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Chapter 1 

The Speech Recognition 
Problem 

1.1 Introduction 

A speech recognizer is a device that automatically transcribes speech into 
text. It can be thought of as a voice-actuated "typewriter" in which a 
computer program carries out the transcription and the transcribed text 
appears on a workstation display. The recognizer is usually based on some 
finite vocabulary that restricts the words that can be "printed" out. Until 
we state otherwise, the designation word denotes a word form defined by 
its spelling. Two differently spelled inflections or derivations of the same 
stem are considered different words (e.g., table and tables). Homographs 
having different parts of speech (e.g., absent [VERB] and absent [ADJECTIVE]) 
or meanings (e.g., bank [FINANCIAL INSTITUTION] and bank [OF A RIVER]) 

constitute the same word. 
Figure 1.1, the speech waveform corresponding to an utterance of the 

chess move "Bishop moves to king knight five," illustrates our problem. 
The waveform was produced at Stanford University in the late 1960s in a 
speech recognition project undertaken by Raj Reddy [l]. 

Because the field was then in its infancy, Reddy tried to give himself all 
the conceivable but fair advantages. Recognition of spoken chess moves 
could be based on a small vocabulary, a restricted syntax, and a relatively 
complete world knowledge: The system knew which chess moves were 
legal, so that, for instance, a recognition hypothesis corresponding to a 
move of a piece to a square occupied by another piece of the same color 
could immediately be rejected. The speech was recorded by a very good 
microphone in a quiet environment, and the system was adjusted ( as well 
as the state of the art allowed) to the speaker. 
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The sentence "Bishop moves to king knight five" aligned with its speech waveform 

IPR2023-00037 
Apple EX1011 Page 16



The Speech Recognition Problem 3 

In early design strategy of the field, a recognizer would segment the 
speech into successive phones (basic pronunciation units [2]), then identify 
the particular phones corresponding to the segments, and finally transcribe 
the recognized phone strings into an English text. 

Figure 1.1 aligns the speech waveform with the spoken words. Inspect­
ing it, we can see that although the boundary between different speech 
events cannot be accurately placed, distinct events certainly appear in 
succession. So even though the boundaries are fuzzy, most of the segments 
seem to contain repeating nuclei that are candidates for recognition. 
Although this does not hold for stops1 like b (see the beginning of BISHOP) 
or k (beginning of KING), it does seem to hold for vowels such as i (BISHOP 
and KING) or u ( the first vowel of MOVES). But inspecting figure 1.1 more 
closely, we encounter a very big problem: The i of KING looks much more 
like the u of MOVES than it does like the i of BISHOP! So visually similar 
waveforms do not necessarily indicate perceptually similar sounds. 

Actually, context is involved here, and the apparent waveform sim­
ilarities are due to the influence of the nasality of the sound of ng that 
follows the i and of the sound of m that precedes the u sound. 

Having now indicated an aspect of why speech recognition is not an easy 
task, we are ready to begin its serious consideration. In this chapter we will 
formulate the large vocabulary 2 speech recognition problem mathemati­
cally, which will result in a recognizer's natural breakup into its compo­
nents. The chapter will conclude with the first example of self-organization 
from data: the basic vector quantization algorithm [11] that can be used 
to transform the speech signal into a sequence of symbols from a rela­
tively limited (and automatically selected!) alphabet. 

1. Stops, also called plosives, are sounds that consist of two parts, a stop portion 
and a release portion. English stops are b, d, g, k, p, t. [2] 

2. Although no hard and fast distinction between small and large vocabulary 
tasks exists, here are some examples of each: 

• Small vocabulary: recognition of digits, yes-no answers to questions, inventory 
control, etc. 
• Large vocabulary: text creation by dictation, transcription of e-mail, transcrip­
tion of telephone conversations, text creation for the handicapped. 

Small vocabulary tasks are of great economic importance. They are just not the 
subject of this book. 

IPR2023-00037 
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4 Chapter 1 

1.2 A Mathematical Formulation 

To discuss the problem of speech recognizer design, we need its mathe­
matical formulation. A precise statement of the problem leads directly to 
a fruitful decomposition into easier to treat subproblems. Our approach is 
statistical, 3 so the formulation will involve probabilities. Here it is [3] [4]: 

Let A denote the acoustic evidence ( data) on the basis of which the rec­
ognizer will make its decision about which words were spoken. Because 
we are dealing with digital computers, then without loss of generality we 
may assume that A is a sequence of symbols taken from some (possible 
very large) alphabet d: 

a;Ed (1) 

The symbols a; can be thought of as having been generated in time, as 
indicated by the index i. 

Let 

W = Wt , W2, ..• , Wn W;E"f'" (2) 

denote a string of n words, each belonging to a fixed and known vocabu­
lary "f/". 

If P(WIA) denotes the probability that the words W were spoken, given 
that the evidence A was observed, then the recognizer should decide in 
favor of a word string W satisfying 

W = arg max P(WIA) 
w (3) 

That is, the recognizer will pick the most likely word string given the 
observed acoustic evidence. 

Of course, underlying the target formula (3) is the tacit assumption that 
all words of a message are equally important to the user, that is, that 
misrecognition does not carry a different penalty depending on which 
word was misrecognized. Under this philosophy the warning "Fire!" 

3. No advanced results of probability or statistical theory will be used in this self­
contained text. The student is required simply to be comfortable with statistical 
concepts and be able to manipulate them intuitively. So although nothing in this 
text pres~es mo~e ~ha~ the knowledge of the first four chapters of a book like[~, 
the reqwred soph1sticatlon can probably be gained only by completing an entire 
course. 

IPR2023-00037 
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The Speech Recognition Problem 5 

carries no more importance in a crowded theater than an innocuous 
commercial announcement. But let that possible criticism pass. 4 

The well known Bayes' formula of probability theory allows us to 
rewrite the right-hand side probability of (3) as 

P(WIA) = P(W)P(AIW) 
P(A) (4) 

where P(W) is the probability that the word string W will be uttered, 
P(AIW) is the probability that when the speaker says W the acoustic 
evidence A will be observed, and P(A) is the average probability that A 
will be observed. That is, 

P(A) = L P(W')P(AIW') (5) 
W' 

Since the maximization in (3) is carried out with the variable A fixed 
(there is no other acoustic data save the one we are given), it follows from 
(3) and (4) that the recognizer's aim is to find the word string W that 
maximizes the product P(W)P(AIW), that is, it satisfies 

W = arg max P(W)P(AIW) 
w 

1.3 Components of a Speech Recognizer 

(6) 

Formula ( 6) determines what processes and components are of concern in 
the design of a speech recognizer. 

1.3.1 Acoustic Procesmng 
First, it is necessary to decide what acoustic data A will be observed. That 
is, one needs to decide on a front end that will transform the pressure 
waveform (which is what sound is) into the symbols a; with which the 
recognizer will deal. So in principle, this front end includes a microphone 
whose output is an electric signal, a means of sampling that signal, and a 
manner of processing the resulting sequence of samples. 

4. Strictly speaking, formula (3) is appropriate only if we are after a perfect tran­
scription of the utterance, that is, if one error is as bad as many. Were we to accept 
that errors are inevitable (which they certainly are) and aim explicitly at mini­
mizing their number, a much more complex formula would be required. So our 
formula only approximates (it turns out very fruitfully) what we are intuitively 
after. 

I 
L 
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6 Chapter I 

Signal - Comparator -- - -
Speech Processor CJ; a. 

' 

Pa, 

Prototype 

Storage 

Figure 1.2 
A schematic diagram of a recognizer front end (acoustic processor) 

In this book, dedicated to statistical models of speech recognition, we 
will not address the front-end problem, except in the penultimate section 
of this chapter. 5 For the present, we will assume that the alphabet .st/ is 
simply given. Those interested in front-end design should consult 
the many books and articles that thoroughly discuss signal processing [6] 
[7]. For the reader to gain some idea of what might be involved, how­
ever, we present in figure 1.2 a schematic diagram of a rudimentary front 
end (acoustic processor). 

We can think of the signal processor as a device that at regular intervals 
of time (e.g., a hundred times per second6 ) generates real-valued vectors 
(1;. The components of (1; could be sample values of outputs of band-pass 
filters applied to the signal coming out of the microphone. 

The prototype storage contains a set of vector prototypes 9f = 
{p 1 ,p2, ... ,Px} of the same kind as (1;. The comparator finds the closest 
element of 92 to (1;, and the index of that element is the acoustic symbol 
a;. To be precise, 

,. K 
J = arg ~n d(a;,p1-) J=l 

(7) 

and 

5. Obviously, good signal processing is crucial and is the subject of intensive 
research. ~s book is about extracting inf onnation from the processed signal. 
Bad processmg means loss of information: There is less of it to extract. 

6. This happens to be the prevalent standard in our field. 
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The Speech Recognition Problem 

a;= j 

In (7), d( , ) denotes a suitable distance function. 7 

7 

(8) 

In the penultimate section of this chapter we introduce a simple 
method, called vector quantization, that can derive the prototype set~= 
{p1,p2 , ... ,PK} from speech data. There, the intuition behind the output 
symbol selection rule (7) and (8) will become apparent. 

