Digital Signal Processing

A Practical Approach

Second Edition

Prentice Hall

VWGoA EX1043

Digital Signal Processing A Practical Approach

 Second edition

 Second edition}

Emmanuel C. Ifeachor

University of Plymouth

Barrie W. Jervis

Sheffield Hallam Universty

Prentice
 Hall

An imprint of Pearson Education
Harlow, England London . New York . Reading, Massachusetts . San Francisco . Toronto • Don Mills, Ontario - Sydney Tokyo . Singapore . Hong Kong . Seoul . Taipei . Cape Town . Madrid - Mexico City . Amsterdam . Munich . Paris . Milan

Pearson Education Limited

Edinburgh Gate
Harlow
Essex CM20 2JE
England
and Associated Companies around the World.
Visit us on the World Wide Web at: www.pearsoneduc.com

First published under the Addison Wesley imprint 1993

Second edition 2002

(c) Pearson Education Limited 1993, 2002

The rights of Emmanuel C. Ifeachor and Barrie W. Jervis to be identified as the authors of this Work have been asserted by them in accordance with the Copyright, Designs and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without either the prior written permission of the publisher or a licence permitting restricted copying in the United Kingdom issued by the Copyright Licensing Agency Ltd, 90 Tottenham Court Road, London W1P OLP.

All trademarks used herein are the property of their respective owners.
The use of any trademark in this text does not vest in the author or publisher any trademark ownership rights in such trademarks, nor does the use of such trademarks imply any affiliation with or endorsement of this book by such owners.

ISBN 0201-59619-9
British Library Cataloguing-in-Publication Data
A catalogue record for this book can be obtained from the British Library
Library of Congress Cataloging-in-Publication Data
Ifeachor, Emmanuel C.
Digital signal processing : a practical approach / Emmanuel C. Ifeachor, Barrie W. Jervis. p. cm .

Includes bibliographical references and index.
ISBN 0-201-59619-9

1. Signal processing-Digital techniques. I. Jervis, Barrie W. II. Title.

TK5102.9.134 2001
621.382'2-dc21
$\begin{array}{llllllllll}10 & 9 & 8 & 7 & 6 & 5 & 4 & 3 & 2 & 1\end{array}$
$\begin{array}{lllll}05 & 04 & 03 & 02 & 01\end{array}$
Typeset in 10/12pt Times by 35
Printed and bound in the United States of America

