
IPR2023-00035 
Apple EX1016 Page 1

VOICE
RECOGNITION >

RICHARD L. KLEVANS

ROBERT D. RODMAN 



• I 
! 

) .. ., 

•. •[ 

I • ,.: 

,,,. r,. 

, ·, 

, 

V:@m~ er {ie@~gn•i(~w~~ '.·, :,I : •<., :·, ! ';/ 

. '. 

I I 

&i€haFa L .. Klev.aBS, 
• R0bler.t ID. Ro<dmaB 

I' 

• ,._t 

, 1· 

i.:. .h---, 

, , I_· 

·, 

. ..... > ..... ,. 

1 \ ..... ~ 1 

tl'.~£~h }'.~'?<\) 
't. 

q,r: 

i f .. , 

• ' 
,_. 

'l • , 
.i • ..- .\. ~ l 't • 

., . 

,At;te¢h ~0use 1 

~JSl~ston, ~ -Lon(lQn, 

... 

1 ""1°' 

> I l .• :,', );._. 

' 1 I 

IPR2023-00035 
Apple EX1016 Page 2



Library of Congress Cataloging-in-Publication Data 
Klevans, Richard L. 
Voice recognition/ Richard L. Klevans, Robert D. Rodman. 

p. cm. - (Artech House telecommunications library) 
Includes bibliographical references and index. 
ISBN 0-89006-927-1 (alk. paper) 
1. Speech processing systems. 2. Automatic speech recognition. 
3. Voiceprints. 4. Natural language processing (Computer science) 
I. Rodman, Robert D. II. Title. III. Series. 

TK7882.2.S65K55 1997 
006.4'54-dc21 97-30792 

British Library Cataloguing in Publication Data 
Klevans, Richard L. 

Voice recognition 
1. Automatic speech recognition 
I. Title. II. Rodman, Robert D. 
006.4'54 

ISBN 0-89006-927-1 

Cover design by Jennifer L. Stuart 

© 1997 ARTECH HOUSE, INC. 
685 Canton Street 
Norwood, MA 02062 

CIP 

All rights reserved. Printed and bound in the United States of America. No part 
of this book may be reproduced or utilized in any form or by any means, elec
tronic or mechanical, including photocopying, recording, or by any information 
storage and retrieval system, without permission in writing from the publisher. 

All terms mentioned in this book that are known to be trademarks or service 
marks have been appropriately capitalized. Artech House cannot attest to the ac
curacy of this information. Use of a term in this book should not be regarded as 
affecting the validity of any trademark or service mark. 

International Standard Book Number: 0-89006-927-1 
Library of Congress Catalog Card Number: 97-30792 

10 9 8 7 6 5 4 3 2 1 

I 

I 

I 

I 

I 

I 

I 

I 

I 
' 

IPR2023-00035 
Apple EX1016 Page 3



Contents 

Chapter 1 Introduction 1 
Speech Synthesis 1 
Speech Recognition 3 
Speaker Classification 4 
Areas of Application for Voice Recognition 6 
Design Tradeoffs in Voice Recognition 7 

Text-Dependent Versus Text-Independent 7 
Ideal Recording Environment Versus Noisy 
Environment 8 
Speaker Verification Versus Speaker 
Identification 9 
Real-Time Operation Versus Off-Line 
Operation 9 

Regarding This Book 10 
Intended Readers 10 
What Is Covered 11 
Why? 12 

References 13 

Chapter 2 Background of Voice Recognition 15 
Voiceprint Analysis 16 
Parameter Extraction 20 

The Parameter Extraction Process 20 
Types of Parameters 21 
Evaluation of Parameters 2 7 
Distance Measures 2 9 
Pattern Recognition 32 

-----------v-----------

IPR2023-00035 
Apple EX1016 Page 4



vi Voice Recognition 

Voice Recognition in Noisy Environments 54 
Summary 56 
References 5 7 

Chapter 3 Methods of Context-Free Voice 
Recognition 61 

Voice Recognition in Law Enforcement 61 
Forensic Recognition Classification 62 

Ideal Voice Recognition 64 
A Segregating Voice-Recognition System 72 

System Tasks 75 
Channel Variation Compensation 94 
Software Implementation 99 

Logistics of Forensic Speaker Identification 101 
Summary 105 
References 105 

Chapter 4 Experimental Results 107 
Test Utterance Length Experiments 107 
Large Population Results 112 
Filtered Data Test 114 
Channel Compensation Tests 116 

Average Filter Compensation Technique 
Experiment 117 
Rehumanizing Filter Technique 
Experiment 119 

Secondary Parameters 121 
Secondary Parameter Usage 130 
Effects of Varying the Cutoff Value 131 
Best-Case Secondary Parameter Usage 13 2 

Mock Forensic Cases 135 
SBI Case 1 136 
SBI Case 2 144 
SBI Case 3 147 

Summary 148 
References 149 

IPR2023-00035 
Apple EX1016 Page 5



Chapter 5 The Future of Context-Free Voice 
Recognition 

Rehumanizing Filter Technique Tests 
Voice-Recognition Databases 
Medium-Term Goals 
Long-Term Goals 
Other Applications 
Summary 
References 

Chapter 6 Conclusions 

About the Authors 

Index 

Contents vii 

151 
151 
153 
156 
157 
158 
159 
160 

161 

165 

167 

. ·, ' 

IPR2023-00035 
Apple EX1016 Page 6



Background of Voice 
Recognition 

This chapter will present a review of the research in the area 
of voice recognition. Initially, research in this area concen
trated on determining whether speakers' voices were unique 
or at least distinguishable from those of a group of other 
speakers. In these studies, manual intervention was necessary 
to carry out the recognition task. As computer power 
increased and knowledge about speech signals improved, 
research became aimed at fully automated systems executed 
on general-purpose computers or specially designed com
puter hardware. 

Voice recognition consists of two major tasks: feature 
extraction and pattern recognition. Feature extraction 
attempts to discover characteristics of the speech signal 
unique to the individual speaker. The process is analogous 
to a police description of a suspect, which typically lists 
height, weight, skin color, facial shape, body type, and any 
distinguishing marks or disfigurements. Pattern recognition 
refers to the matching of features in such a way as to deter
mine, within probabilistic limits, whether two sets of features 
are from the same or different individuals. In this chapter, 
we will discuss research related to these tasks. The chapter 
will conclude with a short description of methods for dealing 
with noise in voice-recognition systems. 

----------- 15 -----------
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16 Voice Recognition 

VOICEPRINT ANAi=. YSIS 

The first type of automatic speaker recognition, called voice
print analysis, was begun in the 1960s. The term voiceprint 
was derived from the more familiar term fingerprint. 
Researchers hoped that voiceprints would provide a reliable 
method for uniquely identifying people by their voices, just 
as fingerprints had proven to be a reliable method of identifi
cation in forensic situations. 

Voiceprint analysis was only a semiautomatic process. 
First, a graphical representation of each speaker's voice was 
created. Then, human experts manually determined whether 
two graphs represented utterances spoken by the same person. 
The graphical representations took one of two forms: a speech 
spectrogram (called a bar voiceprint at the time)-see Figure 
2.1-or a contour voiceprint [1]. The former, the more com
monly used form, consists of a representation of a spoken 
utterance in which time is displayed on the abscissa, fre
quency on the ordinate, and spectral energy as the darkness 
at a given point. 

Ii 

5 

,,,,.tfl•H-~ 

Figure 2.1 Spectrogram of author saying, "This is Rick." 
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Background of Voice Recognition 17 

Prior to a voiceprint identification attempt, spectrograms 
would have been produced by a sound spectrograph from 
recordings of the speakers in question. Typically, the input 
data for voiceprint analysis consisted of recordings of utter
ances of 10 commonly used words-such as "the," "you,,, 
and "I" -from each speaker in the set to be identified. These 
10 words can be thought of as roughly analogous to the 10 
fingers used in fingerprint analysis. Human experts deter
mined the identity of speakers by visually inspecting the spec
trograms of a given word spoken by several known speakers 
and comparing those to a spectrogram of the same word spo
ken by an unknown speaker. 

