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Pitch: The Simplest Musical Implication of Characteristic Oscillations

‘
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notice some of the remarkable implica-
tions of the first of these observations.

L]

5.5. Sounds Having Whole:Number
Frequency Ratios -

. Let us imaging i.jhat. we have available to
‘us a hypothetical string which, when

plucked or struck, vibrates if a family of
characteristic damped sinusoidal oscilla-

" tions whose frequencies are arranged in an

exact whole-number relation; that is, Q is
exactly 2P, R =3P, § =4P, and so on.

‘Digression on the Numerical Labeling of

Natural Frequencies.

" We can express this whole-number velationship be-

tween oscillation frequencies very compactly as fol-
lows. If we wse the letter n to stand for any one of

" the integers—ibat is, n =1, or 2, or 3, etc.—
. and if the :}.vam:temtzc Sfrequencies ave given the
 sevially numbered names fy, fo, fu instead of our

alphabetical nanes, then the nth one “of these

 frequencies can be referved to as fr The desired int-

eger relation between the successive string frequen cies
can be written in a mathematically tidy fashion as

£}

b Jollows:

(T T

59

f n= nf; 1
One reads this mathematical stnténce thus: 'f sub-n
is equal to n times f sub-1," meaning that the nth
Jrequency is m times as lavge as ‘the fisst ome in the
set,

In the language of chapter 2, we can say
that che repetition rate for any one-of out
idealized string’s sinusoidal oscillations is
a whole .number times the reperition rate
associated with its lowest frequency os-
cillation. Let us look into what happens
when account is takén of the fact that the
string is actually vibrating with a.whole
set of integrally related frequencied.
Suppose that for conceptual simplicity
we assign an imaginary drummer to each
characteristic oscillation of our sttmg,
giving him the job of tapping with a rep-
etition rate equal to that measured for his
“own” . string oscillation. The whole-
number * relation. between the string
ftequenacs then- teqmres that the drum-
mer assigned ‘to keep time with.the sec-~
ond characteristic oscillation should beat
twice as fast as drummer number 1. Simi-
larly drummer 3 taps three times as fast

p A

Fig. 5.2.

L
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Pattern Made by Tappmg Rates Havmg a Whole-Number Relanon
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Fundamentals of Musical Acoustics

as drummer- 1, and so on. The upper four
lines of figure 5.2 show the timing of the
successive taps produced by the first four
of our set of drummers. The bottom line
of the diagram shows the resulting rhyth-
mic pattern that one would hear. Every
drummer strikes in unison with the blows

of drummer 1, giving a strongly marked .

beat, and drummers 2, 4, . strike at
the midpoints - between these, accented
taps, giving a somewhat less accented
tap. The important thing to notice is that
the repetition rate of the complete rhyth-
mic pattern produced by the composite
set of tappings is exactly the same as that
of the lowest frequency member (see sec.
2.3, “Repetition Rates of Rhythmic Pat-
terns”). Musicians should not find this
idea hard to understand if they compare
my explanation above: with what they
would expect from a rhythmic pattern
written out as in figure 5.3,

Let us look now at some. examples
using sinusoidal disturbances instead of
drumbeats. - The top two parts of - figure
5.4 show sinusoids whose frequencies dif-

60
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Fig. 5.4. Combination of Sinusoids Having
a Whole-Number Frequency Relation

fer by a factor of two. If our simplified
string could be excited by some means
that sets into motion only the first two of
its characteristic oscillations, then the os--
cilloscope picture produced from a micro-
phone in its neighborhood would look
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Fl'g. 5.3.
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Pitch: The Simplest Musical Implication of Characteristic Oscillations

‘

¢

something like the curve shown’ in the
third part of the figure, This curve is
produced by the addition of the two
curves immediately abo¥e it. Notice that
the repetition time of tht somewhat spiky
composite curve (and hence its repetition
rate) is exactly that of the f; component at
the top of the diagram. The bottom part
of the figure shows the result of combm-
mg additional sinusoids, so that the curve
is that belonging to the sum of the first
six oscillations in our specially chosen set.

\VAVAVAVAV.
VAVAVAVAVAVAVAVAVAY

Fig. 5.5. This figure is identical with the
upper three sections of figure 5.4 except that
the second component has been displaced.
Note that the repetition time is unaffected by
this change.