Contents

Preface XV
1 Introduction 1
1.1 Digital signal processing and its benefits 1
1.2 Application areas 3
1.3 Key DSP operations 5
1.3.1 Convolution 5
1.3.2 Correlation 7
1.3.3 Digital filtering 9
1.3.4 Discrete transformation 11
1.3.5 Modulation 11
1.4 Digital signal processors 13
1.5 Overview of real-world applications of DSP 13
1.6 Audio applications of DSP 15
1.6.1 Digital audio mixing 15
1.6.2 Speech synthesis and recognition 16
1.6.3 The compact disc digital audio system 19
1.7 Telecommunication applications of DSP 23
1.7.1 Digital cellular mobile telephony 23
1.7.2 Set-top box for digital television reception 27
1.7.3 Adaptive telephone echo cancellation 28
1.8 Biomedical applications of DSP 29
1.8.1 Fetal ECG monitoring 30
1.8.2 DSP-based closed loop controlled anaesthesia 33
1.9 Summary 35
Problems 35
References 35
Bibliography 36
2 Analog I/O interface for real-time DSP systems 37
2.1 Typical real-time DSP systems 38
2.2 Analog-to-digital conversion process 39
2.3 Sampling - lowpass and bandpass signals 40
2.3.1 Sampling lowpass signals 40
2.3.2 Sampling bandpass signals 56
2.4 Uniform and non-uniform quantization and encoding 65
2.4.1 Uniform quantization and encoding (linear pulse code modulation (PCM)) 66
2.4.2 Non-uniform quantization and encoding (nonlinear PCM) 68
2.5 Oversampling in A/D conversion 71
2.5.1 Introduction 71
2.5.2 Oversampling and anti-aliasing filtering 71
2.5.3 Oversampling and ADC resolution 74
2.5.4 An application of oversampling - single-bit (oversampling) ADC 78
2.6 Digital-to-analog conversion process: signal recovery 84
2.7 The DAC 84
2.8 Anti-imaging filtering 86
2.9 Oversampling in D/A conversion 86
2.9.1 Oversampling D / A conversion in the $C D$ player 87
2.10 Constraints of real-time signal processing with analog input/output signals 90
2.11 Application examples 91
2.12 Summary 92
Problems 92
References 102
Bibliography 102
3 Discrete transforms 104
3.1 Introduction 104
3.1.1 Fourier series 106
3.1.2 The Fourier transform 109
3.2 DFT and its inverse 111
3.3 Properties of the DFT 118
3.4 Computational complexity of the DFT 120
3.5 The decimation-in-time fast Fourier transform algorithm 121
3.5.1 The butterfly 127
3.5.2 Algorithmic development 128
3.5.3 Computational advantages of the FFT 132
3.6 Inverse fast Fourier transform 132
3.7 Implementation of the FFT 133
3.7.1 The decimation-in-frequency FFT 134
3.7.2 Comparison of DIT and DIF algorithms 134
3.7.3 Modifications for increased speed 134
3.8 Other discrete transforms 135
3.8.1 Discrete cosine transform 135
3.8.2 Walsh transform 136
3.8.3 Hadamard transform 139
3.8.4 Wavelet transform 141
3.8.5 Multiresolution analysis by the wavelet method 144
3.8.6 Signal representation by singularities: the wavelet transform method 147
3.9 An application of the DCT: image compression 151
3.9.1 The Discrete Cosine transform 152
3.9.2 2D DCT coefficient quantization 153
3.9.3 Coding 153
3.10 Worked examples 154
Problems 158
References 160
Appendices 161
3A C language program for direct DFT computation 161
3B C program for radix-2 decimation-in-time FFT 167
3C DFT and FFT with MATLAB 170
References for Appendices 171
4 The z-transform and its applications in signal processing 172
4.1 Discrete-time signals and systems 173
4.2 The z-transform 174
4.3 The inverse z-transform 179
4.3.1 Power series method 179
4.3.2 Partial fraction expansion method 182
4.3.3 Residue method 188
4.3.4 Comparison of the inverse z-transform methods 194
4.4 Properties of the z-transform 194
4.5 Some applications of the z-transform in signal processing 197
4.5.1 Pole-zero description of discrete-time systems 197
4.5.2 Frequency response estimation 200
4.5.3 Geometric evaluation of frequency response 201
4.5.4 Direct computer evaluation of frequency response 204
4.5.5 Frequency response estimation via FFT 205
4.5.6 Frequency units used in discrete-time systems 205
4.5.7 Stability considerations 208
4.5.8 Difference equations 209
4.5.9 Impulse response estimation 211
4.5.10 Applications in digital filter design 213
4.5.11 Realization structures for digital filters 213
4.6 Summary 218
Problems 218
References 223
Bibliography 223
Appendices 223
4A Recursive algorithm for the inverse z-transform 223
4B C program for evaluating the inverse z-transform and for cascade-to-parallel structure conversion 225
4C C program for estimating frequency response 231
4D z-transform operations with MATLAB 233
References for Appendices 241
5 Correlation and convolution 242
5.1 Introduction 242
5.2 Correlation description 243
5.2.1 Cross- and autocorrelation 249
5.2.2 Applications of correlation 257
5.2.3 Fast correlation 267
5.3 Convolution description 273
5.3.1 Properties of convolution 282
5.3.2 Circular convolution 283
5.3.3 System identification 283
5.3.4 Deconvolution 285
5.3.5 Blind deconvolution 286
5.3.6 Fast linear convolution 288
5.3.7 Computational advantages of fast linear convolution 289
5.3.8 Convolution and correlation by sectioning 290
5.3.9 Overlap-add method 292
5.3.10 Overlap-save method 297
5.3.11 Computational advantages of fast convolution by sectioning 300
5.3.12 The relationship between convolution and correlation 301
5.4 Implementation of correlation and convolution 301
5.5 Application examples 302
5.5.1 Correlation 302
5.5.2 Convolution 307
5.6 Summary 310
Problems 311
References 315
Appendix 316
5A C language program for computing cross- and autocorrelation 316
6 A framework for digital filter design 317
6.1 Introduction to digital filters 318
6.2 Types of digital filters: FIR and IIR filters 319
6.3 Choosing between FIR and IIR filters 321
6.4 Filter design steps 324
6.4.1 Specification of the filter requirements 324
6.4.2 Coefficient calculation 327
6.4.3 Representation of a filter by a suitable structure (realization) 328
6.4.4 Analysis of finite wordlength effects 332
6.4.5 Implementation of a filter 333
6.5 Illustrative examples 334
6.6 Summary 339
Problems 339
Reference 341
Bibliography 341
7 Finite impulse response (FIR) filter design 342
7.1 Introduction 343
7.1.1 Summary of key characteristic features of FIR filters 343
7.1.2 Linear phase response and its implications 344
7.1.3 Types of linear phase FIR filters 347
7.2 FIR filter design 349
7.3 FIR filter specifications 350
7.4 FIR coefficient calculation methods 351
7.5 Window method 352
7.5.1 Some common window functions 354
7.5.2 Summary of the window method of calculating FIR filter coefficients 358
7.5.3 Advantages and disadvantages of the window method 366
7.6 The optimal method 367
7.6.1 Basic concepts 367
7.6.2 Parameters required to use the optimal program 370
7.6.3 Relationships for estimating filter length, N 371
7.6.4 Summary of procedure for calculating filter coefficients by the optimal method 372
7.6.5 Illustrative examples 373
7.7 Frequency sampling method 380
7.7.1 Nonrecursive frequency sampling filters 380
7.7.2 Recursive frequency sampling filters 389
7.7.3 Frequency sampling filters with simple coefficients 390
7.7.4 Summary of the frequency sampling method 398
7.8 Comparison of the window, optimum and frequency sampling methods 398
7.9 Special FIR filter design topics 402
7.9.1 Half-band FIR filters 402
7.9.2 Frequency transformation 404
7.9.3 Computationally efficient FIR filters 406
7.10 Realization structures for FIR filters 407
7.10.1 Transversal structure 407
7.10.2 Linear phase structure 408
7.10.3 Other structures 410
7.10.4 Choosing between structures 410
7.11 Finite wordlength effects in FIR digital filters 411
7.11.1 Coefficient quantization errors 412
7.11.2 Roundoff errors 419
7.11.3 Overflow errors 419
7.12 FIR implementation techniques 420
7.13 Design example 422
7.14 Summary 425
7.15 Application examples of FIR filters 425
Problems 426
References 435
Bibliography 436
Appendices 437
7A C programs for FIR filter design 437
7B FIR filter design with MATLAB 440
8 Design of infinite impulse response (IIR) digital filters 454
8.1 Introduction: summary of the basic features of IIR filters 455
8.2 Design stages for digital IIR filters 456
8.3 Performance specification 457
8.4 Coefficient calculation methods for IIR filters 459
8.5 Pole-zero placement method of coefficient calculation 459
8.5.1 Basic concepts and illustrative design examples 459
8.6 Impulse invariant method of coefficient calculation 463
8.6.1 Basic concepts and illustrative design examples 463
8.6.2 Summary of the impulse invariant method 466
8.6.3 Remarks on the impulse invariant method 466
8.7 Matched z-transform (MZT) method of coefficient calculation 468
8.7.1 Basic concepts and illustrative design examples 468
8.7.2 Summary of the matched z-transform method 470
8.7.3 Remarks on the matched z-transform method 471
8.8 Bilinear z-transform (BZT) method of coefficient calculation 471
8.8.1 Basic concepts and illustrative design examples 471
8.8.2 Summary of the BZT method of coefficient calculation 473
8.8.3 Comments on the bilinear transformation method 478
8.9 Use of BZT and classical analog filters to design IIR filters 482
8.9.1 Characteristic features of classical analog filters 483
8.9.2 The BZT methodology using classical analog filters 485
8.9.3 Illustrative design examples (lowpass, highpass, bandpass and bandstop filters) 491
8.10 Calculating IIR filter coefficients by mapping s-plane poles and zeros 500
8.10.1 Basic concepts 500
8.10.2 Illustrative examples 505
8.11 Using IIR filter design programs 508
8.12 Choice of coefficient calculation methods for IIR filters 509
8.12.1 Nyquist effect 510
8.13 Realization structures for IIR digital filters 517
8.13.1 Practical building blocks for IIR filters 518
8.13.2 Cascade and parallel realization structures for higher-order IIR filters 520
8.14 Finite wordlength effects in IIR filters 524
8.14.1 Coefficient quantization errors 526
8.15 Implementation of IIR filters 529
8.16 A detailed design example of an IIR digital filter 530
8.17 Summary 535
8.18 Application examples in digital audio and instrumentation 536
8.18.1 Digital audio 536
8.18.2 Digital control 536
8.18.3 Digital frequency oscillators 536
8.19 Application examples in telecommunication 538
8.19.1 Touch-tone generation and reception for digital telephones 538
8.19.2 Digital telephony: dual tone multifrequency (DTMF) detection using the Goertzel algorithm 540
8.19.3 Clock recovery for data communication 546
Problems 549
References 554
Bibliography 555
Appendices 557
8A C programs for IIR digital filter design 557
8B IIR filter design with MATLAB 562
8C Evaluation of complex square roots using real arithmetic 577
9 Multirate digital signal processing 579
9.1 Introduction 579
9.1.1 Some current uses of multirate processing in industry 580
9.2 Concepts of multirate signal processing 581
9.2.1 Sampling rate reduction: decimation by integer factors 582
9.2.2 Sampling rate increase: interpolation by integer factors 584
9.2.3 Sampling rate conversion by non-integer factors 586
9.2.4 Multistage approach to sampling rate conversion 589
9.3 Design of practical sampling rate converters 590
9.3.1 Filter specification 590
9.3.2 Filter requirements for individual stages 591
9.3.3 Determining the number of stages and decimation factors 592
9.3.4 Illustrative design examples 594
9.4 Software implementation of sampling rate converters-decimators 601
9.4.1 Program for multistage decimation 602
9.4.2 Test example for the decimation program 604
9.5 Software implementation of interpolators 606
9.5.1 Program for multistage interpolation 610
9.5.2 Test example 610
9.6 Sample rate conversion using polyphase filter structure 612
9.6.1 Polyphase implementation of interpolators 612
9.7 Application examples 617
9.7.1 High quality analog-to-digital conversion for digital audio 618
9.7.2 Efficient digital-to-analog conversion in compact hi-fi systems 618
9.7.3 Application in the acquisition of high quality data 620
9.7.4 Multirate narrowband digital filtering 626
9.7.5 High resolution narrowband spectral analysis 631
9.8 Summary 632
Problems 633
References 637
Bibliography 638
Appendices 639
9A C programs for multirate processing and systems design 639
9B Multirate digital signal processing with MATLAB 640
10 Adaptive digital filters 645
10.1 When to use adapțive filters and where they have been used 646
10.2 Concepts of adaptive filtering 647
10.2.1 Adaptive filters as a noise canceller 647
10.2.2 Other configurations of the adaptive filter 648
10.2.3 Main components of the adaptive filter 648
10.2.4 Adaptive algorithms 648
10.3 Basic Wiener filter theory 651
10.4 The basic LMS adaptive algorithm 654
10.4.1 Implementation of the basic LMS algorithm 655
10.4.2 Practical limitations of the basic LMS algorithm 658
10.4.3 Other LMS-based algorithms 661
10.5 Recursive least squares algorithm 662
10.5.1 Recursive least squares algorithm 663
10.5.2 Limitations of the recursive least squares algorithm 664
10.5.3 Factorization algorithms 665
10.6 Application example 1 - adaptive filtering of ocular artefacts from the human EEG 666
10.6.1 The physiological problem 666
10.6.2 Artefact processing algorithm 667
10.6.3 Real-time implementation 668
10.7 Application example 2 - adaptive telephone echo cancellation 668
10.8 Other applications 670
10.8.1 Loudspeaking telephones 670
10.8.2 Multipath compensation 670
10.8.3 Adaptive jammer suppression 671
10.8.4 Radar signal processing 672
10.8.5 Separation of speech signals from background noise 672
10.8.6 Fetal monitoring - cancelling of maternal ECG during labour 673
Problems 674
References 674
Bibliography 675
Appendices 676
10A C language programs for adaptive filtering 676
10B MATLAB programs for adaptive filtering 680
11 Spectrum estimation and analysis 681
11.1 Introduction 682
11.2 Principles of spectrum estimation 684
11.3 Traditional methods 687
11.3.1 Pitfalls 687
11.3.2 Windowing 690
11.3.3 The periodogram method and periodogram properties 703
11.3.4 Modified periodogram methods 704
11.3.5 The Blackman-Tukey method 705
11.3.6 The fast correlation method 706
11.3.7 Comparison of the power spectral density estimation methods 706
11.4 Modern parametric estimation methods 707
11.5 Autoregressive spectrum estimation 708
11.5.1 Autoregressive model and filter 708
11.5.2 Power spectrum density of AR series 709
11.5.3 Computation of model parameters - Yule-Walker equations 710
11.5.4 Solution of the Yule-Walker equations 713
11.5.5 Model order 714
11.6 Comparison of estimation methods 715
11.7 Application examples 715
11.7.1 Use of spectral analysis by a DFT for differentiating between brain diseases 715
11.7.2 Spectral analysis of EEGs using autoregressive modelling 719
11.8 Summary 721
11.9 Worked example 721
Problems 722
References 724
Appendix 725
11A MATLAB programs for spectrum estimation and analysis 725
12 General- and special-purpose digital signal processors 727
12.1 Introduction 728
12.2 Computer architectures for signal processing 728
12.2.1 Harvard architecture 730
12.2.2 Pipelining 732
12.2.3 Hardware multiplier-accumulator 737
12.2.4 Special instructions 738
12.2.5 Replication 741
12.2.6 On-chip memory/cache 742
12.2.7 Extended parallelism - SIMD, VLIW and static superscalar processing 742
12.3 General-purpose digital signal processors 746
12.3.1 Fixed-point digital signal processors 747
12.3.2 Floating-point digital signal processors 756
12.4 Selecting digital signal processors 759
12.5 Implementation of DSP algorithms on general-purpose digital signal processors 761
12.5.1 FIR digital filtering 761
12.5.2 IIR digital filtering 770
12.5.3 FFT processing 777
12.5.4 Multirate processing 782
12.5.5 Adaptive filtering 786
12.6 Special-purpose DSP hardware 787
12.6.1 Hardware digital filters 789
12.6.2 Hardware FFT processors 790
12.7 Summary 792
Problems 793
References 796
Bibliography 797
Appendix 798
12A TMS320 assembly language programs for real-time signal processing and a C language program for constant geometry radix-2 FFT 798
13 Analysis of finite wordlength effects in fixed-point DSP systems 805
13.1 Introduction 805
13.2 DSP arithmetic 806
13.2.1 Fixed-point arithmetic 808
13.2.2 Floating-point arithmetic 812
13.3 ADC quantization noise and signal quality 815
13.4 Finite wordlength effects in IIR digital filters 817
13.4.1 Influence of filter structure on finite wordlength effects 818
13.4.2 Coefficient quantization errors in IIR digital filters 822
13.4.3 Coefficient wordlength requirements for stability and desired frequency response 823
13.4.4 Addition overflow errors and their effects 828
13.4.5 Principles of scaling 829
13.4.6 Scaling in cascade realization 832
13.4.7 Scaling in parallel realization 834
13.4.8 Output overflow detection and prevention 835
13.4.9 Product roundoff errors in IIR digital filters 836
13.4.10 Effects of roundoff errors on filter performance 837
13.4.11 Roundoff noise in cascade and parallel realizations 841
13.4.12 Effects of product roundoff noise in modern DSP systems 845
13.4.13 Roundoff noise reduction schemes 846
13.4.14 Determining practical values for error feedback coefficients 853
13.4.15 Limit cycles due to product roundoff errors 857
13.4.16 Other nonlinear phenomena 859
13.5 Finite wordlength effects in FFT algorithms 860
13.5.1 Roundoff errors in FFT 860
13.5.2 Overflow errors and scaling in FFT 862
13.5.3 Coefficient quantization in FFT 864
13.6 Summary 864
Problems 865
References 868
Bibliography 868
Appendices 870
13A Finite wordlength analysis program for IIR filters 870
$13 B L_{2}$ scaling factor equations 870
14 Applications and design studies 873
14.1 Evaluation boards for real-time signal processing 874
14.1.1 Background 874
14.1.2 TMS320C10 target board 874
14.1.3 DSP56002 evaluation module for real-time DSP 876
14.1.4 TMS320C54 and DSP56300 evaluation boards 876
14.2 DSP applications 877
14.2.1 Detection of fetal heartbeats during labour 877
14.2.2 Adaptive removal of ocular artefacts from human EEGs 885
14.2.3 Equalization of digital audio signals 901
14.3 Design studies 904
14.4 Computer-based multiple choice DSP questions 911
14.5 Summary 920
Problems 921
References 921
Bibliography 923
Appendix 923
14A The modified UD factorization algorithm 923
Index 925