The experts looked for features of the spectrograms that 
best characterized each speaker. Some commonly used fea
tures were absolute formant frequency, formant bandwidths, 
and formant trajectories. Formants are bands of energy in the 
spectrogram that are related to the resonant frequencies of 
the speaker's vocal tract. Therefore, formant locations and 
trajectories are related to the fixed shapes of the speaker's 
vocal tract as well as the way in which the speaker manipu
lates his or her vocal tract during utterances. 

The voiceprint identification method described above 
had many flaws. First, identification was based on the subjec
tive judgment of human experts. Second, multiple voiceprints 
of a word spoken by one person can vary as much as voice
prints by two different speakers speaking the same word. This 
phenomenon introduces the general problem of interspeaker 
versus intraspeaker variance that is of primary concern for 
all voice-recognition research. A final concern was the vulner
ability of the voiceprint identification process to impostors 
that had been trained to mimic other speakers. Thus, research
ers were uncertain about the worth of voiceprint identifica
tion. In the 1960s, a number of experiments were performed 
that addressed these issues. L.G. Kersta reported an error rate 
of 1 % for 2000 identification attempts with populations of 9 
to 15 known speakers for each unknown [1]. Richard Bolt 
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18 Voice Recognition 

summarized the results of several similar studies with widely 
varying error rates [2]. Some studies reported error rates as 
high as 21 % and others as low as 0.42%. Bolt criticized all 
the studies as being artificial inasmuch as the experiments 
consisted of matching tasks. If used as evidence in court, he 
pointed out, the analysis would be a verification task, in 
which the experts would have to decide from two sets of 
voiceprints ( one set from the accused, one set from the 
unknown) whether or not the accused and the unknown per
son were the same. 

The inconsistent experimental evidence caused experts 
to disagree about the viability of voiceprints. Kersta's original 
study led him to believe that voiceprint analysis could be as 
effective as fingerprint analysis: 

Other experimental data encourages me to believe 
that unique identifications from voiceprints can be 
made. Work continues, there being questions to 
answer and problems to solve .... It is my opinion, 
however, that identifiable uniqueness does exist in 
each voice, and that masking, disguising, or dis
torting the voice will not defeat identification if the 
speech is intelligible [1]. 

A study by Richard Bolt and others a few years later reached 
the opposite conclusion: 

Fingerprints show directly the physical pattern of 
the finger producing them, and these patterns are 
readily discernible. Spectrographic patterns and the 
sound waves that they represent are not, however, 
related so simply and directly to vocal anatomy; 
moreover, the spectrogram is not the primary evi
dence, but only a graphic means for examining the 
sounds that a speaker makes [2]. 
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Background of Voice Recognition 19 

Between 1970 and 1985, the Federal Bureau of Investigation 
(FBI) made extensive use of spectrogram identification, the 
results of which were analyzed by Bruce Koenig [3]. The 
FBI formulated a 10-point procedural protocol dictating how 
voice comparison was to take place. The Bureau insisted on 
high-quality recordings, from which spectrograms in the fre
quency range of 0-4,000 Hz were to be made. FBI technicians 
examined twenty words pronounced alike (supposedly) for 
similarities and differences, and these results were supple
mented by aural comparisons made by repeatedly and simul
taneously playing the two voice samples on separate tape 
recorders. In the end, the examiner determined whether two 
exemplars were "no or low confidence," "very similar," or 
"very dissimilar," and these results were confirmed by two 
other examiners. Identification of an individual was only 
claimed in the presence of a sufficiently high percentage of 
"very similar" determinations. 

A survey of the results of 2,000 voice comparisons found 
that in two-thirds (1,304) of the cases, examiners had no or 
low confidence; in 318 cases there was a positive identifica
tion; and in 3 78 cases a positive elimination. There was one 
false identification and two false eliminations. Koenig 
observes: 

Most of the no or low confidence decisions were 
due to poor recording quality and/ or an insufficient 
number of comparable words. Decisions were also 
affected by high-pitched voices (usually female) and 
some forms of voice disguise [ 3]. 

The attempt to use voiceprints in a forensic setting left unan
swered many questions about the practicality of using voice 
to identify individuals uniquely. It became clear that research 
must be focused on the following goals: 
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20 Voice Recognition 

1. Automating the recognition procedures; 

2. Freeing recognition procedures from dependency on 
fixed words; 

3. Standardizing testing so improvements in procedures 
could be measured; 

4. Handling noisy signals; 
5. Coping with unknown and/or inadequate channels; 
6. Dealing with intervoice and intravoice variation both 

natural and artificial (i.e., disguised voice). 

Advances in digital computer hardware in the mid 1980s 
made achievement of these goals seem possible. The six points 
enumerated above were the basis of many research programs 
in voice recognition during subsequent years. These programs 
will be discussed in the remaining sections of this chapter. 
Since voice-recognition research progressed along many dif
ferent paths after the 196Os, a historical perspective is not 
fully appropriate. Thus,we have partitioned the discussion 
of research by task: parameter extraction, distance measure
ments, pattern recognition techniques, and special 
considerations. 

PARAMETER EXTiRACTION 

In this section, we will discuss methods of extracting informa
tion from speech waveforms. Parameter or feature extraction 
consists of preprocessing an electrical signal to transform it 
into a usable digital form, applying algorithms to extract only 
speaker-related information from the signal, and determining 
the quality of the extracted parameters. 

The Parameter Extraction Pr.ocess 

The preprocessing required by voice-recognition systems uses 
digital signal processing (DSP) methods that are common to 
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Background of Voice Recognition 21 

all computer speech systems. First, the sound wave created by 
an individual's speech is transduced into an analog electrical 
signal via a microphone. The electrical signal is sampled and 
quantized, resulting in a digital representation of the analog 
signal. Typical representations of signals for voice-recogni
tion systems are sampled at rates of between 8 and 16 kHz 
with 8 to 16 bits of resolution [4]. 

The digital signal may then be subjected to conditioning. 
For example, bandpass filtering can be used for attenuating 
parts of the spectrum that are corrupted with additive noise. 
Spectral flattening can be used to improve the pitch extraction 
process by compensating for the effect of the vocal tract on 
the excitation signal created by the vibrating vocal folds. Many 
other conditioning techniques have been reported. After the 
signal has been conditioJ?.ed, it may then be used as input to 
an algorithm for parameter extraction (Figure 2.2). 

Types of Parameters 

The most basic type of parameters used for voice recognition 
are either quantifiable by a human listener, such as pitch or 

Sampler& 
~ .. 

Quantizer 
Signal Extraction 

onditioning Algorithm 

Figure 2.2 The parameter extraction process. 
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22 Voice Recognition 

loudness, or have been borrowed from systems for speech 
coding, recognition, or synthesis. 

Pitch 

The pitch of a speaker's voice during an utterance is roughly 
describable by a human listener. The human listener can sense 
the average pitch and detect changes of pitch during an utter
ance. Although it is not an easy process, pitch determination 
can be performed by computer algorithms. Many different 
algorithms have been devised for pitch extraction [5]. 

At first glance, pitch appears to be a valuable parameter 
for speaker identification. For example, a distinction between 
male voices, female voices, and juvenile voices can be made 
based mainly on pitch. However, pitch is affected by the 
speaker's mood and can be modified intentionally by an unco
operative speaker or one with criminal intent. 

Fvrequency Representations 

A second simple type of parameter is the frequency represen
tation of a signal in various time frames. This representation is 
equivalent to a spectrogram in numerical form. The numerical 
form of a spectrogram is usually computed using the fast 
Fourier transform (FFT) algorithm. Many processors have 
been designed specifically to execute FFT algorithms in real 
time. 

