
for both words, at each level, are identical. Hence at each level ending region we choose
the reference pattern (A or B) that gave the smallest accumulated distance to that frame. In
this simple example, there are 6 ending frames at level 1, with the best path corresponding
to 'RA for the first two frames, and 'R,8 for the next 4 frames. At level 2 there are 10 ending
frames; at level 3 there are 6 ending frames, and finally at level 4 there is only one ending
frame corresponding to frame M, the end of the test utterance. By tracing back the (best)

IPR2023-00037
Apple EX1013 Page 255

sec. 7.4 The Level Building (LB) Algorithm

,-------------- _ __,!8

i=4

2=3

Q=2

i= 1

m(TEST)

Figure 7.10 Simple example illustrating level building on two reference patterns of
equal length (after Myers and Rabiner (4)).

405

path ending at m = M we see that the sequence of reference patterns giving the best score
IS

with test frames e 1, e2, e3, and e4 = M corresponding to the last frames of the 4 words in
the sequence.

7.4,2 Multiple Level Considerations

In the more realistic case in which we want the level building solutions for all feasible
levels (i.e., where there is a possible solution), there are some very simple techniques that
can be used to eliminate unnecessary computation. To understand this issue consider the
"standard" warping range of the level building algorithm as shown in Figure 7 .11. (We
assume here that we use a DTW algorithm with a maximum expansion of 2 and a minimum

IPR2023-00037
Apple EX1013 Page 256

406 Chap. 7 Speech Recognition Based on Connected Word Models

n

1tt:::..... ________________ __..
I M

m (TEST)

Figure 7.11 Computation region of level building algorithm for a fixed-length
reference pattern (after Myers and Rabiner [4]).

expansion of ½.) If we define lower and upper constraints lines as

L(m) = (m + 1)/2

U(m) = 2(m - 1) + 1

(7.24)

(7.25)

then for a fixed-length reference pattern we get the computation and ending regions shown
in Figure 7.11. (We denote the computation region at level£ as Gt with ending region Et,)
It should be clear that some of the computation of Figure 7 .11 is unnecessary, since there
do not exist paths from some of the computed points to ends of reference patterns at any
level.

We can use the constraint that in order to do the computation at any grid point, the
path from that grid point must be capable of reaching the end of the reference pattern before
the end of the test pattern as shown in Figure 7 .12. Here we have drawn lines, at each
level, of slope 2, from the last frame of the test pattern and the last frame of the reference
pattern, and used them as constraints on the grid. We have also drawn a line, at level Lmax,

of slope 1 h from the last test frame and the last reference frame to further constrain the grid
at the last level. The lower and upper constraints of the simplified grid can be described by
the equations

[m + 1 l L(m) = max ~, 2(m _ M) + 0(£) (7.26)

IPR2023-00037
Apple EX1013 Page 257

sec. 7.4 The Level Building (LB) Algorithm

'Rq(1)

M
m(TEST)

Figure 7 .12 Reduced computation region using upper-and lower-level constraints
(after Myers and Rabiner [4]).

407

(7.27)

in which the reference pattern length function, 0(f), is the accumulated number of frames
of the reference patterns used up to level f where (m + 1)/2 = 2(m - M) + 0(£) at some
frame m < M. The resulting region of computation is somewhat reduced from that shown
in Figure 7 .11.

Since the length of each reference pattern is different (in general) the actual computa
tion regions for a level building search based on variable length reference patterns is shown
in Figure 7 .13. Here we show the computation regions, at each level, for the shortest and
for the longest reference patterns. Fundamentally, the pattern of computation is similar to
that of Figure 7 .11.

7.4.3 Computation of the Level Building Algorithm

From the above discussion it should be clear that the basic computation of the level building
algorithm is a series of V time warps at each level, where Vis the size of the vocabulary.
If we assume the maximum number of levels in Lmax, then we need V Lmax time warps. An
overbound on size of each time warp is NM /3 grid points where N is the average length of
each reference pattern and M is the number of frames in the test pattern. Hence the total

IPR2023-00037
Apple EX1013 Page 258

..

408 Chap. 7 Speech Recognition Based on Connected Word Models

~ SEARCH REGION FOR LONGEST REFERENCE AT EACH LEVEL

0 SEARCH REGION FOR SHORTEST REFERENCE AT EACH LEVEL

w
... u
(I) z
WW
(!) a::
zw
0 Lr.
.-IW

a::

f

w
... u
(I) z
WW
... a::
a:::w
0 Lr.
::cw
(I) a::

I
I

I
--------+

m

1=4

J. =3

l=2

£. = 1

M

Figure 7.13 Overall computation pattern of level building algorithm for variable
length reference patterns (after Myers and Rabiner [4)).

computation of the level building algorithm is

CLB = V • lmax • N • M /3

with storage

grid points (7.28)

SLB = 3M • lmax (7.29)

since we need storage for D8 , N8 , and F8 at each value of m and for each level£.
Using the same values for M, N, and V as used in determining the computation

and storage of the two-level DP method, namely M = 300, N = 40, V = 10, and using
Lmax = 7, we get CLB = 280,000 and SLB = 6300. The basic computation of the level
building algorithm is a factor of 4.7 less than that of the two-level DP method; the storage
of both methods is about the same.

The above calculations are based on full DTW s at each level for each reference
pattern. Because of the overlaps of regions in the (m, n) plane, at different levels, some of
the assumed computation is redundant. The following exercise illustrates this point.

IPR2023-00037
Apple EX1013 Page 259

sec. 7.4 The Level Building (LB) Algorithm 409

Exercise 7 .2
In implementing different levels of the level building algorithm, we have assumed all levels
are independent. Thus, at each level, we have performed a full DTW, for each reference
pattern, where the size of the DTW was N • M /3 (grid points). An alternative, and, we hope,
more efficient, approach is to realize that for each reference pattern, a significant portion of the
computation at each level (namely that of distance computation) may have previously been
performed at an earlier level, and therefore only the combinatorics part of the DTW is truly
independent at each level.

1. Show that for the assumed parameters of the system (i.e., M = number of test
frames = 300, N = average number of frames per reference pattern = 40, V = size of
vocabulary = l 0, Lmax = maximum number of levels = 7), the alternative implemen
tation of storing all previously computed distances is more efficient than the standard
implementation. (Assume that the cost of the combinatorics in a DTW procedure is
negligible.)

2. What is the ratio of computation of the standard implementation to the stored distance
implementation?

3. If we assume the cost of the combinatorics at each grid point is 1
/ 5 the cost of a distance

computation, how do the results to parts I and 2 change?

Solution 7 .2
1. The simplest way of exploiting previously computed distances is to precompute the

entire grid of distances from each reference pattern frame to each test frame. (Clearly
this is not the most efficient implementation, since many of these full grid distances will
never be required in practice.) If we do this we need

CmsT = V • M • N (distances)= 120,000.

The number of combinatorics is just the number of grid points used in the level building
method; hence

CcoMB = V • Lmax • N • ~ (grid points) = 280,000.

The total computation of this approach is then

CroTAL = Co1sT +a· CcoMB

in which a is the weight for combinatorics. If we assume combinatorics are negligible,
a= 0, we get

CroTAL = CmsT = 120,000

which is significantly less than the 280,000 distances for the standard implementation
(i.e., one per grid point).

2. The ratio of computation of the two approaches is

CLB _ V • Lmax • N • M /3 = Lmax = 233
CroTAL - V • M • N 3

and is independent of V, M, and N but only depends on lmax•

IPR2023-00037
Apple EX1013 Page 260

410 Chap. 7 Speech Recognition Based on Connected Word Models

3. If we assume the cost of combinatorics is 1/s the cost of a distance computation we get

- - M 1
CroTAL = V • M • N + V • Lmax • N • 3 S = 176,000

with the ratio in computation being

CLB V•lmu•N·M/3
= Ml -

CroTAL V • M • N + V • Lmax • N • 3 5
Lma~ = 1.59

30 + 15)

7 .4.4 Implementation Aspects of Level Building

Even though we have already shown that the computation for the level building approach
to connected word recognition is significantly less than that of the two-level DP approach
of Section 7 .2, there are several ways of even further reducing the computational load of
the algorithm. These include the following:

1. Beginning range reduction in which we reduce the size of the initial region (range of
m) for which valid paths to a given level can begin.

2. Global range reduction in which we reduce the size of the region (width of the
template) that is tracked, within a level, to determine a best path to each possible
level ending frame, m.

3. Test pattern ending range in which we increase the range over which the global path
can match the connected word string; this procedure provides some robustness to
ending frame errors.

4. Reference pattern uncertainty ranges in which we increase the range of search at
the beginning and end of reference patterns to allow for some degree of word
coarticulation at reference word boundaries.

The way in which we implement these features is as follows.

1. Beginning range reduction-MT
For the complete level building algorithm, at level .e - 1, we retain the best score,
f>1_1(m), for each frame min the ending region m1(.f, - 1) < m ~ m2(f - 1). It
should be obvious that, in general, the best global path is not at either boundary but
somewhere in the middle range of m. Hence if we could eliminate some of the ending
rarige at level .e - I, the search at level .e would involve less computation. (To see
this, consider the limiting case where we make the ending region, at each level, a •
single frame; then the computation at each new level is a simple DTW with a single
initial frame, much as occurs at level 1.)
To determine how to reduce the ending range at level £ - I we need to nonnalize
the best accumulated distance scores by the number of frames. Thus we first find the
locally best (minimum) normalized accumulated distance as:

(7.30)

IPR2023-00037
Apple EX1013 Page 261

I

sec. 7.4 The level Building (LB) Algorithm 411

We now define a reduced-range level threshold as Mr . <Pt-I where Mr is a defined
parameter, and search the range m 1 (f - I) ::; m ::; m2(e - I) to find the indices S}
and S~ such that

(7.31)

(7.32)

To see what is achieved by the beginning range reduction, consider Figure 7 .14,
which shows a sequence of levels and the resulting ending ranges with and without
range reduction (top graph), and the way in which the reduced range is determined
(bottom graph). For the level shown, the best normalized distance score, <Pt-I, is
determined as the smallest value of the curve, and the threshold Mr • <Pt-I is shown
as a level above </>e-1 (clearly Mr ~ 1.0). The initial reduced range point, S~. is
the last index (beginning from m = m1(f - 1)) where the curve is always above the
threshold; similarly the index S~ is the last index (beginning from m = m2(e - 1))
where the curve is always above the threshold. The reduced range means that the
computation at the next level is smaller as seen at the top of Figure 7.14. Depending
on the value of Mr, the reduced range can get smaller (as Mr ➔ 1) or larger (as
Mr --+ oo). It should be clear that too small a value of Mr will allow the best path to
be prematurely eliminated; hence proper choice of Mr is essential.