Figure 5.5 shows a slightly modified
version of the upper three sections of fig-
ure 5.4. This time the f; component is
“slid .over” in time so that it no longer
has every second upward excursion coinci-

- dent with every upward excursion of the

f; component. We notice that the sum-
mation of these two oscillations gives a
resultant pattern whose shape is different
from the one obtained before, but once
again we see that the repetition time is
equal to that of the lowest frequency (fy)
oscillation,

Adding components whose frequencies

-are in whole-number relationships has

61

shown us something that will prove to be
very important to our undédrstanding not
only of the physical basis of tone color
but also of the special relationships be-
tween nates which underlie formal music
all over the world: Let us set down some
of the properties of the class of sounds
that would be made by our hypothetical
strings. ‘

1. No matter what the strength of excita-
tion of the various oscillations, the repetition
rate for the whole signal as it reaches a micro-
phone (or our ears) would be -exactly that of
the lowest frequency sinusoidal component
that is characteristic of the string. ‘

2. Because the ner repetition rate of the
vibration is independent of how or where the
string is struck, one would always get the
same perceived pitch sensation for the string
sound. This means that the pitch is unam-
biguous,

Digression: Sounds with Only Even

Harmomcs

In the strictest of logic, one might ask about & pos-

sible inadequacy of item 1 above. Imagine an

ingenions excitation method that fails to excite the

odd-numbered oscillations, -so that only fo, f4 fe
. are present. These may be written our as

Follugyi:

f; =2f; =1 X(2f)
fo=4f, =2 X @)
etc.

This shows that our new set of frequency compo-
nents is itself constructed out of integer multiples of
a new basic frequency whose value is (2f1). The
repetition rate is therefore doubled, and the whole
game begins again. We wonld perceive this altered
‘sound as having a pxtcl) one octave bzgher ‘than the
normally excited one.

As a practical matter, it is not partzmlar!y dif-
Sieult to arvange peculiar excitations of the sort de-
scribed in the preceding pavagraph, and if one were
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to meet such a sityation it could easily be recog-

nized as such with the belp of simple auxiliary ex-
beriments. One would need only to jzlm'k or-strike
 the siring at sandom spots once or twice in order to
find ¢ out the true nature of the Jtrmg

There is somethmg mtellectually very
attractive about the apparent s1mphc1ty of
sounds made up of components having
integer frequency ratios, and it is easy to
devise - lengthy nwnerologxcal ‘games
based on their presumed properties. Be-
fore we fall into’ this trap, however, it
would be advisable to find out whether
such sounds can in fact be generated If
such sounds can be ' generated, we then
‘must ask whether our ears and nervous
system deal with them in a way that cor-
‘tesponds at all with - experiencing the
sounds from real strings. The first ques-
" tion can be answeted afﬁrmauvely in two
ways: o

1. A'truly uniform slender string of suit-
able material, 'stretched tightly enough be-

so far. Instead of simply ringing (and decay-

~ing away) in response to an impulsive stimu-.

lus, all of these instruments are capable of
producing susrained sounds. They are devices
that are capable of converting the steady flow
of air from a man’s lungs, or the steedy mo-
tion of the bow in his hand, into the oscxlla-

tory" v1bratxons which g:ve rise to the sound»

we hear, We shall see in a later chapter that.
only under very special circumstances can

“such devices be persuaded to maincain steady,'.

oscillations ‘whose frequency components aré
not in an exact whole-number relatxon to . the
basic repetition rate.

It turns out that the vast majority of
our musical listening experiences are with °
sounds  whose frequency components are
in exact whole-number relation, or very
nearly so. It is not surprising, then, that -
the formal structure of music (wherever it
has developed over the world) is strongly - -

.influenced by the properties ‘of sounds

tween sufficiently rigid supports, will produce.

sourids ‘whose components have frequencies
that are in véry nearly petfect integer telation.
“The sounds’ from such 2 string differ only
_subtly from those produced by a string vibrat-
ing under less formalistic conditions. That is,
nothing drastic happens to the perceived
sound as long as the string has nearly mteger
frequency relations.