Introduction

1.1 Digital signal processing and its benefits 1
1.2 Application areas 3
1.3 Key DSP operations 5
1.4 Digital signal processors 13
1.5 Overview of real-world applications of DSP 13
1.6 Audio applications of DSP 15
1.7 Telecommunication applications of DSP 23
1.8 Biomedical applications of DSP 29
1.9 Summary 35
Problems 35
References 35
Bibliography 36

The aims of this chapter are to explain the meaning and benefits of digital signal processing (DSP), to introduce basic DSP operations on which much of DSP is founded, and to make the reader aware of the wide range of application areas for DSP. Specific real-world application examples are presented, drawn from areas with which most readers can relate.

1.1 Digital signal processing and its benefits

By a signal we mean any variable that carries or contains some kind of information that can, for example, be conveyed, displayed or manipulated. Examples of the types of signals of particular interest are

- speech, which we encounter for example in telephony, radio and everyday life,
- biomedical signals, such as the electroencephalogram (brain signals),
- sound and music, such as reproduced by the compact disc player,
- video and image, which most people watch on the television, and
- radar signals, which are used to determine the range and bearing of distant targets.

Digital signal processing is concerned with the digital representation of signals and the use of digital processors to analyze, modify, or extract information from signals. Most signals in nature are analog in form, often meaning that they vary continuously with time, and represent the variations of physical quantities such as sound waves. The signals used in most popular forms of DSP are derived from analog signals which have been sampled at regular intervals and converted into a digital form.

The specific reason for processing a digital signal may be, for example, to remove interference or noise from the signal, to obtain the spectrum of the data, or to transform the signal into a more suitable form. DSP is now used in many areas where analog methods were previously used and in entirely new applications which were difficult or impossible with analog methods. The attraction of DSP comes from key advantages such as the following.

- Guaranteed accuracy. Accuracy is only determined by the number of bits used.
- Perfect reproducibility. Identical performance from unit to unit is obtained since there are no variations due to component tolerances. For example, using DSP techniques, a digital recording can be copied or reproduced several times over without any degradation in the signal quality.
- No drift in performance with temperature or age.
- Advantage is always taken of the tremendous advances in semiconductor technology to achieve greater reliability, smaller size, lower cost, low power consumption, and higher speed.
- Greater flexibility. DSP systems can be programmed and reprogrammed to perform a variety of functions, without modifying the hardware. This is perhaps one of the most important features of DSP.
- Superior performance. DSP can be used to perform functions not possible with analog signal processing. For example, linear phase response can be achieved, and complex adaptive filtering algorithms can be implemented using DSP techniques.
- In some cases information may already be in a digital form and DSP offers the only viable option.

DSP is not without disadvantages. However, the significance of these disadvantages is being continually diminished by new technology.

- Speed and cost. DSP designs can be expensive, especially when large bandwidth signals are involved. At the present, fast ADCs/DACs (analog-to-digital converters/digital-to-analog converters) either are too expensive or do not have sufficient resolution for wide bandwidth DSP applications. Currently, only specialized ICs can be used to process signals in the megahertz range and these are quite expensive. Furthermore, most DSP devices are still not fast enough and can only process signals of moderate bandwidths. Bandwidths in the 100 MHz range are still processed only by analog methods. Nevertheless, DSP devices are becoming faster and faster.
- Design time. Unless you are knowledgeable in DSP techniques and have the necessary resources (software packages and so on), DSP designs can be time consuming and in some cases almost impossible. The acute shortage of suitable engineers in this area is widely recognized. However, the situation is changing as many new graduates now possess some knowledge of digital techniques and commercial companies are beginning to exploit the advantages of DSP in their products.
- Finite wordlength problems. In real-time situations, economic considerations often mean that DSP algorithms are implemented using only a limited number of bits. In some DSP systems, if an insufficient number of bits is used to represent variables serious degradation in system performance may result.

1.2 Application areas

DSP is one of the fastest growing fields in modern electronics, being used in any area where information is handled in a digital form or controlled by a digital processor. Application areas include the following:

- Image processing
- pattern recognition
- robotic vision
- image enhancement
- facsimile
- satellite weather map
- animation
- Instrumentation/control
- spectrum analysis
- position and rate control
- noise reduction
- data compression
- Speech/audio
- speech recognition
- speech synthesis
- text to speech
- digital audio
- equalization
- Military
- secure communication
- radar processing
- sonar processing
- missile guidance
- Telecommunications
- echo cancellation
- adaptive equalization
- ADPCM transcoders
- spread spectrum
- video conferencing
- data communication

Biomedical

- patient monitoring
- scanners
- EEG brain mappers
- ECG analysis
- X-ray storage/enhancement
- Consumer applications
- digital, cellular mobile phones
- universal mobile telecommunication system
- digital television
- digital cameras
- Internet phones, music and video
- digital answer machines, fax and modems
- voice mail systems
- interactive entertainment systems
- active suspension in cars

A look at the list, which is by no means complete, will confirm the importance of DSP. A testimony to the recognition of the importance of DSP is the continual introduction of powerful DSP devices by semiconductor manufacturers. However, there are insufficient engineers with adequate knowledge in this area. An objective of this book is to provide an understanding of DSP techniques and their implementation, to enable the reader to gain a working knowledge of this important subject.