2. Global range reduction-E
The idea behind global range reduction is to reduce the search range along the
reference axis, for each test frame, by tracking the global minimum, and allowing
only a range around the global minimum. Thus for each test frame, m, at each level
f., and for each reference pattern, 'Rv, we determine the local minimum, c(m), as

c(m) = arg min [Dt(m - 1, n)]
c(m-1)-fSnSc(m-1)+€

(7.33)

in which De(m - 1, n) is defined to be the best distance at level f. using reference nv
at test frame m - 1 to reference frame n (as determined by the local alignment path)
and with c(l) defined to be 1. Figure 7 .15 illustrates the global range reduction for
a typical level building search. For global range reduction to be effective we must
have the reduced range, 2E + 1, be smaller than the typical reference pattern width.

3. Test pattern ending range-<5£ND
The idea here is to allow a range of test pattern ending frames, rather than restricting
the ending frame tom = M. This feature provides a measure of robustness to test
pattern endpoint errors. If we extend the end of the test pattern by 6END frames, the
global level building solution is modified to be

(7.34)

IPR2023-00037
Apple EX1013 Page 262

412 Chap. 7 Speech Recognition Based on Connected Word Models

M
m(TEST)

-e D.)ml (bl
., m_----ORIGINAL RANGE -----~•~1

I
I
I

Figure 7.14 Illustration of beginning range reduction (after Myers and Rabiner [4]).

4. Reference pattern uncertainty regions-8 R
1

, 8 R
2

To account for coarticulation of words across word boundaries, the level building
algorithm allows a range of beginning and ending frames of the reference pattern. In
this manner, at any level, the path can begin over the range 1 :::; n '.S 1 +8R

1
(where n is

thereferencepattemindex),andendatanyframeintherangeNv-8R
2

< n '.S Nv. For
appropriate values of 8R1 and 8R2 , it is possible to have a path which skips (8R

1
+ DR2)

frames at highly coarticulated word boundaries (e.g., the boundary between six and
seven in the string "six-seven"). Figure 7.16 illustrates the use of reference pattern
uncertainty regions in level building.

A summary of the four implementation aspects of level building, as discussed in
this section, is shown in Figure 7.17 in which all four features are combined in a single

IPR2023-00037
Apple EX1013 Page 263

sec. 7.4
The Level Building (LB) Algorithm

'Rq(I)

M
m(TEST)

Figure 7.15 Illustration of global range reduction (after Myers and Rabiner
[4]).

r(n)

t(m)

• • •

Figure 7 .16 Illustration of the use of reference pattern uncertainty regions (after

Myers and Rabiner [4]).

413

L

IPR2023-00037
Apple EX1013 Page 264

414 Chap. 7 Speech Recognition Based on Connected Word Models

m (TEST)

Figure 7.17 Summary of level building implementation of computation reduction
methods (after Myers and Rabiner (4)).

level building search. It can be shown that with judicious choice of the implementation
parameters, Mr, E, 8END, 8R1 and 8R2 , the overall computation can be substantially reduced
from that of the standard level building approach.

7 .4.5 Integration of a Grammar Network

We have been implicitly assuming that, for connected word recognition, each word in the
string can be followed by any other word in the string. This implicit form of grammar
is most appropriate for things like digit strings in which any digit can follow any other
digit. However, for some connected word recognition tasks there is an explicit set of rules
(grammar) governing which words can logically follow other words to form valid sentences
in the language [10]. Although the form of such a grammar can be of several different
types (we will discuss this in more detail in Chapter 8), we will restrict ourselves here to
those tasks in which we can represent the grammar by a finite state network (FSN) or a
finite state automata (FSA) of the form

G =A(Q, V,8,qo,Z) (7.35)

where

Q = set of states

IPR2023-00037
Apple EX1013 Page 265

sec. 7.4 The Level Building (LB) Algorithm

V = set of vocabulary words

8 = set of transitions

qo E Q = initial state

Z ~ Q = set of tennina1 states

and the set of transitions obeys the rule

6(q, v) = s

meaning that word v drives the state from q to s

Jt
/

I
I V

-----

I
/

I

-

415

(7.36)

--·

To integrate the FSN grammar network into the following level building algorithm we must
do the following:

1. Identify levels with states rather than word position so that word candidates at the flh
level need not be temporally contiguous to those at the (f + })st level

2. Partition the vocabulary so that only the reference patterns for words leaving the f1h
state are matched at the £th level

3. Retain state backtracking pointers for recovering the best matching string.

(It should be noted that for the most efficient computation, the states in Q should be
topologically sorted.)

To illustrate how a simple grammar FSN can be integrated into the LB algorithm,
consider the following example:

1. I 5. ONE 9. BOOKS 13. OLD
2. WANT 6. A IO. COAT
3. NEED 7. AN 11. COATS
4. THREE 8. BOOK 12. NEW

IPR2023-00037
Apple EX1013 Page 266

416 Chap. 7 Speech Recognition Based on Connected Word Models

Current Words Predecessor Currect Predecessor

State Used State Level Levels

2 I 1 0

3 WANT 2 2
4 NEED 2 3 1

5 THREE 3 4 2

6 A 4 5 3

7 AN 4 6 3

8 ONE 3 7 2

8 NEW 6 8 5

8 OLD 7 9 6

9* BOOK, COAT 8 10 7,8,9

9* BOOKS. COATS 5 11 4

If we study this simple example, we see that levels 2 and 3 both pick up from level
I; similarly both levels 4 and 7 pick up from level 2. By building up the computation
by levels (keeping track of the correct predecessor level), and by backtracking the final
result by states (according to the grammar FSN) we can essentially use all the techniques
described to efficiently find the best grammatically correct string.

7 .4.6 Examples of LB Computation of Digit Strings

Figures 7 .18 and 7 .19 show two examples of connected digit strings matched using the LB
algorithm. Figure 7 .18 is for the string "51560" and shows the computation building up
level by level. For this example, the locally best path at each level (shown by the digit to
the right of the last test frame) is actually the globally best digit. At the end of level four
the algorithm provided the four best choices with the string "5157" having the lowest score
of 0.553. At the end of level 5 there were six string choices with the correct string "51560"
having the lowest average accumulated distance of 0.333.

The example in Figure 7.19 is for the string "99211," which did not provide a match
nearly as good as the previous example. We see here that the locally best string at each level,
namely "90111" is not globally best, and actually is incorrect in two positions. Although
the algorithm gets the correct string as the best score, the second best string is the string
"901," which has two digit deletions, and one digit-substitution error.

7.5 THE ONE-PASS (ONE-STATE) ALGORITHM

The third general approach to the connected word recognition problem is a procedure
which was originally proposed by Vintsyuk in 1971 [5] and which has been "rediscovered"
several times in the last two decades [6-8] and generalized in scope (9]. The algorithm
has been called the one-pass procedure or the one-state algorithm, or most recently, the
frame-synchronous level building (FSLB) method. The basic idea behind the algorithm
is illustrated in Figure 7 .20, which shows a grid with the test pattern, T, mapped to

IPR2023-00037
Apple EX1013 Page 267

sec. 7.5 The One-Pass (One-State) Algorithm
417

1111 ENERGY ENVELOPE 1111 (a)

MAX DB= 44 BEGIN s 33 ENO: 156 NF=124

0.333 51560 (b)
I 0.349 11560 , . 0 . . ' 0.354 51570

I 0.370 59560 . 0.375 51160 ,. .
0.413 51562

- -- t 6

{

0.553 5157
0.569 t157
0.591 5957
0.596 51 I 7

5

5

Figure 7.18 Level building of the string "51560" (after Myers and Rabiner [4]).

the horizontal axis, and the set of reference patterns, {'R.1, 'R.2, ... , Rv} mapped to the
vertical axis.

Using the standard notation of m to represent the test frame index, 1 s m s M, v to
represent the reference pattern (Rv) index, I < v s V, and n to represent the reference frame
index of pattern 'Rv, I < n < Nv, then for each test frame we calculate the accumulated
distance, dA(m, n, v) as:

dA(m, n, v) = d(m, n, v) + min (dA(m - 1,j, v)).
n-29~n

(7.37)

For 2 < n < Nv, 1 < v < V, where d(m, n, v) is the local distance between test frame
t(m) and reference from rv(n), and we assume a maximum path expansion of 2 to I (hence
we search back by 2 reference pattern frames in the combinatoric stage). The recursion of
Eq. (7.37) is carried out for all internal frames of each reference pattern (i.e., n ~ 2). At
the reference pattern boundary, i.e., n = 1, we have the simple recursion

dA(m, 1, v) = d(m, 1, v) + min [min [dA(m - 1,N,,r)],dA(m - I, I, v)]. (7.38)
l~r~V

Thus the combinatorics for internal and boundary frames are as shown in Figure 7.21.
Figure 7 .21 a shows that for internal frames the combinatorics choose the best internal path

IPR2023-00037
Apple EX1013 Page 268

nu ENERGY ENVELOPE llll

MAX DB= 44 BEGIN= 27 END• 99 NF= 73

0

9

0 523 99211
O 570 19211
0 572 92211
0 603 99219

{

o 545 9921
0 547 9901
0592 1921
0593 9221
0 604 9929

0 535 901
O 565 101
0.594 909

(a)

(b)

Figure 7.19 Level building of the string "99211" (after Myers
and Rabiner [4]) .

• •
•

n,

TEST FRAME, m M

Figure 7.20 The one-pass connected word recognition algorithm (after
Bridle et al. (6)).

J

IPR2023-00037
Apple EX1013 Page 269

\

sec. 7.5 The One-Pass (One-State) Algorithm
419

m - 1
• n - 2
m m - 1 m

(a) (b)

Figure 7.21 Combinatorics for the one-pass algorithm.

within the reference pattern, whereas at boundary frames the combinatorics choose either
a straight (horizontal) path from within the reference pattern (subject to the constraint that
the path cannot remain constant for more than one frame) or the best ending frame of any
reference pattern. (Within the dynamic programming framework, of course, incorporation
of a set of local constraints that differ from those of Eq. (7 .38) is possible, subject to
pragmatic considerations.)

The final solution for the best path (corresponding to the best word string) is

(7.39)

Thus the one-pass algorithm computes best paths to every reference pattern frame at every
test frame and eventually is able to backtrack the best score (from Eq. (7.39)) to give the
best word sequence, as shown in Figure 7 .20.

The major problem with the one-pass algorithm is that no mechanism is provided for
controlling the resulting string length-that is, for giving a best path for a string of arbitrary
length. The algorithm inherently finds a single best path whose string length is whatever it
turns out to be. Thus there is no simple way of exploiting given constraints on string length
within the fundamental procedure.

