Secure Spread Spectrum Watermarking for Multimedia Ingemar J. Cox[†], Joe Kilian[†], Tom Leighton[‡] and Talal Shamoon^{†*}

Abstract

We describe a digital watermarking method for use in audio, image, video and multimedia data. We argue that a watermark must be placed in perceptually significant components of a signal if it is to be robust to common signal distortions and malicious attack. However, it is well known that modification of these components can lead to perceptual degradation of the signal. To avoid this, we propose to insert a watermark into the spectral components of the data using techniques analogous to spread sprectrum communications, hiding a narrow band signal in a wideband channel that is the data. The watermark is difficult for an attacker to remove, even when several individuals conspire together with independently watermarked copies of the data. It is also robust to common signal and geometric distortions such as digital-to-analog and analog-to-digital conversion, resampling, and requantization, including dithering and recompression and rotation, translation, cropping and scaling. The same digital watermarking algorithm can be applied to all three media under consideration with only minor modifications, making it especially appropriate for multimedia products. Retrieval of the watermark unambiguously identifies the owner, and the watermark can be constructed to make counterfeiting almost impossible. Experimental results are presented to support these claims.

1 Introduction

The proliferation of digitized media (audio, image and video) is creating a pressing need for copyright enforcement schemes that protect copyright ownership. Conventional cryptographic systems permit only valid keyholders access to encrypted data, but once such data is decrypted there is no way to track its reproduction or retransmission. Conventional cryptography therefore provides little protection against data piracy, in which a publisher is confronted with unauthorized reproduction of information. A digital watermark is intended to complement cryptographic processes. It is a visible, or preferably invisible, identification code that is permanently embedded in the data, that is, it remains present within the data after any decryption process. In the context of this work, data refers to audio (speech and music), images (photographs and graphics), and video (movies). It does not include ASCII representations of text, but does include text

DOCKE

Sony Evhibit 1020

⁰†Post: NEC Research Institute, 4 Independence Way, Princeton, NJ 08540.

Email: ingemar|joe|talal@research.nj.nec.com

⁰‡Post:Mathematics Department and Laboratory for Computer Science, MIT, Cambridge, MA 02139. Email: ftl@math.mit.edu

^{*}Authors appear in alphabetical order.

represented as an image. A simple example of a digital watermark would be a visible "seal" placed over an image to identify the copyright owner. However, the watermark might contain additional information, including the identity of the purchaser of a particular copy of the material.

In order to be effective, a watermark should be:

DOCKE.

- **Unobtrusive** The watermark should be perceptually invisible, or its presence should not interfere with the work being protected.
- **Robust** The watermark must be difficult (hopefully impossible) to remove. Of course, in theory, any watermark may be removed with sufficient knowledge of the process of insertion. However, if only partial knowledge is available, for example, the exact location of the watermark within an image is unknown, then attempts to remove or destroy a watermark by say, adding noise, should result in severe degradation in data fidelity before the watermark is lost. In particular, the watermark should be robust to
 - **Common signal processing** The watermark should still be retrievable even if common signal processing operations are applied to the data. These include, digital-to-analog and analog-to-digital conversion, resampling, requantization (including dithering and recompression), and common signal enhancements to image contrast and color, or audio bass and treble, for example.
 - **Common geometric distortions (image and video data)** Watermarks in image and video data should also be immune from geometric image operations such as rotation, translation, cropping and scaling.
 - Subterfuge Attacks: Collusion and Forgery In addition, the watermark should be robust to collusion by multiple individuals who each possess a watermarked copy of the data. That is, the watermark should be robust to combining copies of the same data set to destroy the watermarks. Further, if a digital watermark is to be used as evidence in a court of law, it must not be possible for colluders to combine their images to generate a different valid watermark with the intention of framing a third-party.
- **Universal** The same digital watermark algorithm should apply to all three media under consideration. This is potentially helpful in the watermarking of multimedia products. Also, this feature is conducive to implementation of audio and image/video watermarking algorithms on common hardware.

