(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(10) International Publication Number WO 2012/009678 A1

(51) International Patent Classification

C07C 237/22 (2006.01) A61K 31/40 (2006.01)
C07C 271/22 (2006.01) A61K 31/415 (2006.01)
C07C 271/44 (2006.01) A61K 31/4164 (2006.01)
A61P 43/00 (2006.01) A61K 31/4192 (2006.01)
A61K 31/16 (2006.01) A61K 31/426 (2006.01)
A61K 31/18 (2006.01) A61K 31/435 (2006.01)
A61K 31/357 (2006.01) A61K 31/495 (2006.01)
A61K 31/381 (2006.01)
(21) International Application Number:

PCT/US2011/044254
(22) International Filing Date:

15 July 2011 (15.07.2011)
(25) Filing Language: English
(26) Publication Language: English
(30) Priority Data:

61/365,072 16 July 2010 (16.07.2010) US
(71) Applicant (for all designated States except US): AGIOS PHARMACEUTICALS, INC. [US/US]; 38 Sidney Street, Cambridge, MA 02139 (US)
(72) Inventors; and
(75) Inventors/Applicants (for US only): POPOVICIMULLER, Janeta [US/US]; 5 Beaver Brook Road, Waltham, MA 02452 (US). SALITURO, Francesco, G. [US/US]; 25 Baker Drive, Marlbourough, MA 01752 (US). SAUNDERS, Jeffrey, O. [US/US]; 117 Seymour Street, Concord, MA 01742 (US). TRAVINS, Jeremey [US/US]; 380 Township Line Road, Downington, PA

19335 (US). YAN, Shunqi [US/US]; 55 Stepping Stone, Irvine, CA 92603 (US).
(74) Agent: McCARTY, Catherine, M.; Landon \& Anastasi, LLP, One Main Street, Eleventh Floor, Cambridge, MA 02142 (US).
(81) Designated States (unless otherwise indicated, for every kind of national protection available): $\mathrm{AE}, \mathrm{AG}, \mathrm{AL}, \mathrm{AM}$, $\mathrm{AO}, \mathrm{AT}, \mathrm{AU}, \mathrm{AZ}, \mathrm{BA}, \mathrm{BB}, \mathrm{BG}, \mathrm{BH}, \mathrm{BR}, \mathrm{BW}, \mathrm{BY}, \mathrm{BZ}$, $\mathrm{CA}, \mathrm{CH}, \mathrm{CL}, \mathrm{CN}, \mathrm{CO}, \mathrm{CR}, \mathrm{CU}, \mathrm{CZ}, \mathrm{DE}, \mathrm{DK}, \mathrm{DM}, \mathrm{DO}$, $\mathrm{DZ}, \mathrm{EC}, \mathrm{EE}, \mathrm{EG}, \mathrm{ES}, \mathrm{FI}, \mathrm{GB}, \mathrm{GD}, \mathrm{GE}, \mathrm{GH}, \mathrm{GM}, \mathrm{GT}$, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

- with international search report (Art. 21(3))

THERAPEUTICALLY ACTIVE COMPOSITIONS AND THEIR METHODS OF USE

BACKGROUND OF INVENTION

Isocitrate dehydrogenases (IDHs) catalyze the oxidative decarboxylation of isocitrate to 2-oxoglutarate (i.e., α-ketoglutarate). These enzymes belong to two distinct subclasses, one of which utilizes $\mathrm{NAD}(+)$ as the electron acceptor and the other $\mathrm{NADP}(+)$. Five isocitrate dehydrogenases have been reported: three $\mathrm{NAD}(+)$-dependent isocitrate dehydrogenases, which localize to the mitochondrial matrix, and two $\operatorname{NADP}(+)$-dependent isocitrate dehydrogenases, one of which is mitochondrial and the other predominantly cytosolic. Each NADP(+)-dependent isozyme is a homodimer.

IDH1 (isocitrate dehydrogenase 1 (NADP+), cytosolic) is also known as IDH; IDP; IDCD; IDPC or PICD. The protein encoded by this gene is the NADP(+)-dependent isocitrate dehydrogenase found in the cytoplasm and peroxisomes. It contains the PTS-1 peroxisomal targeting signal sequence. The presence of this enzyme in peroxisomes suggests roles in the regeneration of NADPH for intraperoxisomal reductions, such as the conversion of 2, 4-dienoylCoAs to 3-enoyl-CoAs, as well as in peroxisomal reactions that consume 2-oxoglutarate, namely the alpha-hydroxylation of phytanic acid. The cytoplasmic enzyme serves a significant role in cytoplasmic NADPH production.

The human IDH1 gene encodes a protein of 414 amino acids. The nucleotide and amino acid sequences for human IDH1 can be found as GenBank entries NM_005896.2 and NP_005887.2 respectively. The nucleotide and amino acid sequences for IDH1 are also described in, e.g., Nekrutenko et al., Mol. Biol. Evol. 15:1674-1684(1998); Geisbrecht et al., J. Biol. Chem. 274:30527-30533(1999); Wiemann et al., Genome Res. 11:422-435(2001); The MGC Project Team, Genome Res. 14:2121-2127(2004); Lubec et al., Submitted (DEC-2008) to UniProtKB; Kullmann et al., Submitted (JUN-1996) to the EMBL/GenBank/DDBJ databases; and Sjoeblom et al., Science 314:268-274(2006).

Non-mutant, e.g., wild type, IDH1 catalyzes the oxidative decarboxylation of isocitrate to α-ketoglutarate thereby reducing $\mathrm{NAD}^{+}\left(\mathrm{NADP}^{+}\right)$to $\mathrm{NADP}(\mathrm{NADPH})$, e.g., in the forward reaction:

$$
\text { Isocitrate }+\mathrm{NAD}^{+}\left(\mathrm{NADP}^{+}\right) \rightarrow \alpha-\mathrm{KG}+\mathrm{CO}_{2}+\mathrm{NADH}(\mathrm{NADPH})+\mathrm{H}^{+} .
$$

It has been discovered that mutations of IDH1 present in certain cancer cells result in a new ability of the enzyme to catalyze the NAPH-dependent reduction of α-ketoglutarate to $R(-)$ -2-hydroxyglutarate (2 HG). The production of 2 HG is believed to contribute to the formation and progression of cancer (Dang, L et al, Nature 2009, 462:739-44).

The inhibition of mutant IDH1 and its neoactivity is therefore a potential therapeutic treatment for cancer. Accordingly, there is an ongoing need for inhibitors of IDH1 mutants having alpha hydroxyl neoactivity.

SUMMARY OF INVENTION

Described herein are methods of treating a cancer characterized by the presence of a mutant allele of IDH1. The methods comprise the step of administering to a subject in need thereof a compound of formula I, or a pharmaceutically acceptable salt thereof, wherein:

V and W are independently $=\mathrm{O}$ or CF_{3};
R^{1} is selected from $\mathrm{C}_{2}-\mathrm{C}_{6}$ alkyl, $-\left(\mathrm{C}_{1}-\mathrm{C}_{3}\right.$ alkylene $)-\mathrm{O}-\left(\mathrm{C}_{1}-\mathrm{C}_{3}\right.$ alkyl $)$, carbocyclyl, $-\left(\mathrm{C}_{1}-\mathrm{C}_{2}\right.$ alkylene)-(carbocyclyl), aryl, -($\mathrm{C}_{1}-\mathrm{C}_{2}$ alkylene)-(aryl), $-\left(\mathrm{C}_{1}-\mathrm{C}_{2}\right.$ alkylene)-(heteroaryl), and -($\mathrm{C}_{1}-$ C_{2} alkylene)-(heterocyclyl);
R^{2} is selected from $\mathrm{C}_{4}-\mathrm{C}_{8}$ alkyl, carbocyclyl, aryl, heterocyclyl, heteroaryl, $-\left(\mathrm{C}_{1}-\mathrm{C}_{4}\right.$ alkylene)-(aryl), and -($\mathrm{C}_{1}-\mathrm{C}_{4}$ alkylene)-(heteroaryl);
R^{3} is selected from $\mathrm{C}_{2}-\mathrm{C}_{6}$ alkyl optionally substituted with $=\mathrm{O}$ or $-\mathrm{OH} ; \mathrm{C}_{2}-\mathrm{C}_{6}$ alkenyl; -($\mathrm{C}_{1}-\mathrm{C}_{3}$ alkylene)-O-($\mathrm{C}_{1}-\mathrm{C}_{3}$ alkyl $)$; carbocyclyl; aryl, heterocyclyl, heteroaryl, -($\mathrm{C}_{1}-\mathrm{C}_{2}$ alkylene)(carbocyclyl), -($\mathrm{C}_{1}-\mathrm{C}_{2}$ alkylene)-(aryl), -($\mathrm{C}_{1}-\mathrm{C}_{2}$ alkylene)-(heterocyclyl), and -($\mathrm{C}_{1}-\mathrm{C}_{2}$ alkylene)(heteroaryl);
R^{4} is selected from $-\mathrm{CF}_{3},-\mathrm{CH}_{2}-\mathrm{O}-\mathrm{CH}_{3}$ and $-\mathrm{R}^{5}-\mathrm{R}^{6}-\mathrm{R}^{7}$, wherein:
R^{5} is selected from a bond; $\mathrm{C}_{1}-\mathrm{C}_{3}$ straight or branched alkyl wherein one methylene unit in the alkyl of R^{5} is optionally replaced with -O-, -S - or - $\mathrm{S}(\mathrm{O})$; and $\mathrm{C}_{2}-\mathrm{C}_{3}$ alkenyl or alkynyl;
R^{6} is selected from a bond, $-\mathrm{NH}-\mathrm{C}(\mathrm{O})-,-\mathrm{C}(\mathrm{O})-\mathrm{NH}-,-\mathrm{NH}-\mathrm{S}(\mathrm{O})_{1-2^{-}},-\mathrm{S}(\mathrm{O})_{1-2}-\mathrm{NH}-$, and tetrazolyl;
R^{7} is a carbocyclyl, aryl, heterocyclyl, or heteroaryl;
R^{8} is selected from hydrogen and $C_{1}-C_{4}$ alkyl; or R^{8} and R^{1} are taken together with the nitrogen atom to form a 5-12 membered heterocyclyl; and
R^{9} is selected from hydrogen and $C_{1}-C_{4}$ alkyl; or R^{9} and R^{2} are taken together to form a 6-12 membered carbocyclyl or a 5-12 membered heterocyclyl; or
wherein any carbocyclyl, aryl, heterocyclyl or heteroaryl is optionally substituted with one or more substituents.

The compound of formula I inhibits mutant IDH1, particularly mutant IDH1 having alpha hydroxyl neoactivity. Also described herein are pharmaceutical compositions comprising a compound of formula I.

DETAILED DESCRIPTION OF THE INVENTION

This invention is not limited in its application to the details of construction and the arrangement of components set forth in the following description or illustrated in the drawings. The invention is capable of other embodiments and of being practiced or of being carried out in various ways. Also, the phraseology and terminology used herein is for the purpose of description and should not be regarded as limiting. The use of "including," "comprising," or "having," "containing", "involving", and variations thereof herein, is meant to encompass the items listed thereafter and equivalents thereof as well as additional items.

Definitions:

The term "halo" or "halogen" refers to any radical of fluorine, chlorine, bromine or iodine.

The term "alkyl" refers to a hydrocarbon chain that may be a straight chain or branched chain, containing the indicated number of carbon atoms. For example, $\mathrm{C}_{1}-\mathrm{C}_{12}$ alkyl indicates that the group may have from 1 to 12 (inclusive) carbon atoms in it. The term "haloalkyl" refers to an alkyl in which one or more hydrogen atoms are replaced by halo, and includes alkyl moieties in which all hydrogens have been replaced by halo (e.g., perfluoroalkyl). The terms "arylalkyl" or "aralkyl" refer to an alkyl moiety in which an alkyl hydrogen atom is replaced by an aryl group. Aralkyl includes groups in which more than one hydrogen atom has been replaced
by an aryl group. Examples of "arylalkyl" or "aralkyl" include benzyl, 2-phenylethyl, 3phenylpropyl, 9-fluorenyl, benzhydryl, and trityl groups.

The term "alkylene" refers to a divalent alkyl, e.g., $-\mathrm{CH}_{2}$-, $-\mathrm{CH}_{2} \mathrm{CH}_{2}$-, and $-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$ -
The term "alkenyl" refers to a straight or branched hydrocarbon chain containing 2-12 carbon atoms and having one or more double bonds. Examples of alkenyl groups include, but are not limited to, allyl, propenyl, 2-butenyl, 3-hexenyl and 3-octenyl groups. One of the double bond carbons may optionally be the point of attachment of the alkenyl substituent. The term "alkynyl" refers to a straight or branched hydrocarbon chain containing 2-12 carbon atoms and characterized in having one or more triple bonds. Examples of alkynyl groups include, but are not limited to, ethynyl, propargyl, and 3-hexynyl. One of the triple bond carbons may optionally be the point of attachment of the alkynyl substituent.

The term "alkoxy" refers to an -O-alkyl radical. The term "haloalkoxy" refers to an alkoxy in which one or more hydrogen atoms are replaced by halo, and includes alkoxy moieties in which all hydrogens have been replaced by halo (e.g., perfluoroalkoxy).

The term "carbocyclyl" refers to a monocyclic, bicyclic or tricyclic, hydrocarbon ring system that is not fully aromatic, wherein any ring atom capable of substitution can be substituted by one or more substituents. A carbocyclyl can be fully or partially saturated. A bicyclic or tricylic carbocyclyl may contain one (in the case of a bicycle) or up to two (in the case of a tricycle) aromatic rings, as long as at least one ring in the carbocyclyl is non-aromatic. Unless otherwise specified, any ring atom capable of substitution in a carbocyclyl can be substituted by one or more substituents.

The term "aryl" refers to a fully aromatic monocyclic, bicyclic, or tricyclic hydrocarbon ring system. Examples of aryl moieties are phenyl, naphthyl, and anthracenyl. Unless otherwise specified, any ring atom in an aryl can be substituted by one or more substituents.

The term "cycloalkyl" as employed herein refers to a saturated cyclic, bicyclic, tricyclic, or polycyclic hydrocarbon group. Unless otherwise specified, any ring atom can be substituted by one or more substituents. The cycloalkyl groups can contain fused rings. Fused rings are rings that share a common carbon atom. Examples of cycloalkyl moieties include, but are not limited to, cyclopropyl, cyclohexyl, methylcyclohexyl, adamantyl, and norbornyl. Unless otherwise specified, any ring atom can be substituted by one or more substituents.

The term "heterocyclyl" refers to a monocyclic, bicyclic or tricyclic, ring structure that is not fully aromatic and includes one to four heteroatoms independently selected from N, O, or S in one or more of the rings. A heterocyclyl can be fully or partially saturated. A bicyclic or tricylic heterocyclyl may contain one (in the case of a bicycle) or up to two (in the case of a tricycle) aromatic rings, as long as at least one ring in the heterocyclyl is non-aromatic. Unless otherwise specified, any ring atom capable of substitution in a heterocyclyl can be substituted by one or more substituents. Heterocyclyl groups include, for example, thiophene, thianthrene, furan, pyran, isobenzofuran, chromene, xanthene, phenoxathiin, pyrrole, imidazole, pyrazole, isothiazole, isoxazole, pyridine, pyrazine, pyrimidine, pyridazine, indolizine, isoindole, indole, indazole, purine, quinolizine, isoquinoline, quinoline, phthalazine, naphthyridine, quinoxaline, quinazoline, cinnoline, pteridine, carbazole, carboline, phenanthridine, acridine, pyrimidine, phenanthroline, phenazine, phenarsazine, phenothiazine, furazan, phenoxazine, pyrrolidine, oxolane, thiolane, oxazole, piperidine, piperazine, morpholine, lactones, lactams such as azetidinones and pyrrolidinones, sultams, sultones, and the like.

The term "heteroaryl" refers to a monocyclic, bicyclic, or tricyclic ring system having 1-3 heteroatoms if monocyclic, 1-6 heteroatoms if bicyclic, or 1-9 heteroatoms if tricyclic, said heteroatoms independently selected from O, N, or S , wherein each ring in a heteroaryl is fully aromatic. Unless otherwise specified, any ring atom capable of substitution in a heteroaryl can be substituted by one or more substituents. The terms "hetaralkyl" and "heteroaralkyl", as used herein, refers to an alkyl group substituted with a heteroaryl group. The ring heteroatoms of the compounds provided herein include $\mathrm{N}-\mathrm{O}, \mathrm{S}(\mathrm{O})$, and $\mathrm{S}(\mathrm{O})_{2}$.

The term "substituted" refers to the replacement of a hydrogen atom with another moiety. Typical substituents include alkyl (e.g., C1, C2, C3, C4, C5, C6, C7, C8, C9, C10, C11, C12 straight or branched chain alkyl), cycloalkyl, haloalkyl (e.g., perfluoroalkyl such as CF_{3}), aryl, heteroaryl, aralkyl, heteroaralkyl, heterocyclyl, alkenyl, alkynyl, cycloalkenyl, heterocycloalkenyl, alkoxy, haloalkoxy (e.g., perfluoroalkoxy such as OCF_{3}), halo, hydroxy, carboxy, carboxylate, cyano, nitro, amino, alkyl amino, $\mathrm{SO}_{3} \mathrm{H}$, sulfate, phosphate, methylenedioxy ($-\mathrm{O}-\mathrm{CH}_{2}$-O- wherein oxygens are attached to vicinal atoms), ethylenedioxy, oxo (not a substituent on heteroaryl), thioxo (e.g., $\mathrm{C}=\mathrm{S}$) (not a substituent on heteroaryl), imino (alkyl, aryl, aralkyl), $\mathrm{S}(\mathrm{O})_{\mathrm{n}}$ alkyl (where n is $0-2$), $\mathrm{S}(\mathrm{O})_{\mathrm{n}}$ aryl (where n is $0-2$), $\mathrm{S}(\mathrm{O})_{\mathrm{n}}$ heteroaryl
(where n is $0-2$), $\mathrm{S}(\mathrm{O})_{\mathrm{n}}$ heterocyclyl (where n is $0-2$), amine (mono-, di-, alkyl, cycloalkyl, aralkyl, heteroaralkyl, aryl, heteroaryl, and combinations thereof), ester (alkyl, aralkyl, heteroaralkyl, aryl, heteroaryl), amide (mono-, di-, alkyl, aralkyl, heteroaralkyl, aryl, heteroaryl, and combinations thereof), sulfonamide (mono-, di-, alkyl, aralkyl, heteroaralkyl, and combinations thereof). In one aspect, the substituents on a group are independently any one single, or any subset of the aforementioned substituents. In another aspect, a substituent may itself be substituted with any one of the above substituents.

As used herein, the term "elevated levels of 2 HG " means $10 \%, 20 \% 30 \%, 50 \%, 75 \%$, $100 \%, 200 \%, 500 \%$ or more 2 HG then is present in a subject that does not carry a mutant IDH1 allele. The term "elevated levels of 2 HG " may refer to the amount of 2 HG within a cell, within a tumor, within an organ comprising a tumor, or within a bodily fluid.

The term "bodily fluid" includes one or more of amniotic fluid surrounding a fetus, aqueous humour, blood (e.g., blood plasma), serum, Cerebrospinal fluid, cerumen, chyme, Cowper's fluid, female ejaculate, interstitial fluid, lymph, breast milk, mucus (e.g., nasal drainage or phlegm), pleural fluid, pus, saliva, sebum, semen, serum, sweat, tears, urine, vaginal secretion, or vomit.

As used herein, the terms "inhibit" or "prevent" include both complete and partial inhibition and prevention. An inhibitor may completely or partially inhibit.

The term "treat" means decrease, suppress, attenuate, diminish, arrest, or stabilize the development or progression of a cancer (e.g., a cancer delineated herein), lessen the severity of the cancer or improve the symptoms associated with the cancer.

As used herein, an amount of a compound effective to treat a disorder, or a "therapeutically effective amount" refers to an amount of the compound which is effective, upon single or multiple dose administration to a subject, in treating a cell, or in curing, alleviating, relieving or improving a subject with a disorder beyond that expected in the absence of such treatment.

As used herein, the term "subject" is intended to include human and non-human animals. Exemplary human subjects include a human patient having a disorder, e.g., a disorder described herein or a normal subject. The term "non-human animals" of the invention includes all vertebrates, e.g., non-mammals (such as chickens, amphibians, reptiles) and mammals, such as
non-human primates, domesticated and/or agriculturally useful animals, e.g., sheep, dog, cat, cow, pig, etc.

Compounds

Provided is a compound having formula A:

(A), or a pharmaceutically acceptable salt thereof, wherein:

V and W are independently $=\mathrm{O}$ or CF_{3};
R^{1} is selected from $\mathrm{C}_{2}-\mathrm{C}_{6}$ alkyl, $-\left(\mathrm{C}_{1}-\mathrm{C}_{3}\right.$ alkylene $)$ - $\mathrm{O}-\left(\mathrm{C}_{1}-\mathrm{C}_{3}\right.$ alkyl), carbocyclyl, $-\left(\mathrm{C}_{1}-\mathrm{C}_{2}\right.$ alkylene)-(carbocyclyl), aryl, -($\mathrm{C}_{1}-\mathrm{C}_{2}$ alkylene)-(aryl), -($\mathrm{C}_{1}-\mathrm{C}_{2}$ alkylene)-(heteroaryl), and -($\mathrm{C}_{1^{-}}$ C_{2} alkylene)-(heterocyclyl);
R^{2} is selected from $C_{4}-C_{8}$ alkyl, carbocyclyl, aryl, heterocyclyl, heteroaryl, -($\mathrm{C}_{1}-\mathrm{C}_{4}$ alkylene)-(aryl), and -($\mathrm{C}_{1}-\mathrm{C}_{4}$ alkylene)-(heteroaryl);
R^{3} is selected from $\mathrm{C}_{2}-\mathrm{C}_{6}$ alkyl optionally substituted with $=\mathrm{O}$ or $-\mathrm{OH} ; \mathrm{C}_{2}-\mathrm{C}_{6}$ alkenyl; -($\mathrm{C}_{1}-\mathrm{C}_{3}$ alkylene)-O-($\mathrm{C}_{1}-\mathrm{C}_{3}$ alkyl); carbocyclyl; aryl; heterocyclyl; heteroaryl; -($\mathrm{C}_{1}-\mathrm{C}_{2}$ alkylene)(carbocyclyl); -($\mathrm{C}_{1}-\mathrm{C}_{2}$ alkylene)-(aryl); -($\mathrm{C}_{1}-\mathrm{C}_{2}$ alkylene)-(heterocyclyl); and -($\mathrm{C}_{1}-\mathrm{C}_{2}$ alkylene)(heteroaryl);
R^{4} is selected from $-\mathrm{CF}_{3},-\mathrm{CH}_{2}-\mathrm{O}-\mathrm{CH}_{3},-\mathrm{CH}_{2} \mathrm{Cl},-\mathrm{C}\left(\mathrm{R}^{11}\right)-\mathrm{N}\left(\mathrm{R}^{11}\right)-\mathrm{C}(\mathrm{O})-\mathrm{O}-\left(\mathrm{C}_{1}-\mathrm{C}_{4}\right.$ alkyl $)$ and $-R^{5}-R^{6}-R^{7}$, wherein:
R^{5} is selected from a bond; $C_{1}-C_{3}$ straight or branched alkyl wherein one methylene unit in the alkyl of R^{5} is optionally replaced with -O-, $-\mathrm{S}-,-\mathrm{S}(\mathrm{O})$ - or $-\mathrm{S}(\mathrm{O})_{2}-$; and $\mathrm{C}_{2}-\mathrm{C}_{3}$ alkenyl or alkynyl;
R^{6} is selected from a bond, $-\mathrm{N}\left(\mathrm{R}^{11}\right)-\mathrm{C}(\mathrm{O})-,-\mathrm{C}(\mathrm{O})-\mathrm{N}\left(\mathrm{R}^{11}\right)-,-\mathrm{N}\left(\mathrm{R}^{11}\right)-\mathrm{S}(\mathrm{O})_{1-2^{-}}$, $-\mathrm{S}(\mathrm{O})_{1-2}-\mathrm{N}\left(\mathrm{R}^{11}\right)^{1}$-, -NH-, - $\mathrm{N}\left(\mathrm{C}_{1}-\mathrm{C}_{3}\right.$ alkyl $)$-, and tetrazolyl;
R^{7} is a carbocyclyl, aryl, heterocyclyl, or heteroaryl;
R^{8} is selected from hydrogen and $\mathrm{C}_{1}-\mathrm{C}_{4}$ alkyl; or R^{8} and R^{1} are taken together with the nitrogen atom to form a 5-12 membered heterocyclyl;
R^{9} is selected from hydrogen and $C_{1}-C_{4}$ alkyl; or R^{9} and R^{2} are taken together to form a 6-12 membered carbocyclyl or a 5-12 membered heterocyclyl; and
each R^{11} is independently hydrogen or methyl,
wherein any carbocyclyl, aryl, heterocyclyl or heteroaryl is optionally substituted with one or more substituents; and wherein any hydrogen atom is replaced with deuterium.

In one embodiment, the compound has formula I:

(I), or a pharmaceutically acceptable salt thereof, wherein:

V and W are independently $=\mathrm{O}$ or CF_{3};
R^{1} is selected from $\mathrm{C}_{2}-\mathrm{C}_{6}$ alkyl, $-\left(\mathrm{C}_{1}-\mathrm{C}_{3}\right.$ alkylene $)$ - $\mathrm{O}-\left(\mathrm{C}_{1}-\mathrm{C}_{3}\right.$ alkyl $)$, carbocyclyl, $-\left(\mathrm{C}_{1}-\mathrm{C}_{2}\right.$ alkylene)-(carbocyclyl), aryl, -($\mathrm{C}_{1}-\mathrm{C}_{2}$ alkylene)-(aryl), $-\left(\mathrm{C}_{1}-\mathrm{C}_{2}\right.$ alkylene)-(heteroaryl), and -($\mathrm{C}_{1}-$ C_{2} alkylene)-(heterocyclyl);
R^{2} is selected from $C_{4}-C_{8}$ alkyl, carbocyclyl, aryl, heterocyclyl, heteroaryl, $-\left(C_{1}-C_{4}\right.$ alkylene)-(aryl), and -($\mathrm{C}_{1}-\mathrm{C}_{4}$ alkylene)-(heteroaryl);
R^{3} is selected from $\mathrm{C}_{2}-\mathrm{C}_{6}$ alkyl optionally substituted with $=\mathrm{O}$ or $-\mathrm{OH} ; \mathrm{C}_{2}-\mathrm{C}_{6}$ alkenyl; -($\mathrm{C}_{1}-\mathrm{C}_{3}$ alkylene)-O-($\mathrm{C}_{1}-\mathrm{C}_{3}$ alkyl $)$; carbocyclyl; aryl, heterocyclyl, heteroaryl, -($\mathrm{C}_{1}-\mathrm{C}_{2}$ alkylene)(carbocyclyl), -($\mathrm{C}_{1}-\mathrm{C}_{2}$ alkylene)-(aryl), -($\mathrm{C}_{1}-\mathrm{C}_{2}$ alkylene)-(heterocyclyl), and -($\mathrm{C}_{1}-\mathrm{C}_{2}$ alkylene)(heteroaryl);
R^{4} is selected from $-\mathrm{CF}_{3},-\mathrm{CH}_{2}-\mathrm{O}-\mathrm{CH}_{3}$ and $-\mathrm{R}^{5}-\mathrm{R}^{6}-\mathrm{R}^{7}$, wherein:
R^{5} is selected from a bond; $\mathrm{C}_{1}-\mathrm{C}_{3}$ straight or branched alkyl wherein one methylene unit in the alkyl of R^{5} is optionally replaced with -O-, -S - or $-\mathrm{S}(\mathrm{O})$; and $\mathrm{C}_{2}-\mathrm{C}_{3}$ alkenyl or alkynyl;
R^{6} is selected from a bond, $-\mathrm{NH}-\mathrm{C}(\mathrm{O})_{-},-\mathrm{C}(\mathrm{O})-\mathrm{NH}-,-\mathrm{NH}-\mathrm{S}(\mathrm{O})_{1-2^{-}},-\mathrm{S}(\mathrm{O})_{1-2}-\mathrm{NH}-$, and tetrazolyl;
R^{7} is a carbocyclyl, aryl, heterocyclyl, or heteroaryl;
R^{8} is selected from hydrogen and $C_{1}-C_{4}$ alkyl; or R^{8} and R^{1} are taken together with the nitrogen atom to form a 5-12 membered heterocyclyl; and
R^{9} is selected from hydrogen and $C_{1}-C_{4}$ alkyl; or R^{9} and R^{2} are taken together to form a 6-12 membered carbocyclyl or a 5-12 membered heterocyclyl; or wherein any carbocyclyl, aryl, heterocyclyl or heteroaryl is optionally substituted with one or more substituents.

In one embodiment of formula A or I, V is CF_{3} and W is $=\mathrm{O}$. In another embodiment, W is CF_{3} and V is $=\mathrm{O}$.

Provided also is a compound having formula $I-a$, or a pharmaceutically acceptable salt thereof, wherein $R^{1}, R^{2}, R^{3}, R^{4}, R^{8}$ and R^{9} are as defined in formula I.

Provided also is a compound having formula I-b, or a pharmaceutically acceptable salt thereof, wherein $R^{1}, R^{2}, R^{3}, R^{4}, R^{8}$ and R^{9} are as defined in formula A.

In another embodiment, any carbocyclyl, aryl, heterocyclyl or heteroaryl in formula A, I, I-a or I-b is optionally substituted with one or more substituents independently selected from $=0$, $-\mathrm{C}(\mathrm{O})-\left(\mathrm{C}_{1}-\mathrm{C}_{3}\right.$ alkyl $),-\mathrm{C}(\mathrm{O})-\mathrm{N}\left(\mathrm{R}^{10}\right)_{2},-\mathrm{C}(\mathrm{O})-\mathrm{O}-\left(\mathrm{C}_{1}-\mathrm{C}_{3}\right.$ alkyl), $-\mathrm{C}_{1}-\mathrm{C}_{4}$ alkoxy, $-\mathrm{C}_{1}-\mathrm{C}_{4}$ alkyl, $-\mathrm{C}_{1}-\mathrm{C}_{4}$ haloalkyl, $-\mathrm{C}_{2}-\mathrm{C}_{4}$ alkenyl or alkynyl, $-\mathrm{C}_{3}-\mathrm{C}_{8}$ cycloalkyl, halo, morpholinomethyl, morpholinosulfonyl, morpholinyl, $-\mathrm{N}\left(\mathrm{R}^{10}\right)_{2},-\mathrm{NH}-\mathrm{C}(\mathrm{O})-\left(\mathrm{C}_{1}-\mathrm{C}_{3}\right.$ alkyl $),-\mathrm{O}-\mathrm{CH}_{2}-\mathrm{C}(\mathrm{O})-\mathrm{N}\left(\mathrm{R}^{10}\right)_{2}$, -OH, -O-phenyl, phenyl, $-\mathrm{S}(\mathrm{O})_{2}$-piperidin-1-yl, and tetrazolyl; wherein each R^{10} is independently selected from hydrogen, $\mathrm{C}_{1}-\mathrm{C}_{3}$ alkyl, and $\mathrm{C}_{3}-\mathrm{C}_{8}$ cycloalkyl; and any cycloalkyl, phenyl or piperidinyl portion of a substituent is optionally further substituted with one or more substituents independently selected from halo, $\mathrm{C}_{1}-\mathrm{C}_{3}$ alkyl, CF_{3}, $-\mathrm{NH}_{2}$, and $\mathrm{C}_{1}-\mathrm{C}_{4}$ alkoxy.

