
EDITION

ComputerArchitecture
A Quantitative Approach

Third Edition

John L. Hennessy
Stanford University

David A. Patterson

University ofCalifornia at Berkeley

With Contributions by

David Goldberg
Xerox Palo Alto Research Center

Krste Asanovic

Department ofElectrical Engineering and Computer Science
Massachusetts Institute oftechnology

mM 7d
MORGAN KAUFMANN PUBLISHERS

AN IMPRINT OF ELSEVIER SCIENCE

AMSTERDAM BOSTON LONDON NEW YORK
OXFORD PARIS SAN DIEGO SAN FRANCISCO
SINGAPORE SYDNEY TOKYO

Senior Editor Denise E. M. Penrose

Assistant Publishing Services Manager Edward Wade
Senior Production Editor Cheri Palmer

Editorial Coordinator Alyson Day
Cover Design Ross Carron Design
Cover Image Greg Pease / gettyimages
Text Design Rebecca Evans & Associates
Technical Illustration Lineworks,Inc.

Composition Nancy Logan
Copyeditor Ken DellaPenta
Proofreader Jennifer McClain
Indexer Ty Koontz
Printer Courier Corporation

Designations used by companies to distinguish their products are often claimed as trademarks or reg-
istered trademarks. In all instances in which Morgan Kaufmann Publishers is aware of a claim, the
product names appearin initial capital or all capital letters. Readers, however, should contact the
appropriate companies for more complete information regarding trademarks and registration.

Morgan Kaufmann Publishers
An Imprint of Elsevier Science
340 Pine Street, Sixth Floor, San Francisco, CA 94104-3205, USA

www.mkp.com

© 1990, 1996, 2003 by Elsevier Science (USA)
All rights reserved

Published 1990. Third edition 2003

Printed in the United States of America

07 06 05 04 03 10 9 8 7 6.5 4.93 2.1

Nopart ofthis publication may be reproduced,storedin a retrieval system,or transmitted in any form
or by any means—electronic, mechanical, photocopying, or otherwise—withoutthe prior written per-
mission of the publisher.

ADVICE, PRAISE, & ERRORS:Any correspondencerelated to this publication or intended for the
authors should be addressed to ca3comments@mkp.com. Information regarding errorsightings is also
encouraged. Any error sightings that are accepted for correction in subsequent printings will be
rewarded by the authors with a payment of $1.00 (U.S.) per correction upon availability of the new
printing. Bugs canbe sent to cabugs@mkp.com.(Please include your full name and permanent mail-
ing address.)

Library of Congress Control Number: 2001099789

ISBN 1-55860-596-7 (cloth)

ISBN 1-55860-724-2 (paper)

This bookis printed on acid-free paper.

528 «= Chapter Six Multiprocessors and Thread-Level Parallelism

Introduction
As the quotations that open this chapter show, the view that advances in uni-
processorarchitecture were nearing an end has been widely held at varying times.
To counter this view, we observe that during the period 1985-2000, eeae
performance growth, driven by the microprocessor, was at its highest rate since
thefirst transistorized computersin the late 1950s and early 1960s.

On balance, though, we believe that parallel processors will definitely have a
bigger role in the future. This view is driven by three observations. First, since
microprocessorsare likely to remain the dominant uniprocessor technology, the
logical way to improve performance beyonda single processor is by connecting
multiple microprocessors together. This combination is likely to be morecost-
effective than designing a custom processor. Second, it is unclear whether the
pace ofarchitectural innovation that has been based for more than 15 years on
increased exploitation of instruction-level parallelism can be sustained indefi-
nitely. As we saw in Chapters 3 and 4, modern multiple-issue processors have
become incredibly complex, and the performance increases achieved through
increasing complexity, increasing silicon, and increasing power seem to be
diminishing. Third, there appears to be slow but steady progress on the major
obstacle to widespread use ofparallel processors, namely, software. This progress
is probably faster in the server and embedded markets, as we discussed in Chap-
ters 3 and 4. Server and embedded applications exhibit natural parallelism that
can be exploited without some of the burdens of rewriting a gigantic software
base. This is more of a challenge in the desktop space.

