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The aims of this chapter are to explain the meaning and benefits of digital signal
processing (DSP), to introduce basic DSP operations on which much of DSP is
founded, and to make the reader aware of the wide range of application areas for
DSP. Specific real-world application examples are presented, drawn from areas with
which most readers can relate.

1.1 Digital signal processing and its benefits

By a signal we mean any variable that carries or contains some kind of information
that can, for example, be conveyed, displayed or manipulated. Examples of the types
of signals of particular interest are

16
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2 Chapter 1 ff Introduction

speech, which we encounter for example in telephony, radio and everydaylife,

biomedical signals, such as the electroencephalogram (brain signals),

sound and music, such as reproduced by the compactdisc player,

video and image, which most people watch on the television, and

radar signals, which are used to determine the range and bearing of distant
targets.

Digital signal processing is concerned with the digital representation of signals and
the use of digital processors to analyze, modify, or extract information from signals.
Mostsignals in nature are analog in form, often meaning that they vary continuously
with time, and represent the variations of physical quantities such as sound waves.
The signals used in most popular forms of DSP are derived from analog signals which
have been sampled at regular intervals and converted into a digital form.

The specific reason for processing a digital signal may be, for example, to remove
interference or noise from the signal, to obtain the spectrum of the data, or to trans-
form the signal into a more suitable form. DSP is now used in many areas where
analog methods were previously used and in entirely new applications which were
difficult or impossible with analog methods. The attraction of DSP comes from key
advantages such as the following.

@ Guaranteed accuracy. Accuracy is only determined by the numberofbits used.

m Perfect reproducibility. Identical performance from unit to unit is obtained since
there are no variations due to component tolerances. For example, using DSP
techniques, a digital recording can be copied or reproduced several times over
without any degradation in the signal quality.

m No drift in performance with temperature orage.

m Advantage is always taken of the tremendous advances in semiconductor
technology to achieve greater reliability, smaller size, lower cost, low power
consumption, and higher speed.

@ Greaterflexibility. DSP systems can be programmed and reprogrammed to
perform a variety of functions, without modifying the hardware. This is perhaps
one of the most important features of DSP.

@ Superior performance. DSP can be used to perform functions not possible with
analog signal processing. For example, linear phase response can be achieved,
and complex adaptive filtering algorithms can be implemented using DSP
techniques.

a In some cases information may already be in a digital form and DSP offers the
only viable option.

DSPis not without disadvantages. However, the significance of these disadvant-
ages is being continually diminished by new technology.

17
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1.2 Application areas 3
__

1.2

mg Speed and cost. DSP designs can be expensive, especially when large bandwidth
signals are involved. At the present, fast ADCs/DACs (analog-to-digital
converters/digital-to-analog converters) either are too expensive or do not have
sufficient resolution for wide bandwidth DSP applications. Currently, only
specialized ICs can be used to process signals in the megahertz range and these
are quite expensive. Furthermore, most DSP devicesarestill not fast enough and
can only process signals of moderate bandwidths. Bandwidths in the 100 MHz
range are still processed only by analog methods. Nevertheless, DSP devices are
becoming faster and faster.

mw Design time. Unless you are knowledgeable in DSP techniques and have the
necessary resources (software packages and so on), DSP designs can be time
consuming and in some cases almost impossible. The acute shortage of suitable
engineers in this area is widely recognized. However, the situation is changing
as many new graduates now possess some knowledge ofdigital techniques and
commercial companies are beginning to exploit the advantages of DSP in their
products.

gw Finite wordlength problems. In real-time situations, economic considerations
often mean that DSP algorithms are implemented using only a limited number of
bits. In some DSP systems, if an insufficient numberofbits is used to represent
variables serious degradation in system performance may result.

Application areas

DSPis one of the fastest growing fields in modern electronics, being used in any area
where information is handled in a digital form or controlled by a digital processor.
Application areas include the following:

m Image processing

— pattern recognition
— robotic vision

— image enhancement
— facsimile

— satellite weather map
— animation

m Instrumentation/control

— spectrum analysis
— position and rate control
— noise reduction

— data compression

18



19

4 Chapter 1 ff Introduction 

gm Speech/audio

— speech recognition
— speech synthesis
— text to speech
— digital audio
— equalization

g Military

secure communication

— radar processing
sonar processing

— missile guidance

g Telecommunications

— echo cancellation

— adaptive equalization
— ADPCM transcoders

— spread spectrum
— video conferencing
— data communication

m@ Biomedical

patient monitoring
scanners

— EEG brain mappers
— ECG analysis

X-ray storage/enhancement

m= Consumerapplications

— digital, cellular mobile phones
— universal mobile telecommunication system
— digital television
— digital cameras
— Internet phones, music and video
— digital answer machines, fax and modems
— voice mail systems