In another embodiment of Formula A, I, I-a or I-b:
any carbocyclyl, aryl, heterocyclyl or heteroaryl portion of R^{1} is optionally substituted with halo, or $\mathrm{C}_{1}-\mathrm{C}_{4}$ alkoxy;
the carbocyclyl, aryl, heterocyclyl or heteroaryl in R^{2} is optionally substituted with one or more substitutents independently selected from $=\mathrm{O},-\mathrm{OH}$, halo, $\mathrm{C}_{1}-\mathrm{C}_{4}$ alkyl, $\mathrm{C}_{1}-\mathrm{C}_{4}$ alkoxy, morpholinyl, $-\mathrm{N}\left(\mathrm{R}^{8}\right)_{2}$ and $-\mathrm{O}-\mathrm{CH}_{2}-\mathrm{C}(\mathrm{O})-\mathrm{N}\left(\mathrm{R}^{8}\right)_{2}$;
any carbocyclyl, aryl, heterocyclyl or heteroaryl in R^{3} is optionally substituted with one or more substitutents independently selected from - OH , halo, $\mathrm{C}_{1}-\mathrm{C}_{4}$ alkyl, $\mathrm{C}_{1}-\mathrm{C}_{4}$ haloalkyl, $\mathrm{C}_{1}-\mathrm{C}_{4}$ alkoxy, $-\mathrm{NH}-\mathrm{C}(\mathrm{O})-\left(\mathrm{C}_{1}-\mathrm{C}_{3}\right.$ alkyl), $-\mathrm{C}(\mathrm{O})-\left(\mathrm{C}_{1}-\mathrm{C}_{3}\right.$ alkyl), $-\mathrm{C}(\mathrm{O})-\mathrm{O}-\left(\mathrm{C}_{1}-\mathrm{C}_{3}\right.$ alkyl), tetrazolyl, $\mathrm{C}_{3}-\mathrm{C}_{8}$ cycloalkyl, phenyl, -O-phenyl, and - $\mathrm{S}(\mathrm{O})_{2}$-piperidin-1-yl;
any cycloalkyl, phenyl or piperidinyl portion of a substituent of R^{3} is optionally further substituted with one or more substituents independently selected from halo, $\mathrm{C}_{1}-\mathrm{C}_{3}$ alkyl, CF_{3}, $-\mathrm{NH}_{2}$, and $\mathrm{C}_{1}-\mathrm{C}_{4}$ alkoxy; and
R^{7} is optionally substituted with one or more substituents independently selected from $=\mathrm{O}$, - OH, halo, $\mathrm{C}_{1}-\mathrm{C}_{4}$ alkyl, $\mathrm{C}_{2}-\mathrm{C}_{4}$ alkenyl or alkynyl, $\mathrm{C}_{1}-\mathrm{C}_{4}$ haloalkyl, $-\mathrm{C}(\mathrm{O})-\mathrm{N}\left(\mathrm{R}^{8}\right)_{2},-\mathrm{N}\left(\mathrm{R}^{8}\right)_{2}$, $\mathrm{C}_{1}-\mathrm{C}_{4}$ alkoxy, morpholinomethyl, morpholinosulfonyl, and phenyl, wherein the phenyl substituent of R^{7} is optionally further substituted with one or more substituents independently selected from halo, $\mathrm{C}_{1}-\mathrm{C}_{3}$ alkyl, $\mathrm{CF}_{3},-\mathrm{NH}_{2}$, and $\mathrm{C}_{1}-\mathrm{C}_{4}$ alkoxy.

In another embodiment of Formula A, I, I-a or I-b, R^{1} is piperazinyl, morpholinyl, thiomorpholinyl, tetrahydrothiopyranyl, tetrahydropyranyl, piperidinyl, pyrrolidinyl, or tetrahydrofuranyl, wherein each member of R^{1} is optionally substituted.

In another embodiment of Formula A, I, I-a or I-b, R^{2} is selected from carbocyclyl, aryl, heterocyclyl, and heteroaryl, wherein each member of R^{2} is optionally substituted.

In another embodiment of Formula A, I, I-a or I-b, R^{3} is carbocyclyl; aryl, heterocyclyl, heteroaryl, -($\mathrm{C}_{1}-\mathrm{C}_{2}$ alkylene)-(carbocyclyl), -($\mathrm{C}_{1}-\mathrm{C}_{2}$ alkylene)-(aryl), -($\mathrm{C}_{1}-\mathrm{C}_{2}$ alkylene)(heterocyclyl), and -($\mathrm{C}_{1}-\mathrm{C}_{2}$ alkylene)-(heteroaryl), wherein each member of R^{3} is optionally substituted.

In another embodiment of Formula A, I, I-a or I-b, R^{3} is cyclopropyl, cyclopentyl, cyclohexyl or benzyl, wherein each member of R^{3} is optionally substituted.

In another embodiment of Formula $A, I, I-a$ or $I-b,-R^{5}-R^{6}-R^{7}$ is not phenyl or N -methyleneisoindoline-1,3-dione.

In another embodiment of Formula A, I, I-a or I-b, R^{6} is not $-\mathrm{NHC}(\mathrm{O})$-.
In another embodiment of Formula A, I, I-a or I-b, R^{8} and R^{1} are taken together with the nitrogen atom to form a 5-12 membered heterocyclyl. In one aspect of this embodiment, R^{2} is selected from carbocyclyl, aryl, heterocyclyl, and heteroaryl. In another aspect of this
embodiment, $-\mathrm{R}^{5}-\mathrm{R}^{6}-\mathrm{R}^{7}$ is not phenyl or N -methyleneisoindoline-1,3-dione. In another aspect of this embodiment, R^{6} is not $-\mathrm{NHC}(\mathrm{O})$.

In another embodiment of Formula A, I, I-a or I-b, R ${ }^{9}$ is H. In another embodiment, R^{9} is methyl or ethyl.

In another embodiment of Formula A, I, I-a or I-b, R^{9} and R^{2} are taken together to form a 6-12 membered carbocyclyl or a 5-12 membered heterocyclyl, wherein carbocyclyl or heterocyclyl is optionally substituted.

In another embodiment, provided is a compound of Formula I-c, or a pharmaceutically acceptable salt thereof.

I-c, wherein:
R^{1} is selected from a $\mathrm{C}_{4}-\mathrm{C}_{7}$ monocyclic or bicyclic cycloalkyl optionally substituted on a single carbon atom with 1 to 2 fluoro; tetrahydropyranyl, pyrrolidinyl, phenyl, and t-butyl, wherein the phenyl and pyrrolidinyl are optionally substituted;
R^{2} is selected from phenyl, biphenyl, thien-2-yl, and furanyl, wherein R^{2} is optionally substituted;
R^{3} is selected from phenyl, biphenyl, pyridinyl, thiazolylmethyl, thienylmethyl, cyclohexyl and pyrazolyl, wherein any phenyl, biphenyl, pyridinyl, thiazolyl, thienyl, cyclohexyl or pyrazolyl portion of R^{3} is optionally substituted; and
R^{4} is as defined in formula A.
In certain embodiments of Formula I-c, R^{1} is selected from cyclohexyl, cyclopentyl, cycloheptyl, cyclobutyl, 3,3-difluorocyclobutyl, 4,4,-difluorocyclohexyl, bicyclo[2.2.1]heptanyl, tertahydropyran-3-yl, tertahydropyran-4-yl, 1-t-butoxycarbonylpyrrolidin-3-yl, t-butyl, 2bromophenyl, 2-methylphenyl, and bicyclo[3.1.0]hexan-3-yl.

In certain embodiments of Formula I-c, R^{2} is selected from phenyl, 2-methylphenyl, 2fluorphenyl, 2-chlorophenyl, 2-bromophenyl, 2-bromo-5-fluorophenyl, 2,5-dichlorophenyl, 2-fluoro-5-methylphenyl, thien-2-yl, 4-fluorophenyl, 5-bromofuran-2-yl, 3-methylthien-2-yl, 2,4,5trifluorophenyl, 3-fluoro-5-chlorophenyl, 2,5-difluoro-6-chlorophenyl, 3-chlorophenyl, 3-
fluorophenyl, 3-methylphenyl, 2,6-dimethylphenyl, 3-bromopohenyl, 2-ethylphenyl, 2nitrophenyl, 3'-methoxybiphenyl-3-yl, 2,5-dibromo-6-fluorophenyl, 2-trifluoromethylphenyl, 4hydoxyphenyl, 3-hydroxyphenyl, 2-hydroxyphenyl, 2-methoxyphenyl, and 2-fluoro-5methoxyphenyl.

In certain embodiments of Formula I-c, R^{3} is selected from 3-fluorophenyl, 3methylphenyl, 3-chlorophenyl, thien-2-ylmethyl, 3-(1-methyl-1H-pyrazol-4-yl)phenyl, 1-methyl-1H-pyrazol-3-yl, 4-chlorophenyl, 3-acetylaminophenyl, 3'-trifluoromethoxy-biphenyl-3-yl, pyridin-3-yl, 4-fluorophenyl, thiazol-2-ylmethyl, cyclohexyl, 2-methylphenyl, 3-fluoro-4methylphenyl, 2-fluorophenyl, 2-chlorophenyl, 2-bromophenyl, phenyl, 3-bromophenyl, 2fluorophenyl, 3-chloro-4-methylphenyl, 3-(pyriminidin-5-yl)phenyl, biphenyl-3-yl, 3trifluoromethylphenyl, 3,4-methylenedioxyphenyl, 3,4-ethylenedioxyphenyl, 3-aminophenyl, 3ethylcarbonylaminophenyl, 3-t-butoxycarbonylaminophenyl, 3-chloro-4-bromophenyl, 4methlyphenyl, 3-methoxyphenyl, 3-(1-methyl-1H-pyrazol-5-yl)phenyl, 3methoxycarbonylaminophenyl, 3-cetylphenyl, 3-(morpholin-4-yl)phenyl, 3,4-difluorophenyl, and 3-(4-t-butoxycarbonylpiperazin-1-yl)phenyl.

In some embodiments, R^{4} is selected from 1-(methylmethoxycarbonylamino)ethyl, 1,2,3,4-tetrahydroquinolin-1-yl, 1-ethoxycarbonylpiperidin-2-yl, 1-ethoxycarbonylpyrrolidin-2-yl, 1H-benzimidazol-1-ylmethyl, 1H-indazol-3-ylmethyl, indolin-1-ylmethyl, 1H-indol-3-ylmethyl, 1H-indol-5-ylmethyl,

1H-pyrrolo[2,3-b]pyridine-3-ylmethyl, 1H-pyrrolo[3,2-b]pyridin-3-ylmethyl,
1-methoxycarbonylpiperidin-2-yl, 1-methoxycarbonylpyrrolidin-2-yl,
2-fluoropyridin-3-ylaminomethyl, 2-imino-4-fluoropyridin-1-ylmethyl,
2-methoxyphenylaminomethyl, 2-methyl-1H-benzimidazol-1-ylmethyl,
2-methylimidazol-1-ylmethyl, 2-trifluoromethyl-1H-imidazol-1-yl, 3-cyanophenylaminomethyl, 3-fluoropyridin-2-ylaminomethyl, 3-methoxyphenylaminomethyl,
4-(1,3,4-oxadiazole-2-yl)phenylaminomethyl, 4-(dimethylaminocarbonyloxy)phenylmethyl, 4,5-dichloroimidazol-1-ylmethyl, 4-cyanophenylaminomethyl, 4-fluorophenylaminomethyl, 4-fluoropyridin-2-ylaminomethyl, 4-hydroxyphenylmethyl, 4-methoxycarbonylmorpholin-3-yl, 4-methoxycarbonylpiperazin-1-ylmethyl, 4-methoxyphenylaminomethyl,

4-methylcarbonyloxyphenylmethyl, 5-fluoropyridin-2-aminomethyl,

5-fluoropyridin-2-oxymethyl, 6-fluoropyridin-3-ylaminomethyl, benzomorpholin-4-ylmethyl, methoxycarbonylaminomethyl, methylmethoxycarbonylaminomethyl, methylphenylaminomethyl, phenylaminomethyl, pyridin-2-oxymethyl, pyridin-2-ylaminomethyl, pyridin-2-yloxymethyl, pyridin-3-oxymethyl, pyridin-3-ylmethyl, pyridin-4-ylmethyl, thiazol-4-ylmethyl, and thien-2-ylmethyl.

In another embodiment, exemplary compounds of formula I are depicted below in Table 1.

Table 1. Exemplary Compounds of Formula I.

Cmpd No.	Structure
1	
2	
3	

Cmpd

Cmpd No.	Structure
11	
12	
13	
14	

15
Cmpd
Cmpd

16
Cmpd

17

19
Cmpd

20

21

Rigel Exhibit 1010
cesmes)

In another embodiment, the compound is selected from any one of Compound numbers 8 , 15, 30, 31, 34, 44, 54, 80, 99 from Table 1.

In still another embodiment, the invention provides a compound of Formula II:

(II), or a pharmaceutically acceptable salt thereof, wherein:
R^{1} is a $\mathrm{C}_{4}-\mathrm{C}_{7}$ monocyclic or bicyclic cycloalkyl optionally substituted on a single carbon atom with 1 to 2 fluoro;
R^{3} is selected from 3-fluorophenyl, 3-methylphenyl, 3-chlorophenyl, and thien-2ylmethyl;
R^{4} is selected from saturated heterocyclyl, $-\mathrm{CH}_{2}$-heterocyclyl, $-\mathrm{CH}_{2}$-heteroaryl, benzyl, $-\mathrm{CH}\left(\mathrm{R}^{11}\right)-\mathrm{N}\left(\mathrm{R}^{11}\right)$-heteroaryl, $-\mathrm{CH}\left(\mathrm{R}^{11}\right)-\mathrm{N}\left(\mathrm{R}^{11}\right)$-phenyl, $-\mathrm{CH}\left(\mathrm{R}^{11}\right)-\mathrm{N}\left(\mathrm{R}^{11}\right)$-heterocyclyl, $-\mathrm{CH}\left(\mathrm{R}^{11}\right)-\mathrm{N}\left(\mathrm{R}^{11}\right)-\mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}$, and $-\mathrm{CH}_{2}$-O-heteroaryl, wherein each R^{11} is independently selected from hydrogen and methyl; and each saturated heterocyclyl, heterocyclyl, phenyl, benzyl and heteroaryl is optionally substituted; and
R^{10} is selected from methyl, hydrogen, fluoro, chloro, and bromo.
In certain embodiments of a compound of Formula II, when R^{1} is cyclopentyl or cyclohexyl, and R^{3} is thien-2-ylmethyl, then R^{4} is other than thien-2-ylmethyl, 1 H -benizimidazol-1-ylmethyl, 1H-indol-3-ylmethyl, or 1H-benzotriazol-1-ylmethyl;
when R^{1} is cyclopentyl, R^{10} is hydrogen, and R^{3} is 3-fluorophenyl, 3-methylphenyl, or 3chlorophenyl, then R^{4} is other than thien-2-ylmethyl;
when R^{1} is cyclopentyl, R^{10} is methyl and R^{3} is 3-fluorophenyl, then R^{4} is other than thien-2-ylmethyl or 1H-benzotriazol-1-ylmethyl;
when R^{1} is cyclopentyl, R^{10} is fluoro and R^{3} is 3-methylphenyl, then R^{4} is other than thien-2-ylmethyl or 1H-benzotriazol-1-ylmethyl;
when R^{1} is cyclopentyl, R^{10} is fluoro and R^{3} is 3-fluorophenyl, then R^{4} is other than thien-2-ylmethyl;
when R^{1} is cyclohexyl, R^{10} is hydrogen, and R^{3} is 3-methylphenyl, or 3-chlorophenyl, then R^{4} is other than thien-3-ylmethyl; and
when R^{1} is cyclohexyl, R^{10} is hydrogen, and R^{3} is 3-fluorophenyl, then R^{4} is other than 1H-benzotriazol-1-ylmethyl.

In certain aspects for Formula II, R^{3} is 3-fluorophenyl.
In certain aspects of the above embodiments of Formula II:
R^{1} is selected from cyclohexyl, cyclopentyl, cycloheptyl, 3,3-difluorocyclobutyl, 4,4,difluorocyclohexyl, and bicyclo[2.2.1]heptanyl; and
R^{4} is selected from 1-(methylmethoxycarbonylamino)ethyl, 1,2,3,4-tetrahydroquinolin-1-yl, 1-ethoxycarbonylpiperidin-2-yl, 1 -ethoxycarbonylpyrrolidin-2-yl, 1H-benzimidazol-1-ylmethyl, 1 H -indazol-3-ylmethyl, indolin-1-ylmethyl, 1 H -indol-3-ylmethyl, 1 H -indol-5-ylmethyl,
1H-pyrrolo[2,3-b]pyridine-3-ylmethyl, 1H-pyrrolo[3,2-b]pyridin-3-ylmethyl,
1-methoxycarbonylpiperidin-2-yl, 1-methoxycarbonylpyrrolidin-2-yl,
2-fluoropyridin-3-ylaminomethyl, 2-imino-4-fluoropyridin-1-ylmethyl,
2-methoxyphenylaminomethyl, 2-methyl-1H-benzimidazol-1-ylmethyl,
2-methylimidazol-1-ylmethyl, 2-trifluoromethyl-1H-imidazol-1-yl, 3-cyanophenylaminomethyl, 3-fluoropyridin-2-ylaminomethyl, 3-methoxyphenylaminomethyl,
4-(1,3,4-oxadiazole-2-yl)phenylaminomethyl, 4-(dimethylaminocarbonyloxy)phenylmethyl, 4,5-dichloroimidazol-1-ylmethyl, 4-cyanophenylaminomethyl, 4-fluorophenylaminomethyl, 4-fluoropyridin-2-ylaminomethyl, 4-hydroxyphenylmethyl, 4-methoxycarbonylmorpholin-3-yl, 4-methoxycarbonylpiperazin-1-ylmethyl, 4-methoxyphenylaminomethyl,
4-methylcarbonyloxyphenylmethyl, 5-fluoropyridin-2-aminomethyl,
5-fluoropyridin-2-oxymethyl, 6-fluoropyridin-3-ylaminomethyl, benzomorpholin-4-ylmethyl, methoxycarbonylaminomethyl, methylmethoxycarbonylaminomethyl, methylphenylaminomethyl, phenylaminomethyl, pyridin-2-oxymethyl, pyridin-2-ylaminomethyl, pyridin-2-yloxymethyl, pyridin-3-oxymethyl, pyridin-3-ylmethyl, pyridin-4-ylmethyl, thiazol-4-ylmethyl, and thien-2-ylmethyl.

In another embodiment, a compound is selected from any one of the compounds set forth in Table 2, below.

Table 2. Compounds of Formula (A).

$\begin{aligned} & \text { Cpd } \\ & \text { No } \end{aligned}$	Structure
105	
106	
107	

$\begin{aligned} & \text { Cpd } \\ & \text { No } \end{aligned}$	Structure
108	
109	
110	

Cpd

$\begin{aligned} & \text { Cpd } \\ & \text { No } \end{aligned}$	Structure
114	
115	
116	

Cpd

Cpd
Ned
Cpd

$\begin{aligned} & \text { Cpd } \\ & \text { No } \end{aligned}$	Structure
132	
133	
134	
135	

Cpd

Nod

$\begin{aligned} & \text { Cpd } \\ & \text { No } \end{aligned}$	Structure
145	
146	
147	
148	

Nod

$\begin{aligned} & \text { Cod } \\ & \text { No } \end{aligned}$	Structure
152	
153	
154	
155	

Cpd
Spd/Cles)
Cpd

$\begin{aligned} & \text { Cpd } \\ & \text { No } \end{aligned}$	Structure
167	
168	
169	
170	

$\begin{aligned} & \text { Cpd } \\ & \text { No } \end{aligned}$	Structure
171	
172	
173	
174	

$\begin{aligned} & \text { Cpd } \\ & \text { No } \end{aligned}$	Structure
175	
176	
177	
178	

$\begin{aligned} & \text { Cpd } \\ & \text { No } \end{aligned}$	Structure
179	
180	
181	
182	

Epd

$\begin{aligned} & \text { Cpd } \\ & \text { No } \end{aligned}$	Structure
187	
188	
189	
190	

$\begin{aligned} & \text { Cpd } \\ & \text { No } \end{aligned}$	Structure
191	
192	
193	
194	

$\begin{aligned} & \text { Cpd } \\ & \text { No } \end{aligned}$	Structure
195	
196	
197	
198	

$\begin{aligned} & \text { Cpd } \\ & \text { No } \end{aligned}$	Structure
199	
200	
201	
202	

$\begin{aligned} & \text { Cpd } \\ & \text { No } \end{aligned}$	Structure
203	
204	
205	
206	

$\begin{aligned} & \text { Cpd } \\ & \text { No } \end{aligned}$	Structure
207	
208	
209	
210	

$\begin{aligned} & \text { Cpd } \\ & \text { No } \end{aligned}$	Structure
211	
212	
213	
214	

$\begin{aligned} & \text { Cpd } \\ & \text { No } \end{aligned}$	Structure
219	
220	
221	
222	

46

$\begin{aligned} & \text { Cod } \\ & \text { No } \end{aligned}$	Structure
231	
232	
233	
234	

$\begin{aligned} & \text { Cpd } \\ & \text { No } \end{aligned}$	Structure
235	
236	
237	
238	

$\begin{aligned} & \text { Cpd } \\ & \text { No } \end{aligned}$	Structure
239	
240	
241	
242	

$\begin{aligned} & \text { Cpd } \\ & \text { No } \end{aligned}$	Structure
243	
244	
245	
246	

Nols)

$\begin{aligned} & \text { Cpd } \\ & \text { No } \end{aligned}$	Structure
251	
252	
253	
254	

$\begin{aligned} & \text { Cpd } \\ & \text { No } \end{aligned}$	Structure
255	
256	
257	
258	

$\begin{aligned} & \text { Cpd } \\ & \text { No } \end{aligned}$	Structure
259	
260	
261	
262	

Cpd

Clls)

$\begin{aligned} & \text { Cpd } \\ & \text { No } \end{aligned}$	Structure
279	
280	
281	
282	

$\begin{aligned} & \text { Cpd } \\ & \text { No } \end{aligned}$	Structure
283	
284	
285	
286	

Nod	Structure
287	
288	
289	
290	

$\begin{aligned} & \text { Cpd } \\ & \text { No } \end{aligned}$	Structure
291	
292	
293	
294	

Cpols)

$\begin{aligned} & \text { Cpid } \\ & \text { No } \end{aligned}$	Structure
303	
304	
305	
306	

315
322

$\begin{aligned} & \text { Cpd } \\ & \text { No } \end{aligned}$	Structure
323	
324	
325	
326	

$\begin{aligned} & \text { Cpd } \\ & \text { No } \end{aligned}$	Structure
331	
332	
333	
334	

$\begin{aligned} & \text { Cpd } \\ & \text { No } \end{aligned}$	Structure
335	
336	
337	
338	

60

$\begin{aligned} & \text { Cpd } \\ & \text { No } \end{aligned}$	Structure
343	
344	
345	
346	

348

$\begin{aligned} & \text { Cpd } \\ & \text { Noo } \end{aligned}$	Structure
351	
352	
353	
354	

Cod

$\begin{aligned} & \text { Cpd } \\ & \text { No } \end{aligned}$	Structure
359	
360	
361	
362	

$\begin{aligned} & \text { Cpd } \\ & \text { No } \end{aligned}$	Structure
363	
364	
365	
366	

371

379

$\begin{aligned} & \text { Cpd } \\ & \text { No } \end{aligned}$	Structure
383	
384	

Cipd

In another embodiment, the compound is selected from any one of Compound numbers $104,126,135,140,150,155,160,161,165,173,185,186,197,198,201,202,203,210,212$, $213,217,218,227,228,237,240,247,253,260,265,271,272,275,276,287,288,289,290$, $291,293,297,301,306,307,311,313,314,316,320,321,322,331,334,341,344,348,351$, $356,359,361,366,378,381$, and 385 from Table 2.

The compounds of this invention may contain one or more asymmetric centers and thus occur as racemates, racemic mixtures, scalemic mixtures, and diastereomeric mixtures, as well as single enantiomers or individual stereoisomers that are substantially free from another possible enantiomer or stereoisomer. The term "substantially free of other stereoisomers" as used herein means a preparation enriched in a compound having a selected stereochemistry at one or more selected stereocenters by at least about $60 \%, 65 \%, 70 \%, 75 \%, 80 \%, 85 \%, 90 \%, 95 \%, 96 \%, 97 \%$, 98%, or 99%. The term "enriched" means that at least the designated percentage of a preparation is the compound having a selected stereochemistry at one or more selected stereocenters. Methods of obtaining or synthesizing an individual enantiomer or stereoisomer
for a given compound are known in the art and may be applied as practicable to final compounds or to starting material or intermediates.

In one embodiment, when R^{2} and R^{9} are different, the compound of Formula I is enriched for a structure or structures having a selected stereochemistry at the carbon atom that is bound to R^{2} and R^{9}. In one embodiment, the selected stereochemistry at that carbon atom is R. In another embodiment the selected stereochemistry at that carbon atom is S. For example, the compound is enriched in the specific stereoisomer by at least about $60 \%, 65 \%, 70 \%, 75 \%, 80 \%, 85 \%, 90 \%$, $95 \%, 96 \%, 97 \%, 98 \%$, or 99%.

The compounds of formula I may also comprise one or more isotopic substitutions. For example, H may be in any isotopic form, including ${ }^{1} \mathrm{H},{ }^{2} \mathrm{H}$ (D or deuterium), and ${ }^{3} \mathrm{H}$ (T or tritium); C may be in any isotopic form, including ${ }^{12} \mathrm{C},{ }^{13} \mathrm{C}$, and ${ }^{14} \mathrm{C}$; O may be in any isotopic form, including ${ }^{16} \mathrm{O}$ and ${ }^{18} \mathrm{O}$; and the like.

Unless otherwise indicated when a disclosed compound is named or depicted by a structure without specifying the stereochemistry and has one or more chiral centers, it is understood to represent all possible stereoisomers of the compound.

The compounds of this invention may also be represented in multiple tautomeric forms, in such instances, the invention expressly includes all tautomeric forms of the compounds described herein, even though only a single tautomeric form may be represented (e.g., alkylation of a ring system may result in alkylation at multiple sites, the invention expressly includes all such reaction products). All such isomeric forms of such compounds are expressly included in the present invention. All crystal forms of the compounds described herein are expressly included in the present invention.

Certain compounds of the invention are available from commercial and/or public compound libraries, such as those sold by Evotec AG (Hamburg, Germany) and its affiliates, Asinex Ltd (Moscow, Russia) and its affiliates, and thorough the National Institute of Health. Other compounds of the invention can be synthesized by the ordinary skilled artisan using methods well known in the art, such as through Ugi chemistry.

For example, compounds of the invention may be prepared according to one or more of the following general schemes.

Scheme 1. Preparation of Compounds of Formula A.

Formula A

Compounds of Formula A were prepared by reacting the aldehyde of R^{2} (a) with an amine of $\mathrm{R}^{3}(\mathbf{b})$ in methanol. The carboxylic acid of $\mathrm{R}^{4}(\mathbf{c})$ and the cyano of $\mathrm{R}^{1}(\mathbf{d})$ are then added to the mixture to produce a compound of the invention (more particularly a compound of Formula I-b or I-c). The HCl salt form of the resulting compound was prepared by mixing the compound with $\mathrm{HCl} / \mathrm{Et}_{2} \mathrm{O}$.

Scheme 2.

Certain compounds of Formula A comprising an amine in R^{4} were also prepared from chloroacetyl e according to Scheme 2. Chloroacetyl e was synthesized according to Scheme 1, using 2-chloroacetic acid (\mathbf{c}^{\prime}) in place of the carboxylic acid of R^{4}. Chloroacetyl \mathbf{e} was then used to produce compounds of the invention containing secondary and tertiary amines in R^{4}. In Scheme 2, R^{a} represents hydrogen or $C_{1}-C_{3}$ alkyl; and R^{b} represents $-R^{6}-R^{7}$, as those variables are defined for Formula A ; or R^{a} and R^{b} are taken together to form an optionally substituted heterocyclyl or heteroaryl.

The reaction between chloroacetyl \mathbf{e} and the amine may be achieved under several different conditions: a) in the presence of $E t_{3} \mathrm{~N}$ in DCM and TBAI; b) by refluxing in the
presence of $\mathrm{Et}_{3} \mathrm{~N}$ in toluene under an N_{2} atmosphere; c) in the presence of NaI in acetone and moderate heat (e.g., $70^{\circ} \mathrm{C}$); or d) in the presence of $\mathrm{Et}_{3} \mathrm{~N}$ in DMF.
Scheme 3

Certain compounds of Formula A wherein R^{1} is $-\mathrm{CH}_{2}-\mathrm{O}-\mathrm{R}^{7}$ were prepared from chloroacetyl \mathbf{e} and the appropriate R^{7} hydroxyl. This reaction can be carried out in the presence of KOH and DMSO, or in the presence of $\mathrm{K}_{2} \mathrm{CO}_{3}$ in MeCN , heated to $40^{\circ} \mathrm{C}$.
Scheme 4

Certain compounds of the invention are produced according to Scheme 4. The aldehyde of $R^{2}(\mathbf{a})$ is combined with the amine of $R^{3}(\mathbf{b})$ in the presence of TMSCN to produce cyanomethylamine \mathbf{f}. The cyano moiety is coverted to the corresponding carboxylic acid \mathbf{g} by reaction with $\mathrm{K}_{2} \mathrm{CO}_{3}$ and $\mathrm{H}_{2} \mathrm{O}_{2}$, followed by reflux in aqueous MeOH and NaOH . The R^{1} amine (h) is then reacted with \mathbf{g} in the presence of $\mathrm{HOBt} / E D C I / E t_{3} \mathrm{~N}$ in DCM to produce \mathbf{i}, which is then reacted with a chlorocarbonyl derivative of R^{4} to produce a compound of the invention.

Scheme 5

Certain compounds of the invention where R^{4} is $-\mathrm{C}\left(\mathrm{R}^{11}\right)-\mathrm{N}\left(\mathrm{R}^{11}\right)-\mathrm{O}-\mathrm{CH}_{3}$, or 1-methyloxycarbonylpyrrolidin-2-yl are produced according to Scheme 5. In Scheme 5, each R^{12} is independently hydrogen or methyl, or two adjacent R^{12} are taken together with the carbon and nitrogen atoms to which they are respectively bound to form a pyrrolidine or piperidine ring. In Scheme 5 , \mathbf{t}-butyl derivative \mathbf{l} is formed according to Scheme 1 , using carboxylic acid \mathbf{k} in place of carboxylic acid of $\mathrm{R}^{4}(\mathbf{c})$. Treatment of \mathbf{I} with acid produces amine \mathbf{m}, which is converted to the compound of Formula A by treatment with methyl chloroformate.

Compounds produced by any of the general schemes set forth above may be further modified (e.g., through the addition of substituents to rings, etc.) to produce additional compounds of the invention. The specific approaches and compounds shown above are not intended to be limiting. The chemical structures in the schemes herein depict variables that are hereby defined commensurately with chemical group definitions (moieties, atoms, etc.) of the corresponding position in the compound formulae herein, whether identified by the same variable name (i.e., $\mathrm{R}^{1}, \mathrm{R}^{2}, \mathrm{R}^{3}$, etc.) or not. The suitability of a chemical group in a compound structure for use in the synthesis of another compound is within the knowledge of one of ordinary skill in the art.

Additional methods of synthesizing compounds of Formula A and their synthetic precursors, including those within routes not explicitly shown in schemes herein, are within the means of chemists of ordinary skill in the art, as well as set forth in the specific examples. Synthetic chemistry transformations and protecting group methodologies (protection and deprotection) useful in synthesizing the applicable compounds are known in the art and include, for example, those described in Larock R, Comprehensive Organic Transformations, VCH

Publishers (1989); Greene, TW et al., Protective Groups in Organic Synthesis, $3^{\text {rd }}$ Ed., John Wiley and Sons (1999); Fieser, L et al., Fieser and Fieser's Reagents for Organic Synthesis, John Wiley and Sons (1994); and Paquette, L, ed., Encyclopedia of Reagents for Organic Synthesis, John Wiley and Sons (1995) and subsequent editions thereof.

Combinations of substituents and variables envisioned by this invention are only those that result in the formation of stable compounds.

It may be convenient or desirable to prepare, purify, and/or handle a corresponding salt of the active compound, for example, a pharmaceutically-acceptable salt. Examples of pharmaceutically acceptable salts are discussed in Berge et al., 1977, "Pharmaceutically Acceptable Salts." J. Pharm. Sci. Vol. 66, pp. 1-19.

For example, if the compound is anionic, or has a functional group which may be anionic (e.g., -COOH may be $-\mathrm{COO}^{-}$), then a salt may be formed with a suitable cation. Examples of suitable inorganic cations include, but are not limited to, alkali metal ions such as Na^{+}and K^{+}, alkaline earth cations such as Ca^{2+} and Mg^{2+}, and other cations such as Al^{3+}. Examples of suitable organic cations include, but are not limited to, ammonium ion (i.e., $\mathrm{NH}_{4}{ }^{+}$) and substituted ammonium ions (e.g., $\mathrm{NH}_{3} \mathrm{R}^{+}, \mathrm{NH}_{2} \mathrm{R}^{2+}, \mathrm{NHR}^{3+}, \mathrm{NR}^{4+}$). Examples of some suitable substituted ammonium ions are those derived from: ethylamine, diethylamine, dicyclohexylamine, triethylamine, butylamine, ethylenediamine, ethanolamine, diethanolamine, piperazine, benzylamine, phenylbenzylamine, choline, meglumine, and tromethamine, as well as amino acids, such as lysine and arginine. An example of a common quaternary ammonium ion is $\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4}{ }^{+}$.