We, however, are extremely reluctant to predict the death of advancesin uni-
processor architecture. Indeed, we believe that the rapid rate of performance
growth will continueat least for the next five years. Whether this pace of innova-
tion can besustained longeris difficult to predict but hard to bet against. None-
theless, if the pace of progress in uniprocessors does slow down, multiprocessor
architectures will become increasingly attractive.

Thatsaid, weare left with two problems.First, multiprocessor architecture is
a large anddiversefield, and muchofthe field is in its youth, with ideas coming
and going and, until very recently, more architectures failing than succeeding.
Giventhat we are already on page 528, full coverage of the multiprocessor design
space andits trade-offs would require another volume. (Indeed, Culler, Singh,
and Gupta [1999] cover only multiprocessors in their 1000-page book!) Second,
such coverage would necessarily entail discussing approaches that may notstand
the test of time, something we have largely avoided to this point. For these rea-
sons, we have chosen to focus on the mainstream of multiprocessor design: mul-
tiprocessors with small to medium numbers of processors (< 128). Such designs
vastly dominate in terms of both units and dollars. We will pay only slightatten-
tion to the larger-scale multiprocessor design space (= 128 processors). At the
present, the future architecture of such multiprocessors is unsettled, and even the
viability of that marketplace is in doubt. We will return to this topic briefly at the
end of the chapter, in Section 6.15.

6.1 Introduction » 529

A TaxonomyofParallel Architectures

We begin this chapter with a taxonomy so that you can appreciate both the
breadth of design alternatives for multiprocessors and the contextthathasled to
the development of the dominant form of multiprocessors. Webriefly describe
the alternatives and the rationale behind them;a longer description of how these
different models were born (and often died) can be found in the historical per-
spective at the endof the chapter.

The idea of using multiple processors both to increase performance and to
improve availability dates back to the earliest electronic computers. About 30
years ago, Flynn [1966] proposed a simple model ofcategorizing all computers
thatis still useful today. He looked at the parallelism in the instruction and data
streams called for by the instructions at the most constrained componentof the
multiprocessor, and placed all computers into one of four categories:

1. Single instruction stream, single data stream (SISD)—Thiscategory is the
uniprocessor.

2. Single instruction stream, multiple data streams (SIMD)—Thesameinstruc-
tion is executed by multiple processors using different data streams. Each
processorhasits own data memory (hence multiple data), but there is a single
instruction memory and control processor, which fetches and dispatches
instructions. The multimedia extensions we considered in Chapter 2 are a

limited form of SIMDparallelism. Vector architecturesare the largest class of
processorsof this type.

3. Multiple instruction streams, single data stream (MISD)—No commercial
multiprocessor of this type has been built to date, but may bein the future.
Somespecial-purpose stream processors approximate a limited form ofthis
(there is only a single data stream that is operated on by successive functional
units).

4. Multiple instruction streams, multiple data streams (MIMD)—Eachproces-
sor fetches its own instructions and operates on its own data. The processors
are often off-the-shelf microprocessors.

This is a coarse model, as some multiprocessors are hybrids of these categories.
Nonetheless,it is useful to put a framework on the design space.

Asdiscussedin the historical perspectives, many of the early multiprocessors
were SIMD, and the SIMD modelreceived renewedattention in the 1980s, and

except for vector processors, was gone by the mid-1990s. MIMDhasclearly
emerged as the architecture of choice for general-purpose multiprocessors. Two
factors are primarily responsible for the rise of the MIMD multiprocessors:

1. MIMDsoffer flexibility, With the correct hardware and software support,
MIMDscanfunction as single-user multiprocessors focusing on high perfor-
mance for one application, as multiprogrammed multiprocessors running
manytasks simultaneously, or as some combination of these functions.

530 « Chapter Six Multiprocessors and Thread-Level Parallelism

2. MIMDs can build on the cost-performance advantages of off-the-shelf
microprocessors.In fact, nearly all multiprocessors built today use the same
microprocessors found in workstations and single-processor Servers.