There is, however, a simple and straightforward way of incorporating level (i.e.,
string-length) constraint in the computation. We do this by extending the accumulated
distance to include level information-that is, we extend the recursion to compute the
accumulated distance at level £ as

d!(m,n, v) = d(m,n, v) + min [d!(m - 1,j, v)]
n-25)5,n

(7.40)

where the computation is for 1 ~ i < Lmax, 2 < n < Nv, 1 < v < V, 1 ~ m ~ M. At each
boundary frame the computation now becomes

d!(m, 1, v) = d(m, 1, v) + min [min d!-l(m - 1,Nv,r),d!(m - 1, 1, v)] (7.41)
l 5,r5,V

with
v• = min min [d!(M,Nv, v)]. (7.42)

l5,i5,lmu 15,v5,V

The key difference is in Eq. (7.41), which only allows a path to an ending frame at level
(£ - l) to become a path at a beginning frame at level i.

The main advantage of the one-pass algorithm is that the computation for a given
test frame, m, can be done frame synchronously; hence the one-pass algorithm is well

IPR2023-00037
Apple EX1013 Page 270

420 Chap. 7 Speech Recognition Based on Connected Word Models

suited to real-time implementation on processors that are capable of doing all the necessary
computations of Eqs. (7 .40) and (7 .41) in a single frame interval. Although at first glance
it seems as though the computation of the one-pass algorithm is significantly greater than
that of the LB approach, it is easily seen that the computation of d(m, n, v) of Eq. (7.40)
is independent of level,£; hence it can be computed once (e.g., at level 1) and stored, and
used in subsequent levels with no extra computation. Because of its suitability for real-time
implementation the level-based version of the one-pass algorithm is generally the one used
for connected word recognition tasks.

7 .6 MULTIPLE CANDIDATE STRINGS

In the previous sections we have been discussing ways of detennining the globally best
path through the extended grid, corresponding to the best match to the spoken word string.
There are many ways of obtaining multiple candidate strings from which we can determine,
at least in theory, the second-best string match, the third-best string match, etc. Multiple
string candidates are particularly useful when using grammar networks in order to provide
robust recognition decisions. The way in which we obtain multiple candidate strings is
simple; namely, we keep track of both the best distance, and the second-best distance to
each ending frame at each level (to get the second-best string match). Since we have
computed all reference pattern distances already (as needed to determine the best distance),
all that is required is additional storage (to keep track of the array of second-best distances)
and the bookkeeping to detennine the second best string. (In Chapter 4 we discussed the
general problem of using dynamic programming methods to determine the N-best paths
through a grid. What is described here is essentially what was called the parallel algorithm
in Chapter 4, Section 4.7.5. The main difference is that here the path ranking is in terms of
word candidate strings instead of frame-based time warping paths. This difference gives
rise to some extra optimality considerations as discussed in this section.) We illustrate the
procedure in Figure 7 .22, which shows a simple two-level LB search with tracking of the
two best strings at each grid point. At the end of level 2 there are two distinct paths to the
last frame of the test pattern-namely, the best distance (labeled 1 and shown as a solid
path) and the second best distance (labeled 2 and shown as a dashed line). The best path
from level 2 branches off to two other paths in level 1, with one being a best path and the
other being a second-best path. Similarly, the second-best path from level 2 branches off
to two other paths in level 1. Thus a total of four paths are followed-namely, the 11 path
(best from level 2, best from level 1), the 12 path (best from level 2, second best from level
1), the 21 path (second best from level 2, best from level 1 to the beginning point of the level
2 path) and the 22 path (second best from level 2, second best from level 1). The overall
best path is, by definition, the 11 path through the grid. The second-best path, according
to this method, is (with some pathological exceptions, to be explained next) either the 12
path, or the 21 path; the 22 path cannot ever be as good as the 21 path.

The procedure described above can be extended trivially to the best three candidates
at each level, in which case a total of 3L scores are obtained after L levels. This is illustrated
at the bottom of Figure 7.22 for a two-level match in which there are nine string candidates.

IPR2023-00037
Apple EX1013 Page 271

:.,/

sec. 7.6 Multiple Candidate Strings.

(a}

LEVEL 2

LEVEL 1

/
/ --

(b)

/
/

/

/2

I

I
I

I

TEST

2 /
/

/
/

,,-'
/

I
I

I

I

I
I

L=2

K=3

Figure 7.22 Description of procedure for determining multiple can
didate scores (after Myers and Rabiner [4]).

421

Figure 7 .23 shows a case of using L = 4 levels with two best candidates. There are now
four possible choices for the second-best string, including the 1112 path, the 1121 path,
the 1211 path and the 2111 path. A sorting algorithm can be used to order the KL paths
obtained when keeping track of K candidates at L levels.

It should be noted that the procedure described above, implemented using the level
building algorithm, cannot guarantee that the computed "second-best" string is actually the
true second-best string. This is because in keeping track of multiple strings to any ending
frame the procedure inherently requires that the candidate strings come from different
reference patterns. (Recall that in the LB algorithm, partial word decisions are made at
each level before reaching the end of the test pattern.) The real requirement should be
that they come from different overall strings (i.e., any word in the built-up strings can be
different, not just the immediate last word). Hence, in theory, the two best paths to a given
ending frame could indeed be from the same reference pattern. Figure 7 .24 [1 O] illustrates
the level building flaw via an example in which the true second-best string is the sequence

IPR2023-00037
Apple EX1013 Page 272

422 Chap. 7 Speech Recognition Based on Connected Word Models

(al

J=4

.i=3

.R = 2

,e =1

m

(bl

M

Figure 7.23 Candidate strings for a four-level search (after Myers and Ra
biner [4]).

w
...J I c(I t)

I en
w I
~ I
;::: IA

I
z I a: I w
I-
I-
c(
Cl.

w
t)
z
UJ
a:
UJ
u.
UJ
a:

TEST PATTERN TIME SCALE

Figure 7.24 Illustration of level building flaw
for determining the second-best candidate string
(after Myers and Rabiner [I OJ).

IPR2023-00037
Apple EX1013 Page 273

sec. 7.7 Summary of Connected Word Recognition Algorithms 423

BA (i.e., reference pattern B followed by A); however, since the best string match is AA, the
reference pattern A is not allowed as the second candidate to the last frame at level 2. This
situation occurs extremely infrequently; however, it can and does occur from time to time.

7 SUMMARY OF CONNECTED WORD RECOGNITION ALGORITHMS 7,

We have presented three approaches to solving the "connected word recognition" problem
namely, the two-level DP algorithm, the LB method, and the (frame synchronous) one-pass
method. The algorithms all are fundamentally identical in that they provide the identical
best matching string with the identical matching score. Basically the algorithms differ
in computational efficiency, storage requirements, and ease of realization in real-time
hardware.

Although we have concentrated primarily on word template patterns, it is easy to see
that the basic procedures are virtually identical for statistical models like HMMs. To see
this. consider the case of level building using N-state HMMs instead of N,.-frame reference
patterns. If we denote the test frame index as t, l :::; t :::; T, (rather than n as is conventionally
done for HMMs), and we denote the test frame vector as o, (rather than tn as we have done
throughout this chapter). then the local log likelihood for state j of reference model ..\ ,. is
(for an M-mixture density)

(7.43)

The level building computation is therefore a calculation of P';(r), 1 :::; t :::; T, 1 :::; v :::; V,
1 < £ :::; Lmax, the accumulated log likelihood to frame t, at level£, for reference model ,,\v

along the best path along with F'e(t), the backpointer indicating where the best path started
at the beginning of the level. At the end of each level we compute the "level best" scores
as

P1(t) = max P"e(t), 1 :::; t :::; T (7.44)
l$v'.5V

Nf (t) = arg max P"e(t), 1 :::; t :::; T (7.45)
I '.S v'.5 V

F1(t) = F/_1(1)(t), 1:::;r:::;r (7.46)

with solution
p• = max [Pf(T)]. (7.47)

I llm.x

Figure 7 .25 illustrates the grid for the level building computation for a set of N-state HMMs.
The regularity of the grid (the trellis shape) is due to the lack of constraint about remaining
in a state for more than one or two frames for statistical models.

Finally it should be clear that all three algorithms are equally amenable to inclusion
(integration) of an FSN grammar network to constrain allowable word sequences. Consider

IPR2023-00037
Apple EX1013 Page 274

424 Chap. 7 Speech Recognition Based on Connected Word Models

>,<

Lu

~ 1
I
~ N~-----11~-r-r~----__,__._.._~--,..i
_J
ILi
C
0
~

~
~
:I:

2

1

T
TEST FRAME

Figure 7.25 Use of HMMs in the level building procedure.

f=1

an arbitrary FSN grammar network with a typical node, g, as shown in Figure 7.26. The
input to the grammar node is a series of word arcs (corresponding to words in the vocabulary)
from predecessor grammar nodes i - 1, i and i + 1. Since all these inputs merge at grammar
node g, the basic computation at this grammar node is to determine the maximum likelihood
path over the set, P(g), (which constitutes the paths of all words coming into g), and to
propagate this path to all successor nodes, namely j - 1, j, j + 1 through the appropriate
word arcs. The grammar node computation is iterated over all nodes in the grammar in an
organized fashion (so that all computation necessary for node g is done before considering
node g).

The way in which computation for the grammar FSN is integrated into the connected
word algorithm is shown in Figure 7.27. For each test frame, t, the spectral vector
is computed, and then the local likelihood (or distance) scores are computed for every
reference pattern state (or frame). In parallel the local combinatorics (within reference
patterns) are performed (the local distance scores are added at the end of the computation).
The grammar network scores (corresponding to word transitions) are then computed and
the procedure is iterated until the last test frame, at which point a backtracker is used to
determine the best matching string.

IPR2023-00037
Apple EX1013 Page 275

sec. 7.8 Grammar Networks for Connected Digit Recognition

Figure 7.26 A typical grammar node of an FSN
grammar network (after Lee and Rabiner [9]).

REFERENCE
PATTERN -
STATES

SPEECH
INPUT

SPECTRAL LOCAL
VECTOR COMBINATORICS

COMPUTATION (WITHIN WORDS)

LOCAL
LIKELIHOOD

COMPUTATION

GRAMMAR
NETWORK SCORES

I

I BACK TRACKING I
!

RECOGNIZED STRING

FSN
GRAMMAR
NETWORK

Figure 7.27 Block diagram of connected word recognition computation.

7.8 GRAMMAR NETWORKS FOR CONNECTED DIGIT REEOGNITION

425

One of the most important applications of connected word recognition is connected digit
recognition because of its potential application to credit card entry, all-digit dialing of
telephone numbers, personal identification number (PIN) entry, catalog ordering, and so on.

IPR2023-00037
Apple EX1013 Page 276

426

ENTER

Chap. 7 Speech Recognition Based on Connected Word Models

cf,
------------.