If the compound is cationic, or has a functional group that may be cationic (e.g., - NH_{2} may be $-\mathrm{NH}_{3}{ }^{+}$), then a salt may be formed with a suitable anion. Examples of suitable inorganic anions include, but are not limited to, those derived from the following inorganic acids: hydrochloric, hydrobromic, hydroiodic, sulfuric, sulfurous, nitric, nitrous, phosphoric, and phosphorous.

Examples of suitable organic anions include, but are not limited to, those derived from the following organic acids: 2-acetyoxybenzoic, acetic, ascorbic, aspartic, benzoic, camphorsulfonic, cinnamic, citric, edetic, ethanedisulfonic, ethanesulfonic, fumaric, glucoheptonic, gluconic, glutamic, glycolic, hydroxymaleic, hydroxynaphthalene carboxylic,
isethionic, lactic, lactobionic, lauric, maleic, malic, methanesulfonic, mucic, oleic, oxalic, palmitic, pamoic, pantothenic, phenylacetic, phenylsulfonic, propionic, pyruvic, salicylic, stearic, succinic, sulfanilic, tartaric, toluenesulfonic, and valeric. Examples of suitable polymeric organic anions include, but are not limited to, those derived from the following polymeric acids: tannic acid, carboxymethyl cellulose.

Unless otherwise specified, a reference to a particular compound also includes salt forms thereof.

Compositions and routes of administration

The compounds utilized in the methods described herein may be formulated together with a pharmaceutically acceptable carrier or adjuvant into pharmaceutically acceptable compositions prior to be administered to a subject. In another embodiment, such pharmaceutically acceptable compositions further comprise additional therapeutic agents in amounts effective for achieving a modulation of disease or disease symptoms, including those described herein.

The term "pharmaceutically acceptable carrier or adjuvant" refers to a carrier or adjuvant that may be administered to a subject, together with a compound of this invention, and which does not destroy the pharmacological activity thereof and is nontoxic when administered in doses sufficient to deliver a therapeutic amount of the compound.

Pharmaceutically acceptable carriers, adjuvants and vehicles that may be used in the pharmaceutical compositions of this invention include, but are not limited to, ion exchangers, alumina, aluminum stearate, lecithin, self-emulsifying drug delivery systems (SEDDS) such as d-α-tocopherol polyethyleneglycol 1000 succinate, surfactants used in pharmaceutical dosage forms such as Tweens or other similar polymeric delivery matrices, serum proteins, such as human serum albumin, buffer substances such as phosphates, glycine, sorbic acid, potassium sorbate, partial glyceride mixtures of saturated vegetable fatty acids, water, salts or electrolytes, such as protamine sulfate, disodium hydrogen phosphate, potassium hydrogen phosphate, sodium chloride, zinc salts, colloidal silica, magnesium trisilicate, polyvinyl pyrrolidone, cellulose-based substances, polyethylene glycol, sodium carboxymethylcellulose, polyacrylates, waxes, polyethylene-polyoxypropylene-block polymers, polyethylene glycol and wool fat. Cyclodextrins such as $\alpha-, \beta$-, and γ-cyclodextrin, or chemically modified derivatives such as hydroxyalkylcyclodextrins, including 2- and 3-hydroxypropyl- β-cyclodextrins, or other
solubilized derivatives may also be advantageously used to enhance delivery of compounds of the formulae described herein.

The pharmaceutical compositions of this invention may be administered orally, parenterally, by inhalation spray, topically, rectally, nasally, buccally, vaginally or via an implanted reservoir, preferably by oral administration or administration by injection. The pharmaceutical compositions of this invention may contain any conventional non-toxic pharmaceutically-acceptable carriers, adjuvants or vehicles. In some cases, the pH of the formulation may be adjusted with pharmaceutically acceptable acids, bases or buffers to enhance the stability of the formulated compound or its delivery form. The term parenteral as used herein includes subcutaneous, intracutaneous, intravenous, intramuscular, intraarticular, intraarterial, intrasynovial, intrasternal, intrathecal, intralesional and intracranial injection or infusion techniques.

The pharmaceutical compositions may be in the form of a sterile injectable preparation, for example, as a sterile injectable aqueous or oleaginous suspension. This suspension may be formulated according to techniques known in the art using suitable dispersing or wetting agents (such as, for example, Tween 80) and suspending agents. The sterile injectable preparation may also be a sterile injectable solution or suspension in a non-toxic parenterally acceptable diluent or solvent, for example, as a solution in 1,3-butanediol. Among the acceptable vehicles and solvents that may be employed are mannitol, water, Ringer's solution and isotonic sodium chloride solution. In addition, sterile, fixed oils are conventionally employed as a solvent or suspending medium. For this purpose, any bland fixed oil may be employed including synthetic mono- or diglycerides. Fatty acids, such as oleic acid and its glyceride derivatives are useful in the preparation of injectables, as are natural pharmaceutically-acceptable oils, such as olive oil or castor oil, especially in their polyoxyethylated versions. These oil solutions or suspensions may also contain a long-chain alcohol diluent or dispersant, or carboxymethyl cellulose or similar dispersing agents which are commonly used in the formulation of pharmaceutically acceptable dosage forms such as emulsions and or suspensions. Other commonly used surfactants such as Tweens or Spans and/or other similar emulsifying agents or bioavailability enhancers which are commonly used in the manufacture of pharmaceutically acceptable solid, liquid, or other dosage forms may also be used for the purposes of formulation.

The pharmaceutical compositions of this invention may be orally administered in any orally acceptable dosage form including, but not limited to, capsules, tablets, emulsions and aqueous suspensions, dispersions and solutions. In the case of tablets for oral use, carriers which are commonly used include lactose and corn starch. Lubricating agents, such as magnesium stearate, are also typically added. For oral administration in a capsule form, useful diluents include lactose and dried corn starch. When aqueous suspensions and/or emulsions are administered orally, the active ingredient may be suspended or dissolved in an oily phase is combined with emulsifying and/or suspending agents. If desired, certain sweetening and/or flavoring and/or coloring agents may be added.

The pharmaceutical compositions of this invention may also be administered in the form of suppositories for rectal administration. These compositions can be prepared by mixing a compound of this invention with a suitable non-irritating excipient which is solid at room temperature but liquid at the rectal temperature and therefore will melt in the rectum to release the active components. Such materials include, but are not limited to, cocoa butter, beeswax and polyethylene glycols.

Topical administration of the pharmaceutical compositions of this invention is useful when the desired treatment involves areas or organs readily accessible by topical application. For application topically to the skin, the pharmaceutical composition should be formulated with a suitable ointment containing the active components suspended or dissolved in a carrier. Carriers for topical administration of the compounds of this invention include, but are not limited to, mineral oil, liquid petroleum, white petroleum, propylene glycol, polyoxyethylene polyoxypropylene compound, emulsifying wax and water. Alternatively, the pharmaceutical composition can be formulated with a suitable lotion or cream containing the active compound suspended or dissolved in a carrier with suitable emulsifying agents. Suitable carriers include, but are not limited to, mineral oil, sorbitan monostearate, polysorbate 60, cetyl esters wax, cetearyl alcohol, 2-octyldodecanol, benzyl alcohol and water. The pharmaceutical compositions of this invention may also be topically applied to the lower intestinal tract by rectal suppository formulation or in a suitable enema formulation. Topically-transdermal patches are also included in this invention.

The pharmaceutical compositions of this invention may be administered by nasal aerosol or inhalation. Such compositions are prepared according to techniques well-known in the art of pharmaceutical formulation and may be prepared as solutions in saline, employing benzyl alcohol or other suitable preservatives, absorption promoters to enhance bioavailability, fluorocarbons, and/or other solubilizing or dispersing agents known in the art.

When the compositions of this invention comprise a combination of a compound of the formulae described herein and one or more additional therapeutic or prophylactic agents, both the compound and the additional agent should be present at dosage levels of between about 1 to 100%, and more preferably between about 5 to 95% of the dosage normally administered in a monotherapy regimen. The additional agents may be administered separately, as part of a multiple dose regimen, from the compounds of this invention. Alternatively, those agents may be part of a single dosage form, mixed together with the compounds of this invention in a single composition.

The compounds described herein can, for example, be administered by injection, intravenously, intraarterially, subdermally, intraperitoneally, intramuscularly, or subcutaneously; or orally, buccally, nasally, transmucosally, topically, in an ophthalmic preparation, or by inhalation, with a dosage ranging from about 0.5 to about $100 \mathrm{mg} / \mathrm{kg}$ of body weight, alternatively dosages between 1 mg and $1000 \mathrm{mg} /$ dose, every 4 to 120 hours, or according to the requirements of the particular drug. The methods herein contemplate administration of an effective amount of compound or compound composition to achieve the desired or stated effect. Typically, the pharmaceutical compositions of this invention will be administered from about 1 to about 6 times per day or alternatively, as a continuous infusion. Such administration can be used as a chronic or acute therapy. The amount of active ingredient that may be combined with the carrier materials to produce a single dosage form will vary depending upon the host treated and the particular mode of administration. A typical preparation will contain from about 5% to about 95% active compound (w/w). Alternatively, such preparations contain from about 20% to about 80% active compound.

Lower or higher doses than those recited above may be required. Specific dosage and treatment regimens for any particular subject will depend upon a variety of factors, including the activity of the specific compound employed, the age, body weight, general health status, sex,
diet, time of administration, rate of excretion, drug combination, the severity and course of the disease, condition or symptoms, the subject's disposition to the disease, condition or symptoms, and the judgment of the treating physician.

Upon improvement of a subject's condition, a maintenance dose of a compound, composition or combination of this invention may be administered, if necessary. Subsequently, the dosage or frequency of administration, or both, may be reduced, as a function of the symptoms, to a level at which the improved condition is retained when the symptoms have been alleviated to the desired level. Subjects may, however, require intermittent treatment on a longterm basis upon any recurrence of disease symptoms.

The pharmaceutical compositions described above comprising a compound of formula I or a compound described in any one of the embodiments herein, may further comprise another therapeutic agent useful for treating cancer.

Methods of Use

Provided is a method for inhibiting a mutant IDH1 activity comprising contacting a subject in need thereof a compound of formula I, a compound described in any one of the embodiments herein, or a pharmaceutically acceptable salt thereof. In one embodiment, the mutant IDH1 has an R132X mutation. In one aspect of this embodiment, the R132X mutation is selected from R132H, R132C, R132L, R132V, R132S and R132G. In another aspect, the R132X mutation is R132 H.

Also provided are methods of treating a cancer characterized by the presence of a mutant allele of IDH1 comprising the step of administering to subject in need thereof (a) a compound of formula I, a compound described in any one of the embodiments herein, or a pharmaceutically acceptable salt thereof, or (b) a pharmaceutical composition comprising (a) and a pharmaceutically acceptable carrier.

In one embodiment, the cancer to be treated is characterized by a mutant allele of IDH1 having an R132X mutation. In one aspect of this embodiment, the R132X mutation is selected from R132H, R132C, R132L, R132V, R132S and R132G. In another aspect, the R132X mutation is R132 H. A cancer can be analyzed by sequencing cell samples to determine the presence of a mutation at amino acid 132 of IDH1.

In certain embodiments, the cancer to be treated is further characterized by elevated levels of 2 HG . In one aspect of this embodiment, the efficacy of cancer treatment is monitored by measuring the levels of 2 HG in the subject. Typically levels of 2 HG are measured prior to treatment, wherein an elevated level is indicative of the use of the compound of Formula I to treat the cancer. Once the elevated levels are established, the level of 2 HG is determined during the course of and/or following termination of treatment to establish efficacy. In certain embodiments, the level of 2 HG is only determined during the course of and/or following termination of treatment. A reduction of 2 HG levels during the course of treatment and following treatment is indicative of efficacy. Similarly, a determination that 2 HG levels are not elevated during the course of or following treatment is also indicative of efficacy. Typically, the these 2 HG measurements will be utilized together with other well-known determinations of efficacy of cancer treatment, such as reduction in number and size of tumors and/or other cancerassociated lesions, improvement in the general health of the subject, and alterations in other biomarkers that are associated with cancer treatment efficacy.

2 HG can be detected in a sample by LC/MS. The sample is mixed $80: 20$ with methanol, and centrifuged at $3,000 \mathrm{rpm}$ for 20 minutes at 4 degrees Celsius. The resulting supernatant can be collected and stored at - 80 degrees Celsius prior to LC-MS/MS to assess 2-hydroxyglutarate levels. A variety of different liquid chromatography (LC) separation methods can be used. Each method can be coupled by negative electrospray ionization (ESI, -3.0 kV) to triple-quadrupole mass spectrometers operating in multiple reaction monitoring (MRM) mode, with MS parameters optimized on infused metabolite standard solutions. Metabolites can be separated by reversed phase chromatography using 10 mM tributyl-amine as an ion pairing agent in the aqueous mobile phase, according to a variant of a previously reported method (Luo et al. J Chromatogr A 1147, 153-64, 2007). One method allows resolution of TCA metabolites: $\mathrm{t}=0$, $50 \% \mathrm{~B} ; \mathrm{t}=5,95 \% \mathrm{~B} ; \mathrm{t}=7,95 \% \mathrm{~B} ; \mathrm{t}=8,0 \% \mathrm{~B}$, where B refers to an organic mobile phase of 100% methanol. Another method is specific for 2 -hydroxyglutarate, running a fast linear gradient from $50 \%-95 \%$ B (buffers as defined above) over 5 minutes. A Synergi Hydro-RP, $100 \mathrm{~mm} \times 2 \mathrm{~mm}, 2.1 \mu \mathrm{~m}$ particle size (Phenomonex) can be used as the column, as described above. Metabolites can be quantified by comparison of peak areas with pure metabolite
standards at known concentration. Metabolite flux studies from ${ }^{13} \mathrm{C}$-glutamine can be performed as described, e.g., in Munger et al. Nat Biotechnol 26, 1179-86, 2008.

In one embodiment 2 HG is directly evaluated.
In another embodiment a derivative of 2 HG formed in process of performing the analytic method is evaluated. By way of example such a derivative can be a derivative formed in MS analysis. Derivatives can include a salt adduct, e.g., a Na adduct, a hydration variant, or a hydration variant which is also a salt adduct, e.g., a Na adduct, e.g., as formed in MS analysis.

In another embodiment a metabolic derivative of 2 HG is evaluated. Examples include species that build up or are elevated, or reduced, as a result of the presence of 2 HG , such as glutarate or glutamate that will be correlated to 2 HG, e.g., R-2HG.

Exemplary 2HG derivatives include dehydrated derivatives such as the compounds provided below or a salt adduct thereof:

In an embodiment the cancer is a tumor wherein at least $30,40,50,60,70,80$ or 90% of the tumor cells carry an IDH1 mutation at the time of diagnosis or treatment.

In one embodiment, the cancer to be treated is characterized by a mutant allele of IDH1 wherein the IDH1 mutation result in a new ability of the enzyme to catalyze the NAPHdependent reduction of α-ketoglutarate to $R(-)-2$-hydroxyglutarate in a patient. In one aspect of this embodiment, the IDH1 mutation is an R132X mutation. In another aspect of this embodiment, the R132X mutation is selected from R132H, R132C, R132L, R132V, R132S and R132G. In another aspect, the R132X mutation is R132 H or R132C. A cancer can be analyzed by sequencing cell samples to determine the presence and specific nature of (e.g., the changed amino acid present at) a mutation at amino acid 132 of IDH1.

Without being bound by theory, applicants believe that mutant alleles of IDH1 wherein the IDH1 mutation result in a new ability of the enzyme to catalyze the NAPH-dependent reduction of α-ketoglutarate to $R(-)$-2-hydroxyglutarate, and in particular R 132 H mutations of IDH1, characterize a subset of all types of cancers, without regard to their cellular nature or location in the body. Thus, the compounds and methods of this invention are useful to treat any
type of cancer that is characterized by the presence of a mutant allele of IDH1 imparting such acitivity and in particular an IDH1 R132H mutation.

The methods described herein can be used to treat a cancer, for example those described by the National Cancer Institute. A cancer can be evaluated to determine whether it contains an IDH mutant using a method described herein. Exemplary cancers described by the National Cancer Institute include: Acute Lymphoblastic Leukemia, Adult; Acute Lymphoblastic Leukemia, Childhood; Acute Myeloid Leukemia, Adult; Adrenocortical Carcinoma; Adrenocortical Carcinoma, Childhood; AIDS-Related Lymphoma; AIDS-Related Malignancies; Anal Cancer; Astrocytoma, Childhood Cerebellar; Astrocytoma, Childhood Cerebral; Bile Duct Cancer, Extrahepatic; Bladder Cancer; Bladder Cancer, Childhood; Bone Cancer, Osteosarcoma/Malignant Fibrous Histiocytoma; Brain Stem Glioma, Childhood; Brain Tumor, Adult; Brain Tumor, Brain Stem Glioma, Childhood; Brain Tumor, Cerebellar Astrocytoma, Childhood; Brain Tumor, Cerebral Astrocytoma/Malignant Glioma, Childhood; Brain Tumor, Ependymoma, Childhood; Brain Tumor, Medulloblastoma, Childhood; Brain Tumor, Supratentorial Primitive Neuroectodermal Tumors, Childhood; Brain Tumor, Visual Pathway and Hypothalamic Glioma, Childhood; Brain Tumor, Childhood (Other); Breast Cancer; Breast Cancer and Pregnancy; Breast Cancer, Childhood; Breast Cancer, Male; Bronchial Adenomas/Carcinoids, Childhood; Carcinoid Tumor, Childhood; Carcinoid Tumor, Gastrointestinal; Carcinoma, Adrenocortical; Carcinoma, Islet Cell; Carcinoma of Unknown Primary; Central Nervous System Lymphoma, Primary; Cerebellar Astrocytoma, Childhood; Cerebral Astrocytoma/Malignant Glioma, Childhood; Cervical Cancer; Childhood Cancers; Chronic Lymphocytic Leukemia; Chronic Myelogenous Leukemia; Chronic Myeloproliferative Disorders; Clear Cell Sarcoma of Tendon Sheaths; Colon Cancer; Colorectal Cancer, Childhood; Cutaneous T-Cell Lymphoma; Endometrial Cancer; Ependymoma, Childhood; Epithelial Cancer, Ovarian; Esophageal Cancer; Esophageal Cancer, Childhood; Ewing's Family of Tumors; Extracranial Germ Cell Tumor, Childhood; Extragonadal Germ Cell Tumor; Extrahepatic Bile Duct Cancer; Eye Cancer, Intraocular Melanoma; Eye Cancer, Retinoblastoma; Gallbladder Cancer; Gastric (Stomach) Cancer; Gastric (Stomach) Cancer, Childhood; Gastrointestinal Carcinoid Tumor; Germ Cell Tumor, Extracranial, Childhood; Germ Cell Tumor, Extragonadal; Germ Cell Tumor, Ovarian; Gestational Trophoblastic Tumor;

Glioma, Childhood Brain Stem; Glioma, Childhood Visual Pathway and Hypothalamic; Hairy Cell Leukemia; Head and Neck Cancer; Hepatocellular (Liver) Cancer, Adult (Primary); Hepatocellular (Liver) Cancer, Childhood (Primary); Hodgkin's Lymphoma, Adult; Hodgkin's Lymphoma, Childhood; Hodgkin's Lymphoma During Pregnancy; Hypopharyngeal Cancer; Hypothalamic and Visual Pathway Glioma, Childhood; Intraocular Melanoma; Islet Cell Carcinoma (Endocrine Pancreas); Kaposi's Sarcoma; Kidney Cancer; Laryngeal Cancer; Laryngeal Cancer, Childhood; Leukemia, Acute Lymphoblastic, Adult; Leukemia, Acute Lymphoblastic, Childhood; Leukemia, Acute Myeloid, Adult; Leukemia, Acute Myeloid, Childhood; Leukemia, Chronic Lymphocytic; Leukemia, Chronic Myelogenous; Leukemia, Hairy Cell; Lip and Oral Cavity Cancer; Liver Cancer, Adult (Primary); Liver Cancer, Childhood (Primary); Lung Cancer, Non-Small Cell; Lung Cancer, Small Cell; Lymphoblastic Leukemia, Adult Acute; Lymphoblastic Leukemia, Childhood Acute; Lymphocytic Leukemia, Chronic; Lymphoma, AIDS- Related; Lymphoma, Central Nervous System (Primary); Lymphoma, Cutaneous T-Cell; Lymphoma, Hodgkin's, Adult; Lymphoma, Hodgkin's, Childhood; Lymphoma, Hodgkin's During Pregnancy; Lymphoma, Non-Hodgkin's, Adult; Lymphoma, Non- Hodgkin's, Childhood; Lymphoma, Non-Hodgkin's During Pregnancy; Lymphoma, Primary Central Nervous System; Macroglobulinemia, Waldenstrom's; Male Breast Cancer; Malignant Mesothelioma, Adult; Malignant Mesothelioma, Childhood; Malignant Thymoma; Medulloblastoma, Childhood; Melanoma; Melanoma, Intraocular; Merkel Cell Carcinoma; Mesothelioma, Malignant; Metastatic Squamous Neck Cancer with Occult Primary; Multiple Endocrine Neoplasia Syndrome, Childhood; Multiple Myeloma/Plasma Cell Neoplasm; Mycosis Fungoides; Myelodysplastic Syndromes; Myelogenous Leukemia, Chronic; Myeloid Leukemia, Childhood Acute; Myeloma, Multiple; Myeloproliferative Disorders, Chronic; Nasal Cavity and Paranasal Sinus Cancer; Nasopharyngeal Cancer; Nasopharyngeal Cancer, Childhood; Neuroblastoma; Non-Hodgkin's Lymphoma, Adult; Non-Hodgkin's Lymphoma, Childhood; Non- Hodgkin's Lymphoma During Pregnancy; Non-Small Cell Lung Cancer; Oral Cancer, Childhood; Oral Cavity and Lip Cancer; Oropharyngeal Cancer; Osteosarcoma/Malignant Fibrous Histiocytoma of Bone; Ovarian Cancer, Childhood; Ovarian Epithelial Cancer; Ovarian Germ Cell Tumor; Ovarian Low Malignant Potential Tumor; Pancreatic Cancer; Pancreatic Cancer, Childhood; Pancreatic Cancer, Islet Cell; Paranasal Sinus
and Nasal Cavity Cancer; Parathyroid Cancer; Penile Cancer; Pheochromocytoma; Pineal and Supratentorial Primitive Neuroectodermal Tumors, Childhood; Pituitary Tumor; Plasma Cell Neoplasm/Multiple Myeloma; Pleuropulmonary Blastoma; Pregnancy and Breast Cancer; Pregnancy and Hodgkin's Lymphoma; Pregnancy and Non-Hodgkin's Lymphoma; Primary Central Nervous System Lymphoma; Primary Liver Cancer, Adult; Primary Liver Cancer, Childhood; Prostate Cancer; Rectal Cancer; Renal Cell (Kidney) Cancer; Renal Cell Cancer, Childhood; Renal Pelvis and Ureter, Transitional Cell Cancer; Retinoblastoma;

Rhabdomyosarcoma, Childhood; Salivary Gland Cancer, Salivary Gland Cancer, Childhood; Sarcoma, Ewing's Family of Tumors; Sarcoma, Kaposi's; Sarcoma (Osteosarcoma)/Malignant Fibrous Histiocytoma of Bone; Sarcoma, Rhabdomyosarcoma, Childhood; Sarcoma, Soft Tissue, Adult; Sarcoma, Soft Tissue, Childhood; Sezary Syndrome; Skin Cancer; Skin Cancer, Childhood; Skin Cancer (Melanoma); Skin Carcinoma, Merkel Cell; Small Cell Lung Cancer; Small Intestine Cancer; Soft Tissue Sarcoma, Adult; Soft Tissue Sarcoma, Childhood; Squamous Neck Cancer with Occult Primary, Metastatic; Stomach (Gastric) Cancer; Stomach (Gastric) Cancer, Childhood; Supratentorial Primitive Neuroectodermal Tumors, Childhood; T- Cell Lymphoma, Cutaneous; Testicular Cancer; Thymoma, Childhood; Thymoma, Malignant; Thyroid Cancer; Thyroid Cancer, Childhood; Transitional Cell Cancer of the Renal Pelvis and Ureter; Trophoblastic Tumor, Gestational; Unknown Primary Site, Cancer of, Childhood; Unusual Cancers of Childhood; Ureter and Renal Pelvis, Transitional Cell Cancer; Urethral Cancer; Uterine Sarcoma; Vaginal Cancer; Visual Pathway and Hypothalamic Glioma, Childhood; Vulvar Cancer; Waldenstrom's Macro globulinemia; and Wilms' Tumor. Metastases of the aforementioned cancers can also be treated or prevented in accordance with the methods described herein.

The methods described herein are useful in treating cancer of the nervous system, e.g., brain tumor, e.g., glioma, e.g., glioblastoma multiforme (GBM). Gliomas, a type of brain tumors, can be classified as grade I to grade IV on the basis of histopathological and clinical criteria established by the World Health Organization (WHO). WHO grade I gliomas are often considered benign. Gliomas of WHO grade II or III are invasive, progress to higher-grade lesions. WHO grade IV tumors (glioblastomas) are the most invasive form. Exemplary brain tumors include, e.g., astrocytic tumor (e.g., pilocytic astrocytoma, subependymal giant-cell
astrocytoma, diffuse astrocytoma, pleomorphic xanthoastrocytoma, anaplastic astrocytoma, astrocytoma, giant cell glioblastoma, glioblastoma, secondary glioblastoma, primary adult glioblastoma, and primary pediatric glioblastoma); oligodendroglial tumor (e.g., oligodendroglioma, and anaplastic oligodendroglioma); oligoastrocytic tumor (e.g., oligoastrocytoma, and anaplastic oligoastrocytoma); ependymoma (e.g., myxopapillary ependymoma, and anaplastic ependymoma); medulloblastoma; primitive neuroectodermal tumor, schwannoma, meningioma, metatypical meningioma, anaplastic meningioma; and pituitary adenoma. Exemplary cancers are described in Acta Neuropathol (2008) 116:597-602 and N Engl J Med. 2009 Feb 19; 360(8):765-73, the contents of which are each incorporated herein by reference.

In an embodiment, the cancer is glioblastoma.
In an embodiment, the cancer is paragangliomas.
In an embodiment, the cancer is fibrosarcoma.
In an embodiment, the cancer is prostate cancer, e.g., stage T 1 (e.g., $\mathrm{T} 1 \mathrm{a}, \mathrm{T} 1 \mathrm{~b}$ and T 1 c), T 2 (e.g., $\mathrm{T} 2 \mathrm{a}, \mathrm{T} 2 \mathrm{~b}$ and T 2 c), T 3 (e.g., T 3 a and T 3 b) and T 4 , on the TNM staging system. In embodiments the prostate cancer is grade G1, G2, G3 or G4 (where a higher number indicates greater difference from normal tissue). Types of prostate cancer include, e.g., prostate adenocarcinoma, small cell carcinoma, squamous carcinoma, sarcomas, and transitional cell carcinoma. In one aspect of this embodiment the disorder is localized or metastatic prostate cancer, e.g., prostate adenocarcinoma.

In an embodiment, the disorder is a hematological cancer, e.g., a leukemia, e.g., AML, or acute lymphoblastic leukemia ("ALL"). In one aspect of this embodiment the cancer is ALL (e.g., an adult or pediatric form). In one aspect of this embodiment the cancer is B-ALL or TALL

IDH1 R132X mutations are known to occur in certain types of cancers as indicated in Table 3, below.

Table 3. IDH mutations associated with certain cancers

Cancer Type	IDH1 R132X Mutation	Tumor Type

Cancer Type	IDH1 R132X Mutation	Tumor Type
brain tumors	R132H	primary tumor
	R132C	primary tumor
	R132S	primary tumor
	R132G	primary tumor
	R132L	primary tumor
	R132V	primary tumor
fibrosarcoma	R132C	HT1080 fibrosarcoma cell Acute Myeloid Leukemia (AML)
R132H Prostate cancer	R132G	primary tumor
	R132C	primary tumor
	R132C	primary tumor
(ALL)	R132H	primary tumor
paragangliomas	R132C	primary tumor

Accordingly in one embodiment, the cancer is a cancer selected from any one of the cancer types listed in Table 3, and the IDH R132X mutation is one or more of the IDH1 R132X mutations listed in Table 3 for that particular cancer type.

Treatment methods described herein can additionally comprise various evaluation steps prior to and/or following treatment with a compound of formula I or a compound described in any one of the embodiments described herein.

In one embodiment, prior to and/or after treatment with a compound of Formula A, I, I-a, I-b, I-c or II or a compound described in any one of the embodiments described herein, the
method further comprises the step of evaluating the growth, size, weight, invasiveness, stage and/or other phenotype of the cancer.

In one embodiment, prior to and/or after treatment with a compound of Formula A, I, I-a, I-b, I-c or II or a compound described in any one of the embodiments described herein, the method further comprises the step of evaluating the IDH1 genotype of the cancer. This may be achieved by ordinary methods in the art, such as DNA sequencing, immuno analysis, and/or evaluation of the presence, distribution or level of 2 HG .

In one embodiment, prior to and/or after treatment with a compound of Formula A, I, I-a, I-b, I-c or II or a compound described in any one of the embodiments described herein, the method further comprises the step of determining the 2 HG level in the subject. This may be achieved by spectroscopic analysis, e.g., magnetic resonance-based analysis, e.g., MRI and/or MRS measurement, sample analysis of bodily fluid, such as serum or spinal cord fluid analysis, or by analysis of surgical material, e.g., by mass-spectroscopy.

Combination therapies

In some embodiments, the methods described herein comprise the additional step of coadministering to a subject in need thereof a second therapy e.g., an additional cancer therapeutic agent or an additional cancer treatment. Exemplary additional cancer therapeutic agents include for example, chemotherapy, targeted therapy, antibody therapies, immunotherapy, and hormonal therapy. Additional cancer treatments include, for example: surgery, and radiation therapy. Examples of each of these treatments are provided below.

The term "co-administering" as used herein with respect to an additional cancer therapeutic agents means that the additional cancer therapeutic agent may be administered together with a compound of this invention as part of a single dosage form (such as a composition of this invention comprising a compound of the invention and an second therapeutic agent as described above) or as separate, multiple dosage forms. Alternatively, the additional cancer therapeutic agent may be administered prior to, consecutively with, or following the administration of a compound of this invention. In such combination therapy treatment, both the compounds of this invention and the second therapeutic agent(s) are administered by conventional methods. The administration of a composition of this invention, comprising both a compound of the invention and a second therapeutic agent, to a subject does not preclude the
separate administration of that same therapeutic agent, any other second therapeutic agent or any compound of this invention to said subject at another time during a course of treatment. The term "co-administering" as used herein with respect to an additional cancer treatment means that the additional cancer treatment may occur prior to, consecutively with, concurrently with or following the administration of a compound of this invention.