With an MIMD,each processor is executing its own instruction stream. In
many cases, each processor executes a different process. Recall from the last
chapter that a process is a segment of code that may be run independently, and
that the state of the process containsall the information necessary to executethat
program onaprocessor. In a multiprogrammed environment, where the proces-
sors may be running independenttasks, each process is typically independent of
the processes on other processors.

It is also useful to be able to have multiple processors executing a single pro-
gram and sharing the code and mostof their address space. When multiple pro-
cesses share code and data in this way, they are often called threads. Today, the
term threadis often used in a casual wayto refer to multiple loci of executionthat
may run on different processors, even when they do not share an addressspace.

To take advantage of an MIMD multiprocessor with n processors, we must
usually have at least n threads or processes to execute. The independent threads
are typically identified by the programmeror created by the compiler. Since the
parallelism in this situation is contained in the threads, it is called thread-level
parallelism.

Threads may vary from large-scale, independent processes—for example,
independent programs running in a multiprogrammedfashion on different proces-
sors—to parallel iterations of a loop, automatically generated by a compiler and
each executing for perhapsless than a thousandinstructions. Although the size of a
thread is important in considering how to exploit thread-level parallelism effi-
ciently, the important qualitative distinction is that such parallelism is identified at
a high level by the software system and that the threads consist of hundreds to mil-
lions of instructions that may be executedin parallel. In contrast, instruction-level

parallelism is identified primarily by the hardware, although with software help in
some cases, and is found and exploited one instruction at a time.

Existing MIMD multiprocessorsfall into two classes, depending on the num-
ber of processors involved, which in turn dictate a memory organization and
interconnectstrategy. Werefer to the multiprocessors by their memory organiza-
tion because what constitutes a small or large number of processorsis likely to
changeovertime.

The first group, which wecall centralized shared-memory architectures, has
at most a few dozenprocessors in 2000. For multiprocessors with small processor
counts, it is possible for the processors to share a single centralized memory and
to interconnect the processors and memory by a bus. With large caches, the bus
and the single memory, possibly with multiple banks, can satisfy the memory
demandsof a small numberof processors. By replacing a single bus with multi-
ple buses, or even a switch, a centralized shared-memory design can be scaled to
a few dozen processors. Although scaling beyondthat is technically conceivable,
sharing a centralized memory, even organized as multiple banks, becomes less
attractive as the numberof processors sharingit increases,

6.1 Introduction = 531

Becausethere is a single main memory that has a symmetric relationship to
all processors and a uniform access time from any processor, these multiproces-
sors are often called symmetric (shared-memory) multiprocessors (SMPs), and
this style of architecture is sometimes called uniform memory access (UMA),
This type of centralized shared-memory architecture is currently by far the most
popular organization. Figure 6.1 shows what these multiprocessorslooklike. The
architecture of such multiprocessorsis the topic of Section 6.3.

The second group consists of multiprocessors with physically distributed
memory. To support larger processor counts, memory mustbedistributed among
the processors rather than centralized; otherwise the memory system would not
be able to support the bandwidth demandsofa larger number ofprocessors with-
out incurring excessively long access latency. With the rapid increase in processor
performance and the associated increase in a processor’s memory bandwidth
requirements, the scale of multiprocessor for which distributed memory is pre-
ferred over a single, centralized memory continues to decrease in number (which
is another reason not to use small and large scale). Of course, the larger number
of processors raises the need for a high bandwidth interconnect, of which wewill
see examples in Chapter 8. Both direct interconnection networks(i.e., switches)
and indirect networks (typically multidimensional meshes) are used. Figure 6.2
showswhatthese multiprocessors looklike.

Processor Processor Processor Processor

One or One or One or Oneor
morelevels more levels morelevels morelevels

of cache of cache of cache of cache

Main memory VO system

Figure 6.1 Basic structure of a centralized shared-memory multiprocessor. Multiple
processor-cache subsystemsshare the same physical memory, typically connected by a
bus.In larger designs, multiple buses, or even a switch may be used, but the key archi-
tectural property—uniform accesstimeto all memoryfrom all processors—remains.