The results obtainable using the FFT algorithm vary with 
the design parameters of the algorithm. If short analysis win
dows are used, the FFT algorithm accurately represents 
changes in the spectral energy of the signal over time but 
will not have high resolution in the frequency dimension. 
Conversely, if long analysis windows are used, the results 
will be accurate in the frequency dimension but coarse in the 
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Background of Voice Recognition 23 

time dimension. 1 Most voice-processing systems use FFTs 
with moderate-sized analysis windows (approximately 
20 ms). The magnitudes of the resulting FFT coefficients are 
commonly called inverse filter spectral coefficients. 

As mentioned earlier, formant frequencies, which can be 
determined from the frequency representation of a speech 
signal, are related to the resonant cavities of an individual's 
vocal tract. Thus, researchers believed that this correlation 
might be useful for voice recognition. The original research 
in this area required manual intervention for determining 
formant frequencies, but soon, automated methods became 
available [6]. 

bPC Coefficients 

Linear predictive coding (LPC) coefficients are commonly 
used as features for voice-recognition systems. LPC was devel
oped as an efficient method for representing speech signals 
and became widely used in many areas of speech 
processing [7]. 

In LPC, a parametric representation of speech is created 
by using past values of the signal to predict future values. 
The nth value of the speech signal can be predicted by the 
formula below: 

p 

Sn= L Sn-iai 
i=1 

where Sn is the nth speech sample, the ak are the predictor 
coefficients, and Sn is the prediction of the nth value of the 

1. This is actually a manifestation of a classical trade-off in physics known 
as the Heisenberg Uncertainty Principle. Most readers will know it as 
follows: "one cannot determine· both the position and the velocity 
of an elementary particle with complete accuracy; the more highly 
determined the one, the less highly determined the other." It is a conse
quence of the wave description of matter and, in the particular case of 
digital signal processing, of the wave description of sound. 
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24 Voice Recognition 

speech signal. Predictor coefficients can be estimated by an 
iterative algorithm that minimizes the mean square error 
between the predicted waveform, s, and the actual waveform, 
s. The number of coefficients derived using LPC, p, is a param
eter of the algorithm and is roughly related to the number of 
real and complex poles of the vocal tract filter. With more 
coefficients, the original signal can be reconstructed more 
accurately but at a higher computational cost. Typically, 
12 coefficients are calculated for speech sampled at 
10 kHz [8-10]. 

Although the LPC predictor coefficients can be used 
directly as features, many transformations of the coefficients 
are also used. The transformations are designed to create a 
new set of coefficients that are optimized for various perfor
mance criteria. 

The most commonly used transformation is that which 
derives the anagrammatically named cepstrum from the spec
trum. The LPC-derived cepstral coefficients are defined as 
follows, where ci is the ith cepstral coefficient: 

i-1 

Ci= ai + L ((1 - (kli))akci-k), 1 < i < p 
k=1 

Unlike LPC coefficients, cepstral coefficients are independent 
and the distance between cepstral coefficient vectors can be 
calculated with a Euclidean-type dista:r;ice measure [11]. 

The reflection coefficients are natural byproducts of the 
computation of the LPC predictor coefficients. They are 
defined from the following backward recursion: 

b .. + b .. b, .. b. . = 1,1 1,1 1- 1,1 

1,1-1 k2 1- . 
1 
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Background of Voice Recognition 25 

bj,p = aj 
1 < j < i - 1, 1 < i < p 

where ki is the value of ith reflection coefficient, 
i = _(p, p -_1,: .. , 1), ai is the ith _LPC coefficient, bj,i is a 
variable w1th1n the recurrence relation, and p is the number 
of LPC coefficients. 

The log area coefficients are defined by: 

(
1 - k·) gi = log 1 + k: 1 < i < p 

where gi is the ith log area coefficient, ki is the ith reflection 
coefficient and ki < 1 [12]. -

Another such transformation is the impulse response 
function, calculated as follows: 

p 

hi= L Dk,h1-k i > 0 
k=1 

hi= 1 i = o 
hi= o i < o 

where ak is the kth LPC coefficient and p is equal to the 
number of LPC coefficients. The impulse response function 
is the time-domain output function that would result from 
inputting an impulse function to a finite duration impulse 
response (FIR) filter that used the LPC coefficients as the filter 
coefficients. 

0ther Rarameters 

]he selection of features, for the most part, is not affected by 
the type of application. Most text-independent voice-recogni
tion systems currently developed have used the same kinds 
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26 Voice Recognition 

of features as are used in text-dependent systems. However 
some features have been developed specifically to improv~ 
performance in noisy environments. 

For example, Delta-Cepstrum coefficients are calculated 
1 

by determining the differences between cepstral coefficients 
in each time frame. Thus, any constant bias caused by the 
channel would be removed [11]. The relative spectral-based 
coefficients (RAST A) use a series of transformations to remove 
linear distortion of a signal (i.e., filtering). With this tech
nique, the slow-moving variations in the frequency domain 
are detected and removed. Fast-moving variations-caused 
by the speech itself-are captured in the resulting parameters 
[13,14]. The intensity deviation spectrum (IDS) parameters 
constitute another attempt to remove the frequency character
istics of the transmission channel by normalizing by the mean 
value at each frequency in the spectrum [15]. 

Other miscellaneous features have also been suggested: 
perceptual linear predictive (PLP) coefficients attempt to 
modify LPC coefficients based on the way human perception 
and physiology effects sounds [16]. Line spectral pair (LSP) 
frequencies have also been used as parameters. LSP frequen
cies are derived from the LPC coefficients and have a rough 
correlation to formant bandwidths and locations [17]. The 
partial correlation (P ARCOR) coefficients, which are another 
natural byproduct of LPC analysis, have also been used [18]. 
Finally, smoothed discrete Wigner distributions (SDWD) 
attempt to eliminate the problem of time versus frequency , 
accuracy when calculating FFTs. By smoothing the FFT calcu
lation in an efficient manner, the resulting SDWD parameters 
achieve accuracy in both time and frequency dimensions 
without a high computation cost. The resulting parameters 
have been used effectively for voice recognition [19]. 

The list of features used for voice recognition discussed 
in this section consists of many parameters that are common 
to other voice-processing applications as well as some param
eters that were devised specifically for the voice-recognition 
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Background of Voice Recognition 27 

task. Most of these parameters were derived by performing 
some kind of transformation of the LPC coefficients. 

Evaluation of Parameters 

To build a successful voice-recognition system, one must 
make informed decisions concerning which parameters to 
use. The penalties for choosing parameters incorrectly 
include poor recognition performance and excessive pro
cessing time and storage space. The goal of parameter evalua
tion should be to determine the smallest set of parameters 
which contain as much useful information as possible. 

The theory of analysis of variance provides a method 
for determining the relative merits of parameters for voice 
recognition. Features are identified which remain relatively 
constant for the speech of a single individual but vary over 
the speech of different individuals. Typical voice-recognition 
systems use a set of parameters (features) that may be repre
sented by a vector W: 

where w1, w2 , etc., are individual features such as LPC coeffi
cients or cepstral coefficients. Numerous vectors can be 
obtained by performing feature extraction on evenly spaced 
analysis windows throughout utterances spoken by the indi
viduals to be recognized. Thus, at different time positions in 
an utterance, the same parameters are calculated. 

The F-ratio for each feature, k, in W can be determined 
as follows [6]: 

(Variance of Speaker Means) 
Fk = (Average Within Speaker Variance) 

(2.1) 

Ifs vectors have been collected for each of q number of speak
ers, then: 
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28 Voice Recognition 

(2.2) 

(2.3) 

(2.4) 

where wi,j,k is the value of the kth feature for the ith speaker 
during the jth reference frame. Si,k estimates the value of the 
kth feature for the ith speaker. The average of the kth feature 
over all frames of all speakers is represented by Uk. 

Features with larger F-ratios will be more useful for voice 
recognition. However, F-ratios are only valid for the set of 
data from which they were calculated. Features that appear 
to be useful for one set of speakers may be worthless for 
another set of speakers. To calculate meaningful F-ratios, a 
large population with a large number of examples from each 
speaker must be used. 