— interactive entertainment systems

— active suspension in cars

A lookat the list, which is by no means complete, will confirm the importance of DSP.
A testimony to the recognition of the importance of DSPis the continual introduction
of powerful DSP devices by semiconductor manufacturers. However, there are insuf-
ficient engineers with adequate knowledge in this area. An objective of this bookis to
provide an understanding of DSP techniques and their implementation, to enable the
reader to gain a working knowledge of this important subject.
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1.3 Key DSP operations

Several DSP algorithms exist and many more are being invented or discovered.
However, all these algorithms, including the most complex, require similar basic
operations. It is instructive to examine some of these operations at the outset so as to
appreciate the implementational simplicity of DSP. The basic DSP operations are
convolution, correlation, filtering, transformations, and modulation. Table 1.1 sum-
marizes these operations and a brief description of each is given below. An important
point to note in the table is that all the basic DSP operations require only simple
arithmetic operations of multiply, add/subtract, and shifts to carry out. Notice also
the similarity between most of the operations.

1.3.1. Convolution

Convolution is one of the most frequently used operations in DSP. For example,it is
the basic operationin digital filtering. Given twofinite and causal sequences, x(n) and
h(n), of lengths NV, and N,, respectively, their convolution is defined as

y(n) = h(n) ® x(n) = a h(k)x(n—ky= >. h(k)x(a—k),
ka—oo k=0

n=0,1,..., 04-1)

where the symbol @ is used to denote convolution and M = N, + N, — 1. As weshall
see in later chapters, DSP device manufacturers have developed signal processors
that perform efficiently the multiply—accumulate operations involved in convolution.
An example of the linear convolution of the two sequences depicted in Figures 1.1(a)
and 1.1(b) is given in Figure 1.1(c). In this example, (7), n=0, 1, 2,..., can be
viewed as the impulse response of a digital system, and y(m) the system's response
to the input sequence, x(m). The numerical values for the convolution, that is y(n),
were obtained by direct evaluation of Equation 1.1. For example, y(1) is obtained
as follows:

y(1) = ACO)x(1) + ACL) x(0) + A(2)x(-1) +... + ACL2)x(-11)

=0x1+(-0.02)*14+0*0+...+00

= —0.02

The significance of convolution is more apparent whenit is observed in the frequency
domain, and use is made ofthe fact that convolution in the time domain is equivalent
to multiplication in the frequency domain. A more detailed discussion of convolution
including its properties and graphical interpretation is given in Chapter5.
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Table 1.1. Summary of key DSP operations. 

(1) Convolution. Given twofinite length sequences, x(k) and A(k), of lengths N, and N,,
respectively, their linear convolution is

= M=l

y(n) = h(n) @ x(n) = > h(kjx(n—k)= » Af(k)x(n-—kK),n=0,1,...,i4-1
k==00 k=0

(23

where M=N,+N,- L.

(2) Correlation.
(a) Given two N-length sequences, x(k) and y(k), with zero means, an estimate of their

cross-correlation is given by

fy (nt)tn"_n =0, 41, 42... (1.2)
[r,.(0)s,,(O)]""

Pry (0) =

wherer,,(m) is an estimate ofthe cross-covariance and defined as
N=n=1

— x(kKy(k +n) n=0,1,2,...wy
Kyl) =

| - k) 0, -1, -2—>»x(k —nv)y( n= 0, -1, -2,...
N k=0

| N-l l N=!
re(0) = — SLOOP, 4.0) = => DOP

(b) An estimate of the autocorrelation, p,,(m), of an N-length sequence, x(k), with zero
mean is given by

eeeeee (1.3)
Fy(O)

where r,,(71) is an estimate of the autocovariance and defined as
N-n-1

r,,(1) = a S$) x(k)x(k +n) n=O, 1,2,...k=0

(3) Filtering. The equation for finite impulse response (FIR) filtering is
N-1

y(n) = Yhkx(n =k) (1.4)
k=0

where x(k) and y(k) are the input and output of the filter, respectively, and /1(4),
k=0,1,...,NM-— 1, are the filter coefficients.

(4) Discrete transform.

W-1

X(n) = Sew, where W = exp(—j27/N) (1.5)&=0
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A(n)

 
 

—0.02 -0.02
(a)

x(n)

(b)

8

(c)

 
Figure 1.1 An example of the convolution of two sequences. y(m)is the convolution of h(n)

and x(n). If h(m) is considered the impulse response of a system, then y(7) is the
system's output in response to the input x(m). The values of y(n) above were
obtained directly from Equation |.1.

1.3.2 Correlation

There are two forms of correlations: auto- and cross-correlations.

(1) The cross-correlation function (CCF) is a measure of the similarities or shared

properties between twosignals. Applications of CCFs include cross-spectral
analysis, detection/recovery of signals buried in noise, for example the
detection of radar return signals, pattern matching, and delay measurements.
CCFis defined in Equation 1.2 in Table 1.1.
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Figure 1.2. Autocorrelations of(a) a periodic signal, (b) noise and (c) periodic signal plus noise. Note that in (c) the
periodic nature of the signal buried in noiseisstill evident, illustrating why autocorrelation is used in
detecting hi dden periodicity.

