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Pitch: The Simplest Musical Implication of Characteristic Oscillations 

t 

notice some of the rema~kabJe implica
tions of the first of these observations. 

5. 5. Sounds Having Whole~Number 
Frequency Ratios 

Let us imagine ~hat we have available to 
· us a hypothetical stri11g which, when 
plucked or struck, vibrates ii} a family of 
characteristic damped sinusoidal oscilla
tions whose frequencies are arranged in an 
exact whole-number relation; that is, Q is 
exactly 2P, R = 3P, S =4P, and so on. 

. Digression on the Numerical Labeling of 
Natural Frequencies. 

· We can exprm this iuhole-number relationship be
tween oscillation frequmcies very compactly as fol
lows. If we use the -letter n to stand for any one of 
the. integers--that is, n = 1 , or 2, or 3, etc~-. 

. and if the char~cteriJtk frequendes are given the 
serially numbered names f 1, f 2, / 3 imtead of our 
alphabetical names, then the nth one of these 
frequencks can be referred to as f.,,, The desired int-
eger relation between the suctessive string freq lien cies 
ca11 be written i11 a mathematically tidy fashion a.s 

._follows: 

59 

fn =rif1 

One reads thiJ mathematical s~nte11ce thus: "I 1ub-11 
IJ equal to n times I sub-I," meaning that the nth 
frequency is n times a.r large as the first orie in the 
Jet. 

In the language of chapter 2, we can say 
that the repetition rate for any one of our 
idealized string's sinusoidal oscillations is 
a whole .number times the repetition rate 
associated with its lowest frequency os
cillation. Let us look into what happens 
when acco1.1t1t is taken of the fact that the 
string is actually vibrating wfrh a. whole 
set of integrally :related frequencief 

Suppose that for conceptual simplicity 
we assign an imaginary drummer to each 
char_actei-isck . oscillation of our . string, 
giving him the job of tapping with a rep~ 
etition rate equal to that measured for his 
"own" string oscilla_tion. The whole
ntimber · relation . between the string 
frequendes then requires that the drum
mer .assigned • to keep time with the_ sec
ond characteristic osdllation should beat . . . . . . . 

twice as fast a,s drwnmer number 1. Simi-
larly drummer · 3 taps three drries as fast 

)-----0,-----1 ., 

0-

Fig. 5.2. Pattern Made by Tapping Rates Having a Whole-Number Relation 
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as drummer 1, and so on. The upper fuur 
lines of figure 5. 2 show the timing of the 
successive taps produced by the first four 
of out set of drummers . The bottom line 
of the diagram shows the resulting rhyth
mic pattern that one would hear. Every 
drummer strikes in unison with the blows 
of drummer 1, giving a strongly marked . 
beat, and drwmners 2, 4, ... strike at 
the midpoints between these accented 
taps, giving a somewhat less accented 
tap. The important thing to notice is that 
the repetition rate of the complete rhyth
mic pattern produced by the composite 
set of tappings is exactly the same as that 
of the lowest frequency member (see sec. 
2. 3, "Repetition Rates of Rhythmic Pat
terns"). Musiciims should not find this 
idea hard to understand if they compare 
my explanation above with what they 
would expect from a rhythmic pattern 
written out as in figure 5. 3. 

Let us look now at some examples 
using sinusoidal disturbances instead of 
drum~ats . . · The top . two parts of figure 
SA show sinusoids whose frequencies dif-

' . • -- - -- -- -" ,, . ... 

1 3 .1 . - - - - - - -. , . 
U I 

t.. 

~ - - - - -
'I.' I 

Fig. 5.4, Combination of Sinusoids Having 
a · Whole-Number Frequency Relation 

fer by a factor of two. If our simplified 
string could be excited by some means 
that sets into motion only the first two of 
its characteristic oscillations, then the os
cilloscope picture produced from a micro~ 
phone in its neighborhood woul<i look 

- - - - - - - ETC 

3 3 
-· - - - - ETC- . 

- - - ETC~ . • 
t.. - .-

' - - - - - El~-
., I 

IL I t I 

Fig. 5,3. 
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som~thing like the curve sqown· in the 
third part of the figure. This curve is 
produced by the addition of the two 
curves immediately abo~e it. Notice that 
the repetition time of tht somewnat spiky 
composite curve (and hence its repetition 
rate) is exactly that of th~ f1 component at 
the. top of the diagram. The bottom part 
of the figure shows the result of combin
ing additional sinusoids, so chat ~he curve 
is that belonging to the sum of the first 
six oscillations in our specially chosen set. 

Fig; 5. 5. This figure is identical with the 
Lipper three sections of figure 5 .4 except that 
the second component has been displaced. 
Note that the repetition time is unaffected by 
this change. 