In some embodiments, the additional cancer therapeutic agent is a chemotherapy agent. Examples of chemotherapeutic agents used in cancer therapy include, for example, antimetabolites (e.g., folic acid, purine, and pyrimidine derivatives) and alkylating agents (e.g., nitrogen mustards, nitrosoureas, platinum, alkyl sulfonates, hydrazines, triazenes, aziridines, spindle poison, cytotoxic agents, topoisomerase inhibitors and others). Exemplary agents include Aclarubicin, Actinomycin, Alitretinoin, Altretamine, Aminopterin, Aminolevulinic acid, Amrubicin, Amsacrine, Anagrelide, Arsenic trioxide, Asparaginase, Atrasentan, Belotecan, Bexarotene, bendamustine, Bleomycin, Bortezomib, Busulfan, Camptothecin, Capecitabine, Carboplatin, Carboquone, Carmofur, Carmustine, Celecoxib, Chlorambucil, Chlormethine, Cisplatin, Cladribine, Clofarabine, Crisantaspase, Cyclophosphamide, Cytarabine, Dacarbazine, Dactinomycin, Daunorubicin, Decitabine, Demecolcine, Docetaxel, Doxorubicin, Efaproxiral, Elesclomol, Elsamitrucin, Enocitabine, Epirubicin, Estramustine, Etoglucid, Etoposide, Floxuridine, Fludarabine, Fluorouracil (5FU), Fotemustine, Gemcitabine, Gliadel implants, Hydroxycarbamide, Hydroxyurea, Idarubicin, Ifosfamide, Irinotecan, Irofulven, Ixabepilone, Larotaxel, Leucovorin, Liposomal doxorubicin, Liposomal daunorubicin, Lonidamine, Lomustine, Lucanthone, Mannosulfan, Masoprocol, Melphalan, Mercaptopurine, Mesna, Methotrexate, Methyl aminolevulinate, Mitobronitol, Mitoguazone, Mitotane, Mitomycin, Mitoxantrone, Nedaplatin, Nimustine, Oblimersen, Omacetaxine, Ortataxel, Oxaliplatin, Paclitaxel, Pegaspargase, Pemetrexed, Pentostatin, Pirarubicin, Pixantrone, Plicamycin, Porfimer sodium, Prednimustine, Procarbazine, Raltitrexed, Ranimustine, Rubitecan, Sapacitabine, Semustine, Sitimagene ceradenovec, Strataplatin, Streptozocin, Talaporfin, Tegafur-uracil, Temoporfin, Temozolomide, Teniposide, Tesetaxel, Testolactone, Tetranitrate, Thiotepa, Tiazofurine, Tioguanine, Tipifarnib, Topotecan, Trabectedin, Triaziquone, Triethylenemelamine, Triplatin, Tretinoin, Treosulfan, Trofosfamide, Uramustine, Valrubicin, Verteporfin, Vinblastine,

Vincristine, Vindesine, Vinflunine, Vinorelbine, Vorinostat, Zorubicin, and other cytostatic or cytotoxic agents described herein.

Because some drugs work better together than alone, two or more drugs are often given at the same time. Often, two or more chemotherapy agents are used as combination chemotherapy.

In some embodiments the additional cancer therapeutic agent is a targeted therapy agent. Targeted therapy constitutes the use of agents specific for the deregulated proteins of cancer cells. Small molecule targeted therapy drugs are generally inhibitors of enzymatic domains on mutated, overexpressed, or otherwise critical proteins within the cancer cell. Prominent examples are the tyrosine kinase inhibitors such as Axitinib, Bosutinib, Cediranib, dasatinib, erlotinib, imatinib, gefitinib, lapatinib, Lestaurtinib, Nilotinib, Semaxanib, Sorafenib, Sunitinib, and Vandetanib, and also cyclin-dependent kinase inhibitors such as Alvocidib and Seliciclib. Monoclonal antibody therapy is another strategy in which the therapeutic agent is an antibody which specifically binds to a protein on the surface of the cancer cells. Examples include the anti-HER2/neu antibody trastuzumab (HERCEPTIN®) typically used in breast cancer, and the anti-CD20 antibody rituximab and Tositumomab typically used in a variety of B-cell malignancies. Other exemplary antibodies include Cetuximab, Panitumumab, Trastuzumab, Alemtuzumab, Bevacizumab, Edrecolomab, and Gemtuzumab. Exemplary fusion proteins include Aflibercept and Denileukin diftitox. In some embodiments, the targeted therapy can be used in combination with a compound described herein, e.g., a biguanide such as metformin or phenformin, preferably phenformin.

Targeted therapy can also involve small peptides as "homing devices" which can bind to cell surface receptors or affected extracellular matrix surrounding the tumor. Radionuclides which are attached to these peptides (e.g., RGDs) eventually kill the cancer cell if the nuclide decays in the vicinity of the cell. An example of such therapy includes BEXXAR®.

In some embodiments, the additional cancer therapeutic agent is an immunotherapy agent. Cancer immunotherapy refers to a diverse set of therapeutic strategies designed to induce the subject's own immune system to fight the tumor. Contemporary methods for generating an immune response against tumors include intravesicular BCG immunotherapy for superficial bladder cancer, and use of interferons and other cytokines to induce an immune response in renal cell carcinoma and melanoma subjects.

Allogeneic hematopoietic stem cell transplantation can be considered a form of immunotherapy, since the donor's immune cells will often attack the tumor in a graft-versustumor effect. In some embodiments, the immunotherapy agents can be used in combination with a compound or composition described herein.

In some embodiments, the additional cancer therapeutic agent is a hormonal therapy agent. The growth of some cancers can be inhibited by providing or blocking certain hormones. Common examples of hormone-sensitive tumors include certain types of breast and prostate cancers. Removing or blocking estrogen or testosterone is often an important additional treatment. In certain cancers, administration of hormone agonists, such as progestogens may be therapeutically beneficial. In some embodiments, the hormonal therapy agents can be used in combination with a compound or a composition described herein.

Other possible additional therapeutic modalities include imatinib, gene therapy, peptide and dendritic cell vaccines, synthetic chlorotoxins, and radiolabeled drugs and antibodies.

EXAMPLES

Abbreviations list

Genera 46

```
anhy. anhydrous
conc. concentrated
aq. aqueous
min minute(s)
ml milliliter
mmol millimole(s)
mol mole(s)
MS mass spectrometry
NMR nuclear magnetic resonance
TLC thin layer chromatography
HPLC high-performance liquid chromatography
prep-HPLC preparative high-performance liquid chromatography
-Spectrum
```

Hz	hertz
δ	chemical shift
J	coupling constant
S	singlet
d	doublet
t	triplet
q	quartet
m	multiplet
br	broad
qd	quartet of doublets
dquin	doublet of quintets
dd	doublet of doublets
dt	doublet of triplets

Solvents and Reagents

CHCl_{3}	chloroform
DCM	dichloromethane
DMF	Dimethylformamide
DME	1,2-dimethoxyethane
CCl_{4}	carbon tetrachloride
DMSO^{2}	dimethylsulfoxide
$\mathrm{Et}_{2} \mathrm{O}$	diethyl ether
EtOH	ethyl alcohol
EtOAc	ethyl acetate
MeOH	methyl alcohol
MeCN	acetonitrile
PE	petroleum ether
THF	tetrahydrofuran

AcOH	acetic acid
HClO_{4}	perchloric acid
HCOOH	formic acid
t-BuOH	tert-butanol
SOCl_{2}	thionyl dichloride
HCl	hydrochloric acid
$\mathrm{H}_{2} \mathrm{SO}_{4}$	sulfuric acid
NH 4 Cl	ammonium chloride
KOH	potassium hydroxide
NaOH	sodium hydroxide
$\mathrm{LiOH} \cdot \mathrm{H}_{2} \mathrm{O}$	lithium hydroxide monohydrate
$\mathrm{K}_{2} \mathrm{CO}_{3}$	potassium carbonate
$\mathrm{Na}_{2} \mathrm{CO}_{3}$	sodium carbonate
TFA	trifluoroacetic acid
$\mathrm{Na}_{2} \mathrm{SO}_{4}$	sodium sulfate
NaBH_{4}	sodium borohydride
NaHCO_{3}	sodium bicarbonate
LiHMDS	lithium hexamethyldisilylamide
NaHMDS	sodium hexamethyldisilylamide
LAH	lithium aluminum hydride
NaBH_{4}	sodium borohydride
LDA	lithium diisopropylamide
PPh_{3}	Triphenylphosphine
ZnEt_{2}	Diethyl zinc
$\mathrm{Et}_{3} \mathrm{~N}$	triethylamine
DMAP	4-(dimethylamino)pyridine
DIEA	N,N-diisopropylethylamine
$\mathrm{NH}_{4} \mathrm{OH}$	ammonium hydroxide
EDCI	1-ethyl-3-(3-dimethylaminopropyl)carbodiimide
HOBt	1-hydroxybenzotriazole

HATU	O-(7-azabenzotriazol-1-yl)-N,N,N',N'-tetra-methyluronium
BINAP	2,2'-bis(diphenylphosphanyl)-1,1'-binaphthyl
Pd(dppf)Cl ${ }_{2}$	$\left[1,1^{\prime}\right]$-Bis(diphenylphosphino)ferrocene]dichloropalladium(II)
TBAI	Tetrabutylammonium iodide
TEBA	Benzyltriethylammonium chloride
TMSCN	Trimethylsilyl cyanide
NMP	1-Methyl-pyrrolidin-2-one
MsCl	Methanesulfonyl chloride
DPPA	Diphenylphosphoryl azide
$\mathrm{Pd}(\mathrm{OH})_{2}$	Palladium (II) hydroxide
DAST	diethylaminosulfur trifluoride

General experimental notes

In the following examples, the reagents (chemicals) were purchased from commercial sources (such as Alfa, Acros, Sigma Aldrich, TCI and Shanghai Chemical Reagent Company), and used without further purification. Flash chromatography was performed on an Ez Purifier III via column with silica gel particles of 200-300 mesh. Analytical and preparative thin layer chromatography plates (TLC) were HSGF 254 ($0.15-0.2 \mathrm{~mm}$ thickness, Shanghai Anbang Company, China). Nuclear magnetic resonance (NMR) spectra were obtained on a Brucker AMX-300 or a AMX-300 NMR (Brucker, Switzerland). Chemical shifts were reported in parts per million (ppm, δ) downfield from tetramethylsilane. Mass spectra were run with electrospray ionization (ESI) from a Waters LCT TOF Mass Spectrometer (Waters, USA). HPLC chromatographs were recorded on an Agilent 1200 Liquid Chromatography (Agilent, USA, column: Ultimate $4.6 \mathrm{mmx} 50 \mathrm{~mm}, 5 \mu \mathrm{M}$, mobile phase A: 0.1% formic acid in water; mobile phase B: acetonitrile). Microwave reactions were run on an Initiator 2.5 Microwave Synthesizer (Biotage, Sweden).
Example 1. Preparation of N-cyclohexyl-2-[(2-imidazol-1-yl-acetyl)-thiophen-
2-ylmethyl-amino]-2-o-tolyl-acetamide (Compound 204) and its HCl Salt. Compound 204
was prepared according to Scheme 1 , above, using the following protocol.

Step A: Compound 204. A mixture of 2-methyl-benzaldehyde ($193 \mathrm{mg}, 1.61 \mathrm{mmol}$) and thiophen-2-yl-methylamine $(182 \mathrm{mg}, 1.61 \mathrm{mmol})$ in $\mathrm{MeOH}(4 \mathrm{ml})$ was stirred at RT for 30 minutes. Imidazol-1-yl-acetic acid ($202 \mathrm{mg}, 1.61 \mathrm{mmol}$) was added and the reaction mixture stirred for 10 minutes. Cyclohexyl isocyanide ($176 \mathrm{mg}, 1.61 \mathrm{mmol}$) was then added and the reaction mixture was stirred at RT overnight. The precipitate was filtered and washed with MeOH to afford the desired product ($463 \mathrm{mg}, 64 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d} 6$): δ 8.15-8.01 (m, 1H), 7.62-7.52 (m, 1H), 7.31-6.69 (m, 9H), $6.24(\mathrm{~s}, 1 \mathrm{H}), 5.65-4.66(\mathrm{~m}, 4 \mathrm{H}), 2.60$ $(\mathrm{m}, 1 \mathrm{H}), 2.20-2.05(\mathrm{~m}, 3 \mathrm{H}), 1.76-1.51(\mathrm{~m}, 5 \mathrm{H}), 1.29-0.83(\mathrm{~m}, 5 \mathrm{H}) ; \mathrm{MS}: 451.2(\mathrm{M}+1)^{+}$.

Step B: Compound 204 HCl Salt. Compound 204 ($460 \mathrm{mg}, 1.02 \mathrm{mmol}$) in $\mathrm{HCl} / \mathrm{Et}_{2} \mathrm{O}(5 \mathrm{M}, 20$ ml) was stirred at room temperature for 3 hours. The resulting mixture was concentrated and the solid was treated with $\mathrm{Et}_{2} \mathrm{O}$ to give the HCl salt ($350 \mathrm{mg}, 70 \%$ yield). ${ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, DMSO-d6): $\delta 14.43(\mathrm{~s}, 1 \mathrm{H}), 9.15-9.04(\mathrm{~m}, 1 \mathrm{H}), 8.28-8.05(\mathrm{~m}, 1 \mathrm{H}), 7.64-6.23(\mathrm{~m}, 10 \mathrm{H}), 5.95-$ $4.41(\mathrm{~m}, 4 \mathrm{H}), 3.60(\mathrm{~m}, 1 \mathrm{H}), 2.23(\mathrm{~s}, 3 \mathrm{H}), 1.74-1.51(\mathrm{~m}, 5 \mathrm{H}), 1.30-0.71(\mathrm{~m}, 5 \mathrm{H})$; MS: 451.1 $(\mathrm{M}+1)^{+}$.

The following analogs were synthesized via the procedure set forth in Scheme 1, using the appropriate aldehyde of $\mathrm{R}^{2}(\mathbf{a})$, amine of $\mathrm{R}^{3}(\mathbf{b})$, carboxylic acid of $\mathrm{R}^{4}(\mathbf{c})$, and cyano of R^{1} (d) using the reagents and solvents set forth in step A, above, and purified via various method including TLC, Chromatography, HPLC or chiral HPLC. The corresponding HCl salt was made as set forth in step B, above.

Compound 361

${ }^{1}{ }^{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.76(\mathrm{br}, 1 \mathrm{H}), 7.16-7.09(\mathrm{~m}, 4 \mathrm{H}), 6.93-6.78(\mathrm{~m}, 3 \mathrm{H}), 6.50(\mathrm{~m}$, $1 \mathrm{H}), 6.37(\mathrm{~d}, 1 \mathrm{H}), 5.60(\mathrm{~s}, 1 \mathrm{H}), 4.29(\mathrm{~d}, 1 \mathrm{H}), 3.88(\mathrm{dq}, 2 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H})$; MS: $504.1(\mathrm{M}+1)^{+}$.

Compound 342

${ }^{1} \mathrm{H} \operatorname{NMR}(400 \mathrm{MHz}, \mathrm{MeOD}-\mathrm{d} 4): \delta 7.66(\mathrm{~d}, 2 \mathrm{H}), 7.17-6.95(\mathrm{~m}, 4 \mathrm{H}), 6.86-6.67(\mathrm{~m}, 4 \mathrm{H}), 6.49(\mathrm{~m}$, $1 \mathrm{H}), 6.28(\mathrm{~S}, 1 \mathrm{H}), 3.84(\mathrm{~d}, 1 \mathrm{H}), 3.80(\mathrm{~m}, 1 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 1.95-1.74(\mathrm{~m}, 6 \mathrm{H}), 1.52-1.34(\mathrm{~m}$, 2H); MS: $529.2(\mathrm{M}+1)^{+}$.

Compound 379

${ }^{1}$ H NMR (400 MHz , DMSO-d6): 8.60 (m, 1H), 7.80 (d, 1H, $J=4.8$), 7.39-7.34 (m, 1H), 7.19-
$7.05(\mathrm{~s}, 4 \mathrm{H}), 6.90(\mathrm{t}, 1 \mathrm{H}, J=4.0), 6.67-6.56(\mathrm{~m}, 4 \mathrm{H}), 6.24(\mathrm{~s}, 1 \mathrm{H}), 4.11(\mathrm{br}, 1 \mathrm{H}), 3.96(\mathrm{dd}, 1 \mathrm{H}, J=$ $15.2,3.2$), 3.62 (dd, 1H, $J=15.2,3.2$), 2.95 (br, 1H), 2.40(s, 3H), 1.31-1.18 (m, 4H); MS: 500.7 $(\mathrm{M}+1)^{+}$.

Compound 17

${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.22-7.09(\mathrm{~m}, 9 \mathrm{H}), 6.89-6.86(\mathrm{~m}, 1 \mathrm{H}), 6.71-6.70(\mathrm{~m}, 1 \mathrm{H}), 6.03(\mathrm{~s}$, $1 \mathrm{H}), 5.73-5.70(\mathrm{~d}, 1 \mathrm{H}), 4.23(\mathrm{~m}, 1 \mathrm{H}), 3.62(\mathrm{~s}, 2 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 1.96(\mathrm{~m}, 1 \mathrm{H}), 1.58-1.54(\mathrm{~m}, 5 \mathrm{H})$, 1.40-1.35 (m, 2H); $419.1(\mathrm{M}+1)^{+}$.

Compound 333 (HCl Salt)

${ }^{1}{ }^{1} \mathrm{H}$ NMR (400 MHz , MeOD-d4): $\delta 8.12$ (br, 1H), 7.82 (br, 1H), 7.46 (s, 2H), 7.16-6.82 (m, 7H), $6.35(\mathrm{~s}, 1 \mathrm{H}), 5.04(\mathrm{~d}, 1 \mathrm{H}), 4.78(\mathrm{~d}, 1 \mathrm{H}), 4.33(\mathrm{br}, 2 \mathrm{H}), 2.59(\mathrm{~s}, 3 \mathrm{H}), 2.48(\mathrm{~s}, 3 \mathrm{H}), 2.30-2.27(\mathrm{~m}$, $2 \mathrm{H}), 1.75-1.68(\mathrm{~m}, 2 \mathrm{H}), 1.37-1.29(\mathrm{~m}, 2 \mathrm{H}), 0.46(\mathrm{q}, 1 \mathrm{H}), 0.01(\mathrm{q}, 1 \mathrm{H})$; MS: $491.2(\mathrm{M}+1)^{+}$.
Compound 268

${ }^{1}$ H NMR (400 MHz , DMSO-d6): $\delta 8.22-7.99$ (m, 2H), 7.37-7.35 (d, 1H,J=6.8), 7.29-6.62 (m, $8 \mathrm{H}), 6.18(\mathrm{~s}, 1 \mathrm{H}), 4.66-4.61(\mathrm{~m}, 1 \mathrm{H}), 4.37-4.30(\mathrm{~m}, 1 \mathrm{H}), 3.61(\mathrm{~s}, 1 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 2.09-2.01(\mathrm{~m}$, $3 \mathrm{H}), 1.73-1.52(\mathrm{~m}, 5 \mathrm{H}), 1.25-0.95(\mathrm{~m}, 5 \mathrm{H})$; MS: $523.0(\mathrm{M}+1)^{+}$.

Compound 227

${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6): $\delta 8.03(\mathrm{~s}, 1 \mathrm{H}), 7.85(\mathrm{dr}, 1 \mathrm{H}), 7.44-7.42(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.8), 7.12-$ $6.99(\mathrm{~m}, 4 \mathrm{H}), 6.89-6.73(\mathrm{~m}, 4 \mathrm{H}), 6.56-6.54(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.8), 6.22(\mathrm{~s}, 1 \mathrm{H}), 3.86-3.80(\mathrm{~m}, 1 \mathrm{H}), 3.63-$ $3.61(\mathrm{~m}, 1 \mathrm{H}), 3.44-3.40(\mathrm{~m}, 1 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 1.76-1.52(\mathrm{~m}, 5 \mathrm{H}), 1.29-0.96(\mathrm{~m}, 5 \mathrm{H})$; MS: 499.2 $(\mathrm{M}+1)^{+}$.

Compound 228

${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d6): $\delta 8.16-8.00(\mathrm{~m}, 1 \mathrm{H}), 7.51-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.17(\mathrm{~m}, 4 \mathrm{H})$, $7.08-6.93(\mathrm{~m}, 1 \mathrm{H}), 6.81-6.78(\mathrm{~m}, 1 \mathrm{H}), 6.67-6.54(\mathrm{~m}, 3 \mathrm{H}), 6.29-5.66(\mathrm{~m}, 1 \mathrm{H}), 5.04-4.85(\mathrm{~m}, 1 \mathrm{H})$, 4.72-4.42 (m, 1H), 4.27-4.06(m, 1H), 3.90-3.77(m, 1H), 3.61($\mathrm{s}, 1 \mathrm{H}), 2.22-2.01(\mathrm{~m}, 3 \mathrm{H}), 1.75-$ $1.52(\mathrm{~m}, 5 \mathrm{H}), 1.29-1.09(\mathrm{~m}, 5 \mathrm{H})$; MS: $501.2(\mathrm{M}+1)^{+}$.

Compound 329

${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d6): $\delta 8.05-8.01(\mathrm{~m}, 2 \mathrm{H}), 7.89-7.71(\mathrm{~m}, 2 \mathrm{H}), 7.28-7.03(\mathrm{~m}, 4 \mathrm{H})$, 6.89-6.86 (m, 1H), 6.74-6.72 (d, 1H, J=7.2), $6.19(\mathrm{~s}, 1 \mathrm{H}), 5.20-5.16(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=15.6), 4.92-4.89$ $(\mathrm{m}, 1 \mathrm{H}), 3.63-3.61(\mathrm{~m}, 1 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 1.70-1.51(\mathrm{~m}, 5 \mathrm{H}), 1.27-0.94(\mathrm{~m}, 5 \mathrm{H})$; MS: 450.2
$(\mathrm{M}+1)^{+}$.
Compound 42

${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO-d6): $\delta 7.92(\mathrm{~d}, 2 \mathrm{H}, J=7.8 \mathrm{~Hz}$), 7.35-7.33 (m, 1H), 7.29-7.25 (m, $1 \mathrm{H}), 7.14-7.06(\mathrm{~m}, 2 \mathrm{H}), 6.98(\mathrm{t}, 2 \mathrm{H}, J=7.5 \mathrm{~Hz}), 6.91-6.82(\mathrm{~m}, 1 \mathrm{H}), 6.79(\mathrm{t}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}), 6.69-$ $6.66(\mathrm{~m}, 2 \mathrm{H}), 6.55-6.50(\mathrm{~m}, 1 \mathrm{H}), 6.24(\mathrm{~s}, 1 \mathrm{H}), 3.65-3.45(\mathrm{~m}, 3 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}), 1.77-1.51(\mathrm{~m}, 5 \mathrm{H})$, 1.25-0.93 (m, 5H); MS: $447.2(\mathrm{M}+1)^{+}$.

Compound 113

${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d6): $\delta 7.99-7.40(\mathrm{~m}, 1 \mathrm{H}), 7.37(\mathrm{~d}, 1 \mathrm{H}, J=6.6 \mathrm{~Hz}), 7.23$ (br, 4H), 6.94-6.89 (m, 2H), 5.66 ($\mathrm{s}, 1 \mathrm{H}), 4.00-3.90(\mathrm{~m}, 2 \mathrm{H}), 3.57(\mathrm{~s}, 1 \mathrm{H}), 3.00(\mathrm{~s}, 1 \mathrm{H}), 2.27-1.91(\mathrm{~m}, 5 \mathrm{H})$, 1.71-1.31 (m, 6H), 1.26-0.63 (m, 12H); MS: 451.64 (M-1).

Compound 166

${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d6): $\delta 8.09(\mathrm{~d}, 2 \mathrm{H}, J=7.5 \mathrm{~Hz}$), $7.43(\mathrm{~d}, 1 \mathrm{H}, J=1.8 \mathrm{~Hz}), 7.36-7.34(\mathrm{~m}$, $1 \mathrm{H}), 7.11-7.04(\mathrm{~m}, 2 \mathrm{H}), 6.95-6.90(\mathrm{~m}, 2 \mathrm{H}), 6.80-6.78(\mathrm{~m}, 2 \mathrm{H}), 6.11(\mathrm{~s}, 1 \mathrm{H}), 5.89(\mathrm{~d}, 1 \mathrm{H}, J=2.1$ $\mathrm{Hz}), 3.73-3.35(\mathrm{~m}, 6 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H}), 1.74-1.50(\mathrm{~m}, 5 \mathrm{H}), 1.34-1.08(\mathrm{~m}, 5 \mathrm{H}) ; \mathrm{MS}: 451.2(\mathrm{M}+1)^{+}$.

Compound 205

${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d6): $\delta 8.11-8.08(\mathrm{~m}, 2 \mathrm{H}), 7.76-7.74(\mathrm{~m}, 2 \mathrm{H}), 7.62-7.59(\mathrm{~m}, 1 \mathrm{H})$,
7.50-7.49 (m, 1H), 7.46-7.42 (m, 1H), 7.27 (d, 1H, J=5.7 Hz), 7.24-7.22 (m, 1H), 7.17-7.14 (m, $1 \mathrm{H}), 6.88(\mathrm{~d}, 1 \mathrm{H}, J=5.7 \mathrm{~Hz}), 6.26-6.24(\mathrm{~m}, 2 \mathrm{H}), 6.11(\mathrm{~s}, 1 \mathrm{H}), 5.28-4.90(\mathrm{~m}, 2 \mathrm{H}), 3.63-3.60(\mathrm{~m}$, $1 \mathrm{H}), 1.99(\mathrm{~s}, 3 \mathrm{H}), 1.76-1.49(\mathrm{~m}, 5 \mathrm{H}), 1.27-1.06(\mathrm{~m}, 5 \mathrm{H}) ; \mathrm{MS}: 503.2(\mathrm{M}+1)^{+}$.
Compound 15

${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d6): $\delta 7.15-6.72(\mathrm{~m}, 10 \mathrm{H}), 6.40(\mathrm{~s}, 1 \mathrm{H}), 5.38-5.36(\mathrm{~m}, 1 \mathrm{H}), 3.85-$ $3.81(\mathrm{~m}, 1 \mathrm{H}), 3.65(\mathrm{~s}, 1 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 1.97-1.56(\mathrm{~m}, 5 \mathrm{H}), 1.36-0.96(\mathrm{~m}, 5 \mathrm{H})$; MS: 465.2
$(\mathrm{M}+1)^{+}$.
Compound 230

${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d6): $\delta 8.02-7.99(\mathrm{~d}, 2 \mathrm{H}), 7.09-6.69(\mathrm{~m}, 7 \mathrm{H}), 6.20(\mathrm{~s}, 1 \mathrm{H}), 3.83-3.57$ $(\mathrm{m}, 4 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 1.73-1.19(\mathrm{~m}, 18 \mathrm{H}) ; \mathrm{MS}: 467.3(\mathrm{M}+1)^{+}$.

Compound 214

${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d6): $\delta 8.05-8.03(\mathrm{~d}, 2 \mathrm{H}), 7.33-6.72(\mathrm{~m}, 11 \mathrm{H}), 6.25(\mathrm{~s}, 1 \mathrm{H}), 4.40(\mathrm{~s}$, $2 \mathrm{H}), 3.99-3.95(\mathrm{~d}, 1 \mathrm{H}), 3.73-3.69(\mathrm{~d}, 1 \mathrm{H}), 3.67-3.62(\mathrm{~m}, 1 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 1.79-1.53(\mathrm{~m}, 5 \mathrm{H})$, 1.30-0.97 (m, 5H); MS: $507.2(\mathrm{M}+1)^{+}$.

Compound 176

${ }^{1}$ H NMR (300 MHz , DMSO-d6): $\delta 8.22-7.99(\mathrm{~m}, 1 \mathrm{H}), 7.31-6.71(\mathrm{~m}, 9 \mathrm{H}), 6.25(\mathrm{~s}, 1 \mathrm{H}), 5.68-4.71$ $(\mathrm{m}, 4 \mathrm{H}), 3.61-3.57(\mathrm{~m}, 1 \mathrm{H}), 2.22-2.01(\mathrm{~m}, 6 \mathrm{H}), 1.76-1.51(\mathrm{~m}, 5 \mathrm{H}), 1.30-0.95(\mathrm{~m}, 5 \mathrm{H}) ;$ MS: 465.2 $(\mathrm{M}+1)^{+}$.
Compound 204

${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO-d6): $\delta 8.15-8.01(\mathrm{~m}, 1 \mathrm{H}), 7.62-7.52(\mathrm{~m}, 1 \mathrm{H}), 7.31-6.69(\mathrm{~m}, 9 \mathrm{H})$, $6.24(\mathrm{~s}, 1 \mathrm{H}), 5.65-4.66(\mathrm{~m}, 4 \mathrm{H}), 2.60(\mathrm{~m}, 1 \mathrm{H}), 2.20-2.05(\mathrm{~m}, 3 \mathrm{H}), 1.76-1.51(\mathrm{~m}, 5 \mathrm{H}), 1.29-0.83$ (m, 5H); MS: $451.2(\mathrm{M}+1)^{+}$.
Compound 13

${ }^{1}$ H NMR (300 MHz, DMSO-d6): $\delta 7.49-6.80(\mathrm{~m}, 9 \mathrm{H}), 6.65(\mathrm{~s}, 1 \mathrm{H}), 6.11-5.95(\mathrm{~m}, 1 \mathrm{H}), 5.94-5.39$ $(\mathrm{m}, 1 \mathrm{H}), 3.80-3.74(\mathrm{~m}, 1 \mathrm{H}), 3.56(\mathrm{~s}, 1 \mathrm{H}), 2.10(\mathrm{~s}, 1.5 \mathrm{H}), 1.84(\mathrm{~s}, 1.5 \mathrm{H}), 1.93-1.52(\mathrm{~m}, 5 \mathrm{H}), 1.39-$ 1.01 (m, 5H); MS: $465.2(\mathrm{M}+1)+$.

Compound 243

${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6): 87.97-7.80 (m, 2H), 7.37-6.26(m, 13H), 3.71 (s, 3H), 3.62$3.50(\mathrm{~m}, 3 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 1.75-1.51(\mathrm{~m}, 5 \mathrm{H}), 1.28-0.94(\mathrm{~m}, 5 \mathrm{H}) ; \mathrm{MS}: 512.2(\mathrm{M}+1)^{+}$.

Compound 305

${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6): $\delta 8.42-8.41(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=4.0 \mathrm{MHz}), 8.01(\mathrm{~s}, 1 \mathrm{H}), 7.67-7.66(\mathrm{~m}$, $2 \mathrm{H}), 7.23-6.25(\mathrm{~m}, 10 \mathrm{H}), 3.67-3.54(\mathrm{~m}, 2 \mathrm{H}), 3.17(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=4.8 \mathrm{MHz}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 1.77-1.52(\mathrm{~m}$, $5 \mathrm{H}), 1.29-0.87(\mathrm{~m}, 5 \mathrm{H}) ; \mathrm{MS}: 460.1(\mathrm{M}+1)^{+}$.

Compound 311

${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6): $\delta 8.44-8.43(\mathrm{~m}, 2 \mathrm{H}), 8.02(\mathrm{~s}, 1 \mathrm{H}), 7.73(\mathrm{~s}, 1 \mathrm{H}), 7.25-6.53(\mathrm{~m}$, $9 \mathrm{H}), 6.24(\mathrm{~s}, 1 \mathrm{H}), 3.62-3.35(\mathrm{~m}, 3 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 1.72-1.52(\mathrm{~m}, 5 \mathrm{H}), 1.23-0.93(\mathrm{~m}, 5 \mathrm{H}) ; \mathrm{MS}:$ $460.1(\mathrm{M}+1)^{+}$.
Compound 294

${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6): $\delta 8.39(\mathrm{~s}, 1 \mathrm{H}), 8.05-7.87(\mathrm{~m}, 3 \mathrm{H}), 7.36-6.58(\mathrm{~m}, 7 \mathrm{H}), 6.19(\mathrm{~s}$, $1 \mathrm{H}), 4.96-4.70(\mathrm{~m}, 2 \mathrm{H}), 3.61(\mathrm{~m}, 1 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 1.74-1.52(\mathrm{~m}, 5 \mathrm{H}), 1.28-0.93(\mathrm{~m}, 5 \mathrm{H}) ;$ MS: $450.1(\mathrm{M}+1)^{+}$.

Compound 320

${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6): $\delta 8.98(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=1.6 \mathrm{MHz}), 8.19-8.17(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7.2 \mathrm{MHz})$, 7.62-6.69 (m, 9H), 6.31 ($\mathrm{s}, 1 \mathrm{H}), 3.67-3.52(\mathrm{~m}, 3 \mathrm{H}), 1.74-1.55(\mathrm{~m}, 5 \mathrm{H}), 1.29-0.99(\mathrm{~m}, 5 \mathrm{H}) ; \mathrm{MS}:$ $470.0(\mathrm{M}+1)^{+}$.

Compound 312

${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6): $\delta 8.22(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=4.8 \mathrm{MHz}$), $7.75(\mathrm{~s}, 1 \mathrm{H}), 7.26-6.71(\mathrm{~m}, 9 \mathrm{H})$, $6.27(\mathrm{~s}, 1 \mathrm{H}), 4.75-4.39(\mathrm{~m}, 2 \mathrm{H}), 3.62(\mathrm{~m}, 1 \mathrm{H}), 2.13(\mathrm{~s}, 3 \mathrm{H}), 1.75-1.54(\mathrm{~m}, 5 \mathrm{H}), 1.27-0.99(\mathrm{~m}$, 5H); MS: $467.1(\mathrm{M}+1)^{+}$.