(2) The autocorrelation function (ACF)involves only one signal and provides
information about the structure of the signal or its behaviour in the time
domain.It is a special form of CCF andis used in similar applications. It is
particularly useful in identifying hidden periodicities. The ACFis defined in
Equation 1.3 in Table 1.1.
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Figure 1.3 Cross-correlation of a random signal, x(f), and a delayed noisy version of the same signal, y(r). The
delay betweenthe two signals is the time from the origin to the time where the peak occurred in their
cross-correlation in (c).

Examples of CCF and ACFfor certain signals are given in Figures 1.2 and 1.3.
Notice, for example, that the ACF of the noise-corrupted signal showsclearly that
there is a periodic signal buried in noise (Figure 1.2). Figure 1.3 illustrates how to
measure delays. The amountof delay introduced by the system is clearly evident from
the CCF and can be measured from the timeorigin to the large peak.

1.3.3 Digital filtering
Digital filtering is one of the most important operations in DSP as will becomeclearin
subsequent chapters. The digital filtering operation for an important class of filters is
defined as
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x(n—(N=-1))

 h(N = 1)

y(n) =e h(a — k)=)

(a)

Unfiltered EOG Filtered EOG

x10! x10!
 TUTTEMTPTIITy Terry erry eye pe

= met — ~ ee oe —

  
| SEOeil
—2
3
—4
-5
-6

0 1 2 3 4 5 6 7 8 8

Time(s) Time (s)

(b)

Amplitude(uV) Amplitude(uv) 
Figure 1.4 (a) Block diagram representation ofthe transversalfilter. h(k),k=0,1,....

N-—1, are the filter coefficients, and each box containing z' represents a delay
of one sampling period. (b) Digital lowpassfiltering of a biomedical signal to
remove noise.

N=-|

yin)= ¥ h(k)x(n-k)
k=0

where hi(k), K=0, 1,..., N—1, are the coefficients of the filter, and x(n) and y(n),
respectively, the input and output of the filter. For a given filter, the values of its
coefficients are unique to it and determinethe filter’s characteristics.

Wenotethatfiltering is in fact the convolution of the signal and the filter’s impulse
response in the time domain, that is h(k). Figure 1.4(a) shows a block diagram
representation of the filter defined above. In this form,the filter is popularly known as
the transversal filter. In the figure, z' represents a delay of one sample time.

A commonfiltering objective is to remove or reduce noise from a wanted signal.
For example, Figure 1.4(b) showsthe effects of digital lowpassfiltering of a certain
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1.3.4

13.5

biomedical signal to remove high frequency distortion. The use of a digital filter in
this application was especially important to minimize the distortion of the in-band
signal components.

Discrete transformation

Discrete transforms allow the representation ofdiscrete-time signals in the frequency
domain or the conversion between time and frequency domain representations. The
spectrum of a signal is obtained by decomposing it into its constituent frequency
components using a discrete transform. A knowledgeof such a spectrum is invaluable
in, for example, determining the bandwidth required to transmit the signal. Conver-
sion between time and frequency domainsis necessary in many DSP applications. For
example, it allows for a more efficient implementation of DSP algorithms, such as
those for digital filtering, convolution and correlation.

Many discrete transformations exist, but the discrete Fourier transform (DFT)is
the most widely used and is defined as

N=1

X(k)= 2, x(n)W"*, where W = e?*/"
n=O

An example of the use of the DFT is given in Figure 1.5. Here, the impulse response
of a filter, h(n), 1=0, 1,..., N—1, 1s transformed to give the frequency response
of the filter using the DFT. Details of the DFT and its applications are given in
Chapters 3, 4 and 11.

Modulation

Digital signals are rarely transmitted over long distances or stored in large quantities
in their raw form. The signals are normally modulated to match their frequency
characteristics to those of the transmission and/or storage media to minimize signal
distortion, to utilize the available bandwidth efficiently, or to ensure that the signals
have some desirable properties. Perhaps the two application areas where modulation
is extensively employed are telecommunications and digital audio engineering.