2. We find that there isa lacge class of fa-
miliar sound: sources that normally produce
sounds whose frequenE‘y components are found
to be related in the precisely whale-number

~manner that we postulated for our hypotheti-
cal strings. Examples of sources of this kind
are very common. The human voice is the
most familiar one, while the woodwind and
brass instruments join with the violin family
to provide orchestral examples. These diverse
sound sources have one common element in
their nature that sets them apart from the
bells, chimes, and strings we have considered

;te

each of which has whole-number relations
among its componenrs We also find that
many subtleties in music arise rhrough_
slight mharmomcxtles which . are_
present in the tones of some instruments.
This book has opened with an inves-
tigation of impulsive and heterogeneous .
sounds from struck objects,: not only be-
cause of the sxmplxcnty of initial exposi-

tion ‘but also’as a means for underlining -

the’ specxal ndture of the sound—producers
that man’ has selected for his mus1cal ac-
tivities. It is time therefore to return to
the sounds of bells and chimes in order to
cofnpare them with the sounds of plucked :
or struck strings. '

5.6. The Pitch of Chimes and Bells:
Hints of Pattern Recognition

We have found that the characteristic
frequencies that make up any one sound

’
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from any one of the commoner orchestral
instruments are arranged as exact (or very
pearly exact) integer multiples of a certain
basic frequency. It is this basic frequency
component that determines the repetition
rate of the sound we hear and-also, as we
have leatned, its musical pitch. Let us use
this - knowledge to help ourselves gain
some understanding of the ‘way in which
we assign pitches to chimes dnd bells,
whose characteristic frequencies do not ar-
range themselves in whole-number rela-
tionships. ’

Digression on Terminology:
Some Partials Are Harmonic,
It will save a great deal of circumlocytion if we
provide ouyselves with some terminolagy carefully
chosen for the description of the various components
making up the sound we are degling with. First of
all, in any sound made wp of sinusoidal compo-
nents, we will continue to assign identifying letters
from the latter part of the alphabes, or serial num~
bers, assigning them according to their ovder,
beginning at the lowest one. That is, we will call
" these frequencies P, Q, R, . . . or f1, f2, fa
. Sometimes it will be useful to vefer to these
components as the partials of the sound in question.

When. this word is used, we will understand that

no particular velationship is to be assumed between

the frequencies of these partials; their frequenties

may or may not have a whole-number. velationship.
These components will still be veferred to by their
serizl numbers as fisst partial (referving o the
component labeled P or f1), second partial (also
known as Q or f3), ete. ,
 We turn now to the special case of sounds in
which the frequencies of the various sinusoidal par-
tals are whole-number multiples of some basic repe-
tition  vate. The sinusoidal component .whose
Frequency matches that of the repetition vate will be
téferved 0 as the fundagnental component, and its
quency -as the fundamental frequency: It is
often veferved to also as the first harmonic. The
Partial - whose' frequency is exactly double that of
the fundamental will be said to have @ frequency
which js the second harmonic of the fundamental

frequency. Similarly we will say that sinusoidal
oscillations yunning at three times the fundamental
[frequency are vibrating at the third harmonic of
the fundamental frequency. .

We will hae to be very strict in onr terminology
or endless . confusion can result. The word har-
monic 5 to be used only when we mean to imply

‘an exact whole-number frequency relationship. To

help make things clear, we may notice that the pay-
tials of a guitar string have frequencies which are
very nearly, but not exactly, barmonics of the
Jrequency of the first (Jowest) partial,

We learned earlier in this chapter that
musically experienced people won't neces-
sarily agree on what pitch to assign to the

sound of a grandfather clock chime. In"
the context of our present understanding *

of musical sounds; we may wonder
whether the frequencies of the chimes’

© partials can be recognized by our nervous

system as- belonging to two differently
organized sequences of harmionics. That
is, can we find hints of a series of har-
monics whose fundamental cortesponds to
the ‘approximate Fj that some listeners
hear? Similarly, can we detect signs of a
harmonic series whose fundamental im-
plies the pitch just-above the Cs perceived
by others? In our earlier investigation of
this sound we recognized that the second
partial has a frequency consistent with
one of these pitch assignments while the
two closely spaced partials (which were
labeled R 5 and Ry) are associated with the
other one.. Our earlier difficulty stemmed
from our inability to dispose of all the
other partials making up the tone; could
these be members of harmonic series
based on the assigned pitches?