1.3 Key DSP operations

Several DSP algorithms exist and many more are being invented or discovered. However, all these algorithms, including the most complex, require similar basic operations. It is instructive to examine some of these operations at the outset so as to appreciate the implementational simplicity of DSP. The basic DSP operations are convolution, correlation, filtering, transformations, and modulation. Table 1.1 summarizes these operations and a brief description of each is given below. An important point to note in the table is that all the basic DSP operations require only simple arithmetic operations of multiply, add/subtract, and shifts to carry out. Notice also the similarity between most of the operations.

1.3.1 Convolution

Convolution is one of the most frequently used operations in DSP. For example, it is the basic operation in digital filtering. Given two finite and causal sequences, $x(n)$ and $h(n)$, of lengths N_{1} and N_{2}, respectively, their convolution is defined as

$$
y(n)=h(n) * x(n)=\sum_{k=-\infty}^{\infty} h(k) x(n-k)=\sum_{k=0}^{\infty} h(k) x(n-k),
$$

$$
n=0,1, \ldots,(M-1)
$$

where the symbol $*$ is used to denote convolution and $M=N_{1}+N_{2}-1$. As we shall see in later chapters, DSP device manufacturers have developed signal processors that perform efficiently the multiply-accumulate operations involved in convolution. An example of the linear convolution of the two sequences depicted in Figures 1.1(a) and 1.1(b) is given in Figure 1.1(c). In this example, $h(n), n=0,1,2, \ldots$, can be viewed as the impulse response of a digital system, and $y(n)$ the system's response to the input sequence, $x(n)$. The numerical values for the convolution, that is $y(n)$, were obtained by direct evaluation of Equation 1.1. For example, $y(1)$ is obtained as follows:

$$
\begin{aligned}
y(1) & =h(0) x(1)+h(1) x(0)+h(2) x(-1)+\ldots+h(12) x(-11) \\
& =0 \times 1+(-0.02) \times 1+0 \times 0+\ldots+0 \times 0 \\
& =-0.02
\end{aligned}
$$

The significance of convolution is more apparent when it is observed in the frequency domain, and use is made of the fact that convolution in the time domain is equivalent to multiplication in the frequency domain. A more detailed discussion of convolution including its properties and graphical interpretation is given in Chapter 5.

Table 1.1 Summary of key DSP operations.
(1) Convolution. Given two finite length sequences, $x(k)$ and $h(k)$, of lengths N_{1} and N_{2}, respectively, their linear convolution is

$$
\begin{equation*}
y(n)=h(n) \circledast x(n)=\sum_{k=-\infty}^{\infty} h(k) x(n-k)=\sum_{k=0}^{M-1} h(k) x(n-k), n=0,1, \ldots, M-1 \tag{1.1}
\end{equation*}
$$

where $M=N_{1}+N_{2}-1$.
(2) Correlation.
(a) Given two N-length sequences, $x(k)$ and $y(k)$, with zero means, an estimate of their cross-correlation is given by

$$
\begin{equation*}
\rho_{x y}(n)=\frac{r_{x y}(n)}{\left[r_{x x}(0) r_{y y}(0)\right]^{1 / 2}} \quad n=0, \pm 1, \pm 2, \ldots \tag{1.2}
\end{equation*}
$$

where $r_{x y}(n)$ is an estimate of the cross-covariance and defined as

$$
\begin{aligned}
& r_{x y}(n)= \begin{cases}\frac{1}{N} \sum_{k=0}^{N-n-1} x(k) y(k+n) & n=0,1,2, \ldots \\
\frac{1}{N} \sum_{k=0}^{N+n-1} x(k-n) y(k) & n=0,-1,-2, \ldots\end{cases} \\
& r_{x x}(0)=\frac{1}{N} \sum_{k=0}^{N-1}[x(k)]^{2}, r_{y y}(0)=\frac{1}{N} \sum_{k=0}^{N-1}[y(k)]^{2}
\end{aligned}
$$

(b) An estimate of the autocorrelation, $\rho_{x x}(n)$, of an N-length sequence, $x(k)$, with zero mean is given by

$$
\begin{equation*}
\rho_{x x}(n)=\frac{r_{x x}(n)}{r_{x x}(0)} \quad n=0, \pm 1, \pm 2, \ldots \tag{1.3}
\end{equation*}
$$

where $r_{x x}(n)$ is an estimate of the autocovariance and defined as

$$
r_{x x}(n)=\frac{1}{N} \sum_{k=0}^{N-n-1} x(k) x(k+n) \quad n=0,1,2, \ldots
$$

(3) Filtering. The equation for finite impulse response (FIR) filtering is

$$
\begin{equation*}
y(n)=\sum_{k=0}^{N-1} h(k) x(n-k) \tag{1.4}
\end{equation*}
$$

where $x(k)$ and $y(k)$ are the input and output of the filter, respectively, and $h(k)$, $k=0,1, \ldots, N-1$, are the filter coefficients.
(4) Discrete transform.

$$
\begin{equation*}
X(n)=\sum_{k=0}^{N-1} x(k) W^{k n}, \text { where } W=\exp (-\mathrm{j} 2 \pi / N) \tag{1.5}
\end{equation*}
$$

Figure 1.1 An example of the convolution of two sequences. $y(n)$ is the convolution of $h(n)$ and $x(n)$. If $h(n)$ is considered the impulse response of a system, then $y(n)$ is the system's output in response to the input $x(n)$. The values of $y(n)$ above were obtained directly from Equation 1.1.

1.3.2 Correlation

There are two forms of correlations: auto- and cross-correlations.
(1) The cross-correlation function (CCF) is a measure of the similarities or shared properties between two signals. Applications of CCFs include cross-spectral analysis, detection/recovery of signals buried in noise, for example the detection of radar return signals, pattern matching, and delay measurements. CCF is defined in Equation 1.2 in Table 1.1.

Figure 1.2 Autocorrelations of (a) a periodic signal, (b) noise and (c) periodic signal plus noise. Note that in (c) the periodic nature of the signal buried in noise is still evident, illustrating why autocorrelation is used in detecting hidden periodicity.
(2) The autocorrelation function (ACF) involves only one signal and provides information about the structure of the signal or its behaviour in the time domain. It is a special form of CCF and is used in similar applications. It is particularly useful in identifying hidden periodicities. The ACF is defined in Equation 1.3 in Table 1.1.

Figure 1.3 Cross-correlation of a random signal, $x(t)$, and a delayed noisy version of the same signal, $y(t)$. The delay between the two signals is the time from the origin to the time where the peak occurred in their cross-correlation in (c).

Examples of CCF and ACF for certain signals are given in Figures 1.2 and 1.3. Notice, for example, that the ACF of the noise-corrupted signal shows clearly that there is a periodic signal buried in noise (Figure 1.2). Figure 1.3 illustrates how to measure delays. The amount of delay introduced by the system is clearly evident from the CCF and can be measured from the time origin to the large peak.

1.3.3 Digital filtering

Digital filtering is one of the most important operations in DSP as will become clear in subsequent chapters. The digital filtering operation for an important class of filters is defined as

Figure 1.4 (a) Block diagram representation of the transversal filter. $h(k), k=0,1, \ldots$, $N-1$, are the filter coefficients, and each box containing z^{-1} represents a delay of one sampling period. (b) Digital lowpass filtering of a biomedical signal to remove noise.

$$
y(n)=\sum_{k=0}^{N-1} h(k) x(n-k)
$$

where $h(k), k=0,1, \ldots, N-1$, are the coefficients of the filter, and $x(n)$ and $y(n)$, respectively, the input and output of the filter. For a given filter, the values of its coefficients are unique to it and determine the filter's characteristics.

We note that filtering is in fact the convolution of the signal and the filter's impulse response in the time domain, that is $h(k)$. Figure 1.4(a) shows a block diagram representation of the filter defined above. In this form, the filter is popularly known as the transversal filter. In the figure, z^{-1} represents a delay of one sample time.

A common filtering objective is to remove or reduce noise from a wanted signal. For example, Figure 1.4(b) shows the effects of digital lowpass filtering of a certain
biomedical signal to remove high frequency distortion. The use of a digital filter in this application was especially important to minimize the distortion of the in-band signal components.