The process of modulation often involves varying a property of a high frequency
signal, known as the carrier, in sympathy with the signal we wish to transmit or
store, called the modulating signal. The three most commonly used digital modula-
tion schemes for transmitting digital data over a bandpass channel (for example a
microwave link) are amplitude shift keying (ASK), phase shift keying (PSK), and
frequency shift keying (FSK). When digital data is transmitted over an all-digital
network, a scheme known as pulse code modulation (PCM) is commonly used (see,
for example, Bellamy, 1982). Several other modulation schemes have been developed
for digital audio, details of which can be found in Watkinson (1987).
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The nature of the correlation processis first described in this chapter followed by an
explanation using worked examples of the calculation of cross- and autocorrelations.
The attenuating effects of correlation on the noise contentof signals is described, as
are a numberof applications of correlation. The technique offast correlation utilizing —
the FFT is then explained. The topic of convolution is covered in a similar mannerto.
correlation. The treatment includes circular and linear convolution, fast linear con
volution, and the sectioning methods (overlap—add, overlap—save) needed to handle
large amounts of input data. Deconvolutionis also included. The relationship between
correlation and convolution is established. The chapter finishes with a section on
implementation and some worked application examples.

Introduction

It is frequently necessary to be able to quantify the degree of interdependence of
one process upon another, or to establish the similarity between one set of data and
another. In other words, the correlation between the processes or data is sought
Correlation can be defined mathematically and can be quantified. The process of
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s.r—-'59g[wmnn9w
correlation occupies a significant place in signal processing. Applications are found in
image processing for robotic vision or remote sensing by satellite in which data from
different images is compared, in radar and sonar systems for range and position
finding in which transmitted and reflected waveforms are compared, in the detection
and identification of signals in noise, in control engineering for observing the effect of
inputs on outputs, in the identification of binary codewords in pulse code modulation
systems using correlation detectors, as an integral part of the ordinary least squares
estimation technique, in the computation of the average power in waveforms, and in
many other fields, such as, for example, climatology. Correlation is also an integral
part of the process of convolution. The convolution processis essentially the correla-
tion of two data sequences in which one ofthe sequences has been reversed. This
means that the same algorithms may be used to compute correlations and convolu-
tions simply by reversing one of the sequences. The process of convolution gives the
output from a system whichfilters the input. The spectrum of a recorded signal con-
sists of the convolution of the spectrum of the signal with the spectrum of its window
function.

The determination of an unknown system impulse response is known as system
identification. The determination of an unknown input from the system impulse
response and the output signal is known as deconvolution. When the impulse response
is unknown, the determination of the unknown input signal is known as blind
deconvolution. Each of these important topics is described.

Correlation description

Consider how two data sequences, each consisting of simultaneously sampled values
taken from the two corresponding waveforms, might be compared. If the two
waveformsvaried similarly point for point, then a measure of their correlation might
be obtained by taking the sum of the products of the corresponding pairs of points.
This proposal becomes more convincing when the case of two independent and
random data sequences is considered. In this case the sum of the products will tend
towards a vanishingly small random number as the number of pairs of points is
increased. This is because all numbers, positive and negative, are equally likely to
occur so that the product pairs tend to be self-cancelling on summation. By contrast,
the existence of a finite sum will indicate a degree of correlation. A negative sum
will indicate negative correlation, that is an increase in one variable is associated
with a decrease in the other variable. The cross-correlation r,,(m) between two data
sequences x,(7) and x,(7) each containing N data might therefore be written as

N-1

a¥x(n)x(n)
n=l)

This definition of cross-correlation, however, produces a result which depends on the
numberof sampling points taken. This is corrected for by normalizing the result to the
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numberof points by dividing by N. Alternatively this may be regarded asaver,,;
the sum of products. Thus, an improved definition is Sing:

N-1

iN= x,(n)x2(N)n=0

Example 5.1 The calculation of r,> is illustrated in the following example, in whichthe Poing
numbersin the data sequencesare the n, and the sequencesare x, and x. ’

n 1 2 3 4 3 6 7 8

x, 4 2 =1 3 —2 +6 +5 4. 5
x% 4 1 3 «7 4 2 -§ 2 1

r= SAK —44 2x 14-1 X343K 74-24 4-6 X 24-5 x8 +
4x-2+5-x 1)

=5
 

However,this definition needs modification to be useful. In some cases it may indicate |
zero correlation although the two waveformsare 100% correlated. This may occur,fo
example, when the two waveformsare out of phase, which will often be the case. The
situation is illustrated by the waveforms of Figure 5.1. From this figure it is seen that
each pair productin the correlation is zero, and hence the correlation is zero, because
one of either x, or x, is always zero. However, the waveformsare clearly highly
correlated, although they are out of phase. The phase difference could, for example,
occur because x, is the reference signal while x, is the delayed output from a circuit,
To overcome such phase differences it is necessary to shift, or lag, one of the
waveforms with respect to the other. Typically x, is shifted to the left to align the

x, (71)

X2(7)

fl

Figure 5.1 Out-of-phase 100% correlated waveforms with zero correlation at lag zero-
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5OTT
Xy,=n+) X= Hn

 
<—___j ——_> un

Figure 5.2 Waveform x, =x, +/ shifted j lags to the left of waveform x,.

waveforms prior to correlation. As illustrated in Figure 5.2 this is equivalent to
changing x,() to x,(n +), where j represents the amountof lag whichis the number
of sampling points by which x, has been shifted to the left. An alternative, but
equivalent, procedureis to shift x, to the right. The formula for the cross-correlation
thus becomes

l N-I
ri) =—¥ a)x(n + J)

N n=O

1 N-1
=r,(-/)= —¥ xu(n)x,(n -j) (5.1)

n=0

In practice when two waveformsare correlated their phase relationship will probably
not be knownandsothe correlation will be computed for a numberofdifferent lags in
order to establish the largest value of the correlation which is then taken to be the
correct value.