Figure 5.6 shows the frequencies of all
the partials up through f (S) laid out as
dots along a frequency scale. Above the
frequency axis of this diagram we see a
pair of arrows located at frequencies corre-
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Fundamentals of Musical Acoustics
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Fig. 5.6. Assignment of Pitches to Sound from a Clock Chime

sponding to a fundamental, belonging to
the note Cs, and its second harmonic.
The fundamental arrow is pointing at the
pair of Rs, while the arrow for the second
harmonic  points almost exactly at -the
measured 8. It seems possible, then, that
our ears can seize on. the relationship of
these two strong components and accept
.them jointly as the two lowest members
(fundamental and second harmonic) of a
‘set of partials belongmg t0 a sound whose
pitch is near Cs.

- Below the frequcncy axis we find in
s:m;lar fashion a set of arrows indicating
the frequencies making up the set (fun-
damental and its harmonics) belonging to
the sharp-pitched F3 which we associated
with the measured f; (which was labeled
Q- earlier). This time we find that the
arrows corresponding to the fundamental,
the third, and the sixth harmonics point
very nearly “at the.dots indicating the
measured components Q, R, and S.

Our search for integer relations among
the frequency components of a struck

chime rod has been reasonably successful,

in that it gives results that seem consis-
tent with the bypotbesis that our ears as-
sign pitch (when possible) on the basis of

any - whole-number sequences they can
find.
" We turn our attention next to the bell
sounds, to see whether they give any sup-
port to our hypothesis that pitch is as-
signed on the basis of approximately
whole-number frequency relationships.

The individual lines of figute 5.7 show
the frequencies of the first five partials for
the first five bells in the Terling Peal, laid
out by means of dots on a frequency axis
in exactly the same way as was done for
the chime rod. The dashed vertical lines
appearing ‘on the diagram indicate the
fundamental repetition frequency and its
harmonics belonging to a reference sound
whose pitch matches that of the bells as
made: uniform, by a variable-speed record-

ing device. ) :

Inspection of the line corresponding to
bell 1 shows that the first partial (marked
P) has a‘frequency quite close to that as-
sumed for the fundamental. Furthetmote,
we, see that partials 4 and 5 agree ex-
tremely well with harmonics 3 and 4 of
the pitch reference tone. We note that
partials 2 and 3 do not seem to agree
with any member of the reference har-
monic series.

"~ MZ Audio, Ex. 2004, Page 8 of 9
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Pitch: The Simplest Musical Implication of Characteristic Oscillacions

Skipping now to bells 3, 4, and 5, we
find that partials 1, 2, 4, and 5 agree
quite well with the fundamental and har-
monics 2, 3, and 4 belonging to our
pitch reference. Partial 3 never seems to
fic in. Bell 2 does not show such a clear-
cut relation, although the frequencies of
partials 1 and 4 are roughly equal to
thosc of the fundamental and third har-
monic of our reference sound. Interest-
ingly enough, most listeners feel quite
uneasy about assigning pitch to this bell,
even though they find no difficulty with
the other ones.

‘Looking over the data we come to real-
ize that for a bell to have a reasonably

well-defined pitch (so .that it can be.

matched with a' normal sort of tone hav-
Ing harmonic partials), our ears do not
demand ‘any particular set of component

© 65
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Fig. 5.7. Frequency Components of Bells Adjusted to the Same Pitch

frequencies from it. That is, our ears do
not demand that the same (only approxi-
mately harmonic) partials serve iden-
tically as the “pointers” in the sounds for
all the bells. All that is required is a suf-
ficient -number of sufficiently consistent
clues. The frequencies of the skillet clang
listed on p. 43 are similar to these bell
sounds in that they are not harmonically
related.

5.7. Another Pitch Assignment
Phenomenon: The Effect of .S‘uppre.rsmg
Upper or Lower Pamals

In the previous section of this chapter we
found ourselves thinking about the ways
in which our ears respond to sounds fed
to them from bells and chimes. We no-
ticed that the act of assigning pitch to
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