Compound 46

${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d6): $\delta 8.12-8.07(\mathrm{~m}, 1 \mathrm{H}), 8.02(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=6.9 \mathrm{~Hz}), 7.36-6.66(\mathrm{~m}$, $10 \mathrm{H}), 6.31(\mathrm{~s}, 1 \mathrm{H}), 4.09-4.02(\mathrm{~m}, 1 \mathrm{H}), 3.54(\mathrm{~s}, 2 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 1.86-1.14(\mathrm{~m}, 8 \mathrm{H}) ; \mathrm{MS}: 451.1$ $(\mathrm{M}+1)^{+}$.

Compound 47

${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d6): $\delta 8.19(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7.2 \mathrm{~Hz}), 7.95-7.94(\mathrm{~m}, 1 \mathrm{H}), 7.36-6.73(\mathrm{~m}$, $10 \mathrm{H}), 6.35(\mathrm{~s}, 1 \mathrm{H}), 4.08-4.02(\mathrm{~m}, 1 \mathrm{H}), 3.55(\mathrm{~s}, 2 \mathrm{H}), 1.85-1.15(\mathrm{~m}, 8 \mathrm{H}) ; \mathrm{MS}: 455.1(\mathrm{M}+1)^{+}$.

Compound 2

${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d6): $\delta 8.22(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7.2 \mathrm{~Hz}$), 8.05-7.99 (m, 1H), 7.37-6.75 (m, $10 \mathrm{H}), 6.49(\mathrm{~s}, 1 \mathrm{H}), 4.08-4.02(\mathrm{~m}, 1 \mathrm{H}), 3.56(\mathrm{~s}, 2 \mathrm{H}), 1.84-1.16(\mathrm{~m}, 8 \mathrm{H}) ; \mathrm{MS}: 471.1(\mathrm{M}+1)^{+}$.
Compound 48

${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d6): $\delta 8.09(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7.2 \mathrm{~Hz}), 7.90-7.89(\mathrm{~m}, 1 \mathrm{H}), 7.36-6.72(\mathrm{~m}$, $11 \mathrm{H}), 5.99(\mathrm{~s}, 1 \mathrm{H}), 4.05-4.02(\mathrm{~m}, 1 \mathrm{H}), 3.52(\mathrm{~s}, 2 \mathrm{H}), 1.77-1.21(\mathrm{~m}, 8 \mathrm{H}) ; \mathrm{MS}: 437.1(\mathrm{M}+1)^{+}$.

Compound 49

${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d6): $\delta 8.00(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7.5 \mathrm{~Hz}), 7.36-6.60(\mathrm{~m}, 11 \mathrm{H}), 6.03(\mathrm{~s}, 1 \mathrm{H})$, 3.60-3.56 (m, 6H), 1.71-1.56 (m, 5H), 1.24-0.93 (m, 5H); MS: $481.1(\mathrm{M}+1)^{+}$.

Compound 50

${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d6): $\delta 8.05(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7.5 \mathrm{~Hz}), 7.36-6.73(\mathrm{~m}, 11 \mathrm{H}), 6.05(\mathrm{~s}, 1 \mathrm{H})$, 3.58-3.56 (m, 3H), 1.72-1.50 (m, 5H), 1.20-0.91 (m, 5H); MS: $469.1(\mathrm{M}+1)^{+}$.

Compound 51

${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d6): $\delta 8.08(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7.5 \mathrm{~Hz}), 7.36-6.71(\mathrm{~m}, 9 \mathrm{H}), 6.32(\mathrm{~s}, 1 \mathrm{H}), 3.59-$
$3.56(\mathrm{~m}, 3 \mathrm{H}), 2.14(\mathrm{~s}, 3 \mathrm{H}), 1.73-1.48(\mathrm{~m}, 5 \mathrm{H}), 1.25-1.02(\mathrm{~m}, 5 \mathrm{H}) ; \mathrm{MS}: 471.1(\mathrm{M}+1)^{+}$.

Compound 115

${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d6): $\delta 8.08(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7.5 \mathrm{~Hz}), 7.36-6.73(\mathrm{~m}, 11 \mathrm{H}), 6.04(\mathrm{~s}, 1 \mathrm{H})$, $3.60-3.57(\mathrm{~m}, 3 \mathrm{H}), 1.71-1.55(\mathrm{~m}, 5 \mathrm{H}), 1.25-1.01(\mathrm{~m}, 5 \mathrm{H}) ; \mathrm{MS}: 529.1(\mathrm{M}+1)^{+}$.

Compound 89

${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d6): $\delta 7.98(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7.5 \mathrm{~Hz}$), 7.36-6.73 (m, 11H), $6.03(\mathrm{~s}, 1 \mathrm{H})$, 3.58-3.56(m, 3H), $2.14(\mathrm{~s}, 3 \mathrm{H}), 1.71-1.46(\mathrm{~m}, 5 \mathrm{H}), 1.25-0.94(\mathrm{~m}, 5 \mathrm{H}) ; \mathrm{MS}: 465.2(\mathrm{M}+1)^{+}$.

Compound 91

${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d6): $\delta 9.24(\mathrm{~s}, 1 \mathrm{H}), 8.01-7.98(\mathrm{~m}, 1 \mathrm{H}), 7.36-6.47(\mathrm{~m}, 11 \mathrm{H}), 5.98(\mathrm{~s}$, $1 \mathrm{H}), 3.58-3.54(\mathrm{~m}, 3 \mathrm{H}), 1.71-1.50(\mathrm{~m}, 5 \mathrm{H}), 1.24-0.97(\mathrm{~m}, 5 \mathrm{H}) ; \mathrm{MS}: 467.1(\mathrm{M}+1)^{+}$.

Compound 62

${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d6): $\delta 8.15(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7.5 \mathrm{~Hz}), 7.98-7.95(\mathrm{~m}, 1 \mathrm{H}), 7.46-6.76(\mathrm{~m}$, $10 \mathrm{H}), 6.47(\mathrm{~s}, 1 \mathrm{H}), 3.65-3.51(\mathrm{~m}, 3 \mathrm{H}), 1.66-1.52(\mathrm{~m}, 5 \mathrm{H}), 1.23-0.91(\mathrm{~m}, 5 \mathrm{H}) ; \mathrm{MS}: 496.1(\mathrm{M}+1)^{+}$.

Compound 92

${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d6): $\delta 9.32(\mathrm{~s}, 1 \mathrm{H}), 7.91(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7.5 \mathrm{~Hz}), 7.35-6.47(\mathrm{~m}, 11 \mathrm{H})$, $5.95(\mathrm{~s}, 1 \mathrm{H}), 3.55-3.53(\mathrm{~m}, 3 \mathrm{H}), 1.77-1.55(\mathrm{~m}, 5 \mathrm{H}), 1.24-0.96(\mathrm{~m}, 5 \mathrm{H}) ; \mathrm{MS}: 467.1(\mathrm{M}+1)^{+}$.

Compound 65

${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d6): $\delta 7.98(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7.5 \mathrm{~Hz}), 7.36-6.27(\mathrm{~m}, 11 \mathrm{H}), 5.75(\mathrm{~s}, 1 \mathrm{H})$, 3.62-3.57 (m, 3H), 2.74-2.64 (m, 2H), 1.74-1.48(m, 5H), 1.28-0.95 (m, 8H); MS: $479.2(\mathrm{M}+1)^{+}$.

Compound 116

${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d6): $\delta 8.04(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7.5 \mathrm{~Hz}), 7.37-6.63(\mathrm{~m}, 11 \mathrm{H}), 6.24(\mathrm{~s}, 1 \mathrm{H})$, $3.79(\mathrm{~s}, 1 \mathrm{H}), 3.64-3.54(\mathrm{~m}, 3 \mathrm{H}), 1.74-1.50(\mathrm{~m}, 5 \mathrm{H}), 1.26-0.97(\mathrm{~m}, 5 \mathrm{H}) ; \mathrm{MS}: 481.2(\mathrm{M}+1)^{+}$.
Compound 94

${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d6): $\delta 8.10(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7.8 \mathrm{~Hz}), 7.37-6.71(\mathrm{~m}, 10 \mathrm{H}), 6.29(\mathrm{~s}, 1 \mathrm{H})$, 3.59-3.55 (m, 3H), 1.75-1.56 (m, 5H), 1.24-1.03 (m, 5H); MS: $457.1(\mathrm{M}+1)^{+}$.

Compound 127

${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d6): $\delta 8.13(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7.5 \mathrm{~Hz}), 7.36-6.64(\mathrm{~m}, 10 \mathrm{H}), 6.26(\mathrm{~s}, 1 \mathrm{H})$, 3.69-3.57 (m, 3H), $2.04(\mathrm{~s}, 3 \mathrm{H}), 1.74-1.50(\mathrm{~m}, 5 \mathrm{H}), 1.23-1.00(\mathrm{~m}, 5 \mathrm{H}) ; \mathrm{MS}: 483.1(\mathrm{M}+1)^{+}$.

Compound 128

${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d6): $\delta 8.19(\mathrm{~d}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}$), 7.36-6.34 (m, 10H), $6.25(\mathrm{~s}, 1 \mathrm{H})$, 3.64-3.58 (m, 3H), 3.51 (s, 3H), 1.75-1.50 (m, 5H), 1.26-0.99 (m, 5H); MS: $499.1(\mathrm{M}+1)^{+}$.

Compound 203

${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d6): $\delta 12.05(\mathrm{~s}, 1 \mathrm{H}), 8.33-8.31(\mathrm{~m}, 1 \mathrm{H}), 8.13-7.76(\mathrm{~m}, 2 \mathrm{H}), 7.31-$ $6.61(\mathrm{~m}, 10 \mathrm{H}), 6.26(\mathrm{~s}, 1 \mathrm{H}), 3.66-3.37(\mathrm{~m}, 3 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 1.73-1.50(\mathrm{~m}, 5 \mathrm{H}), 1.23-0.95(\mathrm{~m}$, 5H); MS: $499.2(\mathrm{M}+1)^{+}$.

Compound 213

${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d6): $\delta 12.03(\mathrm{~s}, 1 \mathrm{H}), 8.33-7.96(\mathrm{~m}, 3 \mathrm{H}), 7.50-5.66(\mathrm{~m}, 10 \mathrm{H}), 5.00-$ $3.87(\mathrm{~m}, 4 \mathrm{H}), 3.79(\mathrm{~m}, 1 \mathrm{H}), 2.19(\mathrm{~s}, 1.5 \mathrm{H}), 1.78-1.51(\mathrm{~m}, 6.5 \mathrm{H}), 1.29-1.04(\mathrm{~m}, 5 \mathrm{H})$; MS: 501.2 $(\mathrm{M}+1)^{+}$.
Compound 261

${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6): $\delta 12.02(\mathrm{~s}, 1 \mathrm{H}), 8.84(\mathrm{~s}, 1 \mathrm{H}), 8.27-6.63(\mathrm{~m}, 12 \mathrm{H}), 6.26(\mathrm{~s}, 1 \mathrm{H})$, 3.73-3.51 (m, 3H), 2.36(s, 3H), 1.74-1.52 (m, 5H), 1.27-0.93(m, 5H); MS: $499.1(\mathrm{M}+1)^{+}$.

Compound 269

${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6): $\delta 12.52(\mathrm{~s}, 1 \mathrm{H}), 9.08(\mathrm{~s}, 1 \mathrm{H}), 8.47-6.75(\mathrm{~m}, 12 \mathrm{H}), 6.41(\mathrm{~s}, 1 \mathrm{H})$, 3.78-3.76 (m, 1H), 2.38 (s, 3H), 1.91-1.56 (m, 5H), 1.35-0.85 (m, 5H); MS: 513.1 (M+1) ${ }^{+}$.

Compound 223

${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6): $\delta 14.30-14.24(\mathrm{~m}, 1 \mathrm{H}), 8.03-6.83(\mathrm{~m}, 13 \mathrm{H}), 6.17(\mathrm{~s}, 1 \mathrm{H}), 5.03-$ $4.66(\mathrm{~m}, 2 \mathrm{H}), 3.89-3.52(\mathrm{~m}, 4 \mathrm{H}), 2.49-2.37(\mathrm{~m}, 6 \mathrm{H}), 1.75-1.71(\mathrm{~m}, 5 \mathrm{H}), 1.25-1.06(\mathrm{~m}, 5 \mathrm{H})$; MS: $525.3(\mathrm{M}+1)^{+}$.

Compound 275

${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6): $\delta 11.40(\mathrm{~s}, 1 \mathrm{H}), 8.30(\mathrm{~s}, 1 \mathrm{H}), 8.01-6.72(\mathrm{~m}, 12 \mathrm{H}), 6.27(\mathrm{~s}, 1 \mathrm{H})$, 3.66-3.17 (m, 3H), 2.37 (s, 3H), 1.73-1.52 (m, 5H), 1.28-0.95 (m, 5H); MS: $499.1(\mathrm{M}+1)^{+}$.

Compound 276

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d} 6$): $\delta 14.92(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=1.6 \mathrm{MHz}), 12.74(\mathrm{~s}, 1 \mathrm{H}), 9.09(\mathrm{~s}, 1 \mathrm{H}), 8.25-$ $6.72(\mathrm{~m}, 12 \mathrm{H}), 6.25(\mathrm{~s}, 1 \mathrm{H}), 3.77-3.53(\mathrm{~m}, 3 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 1.73-1.52(\mathrm{~m}, 5 \mathrm{H}), 1.27-0.97(\mathrm{~m}$, 5H); MS: $499.1(\mathrm{M}+1)^{+}$.
Compound 283
106

${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6): $\delta 10.87$ (s, 1H), 7.95-6.23 (m, 15H), 3.75-3.50 (m, 2H), 2.41 $(\mathrm{s}, 1.43 \mathrm{H}), 2.13(\mathrm{~s}, 1.59 \mathrm{H}), 1.77-1.54(\mathrm{~m}, 5 \mathrm{H}), 1.39-1.09(\mathrm{~m}, 8 \mathrm{H}) ; \mathrm{MS}: 512.2(\mathrm{M}+1)^{+}$.

Compound 304

${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6): $\delta 8.12(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7.6 \mathrm{MHz}), 7.87(\mathrm{~s}, 1 \mathrm{H}), 7.64(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=3.2$ $\mathrm{MHz}), 7.45(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=3.2 \mathrm{MHz}), 7.25-7.12(\mathrm{~m}, 4 \mathrm{H}), 6.99(\mathrm{~s}, 1 \mathrm{H}), 6.89(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7.6 \mathrm{MHz}), 6.17$ $(\mathrm{s}, 1 \mathrm{H}), 5.38(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=4.0 \mathrm{MHz}), 5.10(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=18.4 \mathrm{MHz}), 4.83(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=18.4 \mathrm{MHz}), 3.61(\mathrm{~m}$, $1 \mathrm{H}), 1.99(\mathrm{~s}, 3 \mathrm{H}), 1.76-1.51(\mathrm{~m}, 5 \mathrm{H}), 1.29-0.99(\mathrm{~m}, 5 \mathrm{H}) ; \mathrm{MS}: 452.1(\mathrm{M}+1)^{+}$.

Compound 26

${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d6): $\delta 8.12(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8), 7.36-6.62(\mathrm{~m}, 9 \mathrm{H}), 6.23(\mathrm{~s}, 1 \mathrm{H}), 4.05(\mathrm{~m}$, $1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.61-3.50(\mathrm{~m}, 2 \mathrm{H}), 1.78(\mathrm{~m}, 2 \mathrm{H}), 1.58-1.43(\mathrm{~m}, 5 \mathrm{H}), 1.24(\mathrm{~m}, 1 \mathrm{H})$; MS: 467.1 $(\mathrm{M}+1)^{+}$.

Compound 43

${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d6): $\delta 8.25(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8), 7.36-6.74(\mathrm{~m}, 9 \mathrm{H}), 6.29(\mathrm{~s}, 1 \mathrm{H}), 4.08(\mathrm{~m}$, $1 \mathrm{H}), 3.63(\mathrm{~m}, 2 \mathrm{H}), 1.78(\mathrm{~m}, 2 \mathrm{H}), 1.58-1.43(\mathrm{~m}, 5 \mathrm{H}), 1.25(\mathrm{~m}, 1 \mathrm{H}) ; \mathrm{MS}: 455.1(\mathrm{M}+1)^{+}$.
Compound 44

${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d6): $\delta 8.29(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8), 7.35-6.72(\mathrm{~m}, 9 \mathrm{H}), 6.34(\mathrm{~s}, 1 \mathrm{H}), 4.09(\mathrm{~m}$, $1 \mathrm{H}), 3.68-3.53(\mathrm{~m}, 2 \mathrm{H}), 1.78(\mathrm{~m}, 2 \mathrm{H}), 1.63-1.48(\mathrm{~m}, 5 \mathrm{H}), 1.26(\mathrm{~m}, 1 \mathrm{H}) ; \mathrm{MS}: 471.1(\mathrm{M}+1)^{+}$.
Compound 45

${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d6): $\delta 8.12(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8), 7.35-6.72(\mathrm{~m}, 10 \mathrm{H}), 6.06(\mathrm{~s}, 1 \mathrm{H}), 4.05$ $(\mathrm{m}, 1 \mathrm{H}), 3.61-3.51(\mathrm{~m}, 2 \mathrm{H}), 1.87-1.64(\mathrm{~m}, 2 \mathrm{H}), 1.60-1.38(\mathrm{~m}, 5 \mathrm{H}), 1.28(\mathrm{~m}, 1 \mathrm{H}) ; \mathrm{MS}: 437.1$ $(\mathrm{M}+1)^{+}$.
Compound 129

${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d6): $\delta 8.35(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7.5$), 7.62-6.64 (m, 8H), $6.24(\mathrm{~s}, 1 \mathrm{H}), 3.69-$ $3.04(\mathrm{~m}, 3 \mathrm{H}), 1.75-1.50(\mathrm{~m}, 5 \mathrm{H}), 1.36-0.96(\mathrm{~m}, 5 \mathrm{H}) ; \mathrm{MS}: 547.0,549.0(\mathrm{M}+1)^{+}$.
Compound 102

${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d6): $\delta 8.14(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7.5), 7.37-6.74(\mathrm{~m}, 9 \mathrm{H}), 6.02(\mathrm{~s}, 1 \mathrm{H}), 3.60$ $(\mathrm{m}, 3 \mathrm{H}), 1.73-1.50(\mathrm{~m}, 5 \mathrm{H}), 1.32-0.96(\mathrm{~m}, 5 \mathrm{H}) ; \mathrm{MS}: 503.1,505.1(\mathrm{M}+1)^{+}$.

Compound 103

${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d6): $\delta 8.35(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7.5$), 7.41-6.74 (m, 8H), $6.30(\mathrm{~s}, 1 \mathrm{H}), 3.66-$ $3.52(\mathrm{~m}, 3 \mathrm{H}), 1.73-1.50(\mathrm{~m}, 5 \mathrm{H}), 1.32-1.02(\mathrm{~m}, 5 \mathrm{H}) ; \mathrm{MS}: 519.1,521.1(\mathrm{M}+1)^{+}$.

Compound 78

${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d6): $\delta 7.97(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7.5), 7.34-6.74(\mathrm{~m}, 10 \mathrm{H}), 6.02(\mathrm{~s}, 1 \mathrm{H}), 3.57$ $(\mathrm{m}, 3 \mathrm{H}), 2.15(\mathrm{~s}, 3 \mathrm{H}), 1.73-1.50(\mathrm{~m}, 5 \mathrm{H}), 1.32-0.95(\mathrm{~m}, 5 \mathrm{H}) ; \mathrm{MS}: 465.2(\mathrm{M}+1)^{+}$.
Compound 80

${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d6): $\delta 8.05(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7), 7.77-6.72(\mathrm{~m}, 10 \mathrm{H}), 6.23(\mathrm{~s}, 1 \mathrm{H}), 3.80$ $(\mathrm{m}, 1 \mathrm{H}), 3.60(\mathrm{~m}, 2 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 1.80-1.25(\mathrm{~m}, 12 \mathrm{H})$; MS: $479.2(\mathrm{M}+1)^{+}$.

Compound 67

${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d6): $\delta 9.70(\mathrm{~s}, 1 \mathrm{H}), 8.02(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7.5), 7.35-6.44(\mathrm{~m}, 11 \mathrm{H}), 6.20$ $(\mathrm{s}, 1 \mathrm{H}), 3.60(\mathrm{~m}, 3 \mathrm{H}), 1.70-1.50(\mathrm{~m}, 5 \mathrm{H}), 1.24-1.00(\mathrm{~m}, 5 \mathrm{H}) ; \mathrm{MS}: 467.1(\mathrm{M}+1)^{+}$.

Compound 106

${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d6): $\delta 8.22(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7.5), 7.52-6.75(\mathrm{~m}, 8 \mathrm{H}), 6.23(\mathrm{~s}, 1 \mathrm{H}), 3.62$ $(\mathrm{m}, 3 \mathrm{H}), 1.70-1.50(\mathrm{~m}, 5 \mathrm{H}), 1.35-1.00(\mathrm{~m}, 5 \mathrm{H}) ; \mathrm{MS}: 505.1(\mathrm{M}+1)^{+}$.
Compound 114

${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d6): $\delta 7.99(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7.5), 7.73-6.78(\mathrm{~m}, 8 \mathrm{H}), 6.39(\mathrm{~s}, 1 \mathrm{H}), 3.64-$ $3.50(\mathrm{~m}, 3 \mathrm{H}), 1.70-1.50(\mathrm{~m}, 5 \mathrm{H}), 1.35-1.00(\mathrm{~m}, 5 \mathrm{H}) ; \mathrm{MS}: 624.9(\mathrm{M}+1)^{+}$.

Compound 87

${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d6): $\delta 8.13(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7.5$), $7.35-6.73(\mathrm{~m}, 5 \mathrm{H}), 6.30(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=3.3)$, $6.12(\mathrm{~s}, 1 \mathrm{H}), 6.07(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=3.3), 3.60(\mathrm{~m}, 3 \mathrm{H}), 1.72-1.50(\mathrm{~m}, 5 \mathrm{H}), 1.30-1.00(\mathrm{~m}, 5 \mathrm{H}) ; \mathrm{MS}:$ $519.0(\mathrm{M}+1)^{+}$.

Compound 108

1H NMR (300 MHz, DMSO-d6): $\delta 8.02(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7.5$), 7.65-6.73 (m, 8H), $6.40(\mathrm{~s}, 1 \mathrm{H})$, $3.59(\mathrm{~m}, 3 \mathrm{H}), 1.72-1.50(\mathrm{~m}, 5 \mathrm{H}), 1.39-1.00(\mathrm{~m}, 5 \mathrm{H})$; MS: $519.1(\mathrm{M}+1)^{+}$.

Compound 130

${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d6): $\delta 7.79(\mathrm{~m}, 2 \mathrm{H}), 7.45-6.67(\mathrm{~m}, 7 \mathrm{H}), 6.40(\mathrm{~s}, 1 \mathrm{H}), 5.85-5.64(\mathrm{~m}$, $1 \mathrm{H}), 3.56(\mathrm{~m}, 3 \mathrm{H}), 2.15-1.50(\mathrm{~m}, 11 \mathrm{H}), 1.25-1.07(\mathrm{~m}, 5 \mathrm{H})$; MS: $479.2(\mathrm{M}+1)^{+}$.

Compound 394

${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d6): $\delta 8.66(\mathrm{~m}, 1 \mathrm{H}), 7.36-6.74(\mathrm{~m}, 14 \mathrm{H}), 6.34(\mathrm{~s}, 1 \mathrm{H}), 4.35(\mathrm{~m}, 2 \mathrm{H})$, $3.64(\mathrm{~m}, 2 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H})$; MS: $473.1(\mathrm{M}+1)^{+}$.

Compound 109

${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d6): $\delta 7.76(\mathrm{br}, 2 \mathrm{H}), 7.34-6.74(\mathrm{~m}, 9 \mathrm{H}), 6.22(\mathrm{~s}, 1 \mathrm{H}), 3.60(\mathrm{~m}, 2 \mathrm{H})$, $2.33(\mathrm{~s}, 3 \mathrm{H}), 1.25(\mathrm{~s}, 9 \mathrm{H})$; MS: $439.1(\mathrm{M}+1)^{+}$.
Compound 110

${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO-d6): $89.63(\mathrm{~s}, 1 \mathrm{H}), 7.36-6.76(\mathrm{~m}, 13 \mathrm{H}), 6.50(\mathrm{~s}, 1 \mathrm{H}), 3.64(\mathrm{~m}, 2 \mathrm{H})$, 2.42 ($\mathrm{s}, 3 \mathrm{H}$), 2.10(s, 3H); MS: 471.1 (M -1) ${ }^{\text {. }}$.

Compound 125

${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d6): $\delta 8.10(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7.5$), $7.09-6.65(\mathrm{~m}, 12 \mathrm{H}), 6.45(\mathrm{~s}, 1 \mathrm{H}), 4.15$ $(\mathrm{m}, 3 \mathrm{H}), 3.64(\mathrm{~m}, 1 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 1.75-1.50(\mathrm{~m}, 5 \mathrm{H}), 1.38-1.03(\mathrm{~m}, 5 \mathrm{H})$; MS: $503.2(\mathrm{M}+1)^{+}$. 112

Compound 126

${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d6): $\delta 10.80$ ($\mathrm{s}, 1 \mathrm{H}$), 7.96-6.70 (m, 13H), 6.28 ($\mathrm{s}, 1 \mathrm{H}$), 3.64-3.42 $(\mathrm{m}, 3 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}), 1.75-1.50(\mathrm{~m}, 5 \mathrm{H}), 1.34-1.03(\mathrm{~m}, 5 \mathrm{H}) ; \mathrm{MS}: 498.2(\mathrm{M}+1)^{+}$.
Compound 150

${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d6): $\delta 7.97(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7.5), 7.74-6.74(\mathrm{~m}, 10 \mathrm{H}), 6.26(\mathrm{~s}, 1 \mathrm{H}), 3.64$ $(\mathrm{m}, 1 \mathrm{H}), 3.38(\mathrm{~m}, 2 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 1.78-1.52(\mathrm{~m}, 5 \mathrm{H}), 1.34-0.95(\mathrm{~m}, 5 \mathrm{H}) ; \mathrm{MS}: 465.2(\mathrm{M}+1)^{+}$.
Compound 132

${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d6): $\delta 8.09(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7.5), 7.15-6.73(\mathrm{~m}, 11 \mathrm{H}), 6.45(\mathrm{~s}, 1 \mathrm{H}), 5.96$ $(\mathrm{s}, 2 \mathrm{H}), 3.64(\mathrm{~m}, 1 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 1.70-1.52(\mathrm{~m}, 5 \mathrm{H}), 1.34-1.03(\mathrm{~m}, 5 \mathrm{H}) ; \mathrm{MS}: 489.2(\mathrm{M}+1)^{+}$.

Compound 137

${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d6): $\delta 8.07(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7.5), 7.30-6.73(\mathrm{~m}, 11 \mathrm{H}), 6.06(\mathrm{~s}, 1 \mathrm{H}), 3.58$ $(\mathrm{m}, 3 \mathrm{H}), 1.78-1.52(\mathrm{~m}, 5 \mathrm{H}), 1.34-1.03(\mathrm{~m}, 5 \mathrm{H}) ; \mathrm{MS}: 469.1(\mathrm{M}+1)^{+}$.

Compound 138

${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d6): $\delta 8.06(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7.5), 7.65(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=3.2), 7.15-6.55(\mathrm{~m}, 8 \mathrm{H})$, $6.41(\mathrm{~s}, 1 \mathrm{H}), 3.63(\mathrm{~m}, 1 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 1.78-1.52(\mathrm{~m}, 5 \mathrm{H}), 1.34-1.03(\mathrm{~m}, 5 \mathrm{H}) ; \mathrm{MS}: 451.1(\mathrm{M}+1)$ $+$

Compound 139

${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d6): $\delta 8.19(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7.5), 7.29-6.83(\mathrm{~m}, 8 \mathrm{H}), 6.51(\mathrm{~s}, 1 \mathrm{H}), 3.69$ $(\mathrm{m}, 1 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}), 2.14(\mathrm{~s}, 6 \mathrm{H}), 1.80-1.52(\mathrm{~m}, 5 \mathrm{H}), 1.34-1.03(\mathrm{~m}, 5 \mathrm{H}) ; \mathrm{MS}: 464.2(\mathrm{M}+1)^{+}$.

Compound 107

${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d6): $\delta 8.10(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7.5), 7.30-6.87(\mathrm{~m}, 10 \mathrm{H}), 6.74(\mathrm{~s}, 1 \mathrm{H}), 6.05$ $(\mathrm{s}, 1 \mathrm{H}), 3.60(\mathrm{~m}, 3 \mathrm{H}), 1.70-1.52(\mathrm{~m}, 5 \mathrm{H}), 1.34-0.95(\mathrm{~m}, 5 \mathrm{H})$; MS: 485.1, $487.1(\mathrm{M}+1)^{+}$.

Compound 142

${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, ~ D M S O-\mathrm{d} 6$) : $\delta 8.07(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7.5), 7.21-6.76(\mathrm{~m}, 8 \mathrm{H}), 619(\mathrm{~s}, 1 \mathrm{H}), 4.24(\mathrm{~s}$, $1 \mathrm{H}), 3.63(\mathrm{~m}, 1 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 1.78-1.52(\mathrm{~m}, 5 \mathrm{H}), 1.32-0.98(\mathrm{~m}, 5 \mathrm{H}) ; \mathrm{MS}: 393.2(\mathrm{M}+1)^{+}$.
Compound 158

${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d6): $\delta 8.96(\mathrm{~s}, 1 \mathrm{H}), 7.99-6.54(\mathrm{~m}, 10 \mathrm{H}), 6.25(\mathrm{~s}, 1 \mathrm{H}), 3.65(\mathrm{~m}, 3 \mathrm{H})$, $2.36(\mathrm{~s}, 3 \mathrm{H}), 1.70-1.50(\mathrm{~m}, 5 \mathrm{H}), 1.32-0.96(\mathrm{~m}, 5 \mathrm{H}) ; \mathrm{MS}: 466.2(\mathrm{M}+1)^{+}$.

Compound 104

${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d6): $\delta 8.25(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7.5$), 7.70-6.74 (m, 9H), $6.28(\mathrm{~s}, 1 \mathrm{H}), 3.63$ $(\mathrm{m}, 3 \mathrm{H}), 1.70-1.50(\mathrm{~m}, 5 \mathrm{H}), 1.30-0.95(\mathrm{~m}, 5 \mathrm{H}) ; \mathrm{MS}: 529.1,531.1(\mathrm{M}+1)^{+}$.

Compound 105

${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d6): $\delta 7.98(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7.5), 7.76-6.77(\mathrm{~m}, 8 \mathrm{H}), 6.46(\mathrm{~m}, 2 \mathrm{H}), 3.62$
(m, 3H), 1.74-1.50(m,5H), 1.32-0.96(m,5H); MS: $521.1(\mathrm{M}+1)^{+}$.
Compound 5

${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d6): $\delta 8.28-6.74(\mathrm{~m}, 13 \mathrm{H}), 6.26(\mathrm{~s}, 1 \mathrm{H}), 5.28(\mathrm{~m}, 2 \mathrm{H}), 4.05(\mathrm{~m}, 1 \mathrm{H})$, $2.40(\mathrm{~s}, 3 \mathrm{H}), 1.78(\mathrm{~m}, 2 \mathrm{H}), 1.57-1.23(\mathrm{~m}, 6 \mathrm{H}) ; \mathrm{MS}: 486.2(\mathrm{M}+1)^{+}$.

Compound 151

${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d6): $\delta 8.05-6.78(\mathrm{~m}, 12 \mathrm{H}), 6.19(\mathrm{~s}, 1 \mathrm{H}), 5.58-5.15(\mathrm{~m}, 2 \mathrm{H}), 3.59(\mathrm{~m}$, $1 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 1.69-1.53(\mathrm{~m}, 5 \mathrm{H}), 1.32-0.96(\mathrm{~m}, 5 \mathrm{H}) ; \mathrm{MS}: 500.2(\mathrm{M}+1)^{+}$.