Consider the cross-correlation of the above two sequences x,(m) and x,(n) at a lag of
j = 3, that is considerr,,(3). The two sequences become

n 1 ie 3 4 5 6 y 8 9

Xj 4 2 —|l 3 —? —6 —5 4 5

xy 7 4 —? —8 —2 -1

so

nG)= AXT42x4 4-1 *2+3x-8+-2x-2+-6x-l)
= 2.667
 

Of course, it is also possible to consider correlation in the continuous time domain,
and someanalogsignal correlation is implemented this way. In the continuous domain
n—tandj—- tand
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I Tf2rat) = lim = | x,(t)xo(t + T) dt sa)|
-T/2 7

However,if x,(t) and x,(t) are periodic with period 7, Equation 5.2 simplifies tg

T/2

F(T) = ;| XC)x(t + t) dt (53)
OJ -H/2

If the waveforms are finite energy waveforms, for example nonperiodic pulse. a
waveforms, then the average evaluated over time T as T > © is not taken because thenq
1/T — 0 and r,,(T)is always vanishingly small. For this case Equation 5.4 is useq;,i
principle:

rit) = | x,()x,(t + T) dt A)
In practice, a finite record length will be processed and so Equation 5.5 or 5.1 will he
applied: |

1 rFi(T) = +| X\(t)x,(t + T) dt (5.5)T hs )

There is another difficulty associated with cross-correlating finite lengths of data,
can be seen in the above example in which r,,(3) = 2.667 was determined. Asx, i
shifted to the left the waveforms no longer overlap and data at the ends of
sequences no longer form pair products. This is known as the end effect. In the
example the numberofpairs has dropped from nineto six for a lag of three. Theresult
is a linear decreasein r,,(j) as j increases, leading to debatable values of r,(j). O
possible solution is to make one of the sequences twiceas long asthe required le
for correlation. This could be achieved by recording more data, or, if one of
sequences were periodic, by repeating the sequence (taking care to match the two
ends). Another possibility is to add a correction to all computed values. Figure 53J
shows how r,,(j) decreases with j purely as a result of the end effect, that is actual

variations in r,5(/) are not included. At j = 0, rj.(j/) =17,2(0), which can be computed
Atj=N, r}(N) = 0, because the waveformsnolongeroverlap. In between,at some !8j, the true value of rjo(j) is 7120 J ne While the actual value caused by the end effects
rjo(j). Then, from the figure

N2WDune — 2) 7 r(0)
J N

whence

rote = Pix) + <r) (5.6)
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ai ryJNiciMig

r(0)

 
0 J J

Figure 5.3. The effect of the end-effect on the cross-correlation r;,(/).

Computed values of the cross-correlation are therefore easily corrected for end effects
by adding jr,,(0)/N to the values ofr,,(/).

The cross-correlation values computed according to the above formulae depend on
the absolute values of the data. It is often necessary to measure cross-correlations
according to the fixed scale between —1 and +1. This can be achieved by normalizing
the values by an amount depending on the energy content of the data. For example,
consider the two pairs of waveforms x,(n), x,(1), and x,(1), x,(n). The data values are
given in the table below:

n 0 1 2 3 4 5 6 7 8

x(n) 0|3 5 5 5 2 G5 Og 6
x(n) 11 I I 1 oO 0 0 0
x(n) 0 9 1 15 #1 6 415 075 0
x(n) 2 2 2 2 2 oO oO 0 0

As may be seen from Figure 5.4, waveforms x,(m) and x,(7) are alike, differing only in
magnitude. The sameis true of the pair x,(m) and x,(n). The correlation between x,(n)
and x,(1) is therefore the same as that between x,(n) and x,(n). However, the cross-
correlations r,,(1) and r;,(1) are 1.47 and 8.83 respectively. They are different because
they depend on the absolute values of the data. This situation can be rectified by
normalizing the cross-correlation r,,() by the factor

| j &o 1 s2 V2 1x2 n-l 1/2E >» xin) x W 200] = a3sion & 300) (5.7)n=0 a=0 n=0 n=O

 
and similarly for r,,(j). The normalized expression for r,.(j) then becomes

Pali) = ral)
n-1 N-1 V2

} +5 x(n) > “2)n=)

(5.8)