Other methods for evaluating the usefulness of features 
exist. For example, the feature effectiveness criterion (FEC) 
is defined by Shridhar as follows [10]: 

FEC = L Interspeaker distances - L Intraspeaker distances 

Parameters with higher FEC values are more desirable since 
high interspeaker distances are favorable for discrimination 
and low intraspeaker distances are favorable for speaker vari
ability. Another method for choosing which features to use 
in a voice-recognition system is simply to use recognition 
error rates of the system when different features are used 
as input. By using the same input speech data and pattern 
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Background of Voice Recognition 29 

matching algorithm (algorithms will be discussed later in this 
chapter), the performance of different sets of parameters may 
be evaluated by comparison of recognition scores. Better 
parameters will yield better recognition scores. A broad range 
of testing must be used to prevent overtraining, which occurs 
when the system parameters are varied slightly in an attempt 
to achieve better performance on a specific set of input data, 
while the performance of the system actually drops for more 
general input data. 

Distance Measures 

Distance measures refer to methods of calculating differences 
between parameter vectors. Typically, one of the vectors is 
calculated from data of the unknown speaker while the other 
vector is calculated from that of a known speaker. However, 
some pattern-matching techniques require that vectors from 
the same speaker be compared to each other to determine the 
expected variance of the speaker in question. Descriptions of 
how distance measures are used will be presented later in 
this chapter. 

Many different distance measures have been proposed, 
and deciding which one to use is as difficult as determining 
which set of parameters to use. Often, a method is chosen 
simply because it yields favorable results and/ or compensates 
for the ineffectiveness of certain parameters within a feature 
vector. 

Most distance measures are variations of either the 
Euclidean or Manhattan distance between two vectors. 

Euclidean: 

p 1/2 

d(a,b) = (~ (ai - bj)2) 
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30 Voice Recognition 

Manhattan: 

p 

d(a,b) = L lai - bil 
i=1 

where ai and bi are ith components of the two vectors to be 
compared and p is the number of features to compare. 

The Euclidean and Manhattan distance measures are not 
appropriate for comparing two vectors of LPC coefficients 
since the coefficients are not independent. However, the like
lihood ratio distortion, which only applies to LPC coefficients, 
can be used. It is defined as follows: 

where a and b are vectors of LPC predictor coefficients, Ra 
is the Toeplitz autocorrelation matrix (a byproduct of the 
calculation of the predictor coefficients) associated with a, 
and T is transpose [20]. The log likelihood distance can be 
computed as follows: 

dUR = log(dLR) 

These two distance measures are effective ways of comparing 
vectors of LPC predictor coefficients. 

Since cepstral coefficients are the most commonly used 
type of voice-recognition parameter, several distance mea
sures for cepstral coefficients have been suggested. Most of 
these distance measures are simple variations of the weighted 
cepstral distance: 
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Background of Voice Recognition 31 

where, again, pis the number of features and Ji is the weighting 
function [21]. Several weighting functions have been 
suggested: 

Uniform: 

fi=1 

Expected difference: 

where Eis the expected difference between two features deter
mined from a population of speakers. 

Inverse variance: 

Uniform without first coefficient: 

{
o if i = 1 

Ji= 1 if 1 < i < p 

The expected difference and inverse variance weighting 
functions attempt to maximize the F-ratio of each feature. The 
uniform without first coefficient function discounts the first 
coefficient, which has been shown to contain little informa
tion for speaker recognition [21]. 

The number of different distance measures is as great 
as the number of different extracted parameter types. Some 
distance measures were designed for a specific type of param
eter. Others were chosen to maximize the F-ratios of any given 
feature. However, most were chosen simply because of their 
favorable performance with specific pattern matching 
algorithms. 
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32 Voice Recognition 

Pattem Recognition 

Patt m recognition in voice-recognition systems consists of 
developing a database of information about known speakers 
{tTaining) and determining if an unknown speaker is one of the 
known speakers (testing). The result of the pattern recognition 
step i a decision about an unknown speaker's identity. In 
th previous sections, we discussed feature extraction and 
di stan e measures. In this section, algorithms that use these 
f atur s and distance measures for making voice-recognition 
d i i n will be explained. 

Testing Voice-Recognition Systems 

T ompar the relative performance of the different pattern
r o nition te hniques, a brief discussion on the testing of 
voi .. r ognition systems is necessary. Typically, the relative 
porfor1nance of voice-recognition systems is based on the error 
r t , for either verification or identification tasks. Unfortu
nat 1 , error rates can be misleading owing to the large number 
of variables involved in the testing process. Error rates art 
aff cted by the amount of training data (the length and numbe1 
of training utterances), the amount of testing data, the number 
of known speakers, the quality of data (amount of noise in 
th peach signals), and other factors. Thus, comparing error 
rat reported in the literature of two voice-recognition sys
tem ma be misleading. 

Man studies report the error rates of various systems 
with th same input conditions as baselines for comparisons. 
Th n th error rates are more meaningful. In this section, we 
will report error rates only from studies in which baseline 
error rates are also available or in ,vhich the effects of changing 
a ariabl in the test conditions, such as test utterance length, 
are amined. To make comparisons of test results more 
m anin 1gfu1 researchers ha e begun using standardized data
ba for t sting \ oice-recognition systems. For example, the 
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TIMIT database 2
, originally designed for testing speech recog

nition systems, can also be used for testing voice-recognition 
systems. It contains speech from 420 speakers-230 male and 
190 female-from throughout the United States with the 
speakers segregated into eight dialect regions (DR1-DR8). For 
each speaker, there are recordings of 10 sentences, two of 
which (SAl and SA2) are the same for all 420 speakers. The 
recordings are of excellent quality, with 16 bits of resolution, 
sampled at 16 kHz. 

Several other databases specifically designed for voice 
recognition are gaining acceptance as standard test data
bases. Among these are the SPIDRE, YOHO, and KING 
databases [22]. Unfortunately, the currently available data
bases do not meet the needs of all researchers, so many non
standard test databases are still used. 

Pattern-Recognition Techniques 

Pattern-recognition processes consist of training and testing. 
During training, a model of each known speaker must be 
created. Each model consists of a set of features extracted 
from utterances spoken by the individual. The exact form of 
the model will depend on the nature of the pattern-recognition 
algorithm used. During testing, a similar model is created 
for the unknown speaker. To make a decision, the pattern
recognition algorithm compares the model of the unknown 
speaker with models of known speakers. The basic structure 
of the voice-recognition pattern-recognition process is shown 
in Figure 2.3. 

Many different types of speaker models and decision 
methods will be discussed in the sections that fallow, such 
as long-term feature averages, vector quantization, hidden 
Markov models, neural networks, and segregating techniques. 

2. Available from the Linguistic Data Consortium (LDC) at the University 
of Pennsylvania, 441 Williams Hall, Philadelphia, PA 19104-6305. Tel. 
(215) 898-0464. E-mail: ldc@unagi.cis.upenn.edu 
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Figure 2.3 Voice-recognition pattern-recognition structure. 

Long-term Averaging. One of the first modeling techniques 
proposed was long-term averaging of features. In this tech
nique, a large number of feature vectors is obtained for each 
known speaker. The average and variance of each component 
of the feature vector are computed for all the examples from 
an individual. Thus, the model for each known speaker con
sists of two vectors: a vector of the average values of the 
example vectors and a vector of the variances. A similar model 
is made for an unknown speaker. The variance vectors are 
used for weighting each component of the average vectors in 
a manner related to the F-ratio of the features [2 3]. 

For closed-set identification, the decision is made by 
finding the model of a known speaker whose average vector 
is closest to the average vector of the unknown speaker. The 
distance between the two average vectors is computed using 
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a weighted Euclidean distance measure. For verification, a 
decision criterion must be established. If the distance between 
the unknown and the known speaker is greater than the 
threshold value, the unknown is rejected. The criterion value 
must be adjusted so that the false acceptance error rate. is as 
low as possible without increasing the false rejection error 
rate above an intolerable level. 