1.3.4 Discrete transformation

Discrete transforms allow the representation of discrete-time signals in the frequency domain or the conversion between time and frequency domain representations. The spectrum of a signal is obtained by decomposing it into its constituent frequency components using a discrete transform. A knowledge of such a spectrum is invaluable in, for example, determining the bandwidth required to transmit the signal. Conversion between time and frequency domains is necessary in many DSP applications. For example, it allows for a more efficient implementation of DSP algorithms, such as those for digital filtering, convolution and correlation.

Many discrete transformations exist, but the discrete Fourier transform (DFT) is the most widely used and is defined as

$$
X(k)=\sum_{n=0}^{N-1} x(n) W^{n k}, \text { where } W=\mathrm{e}^{-\mathrm{j} 2 \pi / N}
$$

An example of the use of the DFT is given in Figure 1.5. Here, the impulse response of a filter, $h(n), n=0,1, \ldots, N-1$, is transformed to give the frequency response of the filter using the DFT. Details of the DFT and its applications are given in Chapters 3, 4 and 11.

1.3.5 Modulation

Digital signals are rarely transmitted over long distances or stored in large quantities in their raw form. The signals are normally modulated to match their frequency characteristics to those of the transmission and/or storage media to minimize signal distortion, to utilize the available bandwidth efficiently, or to ensure that the signals have some desirable properties. Perhaps the two application areas where modulation is extensively employed are telecommunications and digital audio engineering.

The process of modulation often involves varying a property of a high frequency signal, known as the carrier, in sympathy with the signal we wish to transmit or store, called the modulating signal. The three most commonly used digital modulation schemes for transmitting digital data over a bandpass channel (for example a microwave link) are amplitude shift keying (ASK), phase shift keying (PSK), and frequency shift keying (FSK). When digital data is transmitted over an all-digital network, a scheme known as pulse code modulation (PCM) is commonly used (see, for example, Bellamy, 1982). Several other modulation schemes have been developed for digital audio, details of which can be found in Watkinson (1987).

Correlation and convolution

5.1 Introduction 242
5.2 Correlation description 243
5.3 Convolution description 273
5.4 Implementation of correlation and convolution 301
5.5 Application examples 302
5.6 Summary 310
Problems 311
References 315
Appendix 316

The nature of the correlation process is first described in this chapter followed by an explanation using worked examples of the calculation of cross- and autocorrelations. The attenuating effects of correlation on the noise content of signals is described, as are a number of applications of correlation. The technique of fast correlation utilizing the FFT is then explained. The topic of convolution is covered in a similar manner to correlation. The treatment includes circular and linear convolution, fast linear convolution, and the sectioning methods (overlap-add, overlap-save) needed to handle large amounts of input data. Deconvolution is also included. The relationship between correlation and convolution is established. The chapter finishes with a section on implementation and some worked application examples.

5.1 Introduction

It is frequently necessary to be able to quantify the degree of interdependence of one process upon another, or to establish the similarity between one set of data and another. In other words, the correlation between the processes or data is sought. Correlation can be defined mathematically and can be quantified. The process of
correlation occupies a significant place in signal processing. Applications are found in image processing for robotic vision or remote sensing by satellite in which data from different images is compared, in radar and sonar systems for range and position finding in which transmitted and reflected waveforms are compared, in the detection and identification of signals in noise, in control engineering for observing the effect of inputs on outputs, in the identification of binary codewords in pulse code modulation systems using correlation detectors, as an integral part of the ordinary least squares estimation technique, in the computation of the average power in waveforms, and in many other fields, such as, for example, climatology. Correlation is also an integral part of the process of convolution. The convolution process is essentially the correlation of two data sequences in which one of the sequences has been reversed. This means that the same algorithms may be used to compute correlations and convolutions simply by reversing one of the sequences. The process of convolution gives the output from a system which filters the input. The spectrum of a recorded signal consists of the convolution of the spectrum of the signal with the spectrum of its window function.

The determination of an unknown system impulse response is known as system identification. The determination of an unknown input from the system impulse response and the output signal is known as deconvolution. When the impulse response is unknown, the determination of the unknown input signal is known as blind deconvolution. Each of these important topics is described.

5.2 Correlation description

Consider how two data sequences, each consisting of simultaneously sampled values taken from the two corresponding waveforms, might be compared. If the two waveforms varied similarly point for point, then a measure of their correlation might be obtained by taking the sum of the products of the corresponding pairs of points. This proposal becomes more convincing when the case of two independent and random data sequences is considered. In this case the sum of the products will tend towards a vanishingly small random number as the number of pairs of points is increased. This is because all numbers, positive and negative, are equally likely to occur so that the product pairs tend to be self-cancelling on summation. By contrast, the existence of a finite sum will indicate a degree of correlation. A negative sum will indicate negative correlation, that is an increase in one variable is associated with a decrease in the other variable. The cross-correlation $r_{12}(n)$ between two data sequences $x_{1}(n)$ and $x_{2}(n)$ each containing N data might therefore be written as

$$
r_{12}=\sum_{n=0}^{N-1} x_{1}(n) x_{2}(n)
$$

This definition of cross-correlation, however, produces a result which depends on the number of sampling points taken. This is corrected for by normalizing the result to the
number of points by dividing by N. Alternatively this may be regarded as averaging the sum of products. Thus, an improved definition is

$$
r_{12}=\frac{1}{N} \sum_{n=0}^{N-1} x_{1}(n) x_{2}(n)
$$

Example 5.1 The calculation of r_{12} is illustrated in the following example, in which the point numbers in the data sequences are the n, and the sequences are x_{1} and x_{2}.

$$
\begin{array}{rl}
n & 1 \\
2 & 3 \\
4 & 5 \\
6 & 7 \\
8 & 8 \\
x_{1} & 4 \\
2 & -1 \\
3 & -2 \\
-6 & -5 \\
x_{2} & -4 \\
1 & 3 \\
7 & 4 \\
-2 & -8 \\
-2 & 5 \\
r_{12}= & \frac{1}{9}(4 \times-4+2 \times 1+-1 \times 3+3 \times 7+-2 \times 4+-6 \times-2+-5 \times-8+ \\
& 4 \times-2+5 \times 1) \\
= & 5
\end{array}
$$

However, this definition needs modification to be useful. In some cases it may indicate zero correlation although the two waveforms are 100% correlated. This may occur, for example, when the two waveforms are out of phase, which will often be the case. The situation is illustrated by the waveforms of Figure 5.1. From this figure it is seen that each pair product in the correlation is zero, and hence the correlation is zero, because one of either x_{1} or x_{2} is always zero. However, the waveforms are clearly highly correlated, although they are out of phase. The phase difference could, for example, occur because x_{1} is the reference signal while x_{2} is the delayed output from a circuit. To overcome such phase differences it is necessary to shift, or lag, one of the waveforms with respect to the other. Typically x_{2} is shifted to the left to align the

Figure 5.1 Out-of-phase 100\% correlated waveforms with zero correlation at lag zero.

Figure 5.2 Waveform $x_{2}=x_{1}+j$ shifted j lags to the left of waveform x_{1}.
waveforms prior to correlation. As illustrated in Figure 5.2 this is equivalent to changing $x_{2}(n)$ to $x_{2}(n+j)$, where j represents the amount of lag which is the number of sampling points by which x_{2} has been shifted to the left. An alternative, but equivalent, procedure is to shift x_{1} to the right. The formula for the cross-correlation thus becomes

$$
\begin{align*}
r_{12}(j) & =\frac{1}{N} \sum_{n=0}^{N-1} x_{1}(n) x_{2}(n+j) \\
& =r_{21}(-j)=\frac{1}{N} \sum_{n=0}^{N-1} x_{2}(n) x_{1}(n-j) \tag{5.1}
\end{align*}
$$

In practice when two waveforms are correlated their phase relationship will probably not be known and so the correlation will be computed for a number of different lags in order to establish the largest value of the correlation which is then taken to be the correct value.