P).(/) is knownas the cross-correlation coefficient. Its value always lies between —1
and +1. +1 means 100% correlation in the same sense, —! means 100% correlation in
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x,(11) x(n)

n nH

Figure 5.4 Pairs of waveforms {x,(), x,(n)}, {xs(m), x,()} of different magnitudes but
equal cross-correlations.

the opposing sense, for example signals in antiphase. A value of 0 signifies
correlation. This means the signals are completely independent. This would be
case, for example, if one of the waveforms were completely random. Small values f
P;.(j) indicate very low correlation. The normalizing factor for r)(j) in the above
illustration is  1 fea N-1 1/2 17» x7(n) 20) = gol 6)? = 2.56n=0 n=O

and for r4(j) it is

17x N-I 1/2 1
—|¥ x3(n) ¥ xhn)| = —(794.8 x 24)? = 15.35
N n=O n=O 9

Therefore

ro(l) 1.47
1 =oe yayPu)=755=2.56

and

ru(l) 8.831) = 2+ = —— = 0558Pas)=Te 34~15.35

Now p,(1) = py,(1) which demonstrates that this normalization process indeed allo
a comparisonof cross-correlations independently of the absolute data values.

33



34

 
 

3.2.1

5.2 Correlation description 249

 
Figure 5.5 Autocorrelation function of a random waveform.

A special case occurs when x,(7) = x(n). The waveform is then cross-correlated
with itself. This process is known as autocorrelation. The autocorrelation of a
waveform is given by

N-1
4 | ;

r(j)= 2, X\(1)x\(1 + J)n=O

The autocorrelation function has one very useful property in that

1 N-=1 s
(0) = = Dy x1) = §n=0

where S§ is the normalized energy of the waveform. This provides a method for
calculating the energy of a signal. If the waveform is completely random, for example
corresponding to that of white, gaussian noise in an electrical system, then the
autocorrelation will have its peak value at zero lag and will reduce to a random
fluctuation of small magnitude about zero for lags greater than about unity (see
Figure 5.5). This constitutes a test for random waveforms. This topic will be more
fully covered in Section 5.2.1. It is also true that

r,(O) = ri(y)

Cross- and autocorrelation

Care has to be exercised when cross-correlating two unequal length sequences when
they are periodic. This is because the result of the correlation will be cyclic with the
period of the shorter sequence. This result does not represent the full periodicity of the
longer sequence and is, therefore, incorrect. This may be demonstrated by cross-
correlating the sequences a = {4, 3, 1, 6} and b = {5, 2, 3} to obtain r,,(j). The
sequence b is placed below sequence a, and b is shifted left by one lag on each ofthe
subsequent rows, with the value of the cross-correlation appearing in the final column
on the right.
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Sequence Lag rani} )
4 3 1 6

3 5 2 5 0 47

5 2 3 5 1 59

2 a 5 2 a 34

3 5 2 3 a 47 r(J) repeats
a 2 3 5 4 59

etc.

The result showsthat r,,(j) is cyclic, repeating every third lag, that is r,,(j) has the
same period as that of the shorter sequence, b, This procedure is known as cygj4
correlation. To obtain the correct value in which each valuein a is multiplied by egg,
value in 5, all the elements in b have to be shifted in turn below each valuein g ag
shown below:

This is seen to require 6 lags before the b sequence repeats. The sequencelengthsare
4 and 3 and the numberoflags necessary is 4+ 3 — 1 =6. This reveals the general rule
for obtaining the linear cross-correlation of two periodic sequences of lengthsN,
and N,: add augmenting zeros to each sequence to makethe lengths of each sequence
N, + N,— 1. This may be expressed as adding N,— 1 zeros to the sequence oflength
N, and adding N,— 1 zeros to the sequence of length N,. This is now demonstrated for
the given sequences a and b:

Sequence Lag rail)
4 3 l 6 0 0

5 2 3 0 0 0 0 29

2 3 0 0 0 5 1 17

3 0 0 0 5 2 2 13

0 0 0 5 2 3 3 30

0 0 5 2 3 0 4 17

0 5 2 3 0 0 5 35

5 2 3 0 0 0 6 29° r(7) repeats
etc.

Thus, the required linear cross-correlation of a andbis

Fffer {29, 17,124,430, 17,35}
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Example 5.3

So far, the instances of cross-correlation taken have all assumed digitized data, but
cross-correlation may also be performed analytically when analytical expressions
can be written for the waveforms, including when this requires sectioning of the
waveforms.In practice the analytical procedure hasits equivalent in the use of analog
circuits to effect the cross-correlation. An example of analytical cross-correlation
follows.

Obtain the cross-correlation r,.(-T) between the waveforms v,(f) and v.(t) of
Figure 5.6.