The long-term averaging technique was designed for text
independent voice recognition. Its accuracy is highly depend
ent on the duration of the training and test utterances, which 
must be sufficiently long and varied. With shorter utterances, 
the intraspeaker variance increases owing to differences in 
the content of the utterances. For example, a short training 
utterance might contain a sentence in which mainly low vow
els were used, such as "the cat sat on the mat." If the test 
utterance contained mainly high vowels instead, as in "he eats 
peas, beets, and kiwis," then the long-term average vectors for 
the two utterances would be different despite the fact that 
the vectors were generated from the same person's speech. 
Using the long-term averaging technique [24], an error rate 
of 80% was reported for 0.06 seconds of test data, 34% for 
2.5 seconds of test data, and 6% for 40 seconds of test data. 
These experiments were all performed with 20 seconds of 
training data. 

Researchers have used the long-term averaging approach 
with several different kinds of features, such as inverse filter 
spectral coefficients, pitch, and cepstral coefficients [25]. 
The inverse filter spectral coefficients were the most com
monly used despite their susceptibility to channel 
variations [10,25]. .. 

The voice-recognition technique of using long-term aver
ages of features yields favorable results when long utterance 
lengths are used and channel variance is small. Of course, its 
performance would be better if the training and testing text 
were the same, since the intraspeaker variance due to the 
content of the utterances would be reduced. Unfortunately, 
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it is not always possible to control the training and testing 
utterances. 

Vector Quantization. In the long-term averaging approach, 
each speaker's model consisted of a single cluster of data 
represented by an average and variance vector. However, this 
approach yields a high variance if the data actually contains 
multiple clusters. Since human speech is composed primarily 
of vowels, it is natural to expect clusters in a set of feature 
vectors. Each cluster is the result of the speaker generating 
the same sound each time a given vowel is pronounced. 

Vector quantization (VQ) is an effective method of segre
gating data into clusters and determining the centroids of 
those clusters. VQ reduces a set of n k-dimensional vectors 
into a codebook of N centroid vectors where n ~ N. Linde, 
Buzo, and Gray developed an efficient algorithm for determin
ing the codebook vectors [26]. The basic algorithm is specified 
as follows: 

1. Initialize the N codebook vectors uniformly throughout 
the vector space by analyzing the sample data. 

2. Partition the n training vectors into N groups by 
determining to which centroid each training vector is 
closest. Any distance measure may be used at this step. 

3. Calculate the average distortion for each input vector 
using the same distance measure that was used in step 
(2). If the change since the last iteration of the average 
distortion is less then some threshold, e, then terminate. 

4. Determine the new centroids of each of the partitions 
of input vectors and store these new values in the code
book. Go to (2). 

VQ was originally designed for speech transmission sys
tems to reduce the bandwidth of signals. Instead of transmit
ting all the bits necessary to represent the k-dimensional 
vector, only the codebook entry number of the centroid closest 

• 
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to the vector would need to be transmitted. Thus, a sequence 
of codebook entry numbers could be transmitted to represent 
an entire utterance. At the receiving end, an approximation 
of the original vector could be constructed by looking up 
the codebook entry of each number in the sequence. The 
codebook itself would only need to be transmitted once at 
the beginning of the message. 

VQ can be used in many different ways in automatic 
speaker recognition. In some systems, VQ is used only to 
compress the data. In other systems, the segregation of vectors 
is used as a preprocessing step. However, the most common 
use of VQ is as a pattern-recognition method itself. 

When VQis used as a pattern-recognition method, a code
book is created for each known speaker by applying the VQ 
algorithm shown above to a set of feature vectors from the 
known speaker's training utterances. For text-independent 
identification, a comparison of the unknown's vectors is made 
with the codebooks of each known speaker. For each code
book, the minimum distortion of each vector in the test data 
to one of the vectors in the codebook is accumulated. The 
name of the codebook with the smallest accumulated distor
tion is returned as the identity of the unknown speaker. For 
text-independent verification, a similar procedure is fol
lowed. The accumulated distortion between the unknown 
and the codebook for the person to be verified is determined. 
If the distortion is above the criterion value, the unknown is 
rejected [20]. 

A similar approach may be used for text-dependent iden
tification and verification. First, a codebook is created for 
each speaker using utterances of a prescribed text. Then, a 
sequence of codebook entries is determined for the same utter
ance-that is, encoded using the codebook. This sequence is 
called a template. During testing, the same prescribed text 
is spoken by the unknown person. For identification, the 
unknown is compared with all the stored sequences of code
book entry numbers. The accumulated distortion between the 
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unknown and each stored sequences is calculated. The stored 
s quence with the lowest distortion is determined to be the 
ame as the unknown [27). For verification, a similar process 

j us d with a criterion value for the distortion. Du.ring both 
identification and verification, a time-alignment process is 
used to remove variations in speaking rate of the prescribed 
t xt that might otherwise cause unwarranted distortion. Thus, 
u ing VQ for text-dependent voice recognition is very similar 
to th speech recognition of isolated words using dynamic 
tim warping. 

Using the VQ method described above introduces a new 
variabl that affects performance-codebook size. With a 
od book of only one vector, this technique is similar to long

t rm averaging of feature vectors. With larger codebooks, a 
p ak r's voice can be better characterized, but at significant 
omputational expense. F. K. Soong reports error rates of 20% 

£ r od books of size 4, 10°/4 for size 8, and 2% for size 64 
for id ntification based on utterances of 10 digits (thus only 
quasi-text-i11dependent) in a noise-free environment [20]. 

VQ is a useful technique for automatic speaker recogni
tion because of its ability to reduce the size of a data set 
dran1atically with very little loss in accuracy. 

Hidden Markov Models. Hidden Markov models (HMMs) are 
a useful method for modeling both the stationary and transient 
properties of a signal. They are appropriate for modeling 
speech because some speech sounds are sustained, such as 
vowels, while others a.re ephemeral, such as stop consonants, 
and the transitions between them are short periods of rapid 
change. Since HMMs are probabilistic by nature, they are 
able to represent accurately signals that exhibit such diverse 
behavior. 

The basic structure of a HMM is a set of states with 
transitions between each state. For each transition from a 
given state, a probability of taking that transition is assigned. 
The sum of the probabilities of all transitions from a state 
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must equal one. At each state, a symbol is outputted. The 
symbol to be outputted is also determined probabilistically. 
Thus, each state contains a probability distribution of the 
possible output symbols. These models are called "hidden" 
because the sequence of states is not directly observable. It 
can only be probabilistically deduced from the sequence of 
output symbols, which is all that can be observed. HMMs 
display the Markov property since the probability of taking 
any transition is not based on any previous behavior but only 
on the current state of the system. 

Formally, an HMM may be defined as follows [28]: 

N = The number of states in the model; 

M = The number of output symbols in the model; 

Q = {q1, qz, ... , qN}, the states in the model; 

A = {aij}, aij = Pr(qj at t + 11 qi at t), 

the state transition probability distribution; 

B = {bj(k)}, bj(k) = Pr(vk at t lqj at t), the output 

symbol probability distribution at state j, 

where { vk} is the set of output symbols; 

1r = { 1Ti}, 1Ti = Pr(qi at t = 0), the initial state distribution. 

The formal model for the HMM shown in Figure 2.4 would 
be: 

N=2 

M= 2 

Q = {q1 = "State 1", q2 = "State 2"} 

A= {a11 = 0.5, a12 = 0.5, a21 = 0.7, a22 = 0.3} 

B = {b1(O1)=0.1, b1(O2)=0.9, b2(O1)=0.3, b2(O2)0.7} 
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Prob(O,) • 0.1 
Prob(Oi)•0.9 

0.7 

0.5 

Figure 2.4 Two-state ergotic HMM. 

