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.Chapter Eight . . . 

HARMONICS AND 
. WAVE COMBINATIONS 

. ,._ .. . 

There ~e an infinite n~be~ of musical tones that can 
· be ·produced .V.:ith iI1struments and th~ _liuman voice, 

_ _ and yet each one can be_ described by specifying the 
iritensicy or loucl.ness; the f'requency or pitch; and the waveform 9r timbre. 
From the standpoint of musk, the waveform or timbre of any. complex tone ia 
all-important an_d can .be described by ·specifying the relative amplitudes and 
phases of all the different frequencies of which it is composed: We wiU study 
these concepts in this chapter. - - . -

· -{ · 8; 1. · -Waye analysis 

If a.wave is gtne,1'.ated by simple harmonic motion, it will be i. ;in11soielillora 
· sine wave.' See Section 3_.2 and Figure 3- 3; A sine wave is -ihdkative of one 
· well-defined and definite frequency. The analysis ofmo~unusical tones shows 
that they lire composed of a nimiber of suc:h· components of vari<:>us frequen• . . . . ' . . . ' . ' ,· . ,. . : 
c1es called partials. The proce_ss ofadding these co'mponents tp . produce any 
complex vibration or wave is called synthesis. The converse of this process, 

-breaking down any complex vibration or wave i_nto its components, is called 
,aJiaJysfs. _-· _ . • - • - · -·• · · · -_ · . · . · • - _ · ·- · . 

F_igure 8 - 1 represents two common graph· 1or~s for die _ same -sound, 
DiagrlUJl (a) is a time graph repiesenting the vil>rations of a source emittin& 
sound viaves. Diagram (I;,) is a distanc.e graph, or; wave gra,ph, representins the 
.contour of the waves traveling to the righ,t through the air with a vefociiy V. . . . ' • .. · ., · . . ' .. . 
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Dia,gram (a) also represents a time graph of the:vibradons of the eardrum, or a 
microphone diaphr38ffi, detecting the sound. , 

If a wave graph (b) were drawn traveling to the left instead of co the right, 
it would look exactly like graph ,(a). Graph (a) is just the mirror iiriage of 
graph (b), and vice versa Since a1t'three graphical representations look alike, 
it makes little, diff~rence whi,ch one is drawn.to represent a given sound, 

. 8.2 Partials and harmonics ' ' " ' 

The simplest' waveform is a sine ~ave, usuaily drawn as a time graph of simple 
harmonic motion. See Figures 2-4, 2-5,and 2-6. A time graph of o~ of the 
prongs of a tuning fork, the waves. trapsmitted through the air to an observer, 
and the vibration the waves impose upon .the eardturri serve as good examples 
of this. See Figure 3 - 5. Any vibrating body that rapidly executes simple har- . 
monic motion in air emits a sinusoidal sound wave, This sound wave is re­
ferred to as a pure tone, although the aural perception of even a p!,i.re tone is 
impure (see Section. 15.2). Actua11y, nearly all tones produced by musical in­
struments, and other sources in general, are not pure. tones but mixtures of 
pure-tone frequencies called partials. The lowest such frequency is called the 
fundamental~ .. All partials higher in frequency .than the fundamental are re~ 
£erred to as upper partials, c;>r overtones. · · · 

. In special cases, the frequencies of these overtones are exact multiples of 
the fundamental and are called harmonics. If we designate the frequency of . 
any fundamental by I, all higher harmo~ics are designated by 2/, 3/, 4/, 5/, and . 
so on. If, for example, we select a furidameotal frequency of2Q0 Hz and call fr 
the first harmonic, it and its higher harmonics are given by . · .. . •. · . 

First harmonic: 1/ = 200 l;fa · 
S!!cond harmonic: 2/ =.400 Hz 

79 
Harm~nics and 

Wave Comoinations 

FiGURB 8-1 
(a) Time graph of 
the vibrations of a 
musical source of 
sound or of th_e 
vibrations imposed 
on the eardrum by 
incident sound 
waves; (b) A wave 
graph of the same 
sound as the waves 
travel with a speed 
V to the ,:ight. . 
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80 
Htaring and 

#a"11ony 

Third harmonic: 3/= 600 Hz 
Fourth harmonic: 4/ == BOO Hz 

and so forth. .· .. . . • .. . . . 
· If singing voices, or different musical instruments, sound notes of the 

same pitch and loudness., we recognize the pitch as that of the fundamental, 
but the timbre or quality of each note differs from the others by virtue of the 
relative amplitudes of its partials. In _most 'cases, particularly with the percus­
sion instruments, the upper partials (ovenones) are not exact multi1>les of the 
fundamental frequency. Such an overtone is called an inharmonic partial, 
and the combined tone is often unpleasant, . 

