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| HARMONICS AND
WAVE COMBINATIONS

There are an infinite number of musical tones that can
-be produced thh instruments and the human voice,
T and yet each one can be described by specifying the

, intensity or loudness, the frequency or pirch, and the waveform or timbre.

3 From the standpoint of music, the waveform or timbre of any complex tone is

all-important and can be described by specifying the relative amplitudes and

{7 phasesof all the different frequencies of wh:ch it is composed. We will study
these concepts in this chapter. ‘

_ 8 1 Wave analysxs

If a wave is generated by snmple harmonlc motion, it wxll be a .rmumddl ora
“sine wave. See Section 3.2 and Figure 3-3. A sine wave is indicative of one
“well-defined and definite frequency. The analysns of most. musical tones shows

that they are composed of a number of such components of va.nous frequen-

cies called parnals The process of adding these components to produce any
complex vibration or wave is called syntheus. The converse of this process,

-breaking down any complex vibration or wave into its components, lS cnlled

analysis.

Figure 8-1 represents two common graph Torms for the same sound
Dxagram (a) is a time graph representing the vibrations of a source emitting
sound waves. Diagram (b) is a distance graph, or,wave mph representing the
contour of the waves traveling to the nght through the air with a velocity V-

r
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Diagram (a) also represents a time graph of the- vxbranons of the eardrum, or a ' 79 " -
microphone diaphragm, detecting the sound. Harmonics and 18
If a wave graph (b) were dmwn traveling to the left mstead of to the right, Wave Combinations 1

it would look exactly like graph (a) Graph (a) is just the mirror image of
graph (b), and vice versa. Since all three graphical representatnons look alike,
it makes httle dnﬁ’erence wh;ch one 1s drawn to represent a given sound,

5 s ‘ 1

FIGURE 8-1
(a) Time graph of
the vibrations of a
musical source of !
sound or of the
vibrations lmpoaed y
on the eardrum by
incident sound
] d waves. (b) A wave ;
graph of the same
distance  S0und as the waves
. travel with a speed i ]
V to the right. 4

8.2 Paftials and harmonics
The simplest waveform is asine wave, usually drawn asatime graph of simple
harmonic motion. See Figures 2~4,2~5,and 2~6. A time graph of ore of the
prongs of a tuning fork, the waves transmitted through the air to an observer,
and the vibration the waves impose upon the eardtum serve as good examples
of this. See Figure 3 -5. Any vibrating body that rapidly executes snmple har- L
monic motion in air emits a sinusoidal sound wave. This sound wave is re- .
ferred to as a pure tone, although the aural perception of even a pure tone is {
impure (see Section 15.2). Actually, nearly all tones produced by mus:cal in--
struments, and other sources in general, are not pure tones but mixrures of
pure-tone frequenc1es called partials. The lowest such frequency is called the
fundamental. All partials higher in frequency than the fundamental are re-’
ferred to as upper partials, or overtones.

In special cases, the frequencies of these overtones are exact multiples of
the fundamental and are called harmonics. If we designate the frequency of - =
any fundamental by f, all higher harmonics are designated by 2/, 3f, 4f, 5f,and
S0 on, If, for example, we select a fundamental frequency of 200 Hz and call it
the ﬁtst ha.rmomc. it and its hxgher harmonics are givenby -

First harmonic: 1= 200 Hz -
Second harmonic: 2f =400 Hz
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80 Third harmonic:  3f= 600 Hz
‘Hearing and Fourth harmonic: 4= 800 Hz

Hmmny and so forth.

If singing voices, or difféerent musxcal mstruments sound notes of the
same pitch and loudness, we recognize the pitch as that of the fundamental,
“but the timbre or quality of each note differs from the others by virtue of the
relative amphtudes of its partials. In most cases, particularly with the percus-
sion instruments, the upper partials (overtones) are not exact multiples of the.
L fundamental frequency. Such an overtone is called an mharmomc partial,
and the combined tone is often unpleasant.
Most musical tones are composed of harmonics. In fact, the entire musi-
cal scale, as played by most musicians today, is based on a scale of harmonics.
" (See Chapter 14.) With these principles in mind, we begin our study with the
combination of two pure tones, combme them, and find their resultant wave-:

- form.