Figur~ 5. 5 shows ·~ slightly modified 
version of the upper three sections of fig
ure 5.4. This time the f2 component is 
"slid ovet" in time 'so that it no longer 
has every second upward excursion coind
dent with every upward excursion of the 
f1 component. We . notice that the suin
tnation · of these two oscillations gives a 
resultant pattern whose shape is different 
from the one obtained before, but once 
again we see that the repetition time is 
equal to that of the · lowest frequency (f1) 
oscillation. 

Adding components whose frequencies 
.are in whole-number relationships has 

shown us something that will prove to be 
very important to our undt1rstanding not 
only of the physical basis of tone color 
but also of the special relationships be
tween notes which underlie formal music 
all over the world: Let us set down some 
of the properties of the tlass of sounds 
that would be made by our hypothetical 
strings. 

1. No matter what the strength of excita
tion of the various oscillations, the repetition 
race for the whole signal as it reaches a micro
phone (or our ears) would be exactly that of 
the lowest frequency sinusoidal compon~nt 
that is characteristic of the string. . ;. 

2. Because the net repetition rate of the 
vibration is independent of how cir where the 
string • is struck, one would always · get the 
same perceived pitch sensation for the string 
sound. This means that the pitch is ltnam• 
big11011s. 

Digression: Sounds with Only . Even 
H;rmonics. . .. . , ·. 
In the strictest of logic, one might ask about a po1., 
sible inadequacy of iiem 1 above. Imagine an 
ingenioui excitation method that fails to excite the 
odd-numbered oscillatiom, so that only /2, f,i, f e, 

. , . are pre,ent. The.re may be written out as 
follws: 

f2 = 2f1 = 1 X (2f1) 

f4 = 4f1 == 2 X (2ft) 
fa == 6f1 = 3 X (2ft) . . 

etc. 

This 1hows that our new set of frequency compo
nents is itself constructed out of integer multiples of 
a new basic frequenry whose value i.r (2/1). The 
repetition rate is thmfore doubled, . and the whole 
game begins again; We would perceive thts altered · 
sound as having a pitch one octa11(! higher ihan the 
normally excited one. · 
. As a practical matter, it is not particularly dif

Jicult to arrange peculiar exdtation.r of the iort de
scribed in the precedingpariigraph, and if one were 

MZ Audio, Ex. 2004, Page 5 of 9



Fundamentals of Musical. Acoustics 

62 

to meet such a situation it could ea.rHy be recog- _ 
nized as such with· the· help of simple auxiliary ex
periments. One would need only to pluck or strike 
the string at random spots once or twice in ortkr to 
find out the true nature. of the string. . 

There is something intellect1.U1.Ily very 
attractive about the apparent simplicity of 
sounds made up of components having 
integer frequency ratios, and it ·is easy to 
devi~ lengthy · numerological· games 
based • on their presumed properties, Be
fore we· fall into this trap, however, _it 
would be advisable to find out whether 
such sounds can •in fact be generated. If 
such sounds can be · generated, we then 
-must ask whether om- ears and nervous 
system deal with them· in a. way that cor
re~ponds at all with experiencing the 

,sounds from real sttfr1gs. The first ques
. tion can be answe·red affirmatively in two 
.ways: 

i. A truly uniform slender string of suit
able material, stretched tightly enough be
tween sufficiently rigid supports, will.produce. 
sounds whose components have frequencies 
that are in very nearly perfect integer. relation. 
The sounds · from such a string differ only 

. subtly from those produced l:>y. a string vibrat
ing under less formalistic conditions. That is, 
nothing. drastic happens to the perceived 
sound as long as the string has. nearly integer 
frequency relations. · 

2. we· 4od that th~re is a large class of fa
miliar sound• sources that Oormally produce 
sounds whbse frequenc:y components are found 
to be related in the precisely Whqle-number 
manner that we pos~ulated for our hypotheti
cal iitrings. E.xamples of sources of this kind 
are very .· common. The human voice is the 
most familiar one, while the woodwind and 
brass instruments join with the violin family 
to provide · orchestral examples. Th~se · diverse 
sound sources have one common demerit in 
their na.ture that sets them apart from the 
bells, chimes, and strings we have considered 

so far. Instead of simply ringing (and decay~ 
-.ing away) in response to an impulsive stimu
lus, all of these instruments are capable of 
producing sustained sounds. They are devices 
that are capable of converting the steady Bow 
of air from a man's lungs, or the steady rµo
tion of the bow in his hand, into the osciUa
tory · vibrations which give rise to the sound 
we hear. We shall see in a later chapter tpat 
only under vety special circumstances can 
such devices be persuaded to maintain steady 
oscillations whose frequency components are 
not in an ei(act whole-number relation to the 
basic repetitio~ rate. 