In most state-of-the-art large vocabulary recognition systems the com­
parator of figure 1.2 is omitted and the rest of the recognizer handles 
directly the signal processor outputs a;. They then constitute the observ­
able symbols a;. To introduce the relevant methods in the simplest setting, 
however, we will assume an acoustic symbol alphabet size of the order of 
hundreds (the size 200 is very common), which will still allow us to deal 
with the essence of the problem. We will generalize certain important 
results to "continuous" vector spaces (for signal processor outputs a) in 
chapter 9. The added complication is that statistical estimation for vector 
spaces requires parametric methods. Section 2.9.1 of the next chapter will 
briefly introduce an appropriate model. 

1.3.2 Acoustic Modeling 
Returning now to formula (6), the recognizer needs to be able to deter­
mine the value P(AIW) of the probability that when the speaker uttered 
the word sequence W the acoustic processor produced the data A. Since 
this number must be made available for all possible pairings of W with A, 
it follows that it must be computable "on the fly." The number of different 
possible values of A and W is just too large to permit a lookup. 

Thus to compute P(AIW) we need a statistical acoustic model of the 
speaker's interaction with the acoustic processor. The total process we are 
modeling involves the way the speaker pronounces the words of W, the 
ambience (room noise, reverberation, etc.), the microphone placement and 
characteristics, and the acoustic processing performed by the front end. 

The usual acoustic model employed in speech recognizers, the hidden 
Markov model, will be discussed in the next chapters. Other models are 
possible, for instance those based on artificial neural networks [8] or on 
dynamic time warping [9]. These methods are not treated in this book. 

7. A very adequate distance is Euclidean: 

d(x, y) _:_ ✓~(x; - y;)
2 

- r 
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8 Chapter I 

1.3.3 Language Modeling 
F onnula ( 6) further requires that we be able to compute for every word 
string W the a priori probability P(W) that the speaker wishes to utter W. 
Bayes' formula allows many decompositions of P(W), but because the 
recognizer "naturally" wishes to convey the text in the sequence in which 
it was spoken, we will use the decomposition 

n 

P(W) = II P(w;lw1, ... , w;-1) (9) 
i=l 

The recognizer must thus be able to determine estimates of the proba­
bilities P(w;lw 1, ... , w;_ 1). We use the term estimate on purpose, because 
even for moderate values of i and vocabularies of reasonable size, the 
probability P(w;lw 1, ... ,w;_1) has just too many arguments. In fact, if 
l~I denotes the size of the vocabulary, then for l~I = 20,000 and i = 3, 
the number of arguments is 8 x 1012. 

It is, of course, absurd to think that the speaker's choice of his ith word 
depends on the entire history w1, ... , W;-1 of all of his previous speech. It 
is therefore natural that for purposes of the choice of w;, the history be 
put into equivalence classes <I>(w1, ... , w;_ 1). Thus in reality formula (9) 
becomes 

n 

P(W) = II P(w;l<l>(w1, ... , W;-1)) (10) 
i=l 

and the art of language modeling consists of determining the appropriate 
equivalence classification <I> and a method of estimating the probabilities 
P(w;l<l>(w1, ... , W;-1)). 

It is worth stressing that the language model used should depend on 
the use to which the recognizer will be put. The transcription of dictated 
radiological reports requires different language models than the writing 
of movie reviews. If text is to be produced, then the language model may 
reasonably be constructed by processing examples of corresponding 
written materials. It will then depend on text only and not in any way on 
speech. 

1.3.4 Hypothesis Search 
Finally, to find the desired transcription W of the acoustic data A by 
formula ( 6), we must search over all possible word strings W to find the 
maximizing one. This search cannot be conducted by brute force: The 
space of Ws is astronomically large. 
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The Speech Recognition Problem 9 

A parsimonious hypothesis search is needed that will not even consider 
the overwhelming number of possible candidates W and will examine 
only those word strings in some way suggested by the acoustics A. We will 
devote chapters 5 and 6 to showing two ways to proceed. 

1.3.5 The Source-Channel Model of Speech Recognition 
Our formulation leads to the schematic diagram of figure 1.3. The human 
speaker is shown as consisting of two parts: The source of the communi­
cation is his mind, which specifies the words W that will be pronounced 
by his vocal apparatus, the speech producer. The recognizer also con­
sists of two parts, the acoustic processor and the linguistic decoder, the 
latter containing the acoustic and language models and the hypothesis 
search algorithm. Figure 1.3 embeds the process into the communication 
theory [10] framework: the source (modeled by the language model), the 
"noisy" channel ( consisting of the tandem of the speech producer and the 
acoustic processor and modeled by the acoustic model), and the linguistic 
decoder. 

The only difference between our communication situation and the 
standard one is that in the standard, the system designer can introduce an 
encoder and a modulator (signal generator) between the source and the 
channel. We must make do with the coder-modulator that evolution has 
bequeathed to us: human language and speech. 

------------------------------------, 
________________ J _____________ ~ 

I I 
I I 
I I 
I I 

~ I I 

Speaker's I Speech I 
I I . . J . 
I I 

I 
I 
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Figure 1.3 
Source-channel model of speech recognition 
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1.4 About This Book 

The previous section revealed the topics with which speech recognition 
research must be concerned. This book investigates methods that would , • 
accomplish the tasks outlined in sections 1.3.2 through 1.3.4. The 
headings of the above sections use the expression modeling because the 
required values of P(AIW) and P(W) can only be produced by evaluating 
probabilities of output strings generated by abstract models of corre­
sponding processes. These models will have no more than a mathematical 
reality. No claims whatever can conceivably be made about their relation 
to humans' actual speech production or recognition. 

For all practical purposes the rest of the book is devoted to the structure 
of models of progressively higher sophistication, to their parameters, and 
to the problem of estimating the parameter values from actual speech data. 

The plan of this text is to present first ( chapters 1 through 5) each 
basic component of a large vocabulary speech recognizer ( acoustic model, 
language model, hypothesis search) and devote the rest of the book 
(chapters 6 through 15) to refinements. 

1.5 Vector Quantization 

We conclude this .chapter by introducing a simple method that can be 
used to find appropriate vector prototypes Bl= {p 1 ,p2, ... ,PK} for the 
prototype storage of the acoustic processor of figure 1.2 (see the discus­
sion of section 1.3.1) [11]. 

Consider the real vectors a; put out periodically by the signal processor. 

If their dimension is L, then they can be regarded as points in the real £­
dimensional space. As speech is input to the signal processor, the space is 

being occupied by the points a;. If speech can be represented as a succes­

sion of phones [2] produced by the speaker (see the pronunciation specifi­

cation of words in any dictionary), then the points a; will cluster in regions 

of the L-space characteristic of the particular phones the speaker pro­

duced. Therefore, if the prototypes Pi E f1' are selected to be the centers of 

the a-clusters, then the nearest prototype to an observed a; will be an 

appropriate representative of a;. This in fact is the idea behind the output 

symbol selection rule (7) and (8). 
Vector quantization is a simple and effective method for finding cluster 

centers. Along with the rule (7) it presupposes a distance measured( , ) 

between points of the L-space. It turns out that a very adequate measure 
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is the Euclidean distance 

L 

11 

d(a,p) = L(a(l) - p(/))2 
(11) 

l=l 

where a(/) and p(/) denote the f'h components of the vectors a and p. 

The Vector Quantization Algorithm8 

1. Select K, the number of clusters. 
2. Send speech through the signal processor (see figure 1.2) obtaining 
vectors a; for i = 1, 2, ... , N (the total amount of speech, proportional to 
N, must be judiciously chosen). 9 

3. Select uniformly at random K initial candidate cluster centers pJ from 
among the speech vectors { a1, a2, ... , aN}, that is, 

0 1 
P{pi =a;}= N 

4. Partition { a1, a2, ... , aN} into K regions YJ comprising all a; nearer to 
pJ than to any other P2, h #-j. That is, 

o o· o a; e ~ if d(a;,pi) < d(a;,ph) for all h 

5. Find the center of gravity p) of each collection YJ. That is, 

P] = arg min L d(ai,P) 
p 0 

<71 E f/'/ 

6. Repartition { a1, a2, ... , aN} into K regions ~ 1 comprising all a; nearer 
top) than to any other Pk, h #-j. 
7. Find the center of gravity pJ of each collection ~ 1

. 

8. And so on. 

The particular method of finding clusters by alternately determining 
nearest neighbors of candidate centers and then locating neighborhood 
centers is also ref erred to as K-means clustering. 

8. As presented here, the algorithm contains the idea's essence. In practice, to 
obtain good recognition, many refinements are necessary that are the result of 
intensive experimentation. For instance, the selection of initial cluster centers in 
step 3 may not in fact be carried out at random. This is the case with the vast 
majority of algorithms presented in this book: We describe the basic idea that 
must then be worked out in practice. 

9. Five minutes of speech is usually adequate. 

I 
l 
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1.6 Additional Reading 

The reader interested in finding out something about the human aspects 
of the speech production and perception process might start with Denes 
and Pinson [12] and continue with a more up-to-date article by Allen [13]. 