Bae Chapter Six Multiprocessors and Thread-Level Parallelism

 Processor
+ cache

vo

+ cache
+ cache + cache

Figure 6.2 The basic architecture of a distributed-memory multiprocessorconsists

of individual nodes containing a processor, some memory, typically some /0, and
an interface to an interconnection network that connectsall the nodes.Individual
nodes maycontain a small number of processors, which may be interconnected by a
small bus ora different interconnection technology, whichis less scalable than the glo-
bal interconnection network.

Distributing the memory amongthe nodes has two majorbenefits. First, it is a
cost-effective way to scale the memory bandwidth if most of the accesses are to
the local memory in the node. Second, it reduces the latency for accessesto the
local memory. These two advantages make distributed memory attractive at
smaller processor counts as processors get ever faster and require more memory
bandwidth and lower memory latency. The key disadvantage for a distributed-
memory architecture is that communicating data between processors becomes
somewhat more complex andhashigherlatency, at least when there is no conten-
tion, because the processors no longer share a single, centralized memory. As we
will see shortly, the use of distributed memory leads to two different paradigms
for interprocessor communication.

Typically, I/O as well as memory is distributed among the nodesof the multi-
processor, and the nodes may be small SMPs(twoto eight processors). Although
the use of multiple processors in a node together with a memory and a network
interface may be quite useful from a cost-efficiency viewpoint, it is not funda-
mental to how these multiprocessors work, and so we will focus on the one-
processor-per-node design for most of this chapter.

Models for Communication and Memory Architecture

As discussed earlier, any large-scale multiprocessor must use multiple memories
that are physically distributed with the processors. There are two alternative
architectural approachesthat differ in the method used for communicating data
among processors.

6.1 Introduction » 533

In the first method, communication occurs through a shared address Space,
That is, the physically separate memories can be addressed as onelogically
shared address space, meaning that a memory reference can be madeby any pro-
cessor to any memory location, assumingit has the correct access rights. These
multiprocessors are called distributed shared-memory (DSM)architectures. The
term shared memory refers to the fact that the address spaceis shared; thatis, the
same physical address on two processors refers to the samelocation in memory,
Shared memory does not meanthatthere is a single, centralized memory. In con-
trast to the symmetric shared-memory multiprocessors, also known as UMAs
(uniform memory access), the DSM multiprocessors are also called NUMAs
(nonuniform memory access), since the access time depends on thelocation ofa
data word in memory.

Alternatively, the address space can consist of multiple private address spaces
that are logically disjoint and cannot be addressed by a remote processor. In such
multiprocessors, the same physical address on two different processors refers to
two different locations in two different memories. Each processor-memory mod-

ule is essentially a separate computer; therefore, these parallel processors have
been called multicomputers. A multicomputer can even consist of completely
separate computers connected ona local area network, which today are popularly
called clusters. For applications that require little or no communication and can
make use of separate memories, such clusters of processors, whether using a
standardized or customized interconnect, can form a very cost-effective approach
(see Section 8.10).

With each of these organizationsfor the address space, there is an associated
communication mechanism. For a multiprocessor with a shared address space,
that address space can be used to communicate data implicitly via load and store
operations; hence the name shared memory for such multiprocessors. For a multi-
processorwith multiple address spaces, communication of data is done by explic-
itly passing messages amongthe processors. Therefore, these multiprocessorsare
often called message-passing multiprocessors.

In message-passing multiprocessors, communication occurs by sending mes-
sages that request action or deliver data, just as with the network protocols dis-
cussed in Section 8.2. For example, if one processor wants to access or operate on
data in a remote memory,it can send a message to request the data or to perform
some operation on the data. In such cases, the message can be thoughtof as a
remote procedure call (RPC). When the destination processor receives the mes-
sage, either by polling for it or via an interrupt, it performs the operation or
access on behalf of the remote processor and returnsthe result with a reply mes-
sage. This type of messagepassingis also called synchronous, since the initiating
processor sends a request and waits until the reply is returned before continuing.
Software systems have been constructed to encapsulate the details of sending and
receiving messages, including passing complex argumentsor return values,pre-
senting a clean RPCfacility to the programmer.