It is easy to express the waveforms analytically by dividing them intostraight-line
sections. It is only necessary to do this over one period, 7, of the waveforms because
r,(—T) will be periodic in t with period 7. Therefore, for 0 < t = T, v,(t)=t/T, and for
0<ts 7/2, v(t) = 1.0, while for 7/2 = t = T, v(t) =—1.0. The requirementis to
obtain an expressionfor r,,(—T), that is v,(f), the rectangular waveform,is to be shifted
right with respect to v,(t). For 0 = tS 7/2,the situation is described by Figure 5.7

 
Figure 5.7 Sections of v,(f) for @S TS T.
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Figure 5.8 Sections ofv,(t) for 7/2 = tS T.  which showsthat v,(t) has to be multiplied by three consecutive sectionsof v,(#) jn
which v(t) has the consecutive values —1, 1,—1. For 7/2 < t < T, Figure 5.8 applies
in which the consecutive values of the set of v(t) have changed to 1, —1, +1. This
means there are two parts to the solution which must match at t= T/2.

Referring to Figure 5.7, the cross-correlation is split into the three sections with
boundaries at f= Tt, t= 1+ 7/2, and t=T. Hence

1 {7rio(-T) = | v\(t)v(t — T) di0

t t+7/2 T

2t|\feneet| +eet) tena
0 r Tr t Tr r t+P/2 r

~feT .ifeT’ if"“H+T HEPlt” Flake” FL B hes

 

For 7/2 = t ST, and referring to Figure 5.8, it is seen that

t-T/2 i: T

rp(-T) = | fa@art—| ~1dt +| ay atrT 0 r r tT/2 r Z T Zz

Py(-T) =
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Fio{-T)

+0.25

—0.25
 

Figure 5.9 r,,(—t) as a function ofT.

Substituting t= 7/2 into Equations 5.9 and 5.10 gives r,,(—t) = 1/4 in both cases,
confirming that the two functions match correctly. Figure 5.9 showsa plot of r,.(—T)
versus TforO = T= T.
 

It is of interest to give some consideration to the consequences ofusing finite
lengths of data in the calculation of the correlation. In other words, what is the effect
of using Equation 5.5, in which T is finite, instead of Equation 5.2?

This question can be answered by considering just one sinusoidal Fourier harmonic
componentofthe signal. Equation 5.2 will give the correct autocorrelation, in which
T > T,, where T, is the period of the sinusoid. Thus

‘
1 : :

r(t)= lim— Asin (@nA sin (@t+ T) dt
T—e0 oT a

2

(5.11)T== lim x cos(@T) — SD) (@T)
2 20T

Inspection of this equation shows that the second term in the bracket — 0 when T >
ee, so when T # © it represents an error. The cos (@T) term represents periodic error
effects, while the term 1/2@T gives the trend in the error. Thus, as far as the
correlation length, T, is concerned, the errors are greater the shorter the sequence, and
are also largest for the lower frequency components of the waveform. The errors are
also periodic inT.

The cos (@T) term gives least errors when @T = [(2n + 1)/2]z. Since w= 2n/T,
and large values of T are sought, this corresponds to

7

T= (2n+ oT (5.12)

The sin (@T) term is least when @T = mz, where m is integer. Hence,
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= FHL
= 3? (5.13

It is now necessary to make some reasonable assumptions. Assume the Condition
largeTis satisfied by n = 10. Then T > nT,/2, or ‘i

Pi? 3r, (3.14)
From Equation 5.13, the largest allowable value of t for the lowest frequen,ey
component (7m= 1) satisfies

PB

Combining Equations 5.14 and 5.15,

f= T/5

This means that when correlating waveformsthe errors due to finite data lengths may.
be minimized by

(1) ensuring that T > ST,, where T, corresponds to the lowest frequency
componentof interest, and

(2) overlapping the data by no more than 20%oftheir length.

Thus, for example, if telephone speech signals with a bandwidth of 300 Hzto 3.4 kHz
and sampled at 40 kHz are to be correlated, T, = 1/300 = 3.3 x 10~s. The least
acceptable data length would be 5 x 3.3 x 10° s = 16.7 ms andthelargestcorrelation
shift would be 3.33 ms, or 133 data points.

Figure 5.10 shows the plot of p,,(j), the autocorrelation coefficient of a purely
random waveform, for example white noise. The expected value of 7,,(j) can be

rij)

-1/N+2ANN
0

-1/N}-

-1/N-2/NN

  
Figure 5.10 The autocorrelation coefficient of a random waveform.
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ervow
shownto be E[r,,(j)] = —1/N (Chatfield, 1980), where N is the numberofdata points,
and its variance is var[r,,(j)] = 1/N. The expected value of —1/N is shown on the
figure as are the 95% confidence limits of —1/N, which are +2/N'*. Values of r,,(/)
which fall outside these confidence limits may be significant, that is they may indicate
that the waveform wasnottruly random. However,it should be noted that as many as
one point in 20 may lie outside these limits even when the waveform is completely
random. For a random waveform r,,(j) should fall to within the 95% confidence
limits within one or two lags. Experience and more sophistication is required to be
sure that a waveform is random. For example, data pre-whitening may be advisable
(Jenkins and Watts, 1968).