Example 5.2 Consider the cross-correlation of the above two sequences $x_{1}(n)$ and $x_{2}(n)$ at a lag of $j=3$, that is consider $r_{12}(3)$. The two sequences become

n	1	2	3	4	5	6	7	8	9
x_{1}	4	2	-1	3	-2	-6	-5	4	5
x_{2}	7	4	-2	-8	-2	-1			

so

$$
\begin{aligned}
r_{12}(3) & =\frac{1}{9}(4 \times 7+2 \times 4+-1 \times-2+3 \times-8+-2 \times-2+-6 \times-1) \\
& =2.667
\end{aligned}
$$

Of course, it is also possible to consider correlation in the continuous time domain, and some analog signal correlation is implemented this way. In the continuous domain $n \rightarrow t$ and $j \rightarrow \tau$ and

$$
r_{12}(\tau)=\lim _{T \rightarrow \infty} \frac{1}{T} \int_{-T / 2}^{T / 2} x_{1}(t) x_{2}(t+\tau) \mathrm{d} t
$$

However, if $x_{1}(t)$ and $x_{2}(t)$ are periodic with period T_{0} Equation 5.2 simplifies to

$$
\begin{equation*}
r_{12}(\tau)=\frac{1}{T_{0}} \int_{-T_{0} / 2}^{T_{0} / 2} x_{1}(t) x_{2}(t+\tau) \mathrm{d} t \tag{5.3}
\end{equation*}
$$

If the waveforms are finite energy waveforms, for example nonperiodic pulse-type waveforms, then the average evaluated over time T as $T \rightarrow \infty$ is not taken because then $1 / T \rightarrow 0$ and $r_{12}(\tau)$ is always vanishingly small. For this case Equation 5.4 is used in principle:

$$
\begin{equation*}
r_{12}(\tau)=\int_{-\infty}^{\infty} x_{1}(t) x_{2}(t+\tau) \mathrm{d} t \tag{5.4}
\end{equation*}
$$

In practice, a finite record length will be processed and so Equation 5.5 or 5.1 will be applied:

$$
\begin{equation*}
r_{12}(\tau)=\frac{1}{T} \int_{0}^{T} x_{1}(t) x_{2}(t+\tau) \mathrm{d} t \tag{5.5}
\end{equation*}
$$

There is another difficulty associated with cross-correlating finite lengths of data. This can be seen in the above example in which $r_{12}(3)=2.667$ was determined. As x_{2} is shifted to the left the waveforms no longer overlap and data at the ends of the sequences no longer form pair products. This is known as the end effect. In the example the number of pairs has dropped from nine to six for a lag of three. The result is a linear decrease in $r_{12}(j)$ as j increases, leading to debatable values of $r_{12}(j)$. One possible solution is to make one of the sequences twice as long as the required length for correlation. This could be achieved by recording more data, or, if one of the sequences were periodic, by repeating the sequence (taking care to match the two ends). Another possibility is to add a correction to all computed values. Figure 5.3 shows how $r_{12}(j)$ decreases with j purely as a result of the end effect, that is actual variations in $r_{12}(j)$ are not included. At $j=0, r_{12}(j)=r_{12}(0)$, which can be computed. At $j=N, r_{12}(N)=0$, because the waveforms no longer overlap. In between, at some lag j, the true value of $r_{12}(j)$ is $r_{12}(j)_{\text {true }}$ while the actual value caused by the end effect is $r_{12}(j)$. Then, from the figure

$$
\frac{r_{12}(j)_{\text {true }}-r_{12}(j)}{j}=\frac{r_{\mathrm{t} 2}(0)}{N}
$$

whence

$$
\begin{equation*}
r_{12}(j)_{\text {true }}=r_{12}(j)+\frac{j}{N} r_{12}(0) \tag{5.6}
\end{equation*}
$$

Figure 5.3 The effect of the end-effect on the cross-correlation $r_{12}(j)$.

Computed values of the cross-correlation are therefore easily corrected for end effects by adding $j r_{12}(0) / N$ to the values of $r_{12}(j)$.

The cross-correlation values computed according to the above formulae depend on the absolute values of the data. It is often necessary to measure cross-correlations according to the fixed scale between -1 and +1 . This can be achieved by normalizing the values by an amount depending on the energy content of the data. For example, consider the two pairs of waveforms $x_{1}(n), x_{2}(n)$, and $x_{3}(n), x_{4}(n)$. The data values are given in the table below:

n	0	1	2	3	4	5	6	7	8
$x_{1}(n)$	0	3	5	5	5	2	0.5	0.25	0
$x_{2}(n)$	1	1	1	1	1	0	0	0	0
$x_{3}(n)$	0	9	15	15	15	6	1.5	0.75	0
$x_{4}(n)$	2	2	2	2	2	0	0	0	0

As may be seen from Figure 5.4, waveforms $x_{1}(n)$ and $x_{3}(n)$ are alike, differing only in magnitude. The same is true of the pair $x_{2}(n)$ and $x_{4}(n)$. The correlation between $x_{1}(n)$ and $x_{2}(n)$ is therefore the same as that between $x_{3}(n)$ and $x_{4}(n)$. However, the crosscorrelations $r_{12}(1)$ and $r_{34}(1)$ are 1.47 and 8.83 respectively. They are different because they depend on the absolute values of the data. This situation can be rectified by normalizing the cross-correlation $r_{12}(j)$ by the factor

$$
\begin{equation*}
\left[\frac{1}{N} \sum_{n=0}^{N-1} x_{1}^{2}(n) \times \frac{1}{N} \sum_{n=0}^{N-1} x_{2}^{2}(n)\right]^{1 / 2}=\frac{1}{N}\left[\sum_{n=0}^{N-1} x_{1}^{2}(n) \sum_{n=0}^{N-1} x_{2}^{2}(n)\right]^{1 / 2} \tag{5.7}
\end{equation*}
$$

and similarly for $r_{34}(j)$. The normalized expression for $r_{12}(j)$ then becomes

$$
\begin{equation*}
\rho_{12}(j)=\frac{r_{12}(j)}{\frac{1}{N}\left[\sum_{n=0}^{N-1} x_{1}^{2}(n) \sum_{n=0}^{N-1} x_{2}^{2}(n)\right]^{1 / 2}} \tag{5.8}
\end{equation*}
$$

$\rho_{12}(j)$ is known as the cross-correlation coefficient. Its value always lies between -1 and $+1 .+1$ means 100% correlation in the same sense, -1 means 100% correlation in

Figure 5.4 Pairs of waveforms $\left\{x_{1}(n), x_{2}(n)\right\},\left\{x_{3}(n), x_{4}(n)\right\}$ of different magnitudes but equal cross-correlations.
the opposing sense, for example signals in antiphase. A value of 0 signifies zero correlation. This means the signals are completely independent. This would be the case, for example, if one of the waveforms were completely random. Small values of $\rho_{12}(j)$ indicate very low correlation. The normalizing factor for $r_{12}(j)$ in the above illustration is

$$
\frac{1}{N}\left[\sum_{n=0}^{N-1} x_{1}^{2}(n) \sum_{n=0}^{N-1} x_{2}^{2}(n)\right]^{1 / 2}=\frac{1}{9}(88.31 \times 6)^{1 / 2}=2.56
$$

and for $r_{34}(j)$ it is

$$
\frac{1}{N}\left[\sum_{n=0}^{N-1} x_{3}^{2}(n) \sum_{n=0}^{N-1} x_{4}^{2}(n)\right]^{1 / 2}=\frac{1}{9}(794.8 \times 24)^{1 / 2}=15.35
$$

Therefore

$$
\rho_{12}(1)=\frac{r_{12}(1)}{2.56}=\frac{1.47}{2.56}=0.57
$$

and

$$
\rho_{34}(1)=\frac{r_{34}(1)}{15.34}=\frac{8.83}{15.35}=0.58
$$

Now $\rho_{12}(1)=\rho_{34}(1)$ which demonstrates that this normalization process indeed allows a comparison of cross-correlations independently of the absolute data values.

Figure 5.5 Autocorrelation function of a random waveform.

A special case occurs when $x_{1}(n)=x_{2}(n)$. The waveform is then cross-correlated with itself. This process is known as autocorrelation. The autocorrelation of a waveform is given by

$$
r_{11}(j)=\frac{1}{N} \sum_{n=0}^{N-1} x_{1}(n) x_{1}(n+j)
$$

The autocorrelation function has one very useful property in that

$$
r_{11}(0)=\frac{1}{N} \sum_{n=0}^{N-1} x_{1}^{2}(n)=S
$$

where S is the normalized energy of the waveform. This provides a method for calculating the energy of a signal. If the waveform is completely random, for example corresponding to that of white, gaussian noise in an electrical system, then the autocorrelation will have its peak value at zero lag and will reduce to a random fluctuation of small magnitude about zero for lags greater than about unity (see Figure 5.5). This constitutes a test for random waveforms. This topic will be more fully covered in Section 5.2.1. It is also true that

$$
r_{11}(0) \geqslant r_{11}(j)
$$

5.2.1 Cross- and autocorrelation

Care has to be exercised when cross-correlating two unequal length sequences when they are periodic. This is because the result of the correlation will be cyclic with the period of the shorter sequence. This result does not represent the full periodicity of the longer sequence and is, therefore, incorrect. This may be demonstrated by crosscorrelating the sequences $a=\{4,3,1,6\}$ and $b=\{5,2,3\}$ to obtain $r_{a b}(j)$. The sequence b is placed below sequence a, and b is shifted left by one lag on each of the subsequent rows, with the value of the cross-correlation appearing in the final column on the right.