' ' 1 -CD
ENTER .• ~ DIGITS .0...__EX_I_T_•• DIGIT

~ ~ STRING

ENTER

1 2 3 4 5 6 7
DIGIT DIGIT DIGIT DIGIT DIGIT DIGIT DIGIT

STRING STRING STRING STRING STRING STRING STRING

....... ----------
,,,,.,-

DIGITS

3n1 + 1
DIGIT

STRING

DIGITS

3n2 + 2
DIGIT

STRING

3n 3 + 3
DIGIT

STRING

Figure 7.28 Three possible grammar networks for connected digit recognition (after Lee and Rabiner
[9]).

Thus in this and the next section we will concentrate on aspects of this important application,
including forms of the grammar network that are often used, and some implementation and
performance aspects of current systems.

Figure 7.28 shows three general grammar networks for connected digit strings. The
network of part (a) is the simple search of the one-pass algorithm without level information.
Thus the network will always find the best string, but cannot control the string length, and
therefore is unusable for known string length tasks (e.g., choosing the best seven-digit
string to represent a spoken telephone number).

The network of Figure 7 .28, part b explicitly breaks out digit strings of length one to
seven digits, and therefore corresponds to the level building approach with Lmax = 7. As
we have seen, the local combinatorics search requires about 7 times the computation of the
simple grammar network of part a; however, local distance computation remains the same.

The network of Figure 7 .28, part c represents a reasonable compromise between
the networks of parts a and b in that it breaks out three distinct levels corresponding to
string lengths of 3n 1 + 1, 3n2 + 2, and 3n3 + 3 digits where n 1, n2 and n3 are arbitrary
integers. The idea here is that if the input is an n-digit string, the most likely errors are
single-digit insertions or deletions, at which point one of the three outputs will most likely
not have the single insertion or deletion, and will be the correct string. The computation
is only three times the combinatorics search of part a, with again the same computation

IPR2023-00037
Apple EX1013 Page 277

7,9

sec. 7.9 Segmental K-Means Training Procedure 427

for local distances.

SEGMENTAL K-MEANS TRAINING PROCEDURE

The discussion in the previous sections focused primarily on efficient and optimal solutions
to the so-called decoding problem, in which the likelihood (or distance) of a given speech
pattern (the unknown test pattern) corresponding to a string of words is evaluated. Of
equal importance is the connected word training problem in which the object is to derive
appropriate word reference patterns or models from a labeled training set of many connected
word sequences. The major problem here is the lack of an exact (precise) correspondence
between speech segments and the spoken words they correspond to. One could consider
manually segmenting and labeling each spoken training utterance into the individually
spoken words of each string. However, this process is a tedious one that is well known to
be error prone because of inconsistencies in determination of the exact boundaries between
adjacent words in the string. Hence what is required for connected word training is a
fully automatic procedure for both segmentation of a connected word string into individual
words, and model (pattern) training from the segmented strings. Such an algorithm is
described in this section.

The way in which the individual digit models are derived from connected word
training strings is a procedure called the segmental k-mean training procedure, which is
a straightforward variation on the well-known k-means iteration (e.g., as used for vector
quantizer design) [11-13). The basic idea is to have a training set of labeled connected
digit strings, and an initial set of digit models (e.g., isolated digit models). (The procedure
to be described works even without an initial set of digit models, but we will not describe
how this is accomplished here.)

The segmental k-means training procedure (as shown in Figure 7.29) works as follows
(when used for training HMMs):

1. Given the initial model (the set of word pattern files) and the (labeled) training files,
any of the connected word recognition procedures is used to segment each training
string into individual digit tokens which are stored in appropriate files according to
the identity of the digits. (This is the segmentation phase into words.)

2. Each file of word tokens (e.g., the file for all the ls in the training set) is then
segmented into states and within each state the parameters of the mixture density
(the mixture weights, means, and covariances) are determined using a standard VQ
clustering procedure. The result of this procedure (which we call the word pattern
building algorithm) is an updated set of word models.

3. A test for convergence is made, either based on a set of testing files or based on the
likelihood scores of the training set files. If the convergence test shows continuing
improvement in performance, the procedure is iterated (i.e., steps l and 2 are repeated
using the updated set of word models); otherwise the procedure is terminated and the
updated set of models is the final set of models.

IPR2023-00037
Apple EX1013 Page 278

428 Chap. 7 Speech Recognition Based on Connected Word Models

r -.,.. ~ LEVEL
...... _,

BUILDING WORD
~ TRAINING .

WORD PATTERN -
.... FILES., SEGMENTATION ..._ FILES.,

,,,.. ~ ~

~ WORD 1 ~
TOKENS

,
~

I~ WORD 2 ~ WORD
TOKENS PATTERN _,

~ BUILDING •
• ALGORITHM

•
.... _,

~ WORDV 1---t .,
TOKENS _,

TEST FOR
CONVERGENCE

♦
(DONE)

Figure 7.29 The segmental k-means training algorithm for connected
word strings (after Rabiner et al. [13)).

7.10 <::ONNECTED DIGIT REC!OGNITION IMPLEMENTATION

A block diagram of a canonic system for connected digit recognition is shown in Figure 7 .30.
There are three basic steps in the recognition process, namely:

1. Spectral analysis, in which the speech signal, s(n), is converted to an appropriate
spectral representation, e.g., filter-bank vector, LPC-based vector, ear model vector.

2. Connected word pattern matching, in which the sequence of spectral vectors of the
unknown (test) connected digit string is matched against whole word (single digit)
patterns using any of the algorithms discussed in this chapter. The output of this
process is a set of candidate digit strings, generally of different lengths, ordered by
distance (likelihood, probability) score.

3. Postprocessing, in which the candidate digit strings are subjected to further process
ing (e.g., based on digit durations, word stress, etc.) so as to eliminate unreasonable
(unlikely) candidates. The postprocessor chooses the most likely digit string from
the ordered list of candidates which passed the postprocessor tests.

IPR2023-00037
Apple EX1013 Page 279

sec. 7.10 Connected Digit Recognition Implementation 429

SINGLE
DIGIT

PATTERNS

,.
RECOGNIZED S(n)~ SPECTRAL . CONNECTED WORD DIGIT

ANALYSIS - PATTERN MATCHING ---+ POSTPROCESSOR .
STRING -

Figure 7.30 Block diagram of connected digit recognition method (after Rabiner et al. [13)).

In the remainder of this section we present an overview of the techniques that are currently
used to provide the best performance (highest string accuracy) on this task.

7.10.1 HMM-Based System for Connected Digit Recognition

The system that provides the highest reported string accuracy on a standard testing set is
one based on LPC cepstral analysis and HMMs. In particular, the spectral analysis uses an
LPC front end with the following characteristics:

• sampling rate---6.67 kHz

• analysis window size-300 samples (45 msec)

• analysis window shift-1OO samples (15 msec)

• LPC order-8

• cepstrum order-12

• delta cepstrum order-12

• delta-delta (second difference) cepstrum order-12

• cepstral window-raised, sinelike window

The observation vector used was a 38-component vector consisting of 12 cepstral co
efficients, 12 delta cepstrum coefficients, 12 delta-delta cepstral coefficients, delta log
energy, and delta-delta log energy. (The log energy was used directly in the evaluation of
model likelihoods on the basis of measured histograms, rather than as a component of the
observation vector.)

The hidden Markov models used for each digit model were left-to-right models of
the type shown in Figure 7 .31. Each model had N states (N varied from 5 to IO for
different digits), and within states a continuous mixture density was used to characterize
the observation vector, where the number of mixture components per state was as few
as 3 (for speaker-trained models) and as many as 64 (for speaker independent models).
In addition to the spectral density, an empirically derived log energy probability density
(e.g., a histogram) was used within each state (with appropriate weighting), as well as an
empirically derived state duration density. For the postprocessor a single Gaussian digit
duration density was used_ based on the measured mean duration and variance from the
training set.

IPR2023-00037
Apple EX1013 Page 280

430 Chap. 7 Speech Recognition Based on Connected Word Models

a,, 0 22 033 044 055 = 1

FROM PREVIOUS TO SUCCEEDING
LEVEL

LEVEL __ .._"a
if-►--

2 3 4 N=5

I I I I I
I I

I I I

I I I I I
I I I I I

OBSERVATION b110) b2(0) b3 (O) b4(0) b5(0)

DENSITY

ENERGY P1 (E) p2(E) P3(E) P4(E) p5(E)

PROBABILITY

" A A A A

STATE P1 (T) P2(T) P3(T) P4(T) P5(T)
DURATION
PROBABILITY

Figure 7.31 Connected digit HMM (after Rabiner et al. I 13)).

7.10.2 Performance Evaluation on Connected Digit Strings

To evaluate the perfonnance of connected digit recognition algorithms ([13-15]), two
databases have been used:

1. DB50, consisting of 50 adult talkers (25 male, 25 female), from the local, nontechnical
population of Murray Hill, New Jersey. Each talker provided from 600 to 1150 digit
strings, for a total of 47,336 strings. The digit strings were recorded off of local,
dialed-up, telephone lines (100-3200 Hz bandwidth), and were variable in length
from 1 to 7 digits. Within each string the selection of digits was random from the
set of zero to nine (oh was excluded). All digit strings were spoken fluently with no
pauses.

2. Tl Set, consisting of a training set of 112 talkers (55 male, 57 female) with 22
regional accents, and a testing set of 113 additional talkers (56 male, 57 female) from
the same 22 regions with no overlap between training and testing set talkers. Each
talker spoke 77 connected digit strings of length 1-5 or 7 digits. The input provided
was wideband (I 00-7000 Hz) but was lowpass filtered to telephone bandwidth at
Bell Labs for compatibility with the OB50 set. There was a random selection of
digits within each string from the set of 11 digits including both zero and oh. Even
though talkers were requested to speak each string fluently with no pauses, a few
strings had internal pauses.

The first data base, OB50, was used for tests in a speaker-trained and a multispeaker mode,
whereas the second database, TI Set, was used for speaker-independent tests. To contrast
the spoken material in the two sets, Figure 7 .32 shows a plot of the average speaking rate
(measured in words per minute) of the two datasets as a function of the number of digits
in the string. It can be seen that the speaking rate of the TI talkers is somewhat lower than
that of the OB50 talkers (by from 10-20 wpm).

IPR2023-00037
Apple EX1013 Page 281

sec. 1.10 Connected Digit Recognition Implementation

170
w
I-
:,
z 160
2
a:
w
Cl. 150
(fl

0
a:
0
3 140
z
w
l-
ei 130
a:
w
C)

ci
a:: 120
w
>
cf

57 TALKER
DATABASE

Tl DATABASE

110 --~---:----:----l--.....l. __ L,__..J
2 3 4 5 6 7

NUMBER DIGITS PER STRING

Figure 7.32 Average speaking rate of talkers in the two connected digit
databases as a function of the number digits per string (after Rabiner et al. (13]).

431

The conditions used in the performance evaluations were as follows (when used for
training HMMs):

1. Speaker-Trained Mode (SO Talkers)-For each talker, half the strings (randomly
selected) were used for training, the other half for testing. A single HMM per digit
was used. (For this test the observation vector did not use either energy or delta-delta
cepstral components.)