0.3 

Prob(O,)-0.3 
Prob(Oi) • 0.7 

The Tr distribution was not shown in Figure 2.4; however, if 
we assume that starting in state 1 or state 2 is equally likely, 
then: 

Tr= { Tr1 = 0.5, 1r2 = 0.5} 

Using this model, an output seq~ence, 0 = {00,01, ... Ot_1}, 

can be created by first choosing an initial state according to 
the initial state distribution 1r. Then, for each time step, a 
symbol is outputted according to the distribution B and a 
transition is taken according to distribution A for the current 
state. A random number generator is necessary for det~rmin
ing the outcome of each choice. If a generator that returns 
evenly distributed numbers in the range 0.0 < x < 1.0 is used, 
then a value returned from the random number generator 
<0.5 would indicate starting in state 1, while a value > 0.5 
would indicate starting in state 2. Transition and output 
choice may be determined in a similar fashion. 

Many topologies of HMMs are possible. HMMs that con
tain transitions to and from every state with nonzero probabil
ity are called ergotic models, since they often exhibit so-called 
ergotic behavior; that is, the probability that each state will 
be revisited approaches 1 as time increases, and revisits do 
not necessarily occur at periodically spaced intervals [28]. 
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Other topologies may be formed by forcing certain transi
tions of an ergotic model to have probabilities of zero. For 
example, the HMM in Figure 2.5 would have: 

a13 = 0, a21 = 0, a31 = 0, a32 = 0 

Notice that state 3 of the left-to-right HMM in Figure 2.5 is 
an absorbing state that cannot be exited once entered. The 
use of left-to-right, circular (Figure 2.6), and other topologies 
have been described in the literature [29,30]. 

There are three basic problems related to HMMs: 

1. The recognition problem: Given an output sequence and 
a model, what is the probability that the model could 
have created the sequence? 

2. The sequence problem: Given an output sequence and 
a model, what is the most likely sequence of states that 
could have created the output sequence? 

3. The training problem: Given an output sequence and a 
topology, how can the parameters of a model-that is, 
the probability distributions for transitions and out
puts-be adjusted to maximize the probability that the 
model created the output sequence? 

An algorithm that solves the recognition problem can be 
used for recognition tasks by comparing new data to the mod
els of known signals. A solution to the sequence problem can 

Figure 2.5 Left-to-right HMM. 
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Figure 2.8 Circular HMM. 

be used for applications in which each state has a specific 
meaning. For example, each state might be related to a broad 
phonetic category, such as vowels or plosives. Finally, the 
solution to the training problem will allow us to train a HMM 
for a given input sequence. Efficient recursive and iterative 
algorithms have been developed for solving these three 
problems [28]. 

The models described thus far have assumed that discrete 
output symbols were used. These are called discrete HMMs. 
However~ the output sequence need not consist of a set of 
discrete symbols. Continuous HMMs use a probability distri
bution for each component of the parameter vectors at each 
state. 

Text-Dependent Voice Recognition. When HMMs are used 
for text-dependent voice recognition, the process is similar 
to the way in which HMMs are used for small-vocabulary, 
isolated-word recognition. One HMM is trained for each indi-

J 
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vidual uttering the prescribed text, using the solution to the 
training problem. When an unknown sample of speech is to 
be recognized, the solution to the recognition problem is used 
for determining which model of a known speaker has the 
highest probability of generating the unknown sample. 

HMMs used for text-dependent recognition may be either 
discrete or continuous. If the models are discrete, then a vector 
quantizer is used to convert each feature vector into the index 
number of the vector in the codebook that most closely 
matches the feature vector. Thus, the number of output sym
bols for the model, M, is equal to the size of the codebook. If 
the model is continuous, then the distributions of the actual 
feature vector values are used for Band the output at each 
state will be a feature vector. 

Text-dependent voice-recognition systems (and small
vocabulary, isolated-word recognition systems) typically use 
left-to-right HMMs. The ordering of states models the order of 
speech events during the prescribed text. Since the prescribed 
text is spoken during both training and testing, the ordering 
of speech events should be the same. Left-to-right HMMs are 
also able to model the duration of speech events by using the 
transitions from each state back to itself. (See Figure 2.5.) 

Many experimental studies have tested the performance 
of text-dependent HMM-based voice-recognition systems. In 
1989, an error rate of 4.6% was reported for an HMM-based 
system using data recorded over long-distance telephone 
lines [31]. As a baseline, the paper reported an error rate of 
6.2% for a template-based system using the same input. Other 
experiments resulted in an error rate of 3.5% for an HMM
based system using 1.1-second test utterances with 66 seconds 
of training data versus 6. 7% for a template-based approach 
using the same input data [11]. 

Text-Independent Voice Recognition. HMMs have also been 
used for text-independent voice recognition. In these systems, 
either ergotic or circular models are used. 'Fhe states are 

I 
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trained to represent different phonetic classes, such as strong 
vocalization, silence, or nasal [ 11]. Since more transitions 
are possible in these models than in left-to-right models, no 
ordering of speech events is imposed. Therefore, during train
ing and testing, the individuals may speak any text. 

During training, the parameters of a model are adjusted 
to represent best the salient features of each person's speech. 
If enough training data is used, the model parameters will 
stabilize. An HMM is trained for each known speaker. During 
testing, the solution to the recognition problem is used to 
determine which model is most likely to generate the 
unknown input. 

Experimental results show that text-independent voice
recognition systems using HMMs can be expected to perform 
slightly better than systems using VQ. One experimenter 
reported identification error rates of 4.4 % for a system based 
on continuous HMMs versus 4.6% for a VQ system [32]. In 
the same experiment, a system based on discrete HMMs pro
duced an identification error rate of 11.7%. These experi
ments were performed with 40 seconds of training data and 20 
seconds of test data with 36 speakers. Another experimenter 
reported similar results for verification tasks [ 3 3]. In all, exper
imental results show that HMM-based systems perform 
slightly better than text-independent systems based on VQ. 

In the applications of HMMs described so far, one HMM 
was used to represent the speech of each individual. These 
types of models may be called utterance unit models, since 
each model represents the entire utterance given by the indi
vidual. Rosenberg proposed using subword unit models for 
voice recognition. The subword could either be phone-like 
units (PLUs), in which a phonetic transcription of the training 
data is required, or acoustic segment units (ASUs), in which 
segmentation of speech segments is performed automatically 
[34]. Recognition of a speaker would be performed by recog
nizing a series of subword units. This method would be simi
lar to large-vocabulary, continuous-speech recognition, in 

j 
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which models of words are the concatenation of subword 
units. A voice-recognition system based on subword unit 
models could be either text-dependent or text-independent. 

Preprocessing. HMMs have also been used as a preprocessor 
for voice-recognition systems that segregate feature vectors 
by phonetic category. The details of segregating systems will 
be discussed later. 

Summary of HMMs. HMMs have been successfully used in 
voice recognition. Utterance unit models have been used for 
both text-dependent and text-independent recognition sys
tems. Other research has been carried out to examine the use 
of subword unit models for recognition. HMMs are also used 
in the preprocessing stages of voice-recognition systems that 
segregate feature vectors by phonetic category. 

Neural Networks. Artificial neural networks (NNs) are com
putational models that attempt to emulate the human brain 
by a topology that resembles interconnected nerve cells. NNs 
are capable of modeling nonlinearity and can be used for 
many different tasks, such as classification, associative mem
ory, and clustering. This versatility has allowed them to solve 
problems in areas as diverse as computer vision, process con
trol, and medical diagnosis [ 3 5]. The main drawback of neural 
networks is their long training time. Although knowledge 
about neural networks is still in an early stage, their applica
tion to automatic speaker recognition is significant. 

An NN consists of a collection of neurons (also called 
perceptrons or nodes) that are connected by weighted path
ways. Each neuron is a processing element that has many 
inputs, performs one function, and produces one output. The 
computation performed by a typical neuron consists of taking 
the sum of its inputs and using that value as the argument to 
a nonlinear function. (See Figure 2.7J 

This nonlinear function is called the activation function 
of the neuron. The most commonly used activation function 
is the sigmoid: 
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Inputs 

Figure 2. '7 A typical neuron. 