The autocorrelation function of a periodic waveformis itself a periodic waveform.
This is easily proved as follows. The periodic waveform x(t) of period T satisfies

x(t) = x(t + nT)

50,

.riy(t) = him t]xox + T) dt
\ T/2= lim +| x(Hx(t+ T+ nT) dti =T/2

ry(t) =r,,(t+ nT) (5.16)

Thus r,,(7) is seen to be periodic in tT with period T. This is a useful property because
it enables the detection of periodic signals in noise for small signal-to-noise ratios.
Autocorrelating the waveform tends to reduce the noise while at the same time
developing the periodic autocorrelation function of the signal. Once detected, further
processing can be applied to determineits shapeif this is required.

Equation 5.11 showed that the autocorrelation function of A sin(@f) is
(A*/2) cos (wT). In this case, as in others, the amplitude of the autocorrelation
function is related simply to that of the signal, and may be used to estimate the signal
amplitude. Another commonexampleis that of the rectangular wave of amplitude A
whichthe reader could show hasa triangular autocorrelation function of amplitude A’.
Finally, it should be noted that autocorrelation functions are not unique. This means
that a numberof different waveforms may share the same autocorrelation function.
Hence the shapes of waveforms should not be deduced from the detected auto-
correlation functions.

Consider now the case in which the waveform, v(/), is partially random. This
represents the case of a noisy signal which may be written as the sum of a signal term,
s(t), and a noise term, g(t). Thus

u(t) = s(t) + g(t) (5.17)

 

 



41

ae

256 Chapter 5 & Correlation and convolution
eeEEee

s(t) and g(t) are assumed to be uncorrelated. The sampled autocorrelation function
v(t) is r,,(j) given by of

1 N-1

rad) = Fy Dy lst) + atoisen +f) +400 +3) on
5 1 82 jaa

= we s(n)s(n +j) + a Lsindatn +j)+ Fae +j)
1 N-1

tyLanden +i) 6.19
=r(j) + Els(nq(n + f)] + Elq(n)s(n + j)] + Elg(nq(n + J)I

=r(j) + Els(n)JElq(n + f)] + Elg(n)lEls( + j)] + Elg()Elq(n + j)]

= rf) + SC q(n) + qn)s(n) + G(r)”

= rj) + 259 + GF (5.20)

Now, g >0for large N, for which

FJ) > T(J) (5.21)

For smaller N, the cross-correlation terms in Equation 5.19 and the autocorrelation of
the noise tend towards zero with increasing lag j.

Thus it is seen that the autocorrelation function of a partially random, ornoisy,
waveform consists of the autocorrelation function of the signal component superim-
posed on a noisy decaying function which depends on both the random andsignal
components and which decays towards the value 25q + g°. Thus the plot ofr,,(j)
against j will display the periodicity of s(t) provided |r,(j)| > |(25q + q)|:see
Figure 5.11. This offers a method for identifying the period of a signalin noise (see
Section 5.2.2).

Tw)

 
Figure 5.11 The autocorrelation function of a noisy signal.
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peeOOOOEE

example 5.4 Derive the cross-correlation function of two noisy waveforms.
Let the two waveforms be {s,(t) + g,(t)} and {s,(¢) + g,(f)}. Their sampled cross-

correlation, r,3(j), is given by

N-l
1 é .

rolj) =a [is(n) + qiln)} {s(n +f) + a(n +f} (5.22)n=0

j Xa

= ae [s\(n)s.(n +7) + 8\(n)qa(n + J) + qi(n)so{n + J) + aiao(n +7) ]n=0

1 N-l | N-I I N-I
= py a S1eDsaln +j)+ yea(n +j)+ Hy de Fils3( +j)n=O) n=0 n=Q

1 N-I
+—¥ qilng(n tj)

IN init

= PoelJ) + ugh T) + VastJ) + Togld) (5.23)

Asin the previous case of autocorrelation the last three terms on the right-hand side of
Equation 5.23 decay towards zero with increasing lag j. For large N, Equation 5.23
becomes

rid) = hye) + 1 + Fis + Ne (3.24)

Thus as N increases r;.(j) — r,,.(j), the cross-correlation function of the two signals.

The above analysesillustrate that the cross- and autocorrelation processes emphasize
signal properties by reducing the noise content.

be 5.2.2 Applications of correlation

5.2.2.1 Calculations of energy spectral density and energy content of waveforms

It can be shownthat

Flr] = Ge f) (5.25)

where G,( f) is the energy spectral density of the waveform,that is the energy spectral
density and the autocorrelation function constitute a Fourier transform pair.

It can further be shownthat

r,(0)=E (5.26)

where E is the total energy of the waveform.

 