As pointed out in section 3.1, even though speech recognition depends 
crucially on the appropriate choice of signal processing, the latter is not a 
subject of this book. In addition to the references provided in that section 
[6] [7], it may be worthwhile to browse through a more recent book [14] 
or to consult articles by Cohen [15] and Picone [16] aimed specifically at 
signal processing for speech. 

To simplify exposition of speech recognition's basic ideas and algo­
rithms, we have limited ourselves to discrete outputs from the acoustic 
processor. The discretization is generally obtained by vector quantization 
(section 1.5) [11], about which it is possible to prove many interesting 
mathematical properties [17]. Unfortunately, vector quantization does in 
general lose some important information that would be available to the 
rest of the recognizer if it were fed by the signal processor's raw output.10 

More sophisticated methods of vector quantization can alleviate such loss 
[18] [19] [20]. Furthermore, a very interesting discretization method called 
ranks [21] both is robust and facilitates recognition results comparable to 
the very best in the state of the art. So dealing with discrete but sophisti­
cated acoustic recognizer outputs turns out not to be much of a com­
promise after all. 

In this book, we present what we think are our field's most fruitful 
approaches. Some leading contributors maintain that these are inad­
equate and that radical innovations are necessary to even approach the 
solution of the problem [22]. Twenty-eight years ago, a very famous com­
munication engineer, N.R. Pierce, felt that ours was a hopeless endeavor 
[23]. 
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Chapter 3 

The Acoustic Model 

3.1 Introduction 

In this chapter we will show two methods by which to construct the 
acoustic model that the recognizer may use to compute the probabilities 
P(AIW) for any acoustic data string A = a1, a2, ... , am and hypothesized 
word string W = w1, w2, ... , Wn. As chapter 1 pointed out, these proba­
bilities are needed so the recognizer can search for the desired transcribed 
word string W defined by 

W _:_ arg max P(AIW)P(W) 
w 

We will restrict ourselves to finite acoustic data alphabets d with 
several hundreds of symbols (200 is standard). We will make the required 
generalization to real vector alphabets currently used in the most advanced 
continuous speech recognition systems after we introduce the Expectation­
Maximization algorithm in chapter 9. 

The acoustic model will be based on the hidden Markov model (HMM) 
concept introduced in chapter 2. The general approach will be as follows 
[1] [2] [3]: 

The model for a word string W will be made up of a concatenation of 
models pertaining to the individual words w; (in a more sophisticated 
approach these models may be influenced by the context w;-1 and w;+1, 

but we will not concern ourselves with this potential complication at this 
time). The models for the individual words w; belonging to the basic vo­
cabulary "f/" will themselves be made up as a concatenation of yet smaller 
HM Ms, the basic building blocks of the acoustic model system. There are 
many ways to select such building blocks. This chapter will introduce two. 

The need for building blocks is obvious: The vocabulary is large (in the 
ten thousands) and changeable, so it is practically impossible to tailor 

r 
I 
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models separately for individual words. The two types of acoustic models 
discussed here differ exactly in the nature of their building blocks. The 
phonetic acoustic model is based on an intuitive linguistic concept. On the 
other hand, the fenonic model is completely self-organized from data and 
at this stage of the discussion is based on whole words. The former model 
does not take into account intraword context; neither model as presented 
is capable of dealing with interword context (coarticulation). The consid. 
eration of the latter is deferred to chapter 12. 

3.2 Phonetic Acoustic Models 

The basic way of constructing HMMs for words is as follows: 

1. Create a phonetic dictionary [4] [5] [6] for the vocabulary in question, 
that is, make available the correspondence between each word v and a 
sequence <I>( v) = ,p1, ,p2, ... , ,p1", of symbols from a predetermined phonetic 
alphabet </J. <I>( v) is then an encoding of the pronunciation of v and is 
referred to as the phonetic base form of v. 

This step involves making a decision about the phonetic alphabet ~ to 
be used. Although the international phonetic alphabet (IPA) is prevalent 
[5], one could use an ordinary dictionary as a guide. For instance, the 
American Heritage Dictionary [7] gives the following pronunciations: 

aluminum= e 1 oomenem 

green = gren 

Worcester = woos t er 

For some words (e.g., either, the) that have several fundamentally differ­
ent valid pronunciations, multiple base forms must be provided. The 
phonetic alphabet usually distinguishes between stressed and unstressed 
vowels and includes silence and end-of-word symbols, and its size is of the 
order of 100. 
2. To each symbol of the phonetic alphabet let there correspond an 
elementary HMM with distinguished starting and ending states. 

Figure 3.1 shows the transition structure of an appropriate elementary 
HMM. Note that it generates at least one output symbol and possibly an 
unlimited number of them. 
3. The HMM for a word v is a concatenation of the elementary HMMs 
specified by the sequence <l>(v), where the final state of one HMM is con· 
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Figure 3.1 
Hidden Markov model of acoustic string production by a phone 

HMM HMM 

for . for . . - - ••• .... ~---t 

(()1 (()2 
• 

.......__ 

HMM for the word v 

Figure 3.2 
HMM for the word v as determined by its phonetic base form 

HMM 

for 

41 

nected to the initial state of the following HMM by·a null transition (see 
figure 3.2). 
4. To get a composite model for a transcription W of some given speech 
data A, word models for the individual words w; are concatenated by 
inserting between them elementary HMMs corresponding to silence sym­
bols and/or end-of-word symbols (see figure 3.3). 
5. The Baum-Welch algorithm (see section 2.7 of the preceding chapter) 
estimates the HMM parameters by letting users read a prepared text W, 
observing the acoustic processor's output A and using the composite 
HMM corresponding to W as a model of the production mechanism that 
resulted in the observed A. 

I 
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3.3 More on Acoustic Model Training 

It may be useful to specify in somewhat more detail what is meant by step 
5 in section 3.2. The literal description of HMM training (synonym for 
estimation of statistical parameters from data) in section 2. 7 concerned 
one HMM that was to account for the production of all the training data 
Y from which the parameters were to be estimated. So, for instance, for 
each different transition t of the given HMM, one was to estimate the 
output probability q( alt). Clearly, this would be possible with any accu­
racy only if t were used repeatedly as Y was being produced. 

But this is not necessarily the situation for the composite HMM con­
structed in step 4 of section 3.2. If all of its transitions were regarded as 
different, then (in one training iteration) many of them would be used 
very few times, and most not at all. So this is yet another aspect in which 
the building block construction is important. During the estimation pro­
cess, those transitions of the composite HMM that correspond to the 
same transition in any given building block must be considered the same. 1 

Only in this way will most transitions be used many times when the 
acoustic data A is produced. 

To carry out training properly we can proceed as follows: 

1. Establish an inventory of elementary HMMs. In the rudimentary case 
described in section 3.2, these correspond to the different phones of the 
phonetic alphabet </> plus the silence and end-of-word HMMs. 
2. Give a different index to each different transition of the elementary 
HMM set. For instance, let ti, k denote the k th transition of the j th building 
block HMM. 
3. For each different ti,k establish different counters c(tj,k) and c(a, tj,k) to 
be used as specified in equations (27) and (28) of chapter 2. 
4. Identify the composite HMM's transitions by the proper index tj,k of 
the building block elementary HMM to which they belong. 
5. Train the composite HMM as specified in section 2.7, contributing the 
amounts P{ti = ti,k} and P{ti = tj,k}<5(a;+1,a) to the c(tj,k) and c(a, tj,k) 
counters, respectively: 

1. That is, if the j th building block appears M times in the construction of the 
composite HMM, then each transition t of the j th building block will appear in 
exactly M places in the composite HMM. All M of these will correspond to only 
one set of accumulators c(a, t), a e d for the purpose of estimating the parameters 
p(t) and q(alt) of the j th building block. 

L 
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k-1 

c(tj,k) = L P{l = tj,k} 
i=O 

k-1 

c(a, tj,k) = L P{ ii = tj,k} c5(a;+t, a) 
i=O 

3.4 The Effect of Context 

The problem with the phonetic model 2 proposed in section 3.2 is that it 
does not take into account the influence of context on pronunciation. 
Thus in American speech an initial t (e.g., in table) is usually aspirated, 
while a final t (e.g., in nest) is not. One could try to fix this problem by 
making the phonetic alphabet allophonic, 3 but that would mean deciding 
what the allophonic alphabet should be, and hiring a golden-eared (and 
very conscientious and patient) phonetician to create an allophonic dic­
tionary. We will revisit the allophonic problem in chapter 12 when we 
derive an allophonic inventory directly from speech data using decision 
tree methodology. 

One way the speech recognition community is attacking the context 
problem is via triphones [8]. This amounts to deciding that the contextual 
influence of the preceding and the following phones is most important. 
Or, in allophonic terms, a phone <p is realized by allophones denoted by 
x<py, where x and y range over the phonetic alphabet. The problem with 
this solution is that other, wider contexts may be important and that 
even in this relatively narrow case, there are potentially K3 allophones, 
where K is the size of the phonetic alphabet. For the purposes of HMM 
parameter estimation this is too many, so triphones must be clustered, 
and that is again best done via the decision tree methodology discussed in 
chapter 12. 