Sequence					Lag
4	3	1	6		$r_{a b}(j)$
3	5	2	3	0	47
5	2	3	5	1	59
2	3	5	2	2	34
3	5	2	3	3	47
5	2	3	5	4	59
etc.					

The result shows that $r_{a b}(j)$ is cyclic, repeating every third lag, that is $r_{a b}(j)$ has the same period as that of the shorter sequence, b. This procedure is known as cyclic correlation. To obtain the correct value in which each value in a is multiplied by each value in b, all the elements in b have to be shifted in turn below each value in a as shown below:

4316

523
523
523
523
523
523
523
This is seen to require 6 lags before the b sequence repeats. The sequence lengths are 4 and 3 and the number of lags necessary is $4+3-1=6$. This reveals the general rule for obtaining the linear cross-correlation of two periodic sequences of lengths N_{1} and N_{2} : add augmenting zeros to each sequence to make the lengths of each sequence $N_{1}+N_{2}-1$. This may be expressed as adding $N_{2}-1$ zeros to the sequence of length N_{1} and adding $N_{1}-1$ zeros to the sequence of length N_{2}. This is now demonstrated for the given sequences a and b :

Sequence								
4	3	1	6	0	0	Lag	$r_{a b}(j)$	
5	2	3	0	0	0	0		
2	3	0	0	0	5	1	17	
3	0	0	0	5	2	2	12	
0	0	0	5	2	3	3	30	
0	0	5	2	3	0	4	17	
0	5	2	3	0	0	5	35	
5	2	3	0	0	0	6	29	$r_{a b}(j)$ repeats
etc.								

Thus, the required linear cross-correlation of a and b is

$$
r_{a b}(j)=\{29,17,12,30,17,35\}
$$

So far, the instances of cross-correlation taken have all assumed digitized data, but cross-correlation may also be performed analytically when analytical expressions can be written for the waveforms, including when this requires sectioning of the waveforms. In practice the analytical procedure has its equivalent in the use of analog circuits to effect the cross-correlation. An example of analytical cross-correlation follows.

Example 5.3 Obtain the cross-correlation $r_{12}(-\tau)$ between the waveforms $v_{1}(t)$ and $v_{2}(t)$ of Figure 5.6.

It is easy to express the waveforms analytically by dividing them into straight-line sections. It is only necessary to do this over one period, T, of the waveforms because $r_{12}(-\tau)$ will be periodic in τ with period T. Therefore, for $0 \leqslant t \leqslant T, v_{1}(t)=t / T$, and for $0 \leqslant t \leqslant T / 2, v_{2}(t)=1.0$, while for $T / 2 \leqslant t \leqslant T, v_{2}(t)=-1.0$. The requirement is to obtain an expression for $r_{12}(-\tau)$, that is $v_{2}(t)$, the rectangular waveform, is to be shifted right with respect to $v_{1}(t)$. For $0 \leqslant \tau \leqslant T / 2$, the situation is described by Figure 5.7

Figure 5.6 The waveform $v_{1}(t)$ and $v_{2}(t)$ for cross-correlation example.

Figure 5.7 Sections of $v_{2}(t)$ for $\theta \leqslant \tau \leqslant T$.

Figure 5.8 Sections of $v_{2}(t)$ for $T / 2 \leqslant \tau \leqslant T$.
which shows that $v_{1}(\mathrm{t})$ has to be multiplied by three consecutive sections of $v_{2}(t)$ in which $v_{2}(t)$ has the consecutive values $-1,1,-1$. For $T / 2 \leqslant \tau \leqslant T$, Figure 5.8 applies in which the consecutive values of the set of $v_{2}(t)$ have changed to $1,-1,+1$. This means there are two parts to the solution which must match at $\tau=T / 2$.

Referring to Figure 5.7, the cross-correlation is split into the three sections with boundaries at $t=\tau, t=\tau+T / 2$, and $t=T$. Hence

$$
\begin{align*}
r_{12}(-\tau) & =\frac{1}{T} \int_{0}^{T} v_{1}(t) v_{2}(t-\tau) \mathrm{d} t \\
& =\frac{1}{T} \int_{0}^{\tau} \frac{t}{T}(-1) \mathrm{d} t+\frac{1}{T} \int_{\tau}^{\tau+T / 2} \frac{t}{T}(1) \mathrm{d} t+\frac{1}{T} \int_{\tau+T / 2}^{T} \frac{t}{T}(-1) \mathrm{d} t \\
& =\frac{-1}{T^{2}}\left[\frac{t^{2}}{2}\right]_{0}^{\tau}+\frac{1}{T^{2}}\left[\frac{t^{2}}{2}\right]_{\tau}^{\tau+T / 2}-\frac{1}{T^{2}}\left[\frac{t^{2}}{2}\right]_{\tau+T / 2}^{T} \\
r_{12}(-\tau) & =-\frac{1}{4}+\frac{\tau}{T} \quad \text { for } 0 \leqslant \tau \leqslant \frac{T}{2} \tag{5.9}
\end{align*}
$$

For $T / 2 \leqslant \tau \leqslant T$, and referring to Figure 5.8 , it is seen that

$$
\begin{align*}
& r_{12}(-\tau)=\frac{1}{T} \int_{0}^{\tau-T / 2} \frac{t}{T}(1) \mathrm{d} t+\frac{1}{T} \int_{\tau-T / 2}^{\tau} \frac{t}{T}(-1) \mathrm{d} t+\frac{1}{T} \int_{\tau}^{T} \frac{t}{T}(1) \mathrm{d} t \\
& r_{12}(-\tau)=\frac{3}{4}-\frac{\tau}{T} \quad \text { for } \frac{T}{2} \leqslant \tau \leqslant T \tag{5.10}
\end{align*}
$$

Figure 5.9 $r_{12}(-\tau)$ as a function of τ.

Substituting $\tau=T / 2$ into Equations 5.9 and 5.10 gives $r_{12}(-\tau)=1 / 4$ in both cases, confirming that the two functions match correctly. Figure 5.9 shows a plot of $r_{12}(-\tau)$ versus τ for $0 \leqslant \tau \leqslant T$.

It is of interest to give some consideration to the consequences of using finite lengths of data in the calculation of the correlation. In other words, what is the effect of using Equation 5.5, in which T is finite, instead of Equation 5.2?

This question can be answered by considering just one sinusoidal Fourier harmonic component of the signal. Equation 5.2 will give the correct autocorrelation, in which $T \gg T_{\mathrm{p}}$, where T_{p} is the period of the sinusoid. Thus

$$
\begin{align*}
r_{11}(\tau) & =\lim _{T \rightarrow \infty} \frac{1}{2 T} \int_{-T}^{T} A \sin (\omega t) A \sin (\omega t+\tau) \mathrm{d} t \\
& =\lim _{T \rightarrow \infty} \frac{A^{2}}{2}\left[\cos (\omega \tau)-\frac{\cos (\omega T)}{2 \omega T} \sin (\omega \tau)\right] \tag{5.11}
\end{align*}
$$

Inspection of this equation shows that the second term in the bracket $\rightarrow 0$ when $T \rightarrow$ ∞, so when $T \neq \infty$ it represents an error. The $\cos (\omega T)$ term represents periodic error effects, while the term $1 / 2 \omega T$ gives the trend in the error. Thus, as far as the correlation length, T, is concerned, the errors are greater the shorter the sequence, and are also largest for the lower frequency components of the waveform. The errors are also periodic in τ.

The $\cos (\omega T)$ term gives least errors when $\omega T=[(2 n+1) / 2] \pi$. Since $\omega=2 \pi / T_{\mathrm{p}}$ and large values of T are sought, this corresponds to

$$
\begin{equation*}
T \geqslant(2 n+1) \frac{T_{\mathrm{p}}}{4} \tag{5.12}
\end{equation*}
$$

The $\sin (\omega \tau)$ term is least when $\omega \tau=m \pi$, where m is integer. Hence,

$$
\tau=\frac{m}{2} T_{\mathrm{p}}
$$

It is now necessary to make some reasonable assumptions. Assume the condition $f_{0 r}$ large T is satisfied by $n \geqslant 10$. Then $T \geqslant n T_{\mathrm{p}} / 2$, or

$$
\begin{equation*}
T \geqslant 5 T_{\mathrm{p}} \tag{5.14}
\end{equation*}
$$

From Equation 5.13, the largest allowable value of τ for the lowest frequency component ($m=1$) satisfies

$$
\begin{equation*}
\tau<T_{\mathrm{p}} \tag{5.15}
\end{equation*}
$$

Combining Equations 5.14 and 5.15,

$$
\tau \leqslant T / 5
$$

This means that when correlating waveforms the errors due to finite data lengths may be minimized by
(1) ensuring that $T \geqslant 5 T_{\mathrm{p}}$, where T_{p} corresponds to the lowest frequency component of interest, and
(2) overlapping the data by no more than 20% of their length.