Communication can also occur from the viewpointof the writer of data rather
than the reader, and this can be moreefficient when the processor producing data

534
a Chapter Six Multiprocessors and Thread-Level Parallelism

knows which other processors will need the data. In such cases, the data can be
sent directly to the consumer process without having to be requested first. It is
often possible to perform such message sends asynchronously, allowing the
senderprocessto continue immediately. Often the receiver will wantto block if it
tries to receive the messagebefore it has arrived; in other cases, the reader may
check whether a message is pending before actually trying to perform a blocking
receive. Also the sender must be prepared to block if the receiver has not yet con-
sumed an earlier message and no buffer space is available. The message-passing
facilities offered in different multiprocessors are fairly diverse. To ease program
portability, standard message-passing libraries (for example, message-passing
interface, or MPI) have been proposed. Suchlibraries sacrifice some performance
to achieve a commoninterface.

Performance Metrics for Communication Mechanisms

Three performancemetricsarecritical in any communication mechanism:

1. Communication bandwidth—Ideally the communication bandwidth is lim-
ited by processor, memory, and interconnection bandwidths, rather than by
some aspect of the communication mechanism. The bisection bandwidth
(see Section 8.5) is determined by the interconnection network. The band-
width in or out of a single node, which is often as importantas bisection
bandwidth, is affected both by the architecture within the node and by the
communication mechanism. How does the communication mechanism affect
the communication bandwidth of a node? When communication occurs,
resources within the nodes involved in the communication are tied up or

occupied, preventing other outgoing or incoming communication. Whenthis
occupancyis incurred for each word of a message, it sets an absolute limit
on the communication bandwidth. This limit is often lower than whatthe

network or memory system can provide. Occupancy may also have a compo-
nent that is incurred for each communication event, such as an incoming or

outgoing request. In the latter case, the occupancy limits the communication
rate, and the impact of the occupancy on overall communication bandwidth
dependsonthe size of the messages.

2. Communication latency—Ideally the latency is as low as possible. As we will
see in Chapter 8,

Communication latency = Sender overhead + Timeofflight
+ Transmission time + Receiver overhead

Timeofflight is fixed and transmission time is determined by the interconnec-
tion network. The software and hardware overheads in sending andreceiving
messages are largely determined by the communication mechanism andits
implementation. Why is latency crucial? Latency affects both performance
and how easy it is to program a multiprocessor. Unless latency is hidden,it
directly affects performance either by tying up processor resources or by
causing the processor to wait. Overhead and occupancyare closely related,

6.1 Introduction » 535

since many formsof overhead also tie up somepart of the node, incurring an
occupancycost, which in turn limits bandwidth. Key features of a communi-
cation mechanism maydirectly affect overhead and occupancy. For example,
howis the destination address for a remote communication named, and how
is protection implemented? When naming and protection mechanisms are
provided by the processor, as in a shared address space, the additional over-
head is small. Alternatively, if these mechanisms must be provided by the
operating system for each communication,this increases the overhead and
occupancy costs of communication, which in turn reduce bandwidth and
increase latency.

3. Communication latency hiding—How well can the communication mecha-
nism hide latency by overlapping communication with computation or with
other communication? Although measuring this is not as simple as measuring
the first two metrics, it is an important characteristic that can be quantified by
measuring the running time on multiprocessors with the same communication
latency but different support for latency hiding. We will see examples of
latency-hiding techniques for shared memory in Sections 6.8 and 6.10.
Althoughhidinglatency is certainly a goodidea, it poses an additional burden
on the software system and ultimately on the programmer. Furthermore,the
amountof latency that can be hidden is application dependent. Thus,it is usu-
ally best to reduce latency whereverpossible.