In this chapter we will solve the phonetic context problem by encoding 
base forms into a natural, data-driven alphabet that takes into account all 
intraword context. This solution is thus particularly suitable for isolated 
word recognition where (short) pauses between words effectively insulate 
their pronunciation from the surroundings. Compared to the phonetic 
base form approach of section 3.2, the method will lead to improved speech 

2. That is, the problem with the inventory of the building blocks. 

3. Allophones are the perceptually different realizations of the same phone [5]. 
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recognition. Furthermore, it will be the basis for our "ultimate" approach 
to coarticulation (defined as acoustic influence of words on each other) 
introduced in chapter 12. 

We must now make a slight detour and introduce the concept of Viterbi 
alignment. 

3.5 Viterbi Alignment 

Consider any acoustic data string A= a1, a2, ... , am and a particular 
HMM having an inventory of transitions ff. Viterbi decoding (see section 
2.4) refers to finding the most likely sequence of transitions Ts= 
tsp ts2, · · •, tsk, (ts; E !!7) to have generated A.4 

The subsequence TO = t01 , t02 , ••• , t0m consisting of the non-null ( output 
producing) transitions of Ts is the basis of the Viterbi alignment of A with 
the HMM. It constitutes a labeling of the symbols a; of A by the transi­
tions lo; that can be thought of as having "caused" the outputs a;. 

If the HMM in question is made up of a concatenation of n elementary 
HMMs (e.g., the phonetic HMMs of section 3.2 or the word models 
resulting from their concatenation) then the labeling TO effectively seg­
ments A into subsequences of symbols Aj = a9_,+1, a9_1+2, ... , a9 that 
were labeled by transitions belonging to the same elementary HMM. The 
label t00 i = IJ-1 of the preceding symbol a9_1 (i.e., the corresponding 
transition) belongs to a different elementary HMM and so does the label 
t0,., h = lj + 1 of the succeeding symbol a9+1 (whereas the transitions 
t01+., . .. , t0 1,_., belong to the same elementary HMM). 

The term Viterbi (forced) alignment refers to this segmentation A= 
A~ II A; II . . . II A:. 

t 3.6 Singleton Fenonic Base Forms 

In spite of the superior performance they facilitate, fenonic base forms are 
not widely used in current speech recognizers. We include their descrip­
tion because they are an excellent illustration of complete self-organization 
from data. They do not presuppose any phonetic concepts whatever. They 
are also a useful tool for modeling new words that do not belong to the 
prepared vocabulary ;-r. 

4. Because the most likely path may involve null transitions, k > m. 

I 
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Having explained Viterbi alignment, we can now address the problem 
of phonetic context. To establish fenonic base forms [9], an acoustic pro­
cessor with a finite output alphabet is needed. This does not mean that the 
method applies only to systems that use such alphabets at run time. The 
method establishes word models from data before any actual recognition 
takes place. In fact, even in finite alphabet systems it might be useful to 
have a different acoustic processor at run time from the one used to define 
these base forms. 

Speak a word, say table. The output of the acoustic processor is going 
to be a particular string A( table) = a;1 , aii, ... , a;m with a~ belonging to 
the acoustic alphabet d. 5 The string A(table) is surely characteristic of 
the pronunciation of the word table and can thus be thought of as an 
encoding of that pronunciation. 

Speak another word, say famous, and consider the consequent acoustic 
processor output string A(famous) = ah , ah, ... , aj1• If it should turn out 
that a;k = aj" for some k and n, then that means that the sound of table 
at time k was acoustically similar to the sound of famous at time n. It is in 
this sense that the string A( (word)) constitutes an acoustically faithful 
encoding of the sound of (word). 

It thus makes sense to use A( (word)) as afenonic baseform of (word), 
and create the HMM for ( word) as a concatenation of elementary 
HMMs corresponding to the individual symbols making up the codeword 
A( (word)). 6 

Caution: Do not be confused by the fact that the codeword A(< word)) 
originated as the output string of an acoustic processor! The individual 
symbols a;,, will be used strictly as abstract identifiers of the particular 
elementary HM Ms whose concatenation will form the composite HMM 
for (word). These identifiers simply serve to identically index acoustically 
similar segments. The nature of the identifiers' acoustic realization will be 
determined by training. 

5. The string a;,, a;2 , ••• , a;m can be obtained from a Viterbi alignment of speech 
data A that included the utterance of the word table. This alignment can be based 
on a composite HMM consisting of previously trained phonetic acoustic word 
models. This composite HMM is thought of as having generated A, with the sub­
sequence a;, , a;2 , ••• , a;m aligned with the transitions belonging to the HMM for 
table. 

6. The "fe" in the made-up term fenonic stands for "front end". The suffiX 
"nonic" is intended to lend the term scientific respectability. 
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Figure 3.4 
Structure of an elementary hidden Markov model of a fenon 

Figure 3.4 shows the structure of the elementary HMMs to be used as 
building blocks. Their statistical parameters will be estimated from data 
as section 3.3 outlined. Since the length of the fenonic base form is equal 
to the number of centiseconds (it is assumed that outputs are produced 
at the rate of 100 per second, but other rates are acceptable) it took to 
pronounce the word, it is reasonable to expect that after training, the 
probability P(t 1) of the direct transition in figure 3.4 will tum out to be 
close to 1 in all the elementary HMMs of the set. The loop and the null 
transitions in figure 3.4 provide the flexibility that allows the duration of 
subsequent pronunciations of < word) to be different from the one that 
gave rise to the fenonic baseform. 

Different elementary HMMs will have different output probabilities 
q(ajt;) associated with the two output producing transitions in figure 
3.4. Their values will be derived from training. We will take what comes, 
but it will not be a coincidence if it should tum out for both non-null transi­
tions t; belonging to the HMM designated by the fenonic identifier a that 7 

q(alt;) > q(dlt;) for all d -:I a 

3.7 A Needed Generalization 

Singleton fenonic base forms have three problems: 

1. Base forms are obtained from a single pronunciation of a word that 
may tum out to have been irregular (coincidental). 
2. The base-form creation process requires the user to pronounce each 
word of a large vocabulary-an impossibly time-consuming task. 

7. This should hold assuming the same acoustic processor is used at run time as 
was used to establish fenonic base forms. 
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3. The base forms do not take into account word context: the influence of 
the preceding and following words on the pronunciation of the current one. 

In fact, it is clear that 

1. To avoid atypicality, base forms should be produced from several 
sample pronunciations of the word. 
2. Base forms for a large vocabulary should be produced once and for all 
and must be the same for each user. Only the statistical parameters p(t;) 

and q(ylt;) can conceivably be speaker dependent. 

We are about to see how to construct speaker independent fenonic base 
forms from multiple recordings of vocabulary words by a variety of 
speakers. This will obviate the first two problems. The third problem 
either can be tolerated (this is certainly fine for isolated word recognition) 
or must be treated in some way similar to that discussed in chapter 12. 

Suppose that we have recorded M utterances of some word v, A;(v) = 
a;, 1 , a;, 2, ... , a;,m,, i = I, 2, ... M. Then the logical thing to seek is a 
fenonic base form B* ( v) satisfying 

M 

B*(v) = arg max IJ PB(A;(v)) 
B . 1 

l= 

(1) 

In equation ( 1) the strings A; denote ordinary acoustic processor outputs 
and the subscript to the probability P 8 signifies that the HMM produc­
ing them is constructed from elementary HMMs specified by the base 
form B. Of course, this probability is well defined only after the statistical 
parameters of the HMMs have been estimated, but that is not the main 
problem. 

The unfortunate fact is that the finding of B* in ( 1) involves too large a 
search space: The duration of an average word exceeds 25 centiseconds, 
so the number of possible base forms exceeds L 25 where L is the size of the 
fenonic alphabet. One possibility is the construction of synthetic base forms 

described in section 3.8. The process will again be based on Viterbi alignment. 

3.8 Generation of Synthetic Base Forms 

We start the construction by the following training bootstrap: 

1. Record all data necessary for speaker independent base fonn creation 
for the entire vocabulary "Y. Each word v e "Y will be recorded by M 
different speakers. 

I 

f f 
I 

IPR2023-00037 
Apple EX1011 Page 38



The Acoustic Model 49 

2. Establish an acoustic processor 01:1tput alphabet via an appropriate 
form of vector quantization (see section 1.5) applied to the entire data. 
3. Create singleton base forms (by the m~thod of section 3.6) by choosing 
at random from among the M recordings { A 1 ( v), ... , AM ( v)} of each 
word v. 

4. Train statistical parameters of the elementary HMMs making up the 
selected singleton base forms. (This is done on the entire recorded data for 
all words.) 
5. For each word v, choose the "best" new base form C*(v) from among 
the recorded set { A 1 ( v), ... , AM ( v)}: 

M M 
C*(v) = arg n:iax IT -PA·(v)(A;(v)) 

J=l 'l 
i=l 

(2) 

6. Using the new base forms C*(v), reestimate the statistical parameters 
of the elementary HMMs (as in step 4). 
7. Reselect "best" new base forms (as in step 5) based on the new sta­
tistical parameter values obtained in the previous step. Continue in a loop 
from step 5 until the base-form selection process has converged. 