Compound 157

${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO-d6): $\delta 8.26-6.64(\mathrm{~m}, 12 \mathrm{H}), 6.21(\mathrm{~s}, 1 \mathrm{H}), 6.06-4.47(\mathrm{~m}, 4 \mathrm{H}), 3.59(\mathrm{~m}$, $1 \mathrm{H}), 2.22(\mathrm{~s}, 3 \mathrm{H}), 1.69-1.47(\mathrm{~m}, 5 \mathrm{H}), 1.32-0.96(\mathrm{~m}, 5 \mathrm{H}) ; \mathrm{MS}: 502.2(\mathrm{M}+1)^{+}$.
Compound 262

${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6): $\delta 12.22(\mathrm{~s}, 1 \mathrm{H}), 8.35(\mathrm{~m}, 2 \mathrm{H}), 7.90(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=5.7), 7.46-6.74$ $(\mathrm{m}, 11 \mathrm{H}), 6.40(\mathrm{~s}, 1 \mathrm{H}), 3.78(\mathrm{~m}, 1 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 1.87-1.60(\mathrm{~m}, 5 \mathrm{H}), 1.34-1.07(\mathrm{~m}, 5 \mathrm{H}) ; \mathrm{MS}:$ $512.1(\mathrm{M}+1)^{+}$.
Compound 270

${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6): $\delta 9.50(\mathrm{~m}, 1 \mathrm{H}), 8.68(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=4.5), 8.15(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=5.7)$,
7.38-6.74 (m, 9H), $6.22(\mathrm{~s}, 1 \mathrm{H}), 4.35(\mathrm{~m}, 2 \mathrm{H}), 3.64(\mathrm{~m}, 1 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 1.72-1.50(\mathrm{~m}, 5 \mathrm{H})$, 1.34-1.07 (m, 5H); MS: $503.1(\mathrm{M}+1)^{+}$.

Compound 284

${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6): $\delta 8.28(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=5.7), 7.55(\mathrm{~s}, 1 \mathrm{H}), 7.29-6.79(\mathrm{~m}, 9 \mathrm{H}), 6.37(\mathrm{~s}$, $1 \mathrm{H}), 3.69(\mathrm{~m}, 4 \mathrm{H}), 2.48(\mathrm{~s}, 3 \mathrm{H}), 1.79-1.50(\mathrm{~m}, 5 \mathrm{H}), 1.34-1.07(\mathrm{~m}, 5 \mathrm{H}) ; \mathrm{MS}: 477.1(\mathrm{M}+1)^{+}$.

Compound 301

${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6): $\delta 8.01-7.78(\mathrm{~m}, 3 \mathrm{H}), 7.38-6.55(\mathrm{~m}, 10 \mathrm{H}), 6.22(\mathrm{~s}, 1 \mathrm{H}), 3.94(\mathrm{~m}$, $1 \mathrm{H}), 3.61(\mathrm{~m}, 2 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 1.70-1.50(\mathrm{~m}, 5 \mathrm{H}), 1.34-1.00(\mathrm{~m}, 5 \mathrm{H}) ; \mathrm{MS}: 493.1(\mathrm{M}+1)^{+}$.
Compound 316

${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6): $\delta 8.01-7.88(\mathrm{~m}, 3 \mathrm{H}), 7.35-6.46(\mathrm{~m}, 11 \mathrm{H}), 6.22(\mathrm{~s}, 1 \mathrm{H}), 3.81(\mathrm{~m}$, $1 \mathrm{H}), 3.61(\mathrm{~m}, 2 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 1.70-1.50(\mathrm{~m}, 5 \mathrm{H}), 1.34-1.07(\mathrm{~m}, 5 \mathrm{H}) ; \mathrm{MS}: 475.1(\mathrm{M}+1)^{+}$.
Compound 310

${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6): $\delta 8.04-7.68(\mathrm{~m}, 4 \mathrm{H}), 7.23-6.46(\mathrm{~m}, 8 \mathrm{H}), 6.22(\mathrm{~s}, 1 \mathrm{H}), 3.84-3.35$ $(\mathrm{m}, 3 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 1.70-1.50(\mathrm{~m}, 5 \mathrm{H}), 1.34-1.07(\mathrm{~m}, 5 \mathrm{H}) ; \mathrm{MS}: 493.1(\mathrm{M}+1)^{+}$.
Compound 30

${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d6): $\delta 8.04-8.02(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=5.7), 7.35-6.72(\mathrm{~m}, 11 \mathrm{H}), 6.07(\mathrm{~s}, 1 \mathrm{H})$, 3.61-3.58 (m, 3H), 1.72-1.63 (m, 5H), 1.24-1.14 (m, 5H); MS: $451.1(\mathrm{M}+1)^{+}$.

Compound 31

${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d6): $\delta 8.25-8.23(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=6), 7.74-6.73(\mathrm{~m}, 10 \mathrm{H}), 6.35(\mathrm{~s}, 1 \mathrm{H})$, 3.69-3.52 (m, 3H), 1.75-1.51 (m, 5H), 1.30-0.97 (m, 5H); MS: $485.1(\mathrm{M}+1)^{+}$.

Compound 56

${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO-d6): $\delta 8.38-8.32(\mathrm{~m}, 2 \mathrm{H}), 7.73-6.68(\mathrm{t}, 1 \mathrm{H}), 7.39-6.73(\mathrm{~m}, 10 \mathrm{H})$, $5.75(\mathrm{~s}, 1 \mathrm{H}), 3.70-3.66(\mathrm{~m}, 1 \mathrm{H}), 1.75-1.52(\mathrm{~m}, 5 \mathrm{H}), 1.30-1.02(\mathrm{~m}, 5 \mathrm{H}) ; \mathrm{MS}: 466.1(\mathrm{M}+1)^{+}$.

Compound 32

${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d6): $\delta 8.32(\mathrm{~s}, 1 \mathrm{H}), 8.18(\mathrm{br}, 1 \mathrm{H}), 7.73-7.67(\mathrm{t}, 1 \mathrm{H}), 7.36-6.73(\mathrm{~m}$, $10 \mathrm{H}), 6.45(\mathrm{~s}, 1 \mathrm{H}), 3.69-3.66(\mathrm{~m} \mathrm{1H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 1.76-1.57(\mathrm{~m}, 5 \mathrm{H}), 1.28-1.03(\mathrm{~m}, 5 \mathrm{H}) ; \mathrm{MS}:$ $446.2(\mathrm{M}+1)^{+}$.

Compound 33

${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d6): $\delta 8.32-8.28(\mathrm{~m}, 2 \mathrm{H}), 7.71-7.69(\mathrm{t}, 1 \mathrm{H}), 7.39-7.36(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=$ $7.8), 7.26-6.77(\mathrm{~m}, 9 \mathrm{H}), 6.53(\mathrm{~s}, 1 \mathrm{H}), 3.69-3.65(\mathrm{~m}, 1 \mathrm{H}), 1.77-1.60(\mathrm{~m}, 5 \mathrm{H}), 1.29-1.07(\mathrm{~m}, 5 \mathrm{H})$; MS: $450.1(\mathrm{M}+1)^{+}$.

Compound 34

${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d6): $\delta 8.18-8.15$ (d, 1H,J=6.9), 7.36-7.34 (d, 1H,J=8.1), 7.24-6.84 $(\mathrm{m}, 7 \mathrm{H}), 6.74-6.73(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=2.7), 6.30(\mathrm{~s}, 1 \mathrm{H}), 3.69-3.52(\mathrm{~m}, 3 \mathrm{H}), 1.74-1.51(\mathrm{~m}, 5 \mathrm{H}), 1.29-0.97$ (m, 5H); MS: $469.1(\mathrm{M}+1)^{+}$.

Compound 98

${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d6): $\delta 8.38-8.35(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.1), 7.79-7.77(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7.5), 7.42-6.63$ $(\mathrm{m}, 10 \mathrm{H}), 6.35(\mathrm{~s}, 1 \mathrm{H}), 3.58-3.49(\mathrm{~m}, 3 \mathrm{H}), 2.54(\mathrm{~s}, 3 \mathrm{H}), 1.77-1.51(\mathrm{~m}, 5 \mathrm{H}), 1.27-0.88(\mathrm{~m}, 5 \mathrm{H}) ;$ MS: $525.1(\mathrm{M}+1)^{+}$.
Compound 117

${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d6): $87.99-7.95(\mathrm{br}, 1 \mathrm{H}), 7.36-6.47$ (m, 9H), 6.23 (s, 1H), 3.66-3.48 $(\mathrm{m}, 3 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}), 2.18(\mathrm{~s}, 3 \mathrm{H}), 1.77-1.51(\mathrm{~m}, 5 \mathrm{H}), 1.29-0.98(\mathrm{~m}, 5 \mathrm{H}) ; \mathrm{MS}: 495.1(\mathrm{M}+1)^{+}$.
Compound 99

${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d6): $\delta 7.92-7.89(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7.5$), $7.71(\mathrm{br}, 1 \mathrm{H}), 7.35-7.33(\mathrm{~b}, 1 \mathrm{H}$, $\mathrm{J}=6.3$), 7.09-6.31 (m, 8H), 6.22 ($\mathrm{s}, 1 \mathrm{H}), 3.61-3.45(\mathrm{~m}, 3 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 2.22-1.96(\mathrm{~m}, 3 \mathrm{H}), 1.77-$ $1.51(\mathrm{~m}, 5 \mathrm{H}), 1.29-0.92(\mathrm{~m}, 5 \mathrm{H}) ; \mathrm{MS}: 461.2(\mathrm{M}+1)^{+}$.

Compound 118

${ }^{1}$ H NMR (300 MHz, DMSO-d6): $\delta 8.05-8.02$ (d, 1H, J=8.1), 7.90-7.61 (br, 1H), 7.11-6.97 (m, $4 \mathrm{H}), 6.87-6.82(\mathrm{t}, 1 \mathrm{H}), 6.72-6.70(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7.5), 6.21(\mathrm{~s}, 1 \mathrm{H}), 4.17-3.88(\mathrm{q}, 2 \mathrm{H}), 3.65-3.61(\mathrm{~m}$, $1 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 1.79-1.52(\mathrm{~m}, 5 \mathrm{H}), 1.30-0.96(\mathrm{~m}, 5 \mathrm{H})$; MS: $417.1(\mathrm{M}+1)^{+}$.

Compound 101

${ }^{1}$ H NMR (300 MHz, DMSO-d6): $\delta 7.97-5.98(\mathrm{~m}, 11 \mathrm{H}), 5.89(\mathrm{~s}, 1 \mathrm{H}), 3.69-3.53(\mathrm{~m}, 3 \mathrm{H}), 2.36-$ $2.33(\mathrm{~m}, 3 \mathrm{H}), 1.77-1.53(\mathrm{~m}, 5 \mathrm{H}), 1.29-0.95(\mathrm{~m}, 5 \mathrm{H}) ; \mathrm{MS}: 491.2(\mathrm{M}+1)^{+}$.

Compound 100

${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d6): $87.96-7.94(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7.5), 7.35-7.33(\mathrm{~m}, 1 \mathrm{H}), 7.14-7.01(\mathrm{~m}$, $8 \mathrm{H}), 6.91-6.88(\mathrm{~m}, 1 \mathrm{H}), 6.71(\mathrm{~s}, 1 \mathrm{H}), 3.59-3.50(\mathrm{~m}, 3 \mathrm{H}), 1.76-1.51(\mathrm{~m}, 5 \mathrm{H}), 1.28-0.95(\mathrm{~m}, 5 \mathrm{H})$; MS: $433.2(\mathrm{M}+1)^{+}$.

Compound 251

${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d6): $\delta 8.03-8.02(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=4.2), 7.10-6.70(\mathrm{~m}, 6 \mathrm{H}), 6.21(\mathrm{~s}, 1 \mathrm{H})$, $4.04(\mathrm{~s}, 1 \mathrm{H}), 3.94-3.89(\mathrm{~m}, 1 \mathrm{H}), 3.70-3.54(\mathrm{~m}, 6 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 1.82-1.53(\mathrm{~m}, 7 \mathrm{H}), 1.29-0.96$ (m, 5H); MS: $469.2(\mathrm{M}+1)^{+}$.

Compound 222

${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d6): $\delta 8.04-8.01(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7.5 \mathrm{H}), 7.40-6.70(\mathrm{~m}, 10 \mathrm{H}), 6.24(\mathrm{~s}, 1 \mathrm{H})$, 4.50-4.49 (m, 2H), 4.01-4.62 (m, 3H), 2.36 ($\mathrm{s}, 3 \mathrm{H}), 1.80-1.52(\mathrm{~m}, 5 \mathrm{H}), 1.31-0.96(\mathrm{~m}, 5 \mathrm{H}) ; \mathrm{MS}$: $507.2(\mathrm{M}+1)^{+}$.

Compound 229

${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d6): $\delta 8.51-8.48(\mathrm{~m}, 2 \mathrm{H}), 8.04-8.02(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7.2 \mathrm{H}), 7.27-7.25(\mathrm{~d}$, $2 \mathrm{H}, \mathrm{J}=6$), 7.10-6.70 (m, 6H), 6.24 ($\mathrm{s}, 1 \mathrm{H}), 4.50(\mathrm{~s}, 2 \mathrm{H}), 4.08-3.77(\mathrm{~m}, 2 \mathrm{H}), 3.63-3.62(\mathrm{~m}, 1 \mathrm{H})$, $2.35(\mathrm{~s}, 3 \mathrm{H}), 1.80-1.52(\mathrm{~m}, 5 \mathrm{H}), 1.30-0.96(\mathrm{~m}, 5 \mathrm{H})$; MS: $490.2(\mathrm{M}+1)^{+}$.

Compound 233

${ }^{1}$ H NMR (300 MHz , DMSO-d6): $\delta 8.49-8.48(\mathrm{~m}, 2 \mathrm{H}), 8.06-8.04(\mathrm{~m}, 1 \mathrm{H}), 7.70-7.68(\mathrm{~d}, 1 \mathrm{H}$, $\mathrm{J}=5.7$), 7.37-6.72 (m, 6H), $6.25(\mathrm{~s}, 1 \mathrm{H}), 4.47(\mathrm{~s}, 2 \mathrm{H}), 4.04-3.74(\mathrm{~m}, 2 \mathrm{H}), 3.65-3.63(\mathrm{~m}, 1 \mathrm{H}), 2.36$ (s, 3H), 1.80-1.52 (m, 5H), 1.30-0.96 (m, 5H); MS: $490.2(\mathrm{M}+1)^{+}$.

Compound 234

${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO-d6): $\delta 8.05-8.03(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7.2), 7.37-6.71(\mathrm{~m}, 10 \mathrm{H}), 6.24(\mathrm{~s}, 1 \mathrm{H})$, $4.45(\mathrm{~s}, 2 \mathrm{H}), 4.03-3.72(\mathrm{~m}, 2 \mathrm{H}), 3.63-3.62(\mathrm{~m}, 1 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 1.80-1.52(\mathrm{~m}, 5 \mathrm{H}), 1.31-0.96$ (m, 5H); MS: $507.2(\mathrm{M}+1)^{+}$.
Compound 235

${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO-d6): $\delta 8.03-8.00(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7.8$), 7.10-6.69 (m, 7H), $6.20(\mathrm{~s}, 1 \mathrm{H})$, $4.42(\mathrm{~s}, 1 \mathrm{H}), 4.24(\mathrm{~s}, 1 \mathrm{H}), 4.06-3.76(\mathrm{~m}, 2 \mathrm{H}), 3.63-3.60(\mathrm{~m}, 1 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 1.89-1.49(\mathrm{~m}, 9 \mathrm{H})$, 1.30-0.95 (m, 9H); MS: $499.2(\mathrm{M}+1)^{+}$.

Compound 259

${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d6): $\delta 8.02-8.01(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=4.8), 7.10-6.70(\mathrm{~m}, 7 \mathrm{H}), 6.21(\mathrm{~s}, 1 \mathrm{H})$, 3.96-3.61 (m, 5H), 3.42-3.38 (m, 1H), 3.27-3.22 (m, 2H), 2.35 (s, 3H), 1.79-1.53 (m, 7H), 1.30$0.96(\mathrm{~m}, 7 \mathrm{H})$; MS: $483.1(\mathrm{M}+1)^{+}$.
Compound 273

${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d6): $\delta 8.01(\mathrm{~s}, 1 \mathrm{H}), 7.90-7.86(\mathrm{~m}, 2 \mathrm{H}), 7.44-7.41(\mathrm{~m}, 1 \mathrm{H}), 7.13-6.48$ $(\mathrm{m}, 8 \mathrm{H}), 6.21(\mathrm{~s}, 1 \mathrm{H}), 4.67-4.35(\mathrm{~m}, 2 \mathrm{H}), 3.62-3.60(\mathrm{~m}, 1 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 1.72-1.52(\mathrm{~m}, 5 \mathrm{H})$, 1.28-0.96 (m, 5H); MS: $477.1(\mathrm{M}+1)^{+}$.

Compound 274

${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d6): $\delta 8.35(\mathrm{~s}, 1 \mathrm{H}), 8.05-8.03(\mathrm{br}, 1 \mathrm{H}), 7.83-7.81(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=6.6)$, $7.45-6.75(\mathrm{~m}, 8 \mathrm{H}), 6.20(\mathrm{~s}, 1 \mathrm{H}), 4.91-4.46(\mathrm{~m}, 2 \mathrm{H}), 3.63-3.61(\mathrm{~m}, 1 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 2.28(\mathrm{~s}, 4 \mathrm{H})$, 1.74-1.52 (m, 5H), 1.29-0.95 (m, 5H); MS: $539.3(\mathrm{M}+1)^{+}$.

Compound 281

${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d6): $\delta 8.47(\mathrm{~s}, 1 \mathrm{H}), 8.05(\mathrm{~s}, 1 \mathrm{H}), 7.79-7.75(\mathrm{~m}, 1 \mathrm{H}), 7.37-6.71(\mathrm{~m}$, $9 \mathrm{H}), 6.24(\mathrm{~s}, 1 \mathrm{H}), 4.52(\mathrm{~s}, 2 \mathrm{H}), 4.09-3.80(\mathrm{~m}, 2 \mathrm{H}), 3.64-3.63(\mathrm{~m}, 1 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 1.79-1.52(\mathrm{~m}$, $5 \mathrm{H}), 1.29-0.96(\mathrm{~m}, 5 \mathrm{H})$; MS: $490.1(\mathrm{M}+1)^{+}$.
Compound 282

${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d6): $\delta 8.64(\mathrm{~s}, 1 \mathrm{H}), 8.57(\mathrm{~s}, 2 \mathrm{H}), 8.05-8.03(\mathrm{~m}, 1 \mathrm{H}), 7.79(\mathrm{br}, 1 \mathrm{H})$,
$7.10-6.71(\mathrm{~m}, 6 \mathrm{H}), 6.24(\mathrm{~s}, 1 \mathrm{H}), 4.61(\mathrm{~s}, 2 \mathrm{H}), 4.14-3.85(\mathrm{~m}, 2 \mathrm{H}), 3.64-3.63(\mathrm{~m}, 1 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H})$, 1.79-1.52 (m, 5H), 1.29-0.96(m, 5H); MS: $491.1(\mathrm{M}+1)^{+}$.

Compound 303

${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d6): $\delta 8.38(\mathrm{~s}, 1 \mathrm{H}), 8.01-8.00(\mathrm{~m}, 1 \mathrm{H}), 7.88(\mathrm{br}, 1 \mathrm{H}), 7.35-6.70(\mathrm{~m}$, $8 \mathrm{H}), 6.20(\mathrm{~s}, 1 \mathrm{H}), 4.82-4.56(\mathrm{~m}, 2 \mathrm{H}), 3.61-3.59(\mathrm{~m}, 1 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 2.28(\mathrm{~s}, 4 \mathrm{H}), 1.70-1.51(\mathrm{~m}$, $5 \mathrm{H}), 1.27-0.95(\mathrm{~m}, 5 \mathrm{H})$; MS: $544.1(\mathrm{M}+1)^{+}$.

Compound 35

${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d6): $\delta 8.15-8.13(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.4), 8.02-7.99(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=1.2$), 7.99$6.74(\mathrm{~m}, 10 \mathrm{H}), 6.49(\mathrm{~s}, 1 \mathrm{H}), 3.61-3.56(\mathrm{~m}, 3 \mathrm{H}), 1.75-1.51(\mathrm{~m}, 5 \mathrm{H}), 1.32-1.0 .85(\mathrm{~m}, 5 \mathrm{H}) ; \mathrm{MS}:$ $485.1(\mathrm{M}+1)^{+}$.

Compound 36

${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d6): $\delta 8.02-7.99(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7.5), 7.92-7.89(\mathrm{t}, 1 \mathrm{H}), 7.35-6.88(\mathrm{~m}$, $9 \mathrm{H}), 6.72(\mathrm{~s}, 1 \mathrm{H}), 6.01(\mathrm{~s}, 1 \mathrm{H}), 3.61-3.52(\mathrm{~m}, 3 \mathrm{H}), 1.77-1.50(\mathrm{~m}, 5 \mathrm{H}), 1.28-0.88(\mathrm{~m}, 5 \mathrm{H}) ; \mathrm{MS}:$ $451.1(\mathrm{M}+1)^{+}$.
Compound 73

${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d6): $\delta 8.05-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.11-6.88(\mathrm{~m}, 9 \mathrm{H}), 6.24(\mathrm{~s}, 2 \mathrm{H}), 3.67-3.58$ $(\mathrm{m}, 3 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 1.78-1.51(\mathrm{~m}, 5 \mathrm{H}), 1.29-0.85(\mathrm{~m}, 5 \mathrm{H}) ; \mathrm{MS}: 561.0(\mathrm{M}+1)^{+}$.

Compound 60

${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d6): $\delta 8.25-6.60(\mathrm{~m}, 13 \mathrm{H}), 6.53(\mathrm{~s}, 1 \mathrm{H}), 3.75-3.35(\mathrm{~s}, 1 \mathrm{H}), 2.49-1.52$ $(\mathrm{m}, 5 \mathrm{H}), 1.31-0.89(\mathrm{~m}, 5 \mathrm{H}) ; \mathrm{MS}: 450.1(\mathrm{M}+1)^{+}$.

Compound 39

${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d6): $\delta 8.10-8.09(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=2.1), 7.96-7.93(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7.5), 7.36-$
$7.35(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=1.2), 7.33-6.67(\mathrm{~m}, 8 \mathrm{H}), 6.32(\mathrm{~s}, 1 \mathrm{H}), 3.75-3.54(\mathrm{~m}, 3 \mathrm{H}), 2.37(\mathrm{~m}, 3 \mathrm{H}), 1.89-1.56$ $(\mathrm{m}, 5 \mathrm{H}), 1.24-1.19(\mathrm{~m}, 5 \mathrm{H}) ; \mathrm{MS}: 465.2(\mathrm{M}+1)^{+}$.

Compound 111

${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d6): $\delta 8.28-8.26(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=10.2$), 8.04-8.02 ($\mathrm{d}, 1 \mathrm{H} \mathrm{J}=7.5$), 7.36$6.63(\mathrm{~m}, 9 \mathrm{H}), 6.29(\mathrm{~s}, 1 \mathrm{H}), 3.67-3.55(\mathrm{~m}, 3 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 1.714-1.56(\mathrm{~m}, 5 \mathrm{H}), 1.25-1.15(\mathrm{~m}$, 5H); MS: $448.2(\mathrm{M}+1)^{+}$.
Compound 112

${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d6): $\delta 10.1-9.65(\mathrm{~m}, 1 \mathrm{H}), 7.05-6.74(\mathrm{~m}, 11 \mathrm{H}), 6.20(\mathrm{~s}, 1 \mathrm{H}), 3.59-$ $3.52(\mathrm{~m}, 3 \mathrm{H}), 2.50-2.26(\mathrm{~m}, 5 \mathrm{H}), 1.25(\mathrm{~m}, 12 \mathrm{H}) ; \mathrm{MS}: 518.2(\mathrm{M}+1)^{+}$.

Compound 122

${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d6): $\delta 8.05-8.03(\mathrm{~m}, 2 \mathrm{H}), 7.48-6.67(\mathrm{~m}, 10 \mathrm{H}), 6.28(\mathrm{~s}, 1 \mathrm{H}), 3.69-$ $3.52(\mathrm{~m}, 3 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 1.79-1.52(\mathrm{~m}, 5 \mathrm{H}), 1.30-0.95(\mathrm{~m}, 5 \mathrm{H}) ; \mathrm{MS}: 515.2(\mathrm{M}+1)^{+}$.

Compound 123

${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d6): 87.91-7.82 (m, 1H), 7.66-7.33 (m, 2H), 7.07-6.68 (m, 10H), $6.22(\mathrm{~s}, 1 \mathrm{H}), 6.15-5.85(\mathrm{~m}, 1 \mathrm{H}), 3.72-3.50(\mathrm{~m}, 7 \mathrm{H}), 3.00-2.68(\mathrm{~m}, 4 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 1.78-1.52$ $(\mathrm{m}, 5 \mathrm{H}), 1.29-0.94(\mathrm{~m}, 5 \mathrm{H}) ; \mathrm{MS}: 532.2(\mathrm{M}+1)^{+}$.

Compound 131

${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d6): $\delta 8.00-7.98(\mathrm{~m}, 2 \mathrm{H}), 7.69-7.67(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7.5)$, 7.35-6.77 (m, $9 H), 6.29(\mathrm{~s}, 1 \mathrm{H}), 3.66-3.31(\mathrm{~m}, 3 \mathrm{H}), 2.50-2.24(\mathrm{~m}, 6 \mathrm{H}), 1.79-1.52(\mathrm{~m}, 5 \mathrm{H}), 1.30-0.97(\mathrm{~m}, 5 \mathrm{H})$; MS: $489.2(\mathrm{M}+1)^{+}$.

Compound 140

${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d6): $\delta 8.01-7.85(\mathrm{~m}, 2 \mathrm{H}), 7.36-6.68(\mathrm{~m}, 10 \mathrm{H}), 6.25(\mathrm{~s}, 1 \mathrm{H}), 3.66-$
$3.32(\mathrm{~m}, 3 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 1.78-1.52(\mathrm{~m}, 5 \mathrm{H}), 1.30-0.97(\mathrm{~m}, 5 \mathrm{H}) ; \mathrm{MS}: 481.1(\mathrm{M}+1)^{+}$.
Compound 124

${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d6): $\delta 7.91$ (s, 1H), 7.35-7.33 (m, 2H), 7.07-6.67 (m, 8H), 6.23-6.01 $(\mathrm{m}, 2 \mathrm{H}), 3.67-3.42(\mathrm{~m}, 6 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 1.78-1.52(\mathrm{~m}, 5 \mathrm{H}), 1.29-0.94(\mathrm{~m}, 5 \mathrm{H}) ;$ MS: 477.2 $(\mathrm{M}+1)^{+}$.

Compound 149

${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d6): $\delta 7.86(\mathrm{~s}, 1 \mathrm{H}), 7.35-7.3(\mathrm{~m}, 2 \mathrm{H}), 7.08-6.70(\mathrm{~m}, 7 \mathrm{H}), 6.19(\mathrm{~s}$, $1 \mathrm{H}), 6.05-5.95(\mathrm{~m}, 1 \mathrm{H}), 4.15-4.06(\mathrm{~m}, 4 \mathrm{H}), 3.65-3.48(\mathrm{~m}, 3 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}), 1.71-1.51(\mathrm{~m}, 5 \mathrm{H})$, 1.29-0.93 (m, 5H); MS: $505.2(\mathrm{M}+1)^{+}$.

Compound 144

${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d6): $\delta 7.91-7.88(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7.8), 7.34-7.33(\mathrm{~s}, 1 \mathrm{H}), 7.09-6.68(\mathrm{~m}$, $10 \mathrm{H}), 6.24(\mathrm{~s}, 1 \mathrm{H}), 3.60-3.31(\mathrm{~m}, 3 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 2.16(\mathrm{~s}, 3 \mathrm{H}), 1.77-1.51(\mathrm{~m}, 5 \mathrm{H}), 1.29-0.93$ (m, 5H); MS: $462.2(\mathrm{M}+1)^{+}$.

Compound 145

${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d6): $\delta 7.96-7.93(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=6.9), 7.35-7.33(\mathrm{~m}, 1 \mathrm{H}), 7.11-6.65(\mathrm{~m}$, $8 \mathrm{H}), 6.24(\mathrm{~s}, 1 \mathrm{H}), 3.65-3.47(\mathrm{~m}, 3 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 1.78-1.51(\mathrm{~m}, 5 \mathrm{H}), 1.29-0.98(\mathrm{~m}, 5 \mathrm{H}) ; \mathrm{MS}:$ $465.2(\mathrm{M}+1)^{+}$.

Compound 146

${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d6): $\delta 8.21-7.99(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.09-6.71(\mathrm{~m}, 8 \mathrm{H})$, $6.25(\mathrm{~s}, 1 \mathrm{H}), 3.68-3.62(\mathrm{~m}, 3 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 1.78-1.52(\mathrm{~m}, 5 \mathrm{H}), 1.30-0.94(\mathrm{~m}, 5 \mathrm{H}) ; \mathrm{MS}: 527.1$ $(\mathrm{M}+1)^{+}$.
Compound 147

${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d6): $\delta 8.34-8.31(\mathrm{~m}, 1 \mathrm{H}), 7.84-7.82(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7.5), 7.36-6.64(\mathrm{~m}$, 10 H), 6.37 ($\mathrm{s}, 1 \mathrm{H}$), 3.33-3.49 (m, 1H), 3.31 (s, 2H), 3.31 (s, 3H), 1.75-1.49 (m, 5H), 1.35-0.78 (m, 5H); MS: $481.1(\mathrm{M}+1)^{+}$.

Compound 148

${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d6): $87.98-7.96(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=7.5$), 7.36-7.34 (m, 2H), 7.11-6.67 (m, $8 \mathrm{H}), 6.24(\mathrm{~s}, 1 \mathrm{H}), 3.66-3.31(\mathrm{~m}, 3 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 1.78-1.51(\mathrm{~m}, 5 \mathrm{H}), 1.29-0.97(\mathrm{~m}, 5 \mathrm{H})$; MS: $481.1(\mathrm{M}+1)^{+}$.

Compound 238

${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d6): $\delta 10.82(\mathrm{~s}, 1 \mathrm{H}), 8.10-8.07(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7.8), 7.52-6.58(\mathrm{~m}, 10 \mathrm{H})$, $6.14(\mathrm{~s}, 1 \mathrm{H}), 5.87-5.86(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=2.1), 3.61-3.37(\mathrm{~m}, 6 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}), 1.70-1.64(\mathrm{~m}, 5 \mathrm{H}), 1.29-$ 1.06 (m, 5H); MS:484.3 (M+1) ${ }^{+}$.

Compound 244

${ }^{1}$ H NMR (400 MHz , DMSO-d6): $\delta 8.11-8.09(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7.6$), $7.44(\mathrm{~s}, 1 \mathrm{H}), 7.37-7.34(\mathrm{~m}, 2 \mathrm{H})$,
7.11-6.75 (m, 7H), $6.12(\mathrm{~s}, 1 \mathrm{H}), 5.89(\mathrm{~s}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.62-3.51(\mathrm{~m}, 6 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}), 1.63-$ $1.50(\mathrm{~m}, 5 \mathrm{H}), 1.47-1.09(\mathrm{~m}, 5 \mathrm{H})$; MS:498.3 (M+1) ${ }^{+}$.
Compound 307

${ }^{1}{ }^{1}$ H NMR (300 MHz , DMSO-d6): $\delta 8.98-8.97(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=1.6$), $8.27-8.25(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=6.0), 7.69(\mathrm{~s}$, $1 \mathrm{H}), 7.39-6.76(\mathrm{~m}, 8 \mathrm{H}), 6.35(\mathrm{~s}, 1 \mathrm{H}), 3.67-3.53(\mathrm{~m}, 3 \mathrm{H}), 1.76-1.52(\mathrm{~m}, 5 \mathrm{H}), 1.29-0.98(\mathrm{~m}, 5 \mathrm{H})$; MS:486.0 (M+1) ${ }^{+}$.

Compound 8

${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta 7.26-6.72(\mathrm{~m}, 10 \mathrm{H}), 6.39(\mathrm{~s}, 1 \mathrm{H}), 5.45(\mathrm{~m}, 1 \mathrm{H}), 4.28-4.25(\mathrm{~m}$, $1 \mathrm{H}), 3.65(\mathrm{~s}, 2 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 1.97-1.93(\mathrm{~m}, 2 \mathrm{H}), 1.58-1.51(\mathrm{~m}, 4 \mathrm{H}), 1.27-1.25(\mathrm{~m}, 2 \mathrm{H}) ; \mathrm{MS}:$ $451.1(\mathrm{M}+1)^{+}$.