Each of these performance measuresis affected by the characteristics of the
communications needed in the application. The size of the data items being
communicated is the most obvious, since it affects both latency and bandwidth
in a direct way, as well as affecting the efficacy of different latency-hiding
approaches. Similarly, the regularity in the communication patterns affects the
cost of naming and protection, and hence the communication overhead. In gen-
eral, mechanismsthat perform well with smaller as well as larger data communi-
cation requests, and irregular as well as regular communication patterns, are
moreflexible and efficient for a wider class of applications. Of course, in consid-
ering any communication mechanism, designers must consider cost as well as
performance.

AdvantagesofDifferent Communication Mechanisms

Each of these two primary communication mechanismshas its advantages. For
shared-memory communication, advantages include

= Compatibility with the well-understood mechanisms in use in centralized
multiprocessors, which all use shared-memory communication. The OpenMP
consortium (see www.openmp.org for description) has proposed a standard-
ized programming interface for shared-memory multiprocessors.

= Ease of programming when the communication patterns among processors
are complex or vary dynamically during execution. Similar advantages sim-
plify compiler design.

536 Chapter Six Multiprocessors and Thread-Level Parallelism

= Theability to develop applications using the familiar shared-memory model,
focusing attention only on those accesses that are performancecritical.

= Loweroverhead for communication and better use of bandwidth when com-
municating small items. This arises from the implicit nature of communica-
tion and the use of memory mapping to implement protection in hardware,
rather than through the I/O system.

= Theability to use hardware-controlled caching to reduce the frequency of
remote communication by supporting automatic caching of all data, both
shared andprivate. As wewill see, caching reduces both latency and conten-
tion for accessing shared data. This advantage also comes with a disadvan-
tage, which we mention below.

The major advantages for message-passing communication include the following:

m= The hardware can be simpler, especially by comparison with a scalable shared-
memory implementation that supports coherent caching of remote data.

= Communication is explicit, which means it is simpler to understand; in
shared-memory models, it can be difficult to know when communication is
occurring and whenit is not, as well as how costly the communication1s.

= Explicit communication focuses programmerattention on this costly aspect
of parallel computation, sometimes leading to improvedstructure in a multi-
processor program.

= Synchronization is naturally associated with sending messages, reducing the
possibility for errors introduced by incorrect synchronization.

= It makes it easier to use sender-initiated communication, which may have

some advantages in performance.

Of course, the desired communication model can be created on top of a
hardware model that supports either of these mechanisms. Supporting message
passing on top of shared memory is considerably easier: Because messages
essentially send data from one memory to another, sending a message can be
implemented by doing a copy from one portion of the address space to another.
The major difficulties arise from dealing with messages that may be misaligned
and of arbitrary length in a memory system that is normally oriented toward
transferring aligned blocks of data organized as cache blocks. Thesedifficulties
can be overcome either with small performance penalties in software or with
essentially no penalties, using a small amount of hardware support.

Supporting shared memoryefficiently on top of hardware for message pass-
ing is much more difficult. Without explicit hardware support for shared mem-
ory, all shared-memory references need to involve the operating system to
provide address translation and memoryprotection, as well as to translate mem-
ory references into message sends and receives. Loads and stores usually move
small amounts of data, so the high overhead of handling these communications
in software severely limits the range of applications for which the performance

6.1 Introduction » 537

of software-based shared memory is acceptable. An ongoing area of research is
the exploration of when a software-based model is acceptable and whether a
software-based mechanism is usable for the highest level of communicationin a
hierarchically structured system. One possible direction is the use of virtual
memory mechanisms to share objects at the page level, a technique called
shared virtual memory, we discuss this approach in Section 6.10.