Comparing (2) with (1) we see that whereas we are after the best con­
ceivable base form B*(v) giving rise to the data, C*(v) is only the best 
from among the alternative singleton baseforms {A1(v), ... ,AM(v)}. We 
must therefore push on further. 

In the above algorithm we have estimated the statistical parameters 
of the elementary HMMs that will be used to build up word HMMs 
according to the specification of the obtained fenonic base forms C* ( v). 
We are now ready to construct base forms more nearly satisfying (1) than 
do the base forms C*(v) we selected so far. 

The process starts by mutually aligning the symbols of the strings 
A; = a;,1, a;,2, ... , a;,m, 8 as follows: 

Using C* defined by equation (2) as the base-form specifier for word v, 
Viterbi-align the symbols of the strings A;. That is, for each i = 1, 2, ... , M 
find the elementary HMM of the concatenation defined by the base 
form C* that has most likely "produced" the symbol a;,j for each 
j = 1,2, ... ,m;, where m; is the number of symbols in A;. 

8. To avoid complicating our notation unnecessarily, we are dropping the explicit 
argument v. 
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Figure 3.5 
Mutual alignment of acoustic output strings corresponding to M different pro­
nunciations of the same word 

If me is the length of C*, the alignment will have segmented each string 
A; into me segments (some of them possibly of length 0), one segment per 
symbol of C*. Figure 3.5 shows an example of this schematically. 

Let rj(A;) denote the concatenation of the first j segments of the string 
A;. In the following, let the inventory of elementary HMMs include the 
null HMM consisting of a single null transition. We now proceed: 

1. Find the best concatenation of elementary HMMs, hr = bi,1, bi,2 pro­
ducing independently of each other all the first segments of the strings A;. 
That is, 

where h1 = b1,1, b1,2 runs over all pairs of elementary HMMs including 
the null HMM. Note that hr may in fact consist of the null HMM (the 
concatenation of two null HM Ms is equivalent to a single null HMM), or 
of one or two "real" (i.e., output producing) elementary HMMs. 
2. Find the best HMM pair bi 1, bi 2 to concatenate with hr so that the , , 
resulting HMM specified by h2 =hr, bi 1, bi 2 is most likely to produce 
independently the initial segments r2(A;). That is, limited by the fixed 
choice ht of the initial HMMs, h2 is chosen to maximize the value of the 
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product 

M II P~(r2(A;)) 
i=l 

where h2 =ht, b2,1, b2,2. 
3. Continue in this vein, selecting the HMM pair bj,1, bj,2 so that 

* h* b* b* ·11 • • h bj = j-I, j,l, j, 2 wt maxinnze t e product 

M II Pbj (rj(A;)) 
i=l 

where hj = hj_1, bj,t, bj,2• 

4. The string B* = h:,c obtained in this way is the desired synthetic 
baseform derived from the pronunciations A;= a;, 1, a;,2, ... , a;,m;· Sim­
plify it by eliminating from it all null HMMs. 

For best results, the above process should be iterated. That is, once the 
base forms B* are obtained in the last step, the elementary HMMs are 
retrained on their basis. Then the basic strings A; = a;,1, a;,2, ... , a;,m, are 
aligned with respect to the symbols of B* (rather than C*) and the process 
starts again from step 1. 

3.9 A Fm1her Refinement 

Synthetic base form construction can be improved by carrying on in the 
spirit of the following steps: 

1. Find the best concatenation of elementary HM Ms, ht = bi 1, bi 2, , , 
h2,1, h2,2 producing independently all the first two segments of the strings 
A;. That is, 

Note that ht may in fact consist of the null HMM or of one to four "real" 
elementary HMMs. 
2. Find the best HMM sequence h2,1, b2,2, b3,1, b3,2 to concatenate with 
bi,1, bi,2 so that the resulting HMM specified by b2 = bi,1, bi,2, b2,1, 
h2,2, b3,1, b3,2 is most likely to produce independently the initial segments 
r3(A;). That is, limited by the fixed choice bi,1, bi,2 of the initial HMMs, 
b2 maximizes the value of the product 

IPR2023-00037 
Apple EX1011 Page 41



52 Chapter 3 

M 

IJ P1,i (r3(A;)) 
i=l 

3. Continue as in step 2 for subsequent segments. 

We need not elaborate the reasons why this improves the resulting syn. 
thetic basefonn at the price of increased complexity of the search for it. 

3.10 Singleton Base Forms for Words Outside the Vocabulary 

Finally a remark on the virtues of singleton base forms. They provide an 
easy means for adding a model of new words to the vocabulary. The user 
need only say the word and provide its spelling, and the acoustic pro­
cessor outputs directly specify the required HMM. In fact, this can be 
done at run time as part of the proofreading of the recognized text. Thus 
if I said serendipity and the system recognized property because serendip­
ity was not in the vocabulary, I need only make the correction in the rec­
ognized text and I gain a singleton fenonic base form for serendipity if the 
recognizer is able to identify (by Viterbi alignment of the speech with the 
text as currently recognized-see section 3.5) the speech segment that it 
erroneously recognized as property. 

3.11 Additional Reading 

A very useful review of how to apply HMMs to speech recognition can 
be found in reference [10]. For a discussion of related practical issues 
encountered in hidden Markov modeling, see the article by Juang and 
Rabiner [11 ]. 

The inspiration for fenonic word models was no doubt the early work 
of Bakis [12] who derived HMMs directly from aligned data. His HMM 
structures are referred to as Bakis models and constitute the earliest use of 
continuous feature vector outputs of the signal processor as inputs to the 
linguistic decoder. 9 

The mainstream modeling presented in this chapter is based on acoustic 
processors generating outputs at regular time intervals. This need not be 
so. Mari Ostendorf and colleagues continue to make fruitful attempts to 
deal with other natural segmental units [13] [14] [15]. 

9. More on continuous processing will be found in chapter 9. 

l 
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The Baum algorithm aims at estimating HMM parameters in a maxi­
mum likelihood way. That is, it adjusts the parameters of the models 
of the training script so as to maximize the probability of the models' 
producing the observed acoustic processor output string. This does not 
necessarily lead to the best discrimination, that is, speech recognition 
performance. What one would really wish is to maximize the a posteriori 
probability P(WIA) where W is the spoken word string and A is the 
observed acoustic processor output. This turns out to be a rather difficult 
problem requiring in practice various assumptions and approximations. 
The first attempts at solution can be found in [16] and [17]. A funda­
mental step forward was taken by Kanevsky and colleagues who came up 
with an adjustment to the Baum algorithm that allows training aimed at 
optimization of the a posteriori probability criterion [18]. A survey of 
these approaches can be found in [19]. 

Worth mentioning is also a different attempt to go beyond maximum 
likelihood in optimizing speech recognizer performance that iteratively 
adjusts the HMM parameter values so as to make correct and incorrect 
words more and less probable, respectively [20]. 

As we mentioned in chapter 1, it is possible to use models other than 
HMMs as a basis of speech recognition. Among these, artificial neural 
networks (ANNs) and dynamic time warping (DTW) are preeminent. 
Bourlard and Wellekens have pointed out interesting connections between 
HMMs and ANNs [21]. Richard and Lippmann showed (among other 
properties) that ANNs can be used to estimate a posteriori probabilities 
[22], and Bourlard and Morgan have taken advantage of this fact in for­
mulating a combined HMM and ANN approach to speech recognition 
[23]. The system constructed by Robinson, Hochberg, and Renals achieves 
state-of-the-art results in speaker independent large vocabulary speech 
recognition [24]. 

Finally an excursion into the brief history of speech recognition. In the 
1970s the dominant paradigm for small vocabulary isolated speech rec­
ognition was DTW. Its basic idea was to warp a prototype observation 
of an utterance into the unknown observed string and reach a decision 
among competing word candidates according to the warping penalty 
incurred. A very popular type of this penalty was ltakura distance [25]. 
DTW gave very good results, in fact, for its field of application, better 
ones than HMMs did (that is, until DTW was essentially abandoned) 
[26]. The main problems with this approach were (a) incorporation of 
language models was not natural, (b) the problem of construction of 
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synthetic prototypes remained unsolved, 10 and (c) a unified recognizer 
statistical formulation incorporating all speech recognizer modules was 
never found. Two good discussions of DTW applications can be found in 
references [27] and [28]. 
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Chapter 9 

The Expectation­
Maximization Algorithm and 
Its Consequences 

9.1 Introduction 

In this chapter we will derive the Expectation-Maximization (EM) algo­
rithm [l] and use it to justify the convergence and optimality of the Baum­
Welch algorithm that estimates maximum likelihood HMM parameter 
values from data. 1 We will then generalize the Baum-Welch algorithm to 
apply to continuous, normally distributed acoustics. We will finally intro­
duce the tied mixture acoustic model used in many current continuous 
speech recognizers. The EM algorithm's applicability is, of course, not 
restricted to the training of HMMs: It is much more general. 

The development below is based on a special case of Jensen's inequal­
ity, which we already proved in section 7.3.2 

LBMMA9.l. Ifp(x) andq(x) aretwodiscreteprobabilitydistributions, then 

I: p(x) logp(x) > I: p(x) logq(x) 
X X 

with equality if and only if p(x) = q(x) for all x. 