Compound 4

${ }^{1} \mathrm{H}$ NMR (300 MHz, CDCl3): $\delta 8.41-8.35(\mathrm{~m}, 1 \mathrm{H}), 7.56-6.92(\mathrm{~m}, 13 \mathrm{H}), 6.65(\mathrm{~s}, 1 \mathrm{H}), 3.94(\mathrm{~m}$, $1 \mathrm{H}), 2.15-1.85(\mathrm{~m}, 2 \mathrm{H}), 1.68-1.58(\mathrm{~m}, 2 \mathrm{H}), 1.42-1.11(\mathrm{~m}, 6 \mathrm{H})$; MS: $448.1(\mathrm{M}+1)^{+}$.

Compound 10

${ }^{1} \mathrm{H}$ NMR (300 MHz, CDCl_{3}): $\delta 7.84-7.75(\mathrm{~m}, 3 \mathrm{H}), 7.62-7.48(\mathrm{~m}, 3 \mathrm{H}), 7.23-6.73(\mathrm{~m}, 6 \mathrm{H}), 6.25$ $(\mathrm{s}, 1 \mathrm{H}), 5.53-5.50(\mathrm{~m}, 1 \mathrm{H}), 5.43-5.39(\mathrm{~m}, 1 \mathrm{H}), 3.77-3.74(\mathrm{~m}, 1 \mathrm{H}), 3.50-3.49(\mathrm{~m}, 2 \mathrm{H}), 1.92-1.59$ (m, 4H), 1.54-0.95 (m, 6H); MS: $542.2(\mathrm{M}+1)^{+}$.

Compound 28

${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.81-7.78(\mathrm{~m}, 2 \mathrm{H}), 7.69-7.49(\mathrm{~m}, 4 \mathrm{H}), 7.11-7.09(\mathrm{~m}, 2 \mathrm{H}), 6.91-$ $6.83(\mathrm{~m}, 2 \mathrm{H}), 6.66-6.63(\mathrm{~m}, 1 \mathrm{H}), 6.23(\mathrm{~s}, 1 \mathrm{H}), 5.74-5.72(\mathrm{~m}, 1 \mathrm{H}), 5.35(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.1 \mathrm{MHz}), 4.20-$ $4.18(\mathrm{~m}, 1 \mathrm{H}), 3.51-3.46(\mathrm{~m}, 2 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H}), 1.94-1.89(\mathrm{~m}, 2 \mathrm{H}), 1.55-1.50(\mathrm{~m}, 4 \mathrm{H}), 1.27-1.22$ (m, 2H); MS: $524.1(\mathrm{M}+1)^{+}$.

Compound 29

${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta 7.81-7.78(\mathrm{~m}, 2 \mathrm{H}), 7.59-7.48(\mathrm{~m}, 4 \mathrm{H}), 7.11-6.81(\mathrm{~m}, 5 \mathrm{H}), 6.66-$ $6.63(\mathrm{~m}, 1 \mathrm{H}), 6.23(\mathrm{~s}, 1 \mathrm{H}), 5.73-5.69(\mathrm{~m}, 1 \mathrm{H}), 5.26(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.1), 3.75(\mathrm{~m}, 1 \mathrm{H}), 3.50-3.45(\mathrm{~m}$, $2 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H}), 1.85-1.84(\mathrm{~m}, 2 \mathrm{H}), 1.65-1.55(\mathrm{~m}, 4 \mathrm{H}), 1.34-1.25(\mathrm{~m}, 2 \mathrm{H}), 1.08-0.98(\mathrm{~m}, 2 \mathrm{H})$; MS: $538.2(\mathrm{M}+1)^{+}$.

Compound 54

The single isomer was isolated via chiral HPLC. ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d6): $\delta 7.15-6.72$ $(\mathrm{m}, 10 \mathrm{H}), 6.40(\mathrm{~s}, 1 \mathrm{H}), 5.38-5.36(\mathrm{~m}, 1 \mathrm{H}), 3.85-3.81(\mathrm{~m}, 1 \mathrm{H}), 3.65(\mathrm{~s}, 1 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 1.97-$ $1.56(\mathrm{~m}, 5 \mathrm{H}), 1.36-0.96(\mathrm{~m}, 5 \mathrm{H}) ; \mathrm{MS}: 465.2(\mathrm{M}+1)^{+}$.
Compound 164

${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right), \delta 8.34(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=12.3 \mathrm{MHz}), 7.65(\mathrm{~s}, 1 \mathrm{H}), 7.47-7.43(\mathrm{~m}, 1 \mathrm{H}), 7.40-$
$7.35(\mathrm{~m}, 1 \mathrm{H}), 7.18-7.16(\mathrm{~m}, 4 \mathrm{H}), 6.94-6.70(\mathrm{~m}, 7 \mathrm{H}), 6.65(\mathrm{~s}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 2 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}) ; \mathrm{MS}:$ $366.1(\mathrm{M}+1)^{+}$.

Compound 231

${ }^{1} \mathrm{H} \operatorname{NMR}(\mathrm{CDCl} 3,300 \mathrm{MHz}), \delta 7.54(\mathrm{~s}, 1 \mathrm{H}), 7.27(\mathrm{~s}, 1 \mathrm{H}), 7.12(\mathrm{~m}, 2 \mathrm{H}), 6.90-6.83(\mathrm{~m}, 5 \mathrm{H}), 6.34$ $(\mathrm{s}, 1 \mathrm{H}), 5.83(\mathrm{~m}, 1 \mathrm{H}), 5.33(\mathrm{~m}, 1 \mathrm{H}), 4.42(\mathrm{~m}, 2 \mathrm{H}), 3.86-3.74(\mathrm{~m}, 5 \mathrm{H}), 3.14(\mathrm{~m}, 2 \mathrm{H}), 2.76(\mathrm{~m}$, $2 H), 2.38(\mathrm{~s}, 3 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}), 1.66-1.26(\mathrm{~m}, 4 \mathrm{H}), 1.10-0.95(\mathrm{~m}, 6 \mathrm{H}) ; \mathrm{MS}: 530.3(\mathrm{M}+1)^{+}$.

Compound 271

${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right), \delta 7.56(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=6.0 \mathrm{MHz}), 7.15-7.07(\mathrm{~m}, 6 \mathrm{H}), 6.92-6.87(\mathrm{~m}, 4 \mathrm{H})$, $6.76(\mathrm{~m}, 1 \mathrm{H}), 6.45(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=1.8 \mathrm{MHz}), 6.36(\mathrm{~s}, 1 \mathrm{H}), 5.24(\mathrm{~m}, 1 \mathrm{H}), 4.66(\mathrm{~s}, 2 \mathrm{H}), 3.80(\mathrm{~m}, 1 \mathrm{H})$, $2.34(\mathrm{~s}, 3 \mathrm{H}), 1.89-1.56(\mathrm{~m}, 4 \mathrm{H}), 1.30-1.04(\mathrm{~m}, 6 \mathrm{H}) ; \mathrm{MS}: 498.1(\mathrm{M}+1)^{+}$.
Compound 297

${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right), \delta 8.11(\mathrm{~s}, 1 \mathrm{H}), 7.27-6.79(\mathrm{~m}, 11 \mathrm{H}), 6.44(\mathrm{~s}, 1 \mathrm{H}), 6.41(\mathrm{~s}, 1 \mathrm{H}), 5.35$ $(\mathrm{d}, 1 \mathrm{H}, \mathrm{J}=7.2), 3.84(\mathrm{~m}, 1 \mathrm{H}), 3.64-3.52(\mathrm{~m}, 2 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}), 1.65-1.57(\mathrm{~m}, 4 \mathrm{H}), 1.34-0.89(\mathrm{~m}$, 6H); MS: $498.1(\mathrm{M}+1)^{+}$.

Compound 288 and its HCL salt

${ }^{1} \mathrm{H}^{\mathrm{NMR}}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right), \delta 8.45(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=3.6), 8.19(\mathrm{~s}, 1 \mathrm{H}), 7.60(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7.6), 7.24-6.75$ $(\mathrm{m}, 8 \mathrm{H}), 6.38(\mathrm{~s}, 1 \mathrm{H}), 5.33(\mathrm{~m}, 1 \mathrm{H}), 3.83(\mathrm{~m}, 1 \mathrm{H}), 3.49-3.46(\mathrm{~m}, 2 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 1.98-1.61(\mathrm{~m}$, 4H), 1.33-1.07 (m, 6H); MS: $460.1(\mathrm{M}+1)^{+}$.
HCl Salt:
${ }^{1} \mathrm{H}$ NMR (DMSO-d6, 400 MHz), $\delta \mathrm{ppm}: 8.74-8.73(\mathrm{~m}, 1 \mathrm{H}), 8.62(\mathrm{~s}, 1 \mathrm{H}), 8.23-8.21(\mathrm{~m}, 1 \mathrm{H})$, 8.01-7.87 (m, 3H), 7.12-6.71 (m, 6H), 6.23 ($\mathrm{s}, 1 \mathrm{H}), 3.79-3.56(\mathrm{~m}, 3 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 1.73-1.52$ $(\mathrm{m}, 5 \mathrm{H}), 1.28-0.98(\mathrm{~m}, 5 \mathrm{H}) ; \mathrm{MS}: 460.1(\mathrm{M}+1)^{+}$.

Compound 289

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right), \delta 9.91(\mathrm{~s}, 1 \mathrm{H}), 7.68-6.79(\mathrm{~m}, 12 \mathrm{H}), 6.47(\mathrm{~s}, 1 \mathrm{H}), 5.66(\mathrm{~m}, 1 \mathrm{H}), 3.86$ $(\mathrm{m}, 3 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 1.93-1.89(\mathrm{~m}, 2 \mathrm{H}), 1.67-1.62(\mathrm{~m}, 3 \mathrm{H}), 1.33-1.10(\mathrm{~m}, 5 \mathrm{H}) ; \mathrm{MS}: 499.1$ $(\mathrm{M}+1)^{+}$.

Compound 295

${ }^{1} \mathrm{H}$ NMR $(\mathrm{CDCl} 3,400 \mathrm{MHz}), \delta 7.23-6.77(\mathrm{~m}, 9 \mathrm{H}), 6.05(\mathrm{~s}, 1 \mathrm{H}), 5.38(\mathrm{~m}, 1 \mathrm{H}), 4.35-4.33(\mathrm{~m}, 2 \mathrm{H})$, $3.82(\mathrm{~m}, 1 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H}), 1.93-1.52(\mathrm{~m}, 5 \mathrm{H}), 1.33-1.10(\mathrm{~m}, 5 \mathrm{H}) ; \mathrm{MS}: 449.1(\mathrm{M}+1)^{+}$.

Compound 296

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right), \delta 7.52-6.94(\mathrm{~m}, 10 \mathrm{H}), 6.05(\mathrm{~s}, 1 \mathrm{H}), 5.42(, 1 \mathrm{H}), 4.47(\mathrm{~s}, 2 \mathrm{H}), 3.81$ $(\mathrm{m}, 1 \mathrm{H}), 1.93-1.07(\mathrm{~m}, 10 \mathrm{H})$; MS: $435.1(\mathrm{M}+1)^{+}$.
Compound 232

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right), \delta 7.55(\mathrm{~s}, 1 \mathrm{H}), 7.31(\mathrm{~s}, 1 \mathrm{H}), 7.13-7.01(\mathrm{~m}, 2 \mathrm{H}), 6.90-9.65(\mathrm{~m}, 5 \mathrm{H})$, $6.33(\mathrm{~s}, 1 \mathrm{H}), 6.21-5.80(\mathrm{~m}, 1 \mathrm{H}), 5.40-5.21(\mathrm{~m}, 1 \mathrm{H}), 4.45-4.23(\mathrm{~m}, 2 \mathrm{H}), 3.80(\mathrm{~m}, 1 \mathrm{H}), 3.58-3.46$ $(\mathrm{m}, 4 \mathrm{H}), 3.13(\mathrm{~m}, 2 \mathrm{H}), 2.77(\mathrm{~m}, 2 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}), 1.88-1.61(\mathrm{~m}, 5 \mathrm{H}), 1.49(\mathrm{~s}, 9 \mathrm{H})$, 1.33-0.91 (m, 5H); MS: $629.4(\mathrm{M}+1)^{+}$.

Compound 287

${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6): $\delta 8.02-6.71(\mathrm{~m}, 11 \mathrm{H}), 6.44-6.38(\mathrm{~m}, 2 \mathrm{H}), 6.23(\mathrm{~s}, 1 \mathrm{H}), 3.92-$
$3.90(\mathrm{~m}, 1 \mathrm{H}), 3.61-3.57(\mathrm{~m}, 2 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 1.77-1.52(\mathrm{~m}, 5 \mathrm{H}), 1.29-0.96(\mathrm{~m}, 5 \mathrm{H})$; MS: 493.1 $(\mathrm{M}+1)^{+}$.

Example 2: Preparation of Compound 160 and its HCl Salt. Compound 160 was
synthesized following Scheme 2, above using the following protocol.

To a mixture of Compound 118 ($300 \mathrm{mg}, 0.72 \mathrm{mmol}$), 1,2,3,4-Tetrahydro-quinoline (200 $\mathrm{mg}, 1.5 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(300 \mathrm{mg}, 3 \mathrm{mmol})$ in $\mathrm{DCM}(10 \mathrm{ml})$ was added TBAI ($266 \mathrm{mg}, 0.72$ mmol) at room temperature. The reaction mixture was stirred for 24 hours at the same temperature. The resulting mixture was washed with water, saturated NaHCO_{3} solution, brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. The solvent was evaporated in vacuo and the crude mixture was purified by TLC to give the desired product ($120 \mathrm{mg}, 32 \%$ yield). ${ }^{1} \mathrm{H} \mathrm{NMR}$ (300 MHz, DMSOd6): $\delta 7.94-7.93(\mathrm{~m}, 2 \mathrm{H}), 7.14-6.19(\mathrm{~m}, 10 \mathrm{H}), 3.86-3.57(\mathrm{~m}, 3 \mathrm{H}), 3.25(\mathrm{~s}, 2 \mathrm{H}), 2.63-2.66(\mathrm{t}, 2 \mathrm{H})$, $2.37(\mathrm{~s}, 3 \mathrm{H}), 1.81-1.51(\mathrm{~m}, 5 \mathrm{H}), 1.27-0.92(\mathrm{~m}, 5 \mathrm{H}) ; \mathrm{MS}: 514.3(\mathrm{M}+1)^{+}$.

HCl Salt:
${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d6): 87.93 (br, 2 H), $7.13-6.18(\mathrm{~m}, 11 \mathrm{H}), 4.09(\mathrm{~m}, 1 \mathrm{H}), 3.86-3.55(\mathrm{~m}$, $3 \mathrm{H}), 3.22(\mathrm{~m}, 2 \mathrm{H}), 2.63(\mathrm{~m}, 2 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 1.72-1.50(\mathrm{~m}, 7 \mathrm{H}), 1.32-0.89(\mathrm{~m}, 5 \mathrm{H}) ; \mathrm{MS}: 514.3$ $(\mathrm{M}+1)^{+}$.

The following compounds of the invention were also synthesized via Scheme 2 following the general procedure set forth above for Compound 118. The corresponding HCl salt was synthesized following the general procedure set forth in Example 1, step B.

Compound 179

${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d6), $\delta 8.08(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=6.3$), $7.86(\mathrm{br}, 0.5 \mathrm{H}), 7.15-7.00(\mathrm{~m}, 7 \mathrm{H}), 6.70$ $(\mathrm{d}, 2 \mathrm{H}, \mathrm{J}=7.5), 6.47(\mathrm{t}, 1 \mathrm{H}),, 6.21(\mathrm{~s}, 1 \mathrm{H}, \mathrm{J}=7.2), 6.24(\mathrm{~s}, 1 \mathrm{H}), 6.21(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=5.4), 3.87-3.72(\mathrm{~m}$, $4 \mathrm{H}), 3.63(\mathrm{br}, 0.5 \mathrm{H}), 3.57(\mathrm{br}, 0.4 \mathrm{H}), 3.38-3.23(\mathrm{~m}, 3 \mathrm{H}), 2.64(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=5.7), 2.37(\mathrm{~s}, 3 \mathrm{H}), 1.81-$
$1.78(\mathrm{~m}, 2 \mathrm{H}), 1.71-1.66(\mathrm{br}, 2 \mathrm{H}), 1.40-1.35(\mathrm{~m}, 1 \mathrm{H}), 1.23-1.15(\mathrm{~m}, 1 \mathrm{H}) ; \mathrm{MS}: 516.2(\mathrm{M}+1)^{+}$.
Compound 330

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{MeOD}-\mathrm{d} 4$), $\delta 7.69$ (br, 1H), 7.27 (br, 0.4H), 7.03-6.70 (br, 8H), 6.57-6.47 (br, 1H), $6.24(\mathrm{ds}, 1 \mathrm{H}), 4.58(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=17), 4.39(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=17), 3.81(\mathrm{br}, 1 \mathrm{H}), 2.35(\mathrm{~s}, 1 \mathrm{H}), 2.14$ $(\mathrm{s}, 1 \mathrm{H}), 1.96-1.75(\mathrm{~m}, 6 \mathrm{H}), 1.50-1.34(\mathrm{~m}, 2 \mathrm{H}) ; \mathrm{MS}: 499.2(\mathrm{M}+1)^{+}$.

Compound 187

${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d6): $\delta 7.98-7.82(\mathrm{~m}, 1 \mathrm{H}), 7.24-6.28(\mathrm{~m}, 10 \mathrm{H}), 5.84-5.64(\mathrm{~m}, 1 \mathrm{H})$, $5.10-4.62(\mathrm{~m}, 1 \mathrm{H}), 4.27-4.22(\mathrm{~m}, 1 \mathrm{H}), 4.05-3.99(\mathrm{~m}, 4 \mathrm{H}), 3.68-3.51(\mathrm{~m}, 2 \mathrm{H}), 3.32(\mathrm{~s}, 1 \mathrm{H}), 2.20-$ $1.93(\mathrm{~m}, 3 \mathrm{H}), 1.73-1.44(\mathrm{~m}, 4 \mathrm{H}), 1.25-0.95(\mathrm{~m}, 6 \mathrm{H}) ; \mathrm{MS}: 502.2(\mathrm{M}+1)^{+}$.

Compound 191

${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d6): $\delta 8.03-8.00(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.1), 7.10-7.08(\mathrm{~m}, 2 \mathrm{H}), 7.03-6.97(\mathrm{~m}$, $2 \mathrm{H}), 6.87-6.82(\mathrm{~m}, 1 \mathrm{H}), 6.72-6.70(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7.5), 6.23(\mathrm{~s}, 1 \mathrm{H}), 3.70-3.54(\mathrm{~m}, 4 \mathrm{H}), 3.21-3.12(\mathrm{~m}$, $2 H), 2.91-2.85(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=16.5), 2.35(\mathrm{~s}, 3 \mathrm{H}), 1.84-1.50(\mathrm{~m}, 7 \mathrm{H}), 1.30-0.95(\mathrm{~m}, 6 \mathrm{H}) ; \mathrm{MS}: 468.2$ $(\mathrm{M}+1)^{+}$.

Compound 188

${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d6): $\delta 8.01-7.99(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7.8), 7.76(\mathrm{dr}, 1 \mathrm{H}), 7.24-6.94(\mathrm{~m}, 8 \mathrm{H})$, 6.88-6.83 (m, 1H), 6.73-6.70 (d, 1H, J=7.5), $6.26(\mathrm{~s}, 1 \mathrm{H}), 3.99(\mathrm{~s}, 4 \mathrm{H}), 3.64-3.62(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7.5)$, $3.46(\mathrm{~s}, 1 \mathrm{H}), 3.32(\mathrm{~s}, 1 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 1.78-1.51(\mathrm{~m}, 5 \mathrm{H}), 1.30-0.95(\mathrm{~m}, 5 \mathrm{H}) ; \mathrm{MS}: 500.2$ $(\mathrm{M}+1)^{+}$.

Compound 192

${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d6): $\delta 8.49-8.47(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=4.2), 8.10-8.09(\mathrm{~m}, 1 \mathrm{H}), 7.84-7.79(\mathrm{~m}$, $2 \mathrm{H}), 7.37-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.11-6.98(\mathrm{~m}, 4 \mathrm{H}), 6.87-6.82(\mathrm{~m}, 1 \mathrm{H}), 6.72-6.70(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7.8), 6.26(\mathrm{~s}$, $1 \mathrm{H}), 3.63-3.60(\mathrm{~m}, 1 \mathrm{H}), 3.42(\mathrm{~s}, 1 \mathrm{H}), 3.08-2.82(\mathrm{~m}, 5 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 1.78-1.51(\mathrm{~m}, 5 \mathrm{H}), 1.29-$ $0.95(\mathrm{~m}, 5 \mathrm{H})$; MS: $503.3(\mathrm{M}+1)^{+}$.

Compound 184 and its HCl Salt

${ }^{1}$ H NMR (300 MHz, DMSO-d6): $\delta 8.42-8.41(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=4.2), 8.01-7.99(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=5.1), 7.73(\mathrm{dr}$, $1 \mathrm{H}), 7.21-6.94(\mathrm{~m}, 6 \mathrm{H}), 6.86-6.83(\mathrm{~m}, 1 \mathrm{H}), 6.72-6.70(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=6), 6.52(\mathrm{dr}, 1 \mathrm{H}), 6.23(\mathrm{~s}, 1 \mathrm{H})$,
3.63-3.61 (m, 1H), 3.13-3.08 (d, 1H, J=12.3), 2.88-2.84 (d, 1H, J=12.3), 2.69-2.64 (m, 4H), 2.33 $(\mathrm{s}, 3 \mathrm{H}), 1.78-1.52(\mathrm{~m}, 5 \mathrm{H}), 1.29-0.96(\mathrm{~m}, 5 \mathrm{H}) ; \mathrm{MS}: 503.3(\mathrm{M}+1)^{+}$.
HCl Salt:
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6): $89.25(\mathrm{~m}, 2 \mathrm{H}), 8.77(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=4.5), 8.18(\mathrm{~m}, 1 \mathrm{H}), 7.80(\mathrm{~m}, 3 \mathrm{H})$, $7.38-6.59(\mathrm{~m}, 8 \mathrm{H}), 6.24(\mathrm{~s}, 1 \mathrm{H}), 3.82-3.63(\mathrm{~m}, 5 \mathrm{H}), 3.24-3.16(\mathrm{~m}, 4 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 1.72-1.50(\mathrm{~m}$, $7 \mathrm{H}), 1.32-1.07(\mathrm{~m}, 5 \mathrm{H})$; MS: $503.3(\mathrm{M}+1)^{+}$.

Compound 201 and its HCl Salt

${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6): $\delta 8.02(\mathrm{~s}, 1 \mathrm{H}), 7.86(\mathrm{dr}, 1 \mathrm{H}), 7.12-7.00(\mathrm{~m}, 4 \mathrm{H}), 6.90-6.85(\mathrm{~m}$, $3 \mathrm{H}), 6.74-6.72(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7.2), 6.44-6.41(\mathrm{~m}, 2 \mathrm{H}), 6.23(\mathrm{~s}, 1 \mathrm{H}), 5.67-5.64(\mathrm{~m}, 1 \mathrm{H}), 3.70-3.61(\mathrm{~m}$, $2 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 1.76-1.52(\mathrm{~m}, 5 \mathrm{H}), 1.29-0.96(\mathrm{~m}, 5 \mathrm{H}) ; \mathrm{MS}: 492.2(\mathrm{M}+1)^{+}$.
HCl Salt:
${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, DMSO-d6): $\delta 8.05(\mathrm{~s}, 1 \mathrm{H}), 7.85(\mathrm{dr}, 1 \mathrm{H}), 7.12-6.86(\mathrm{~m}, 7 \mathrm{H}), 6.74-6.53(\mathrm{~m}, 3 \mathrm{H})$, $6.23(\mathrm{~s}, 1 \mathrm{H}), 5.67-5.64(\mathrm{~m}, 1 \mathrm{H}), 3.70-3.61(\mathrm{~m}, 2 \mathrm{H}), 3.38-3.33(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=20), 2.37(\mathrm{~s}, 3 \mathrm{H}), 1.73-$
$1.51(\mathrm{~m}, 5 \mathrm{H}), 1.28-0.98(\mathrm{~m}, 5 \mathrm{H}) ; \mathrm{MS}: 492.2(\mathrm{M}+1)^{+}$.
Compound 193

${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d6): $\delta 8.39-8.37(\mathrm{~m}, 2 \mathrm{H}), 8.01-7.99(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7.5), 7.60-7.58(\mathrm{~d}, 1 \mathrm{H}$, $\mathrm{J}=8.1), 7.29-7.25(\mathrm{~m}, 1 \mathrm{H}), 7.10-6.96(\mathrm{~m}, 4 \mathrm{H}), 6.86-6.82(\mathrm{~m}, 1 \mathrm{H}), 6.72-6.70(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7.2), 6.23$ $(\mathrm{s}, 1 \mathrm{H}), 3.63-3.60(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.1), 3.17-3.12(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=16.2), 2.93-2.87(\mathrm{~m}, 1 \mathrm{H}), 2.71-2.62(\mathrm{~m}$,
$4 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 1.78-1.51(\mathrm{~m}, 5 \mathrm{H}), 1.29-0.95(\mathrm{~m}, 5 \mathrm{H})$; MS: $503.3(\mathrm{M}+1)^{+}$.
Compound 206

${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6): $\delta 8.35-8.33(\mathrm{~m}, 1 \mathrm{H}), 7.96-7.65(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.11(\mathrm{~m}, 5 \mathrm{H})$, 6.98-6.72 (m, 1H), 6.54-6.26 (m, 1H), 5.80-5.62 (m, 1H), 5.05-4.63 (m, 1H), 4.26-4.22 (d, 1H, $\mathrm{J}=15.2$), 4.05-3.94 (m, 4H), 3.78-3.74 (m, 1H), 3.53-3.48 (m, 1H), 3.26-3.23 (m, 1H), 2.20-1.94 $(\mathrm{m}, 3 \mathrm{H}), 1.72-1.43(\mathrm{~m}, 4 \mathrm{H}), 1.23-0.76(\mathrm{~m}, 6 \mathrm{H}) ; \mathrm{MS}: 503.2(\mathrm{M}+1)^{+}$.

Compound 209 and its HCl Salt

${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6): $\delta 8.33-8.32(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=4.4), 8.01-7.99(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7.2), 7.63-7.61$ $(\mathrm{d}, 2 \mathrm{H}, \mathrm{J}=7.6), 7.19-6.95(\mathrm{~m}, 5 \mathrm{H}), 6.87-6.84(\mathrm{~m}, 1 \mathrm{H}), 6.73-6.61(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7.6), 6.25(\mathrm{~s}, 1 \mathrm{H})$, 3.99-3.94 (m, 4H), 3.63-3.62 (m, 1H), 3.44-3.40 (d, 1H, J=15.6), 3.23-3.19 (d, 1H, J=16), 2.36 $(\mathrm{s}, 3 \mathrm{H}), 1.74-1.52(\mathrm{~m}, 5 \mathrm{H}), 1.29-0.95(\mathrm{~m}, 5 \mathrm{H}) ; \mathrm{MS}: 501.3(\mathrm{M}+1)^{+}$.

HCl Salt:
${ }^{1} \mathrm{H}$ NMR (400MHz, DMSO-d6): $88.33-8.32(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=4.8), 8.01-7.95(\mathrm{~m}, 1 \mathrm{H}), 7.63-7.61(\mathrm{~d}, 1 \mathrm{H}$, $\mathrm{J}=7.6$), $7.19-6.95(\mathrm{~m}, 5 \mathrm{H}), 6.87-6.84(\mathrm{~m}, 1 \mathrm{H}), 6.73-6.71(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7.6), 6.25(\mathrm{~s}, 1 \mathrm{H}), 3.99-3.90(\mathrm{~m}$, $4 \mathrm{H}), 3.62(\mathrm{~s}, 1 \mathrm{H}), 3.45-3.41(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=16), 3.23-3.18(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=18), 2.37(\mathrm{~s}, 3 \mathrm{H}), 1.74-1.52(\mathrm{~m}, 5 \mathrm{H})$, $1.29-0.85(\mathrm{~m}, 5 \mathrm{H}) ; \mathrm{MS}: 501.3(\mathrm{M}+1)^{+}$.

Compound 218

${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6): $\delta 8.04(\mathrm{~s}, 1 \mathrm{H}), 7.84(\mathrm{dr}, 1 \mathrm{H}), 7.12-7.01(\mathrm{~m}, 3 \mathrm{H}), 6.88-6.68(\mathrm{~m}$, $4 \mathrm{H}), 6.57-6.54(\mathrm{~m}, 1 \mathrm{H}), 6.24(\mathrm{~s}, 1 \mathrm{H}), 6.12-6.10(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7.6), 5.16-5.13(\mathrm{~m}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H})$, 3.73-3.61 (m, 2H), 3.37 ($\mathrm{s}, 1 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 1.78-1.52(\mathrm{~m}, 5 \mathrm{H}), 1.29-0.96(\mathrm{~m}, 5 \mathrm{H})$; MS: 504.2 $(\mathrm{M}+1)^{+}$.

Compound 210

${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6): $\delta 8.01(\mathrm{~s}, 1 \mathrm{H}), 7.84(\mathrm{dr}, 1 \mathrm{H}), 7.10-7.01(\mathrm{~m}, 3 \mathrm{H}), 6.88-6.84(\mathrm{~m}$, $1 \mathrm{H}), 6.74-6.66(\mathrm{~m}, 4 \mathrm{H}), 6.40-6.38(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.8), 6.24(\mathrm{~s}, 1 \mathrm{H}), 6.27(\mathrm{~s}, 1 \mathrm{H}), 3.61(\mathrm{~s}, 5 \mathrm{H}), 3.26$ $(\mathrm{s}, 1 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 1.77-1.52(\mathrm{~m}, 5 \mathrm{H}), 1.28-0.99(\mathrm{~m}, 5 \mathrm{H}) ; \mathrm{MS}: 504.3(\mathrm{M}+1)^{+}$.

Compound 219

${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6): $\delta 8.08$ ($\mathrm{s}, 1 \mathrm{H}$), 7.75 (dr, 1H), 7.21-7.19 (d, 2H, J=8.4), 7.12$6.96(\mathrm{~m}, 4 \mathrm{H}), 6.87-6.84(\mathrm{~m}, 3 \mathrm{H}), 6.73-6.71(\mathrm{~m}, 1 \mathrm{H}), 6.24(\mathrm{~s}, 1 \mathrm{H}), 3.72-3.61(\mathrm{~m}, 6 \mathrm{H}), 3.28-3.24$ $(\mathrm{d}, 1 \mathrm{H}, \mathrm{J}=16.8), 2.99-2.95(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=16.4), 2.35(\mathrm{~s}, 3 \mathrm{H}), 1.76-1.52(\mathrm{~m}, 5 \mathrm{H}), 1.30-0.96(\mathrm{~m}, 5 \mathrm{H}) ;$ MS: $518.3(\mathrm{M}+1)^{+}$.

Compound 220

${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6): $\delta 8.07-8.06(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=5.2), 7.77(\mathrm{dr}, 1 \mathrm{H}), 7.27-7.21(\mathrm{~m}, 2 \mathrm{H})$,
7.11-6.83 (m, 7H), 6.72-6.70 (d, 1H, J=7.6), $6.48(\mathrm{dr}, 1 \mathrm{H}), 6.23(\mathrm{~s}, 1 \mathrm{H}), 3.75-3.62(\mathrm{~m}, 6 \mathrm{H}), 3.30-$ $3.26(\mathrm{~m}, 2 \mathrm{H}), 3.01-2.97(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=16), 2.35(\mathrm{~s}, 3 \mathrm{H}), 1.78-1.52(\mathrm{~m}, 5 \mathrm{H}), 1.29-0.95(\mathrm{~m}, 5 \mathrm{H})$; MS: $518.3(\mathrm{M}+1)^{+}$.