Unambiguous Retrieval of the watermark should unambiguously identify the owner. Further, the accuracy of owner identification should degrade gracefully in the face of attack.

Previous digital watermarking techniques, described in Section 2, are not robust, and the watermark is easy to remove. In addition, it is unlikely that any of the earlier watermarking methods would survive common signal and geometric distortions. The principal reason for these weaknesses is that previous methods have not explicitly identified the perceptually most significant components of a signal as the destination for the watermark. In fact, it is often the case that the perceptually significant regions are explicitly avoided. The reason for this is obvious – modification of perceptually significant components of a signal results in perceptual distortions much earlier than if the modifications are applied to perceptually insignificant regions. Hence, for example, the common stategy of placing a watermark in the high frequency components of a signal's spectrum.

The key insight of this paper is that in order for it to be robust, the watermark *must* be placed in perceptually significant regions of the data despite the risk of potential fidelity distortions. Conversely, if the watermark is placed in perceptually insignificant regions, it is easily removed, either intentionally or unintentionally by, for example, signal compression techniques that implicitly recognize that perceptually weak components of a signal need not be represented.

The perceptually significant regions of a signal may vary depending on the particular media (audio, image or video) at hand, and even within a given media. For example, it is well known that the human visual system is tuned to certain spatial frequencies and to particular spatial characteristics such as line and corner features. Consequently, many watermarking schemes that focus on different phenomena that are perceptually significant are potentially possible. In this paper, we focus on perceptually significant *spectral* components of a signal.

Section 3 begins with a discussion of how common signal transformations, such as compression, quantization and manipulation, affect the frequency spectrum of a signal. This motivates why we believe that a watermark should be embedded in the data's perceptually significant frequency components. Of course, the major problem then becomes how to insert a watermark into perceptually significant components of the frequency spectrum without introducing visible or audible distortions. Section 3.2 proposes a solution based on ideas from spread spectrum communications.

The structure of a watermark may be arbitrary. However, Section 4 provides an analysis based on possible collusion attacks that indicates that a binary watermark is not as robust as a continuous one. Furthermore,

DOCKE.

we show that a watermark structure based on sampling drawn from multiple i.i.d Gaussian random variables offers good protection against collusion.

Of course, no watermarking system can be made perfect. For example, a watermark placed in a textual image may be eliminated by using optical character recognition technology. However, for common signal and geometric distortions, the experimental results of Section 5 strongly suggest that our system satisfies *all* of the properties discussed in the introduction, and displays strong immunity to a wide variety of attacks, though more extensive experiments are needed to confirm this. Finally, Section 6 discusses possible weaknesses and enhancements to the system.

2 Previous Work

DOCKE.

Several previous digital watermarking methods have been proposed. L. F. Turner [Tur89] proposed a method for inserting an identification string into a digital audio signal by substituting the "insignificant" bits of randomly selected audio samples with the bits of an identification code. Bits are deemed "insignificant" if their alteration is inaudible. Such a system is also appropriate for two dimensional data such as images, as discussed in [vSTO94]. Unfortunately, Turner's method may easily be circumvented. For example, if it is known that the algorithm only affects the least significant two bits of a word, then it is possible to randomly flip *all* such bits, thereby destroying any existing identification code.

Caronni [Car95] suggests adding tags — small geometric patterns – to digitized images at brightness levels that are imperceptable. While the idea of hiding a spatial watermark in an image is fundamentally sound, this scheme is susceptible to attack by filtering and redigitization. The fainter such watermarks are the more susceptible they are such attacks and geometric shapes provide only a limited alphabet with which to encode information. Moreover, the scheme is not applicable to audio data and may not be robust to common geometric distortions, especially cropping.

Brassil *et al* [BLMO94] propose three methods appropriate for document images in which text is common. Digital watermarks are coded by: (1) vertically shifting text lines, (2) horizontally shifting words, or (3) altering text features such as the vertical endlines of individual characters. Unfortunately, all three proposals are easily defeated, as discussed by the authors. Moreover, these techniques are restricted exclusively to images containing text.