9.2 The EM Theorem 

We will now develop the main theorem. Let y denote observable data. Let 
P8,(y) be the probability distribution of y under some model whose 
parameters are denoted by 0'. 3 Let Po(y) be the corresponding distribu-

1. See section 2. 7. 

2. Property (7) in section 7.3. 

3. ()' denotes the totality of all the parameters whose values are needed to specify 
the distribution Pe,. 
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tion under a different setting 0 of the same parameters. We are interested 
in developing conditions for which y is more likely under 0 than it is 
under 0'. 4 

Let t be another random variable whose value is determined in the 
same process ( t is therefore governed by the value of the parameters 0' or 
0) that generates y (for instance, in the HMM setting, y might correspond 
to the observed output sequence and t to state or to transition sequences). 
Then, because Po,(tly) is a probability distribution that sums to 1, 

logPo(y) - logPo,(y) = E Pe,(tly) logPe(y) - E Pe,(tly) logP8,(y) 
t t 

Since we can multiply by 1 without changing anything, the above is 
equal to 

logPe(y) - logPe,(y) 

" Pe(t,y) " Pe,(t,y) = ~ Pe,(tly) logPe(Y) P ( ) - ~ Pe,(tly) logPe,(y) P ( ) 
t 8 t' y t 8' t' y 

" Pe(t,y) " Pe,(t,y) = ~ P8,(tly) log P ( I ) - ~ Pe,(tly) log ( I ) 
1 e t y 

I 
Pe, t y 

= L Po,(tly)logPo(t,y)- L Po1 (tly)logPe,(t,y) 
t t 

+ L Po,(tly) logPo,(tly) - L Pe,(tly) logPo(tly) 
t t 

> L Po,(tly) logPo(t,y) - L Po,(tly) logP 8,(t,y) 
t t 

where the inequality follows from lemma 9.1. Thus if the last quantity in 
the above equation is positive, so is the first. We have thus proven 

THOOREM 9 .1. If 

L Pe,(tly) logPo(t,y) > L Pe,(tly) logP 8,(t,y) (1) 
t t 

then 

Po(y) > Po,(y) (2) 

This is the basic EM theorem. It says that if we start with the parameter 
setting B' and find a parameter setting() for which the inequality (1) holds, 

4. In that case, () represents an improvement over ()'. 

I' 
I . 
I 

. . 
) 

r 
I 

..... 

. I 
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then the observed data y will be more probable under the regime 0 than 
they were under 0 '. 

To take best advantage of this hill-climbing theorem, we should thus 
endeavor to find the setting 0 that will maximize the left-hand side of (1). 

Such setting will, of course, satisfy ( 1) since both of its sides have the same 
fonn, which is maximized by that choice of 0. The reason for the name 
Expectation-Maximization is that we take the expectation of the random 
variable log Po(t,y) with respect to the old distribution Po,(tly) and then 
maximize that expectation as a function of the argument 0. It is an algo­
rithm, because the natural way to run it is to choose an initial value of 0', 
then compute the maximizing 0, then set 0' to 0, compute a new 0, etc. As 
the process continues, the value of Po,(y) will keep climbing toward a 
limit, since the upper bound P 9, (y) < 1 necessarily applies. 

The secret of success in applying the EM algorithm is a judicious 
choice of the auxiliary variable t that will allow finding the maximum 
of the expectation on the left-hand side of (1). Such a choice is possible for 
HMMs. 

9.3 The Baum-Welch Algorithm 

We will now use the EM theorem to derive the Baum-Welch algorithm [2] 
for a discrete output alphabet dJ/. 5 To do this with ease, we will use that 
formulation of HM Ms in which various transitions are deterministically 
related to the observed outputs (as formulated in section 2.2). That is, a 
function Y(t) assigns outputs y to transitions t. 

We will naturally deal with strings of outputs, denoted by y = 
Y1Y2 ... Yn, and strings of transitions t = t;,j 1 , tiih ... t;kjk. Here k > n 
because some of the transitions may be null. The expression t;d, denotes 
the (j1) !h transition out of state ii. Since t defines a path, then necessarily 
R( t;,h) = ii+ 1 . 

6 (We are following the notation introduced in section 2.2.) 
The parameter 0 of interest consists of the totality of transition proba­
bilities 

Pij = P(tij) 

5. See section 2. 7. 

6. If P(t) > 0, then our notation is such that the transition A out of state ik leads 
to state ik+l, or equivalently L(t;,Jk) = ik and R(t;k.ik) = ik+l· 
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that define the HMM in question. Thus to vary 0 is equivalent to varyin 
the transition probabilities Pij· g 

We will wish to find the maximum of I:t Po, (tly) log Po(t, y) with 
respect to 0, which we will obtain by differentiating with respect to the 
probabilities Pij and equating the result to 0. We thus get7 

:i

0 
.. [L Po,(tly) logPo(t, y) - L Am L Pmn] 

uplj t m n 

= L Po,(tly) (o/opij)Po(t, y) - 1; 
t Po(t, y) 

(3) 

Since t determines y, then either Po(t, y) = 0 (if y is incompatible with 
t), or 

K 

Po(t, y) = Po(t) = II p;,h 
l=l 

(4) 

If cij(t) denotes the number of times the transition tij takes place in the 
string t, then since 

a a k 

~ Po(t,y) =~II P;,i, 
'PIJ 'PIJ l=l 

we get 

(o/opij)Po(t,y) _ cij(t) 
Po(t, y) Pij 

(5) 

Thus equating (3) to Owe end up with the equation 

L Po,(tly) cij(t) = 1; 
I Pij 

(6) 

or, 

1 1 
Pij = kP ,( ) L Po,(t, y)cij(t) = K· L P8,(t, y)cij(t) 

, 8 y ' ' t 

(7) 

where K; plays the role of a normalizing constant that assures that 

7. As elsewhere, we use the method of undetermined Iagrangian multipliers. 

----

.. I ,, 
,11·,, • .. 

I ff :J 
' ' 
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~jpij == 1. But, using the Kronecker delta notation 8 and recalling that 

t :::= t;,ji' tiih, ••• 't;kjk, 

k 

cr(t) == I: <5( tij, t;,j,) 
9 /=1 

so that if tij is not a null transition then 

}: p8,(t, y)cij(t) 
t 

k ==LL Pe,(t,y)<5(tij,ti,j,) 
l=l t 

k 

== L Pe1(Y1, ... ,YI-1,s1-1 = i)p'yPo,(y1+1, ... ,Ykls1 = R(tij)) 
/=1 

k 

== L rx[ 1 (i)p'ypf' (R(tij)) 
/=l 

In (8) we have used the definitions 

cx1(s).:.... P(y1, ... ,Y1,s1 = s) 

P1(s) ..:... P(y1+1, ... , Yk Is, = s) 

introduced in section 2. 7. 
Similarly, if tij is a null transition then 

k 

= L L Po,(t, y) b(tij, t;,1,) 
l=l t 

(8) 

(9) 

k (10) 
= L Po,(y1, ... ,YI-1,s1-1 = i)pijPo,(y,, ... ,Ykls1-1 = R(tij)) 

l=l 

k 

= L rxr~. (i)pijflf~1 (R(tij)) 
l=l 

8. 

O(a,b) :e { ~ ifa=b 
otherwise 
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The right-hand sides of (8) and ( 10) are in fact the contributions the 
Baum-Welch algorithm makes to the counters that detennine the next 
value of Pij· We have thus deduced the validity of the Baum-Welch algo. 
rithm from the EM theorem. Of course, the values of a,(s) and P,(s) are 
obtained iteratively by formulas (32) and (34) of chapter 2. 

9.4 Real Vector Outputs of the Acoustic Processor 

We will now generalize HMMs to the case where their output symbols 
are normally distributed vectors of real numbers. To avoid unnecessary 
complications, we will develop our reestimation formulas for two­
dimensional vectors. The reader will then immediately accept the obvious 
generalization to k dimensions. 

9.4.1 Development for Two Dimensions 
The general setup is this: We have the usual HMM with (possibly multi­
ple) transitions between states. The non-null transitions generate outputs 
that are normally distributed two-dimensional real vectors y. The un­
known parameters then are (a) the transition probabilities p(t) satisfying9 

I: p(t) = 1 for all states s ( 11) 
t:L(t)=s 

and (b) the parameters m(t), and U(t) of the normal density 

%,(y) = ~ exp{- -2
1 

(y- m(t))U(tr
1
(y- m(t))'} (12) 

2n IU(t)I 

where (y - m(t))' denotes the transpose of (y - m(t)). U(t) is the process's 
covariance matrix. To simplify the notation, we will frequently omit the 
argument t and use it only when necessary to avoid confusion. 