2. Multispeaker Mode (SO Talkers)-One-fourth of the training set, as in the speaker
trained mode, was used for training 6 models per digit (using clustering techniques);
the same testing set was used as in the speaker trained mode. (Again the delta-delta
cepstral components or energy were not used in the observation vectors.)

3. Speaker-Independent Mode (22S Talkers)-The specified training and testing sets
were used to create a single HMM per digit (based on the 38 parameter observation
vectors). No silence model was created to account for pauses within digit strings.

The resulting performance of the connected digit recognizer is shown in Table 7.1.
For each of the three testing conditions, results are given for self-test (namely, testing
on the training data) and for the true testing set, in terms of average string error rates
(%) for unknown length (UL) strings (i.e., allowing insertions and deletions as well as
substitutions), as well as for known length (KL) strings (i.e., only allowing strings of the
correct length). Performance in all three modes is comparable with string error rates around
1-3% for unknown length strings, and 0.4-1.7% for known length strings. (Performance

IPR2023-00037
Apple EX1013 Page 282

432 Chap. 7 Speech Recognition Based on Connected Word Models

TABLE 7.1. Average String Error Rates(%) for Connected
Digit Recognition Tests

Training Data Testing Data

Mode UL KL UL KL

Speaker Trained 0.4 0.16 0.8 0.35
Multi-Speaker 1.7 1.0 2.85 l.65
Speaker Independent 0.3 0.05 l.4 0.8

scores for speaker-trained and multispeaker modes are underbounds, since the tests were
not performed with the extended observation vector used in the speaker-independent mode
tests.)

7 .11 SUMMARY

In this chapter we have shown how the results presented in earlier chapters on time alignment
of single words and phrases can be extended to the problem of aligning an input consisting
of a sequence of words to a concatenation of individual word patterns. We have shown
how an optimal matching can be achieved using one of several different procedures, and
we have also shown how the basic ideas can be applied to either templates or statistical
models. By way of example, we showed how the techniques described have been applied
to the problem of recognizing a fluently spoken string of digits with high performance.

REFERENEES

[1] H. Sakoe, "Two-Level DP Matching-A Dynamic Programming-Based Pattern Matching
Algorithm for Connected Word Recognition," IEEE Trans. Acoustics, Speech, Signal Proc.,
ASSP-27 (6): 588-595, December 1979.

[2] H. Sakoe, "A Generalized Two-Level DP-Matching Algorithm for Continuous Speech
Recognition," Trans. of the IEE of Japan, E65 (11): 649--656, November 1982.

[3] C.S. Myers and L.R. Rabiner, "A Level Building Dynamic Time Warping Algorithm for
Connected Word Recognition," IEEE Trans. Acoustics, Speech, Signal Proc., ASSP-29 (2):
284--297, April 1981.

[4] C.S. Myers and L.R. Rabiner, "Connected Digit Recognition Using a Level-Building DTW
Algorithm," IEEE Trans. Acoustics, Speech, Signal Proc., ASSP-29 (3): 351-363, June
1981.

[5] T.K. Vintsyuk, "Element-Wise Recognition of Continuous Speech Consisting of Words
From a Specified Vocabulary," Kibernetika (Cybernetics), No. 2: 133-143, March-April
1971.

[6] J.S. Bridle, M.D. Brown, and R.M. Chamberlain, "An Algorithm for Connected Word
Recognition," Proc. lCASSP 82, Paris, 899-902, May 1982.

IPR2023-00037
Apple EX1013 Page 283

chap. 7 References 433

[7] J .S. Bridte, M.D. Brown, and R.M. Chamberlain, "Continuous Connected Word Recognition
Using Whole Word Templates," The Radio and Electronic Engineer, 53 (4): 167-175, April
1983.

[8] H. Ney, "The Use of a One-Stage Dynamic Programming Algorithm for Connected Word
Recognition," IEEE Trans. Acoustics, Speech, Signal Proc., ASSP-32 (2): 263-271, April
1984.

[9] C.H. Lee and L.R. Rabiner, "A Frame-Synchronous Network Search Algorithm for Con
nected Word Recognition," IEEE Trans. Acoustics, Speech, Signal Proc., 37 (I 1): 1649-
1658, November 1989.

[10) C.S. Myers and L.R. Rabiner, "A Comparative Study of Several Dynamic Time-Warping
Algorithms for Connected-Word Recognition," Bell System Tech. J., 60 (7): 1389-1409,
September 1981.

[l l] B.H. Juang and L.R. Rabiner, "The Segmental K-Means Algorithm for Estimating Param
eters of Hidden Markov Models," IEEE Trans. Acoustics, Speech, Signal Proc., 38 (9):
1639-1641, September 1990.

[12] L.R. Rabiner, J.G. Wilpon, and B.H. Juang, "A Segmental K-Means Training Procedure for
Connected Word Recognition," AT&T Tech. J., 64 (3): 21~0, May 1986.

[13] L.R. Rabiner, J.G. Wilpon, and B.H. Juang, "A Model-Based Connected Digit Recogni
tion System Using Either Hidden Markov Models or Templates," Computer Speech, and
Language, 1 (2): 167-197, December 1986.

(14] L.R. Rabiner, J.G. Wilpon., and F.K. Soong, "High Performance Connected Digit Recogni
tion Using Hidden Markov Models," IEEE Trans. Acoustics, Speech, Signal Proc., 37 (8):
1214-1225, August 1989.

[15] J.G. Wilpon, C.H. Lee, and L.R. Rabiner, "Improvements in Connected Digit Recognition
Using Higher Order Spectral and Energy Features," Proc. ICASSP 91, Toronto, Ontario,
Canada, May 1991.

IPR2023-00037
Apple EX1013 Page 284

Chapter 8

LARGE VOCABULARY
CONTINUOUS SPEECH

RECOGNITION

8.1 INTRODUCTION

Throughout this book we have developed a wide range of tools, techniques, and algorithms
for attacking several fundamental problems in speech recognition. In the previous chapter
we saw how the different techniques came together to solve the connected word recognition
problem. In this chapter we extend the concepts to include issues needed to solve the large
vocabulary, continuous speech recognition problem. We will see that the fundamental ideas
need modification because of the use of subword speech units; however, a great deal of the
formalism for recognition, based on word units, is still preserved.

The standard approach to large vocabulary continuous speech recognition is to assume
a simple probabilistic model of speech production whereby a specified word sequence, W,
produces an acoustic observation sequence Y, with probability P(W, Y). The goal is then
to decode the word string, based on the acoustic observation sequence, so that the decoded
string has the maximum a posteriori (MAP) probability, i.e.,

W 3 P(WIY) = maxP(WIY).
w

(8.1)

Using Bayes' Rule, Equation (8.1) can be written as

P(WIY) = P(YIW)P(W)
P(Y) •

(8.2)

434

i

IPR2023-00037
Apple EX1013 Page 285

sec. 8.2 Subword Speech Units

Since P(Y) is independent of W, the MAP decoding rule of Eq. (8.1) is

W = arg max P(YIW)P(W).
w

435

(8.3)

The first term in Eq. (8.3), P(YIW), is generally called the acoustic model, as it estimates the
probability of a sequence of acoustic observations, conditioned on the word string. The way
in which we compute P(YIW), for large vocabulary speech recognition, is to build statistical
models for subword speech units, build up word models from these subword speech
unit models (using a lexicon to describe the composition of words), and then postulate
word sequences and evaluate the acoustic model probabilities via standard concatenation
methods. Such methods are discussed in Sections 8.2-8.4 of this chapter.

The second term in Eq. (8.3), P(W), is generally called the language model, as it
describes the probability associated with a postulated sequence of words. Such language
models can incorporate both syntactic and semantic constraints of the language and the
recognition task. Often, when only syntactic constraints are used, the language model
is called a grammar and may be of the form of a formal parser and syntax analyzer, an
N-gram word model (N = 2, 3, ...), or a word pair grammar of some type. Generally
such language models are represented in a finite state network so as to be integrated into
the acoustic model in a straightforward manner. We discuss language models further in
Section 8.5 of this chapter.

We begin the chapter with a discussion of subword speech units. We formally define
subword units and discuss their relative advantages (and disadvantages) as compared to
whole-word models. We next show how we use standard statistical modeling techniques
(i.e., hidden Markov models) to model subword units based on either discrete or continuous
densities. We then show how such units can be trained automatically from continuous
speech, without the need for a bootstrap model of each of the subword units. Next we
discuss the problem of creating and implementing word lexicons (dictionaries) for use in
both training and recognition phases. To evaluate the ideas discussed in this chapter we
use a specified database access task, called the DARPA Resource Management (RM) task,
in which there is a word vocabulary of 991 words (plus a silence or background word), and
any one of several word grammars can be used. Using such a system, we show how a basic
set of subword units performs on this task. Several directions for creating subword units
which are more specialized are described, and several of these techniques are evaluated on
the RM task. Finally we conclude the chapter with a discussion of how task semantics can
be applied to further constrain the recognizer and improve overall performance.

8.2 SUBWORD SPEEGH UNITS

We began Chapter 2 with a discussion of the basic phonetic units of language and discussed
the acoustic properties of the phonemes in different speech contexts. We then argued
that the acoustic variability of the phonemes due to context was sufficiently large and not
well understood, that such units would not be useful as the basis for speech models for
recognition. Instead, we have used whole-word models as the basic speech unit, both for

IPR2023-00037
Apple EX1013 Page 286

436 Chap. 8 Large Vocabulary Continuous Speech Recognition

isolated word recognition systems and for connected word recognition systems, because
whole words have the property that their acoustic representation is well defined, and the
acoustic variability occurs mainly in the region of the beginning and the end of the word.
Another advantage of using whole-word speech models is that it obviates the need for a
word lexicon, there~y making the recognition structure inherently simple.

The disadvantages of using whole-word speech models for continuous speech recog
nition are twofold. First, to obtain reliable whole-word models, the number of word
utterances in the training set needs to be sufficiently large, i.e., each word in the vocab
ulary should appear in each possible phonetic context several times in the training set.
In this way the acoustic variability at the beginning and at the end of each word can be
modeled appropriately. For word vocabularies like the digits, we know that each digit
can be preceded and followed by every other digit; hence for an I I-digit vocabulary (zero
to nine plus oh), there are exactly 121 phonetic contexts (some of which are essentially
identical). Thus with a training set of several thousand digit strings, it is both realistic
and practical to see every digit in every phonetic context several times. Now consider a
vocabulary of l()(X) words with an average of 100 phonetic contexts for both the beginning
and end of each word. To see each word in each phonetic context exactly once requires
I 00 x I 000 x 100 = 10 million carefully designed sentences. To see each combination 10
times requires 100 million such sentences. Clearly, the recording and processing of such
homogeneous amounts of speech data is both impractical and unthinkable. Second, with
a large vocabulary the phonetic content of the individual words will inevitably overlap.
Thus storing and comparing whole-word patterns would be unduly redundant because the
constituent sounds of individual words are treated independently, regardless of their iden
tifiable similarities. Hence some more efficient speech representation is required for such
large vocabulary systems. This is essentially the reason we use subword speech units.