Tanaka *et al* [TNM90, MT94] describe several watermarking schemes that rely on embedding watermarks that resemble quantization noise. Their ideas hinge on the notion that quantization noise is typically imperceptible to viewers. Their first scheme injects a watermark into an image by using a predetermined data stream to guide level selection in a predictive quantizer. The data stream is chosen so that the resulting image looks like quantization noise. A variation on this scheme is also presented, where a watermark in the form of a dithering matrix is used to dither an image in a certain way. There are several drawbacks to these schemes. The most important is that they are susceptible to signal processing, especially requantization, and geometric attacks such as cropping. Furthermore, they degrade an image in the same way that predictive coding and dithering can.

In [TNM90], the authors also propose a scheme for watermarking facsimile data. This scheme shortens or lengthens certain runs of data in the run length code used to generate the coded fax image. This proposal is susceptible to digital-to-analog and analog-to-digital attacks. In particular, randomizing the LSB of each pixel's intensity will completely alter the resulting run length encoding. Tanaka *et al* also propose a watermarking method for "color-scaled picture and video sequences". This method applies the same signal transform as JPEG (DCT of 8×8 sub-blocks of an image) and embeds a watermark in the coefficient quantization module. While being compatible with existing transform coders, this scheme is quite susceptible to requantization and filtering and is equivalent to coding the watermark in the least significant bits of the transform coefficients.

In a recent paper, Macq and Quisquater [MQ95] briefly discuss the issue of watermarking digital images as part of a general survey on cryptography and digital television. The authors provide a description of a procedure to insert a watermark into the least significant bits of pixels located in the vicinity of image contours. Since it relies on modifications of the least significant bits, the watermark is easily destroyed. Further, their method is restricted to images, in that it seeks to insert the watermark into image regions that lie on the edge of contours.

Bender at al [BGM95] describe two watermarking schemes. The first is a statistical method called "Patchwork" that somewhat resembles the statistical component of our proposal. Patchwork randomly chooses n pairs of image points, (a_i, b_i) , and increases the brightness at a_i by one unit while correspondingly decreasing the brightness of b_i . The expected value of the sum of the differences of the n pairs of points is then claimed to be 2n, provided certain statistical properties of the image are true. In particular, it is assumed that all brightness levels are equally likely, that is, intensities are uniformly distributed. However, in practice, this is very uncommon. Moreover, the scheme may (1) not be robust to randomly jittering the intensity levels by a single unit, and (2) be extremely sensitive to geometric affine transformations.

The second method is called "texture block coding", wherein a region of random texture pattern found in

DOCKE.

DOCKET

Explore Litigation Insights

Docket Alarm provides insights to develop a more informed litigation strategy and the peace of mind of knowing you're on top of things.

Real-Time Litigation Alerts

Keep your litigation team up-to-date with **real-time** alerts and advanced team management tools built for the enterprise, all while greatly reducing PACER spend.

Our comprehensive service means we can handle Federal, State, and Administrative courts across the country.

Advanced Docket Research

With over 230 million records, Docket Alarm's cloud-native docket research platform finds what other services can't. Coverage includes Federal, State, plus PTAB, TTAB, ITC and NLRB decisions, all in one place.

Identify arguments that have been successful in the past with full text, pinpoint searching. Link to case law cited within any court document via Fastcase.

Analytics At Your Fingertips

Learn what happened the last time a particular judge, opposing counsel or company faced cases similar to yours.

Advanced out-of-the-box PTAB and TTAB analytics are always at your fingertips.

API

Docket Alarm offers a powerful API (application programming interface) to developers that want to integrate case filings into their apps.

LAW FIRMS

Build custom dashboards for your attorneys and clients with live data direct from the court.

Automate many repetitive legal tasks like conflict checks, document management, and marketing.

FINANCIAL INSTITUTIONS

Litigation and bankruptcy checks for companies and debtors.

E-DISCOVERY AND LEGAL VENDORS

Sync your system to PACER to automate legal marketing.