If 

u = [(up1)2 p l 
(u2)2 

then the determinant 

( 13) 

9. We are using the L(t) and R(t) notation introduced in section 2.2. 
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If further y = (y1,Y2) and m = (m1,m2) then we can rewrite (12) as 

1 { G(~} 
%,(Y)::: 2n/D(i) exp - 2D(t) (14) 

where 

G === (a2/(y1 - mt)2 - 2p(y1 - mt)(y2 - m2) + (u1)2(y2 - m2)2 (15) 

It follows that the parameter estimation task for real vector HMMs 
concerns the values of 8(t).:. {p(t),m 1(t),m 2(t),ui(t) 2,u2(t)2,p(t)}. 
Denoting by </>(t) any of the members of the set 8(t), we have shown in 
section 9 .3 that we seek the solution to the equation 10 

(o/o</>(t))Po(t, Y) ~ I: Pe,(tlY) Po(t, Y) - ~ Am L Po(t) = 0 
t m t:L(t)=m (16) 

for all non-null t and ¢( t) e 0( t) 

where 0' and 8 denote the old and new (reestimated) parameter set values. 
Now11 

n 

Pe(t, Y) = II p(t1) II %r(Y1/(,,,,) (17) 
l=l t 

where the observed sequence Y is of length n, and to simplify notation we 
have allowed no null transitions in the sequence t. (Null transitions would 
make the indexing below more complex, but would change nothing of 
significance.) 

First, observe that the transition probabilities p(t) are not involved in 
the factor IJ

1 
%r(y1y5(t,r,) at all; the latter is simply a constant that cancels 

out from the numerator and denominator of (16). Therefore, the estima­
tion problem for p(t) is essentially the same as that posed in (4), so that 
the reestimated p0(t) will be given by (compare with (8)) 

Ps(t) == 1 t a,L (L( t)) p8, (t)%,8' (y1) p'{(R(t)) 
l=l 

(18) 

where K is a normalizing constant, and r,, and P were defined in (9). 

IO. We are using the sequence notation Y = Y1, Y2, • • •, Yn where Y, = (y,,i ,Yi,i). 
11. Of course IT ,,,.(y )t5(1,1,) _ ,,,. (y ) We use the seemingly more complex 

' t Jr1 I - Jr1, I • . • • 
product to be able to differentiate later with respect to functions of tbe transition 
Variable t. 
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We will next take partial derivatives with respect to the means . 
1111• We 

have 

O~; %,(y) = 0~; ( 2n~ exp{ - 2~}) 
_ ( 1 {-£}) (- (o/om;)G) 
- 2n'115 exp 2D 2D 

and 

so 

~ %,( ·) = ( 1 {-£}) ((a;)2(y1,i - m;) -p(y1,j -mj)) 
om; 1 y 2n'1f5 exp 2D D 

It then follows directly from (14) and (17) that 

( o) I om;(t') )Po(t, y) 
Po(t, y) 

n ( a I om;(t') )%,, (y, /(,',,,) 
= L .,v. (y i('',,,) (t9J 

I= I t' I 

= D;t') t; O(t', t1)(u;(t1)2(y1,; - m;(t')) - p(t')(Ylj - mi(t'))) j t- i 

We next want to derive the expressions for the partial derivatives with 
respect to a; and p. Denoting either by <p, we get 

:q, %,(y) = :q, Cn~ exp{ - 2~}) 
= Cn~ exp{- 2~}) (- 2~ 2 ((D- G) :, D + D ~ G)) 

(20) 

so that 

( of Oq,(11) )Po( t, y) = t (a; aq,( t') )%,, (y ,)'5(1',1,) 

Po(t, y) l=l .Kr,(y/)'5(1
1
,11) 

= t O(t', ti) (- -
1
-((D - G) _!___ D + D-:-G)) 

I= I 2D2 O<p u<p 
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men we finally get 

(o/oa1(t'))Po(t, y) 
- Po(t, y) 

n -2n· 
== B 6(,', ,,) 2((0-1)2(0-2); - ri2 

x [(a1)2((at)2(a2)2 
-p 2 

- (a2)2{y1,1 -m1) 2 

+ 2p(y1,1 - m1 )(y1,2 - m2) - (a1 )
2
(y1,2 - m2)2) 

+ ((0-1 )2(0-2)2 - p2)(y1,J - m1)2] 

ISS 

(21) 

(22) 

where we have omitted on the right-hand side the argument t' to keep the 
notation as simple as possible. Therefore 

(o/ou1 (t'))Po(t, y) 
Po(t, y) 

-0'1 
------

((t11 )2(a2)2 - p2)2 

" 
x Lti(t\1,)((a1}2(a2) 4 -p 2(a2}2-(a2) 4

(y,,1-m1)
2 

l=l + 2p(a2)2(y1.1 - m1)(y1_2 - 1112) - p2(y,_i - "'2)2) (23) 

- -a1 

&nd 

((a1 )2(a2)2 - p2)2 
.ft 

x L ti(t\ t,)((a2) 41[(a1)2 
- <,,.1 - m1)2) 

#-I 
- - 2p(a2)2(p - (y,,1 - m1)(y,_2 - mi)) 

+ p2[( 02)2 - (y,;i - "'2)~) 
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(o/oa2(t'))Po(t, y) 
Po(t, y) 

= 2 2 2 ((ai) (a2) - p2 ) 

x t O(t', ti) ( (u1/[(ui)2 - (y,,2 - mz)2] 
1=1 _ 2p(a 1)2[p - (y,,1 - m1)(Y1,2 - m2)] 

Finally 

(o/op(t'))Po(t, y) 
Po(t, y) 

-1 

+ p2[(a1)2 - (y,,1 - mi)2]) 

= 2 2 2 2((ai) (a2) - p2) 

n 

Chapter 9 

(24) 

x L t5(t', t,){ (-2p) [(a1)2(a2)2 - P2 

1
=

1 
- ( (a2)2(y1,1 - m1)2 - 2p(y1,1 - m1)(y1,2 - m2) 

+ (a1 )2(y1,2 - m2)2)] 

+ ((a1)2(a2)2 - p2)(-2(Y1,1 - m1)(y1,2 - m2))} 

1 
- 2 2 2 ((at) (a2) - p2) 

n 

x L t5(t', t1) [p((a1)2(a2)2 - p2) 
1=1 ( 2 2 - p(a2) (y,,1 - mt) 

- ((a1)2 (a2)2 + p2)(y1,1 - mt)(y1,2 - m2) 

+ p(ai)
2
(Y1,2 - m2)2)] 

n 

x L t5(t', ti) [((a1)2(a2)2 + p2)(p- (y,,1 - m1)(Y1,2 - m2)) 
l=l 

2 + P( a2) ( ( at) 2 - (y1,1 - mi )2) 

+ P(a1)2((a2)2 - (y1,2 - m2)2)] 
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It follows directly from ( 16) and the right-hand sides of ( 19), (23), (24), 
and (25) that the desired parameter setting 0( t') is one satisfying the 
following equations: 12 

n 

E P8,(t, y) E <5(t', t1)(Y1,; - m;(t')) = 0 i = 1, 2 (26) 
1 l=l 

n 

E Pe,(t,y) E <5(t', t,)[(y,,; - m;(t'))2 - cr;(t')2] = O i = 1,2 (27) 
t l=l 

n 

E Pe1(t,y) E <5(t', t1)((y1,1 - m1(t'))(y1,2 - m2(t')) - p(t')) = 0 (28) 
t l=l 

Thus (repeating (8) for convenience) the desired reestimation formulas are 

1 ~ 8' 8' o8' pe(t) = K Lt cx1_ 1(L(t))p9,(t).Af; (y1)µ1 (R(t)) 
l=l 

(29) 

8 l ~ 8' 8' ol}' m;(t) = K*(t) ft cx1_ 1(L(t))p9,(t).Af; (y1)µ1 (R(t)) x Yl,i i = 1, 2 (30) 

_JJ 2 1 ~ 8' 8' of}' 
oi(t) = K*(t) ft CX1-1(L(t))po,(t)%, (Y1)P1 (R(t)) 

(31) 

X (y1,;-mf(t)) 2 i= 1,2 

8 I 1 ~ 81 8' ofJ' 
P (t) = K*(t) ft cx1_ 1(L(t))p0 1 (t).Af; (y1)µ1 (R(t)) 

(32) 

x (y,,1 - mf (t))(y1,2 - m~(t)) 

In (29) the normalizing constant K assures that the sum of the proba­
bilities of transitions leaving any state equals I. The normalizing function 
K*(t) is given by 

n 

X-(t) = L cx7~1 (L(t)) p9,(t)%,81 (y1) p'/'(R(t)) 
l=l 

As always, we provide for each parameter to be estimated a counter 
(or a set of counters) that accumulates the terms of the above sums. This 

l2. In which, for convenience of actual computation, we have replaced Po,(tly) by 
P9,(t1 y). 
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is somewhat complicated in the case of formulas (31) and (32), which 
involve the results mf (t) of the computation of (30). 