Nonlinear 
Function 
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f(x) = -AX 
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(2.5) 

where A is > 0. The constant A determines how "hard" the 
activation function limits the input. The "hardness" of the 
activation may be viewed graphically as the slope of the transi
tion in Figure 2.8. Steeper slopes indicate a harder activation 
function, which results in faster changes in the output value 
in response to changes in the input value. 
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The most commonly used neural networks, called 
multilayer feedforward networks, consist of multiple layers 
of neurons connected by weighted pathways. The networks 
as a whole have multiple inputs and one or more outputs. 
The pathways connect neurons from one layer of the network 
to the next layer closer to the output layer. 

The network shown in Figure 2. 9 has three input neurons 
{zi, z2, z3} and two output neurons, {o1, o2}. This network is 
fully connected-that is, the output of each neuron is used 
as an input for every neuron in the next layer of the network. 
This network contains one hidden layer of three neurons 
{y1, y2, y3}. Since each neuron has only one output value, this 
value may be given the same name as the neuron. Thus, the 
output value of neuron z1 is also called z1. The weights are 
shown as vi,j for the first layer and Wj,k for the second layer. 

The scheme suggested in Figure 2.7 may be used for 
determining how to calculate the output values for each neu
ron. The input neurons do not perform any calculation but 
simply pass through the input values to the next layer. The 
output of y1 can be calculated as follows: 

3 

Y1 = t( ~ V1,jZj) 
]=1 

Zt 
,,,. 

Inputs Z2 Outputs 

F.igure 2.9 A multilayer feedforward neural network. 1 J 
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where f( ) is the activation function for the neuron, v1,j is the 
weight of the connection from neuron j, and Zj is the output 
of neuron j. The outputs of the other neurons can be calculated 
in a similar fashion. The process of calculating the output 
values of the network by evaluating the outputs at each layer 
is called feedforward recall. 

Training NNs. Like HMMs, NNs must be trained before they 
are useful. The common way to train a multilayer network is 
to use error back-propagation training. Before a network is 
trained, its weights are initialized to small random values. A 
set of input values and expected output values for those inputs 
is presented to the network. An iterative gradient descent 
approach is used for adjusting weights to minimize the differ
ences between the desired output values and the output val
ues calculated by the network using current weights .and 
input. 

For each training example, the error at the output layer 
is fed back to the previous layer and then fed back, layer by 
layer, until the input layer is reached. Each time an error 
value is fed back, the weights at that connection are adjusted 
slightly to reduce the error. A constant, a, determines how 
large a change in weights can be made during each iteration. 
This constant is called the learning rate. 

As the process is repeated many times for the entire net
work and for the entire set of training examples, the output 
errors tend to decrease. The process is complete when a 
desired error value is reached [ 3 5]. 

Many factors affect the performance and training time of 
NNs including the number of layers, the number of neurons 
in each layer, the number of connections between layers, and 
the learning rate. Currently, no theoretical basis exists for 
determining the optimal values for these variables. Thus, they 
are determined by trial-and-error or by heuristics. 

Another concern about NNs is the possibility of over
training. Overtraining occurs when too many training itera-
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tions are performed on a network, causing the network to 
learn coincidental patterns in the input. Overtraining causes 
a network to generalize poorly. 

Voice Recognition With NNs. One of the first experimental 
voice-recognition systems using neural networks was pro
posed by Oglesby [36]. In this system, a feedforward network 
was created for each known speaker. Each network contained 
one output that was trained to be active ( output approximately 
equal to 1) for input belonging to the speaker whom the net
work was supposed to represent. The output was trained to 
be inactive (output approximately equal to 0) for input belong
ing to other speakers. Thus, the training data included positive 
examples from the speaker in question as well as negative 
examples from other speakers in the population. The input 
to this network was a vector of 10 LPC-derived cepstral 
coefficients. 

For speaker identification testing, each input vector was 
fed forward through the networks of all the known speakers. 
The output values for each network were accumulated. The 
network with the highest accumulated score was deemed to 
be the best match. For speaker verification, the input vectors 
for the unknown were fed forward through the network 
belonging to the individual wishing to be verified. If the aver
age output value were greater than a threshold value, the 
unknown speaker was accepted. 

Oglesby performed many tests to determine optimal 
parameters of NNs. He determined that single-hidden-layer 
networks outperformed double-hidden-layer networks (error 
rates of 8% versus 10% ). Oglesby also determined that a large 
number of hidden nodes increased performance. The best 
error rate was obtained with 16 input nodes and 128 hidden 
nodes. Oglesby claimed that for small model sizes, his neural 
network approach outperformed VQ systems [36]. 

Rudasi and Zahorian presented two other possible strate
gies for using NN s to perform voice recognition [ 3 7]. Their 
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first strategy was to use one large network with one output per 
known speaker. During training, examples from each speaker 
were presented to the network. When a particular speaker's 
input vectors were presented to the network, the expected 
value for the output corresponding to that speaker was set to 
one. All other outputs were set to zero. 

During identification testing, the average output scores 
for all of the unknown input vectors were determined. The 
best match was the speaker with the highest average output 
value. Verification can be performed by comparing average 
output values to a criterion value. 

The "one large network" strategy has several problems. 
Although it will perform well for small populations of speak
ers, performance and training times for large populations 
would be less than satisfactory. When new speakers are added 
to the population, the entire network must be retrained. 
Rudasi and Zahorian's second strategy was to use small binary 
networks, each of which was required to make a distinction 
between only two speakers, thus taking modularity to an 
extreme. Although there were now many more networks, the 
training time for each network was very short. If the popula
tion included N speakers, then N * (N - 1)/2 binary networks 
were required. Since each network was responsible for only a 
small portion of the overall classification, the binary networks 
could be highly specialized and offer much better perfor
mance than a large network. 

Binary classifiers may be used in two different ways. The 
simplest method is to process the unknown data with all the 
binary networks. The output of each network can be consid
ered to be a vote. The vote need not be a hard decision but can 
be a score reflecting confidence in the decision. The known 
speaker with the most votes is determined to be the best 
match. This approach is called global soft-decision search. 

A second approach is to perform a binary tree search. 
This approach requires a series of elimination rounds similar 
to tournaments in sporting events. The winners of each round 
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proceed to the next round of competition until only one win
ner is left. The binary tree search requires less computation 
than the global soft-decision search. However, the two meth
ods will produce the same answer if all the binary networks 
are 100% accurate. Although binary classifiers are valuable 
for closed-set identification problems with large populations, 
they cannot be used for verification tasks. 

Time-Delayed NNs. In the NN models described so far, the 
input was given in terms of short-time input vectors-that is, 
one frame of features at a time. This approach neglects the 
transient information that may be useful for voice recognition. 
Earlier in the chapter, we mentioned how HMMs captured 
transient information that could not be represented with VQ 
models. Similarly, time-delayed NNs (TDNNs) were devel
oped to capture transient information with an NN approach. 

The input for TDNN s is actually a series of feature vectors 
called a frame. Bennani describes a system in which the input 
consists of a 25-window-wide analysis frame in which each 
input window overlaps the previous window by 24 of the 25 
points [38]. 

The TDNN system described by Bennani was not a fully 
connected network. The input neurons were positioned as 
an array (25 time units x 16 features). Each row of neurons 
in the hidden layer was connected to only five consecutive 
rows (in the time-step dimension) of input neurons. Bennani's 
system had a 21 x 12 neuron hidden layer. Bennani's identifi
cation error rate was 2% for 20 speakers using five TIMIT 
database sentences for training and five for testing. 

Summary of NNs. As more knowledge is gained about NNs, 
their applicability to voice recognition is sure to increase. 
Several approaches have been tested: large discriminating 
networks, binary networks, and TDNNs. Because of the prom
ising results, research in this area is expected to continue. 