In distributed-memory multiprocessors, the memory model and communica-
tion mechanismsdistinguish the multiprocessors. Originally, distributed-memory
multiprocessors were built with message passing,since it was Clearly simpler and
manydesigners and researchers did not believe that a shared address space could
be built with distributed memory. Shared-memory communication has beensup-
ported in virtually every multiprocessor designed since 1995. What hardware
communication mechanisms will be supported in the very largest multiproces-
sors, called massively parallel processors (MPPs), which typically have far more
than 100 processors, is unclear; shared memory, message passing, and hybrid
approachesare all contenders. Despite the symbolic importance of the MPPs,
such multiprocessorsare a small portion of the market and havelittle or no influ-
ence on the mainstream multiprocessors with tens of processors. Wewill return to
a discussion of the possibilities and trends for MPPsin the concluding remarks
and historical perspective at the end of this chapter.

SMPs, which wefocus on in Section 6.3, vastly dominate DSM multiproces-
sors in terms of market size (both units and dollars) and will probably be the
architecture of choice for on-chip multiprocessors. For moderate-scale multipro-
cessors (> 8 processors) long-term technical trends favor distributing memory,
whichis also likely to be the dominant approach when on-chip SMPsare used as
the building blocks in the future. These distributed shared-memory multiproces-
sors are a natural extension of the centralized multiprocessors that dominate the
market, so we discuss these architectures in Section 6.5. In contrast, multicom-

puters or message-passing multiprocessors build on advances in network technol-
ogy and are described in Chapter 8. Since the technologies employed were well
described in the last chapter, we focus our attention on shared-memory
approachesin the rest of this chapter.

Challengesof Parallel Processing

Two important hurdles, both explainable with Amdahl’s Law, makeparallel pro-
cessing challenging. Thefirst has to do with the limited parallelism available in
programs, and the secondarises from the relatively high cost of communications.
Limitations in available parallelism makeit difficult to achieve good speedupsin
any parallel processor, as ourfirst example shows.

SOOO———————

Example Suppose you wantto achieve a speedup of 80 with 100 processors. Whatfraction
of the original computation can be sequential?

538 «= Chapter Six Multiprocessors and Thread-Level Parallelism

Answer Amdahl’s Law is

Speedup =pilLEee
Fraction ;

___enhanced 5 (4 _ Fraction.phanced)
Speedupenhanced

For simplicity in this example, assume that the program operates in only two
modes: parallel with all processors fully used, which is the enhanced mode, or
serial with only one processor in use. With this simplification, the speedup in
enhanced mode is simply the number of processors, while the fraction of
enhanced modeis the time spent in parallel mode. Substituting into the previous
equation:

1SL
O=

Fraction jarattel7 + (1 — Fractionparattel)

Simplifying this equation yields

0.8 x Fraction , + 80 x (1 - Fraction,arate!) = lparalle

80 — 79.2 x Fractionpsratlel = 1
: _ 80-1

Fractionparallel = 79.2

Fractionorallel = 0.9975

Thus to achieve a speedup of 80 with 100 processors, only 0.25% of original
computation can be sequential. Of course, to achieve linear speedup (speedup of
n with n processors), the entire program must usually be parallel with noserial
portions. (One exception to this is superlinear speedup that occurs due to the
increased memory and cache available when the processor count is increased.
This effect is usually not very large and rarely scales linearly with processor
count.) In practice, programs do not just operate in fully parallel or sequential
mode,but often use less than the full complementof the processors when running
in parallel mode. Exercise 6.1 asks you to extend Amdahl’s Law to deal with such
a case.

The second major challenge in parallel processing involves the large latency
of remote access in a parallel processor. In existing shared-memory multiproces-
sors, communication of data between processors may cost anywhere from 100
clock cycles to over 1000 clock cycles, depending on the communication mecha-
nism, the type of interconnection network, and the scale of the multiprocessor.
Figure 6.3 shows the typical round-trip delays to retrieve a word from a remote
memoryfor several different shared-memoryparallel processors.

The effect of long communication delays is clearly substantial. Let’s consider
a simple example.