8.3 Two pure tones in unison

|
If two pure tones of the same frequency are sounded simultaneously, and both ]
‘waves arrive at the listener’s ears, the resultant vibrations will have the same 1
frequency. Such sources are said to be vibrating in unison. This is illustrated |
i in Figure 8~2 by the combination of two SHMs, each having a frequency of |
o 833 Hzanda period of 12 X 10~%s but with different amplitudes,#;= 8 X 10-7 |
: m and;az = 6 X 10-7 m, respectively. Vibration (a) has an initial pha.se angle ¢, |
='0° and vibration (b) has an mmal phase angle d>o +90°, See ‘Section 2.5
and Figure 2~6." = e B e
Since the frequencnes are equal, the graph points p, and p, move around ‘
their circles of reference in the same time, always keepmg the same phase
angle difference of 90° between them. As a consequence, their resultant am-
plitude A always has the same magnirade of 10 X 10" m and an initial phase
angle of ¢, = 37° The amplitudes «, and a, are added vectmally in the left—
hand side of diagram (c). - |
+ Eachof the graph po:nts Py and p,,as well as the remltant graph point P, is ‘
i seen to move once around its respective circle in the same time, and the
12, SHMs along the j-axis trace out smusonds with the penod T. Ir will be ob-
L 4 served that the vertical lines from 0 to 12 show that; at all pomts in tm;e, the "
vertical displacements of curve (c) are always equal to the sum of the displace-
A ments of curves (a) and (b), The three time graphs are superposed in Figure
i 8-3. We conclude from this result that the combination of two SHMs of the
same frequency will always give rise to a resultant SHM of the same frequen-
¢y, but with a resultant amplitude that depends upon the two a.mphtudes and
their phase angle difference. Cpd
This same principle is illustrated for two vxbranons of the same frequen-

N

|
i

|
|
s
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Hearing and -
Harmony

FIGURE 8-5-

Time graphs for
the generation of
two SHMs with -
initial phase angles
¢ =0 (a)
frequency f and
amplitude 4, (b)
frequency 2f and
amplitude 3.

structure of the same note played by two violinists, for example, will not be
identical, for various reasons. No two instruments are exactly alike structural-
ly, and no two musicians will bow their strings in exactly the same way. While
the harmonic structures will all be slightly different, each one will, of course,
sound like a violin. The sound spectrum of each note will have a fundamental,
as well as the appropriate harmomcs, but will vary shghtly from one instru-
ment to another. *

We have seen in the prevnous séction that the fundarnentals of a group of
v:olms will not have the same phase angles and that in general they will be
tandom, It is also reasonable to assume that all musicians will not produce

‘exactly the same frequency. This means that beat notes of different frequen-

cies will be produced between fundamentals, berween second harmonics,
between third harmomcs, and so on, and these will make the overall wave-
form from the group of violins more complex. The sound quality produced by
the combined ftequenaes from a number of instruments of the same kind,
playing the same note, is called the chorus effect. Although the primary pur:

‘pose of using a number of violins in the string section of a symphony orches-

tra, for example, is to ‘obrain a loudness’ balance with the other orchestral
instruments, the chofus e&'ect contnbutes to the overall richness of the musi-
cal sound. . .

8.6 Composition of first and second harmonics

3 . : o y : :
.'Let us assume that a musical instrument sounds a tone in which the first and

second harmonics, and no others, are present. The same resultant vibrations at
.‘the ear can be produced by soundmg of one of the -pure tones by one'in-
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-Harmonics and
Wave Combinations
FIGURE 8-6
- Composition of the
two SHMs in .
Figure 8-5 showing
the resultant R in
relation to the
-amplitudes @, and
, 4, of the separate
strument and the other ;:ixre tone by a separate instrument. These two SHMs, ERORBSIR
.with frequencies in the ratio of 1 to 2 and initial phase angles both zero, are
given graphically in Figure 8- 5. The sum of the two dxsplacements 4 and 1
(l:ght linies) is shown by the resultant vibration R (heavy line) in Figure 8-6,
Since f, has twice the frequency of ,» the graph points p, and p, (on the circles