It turns out that the vast majority of 
our musical listening experiences are with 
sounds whose frequency components are . 
in exact whole-number re.lation, or very 
nearly so. It i,s not surprising, then, that 
the formal structure of music (wherever it 
has developed over the world) is, strongly 
influen~ed by the properties _ of sounds 
each ofwhich has whole-number relations 
among its components. We also find that 
many subtleties in music arise through 
the , slight inharmonicities which a~ 
present in the tones of some. instruments. · 

This book has opened with an inves
tigatio~ of iCQpulsive and heterogeneous 
sounds from struck objects, not only ne
caus~ of' the 'simplicity of initial expo~i
tiori •but also' as a means for underlining 
the special nature of the sound~producers 
that man· has selected for his musical ac~ 
dvities. ,It is time therefore to return to 
the ;;ounds of bells and chimes in o~der to 
coi.n'pare them with the sounds of plucked 
or •~}ruck strings. · · 

5. 6. Th~ Pitch of Chimes and Bells: 
Hints .of Pattern Recognition 

We have founc:I that the characteristic 
frequencies that make up any one sound 
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from any one of the commoner orchestral 
1nsttuments are arrariged as exact (or ~~ry 
nearly exact) integer multiples of a certain 
basic frequency. It is i:his bask frequJ~cy 
component that determines the repetition 
rate of the sound we hear and· also, as we 
have learned, its musical pi~ch .. Let us use 
this -knowledge tci help ourselves gain 
some understanding of the' way in which 
'we assign pitches to chimes ind bells, 
whosecharacteristic trequehcies do not ar
range the~selves in whoJe-number rela
tionships. 

Digression on Terminology: 
Some Partials Are Harmonic. 
It will save a great deal of circum/oc11tion if we 
provide ourselves with some terminology carefully 
chosen for the description of the various compon"ents 
making up the sound we are ikq/ing with. First of 
all, in atJy sound mafk up of {intisoidal compo~ · 
mnts, we will continue to assign identifying letters 
from the latter part of the alpha/Jet, or serial num: 
bet's, a.11igning them according to their order, 
beginning at ihe lowest one. That is, we will call 

· these /requenciei P, Q, R, . . , or f1, f2, fa, 
, . . SometimeJ it will be _useful to refer to these 
components -as the partials of the sound in que!fion. 
When this word is used, tue °will unikrstand th4t 
no particular relationship is to be "a.rsumed between 
the frequencies of theJe partials,· their fmJ.uencies 
may or may not have a whole-number. relationship. 
The1e components will still be referred to hy their 
serial numb~s a.r first partial ( referring to the 
componenOabeled P or f 1 ), second partial (also 
known asQ or /J.), etc. 
__ ·We tum now to the special ca.re of sounds in 
which the frequenciei of the t1arious sin11Joidal par
tials are whole-n_11mber multiples . of some ba1ic .repe
tition rate. Tin sinusoidal component . "whose 
frequenry matchei that of the ;repetition rate will be 
referred to _as the funda.piental component, and its 
frequency as the fundamental frequency : It is 
-0/ten referred to also as the first harmonic. The 
Pani;./ ,w~ie·fre,quency is exactly double that of 
the fun<k,mental will . be said to have a frequency 
whic/, is the second harmonic of the fundamental . . ' . 

frequency. Similarly we will say that sim1Joidal 
oscitlaiions running at three times the fundamental 
frequency are vibrating at the third harmonic of 
the fundamental frequency . -

We will have_ to be t1ery-,trict i_n o~r terminoiogy 
or endless . confusion can result. The word har
monic is to be used only .when ,;;e m~an to imply 
an exact whole-number frequency relationihip. To 
help make things clear, we may notice that the par
tials pf a guitar string have frequencies which are 
very nearly, but not exactly, harmonic1 of the 
frequenry of the fint (lowest) partial. . . 

We learned earlier in this chapter that 
musically experienced people won't neces
sarily ag)'.'ee on wh.at pitch to assign co the 
sound of a grandfather clock chime . Iri' 
the context of out present understanding ' 
of musical soun_d~; we may wonder 
whether the frequencies of the chimd' 
partials can be recognized by our nervous 
system as · belonging to two differently 
organized sequences. of harmonics. _That 
is, can we find hints of a series of har
monics whose fundamental . corresponds to 
the approximate F3 that some listeners 
hear? Similarly, can we detect signs of a 
har_monic series .· whose fundamental im
plies the pitch just ·above the (:5 perceived 
by others? In our earlier investigation of 
this sound we recognized that the .second 
partial has a frequency consistent · with 
one of these pitch assignments while the 
two dosely spaced . partials (which were 
labeled Ra and Rb) are associated with the 
othe.r oi;:ie. _ Our ·earlier difficulty stemmed 
from -our inability to dispose of all the 
other partials making . up the tone; co_uld 
these be members of harmonic se.des 
based on the assigned pitches? 