There are several possible choices for subword units that can be used to model speech.
These include the following:

• Phonelike units (PLUs) in which we use the basic phoneme set (or some appropri
ately modified set) of sounds but recognize that the acoustic properties of these units
could be considerably different than the acoustic properties of the "basic" phonemes
[1-7]. This is because we define the units based on linguistic similarity but model
the unit based on acoustic similarity. In cases in which the acoustic and phonetic
similarities are roughly the same (e.g., stressed vowels) then the phoneme and the
PLU will be essentially identical. In other cases there can be large differences and a
simple one-to-one correspondence may be inadequate in terms of modeling accuracy.
Typically there are about 50 PLUs for English.

• Syllable-like units in which we again use the linguistic definition of a syllable
(namely a vowel nucleus plus the optional initial and final consonants or consonant
clusters) to initially define these units, and then model the unit based on acoustic
similarity. In English there are approximately 10,000 syllables.

• Dyad or demisyllable-like units consisting of either the initial (optional) consonant
cluster and some part of the vowel nucleus, or the remaining part of the vowel nucleus
and the final (optional) consonant cluster [8]. For English there is something on the

IPR2023-00037
Apple EX1013 Page 287

Sec. 8.2 Subword Speech Units 437

order of 2000 demisyllable-like units.

• Acoustic units, which are defined on the basis of clustering speech segments from
a segmentation of fluent, unlabeled speech using a specified objective criterion (e.g.,
maximum likelihood) [9]. Literally a codebook of speech units is created whose
interpretation, in tenns of classical linguistic units, is at best vague and at worst totaJly
nonexistent. It has been shown that a set of 256-512 acoustic units is appropriate for
modeling a wide range of speech vocabularies.

Consider the English word segmentation. Its representation according to each of the above
subword unit sets is

• PL Us: /s/ /€/ /g/ /m/ /a/ /n/ /t/ /eY / /sh/ /a/ /n/ (11 units)

• syllables: /seg/ /men/ /ta/ /tion/ (4 syllables)

• demisyllables: /sc./ /r.g/ /ma/ /an/ /teY / /eYsh/ /sha/ /an/ (8 demisyllables)
• acoustic units: 17 111 37 3 241 121 99 171 37 (9 acoustic units).

We see, from the above example, that the number of subword units for this word can be as
small as 4 (from a set of I 0,000 units) or as large as 11 (from a set of 50 units).

Since each of the above subword unit sets is capable of representing any word in the
English language, the issues in the choice of subword unit sets are the context sensitivity
and the ease of training the unit from fluent speech. (In addition, for acoustic units, an
issue is the creation of a word lexicon since the units themselves have no inherent linguistic
interpretation.) It should be clear that there is no ideal (perfect) set of subword units.
The PLU set is extremely context sensitive because each unit is potentially affected by its
predecessors (one or more) and its followers. However, there is only a small number of
PLUs and they are relatively easy to train. On the other extreme are the syllables which
are longest units and are the least context sensitive. However, there are so many of them
that they are almost as difficult to train as whole-word models.

For simplicity we will initially assume that we use PLUs as the basic speech units.
In particular we use the set of 47 PLUs shown in Table 8.1 (which includes an explicit
symbol for silence -h#). For each PLU we show an orthographic symbol (e.g., aa) and a
word associated with the symbol (e.g., father). (These symbols are essentially identical to
the ARPAPET alphabet of Table 2.1; lowercase symbols are used throughout this chapter
for consistency with the DARPA community.) Table 8.2 shows typical pronunciations
for several words from the DARPA RM task in terms of the PLUs in Table 8.1. A strong
advantage of using PLU s is the ease of creating word lexicons of the type shown in Table 8.2
from standard (electronic) dictionaries. We will see later in this chapter how we exploit the
advantages of PLU s, while reducing the context dependencies, by going to more specialized
PLUs which take into consideration either the left or right (or both) contexts in which the
PLU appears.

One problem with word lexicons of the type shown in Table 8.2 is that they don't easily
account for variations in word pronunciation across different dialects and in the context of
a sentence. Hence a simple word like "a" is often pronounced as /ey/ in isolation (e.g., the

IPR2023-00037
Apple EX1013 Page 288

438 Chap. 8 Large Vocabulary Continuous Speech Recognition

TABLE 8.1. Set of basic PLUs for speech.

Number Sl:'.mbol Word Number Sl:'.mbol Word

1 h# silence 26 k kick

2 aa father 27 led

3 ae bat 28 m mom

4 ah butt 29 n no

5 ao bought 30 ng sing

6 aw bough 31 ow boat

7 ax again 32 oy boy

8 axr diner 33 p pop

9 ay bite 34 r red

10 b bob 35 s sis

11 ch church 36 sh shoe

12 d dad 37 t tot

13 dh they 38 th thief

14 eh bet 49 uh book

15 el bottle 40 uw boot

16 en button 41 V very

17 er bird 42 w wet

18 ey bait 43 y yet

19 f fief 44 z zoo

20 g gag 45 zh measure

21 hh hag 46 dx butter
22 ih bit 47 nx center
23 ix roses
24 iy beat
25 jh judge

TABLE 8.2. Typical word pronunciations (word lex-
icon) based on context-independent
PLUs.

Word
Number of

2hones
Transcription

a ax
above 4 ax b ah V

bad 3 b ae d
carry 4 k ae r iy
define 5 d iy f ay n
end 3 eh n d
gone 3 g ao n
hours 4 aw w axr z

IPR2023-00037
Apple EX1013 Page 289

/

sec. 8.3 Subword Unit Models Based on HMMs

WORD MODEL

SUB-WORD UNIT

B M

(a)

(b)
---+

Figure 8.1 HMM representations of a word (a) and a subword
unit (b).

439

letter A), but is pronounced as /ax/ in context. Another example is a word like "data," which
can be pronounced as /d ey tax/ or /d ae tax/ depending on the speaker's dialect. Finally
words like "you" are normally pronounced as /y uw/ but in context often are pronounced as
/jh ax/ or /jh uh/. There are several ways of accounting for word pronunciation variability,
including multiple entries in the word lexicon, use of phonological rules in the recognition
grammar, and use of context dependent PLUs. We will discuss these options later in this
chapter.

8.3 SUBWORD UNIT MODELS BASED ON HMMS

As we have shown several times in this book, the most popular way in which speech is
modeled is as a left-to-right hidden Markov model. As shown in Figure 8. la, a whole-word
model typically uses a left-to-right HMM with N states, where N can be a fixed value (e.g.,
5-10 for each word), or can be variable with the number of sounds (phonemes) in the
word, or can be set equal to the average number of frames in the word. For subword units,
typically, the number of states in the HMM is set to a fixed value, as shown in Figure 8.1 b
where a three-state model is used. This means that the shortest tokens of each subword
unit must last at least three frames, a restriction that seems reasonable in practice. (Models
that use jumps to eliminate this restriction have been studied [2].)

To represent the spectral density associated with the states of each subword unit,
one of three approaches can be used. These approaches are illustrated in Figure 8.2.
Perhaps the simplest approach is to design a VQ-based codebook for all speech sounds (as
shown in part a of the figure). For this approach the probability density of the observed

IPR2023-00037
Apple EX1013 Page 290

440 Chap. 8 Large Vocabulary Continuous Speech Recognition

ACOUSTIC SPACE
(COVERED BY VO CELLS)

MODEL 1

ACOUSTIC SPACE
(COVERED BY MIXTURES OF
CONTINUOUS DENSITIES)

ACOUSTIC SPACE
(COVERED BY CONTINUOUS

DENSITIES)

(0)

DISCRETE DENSITY
VO CODEBOOK

x = CENTROID

(bl

CONTINUOUS DENSITY
MIXTURE CASE

(Cl

CONTINUOUS DENSITY
CODEBOOK

Figure 8.2 Representations of the acoustic space of speech by (a) parti
tioned VQ cells, (b) sets of continuous mixture Gaussian densities, and (c)
a continuous-density codebook (after Lee et al. [7]).

spectral sequence within each state of each PLU is simply a discrete density defined over
the codebook vectors. The interpretation of the discrete density within a state is that of
implicitly isolating the part of the acoustic space in which the spectral vectors occur and
assigning the appropriate codebook vector (over that part of the space) a fixed probability for
spectral vectors within each isolated region regardless of its proximity to the corresponding
codebook vector. A ~econd alternative, illustrated in part b of Figure 8.2, is to represent
the continuous probability density in each subword unit state by a mixture density that
explicitly defines the part of the acoustic space in which the spectral vectors occur. Each
mixture component has a spectral mean and variance that is highly dependent on the spectral
characteristics of the subword unit (i.e., highly localized in the acoustic space). Hence the
models for different subword units usually do not have substantial overlap in the acoustic
space. Finally, a third alternative is to design a type of continuous density codebook over
the entire acoustic space, as illustrated in part c of Figure 8.2. Basically the entire acoustic

8.

IPR2023-00037
Apple EX1013 Page 291

sec. 8.4 Training of Subword Units 441

space is covered by a set of independent Gaussian densities, derived in much the same
way as the discrete VQ codebook, with the resulting set of means and covariances stored
in a codebook. This alternative is a compromise between the previous two possibilities. It
differs from the discrete density case in the way the probability of an observation vector is
computed; instead of assigning a fixed probability to any observation vector that falls withjn
an isolated region, it actually determines the probability according to the closeness of the
observation vector to the codebook vector (i.e., it calculates the exponents of the Gaussian
distributions). For each state of each subword unit, the density is assumed to be a mixture of
the fixed codebook densities. Hence, even though each state is characterized by a continuous
mixture density, one need only estimate the set of mixture gains to specify the continuous
density completely. Furthermore, since the codebook set of Gaussian densities is common
for all states of all subword models, one can precompute the likelihoods associated with
an input spectral vector for each of the codebook vectors, and ultimately determine state
likelihoods using only a simple dot product with the state mixture gains. This represents
a significant computational reduction over the full mixture continuous density case. This
mixed density method has been called the tied mixture approach [10, 28] as well as the
semicontinuous modeling method [11] and has been applied to the entire acoustic space
as well as to pieces of the acoustic space for detailed PLU modeling. This method can be
further extended to the case in which a set of continuous density codebooks is designed,
one for each state of each basic (context independent) speech unit. One can then estimate
sets of mixture gains appropriate to context dependent versions of each basic speech unit
and use them appropriately for recognition. We will return to this issue later in this chapter.