9 .4.2 The Generalization to k Dimensions 
It is obvious both from the above derivation and from its results (29) 
through (32) how to estimate parameters in the k-dimensional general 
case. In fact, if U(t) = [p;,j(t)] denotes the covariance k x k matrix then 
the general reestimation formulas are simply (29), (30), and 

O , 1 ~ O' O' ) of}'( ( )) P;,j(t) = K*(t) {=. cx1_1(L(t))po,(t)JV; (Y1 ,P1 Rt 
(33) 

X (Yl,i - m? (t))(Yl,j - mJ(t)) 

9.5 Constant and Tied Parameters 

9.5.1 Keeping Some Parameters Constant 
In many applications, we wish to estimate the values of only some HMM 
parameters. For instance, in smoothing trigram models (see section 4.4) 
we wanted to find the probabilities A; of the model's null transitions while 
keeping the output distributions f ( I ) as determined from the main part 
of the text training data. It is obvious from our derivation of the Baum­
Welch algorithm for both symbolic (section 9.3) and real vector (section 
9.4) outputs that 

1. The formulas estimating the transition probabilities out of one state do 
not involve explicitly the transition probabilities out of another state. (Of 
course, the totality of all parameters affects the values of cx1(s) and P1(s) at 
various states s.) 
2. The formulas estimating the output distributions or output density 
parameters associated with one transition do not involve explicitly the 
corresponding parameters associated with other transitions. 

Thus the sole difference between estimating all the parameters and only 
some of them is that the latter case involves fewer counters (but of the 
same type). 

In the case of real vectors, it is even possible to keep constant some 
means and covariances associated with a particular transition and esti­
mate that transition's remaining parameters. Inspection of (19), (23), (24), 
and (25) shows what must be done with the contents of the counters in 
that case (to which (29), (30), and (33) no longer apply). 

1 ,· 

-' 

-
I, 

\ 
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In cwrent practice, the most common parameters to be kept constant 
are the off-diagonal ,covariances. Because of lack of ullicient data and the 
oomputationa:I ,expense of their estimation, these covariances 11e usually 
set to equal iO {i.e., P,,1( t) = 0 for i #= /). For this peciaJ cue (29) (30) 
and {33) remain applicable. 

9.5.2 Tying of Parameter Seb 
In die vast maj~rity of cases of interest, the HMMs used a,e so compln 
(and there are so many of them) that there is insufficient data to estim te 
the values of all their parameters individually. Neither does there • 
enough outside knowledge to fix the values of certain parameten d 
estimate the others. The designer invariably partitions the t of e­
tm into subsets and insists that all the parameters belonging to the ~~ ... 
subset bave the same value, 13 which he sets out to estimate. The parame­
ters of any given subset are then said to be tied. 

Let us first see what the consequences of tying are in the of the 
symbolic output alphabet treated in section 9.3. Suppo the tran ·ti n 
probabilities out of states i and i' are to be tied in such a way that PtJ = Pl'J 
for j = 1, 2, ... , 11. Then, using the notation of the development of (3) 
through (7), the relation (5) becomes 

(o/opu)P9(t, y) _ cy(t) + C;'i(t) 
P9(1t, y) - Pii 

and therefore (compare with (7)) 

1 
PJJ =KL P9,(t, y)[cij(t) + c;'i(t)] 

I I 

The treatment of the general case is obvious. If the transition proba­
bilities out of states i f . . . are to be tied, we simply pool the contents of 
taeir ·corresponding counters and after each iteration set the~ proba­
bilities to be proportional to the pool's final contents. 14 

n. The membership of these tied subsets is either determined intuitively or from 
da.43, usually by the method of decisioll trttS disctmed in chaP'ff 10. 

14. Note &at 1this .approach implies that the tied paramctas are truly idmtical, 
1tbat i intcrohangeabJe. So the fact that the statistics for tramition , may be 
derived mainly from observations of transition t' is ~nmably not bolbcnome. 
We would undoubtedly much rather not have the paramctas identical but use ooe 
as a hd,p in deriving a more robust estimate of the other. This is not what tyiDg 
•ooompli&hcs. 
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We next focus our attention on the case of real vector outputs. Th 
tying of output parameters associated with two transitions t' and t" m en eans 
that m(t') = m(t") and U(t') = U(t"). Therefore, O* ..:... O(t') = 0(t"). (S 
the notation introduced following (15)). Again, let ¢/ denote any oft: 

* e members of the parameter set O . 
Using formula (17) we get 

(o/o</J*)Po(t,y) _ (o/o</J*) TI7=1p(t,) I11 v½(y,y5(t,t,) 

Po(t,y) I17=1P(t1) Il1 ..#;(y,)'5(1,1,) 

= n ((o/o</J*).,,¥;,(y,)'5<t',t1) + (o/o</J*)..#;11(y,/(t",t1)) 
L .,,v. (y )'*',1,) ..,,v. (y r5(1•,1,) 
I= I t' I t" I 

= t (<>(t', ti)+ <>(t", t,)) (o/o¢/).,,¥;,(y,) 
l=I ffi,(Y1) 

As a result, condition (26) becomes 

n 
L Po,(tly) L(<>(t', ti) +<>(t", t,))(yI,; - m;(tI)) = O 

t l=I 

and so ( 30) is replaced by 

mf ( t') = mf ( t") 

i = l 2 
' 

_ 1 ~ ( ()1 ( ( ')) ( I 8
1 

d}' I - K*(t') + K*(t") ~ cx,_1 L t P8 1 t )JV;, (y,) P1 (R(t )) 

+ 11.L (L(t"))po,(t").K,f.' (Yi) /3'/'(R(t"))) x Yl,i 

i = l,2 

and similarly (31) is replaced by 

a'/(t')2 = af (t")2 

I n ( 
= k*(t') + k*(t") ~ 11.L (L(t')) p9, (t').K,f'(y1) p'/'(R(t')) 

+ 11.L (L(t")) p9, (t").K,ny1) f]'/'(R( t"))) X (yJ,i - mru'))2 

and (32) by 
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pe(t') == p8(t") 

} ~ ( 8' ( I I 81 of}' 
== k*(t') + k*(t") {=( ct1-1 L(t ))po,(t )%,, (y,)µ, (R(t'))) 

+ a[i (L(t")) p9,(t").¥,f (y1) pf'(R(t"))) 

x (y,,1 - mf (t'))(Y1,2 - m~(t')) 

161 

We thus see that all that needs to be done, even for estimating real 
vector output parameters, is· simply the pooling of contents of counters 
corresponding to those transitions whose output probabilities are to be 
tied. 

9.6 Tied Mixtures 

The current continuous speech recognizers use as acoustic processor out­
puts vectors of cepstral coefficients [3]. Their production probabilities 
must be tied not only because there is insufficient data to estimate them, 
but also because the calculation at recognition time of candidate proba­
bilities pertaining to the observed vectors y1 may be computationally too 
expensive. 

The ingenious accepted remedy is ref erred to as the method of tied 
mixtures [4]. The number of different normal output densities .;V;(y), 
i = 1, 2, ... , M is limited to some tolerable number M, and the output 
density corresponding to any particular transition t is specified by the 
formula 

M 

P(ylt) = L q(ilt)%;(y) (34) 
i=l 

The computational saving is obvious. As the acoustic processor gen­
erates the successive output vectors y1, the recognizer computes (possibly 
in parallel) the values .#;'(y), i = 1, 2, ... , M. These values are then em­
ployed in formulas (34) when evaluating the likelihood of transitions 
through various HM Ms. Of course, there is no requirement that for any 
particular i, t combination, q(ilt) > 0. So although M may even be of the 
order of several hundred, the number of nonzero terms in (34) would 
typically be of the order of ten. 

There is an additional important reason for employing the mixture 
formula. Although the Baum-Welch algorithm conveniently estimates the 
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.... - -----

Figure 9.1 
A density function resulting from the superposition of two Gaussian densities 

tf 

Figure 9.2 
Replacement of a single transition by a set illustrating an analysis of probability 
weight estimation for tied mixture distributions 

parameters of normal densities, these do not adequately reflect the speech 
process. Because of their squared exponent, Gaussian density values decay 
too fast as the observable variable deviates from its mean. The simple 
expedient of mixing several densities having different means can slow this 
rate of decay. Figure 9.1 illustrates this for the one-dimensional case. 

In principle, it is easy to estimate the parameters of HMMs whose 
outputs are generated according to the formula (34). We need only to 
replace in the HMM a single transition tk by M parallel transitions 
tf, i = 1, 2, ... , M having the same source and target states L(tk) and 

R(tk). 15 The output density associated with the transition t~ is then .;V;(y). 
During the parameter estimation process all the output d~nsities for dif-

15. See figure 9.2. 
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ferent values of k at transitions ,t are tied while the transition proba­
bilities p(,t.) = q(iltk) are determined in the usual way by formula (29). 

9.7 Addldonal Reading 

An easy to read exposition of the EM algorithm with some accompanying 
examples can be found in reference [5]. Since the EM algorithm • in 
many cases computationally expensive, the possibilities of acceleration [6] 
as well as the question of the rate of convergence [7] are of overridina 
interest. 

We pointed out in section 9.6 the usefuln~ of tied mixtures [4]. Inde­
pendent mixtures, however, give potentially even better results provided 
enough training material is available for accurate estimation [8]-(12]. 
State-of-the-art methods of tying [13] are based on growing decision trees 

as described in chapter 10. We will return to the specific problem of 
HMM state tying in chapter 12. 
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"For the first time, researchers in this field 

will have a book that will serve as 'the 

bible' for many aspects of language and 

speech processing. Frankly, I can't imagine 

a person working in this field not wanting 

to have a personal copy." 

-Victor Zue, MIT Laboratory for 

Computer Science 
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