:Figure 5 .6 shows the frequencies of aU 
the partials up through £4 (S) laid out as 
dots along a frequency scale . Above the 
frequency, axis of this diagram . we see · a 
pa,ir of arrows located at frequencies corre-
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APPROX . . c5 
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3 
Fig. 5.6: Assignment of Pitches to Sound from a Cock Cbime 

sponding to a fundamental, belongirtg to 
the note C5, and its second harmonic. 
The fundamental arrow is pointing at the 
pair of Rs, .while the arrow for the second 
harmonic points almost exactly at the 
me~ured S. It seems possible, then, that 
o,ur. ears can ,seize on the reiacionship of 
these two strong components a:nd accept 

,tl)em jointly as the two lowest members 
· (fundamental and second harmonic) of a 
. set of partials beJonging:to a sound whose 
pitch is near C5 • . 

.· Below the frequency axis we fin~ in 
similar fashion a sec of arrows indicating 
the frequencies making up .the set (fun~ 
damental and its harmonics) belonging to 
the sharp-pitched F 3 which we associated 
with t.he measured f2 (which was labeled 
Q earlier). This time we find that the 
arrows corresponding to the fundamental, 
the third,· !lnd the sixth harmonics point 
very nearly ·at the <dots indicating the 
measured components Q; R; and S. 

Our search for integer relations among 
the frequency components of a struck 
chime rod has been reasonably successful, · 
in . that it gives results that seem consis
tent with the hypothesis that our ears as
sign pitch (when possible) on the basis of 

any · whole-number sequences they can . 
.find. . . 

We turn our attention next to the bell 
sounds, to see whether they give any sup
port to our hypothesis . that pitch is as~ 
signed on the- basis of approximately 
w hole-nuinber frequency relationships. 
The individual lines of · figure 5. 7 show . 
the frequencies of the .first. five partials for 
the first five bells in the Terling Peal, laid 
out by means of dots on a frequency axis 
in exactly the same way as was done for 
the chime rod. The dashed vertical lines 
appeJing on the diagram . indicate the 
fundamental repetition frequency aqd its 
h~monics belonging to a reference sound 
whose pitch matches that of the bells as 
made; uniform. by a variable-speed record
ing device_. • 

Inspection of the line corresponding to 
bell 1 shows that the first partial (marked 
P) has a'frequency quite close to that as
swped for the fundamental. Furthermore; 
we,-, ~ee t~at partials 4 and 5 agree ex
treri:iely well with harmonics 3 and 4 of 
the pitch reference tone. We note that 
partials · 2 and 3 do not seem to agree 
with any ,member of the reference har
monic series. 
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n REPETITION FREQUENCY t CORRESPO~DING TO P~RCEIVED P!TCH 
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· Fig. 5. 7. Frequency Components of Bells Adjusted to tl:ie ' Same Pitch 

Sl<ipping now to bells 3, 4, and 5, we 
find that partials 1, 2; 4, and 5 agree 
quite weil · with the fundamental and hat: 
monies 2, 3, · and 4 belonging to our 
pitch reference. Partial 3 never seems to 
fit in. Bell 2 does not show such a clear
cut relation, although the frequencies of 
partials 1 and 4 are roughly equal to 
those. of the fundamental and · third har~ 
nionic of our reference sound. Interest
ingly enough, most listeners feel quite 
une~y about assigning pit~h to this bell, 
even though they find · no difficulty with 
the other ones. 

Looking o~er the data we come co real
ize that for a bell to have a reasonably 
well~defined pitch (so -. that it can be . 
matched with a normal sort of tone · hav
ing harmonic partials), our eats do not 
demand any particular set of component 

frequencies frotn it . · That is, our ears . do 
not demand that the same. (only approid.: 
mately harmonic) partials serve iden
tically as the· ''pointers" in _the sounds for 
all the bells .. All ·chat is required is a suf• 
ficient · ~umber of sufficie11dy consisteni: 
clues. The frequencies of the skillet clang 
listed on p. 43 are similar to these bell 
sounds in chat they are not harn,1onically 
related. 

5. 7. Another Pitch Assigninept 
Phenomenon: The Effect of Suppressing 
Upper or u;wer Partials · · · 

In the previous section of this chapter we 
found ourselves thinking about the ways 
i~ which our ears respond to sounds fed 
to them from bells and chimes. We no
deed that the ace of assigning pitch to 
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