. Most musical tones are composed of harmonics. In tact, the entire musi­
cal scale, as played by most musicians today, is based on a scale of harmonics. 
(See Chapter 14.) With these prindples in mind; we begin o~ study with the 

· combination of two pure tones, combine them, and find their resultant wave-
. fa~ ' ,' ' ' ' 

' ' 

K3 ,Two pure tones in unison 

. If two pure tones of the same frequency are sounded simultaneously, and both 
waves arrive at the listener's ears, the resultant vibrations will have the same 
frequency. Such sources are said to be vib;ating in unison .. This is illustrated 
in Figµre 8 - 2 by the coinbinatfon of two SHMs, each having a freq~ency of 
833 Hz and a period of 12 >< 10-4 s but with differentamplitudes,al = 8 X 10- 7 

m and,a3 = 6 X. 10-7 m, respectively. Vibration (a) has ari initial phase angle cf,11 

= 0°, and vibration (b) ha, an initial phase angle cf,0 = +90°. See Section 2.5 
and .Figure 2 - 6. ' 

Since the frequencies are equal, the graph points Pi and p2 move ii.round 
their circles of reference in the same time, alw'ays keeping the same phase 
angle difference of 90° between them. As a consequence; their resultant am~ 
plirude A always has the same magnitude of 10 x 10-7 m and an initial phase 
angle of cpo ~ 37°. The amplitudes al and "2 are added viciorial/y in the left­
hand side of diagram ( c). · · ·. · · · · ·· . • •. · . • · . 

Each of the gra:ph points Pi and P2;'as weH as theresuliant graph point JI, is 
seen to move once around its respective circle in the · same time, ~d the · 

. SH.Ms along the y~axis trace out siriusgids with the period T. It will be ob­
served that the vertical JinesJrom Oto 12 sh9w that;at in points in tilIJe, the .. 
vertical displacements of curve (c) are always equal to the sum of the displace­
ments of curves (a) and (b). The three .time graphs are superposed in FigUre 
8;.. 3. We conch:iqe from this result that the combination of two SHMs of the 
same frtiquency will always give rise to a resultant SHM of .t_p.e sapie frequen­
cy, but with a resultant amplitude that depends upon the two amplitudes and 
their phase angle difference. . · . · ·. . · , 1 . · · .· · · 

This Sa.Ille principle is ilh,istrated for two vibrations ofthe sarrie freqµen­
', 

cy and amplitude bu 
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84 structure of the same note played by .two violinists, for exainple, will not be 
Hearing tznd · identical, for .various reasons. No two instruments .are exactly alike sttuctural-

Htzrm~ny . ly, and no two musicians will bow their strings in exactly the same way. While 
tb.e harmonic sttuetures will ail be slightly different, each one will, of course, 
sound like a violin. The sound specuum of each note will have a fundamental, 
as well as the appropriate harmonics, but will vary slightly from one instru-

PIGURES-5 · 
Time graphs for 
the generation of 
two SHMs with 
initial phase angles 
c/,o = O": (a) · 
frequency/ and 
amplitude 4, (b) 
frequency 2/ ilnd 
amplitude 3 . . ·· 

ment to another. . · . · .. • · 
We have seen in the pre~ious section that th~ .fundamentals of a group of 

violins will not have the same phase angles and thatin general they will be 
random, It is also reasonable to assume that all musicians will not produce 
· exactly the same frequency. This means that beat notes of different frequen­
cies will be produced between funi:lainentals, between se~ond harmonics, 
between third harmonics, and so on, and · these will make the .overall wave­
form fro¢1 the .!µ'<>Up of viplins more complex. The. sound quality produced by 
the combined frequencies from · a number of instruments of the same kind, 
playing the same note, is called the chorus effect Although the primary pur~ 

. -·pose.of using a number of violins in the string section of a symphony orches­
tra,, for . example, is to obtain . a loudness · balance with the _other orchestral 
inst:rWllents, the chorus · effect contributes to ·the overall richness of the musi-
cal sound .. · . . 

R6 Composition of first . and second harmonics 
"J . . ·, . · . : . .. 

: Let tis assume that a. musical instrument sounds a tone in which the first and 
second_ harmonics, and no others, are present. The same resultant vibrations.at 

. 'the .ear C:an be produced by sounding of one of the . pure tones by one . in• 
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stcU.lllent and the other pure tone by a separate instrument; These two SHMs, 

. with frequencies in · the ratio of 1 to 2 and initial phase angles both zero, are 
given graphically in Figure 8- ~- The su.ui of the two displacements J; and /2 
(light liries) is shown by the resultant vibration R. (heavy ·line) in Figure 8-6. 
Since/; has twice the frequency ofJ;, the graph points p2 and p1 (on the circles 

. . ~ . . . . . 