Thus, for example, if telephone speech signals with a bandwidth of 300 Hz to 3.4 kHz and sampled at 40 kHz are to be correlated, $T_{\mathrm{p}}=1 / 300=3.3 \times 10^{-3} \mathrm{~s}$. The least acceptable data length would be $5 \times 3.3 \times 10^{-3} \mathrm{~s}=16.7 \mathrm{~ms}$ and the largest correlation shift would be 3.33 ms , or 133 data points.

Figure 5.10 shows the plot of $\rho_{11}(j)$, the autocorrelation coefficient of a purely random waveform, for example white noise. The expected value of $r_{11}(j)$ can be

Figure 5.10 The autocorrelation coefficient of a random waveform.
shown to be $E\left[r_{11}(j)\right] \approx-1 / N$ (Chatfield, 1980), where N is the number of data points, and its variance is $\operatorname{var}\left[r_{11}(j)\right] \approx 1 / N$. The expected value of $-1 / N$ is shown on the figure as are the 95% confidence limits of $-1 / N$, which are $\pm 2 / N^{1 / 2}$. Values of $r_{11}(j)$ which fall outside these confidence limits may be significant, that is they may indicate that the waveform was not truly random. However, it should be noted that as many as one point in 20 may lie outside these limits even when the waveform is completely random. For a random waveform $r_{11}(j)$ should fall to within the 95% confidence limits within one or two lags. Experience and more sophistication is required to be sure that a waveform is random. For example, data pre-whitening may be advisable (Jenkins and Watts, 1968).

The autocorrelation function of a periodic waveform is itself a periodic waveform. This is easily proved as follows. The periodic waveform $x(t)$ of period T satisfies

$$
x(t)=x(t+n T)
$$

so,

$$
\begin{align*}
r_{11}(\tau) & =\lim _{T \rightarrow \infty} \frac{1}{T} \int_{-T / 2}^{T / 2} x(t) x(t+\tau) \mathrm{d} t \\
& =\lim _{T \rightarrow \infty} \frac{1}{T} \int_{-T / 2}^{T / 2} x(t) x(t+\tau+n T) \mathrm{d} t \\
r_{11}(\tau) & =r_{11}(\tau+n T) \tag{5.16}
\end{align*}
$$

Thus $r_{11}(\tau)$ is seen to be periodic in τ with period T. This is a useful property because it enables the detection of periodic signals in noise for small signal-to-noise ratios. Autocorrelating the waveform tends to reduce the noise while at the same time developing the periodic autocorrelation function of the signal. Once detected, further processing can be applied to determine its shape if this is required.

Equation 5.11 showed that the autocorrelation function of $A \sin (\omega t)$ is $\left(A^{2} / 2\right) \cos (\omega \tau)$. In this case, as in others, the amplitude of the autocorrelation function is related simply to that of the signal, and may be used to estimate the signal amplitude. Another common example is that of the rectangular wave of amplitude A which the reader could show has a triangular autocorrelation function of amplitude A^{2}. Finally, it should be noted that autocorrelation functions are not unique. This means that a number of different waveforms may share the same autocorrelation function. Hence the shapes of waveforms should not be deduced from the detected autocorrelation functions.

Consider now the case in which the waveform, $v(t)$, is partially random. This represents the case of a noisy signal which may be written as the sum of a signal term, $s(t)$, and a noise term, $q(t)$. Thus

$$
\begin{equation*}
v(t)=s(t)+q(t) \tag{5.17}
\end{equation*}
$$

$s(t)$ and $q(t)$ are assumed to be uncorrelated. The sampled autocorrelation function of $v(t)$ is $r_{v v}(j)$ given by

$$
\begin{align*}
r_{v v}(j)= & \frac{1}{N} \sum_{n=0}^{N-1}[s(n)+q(n)][s(n+j)+q(n+j)] \tag{5.18}\\
= & \frac{1}{N} \sum_{n=0}^{N-1} s(n) s(n+j)+\frac{1}{N} \sum_{n=0}^{N-1} s(n) q(n+j)+\frac{1}{N} \sum_{n=0}^{N-1} q(n) s(n+j) \\
& +\frac{1}{N} \sum_{n=0}^{N-1} q(n) q(n+j) \tag{5.19}\\
= & r_{s s}(j)+E[s(n) q(n+j)]+E[q(n) s(n+j)]+E[q(n) q(n+j)] \\
= & r_{s s}(j)+E[s(n)] E[q(n+j)]+E[q(n)] E[s(n+j)]+E[q(n)] E[q(n+j)] \\
= & r_{s s}(j)+\overline{s(n)} \overline{q(n)}+\overline{q(n)} \overline{s(n)}+\overline{q(n)} \\
= & r_{s s}(j)+2 \bar{s} \bar{q}+\bar{q}^{2} \tag{5.20}
\end{align*}
$$

Now, $\bar{q} \rightarrow 0$ for large N, for which

$$
\begin{equation*}
r_{v v}(j) \rightarrow r_{s s}(j) \tag{5.21}
\end{equation*}
$$

For smaller N, the cross-correlation terms in Equation 5.19 and the autocorrelation of the noise tend towards zero with increasing lag j.

Thus it is seen that the autocorrelation function of a partially random, or noisy, waveform consists of the autocorrelation function of the signal component superimposed on a noisy decaying function which depends on both the random and signal components and which decays towards the value $2 \bar{s} \bar{q}+\bar{q}^{2}$. Thus the plot of $r_{v v}(j)$ against j will display the periodicity of $s(t)$ provided $\left|r_{s s}(j)\right|>\left|\left(2 \bar{s} \bar{q}+\bar{q}^{2}\right)\right|$: see Figure 5.11. This offers a method for identifying the period of a signal in noise (see Section 5.2.2).

Figure 5.11 The autocorrelation function of a noisy signal.

Example 5.4 Derive the cross-correlation function of two noisy waveforms.
Let the two waveforms be $\left\{s_{1}(t)+q_{1}(t)\right\}$ and $\left\{s_{2}(t)+q_{2}(t)\right\}$. Their sampled crosscorrelation, $r_{12}(j)$, is given by

$$
\begin{align*}
r_{12}(j)= & \frac{1}{N} \sum_{n=0}^{N-1}\left[\left\{s_{1}(n)+q_{1}(n)\right\}\left\{s_{2}(n+j)+q_{2}(n+j)\right\}\right] \tag{5.22}\\
= & \frac{1}{N} \sum_{n=0}^{N-1}\left[s_{1}(n) s_{2}(n+j)+s_{1}(n) q_{2}(n+j)+q_{1}(n) s_{2}(n+j)+q_{1}(n) q_{2}(n+j)\right] \\
= & \frac{1}{N} \sum_{n=0}^{N-1} s_{1}(n) s_{2}(n+j)+\frac{1}{N} \sum_{n=0}^{N-1} s_{1}(n) q_{2}(n+j)+\frac{1}{N} \sum_{n=0}^{N-1} q_{1}(n) s_{2}(n+j) \\
& +\frac{1}{N} \sum_{n=0}^{N-1} q_{1}(n) q_{2}(n+j) \\
= & r_{s_{1} s_{2}}(j)+r_{s_{1} q_{2}}(j)+r_{q_{1} s_{2}}(j)+r_{q_{1} q_{2}}(j) \tag{5.23}
\end{align*}
$$

As in the previous case of autocorrelation the last three terms on the right-hand side of Equation 5.23 decay towards zero with increasing lag j. For large N, Equation 5.23 becomes

$$
\begin{equation*}
r_{12}(j)=r_{s, s s_{2}}(j)+\overline{s_{1}} \overline{q_{2}}+\overline{q_{1}} \overline{s_{2}}+\overline{q_{1}} \overline{q_{2}} \tag{5.24}
\end{equation*}
$$

Thus as N increases $r_{12}(j) \rightarrow r_{s, s_{2}}(j)$, the cross-correlation function of the two signals.

The above analyses illustrate that the cross- and autocorrelation processes emphasize signal properties by reducing the noise content.

5.2.2 Applications of correlation

5.2.2.1 Calculations of energy spectral density and energy content of waveforms

It can be shown that

$$
\begin{equation*}
F\left[r_{11}(\tau)\right]=G_{\mathrm{E}}(f) \tag{5.25}
\end{equation*}
$$

where $G_{\mathrm{E}}(f)$ is the energy spectral density of the waveform, that is the energy spectral density and the autocorrelation function constitute a Fourier transform pair.

It can further be shown that

$$
\begin{equation*}
r_{11}(0)=E \tag{5.26}
\end{equation*}
$$

where E is the total energy of the waveform.