Segregating Systems. Segregating voice-recognition systems 
treat the text-independent speaker-recognition task as a two-
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step process. First, all input vectors are segregated into groups 
based on certain spectral characteristics, generally ones asso
ciated with particular classes of speech sounds. Then, for 
each group of vectors, the vectors from each known individual 
are compared with vectors from the unknown. The basic idea 
is to compare a specific sound class produced by the unknown 
speaker with the same sound class produced by the known 
speakers. Since segregating systems require two steps, two 
questions must be answered during their design: "How are 
vectors segregated?" and "How are vectors within each group 
compared?" Through the answer to the first question, the 
answer to the second becomes apparent. Variations on tech
niques discussed previous! y, such as VQ and HMMs, are used 
for solving these problems. 

In the first study proposing a segregating approach, vowel 
samples were segregated manually [39]. Vowel classification 
was performed by human operators assisted by computer pro
grams that identified likely locations for vowels. LPC coeffi
cients were calculated at the steady state position of each 
vowel. Then, the vectors were compared using a weighted 
Euclidean distance measure. 

Fakotakis discussed a system in which vowels are located 
by looking for peaks in the short-time energy contours of 
utterances [ 40]. Cepstral coefficients are calculated at each 
vowel locus and used as input to a vector quantizer that 
segregates the feature vectors. Each vector is placed in the 
group corresponding to the nearest centroid in the codebook. 
Wang describes a similar segregating voice-recognition sys
tem that uses VQ for an entire utterance, not just the vowels 
[41]. 

If VQ is used for segregation and the distance from the 
centroid is used for comparison, then the method behaves 
like the VQ recognition process described earlier. Thus, most 
VQ segregating systems use distance measures weighted by 
the variance within each group of vectors [41]. 

Another method for segregating vectors uses HMMs. 
Savic describes a method in which ergotic HMMs are used 
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for representing broad phonetic categories such as vowels or 
fricatives [ 42]. Each state in the HMM is associated with a 
category. To segregate the vectors of an utterance, the solution 
to the HMM sequence problem (for example, "What is the 
most likely sequence of states for a sequence of observa
tions?") is used. Thus, each vector is assigned to one of the 
states in the HMM. To compare vectors within each group, 
a Bayesian classifier is used. Therefore, the mean vector and 
covariance matrix is required. The final score is a weighted 
summation of the scores from each group. 

Matsui suggests a system in which vectors are segregated 
using either a voiced/un-voiced classifier or an ergotic HMM 
for determining broad phonetic categories. Within each group, 
VQ is used for performing recognition. Thus, each known 
speaker has several codebooks, one for each category [43]. 

Kao discusses a similar system [ 44]. However, in his 
implementation, a speaker-independent continuous-speech 
recognizer is used for segregating vectors. The output of the 
recognizer is a hypothesized phonetic category. VQ code
books for each speaker are created for each possible category. 

Many segregating voice-recognition systems have been 
developed. These systems use a combination of techniques, 
such as VQ and HMMs. However, as of this writing, segregat
ing systems that use neural networks have not been discussed 
in the literature. This would appear to be a promising area 
of research. 

Miscellaneous Pattern-Matching Techniques. In preceding 
sections, many voice-recognition pattern-matching tech
niques have been discussed. These techniques include long
term feature averaging, VQ, HMMs, NNs, and segregating sys
tems. 

Many other miscellaneous pattern-matching techniques 
have been discussed in the literature. For example, principal 
component analysis is a technique for optimizing dynamic 
time warping systems [45]. Similarly, orthogonalization has 
been used for improving the performance of long-term averag-
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ing recognizers (12]. Several statistical detection approaches 
have been examined, such as probability density functions 
[46,471, trajectory space comparisons (48], k-nearest neigh
bors (15,49], discriminator counting (15,49], Gaussian mix
ture models (50], Fourier Bessel functions (51], and 
probabilistic acoustic maps (52,53]. 

Unfortunately, comparing the performance of voice-rec
ognition systems is difficult owing to variations in testing. 
Error rates are affected by many features, such as noise, train
ing time, testing time, number of speakers, and definition of 
free text. 

A common feature of all voice-recognition pattern-match
ing techniques discussed in this section is that they perform 
a considerable amount of data reduction, essentially some 
kind of averaging. Data reduction is necessary to extract the 
salient features of an individual's speech and also to make 
the recognition process computationally feasible. 

VOICE RECOGNl'FION IN N81SY ENVIR0NMENTS 

Overcoming the difficulties associated with performing voice 
recognition in noisy environments is a primary concern. For 
voice recognition to be successful when performed over tele
phone lines-perhaps the most important general application 
area-voice-recognition systems need to be relatively imper
vious to noise. Several studies in this area have been com
pleted (54-56]. Experiments over radio channels have also 
been performed (47,57]. 

The main difficulty with noisy environments is not the 
noise itself, but the variations in the noise. An extreme exam
ple occurs when a voice-recognition system is trained on 
clean speech-that is, speech containing no noise-and is 
tested on noisy speech. Error rates are bound to be higher 
when any aspect of the signal processing is changed between 
training and testing. These include the type of microphone, 
the amount of ambient noise, and the transmission medium. 

l 
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If the same noise appears in both training and testing, how
ever, it will not be a factor unless the signal-to-noise ratio 
(SNR) is low. 

Typical channel variations are changes in the amount 
of additive noise, bandpass filtering, and phase distortion 
applied to the actual speech signal. To make voice-recognition 
systems immune to such variations, several techniques have 
been devised, including selection of features with immunity 
to channel variations and preprocessing of signals to separate 
the noise components of a signal from the actual speech 
component. 

In an earlier section of this chapter, the feature selection 
process was described, and several types of features used for 
voice recognition were listed. In addition to the techniques 
for feature selection already described, some features have 
been used or invented for use based solely on their immunity 
to channel variation. 

For example, fundamental frequency (pitch) and formant 
frequencies have been used because they are not affected by 
additive noise or phase distortion and are affected only 
slightly by the bandpass filtering typical of communication 
channels [58,59]. Cepstral coefficients are used because they 
are unaffected by linear distortion. 

Delta-type features have also been used. These are calcu
lated by determining the difference between successive vec
tors and using the difference vectors as features. Delta-type 
features automatically remove the bias from a signal. 

Other features mentioned in the literature specifically for 
their immunity to channel variance are clipped autocorrela
tion coefficients [54] and relative spectral perceptual linear 
predictive (RASTA-PLP) methods [13,14]. 

To separate an additive noise component of a signal from 
the components useful for voice recognition, the communica
tion channel must first be characterized. The simplest method 
for characterizing a channel in text-dependent applications 
is to determine the average value of all features over the entire 
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utterance. Then, the average vectors can be subtracted from 
each vector in the utterance to normalize it [60]. This tech .. 
nique is also useful for compensating for some of the bandpass 
filtering. However, if the utterances are short, some of the 
speaker-dependent information will also be removed from 
the signal. 

Another method is to characterize the additive noise from 
segments of the utterance where no speech is present, ensur
ing that actual speech will not be mistakenly classified as 
stationary channel noise. Alternately, Wang suggests averag
ing channel characteristics over many different types of chan
nels instead of over time [41]. 

Filtering signals during preprocessing can be useful for 
removing variance in the bandpass filtering behavior of the 
communication channel. Successful results have been 
achieved by attenuating certain spectral regions during pre
processing that are likely to be attenuated by some, but not 
all, communication channels, thus achieving normalization 
[ 44,61]. The same effect results from attenuating cepstral coef
ficients, a process called liftering [13]. 

Gish suggests that the channel should be modeled statisti
cally as a Gaussian random vector, which can then be incorpo
rated into the classifier, assuming that a Gaussian probability 
distribution function classifier (GPDF) is used [55]. By choos
ing features that are immune to channel effects or by removing 
channel effects before features are extracted, voice-recogni
tion systems can be designed to perf arm better in noisy 
environments. 

SUMMARY 

In this chapter, previous research in voice recognition was 
presented. The early use of voiceprints was discussed. The 
different types of features, distance measures, and pattern· 
matching techniques were explained. Finally, studies on per· 
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forming voice recognition in noisy environments were 
summarized. 
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