' 

t ➔ 

_t~. 
OA--+-->AA--H~,--+~'r--+H..,_~__.,11'!"---,~r--

85 
.Harm~niis and 

Wave CombinationI 

FIGURE 8-6 
Composition of the . 
two ~HMs ·in .. 
·Figure g.:..5 show111g 
the resultant R in · 

· relation to the 
· ampUtudes a, · and 
a2 of the separate 
com pone no. 

FIGURE 8-7 
Time graphs 
combining· the · first 
and second; 
harmonics of a 
fundameiitaI · 
frequency/,. to 
form ii resultant. 
Both frequencies/. 
and /2 have (a) the 
sanie initial phase 
angles but different 
amplitudes, (b) 
different initial 
phase angles and 
different ·. · 

. amplitudes, (c) 
· different initial 

phase angles but 
· equal amplitudes; 

and (d) different 
initial phase angles 
and different . 
amplitudes. All 
four res11lta~ts 
(heavy lines) ha"e 
different shapes but 
reveal the same . 
two frequen<;ies Ii 
and/2. 
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86 of reference) rotate with frequencies in the ratio 2 to 1. The second harmonic 
Hearing and makes two vibrations for every one of the first harmonic. For this example, the 

Harmony periods are assumed robe 12 X 10-• sand 6 X 10-• s, corresponding ro fre­
quencies of 833 Hz and 1666 Hz, respectively. The resultant R in Figure 8-6 
is obtained by adding the vertical displac_ements of J; and /2. at each instant 
of time and drawing a smooth curve through them. 

If the relative amplitudes are chaaged without changing the initial phase 
angles, we obtain curves of a different shape. Changing the relative ampli­
tudes and the initial phase angles also changes the resultant curve. Typical 
graphs with such changes are shown in Figure 8 - 7. It should be pointed out 
that these are but a few of the infinite number of resultant vibration patterns 
that can be drawn. See Figure 15 - 5 for ochers. 

8. 7 Two, three, and four harmonics 

Suppose we sound a pure t0ne of any given frequency, and then, one after an­
other, we add the second, third, and fourth harmonics. The quality of each 
combination will depend upon the relative amplitudes, while the resultant 
vibration pattern becomes progressively more complex and, in many cases, 
more pleasant to hear. (Two consonant notes sounded together are called a 
dyad, three notes a triad, and four notes a letrad.) 

As an example, let w choose a first harmonic, or fundamental, of 8 3 3 Hz, 
followed by the second, third, and fourth harmonics. Let the relative ampli­
tudes of the four harmonics be a1 = 8, a2 = 6, a3 = 4, and a4 = 6 X 10-1 m, and 
let the initial phase angles be ,J,1 = 90°, ,f,2 = 45°, q,8 = -90°, and </>4 = -45°. 
Graphs of these combinations are given in Figure 8- 8. It can be seen that, as 
harmonics are added, the resultant vibration curve becomes more and more 
complex, and, in general, the tone becomes richer in quality. 

8.8 Wave generation 

The separation of any sound into its various components can be accomplished 
by mechanical or electronic devices called analyzers, and any set of compo­
nents can be recombined tO produce the original sound by similar mechanical 
or electrical devices called synthesizers. 2 In 1622 the French mathematician 
Fourier showed that it was possible to break down any complex periodic 
curve into a series of sin~soids whose frequencies are harmonically related. 
Stated another way, any periodic waveform can be constructed by combining a 
sufficient number of sine waves. This is called Fourier's theorem. This means 

' that any periodic sound wave of arbitrary waveform will act acoustically as a 
combination of pure tones. While we will not go into the mathematics, we 
will graphically add, or synthesize, a number of SHMs to form several special 
vibration forms used by electronic engineers in the development of oscil-
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loscope$ and television receivers, by audio engineers in their development of 
electronic music devices for special effects, and by manufacturers in produc­
ing musical instruments of various k(nds: -. · · 

t 
A f + 2( + 31 + 4f 

. (d) 

The four simplest waveforms, or vibration forms, i!l common use i11 syn­
thesizers today are called (a) sine waves, (b) sawtooth waves, (c) square 
waves;and (d) triangular waves. See figure 8-9, Diagrartis (b) and (d) be­
long to a family of straight-line forms called ramp waves: _All four of the~e 
wavefo.i:ins can be produc;ed with relatively simple electronic ci~cuits. Sinc,e 
the analysis of complex waves can be broken down into sine waves, and the 
synthesis of a number of si~e waves (harmonics) _can be compounded to pro­
duce complex waveforms, we can apply Fourier analysis-that is, a series of 

87 
H;",.,,,oni~s am/ 

Wa11t Combinations 

FIGURE 8-8 . . · · 
Ti'me graphs for 
the addition of the 
first four humonics 
of a given 
fundamental · 
frequency/. 
Vibration modes 
for (a) the 
fundamental alone, 
(b) the first and 
second harmonics 
together, (c) the 

· sum of the first, 
second; and· third. 
harmonics together; 
and (d) all four . · · : 
harmonics together. 

,. 
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