8.4 TRAINING OF SUBWORD UNITS

Implicitly it would seem that training of the models for subword units would be extremely
difficult, because there is no simple way to create a bootstrap model of such short, im
precisely defined, speech sounds. Fortunately, this is not the case. The reason for this is
because of the inherent tying of subword units across words and sentences-that is, every
subword unit occurs a large number of times in any reasonable size training set. Hence
estimation algorithms like the forward-backward procedure, or the segmental k-means al
gorithm, can start with a uniform segmentation (flat or random initial models) and rapidly
converge to the best model estimates in just a few iterations.

To illustrate how models of subword units are estimated, assume we have a labeled
training set of speech sentences, where each sentence consists of the speech waveform and
its transcription into words. (We assume that waveform segmentation into words is not
available.) We further assume a word lexicon is available that provides a transcription of
every word in the training set strings in terms of the set of subword units being trained. We
assume that silence can (but needn't) precede or follow any word within a sentence (i.e.,
we allow pauses in speaking), with silence at the beginning and end of each sentence the
most likely situation. Based on the above assumptions, a typical sentence in the training
set can be transcribed as

IPR2023-00037
Apple EX1013 Page 292

442 Chap. 8

SENTENCE (Sw):

4>

Large Vocabulary Continuous Speech Recognition

4>
-►, W W2 ,, ', 1 , ',

c5 • b>---4•--6 • b •

w, ,... ',
o • • • 01--------.cf • b

silence silence silence

WORD (W1):

U1(W2) U2(W1) UL(W1)(W1)
o---o 0 • • • 0 • 0

SUB-WORD UNIT (PLU):

_______ Q_ . Q ' _Q ______ _

Figure 8.3 Representation of a sentence, word, and subword unit in
terms of FSNs.

in which each W· 1 < i < I is a word in the lexicon. Hence the sentence "show all alerts" ,, - - ,
is a three-word sentence with W1 = show, W2 = all, and W3 = alerts. Each word can
be looked up in the lexicon to find its transcription in terms of subword units. Hence the
sentence Scan be written in terms of subword units as

Su: U1(Wi)U2(W1) ... UL(Wi)(W,) EB U1(W2)U2(W2) · · · ul(W2)(W2) ffi
U1(W3)U2(W3) ... ul(W3)(W3) EB··· EB U1(W1)U2(W1) • · · ul(W1)(W1),

where l(W 1) is the length (in units) of word W1, etc. Finally we replace each subword unit
by its HMM (the three-state models shown in Figure 8.1) and incorporate the assumptions
about silence between words to give an extended HMM for each sentence.

The above process is illustrated (in general) in Figure 8.3. We see that a sentence
is represented as a finite-state network (FSN) where the arcs are either words or silence
or null arcs (where a null (¢) transition is required to skip the alternative silence). Each
word is represented as an FSN of subword units and each subword unit is represented as a
three-state HMM.

Figure 8.4 shows the process of creating the composite FSN for the sentence "Show all
alerts," based on a single-word pronunciation lexicon. One feature of this implementation
is the use of a single-state HMM for the silence word. This is used (rather than the three
state HMMs used for each PLU), since silence is generally stationary and has no temporal
structure to exploit.

When there are multiple representations of words in the lexicon (e.g., for two or more
distinct pronunciations) it is easy to modify the FSN of Figures 8.3 and 8.4 to add parallel
paths for the word arcs. (We will see that only one path is chosen in training, namely the
best representation of the actual word pronunciation in the context of the spoken sentence.)
Furthermore, multiple models of each subword unit can be used by introducing parallel
paths in the word FSNs and then choosing the best version of each subword unit in the
decoding process.

IPR2023-00037
Apple EX1013 Page 293

sec. 8.4 Training of Subword Units

SENTENCE (Sw): SHOW ALL ALERTS

4>
_,-►,, ,__..,

,, ' ,, '\
o • b• o b•

silence show silence all

WORDS:

sh ow
SHOW: 0 • 0 I 0

ax i
ALL: 0 I 0 0

ax i er
ALERTS:

SILENCE·
Q

COMPOSITE FSN:

silence alerts silence

s

~-o--o+---o-+,-~~~! 0
s : /sil

ending states

Figure 8.4 Creation of composite FSN for sentence "Show all alens."

443

Once a composite sentence FSN is created for each sentence in the training set, the
training problem becomes one of estimating the subword unit model parameters which
maximize the likelihood of the models for all the given training data. The maximum
likelihood parameters can be solved for using either the forward-backward procedure (see
Ref. [2] for example) or the segmental k-means training algorithm. The way in which
we use the segmental k-means training procedure to estimate the set of model parameters
(based on using a mixture density with M mixtures/state) is as follows:

1. Initialization: Linearly segment each training utterance into units and HMM states
assuming no silence between words (i.e., silence only at the beginning and end of
each sentence), a single lexical pronunciation of each word, and a single model for
each subword unit. Figure 8.5, iteration 0, illustrates this step for the first few units
of one training sentence. Literally we assume every unit is of equal duration initially.

2. Clustering: All feature vectors from all segments corresponding to a given state (i)
of a given subword unit are partitioned into M clusters using the k-means algorithm.
(This step is iterated for all states of all subword units.)

3. Estimation: The mean vectors, µ;k, the (diagonal) covariance matrices, U;k, and the

IPR2023-00037
Apple EX1013 Page 294

444 Chap. 8

ITERATION 0

Large Vocabulary Continuous Speech Recognition

ITERATION

h#
1
dh ih

1

I
I
I
I db
I
I
I
I
I I

I I
I I

I
s ,• lox lz

I I
y

__,JU-.L.J..-'--.IL....U....._J27

FRAME

ITERATION 2

I
I
I
I
I ,

100

db

:z 11y

1a.,1:s,,,,,,.::::::i..o:LL..1.J...L.--1l.--l.~-'--L...I...L.....J27

FRAME

ITERATION 4

100

..---.-"'T'--,-""'""-,.,..-..--:-~,-:-r7"189

' I I

I I I:
h# dhr rih s 1w ox,z r•Y

I I I I I: I

' I
'
:2 y

db

b,l::..£::J...l:U.....U...L-.LL-LL..-'-....L.J.-'-_J27

FRAME 100

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I I
~dh :ih rs y

h# dh
I

FRAME

TERATION 3

FRAME

TERATION 10

: I
I I
I I
I I
I I
I I

I '' I I I o I
I I I
I I o I

11h 1s IWCD12 y
I I ' I

FRAME

db

I
I
I
I
:iy

27
100

89

db

27
100

89

db

,z y
I

27
100

Figure 8.5 Segmentations of a training utterance resulting from the segmental
k-means training for the first several iterations (after Lee et al. [7]).

mixture weights, c;k, are estimated for each cluster k in state i. (This step is iterated
for all states of all subword units.)

4. Segmentatim1: The updated set of subword unit models (based on the estimation of
step 3) is used to resegment each training utterance into units and states (via Viterbi
decoding). At this point multiple lexical entries can be used for any word in the
vocabulary. Figure 8.5 shows the result of this resegmentation step for iterations 1-4
and 10 for one training utterance. It can be seen that by iteration 2 the segmentation
into subword units is remarkably stable.

5. Iteration: Steps 2-4 are iterated until convergence (i.e., until the overall likelihoods
stop increasing).

Figure 8.6 illustrates the resulting segmentation of the first few units of the utterance

IPR2023-00037
Apple EX1013 Page 295

sec. S.4 Training of Subword Units

al
'0
~

a::
w
~ .,
0 ' (l.

0
0

4000

;:;
:I:

>-
(.)
z
w
:,
0
w
a:
~ 0

0

' -o
..Jo
WO
~ :I:
....J

~
d:,
I-a:
....JI-
wen
0 f!j 0 u 0

WHAT IS THE CONSTELLATION+S GROSS DISPLACEMENT IN LONG TONS

h•

Figure 8.6

TIME (sec)

TIME (sec)

I I
I I I

w 100 :t h 'z

TIME (sec)

I
I
,00

I I

:n's

I

' I I

I I I
I I t

:t IOX:t
I I I

I I I
I I I
I I

' '

Segmentation of an utterance into PLUs (after Lee et al. (7)).

445

"What is the constellation " Shown in this figure are the power contour in dB (upper
panel), the running LPC spectral slices (the middle panel), and the likelihood scores and
delta-cepstral values (lower panel) for the first second of the sentence. The resulting
segmentations are generally remarkably consistent with those one might manually choose
based on acoustic-phonetic criteria. Since we use an acoustic criterion for choice of
segmentation points, the closeness of PLU units to true phonetic units is often remarkable,
especially in light of the phonetic variability in word pronunciation discussed previously.

In summary we have shown how one can use a. training set of speech sentences
that have only word transcriptions associated with each sentence and optimally determine
the parameters of a set of subword unit HMMs. The resulting parameter estimates are
extremely robust to the training material as well as to details of word pronunciation as
obtained from the word lexicon. The reason for this is that a common word lexicon (with
associated word pronunciation errors) is used for ~oth training and recognition; hence
errors in associating proper subword units to words are consistent throughout the process
and are less harmful than they would be in alternative methods of estimating parameters of
subword models.

The results of applying the segmental k-means training procedure to a set of 3990 •
training sentences from 109 different talkers, in terms of PLU counts and PLU likelihood
scores are shown in Table 8.3. A total of 155,000 PLUs occurred in the 3990 sentences
with silence (h#) having the most occurrences (10,638 or 6.9% of the total) and nx (flapped

IPR2023-00037
Apple EX1013 Page 296

446 Chap. 8 Large Vocabulary Continuous Speech Recognition

TABLE 8.3. PLU statistics on count and average likelihood score.