6.1 Introduction 539

——

Multiprocessor

Sun Starfire servers

SGI Origin 3000

Cray T3E

HPVseries

Compaq AlphaServer GS

Year SMPor Maximum_Interconnection Typical remote
shipped NUMA processors network memory access time(ns)

1996 SMP 64 multiple buses 500

1999 NUMA 512 fat hypercube 500

1996 NUMA 2048 2-way 3D torus 300
1998 SMP a7 8 x 8 crossbar 1000

1999 SMP 32 switched buses 400
es

Figure 6.3 Typical remoteaccess timesto retrieve a word from a remote memory in shared-memory multipro-
cessors.

LL———eeee——eeeeee

Example

Answer

Suppose wehave an application running on a 32-processor multiprocessor, which
has a 400 ns time to handle reference to a remote memory.Forthis application,
assumethatall the references except those involving communication hit in the
local memory hierarchy, which is slightly optimistic. Processorsare stalled on a
remote request, and the processorclock rate is 1 GHz. If the base IPC (assuming
that all references hit in the cache) is 2, how muchfaster is the multiprocessorif
there is no communication versus if 0.2% of the instructions involve a remote
communication reference?

It is simpler to first calculate the CPI. The effective CPI for the multiprocessor
with 0.2% remote referencesis

CPI = Base CPI + Remote request rate x Remote requestcost
1

= .2% X Remote request costBaseIPC + 0.2%xRem q
0.5 + 0.2% x Remote request cost

The remote request costis

Remote access cost 400ns
—_————_ = — = 400 cycles

Cycle time 1 ns

Hence we can compute the CPI:

CPI = 0.5 + 0.8 = 1.3

The multiprocessorwith all local references is 1.3/0.5 = 2.6 times faster. In prac-
tice, the performance analysis is much more complex, since somefraction of the
noncommunication references will miss in the local hierarchy and the remote
access time does not have a single constant value. For example, the cost of a
remote reference could be quite a bit worse, since contention caused by manyref-
erencestrying to use the global interconnectcanlead to increased delays.

540 Chapter Six Multiprocessors and Thread-Level Parallelism

6.2

These problems—insufficientparallelism and long-latency remote communi-
cation—are the two biggest challenges in using multiprocessors. The problem of
inadequate application parallelism must be attacked primarily in software with
new algorithmsthat can have better parallel performance. Reducing the impactof
long remote latency can be attacked both by the architecture and by the program-
mer. For example, we can reduce the frequency of remote accesses with either
hardware mechanisms, such as caching shared data, or software mechanisms,
such as restructuring the data to make more accesses local. We can try to tolerate
the latency by using prefetching or multithreading, which we examined in
Chapters 4 and 5,

Muchofthis chapter focuses on techniques for reducing the impact of long
remote communication latency. For example, Sections 6.3 and 6.5 discuss how
caching can be used to reduce remote access frequency, while maintaining a
coherent view of memory. Section 6.7 discusses synchronization, which, because
it inherently involves interprocessor communication, is an additional potential
bottleneck. Section 6.8 talks about latency-hiding techniques and memory con-
sistency models for shared memory. Before we wadeinto these topics,it is help-
ful to have some understanding of the characteristics of parallel applications,
both for better comprehension of the results we show using some of these appli-
cations and to gain a better understanding of the challenges in writing efficient
parallel programs.

Characteristics of Application Domains

In earlier chapters, we examined the performance and characteristics of applica-
tions with only a small amountof insight into the structure of the applications.
For understanding the key elements of uniprocessor performance, such as caches
and pipelining, general knowledge of an application is often adequate, although
we saw that deeper application knowledge was necessary to exploit higher levels
of ILP.

In parallel processing, the additional performance-critical characteristics—
such as load balance, synchronization, and sensitivity to memory latency—typi-
cally depend on high-level characteristics of the application. These characteristics
include factors like how data are distributed, the structure of a parallel algorithm,
and the spatial and temporal access patterns to data. Therefore at this point we
take the time to examinethe three different classes of workloads.

The three different domains of multiprocessor workloads we explore are a
commercial workload, consisting of transaction processing, decision support, and
web searching; a multiprogrammed workload with operating systems behavior
included; and a workload consisting of individual parallel programs from the
technical computing domain,