0
‘

FIGURE 8-7
Time graphs
combining the first
and secoad;
harmonics of a
fundameptal
frequency f; to
form a resultant.
Both frequencies f;
and f; have (a) the
same initial phase
angles but different
amplitudes, (b)
different initial
phase angles and
different

~ amplitudes, (¢)

- different initial
phase angles but

" equal amplitudes,
and (d) different -.
initial phase angles
and different il
amplitudes. All .
four resultants *
(heavy lines) have
different shapes but
reveal the same
two frequencies A
and fo.
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of reference) rotate with frequencies in the ratio 2 to 1. The second harmonic
makes two vibrations for every one of the first harmonic. For this example, the
periods are assumed to be 12 X 10~* s and 6 X 104 s, corresponding to fre-
quencies of 833 Hz and 1666 Hz, respectively. The resultant R in Figure 8-6
is obtained by adding the vertical displacements of f; and f; at each instant
of time and drawing a smooth curve through them,

If the relative amplitudes are changed without changing the initial phase
angles, we obtain curves of a different shape. Changing the relative ampli-
tudes and the initial phase angles also changes the resultant curve. Typical
graphs with such changes are shown in Figure 8- 7. It should be pointed out
thart these are but a few of the infinite number of resultant vibration patterns
that can be drawn. See Figure 15 -5 for others.

8.7 Two, three, and four harmonics

Suppose we sound a pure tone of any given frequency, and then, one after an-
other, we add the second, third, and fourth harmonics. The quality of each
combination will depend upon the relative amplitudes, while the resultant
vibration pattern becomes progressively more complex and, in many cases,
more pleasant to hear. (Two consonant notes sounded together are called a
dyad, three notes a triad, and four notes a tetrad.)

As an example, let us choose a first harmonic, or fundamental, of 833 Hz,
followed by the second, third, and fourth harmonics. Let the relative ampli-
tudes of the four harmonics be 2, =8, 2, = 6,4,=4,and ¢,= 6 X 10""m, and
let the initial phase angles be ¢, = 90°, ¢, = 45°, ¢, = —90° and ¢, =—45°.
Graphs of these combinations are given in Figure 8- 8. It can be seen that, as
harmonics are added, the resultant vibration curve becomes more and more
complex, and, in general, the tone becomes richer in quality.

8.8 Wave generation

The separation of any sound into its various components can be accomplished
by mechanical or electronic devices called analyzers, and any set of compo-
nents can be recombined to produce the original sound by similar mechanical
or electrical devices called synthesizers.? In 1622 the French mathematician
Fourier showed that it was possible to break down any complex periodic
curve into a series of sinusoids whose frequencies are harmonically related.
Stated another way, any periodic waveform can be consttucted by combining a
sufficient number of sine waves. This is called Fourier’s theorem. This means
that any periodic sound wave of arbitrary waveform will act acoustically as a
combination of pure tones. While we will not go into the marhematics, we
will graphically add, or synthesize, a number of SHMs to form several special
vibration forms used by electronic engineers in the development of oscil-
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loscopes and television receivers, by audio engineers in their development of
electronic music devices for special effects, and by manufacturers in produc-
ing musical instruments of various kinds. -
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The four simplest waveforms, or vibration forms, in common use in-syn-
thesizers today are called (a) sine waves, (b) sawtooth waves, (c) square
waves, and (d) triangular waves, See Figure 8-9. Dxagrams (b) and (d) be-
long to a famn!y of straight-line forms called ramp waves. All four of these
waveforms can be produced with relatively simple electronic circuits. Since
the analysis of complex waves can be broken down into sine waves, and the
syathesis of a number of sine waves (harmonics) can be compounded to pro-
duce complex waveforms, we can apply Fourier analysis— that is, a series of

B —

B

(b)

D —

D—n

" {d)
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FIGURE 8-8 .
Time graphs for
the addition of the
fiest four harmonics
of a given
fundamental
frequency f.
Vibration modes
for (a) the .
fundamental alone,

{(b) the first and -

second harmonics
together, (c) the

‘sum of the first,

second, and third,
harmonics together,

and (d) all four ~* ¢

harmonics together.
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