PLU Count %
Average

(Rank)
likelihood

h# 10638 6.9 18.5 (I)

r 8997 5.8 8.4 (45)
t 8777 5.7 9.7 (37)
ax 8715 5.6 7 .1 (47)
s 8625 5.6 15.4 (3)

n 8478 5.5 8.3 (46)
ih 6542 4.2 9.9 (35)
iy 5816 3.7 12.0 (17)
d 5391 3.5 8.5 (44)

ae 4873 3.1 13.3 (10)
e 4857 3.1 8.9 (41)
z 4733 3.0 12.4 (14)
eh 4604 3.0 11.2 (21)
k 4286 2.8 10.6 (27)
p 3793 2.4 14.3 (6)
m 3625 2.3 8.5 (43)
ao 3489 2.2 10.4 (32)
f 3276 2.1 17.7 (2)
ey 3271 2.1 14.5 (5)
w 3188 2.1 10.2 (34)
ix 3079 2.0 8.7 (42)
dh 2984 1.9 11.8 (18)
V 2979 1.9 12.0 (16)
aa 2738 1.8 10.3 (33)
b 2138 1.4 10.7 (25)
y 2137 1.4 13. l (11)
uw 2032 1.3 10.6 (26)
sh 1875 1.2 13. l (12)
ow 1875 1.2 10.9 (24)
axr 1825 1.2 9.5 (38)
ah 1566 1.0 11.3 (20)
dx 1548 1.0 10.4 (31)
ay 1527 1.0 13.9 (8)
en 1478 0.9 9.1 (40)
g 1416 0.9 9.8 (36)
hh 1276 0.8 11.4 (19)
th 924 0.6 14.1 (7)
ng 903 0.6 9.1 (39)
ch 885 0.6 12.5 (13)
el 863 0.6 11.0 (23)
er 852 0.5 10.6 (29)
jh 816 0.5 10.6 (28)
aw 682 0.4 13.6 (9)
uh 242 0.2 11.0 (22)
zh 198 0.1 12.2 (15)
oy 130 0.1 15.3 (4)
nx 57 0.04 10.4 (30)

IPR2023-00037
Apple EX1013 Page 297

sec. 8.5 Language Models for Large Vocabulary Speech Recognition 447

n) having the fewest occurrences (5 or 0.04% of the total). In tenns of average likelihood
scores, silence (h#) had the highest score (18.5) followed by f (17.7) ands (15.4), while
ax had the lowest score (7.1), followed by n (8.3) and r (8.4). (Note that, in this case, a
higher average likelihood implies less variation among different renditions of the particular
sound.) It is interesting to note that the PLUs with the three lowest average likelihood
scores (ax, n, and r) were among the most frequently occurring sounds (r was second,
n sixth, and ax fourth in frequency of occurrence). Similarly, some of the sounds with
the highest likelihood scores were among the least occurring sounds (e.g., oy was fourth
according to likelihood score but 21st according to frequency of occurrence).

5 LANGUAGE MODELS FOR LARGE VOCABULARY SPEECH RECOGNITION s.

Small vocabulary speech-recognition systems are used primarily for command-and-control
applications where the vocabulary words are essentially acoustic control signals that the
system has to respond to. (See Chapter 9 for a discussion of command-and-control appli
cations of speech recognition.) As such, these systems generally do not rely heavily on
language models to accomplish their selected tasks. A large vocabulary speech-recognition
system, however, is generally critically dependent on linguistic knowledge embedded in
the input speech. Therefore, for large vocabulary speech recognition, incorporation of
knowledge of the language, in the form of a "language" model, is essential. In this section
we discuss a statistically motivated framework for language modeling.

The goal of the (statistical) language model is to provide an estimate of the probability
of a word sequence W for the given recognition task. If we assume that Wis a specified
sequence of words, i.e.,

W = W1W2 .. ,WQ, (8.4)

then it would seem reasonable that P(W) can be computed as

P(W) = P(w1w2 ... WQ) = P(w1)P(w2lw1)P(w3lw1w2) ...

P(wQlw1w2 ... WQ-1). (8.5)

Unfortunately, it is essentially impossible to reliably estimate the conditional word prob
abilities, P(wjlw 1 ... Wj-d for all words and all sequence lengths in a given language.
Hence, in practice, it is convenient to use an N-gram word model, where we approximate
the term P(wjlw1 ... Wj-1) as

(8.6)

i.e., based only on the preceding N - 1 words. Even N-gram probabilities are difficult to
estimate reliably for all but N = 2 or possibly 3. Hence, in practice, it is often convenient
to use a word pair model that specifies which word pairs are valid in the language through
the use of a binary indicator function, i.e.,

I {
1 if wkwj is valid

P(w· Wk)= 1 0 otherwise
(8.7)

IPR2023-00037
Apple EX1013 Page 298

448 Chap. 8 Large Vocabulary Continuous Speech Recognition

Another simple language model, often called the no-grammar model, assumes P(wilwk) = 1
for all j and k, so that every word is assumed capable of being followed by every other
word in the language. In the next section we show how the word pair and the no-grammar
models can be implemented as finite state networks so as to be integrated simply into a
recognition decoding algorithm.

Alternative language models include formal grammars (e.g., context free or context
dependent grammar), N-grams of word classes (rather than words) etc. These types of
grammars provide more realistic models for natural language input to machines than the
artificial N-grams or words, or the word pair grammars. However, they are somewhat more
difficult to integrate with the acoustic decoding and hence will not be discussed here.

8.6 STATISTICAL LANGUAGE MODELING

In large vocabulary speech recognition, in which word sequences W are uttered to convey
some message, the language model P(W) is of critical importance to the recognition
accuracy as shown in Eq. (8.3). In most cases, the language model P(W) has to be
estimated from a given (large) text corpus. In this section we discuss how to construct such
a statistical language model from a (textual) training corpus.

For practical reasons, the word sequence probability P(W) is approximated by

Q

PN(W) = ITP(w;lw;-1,w;-2, ... ,w;-N+1),
i=l

(8.8)

which is called an N-gram language model. The conditional probabilities P(w;lw;_ 1,

... , Wi-N+ 1) can be estimated by the simple relative frequency approach,

PA(I) F(w;,w;-1, .•. ,w;-N+1)
W; W;-1, ... , Wi-N+I = --------,

F(w;-1, ... , w;-N+1)
(8.9)

in which Fis the number of occurrences of the string in its argument in the given training cor
pus. Obviously, in order for the estimate in Eq. (8.9) to be reliable, F(w;, w;_ 1, ... , w;-N+i)
has to be substantial in the given corpus. The implications of this are that the size of the
training corpus may be prohibitively large and that F(w;, w;_ 1, ... , w;-N+i) = 0 for many
possible word strings, w;, w;-1, ... , w;-N+ 1, due to the limited size of the corpus.

One way to circumvent this problem is to smooth the N-gram frequencies as suggested
by Jelinek et al. [12). Consider N = 3, the trigram model. The smoothing is done by
interpolating trigram, bigram and unigram relative frequencies

P(w lw w) _ F(w1, w2, W3) F(w1, w2) F(wi)
3 I, 2 - Pl F() + P2 F() + p3 ~ , w1, w2 w1 L.J F(w;)

(8.10)

in which the nonnegative weights satisfy p 1 + p2 + p3 = 1 and L F(w;) is the size of the
corpus. The weights depend on the values of F(w 1, w2) and F(w 1) and can be obtained by
applying the principle of cross-validation [12).

IPR2023-00037
Apple EX1013 Page 299

sec. 8.7 Perplexity of the Language Model

PERPLEXITY OF THE LANGUAGE MODEL s.1

449

Having constructed a language model from a training corpus, one may ask how well the
language model will perform in the context of speech recognition. This can be answered
based on the concept of source of information in information theory. To provide such
a measure of performance, we must first discuss several concepts, including entropy,
estimated entropy, and perplexity.

Consider an information source that puts out sequences of words (symbols) w1, w2,
... , WQ, each of which is chosen from a vocabulary V with size WI, according to some
stochastic law. The entropy of the source can be defined as

H = -
0
1~m00 (~) { LP<w,, w2, ••• , w0)Jog P(w 1, w2, ... , w0) }, (8.11)

in which P() is the probability of the argument string the source will put out according to
the stochastic law and the summation is over all string sequences w1, w2, ... , w0. If the
words in the string sequence are generated by the source in an independent manner

(8.12)

then
H = - ~ P(w) log P(w), (8.13)

wEV

which is sometimes referred to as the first-order entropy of the source (even if Eq. (8.12) is
not true).

The quantity Hof Eq. (8.11) can be considered as the average information of the
source when it puts out a word w. Equivalently, a source of entropy His one that has as
much information content as a source which puts out words equiprobably from a vocabulary
of size 2H.

If the source is ergodic (meaning its statistical properties can be completely charac
terized in a sufficiently long sequence that the source puts out), the entropy of Eq. (8.11) is
equivalent to

H = - lim (_!_) log P(w1, w2, ... , wo).
Q➔oo Q

(8.14)

In other words, we can compute the entropy from a "typical" (long) sequence of words
generated by the source. The length of this typical sequence (i.e., the corpus) has to
approach infinity, which is of course unattainable. We often compute H based on a finite
but sufficiently large Q; i.e.,

H = - (~) log P(w1, wi, ... , w0). (8.15)

An interesting interpretation of H from the perspective of speech recognition is that
it is the degree of difficulty that the recognizer encounters, on average, when it is to
determine a word from the same source. This difficulty, or uncertainty, is based on the
actual probability P(w 1, w2, ... , wQ) which, for natural languages, is usually not known

IPR2023-00037
Apple EX1013 Page 300

450 Chap. 8 Large Vocabulary Continuous Speech Recognition

beforehand and thus has to be estimated. (We do not include acoustic uncertainty in the
present context of language modeling.)

One way to estimate His to use P(W) = P(w 1, w2, ... , wo) from the language model.
For example, if the N-gram language model PN(W) (Eq. (8.8)) is used, an estimate of Hof
Eq. (8.15) is thus

(8.16)

In general,
1 .

Hp= - Q log P(w 1, w2, ... , wo), (8.17)

where P(w 1, w2, ... , w0) is an estimate of P(w 1, w2, ... , wo). The quantity Hp is an
estimated entropy as calculated from a sufficiently long sequence based on a language
model. If the source is ergodic and Q ➔ oo, Hp 2: H. Intuitively, this can be easily verified
by the fact that knowledge of the true probability P(w1, w2, ... , wo) is the best a recognizer
can use and any other probability estimate or language model can never make the task easier
for the recognizer. Since Hp is an indication of the recognition difficulty lower-bounded
by H, a language model that achieves a lower Hp (i.e., closer to H) is therefore considered
a better model than another language model which leads to a higher Hp.

Associated with Hp is a quantity called perplexity (often called the average word
branching factor of the language model) defined as

B _ 2Hp _ p"()-1/Q - - w1,w 2, .•• ,w0 . (8.18)

Note that Hp is the average difficulty or uncertainty in each word based on the language
model. When the recognizer uses this language model for the task, the difficulty it faces
is equivalent to that of recognizing a text generated by a source that chooses words from a
vocabulary size of B independently of each other and with equal probability. Another way
to view perplexity is to consider it as the average number of possible words following any
string of (N - 1) words in a large corpus based on an N-gram language model. Perplexity
is an important parameter in specifying the degree of sophistication in a recognition task,
from the source uncertainty to the quality of the language model.

8.8 OVERALL; RECOGNITION SYSTEM BASED ON SUBWORD UNITS

A block diagram of the overall continuous speech-recognition system based on subword
speech units is shown in Figure 8.7. The first step in the processing is spectral analysis to
derive the feature vector used to characterize the spectral properties of the speech input.
For the most part, we will consider spectral vectors with 38 components consisting of 12
cepstral components, 12 delta cepstral components, 12 delta-delta cepstral components,
delta log energy, and delta-delta log energy. (Systems with the first 12 and the first 24

IPR2023-00037
Apple EX1013 Page 301