Compound 221 (HCl Salt)

${ }^{1} \mathrm{H}$ NMR (400MHz, DMSO-d6): $\delta 9.29(\mathrm{~s}, 1 \mathrm{H}), 8.16(\mathrm{~s}, 1 \mathrm{H}), 7.76(\mathrm{~s}, 1 \mathrm{H}), 7.30-7.26(\mathrm{~m}, 1 \mathrm{H}), 7.11-$ $6.87(\mathrm{~m}, 8 \mathrm{H}), 6.73-6.71(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=6.4), 6.52(\mathrm{~s}, 1 \mathrm{H}), 6.23(\mathrm{~s}, 1 \mathrm{H}), 4.06-3.94(\mathrm{~m}, 2 \mathrm{H}), 3.74-3.65(\mathrm{~m}$, $6 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 1.78-1.52(\mathrm{~m}, 5 \mathrm{H}), 1.30-0.98(\mathrm{~m}, 5 \mathrm{H})$; MS: $518.3(\mathrm{M}+1)^{+}$.
Compound 247

${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6): $\delta 8.03(\mathrm{~s}, 1 \mathrm{H}), 7.86(\mathrm{dr}, 1 \mathrm{H}), 7.12-6.72(\mathrm{~m}, 6 \mathrm{H}), 6.23(\mathrm{~s}, 1 \mathrm{H})$, 6.13-6.11 (m, 1H), 6.03-5.99 (m, 2H), 5.74-5.71 (m, 1H), 3.70-3.61 (m, 5H), 3.33(s, 1H), 2.33 $(\mathrm{s}, 3 \mathrm{H}), 1.77-1.52(\mathrm{~m}, 5 \mathrm{H}), 1.28-0.85(\mathrm{~m}, 5 \mathrm{H}) ; \mathrm{MS}: 504.2(\mathrm{M}+1)^{+}$.

Compound 256

${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d6): $\delta 8.03-8.01(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=6.8), 7.75(\mathrm{dr}, 1 \mathrm{H}), 7.51(\mathrm{~s}, 1 \mathrm{H}), 7.11-$ $6.93(\mathrm{~m}, 3 \mathrm{H}), 6.86-6.82(\mathrm{~m}, 1 \mathrm{H}), 6.71-6.69(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7.2), 6.46(\mathrm{dr}, 1 \mathrm{H}), 6.25(\mathrm{~s}, 1 \mathrm{H}), 6.01(\mathrm{~s}$, $1 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.64-3.61(\mathrm{~m}, 1 \mathrm{H}), 3.51(\mathrm{~s}, 1 \mathrm{H}), 3.10-3.06(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=16.8), 2.87-2.83(\mathrm{~d}, 1 \mathrm{H}$, $\mathrm{J}=16), 2.36(\mathrm{~s}, 3 \mathrm{H}), 2.15(\mathrm{~s}, 1 \mathrm{H}), 1.79-1.52(\mathrm{~m}, 5 \mathrm{H}), 1.29-0.95(\mathrm{~m}, 5 \mathrm{H}) ; \mathrm{MS}: 492.3(\mathrm{M}+1)^{+}$.

Compound 267

${ }^{1}$ H NMR (400 MHz , DMSO-d6): $\delta 9.01-9.00$ (d, $1 \mathrm{H}, \mathrm{J}=1.6$), $8.04-8.02(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=5.2$), $7.73(\mathrm{dr}$, $1 \mathrm{H}), 7.38(\mathrm{~s}, 1 \mathrm{H}), 7.10-6.93(\mathrm{~m}, 4 \mathrm{H}), 6.86-6.83(\mathrm{~m}, 1 \mathrm{H}), 6.72-6.70(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7.2), 6.49(\mathrm{dr}, 1 \mathrm{H})$, $6.25(\mathrm{~s}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 2 \mathrm{H}), 3.64-3.62(\mathrm{~m}, 1 \mathrm{H}), 3.18-3.14(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=16.4), 2.91-2.87(\mathrm{~d}, 1 \mathrm{H}$, $\mathrm{J}=16.4$), $2.44(\mathrm{~s}, 1 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 1.78-1.52(\mathrm{~m}, 5 \mathrm{H}), 1.29-0.95(\mathrm{~m}, 5 \mathrm{H})$; MS: $495.1(\mathrm{M}+1)^{+}$.

Compound 257

${ }^{1}$ H NMR (400 MHz , DMSO-d6): $\delta 8.04-8.02$ (d, 1H, J=6.4), 7.67-7.66 (d, 1H, J=3.2), 7.55-7.54 (d, 1H, J=3.2), 7.11-6.82 (m, 5H), 6.71-6.69 (d, 1H, J=7.6), $6.25(\mathrm{~s}, 1 \mathrm{H}), 3.95(\mathrm{~s}, 2 \mathrm{H}), 3.64-3.62$ $(\mathrm{m}, 1 \mathrm{H}), 3.22-3.18(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=16.8), 2.98-2.94(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=16.4), 2.37(\mathrm{~s}, 3 \mathrm{H}), 1.76-1.52(\mathrm{~m}, 5 \mathrm{H})$,
1.30-0.95 (m, 5H); MS: $495.1(\mathrm{M}+1)^{+}$.

Compound 318

${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6): $\delta 8.25-8.24(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=4.4), 8.05(\mathrm{~s}, 1 \mathrm{H}), 7.79(\mathrm{dr}, 1 \mathrm{H}), 7.54-$
$7.52(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7.2), 7.26-6.99(\mathrm{~m}, 5 \mathrm{H}), 6.88-6.84(\mathrm{~m}, 1 \mathrm{H}), 6.73-6.59(\mathrm{~m}, 2 \mathrm{H}), 6.24(\mathrm{~s}, 1 \mathrm{H}), 3.63-$
$3.52(\mathrm{~m}, 2 \mathrm{H}), 3.33-3.15(\mathrm{~m}, 1 \mathrm{H}), 3.04-2.95(\mathrm{~m}, 2 \mathrm{H}), 2.70-2.63(\mathrm{~m}, 2 \mathrm{H}), 2.36-2.31(\mathrm{~m}, 3 \mathrm{H}), 1.78-$
$1.52(\mathrm{~m}, 5 \mathrm{H}), 1.29-0.84(\mathrm{~m}, 5 \mathrm{H}) ; \mathrm{MS}: 515.1(\mathrm{M}+1)^{+}$.

Compound 119

${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d6): $\delta 8.01-7.99(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=6.9), 7.88-7.61(\mathrm{br}, 1 \mathrm{H}), 7.11-6.98(\mathrm{~m}$, $4 \mathrm{H}), 6.84-6.82(\mathrm{t}, 1 \mathrm{H}), 6.72-6.70(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7.5), 6.26(\mathrm{~s}, 1 \mathrm{H}), 3.64-3.62(\mathrm{~m}, 1 \mathrm{H}), 3.16-2.86(\mathrm{q}$, $2 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 2.06-2.04(\mathrm{~m}, 1 \mathrm{H}), 1.79-1.51(\mathrm{~m}, 5 \mathrm{H}), 1.30-1.16(\mathrm{~m}, 5 \mathrm{H}), 0.26-0.09(\mathrm{~m}, 4 \mathrm{H})$; MS: $438.2(\mathrm{M}+1)^{+}$.

Compound 120

${ }^{1}$ H NMR (300 MHz, DMSO-d6): $\delta 8.00-7.97$ (d, 1H, J=6.9), 7.88-7.61 (br, 1H), 7.10-6.94 (m,
$4 \mathrm{H}), 6.88-6.81(\mathrm{t}, 1 \mathrm{H}), 6.71-6.69(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7.2), 6.24(\mathrm{~s}, 1 \mathrm{H}), 3.63-3.60(\mathrm{~m}, 1 \mathrm{H}), 3.02-2.74(\mathrm{~m}$, $3 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 1.99-0.96(\mathrm{~m}, 16 \mathrm{H}) ; \mathrm{MS}: 452.2(\mathrm{M}+1)^{+}$.

Compound 121

${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d6): $\delta 8.00-7.97(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7.2)$, 7.88-7.61 (br, 1H), 7.10-6.94 (m, $4 \mathrm{H}), 6.87-6.82(\mathrm{t}, 1 \mathrm{H}), 6.72-6.69(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7.5), 6.24(\mathrm{~s}, 1 \mathrm{H}), 3.64-3.61(\mathrm{~m}, 1 \mathrm{H}), 3.09-2.85(\mathrm{~m}$, $3 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 1.80-1.00(\mathrm{~m}, 18 \mathrm{H}) ; \mathrm{MS}: 466.2(\mathrm{M}+1)^{+}$.

Compound 133

${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d6): $\delta 8.01-7.99(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=6.9), 7.30-6.99(\mathrm{~m}, 5 \mathrm{H}), 6.89-6.84(\mathrm{t}$, $1 \mathrm{H}), 6.75-6.72(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7.8), 6.31-6.21(\mathrm{~m}, 4 \mathrm{H}), 6.08-6.05(\mathrm{~m}, 1 \mathrm{H}), 3.69-3.61(\mathrm{~m}, 2 \mathrm{H}), 3.39-$ $3.34(\mathrm{~m}, 1 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 1.77-1.52(\mathrm{~m}, 5 \mathrm{H}), 1.29-0.96(\mathrm{~m}, 5 \mathrm{H}) ; \mathrm{MS}: 492.2(\mathrm{M}+1)^{+}$.

Compound 141

${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d6): $\delta 7.96-7.94(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=6.6), 7.10-6.82(\mathrm{~m}, 5 \mathrm{H}), 6.72-6.69(\mathrm{~d}$, $1 \mathrm{H}, \mathrm{J}=7.8), 6.23(\mathrm{~s}, 1 \mathrm{H}), 3.64-3.61(\mathrm{~m}, 1 \mathrm{H}), 2.88-2.78(\mathrm{~m}, 2 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 2.21(\mathrm{~s}, 4 \mathrm{H}), 1.78-$
$1.52(\mathrm{~m}, 5 \mathrm{H}), 1.36-0.96(\mathrm{~m}, 5 \mathrm{H}) ; \mathrm{MS}: 466.2(\mathrm{M}+1)^{+}$.

Compound 152

${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d6): $\delta 8.02-8.00(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7.8), 7.29-6.84(\mathrm{~m}, 11 \mathrm{H}), 6.73-6.70(\mathrm{~d}$, $1 \mathrm{H}, \mathrm{J}=7.2), 6.26(\mathrm{~s}, 1 \mathrm{H}), 3.63-3.60(\mathrm{~m}, 1 \mathrm{H}), 3.59(\mathrm{~s}, 2 \mathrm{H}), 3.10-2.81(\mathrm{~m}, 2 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 1.74-$ $1.52(\mathrm{~m}, 5 \mathrm{H}), 1.27-0.99(\mathrm{~m}, 5 \mathrm{H}) ; \mathrm{MS}: 488.3(\mathrm{M}+1)^{+}$.

Compound 154

${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d6): $\delta 8.00-7.97(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7.5), 7.28-6.96(\mathrm{~m}, 9 \mathrm{H}), 6.86-6.82(\mathrm{t}$, $1 \mathrm{H}), 6.72-6.69(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7.8), 6.23(\mathrm{~s}, 1 \mathrm{H}), 3.61-3.59(\mathrm{~m}, 1 \mathrm{H}), 3.13-2.84(\mathrm{~m}, 2 \mathrm{H}), 2.63(\mathrm{~s}, 4 \mathrm{H})$, $2.34(\mathrm{~s}, 3 \mathrm{H}), 1.79-1.52(\mathrm{~m}, 5 \mathrm{H}), 1.30-1.00(\mathrm{~m}, 5 \mathrm{H}) ; \mathrm{MS}: 502.3(\mathrm{M}+1)^{+}$.

Compound 135 and its HCl Salt

${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d6): $\delta 8.05$ ($\mathrm{s}, 1 \mathrm{H}$), 8.00-7.98 (d, 1H, J=8.1), 7.65-7.61 (d, 1H, $\mathrm{J}=9.3$), 7.39-7.36 (d, 1H, J=8.7), 7.27-6.87 (m, 7H), 6.78-6.75 (d, 1H, J=7.5), 6.20 ($\mathrm{s}, 1 \mathrm{H}), 5.04-$ $4.69(\mathrm{~m}, 2 \mathrm{H}), 3.61-3.59(\mathrm{~m}, 1 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 1.77-1.50(\mathrm{~m}, 5 \mathrm{H}), 1.26-0.94(\mathrm{~m}, 5 \mathrm{H})$; MS: 499.2
$(\mathrm{M}+1)^{+}$.
HCl Salt:
${ }^{1}$ H NMR (300 MHz, DMSO-d6): $\delta 9.51(\mathrm{~s}, 1 \mathrm{H}), 8.05(\mathrm{~s}, 1 \mathrm{H}), 8.00-7.98(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.1), 7.89-$
$7.76(\mathrm{~m}, 12 \mathrm{H}), 6.19(\mathrm{~s}, 1 \mathrm{H}), 5.38-5.05(\mathrm{~m}, 2 \mathrm{H}), 3.57-3.54(\mathrm{~m}, 1 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 1.77-1.50(\mathrm{~m}, 5 \mathrm{H})$, 1.26-0.95 (m, 5H); MS: 499.2(M+1) ${ }^{+}$.

Compound 153

${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d6): $\delta 7.98-7.96(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7.2), 7.12-6.83(\mathrm{~m}, 7 \mathrm{H}), 6.74-6.72(\mathrm{~d}$, $1 \mathrm{H}, \mathrm{J}=7.5), 6.54-6.49(\mathrm{t}, 1 \mathrm{H}), 6.24-6.22(\mathrm{~m}, 2 \mathrm{H}), 3.79-3.49(\mathrm{~m}, 3 \mathrm{H}), 3.38-3.35(\mathrm{~m}, 2 \mathrm{H}), 2.87-$ $2.81(\mathrm{t}, 2 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 1.74-1.51(\mathrm{~m}, 5 \mathrm{H}), 1.29-0.95(\mathrm{~m}, 5 \mathrm{H}) ; \mathrm{MS}: 500.2(\mathrm{M}+1)^{+}$.
Compound 143

${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d6): $\delta 8.00-7.97(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7.8), 7.10-6.85(\mathrm{~m}, 9 \mathrm{H}), 6.73-6.71(\mathrm{~d}$, $1 \mathrm{H}, \mathrm{J}=7.5), 6.27(\mathrm{~s}, 1 \mathrm{H}), 3.56-3.54(\mathrm{~m}, 1 \mathrm{H}), 3.53(\mathrm{~s}, 2 \mathrm{H}), 3.14-2.92(\mathrm{~m}, 2 \mathrm{H}), 2.71-2.61(\mathrm{~m}, 4 \mathrm{H})$, $2.35(\mathrm{~s}, 3 \mathrm{H}), 1.75-1.57(\mathrm{~m}, 5 \mathrm{H}), 1.26-0.95(\mathrm{~m}, 5 \mathrm{H}) ; \mathrm{MS}: 514.3(\mathrm{M}+1)^{+}$.

Compound 156

${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d6): $\delta 8.02-8.00(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7.2$), $7.59(\mathrm{~s}, 1 \mathrm{H}), 7.39(\mathrm{~s}, 1 \mathrm{H}), 7.14-7.01$ $(\mathrm{m}, 4 \mathrm{H}), 6.89-6.84(\mathrm{t}, 1 \mathrm{H}), 6.73-6.71(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7.2), 6.22-6.20(\mathrm{~m}, 2 \mathrm{H}), 4.87-4.56(\mathrm{~m}, 2 \mathrm{H}), 3.62-$ $3.60(\mathrm{~m}, 1 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 1.76-1.51(\mathrm{~m}, 5 \mathrm{H}), 1.29-0.94(\mathrm{~m}, 5 \mathrm{H})$; MS: 449.2(M+1) ${ }^{+}$.

Compound 155

${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d6): $\delta 8.02-8.00(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=7.5), 7.86(\mathrm{br}, 1 \mathrm{H}), 7.12-6.42(\mathrm{~m}, 11 \mathrm{H})$, $5.66(\mathrm{br}, 1 \mathrm{H}), 3.71-3.37(\mathrm{~m}, 3 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 1.77-1.51(\mathrm{~m}, 5 \mathrm{H}), 1.29-1.00(\mathrm{~m}, 5 \mathrm{H}) ; \mathrm{MS}: 474.2$ $(\mathrm{M}+1)^{+}$.

Compound 134 and its HCl Salt

${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO-d6): $\delta 7.98(\mathrm{~s}, 1 \mathrm{H}), 7.76(\mathrm{br}, 1 \mathrm{H}), 7.09-6.83(\mathrm{~m}, 5 \mathrm{H}), 6.72-6.71(\mathrm{~d}$, $1 \mathrm{H}, \mathrm{J}=5.7), 6.23(\mathrm{~s}, 1 \mathrm{H}), 3.63-3.62(\mathrm{~m}, 1 \mathrm{H}), 3.46(\mathrm{~s}, 4 \mathrm{H}), 2.85-2.93(\mathrm{~m}, 2 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 2.28$ $(\mathrm{s}, 4 \mathrm{H}), 1.78-1.52(\mathrm{~m}, 5 \mathrm{H}), 1.29-0.95(\mathrm{~m}, 5 \mathrm{H}) ; \mathrm{MS}: 468.2(\mathrm{M}+1)^{+}$.
HCl Salt:
${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d6): $\delta 10.65(\mathrm{br}, 1 \mathrm{H}), 8.18(\mathrm{~s}, 1 \mathrm{H}), 7.77(\mathrm{~s}, 1 \mathrm{H}), 7.35-6.66(\mathrm{~m}, 6 \mathrm{H})$,
$6.23(\mathrm{~s}, 1 \mathrm{H}), 4.03(\mathrm{br}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 4 \mathrm{H}), 3.64-3.62(\mathrm{~m}, 1 \mathrm{H}), 3.36-3.17(\mathrm{~m}, 5 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 1.77-$ $1.52(\mathrm{~m}, 5 \mathrm{H}), 1.29-0.95(\mathrm{~m}, 5 \mathrm{H}) ; \mathrm{MS}: 468.3(\mathrm{M}+1)^{+}$.
Compound 165 and its HCl Salt

${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO-d6): $\delta 8.00-7.98(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7.5), 7.13-6.73(\mathrm{~m}, 6 \mathrm{H}), 6.65(\mathrm{~s}, 1 \mathrm{H})$, 4.66-4.31 (m, 2H), 3.64-3.60 (m, 1H), $2.37(\mathrm{~s}, 3 \mathrm{H}), 2.09(\mathrm{~s}, 3 \mathrm{H}), 1.74-1.51(\mathrm{~m}, 5 \mathrm{H}), 1.30-0.95(\mathrm{~m}$, 5H); MS: $463.2(\mathrm{M}+1)^{+}$.

HCl Salt:
${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d6): 814.82 (br, 1H), 8.09-8.07(d, $1 \mathrm{H}, \mathrm{J}=6.3$), 7.85(br,1H), 7.52(s, $2 \mathrm{H}), 7.13-6.74(\mathrm{~m}, 6 \mathrm{H}), 6.18(\mathrm{~s}, 1 \mathrm{H}), 5.08-4.67(\mathrm{~m}, 2 \mathrm{H}), 3.64-3.61(\mathrm{~m}, 1 \mathrm{H}), 2.48(\mathrm{~s}, 3 \mathrm{H}), 2.38(\mathrm{~s}$, $3 \mathrm{H}), 1.74-1.51(\mathrm{~m}, 5 \mathrm{H}), 1.30-0.95(\mathrm{~m}, 5 \mathrm{H}) ; \mathrm{MS}: 463.2(\mathrm{M}+1)^{+}$.
Compound 380

${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl3): $\delta 7.54(\mathrm{br}, 1 \mathrm{H}), 7.07(\mathrm{~m}, 2 \mathrm{H}), 6.89(\mathrm{~m}, 3 \mathrm{H}), 6.65(\mathrm{~s}, 1 \mathrm{H}), 6.40(\mathrm{~s}$, $1 \mathrm{H}), 6.30(\mathrm{~m}, 3 \mathrm{H}), 4.31(\mathrm{~s}, 2 \mathrm{H}), 4.17(\mathrm{~m}, 1), 2.85(\mathrm{~m}, 2 \mathrm{H}), 2.30-2.17(\mathrm{~m}, 7 \mathrm{H}), 1.92(\mathrm{~m}, 2 \mathrm{H}) ; \mathrm{MS}$: $470.9(\mathrm{M}+1)^{+}$.

Compound 170

${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d6): 8 8.01-7.99 (d, 1H, J=7.5), 7.10-6.70 (m, 6H), $6.23(\mathrm{~s}, 1 \mathrm{H})$, 4.52-4.47 (m, 2H), 4.28-4.22 (m, 2H), 3.76-3.71 (m, 1H), 3.63-3.61 (m, 1H), 3.12-2.81 (m, 2H), $2.59(\mathrm{~s}, 1 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 1.79-1.52(\mathrm{~m}, 5 \mathrm{H}), 1.30-0.96(\mathrm{~m}, 5 \mathrm{H}) ; \mathrm{MS}: 454.3(\mathrm{M}+1)^{+}$.

Compound 173 and its HCl Salt

${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d6): $\delta 8.00-7.97(\mathrm{~m}, 2 \mathrm{H}), 7.51-6.76(\mathrm{~m}, 11 \mathrm{H}), 6.18(\mathrm{~s}, 1 \mathrm{H}), 4.99-$ $4.51(\mathrm{~m}, 2 \mathrm{H}), 3.60-3.59(\mathrm{~m}, 1 \mathrm{H}), 2.39-2.38(\mathrm{~m}, 6 \mathrm{H}), 1.74-1.50(\mathrm{~m}, 5 \mathrm{H}), 1.28-0.93(\mathrm{~m}, 5 \mathrm{H}) ; \mathrm{MS}:$ $513.3(\mathrm{M}+1)^{+}$.
HCl Salt:
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6): $88.10-6.80(\mathrm{~m}, 13 \mathrm{H}), 6.17(\mathrm{~s}, 1 \mathrm{H}), 5.40(\mathrm{~m}, 1 \mathrm{H}), 4.77(\mathrm{~m}, 1 \mathrm{H})$, $3.59(\mathrm{~m}, 1 \mathrm{H}), 2.74(\mathrm{~s}, 3 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 1.78-1.50(\mathrm{~m}, 5 \mathrm{H}), 1.23-0.96(\mathrm{~m}, 5 \mathrm{H})$; MS: $513.2(\mathrm{M}+1)^{+}$.

Compound 180

${ }^{1}$ H NMR (300 MHz , DMSO-d6): $\delta 8.01-7.99(\mathrm{~m}, 1 \mathrm{H}), 7.11-6.70(\mathrm{~m}, 6 \mathrm{H}), 6.24(\mathrm{~s}, 1 \mathrm{H}), 4.27(\mathrm{~s}$, $1 \mathrm{H}), 3.61-3.51(\mathrm{~m}, 2 \mathrm{H}), 3.12-2.81(\mathrm{~m}, 2 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 2.03(\mathrm{~s}, 1 \mathrm{H}), 1.80-1.42(\mathrm{~m}, 7 \mathrm{H}), 1.30-$
0.96 (m, 9H); MS: $496.0(\mathrm{M}+1)^{+}$.

Compound 181

${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d6): $\delta 8.07(\mathrm{~s}, 1 \mathrm{H}), 7.79(\mathrm{br}, 1 \mathrm{H}), 7.12-6.59(\mathrm{~m}, 7 \mathrm{H}), 6.24(\mathrm{~s}, 1 \mathrm{H})$, 3.79-3.77 (d, 2H, J=8.1), 3.64-3.62 (m, 1H), 3.40-3.36 (m,1H), 3.22-3.17 (m, 2H), 3.11-3.07 (m, $1 \mathrm{H}), 2.74(\mathrm{~s}, 1 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 1.78-1.52(\mathrm{~m}, 7 \mathrm{H}), 1.32-0.97(\mathrm{~m}, 8 \mathrm{H}) ; \mathrm{MS}: 482.3(\mathrm{M}+1)^{+}$.

Compound 171 and its HCl Salt

${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d6): $\delta 8.44-8.42$ (d, 1H, J=5.4), 8.02-8.00 (d, 1H, J=7.2), 7.25-6.70 $(\mathrm{m}, 8 \mathrm{H}), 6.25(\mathrm{~s}, 1 \mathrm{H}), 3.65-3.60(\mathrm{~m}, 3 \mathrm{H}), 3.13-2.82(\mathrm{~m}, 2 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 1.80-1.52(\mathrm{~m}, 5 \mathrm{H})$, 1.31-0.96 (m, 5H); MS: $489.3(\mathrm{M}+1)^{+}$.

HCl Salt:
${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d6): $89.89(\mathrm{br}, 1 \mathrm{H}), 8.79(\mathrm{~s}, 2 \mathrm{H}), 8.14(\mathrm{~s}, 1 \mathrm{H}), 7.78(\mathrm{~s}, 3 \mathrm{H}), 7.14-$
$6.59(\mathrm{~m}, 7 \mathrm{H}), 6.22(\mathrm{~s}, 1 \mathrm{H}), 4.25(\mathrm{~s}, 2 \mathrm{H}), 3.87(\mathrm{~m}, 1 \mathrm{H}), 3.63(\mathrm{~m}, 2 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 1.72-1.54(\mathrm{~m}, 5 \mathrm{H})$, 1.32-0.96(m, 5H); MS: $489.2(\mathrm{M}+1)^{+}$.

Compound 174

${ }^{1}$ H NMR (300 MHz, DMSO-d6): $\delta 8.44-8.40(\mathrm{~m}, 2 \mathrm{H}), 8.04-8.02(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7.5), 7.68-6.70(\mathrm{~m}$, $8 \mathrm{H}), 6.25(\mathrm{~s}, 1 \mathrm{H}), 3.67-3.61(\mathrm{~m}, 3 \mathrm{H}), 3.16-2.90(\mathrm{~m}, 2 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 1.80-1.52(\mathrm{~m}, 5 \mathrm{H}), 1.31-$ $0.96(\mathrm{~m}, 5 \mathrm{H})$; MS: $489.0(\mathrm{M}+1)^{+}$.

Compound 172 and its HCl Salt

${ }^{1}$ H NMR (300 MHz, DMSO-d6): $88.48-8.46(\mathrm{~m}, 2 \mathrm{H}), 8.07-8.05(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7.2), 7.87-6.70(\mathrm{~m}$, $10 \mathrm{H}), 6.26(\mathrm{~s}, 1 \mathrm{H}), 3.95-3.83(\mathrm{~m}, 2 \mathrm{H}), 3.62-3.60(\mathrm{~m}, 1 \mathrm{H}), 3.27-3.05(\mathrm{~s}, 2 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 1.72-$ $1.51(\mathrm{~m}, 5 \mathrm{H}), 1.31-0.96(\mathrm{~m}, 5 \mathrm{H})$; MS: $489.0(\mathrm{M}+1)^{+}$.
HCl Salt:
${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d6): $89.46(\mathrm{~s}, 2 \mathrm{H}), 8.60(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=3.3), 8.16(\mathrm{~s}, 1 \mathrm{H}), 7.87(\mathrm{~m}, 2 \mathrm{H})$, $7.46-7.07(\mathrm{~m}, 6 \mathrm{H}), 6.87(\mathrm{~m}, 1 \mathrm{H}), 6.72(\mathrm{~s}, 1 \mathrm{H}), 6.54(\mathrm{~s}, 1 \mathrm{H}), 6.25(\mathrm{~s}, 1 \mathrm{H}), 5.92(\mathrm{br}, 2 \mathrm{H}), 4.27(\mathrm{~s}, 2 \mathrm{H})$, $3.84(\mathrm{~m}, 1 \mathrm{H}), 3.63(\mathrm{~m}, 2 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 1.70-1.50(\mathrm{~m}, 5 \mathrm{H}), 1.34-1.00(\mathrm{~m}, 5 \mathrm{H})$; MS: $489.2(\mathrm{M}+1)^{+}$.

Compound 177 and its HCl Salt

${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO-d6): $\delta 7.97(\mathrm{~s}, 1 \mathrm{H}), 7.72(\mathrm{br}, 1 \mathrm{H}), 7.09-6.56(\mathrm{~m}, 7 \mathrm{H}), 6.23(\mathrm{~s}, 1 \mathrm{H})$,
3.64-3.62 (m, 1H), 3.05-2.92 (m, 2H), $2.45(\mathrm{~s}, 4 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 1.83-1.52(\mathrm{~m}, 9 \mathrm{H}), 1.29-0.96$ (m, 5H); MS: $502.3(\mathrm{M}+1)^{+}$.

HCl Salt:
${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d6): $\delta 10.29(\mathrm{br}, 1 \mathrm{H}), 8.13-6.61(\mathrm{~m}, 9 \mathrm{H}), 6.21(\mathrm{~s}, 1 \mathrm{H}), 4.09-3.19(\mathrm{~m}$, $7 \mathrm{H}), 2.37-2.29(\mathrm{~m}, 6 \mathrm{H}), 1.70-1.50(\mathrm{~m}, 5 \mathrm{H}), 1.34-1.00(\mathrm{~m}, 5 \mathrm{H})$; MS: $502.2(\mathrm{M}+1)^{+}$.

Compound 239 (HCl Salt)

${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d6): $814.39(\mathrm{~s}, 1 \mathrm{H}), 8.09-8.07(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7.2), 7.53-7.07(\mathrm{~m}, 10 \mathrm{H})$, $6.02(\mathrm{~s}, 1 \mathrm{H}), 4.94-4.74(\mathrm{~m}, 2 \mathrm{H}), 3.61-3.58(\mathrm{~m}, 1 \mathrm{H}), 2.47(\mathrm{~s}, 3 \mathrm{H}), 1.72-1.49(\mathrm{~m}, 5 \mathrm{H}), 1.23-1.07(\mathrm{~m}$, 5H); MS: 448.2(M+1) ${ }^{+}$.

Compound 327 (HCl Salt)

${ }^{1} \mathrm{H}$ NMR (400 MHz, MeOD-d4): $\left.\delta 8.12(\mathrm{br}, 1 \mathrm{H}), 7.82(\mathrm{br}, 1 \mathrm{H}), 7.46 \mathrm{~s}, 2 \mathrm{H}\right), 7.16-6.82(\mathrm{~m}, 7 \mathrm{H})$, $5.04(\mathrm{~d}, 1 \mathrm{H}), 4.78(\mathrm{~d}, 1 \mathrm{H}), 4.33(\mathrm{~m}, 1 \mathrm{H}), 2.58(\mathrm{~s}, 3 \mathrm{H}), 2.48(\mathrm{~s}, 3 \mathrm{H}), 2.29(\mathrm{~m}, 2.5 \mathrm{H}), 1.71(\mathrm{t}, 2 \mathrm{H})$, $1.30(\mathrm{t}, 2 \mathrm{H}), 0.46(\mathrm{q}, 1 \mathrm{H}), 0(\mathrm{q}, 1 \mathrm{H}) ; \mathrm{MS}: 461.2(\mathrm{M}+1)^{+}$.

Compound 169

${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d6): $\delta 8.49-8.44(\mathrm{~m}, 2 \mathrm{H}), 7.98-7.97(\mathrm{~m}, 1 \mathrm{H}), 7.33-6.30(\mathrm{~m}, 9 \mathrm{H})$,
5.73-5.48 (m, 1H), 4.91-4.25 (m, 2H), 3.77-3.23 (m, 5H), 2.19-1.88 (m, 3H), 1.69-1.49 (m, 5H),
1.29-0.98 (m, 6H); MS: $491.2(\mathrm{M}+1)^{+}$.

Compound 224

${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d6): $\delta 8.11-8.08(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=6.9), 7.52-6.88(\mathrm{~m}, 9 \mathrm{H}), 6.17-6.17(\mathrm{~d}$, $1 \mathrm{H}, \mathrm{J}=2.1), 6.07(\mathrm{~s}, 1 \mathrm{H}), 5.00-4.94(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=17.4), 4.65-4.59(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=18.0), 3.65-3.51(\mathrm{~m}$, $4 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}), 1.75-1.68(\mathrm{~m}, 5 \mathrm{H}), 1.27-1.16(\mathrm{~m}, 5 \mathrm{H}) ; \mathrm{MS}: 499.3(\mathrm{M}+1)^{+}$.
Compound 245

${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6): $\delta 8.15-8.13(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.0), 7.47-7.46(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=2), 7.13-6.80$ $(\mathrm{m}, 6 \mathrm{H}), 6.49-6.29(\mathrm{t}, 1 \mathrm{H}), 6.29-6.27(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.4), 5.99(\mathrm{~s}, 1 \mathrm{H}), 5.98(\mathrm{~s}, 1 \mathrm{H}), 3.98-3.93(\mathrm{~d}$, $1 \mathrm{H}, \mathrm{J}=18), 3.67-3.64(\mathrm{~m}, 4 \mathrm{H}), 3.34-3.30(\mathrm{~m}, 2 \mathrm{H}), 2.66-2.65(\mathrm{~m}, 1 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}), 1.84-1.52(\mathrm{~m}$, $7 \mathrm{H}), 1.34-1.14(\mathrm{~m}, 7 \mathrm{H}) ; \mathrm{MS}: 500.3(\mathrm{M}+1)^{+}$.

Compound 250

${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6): $\delta 8.10-8.08(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7.6)$, $7.47(\mathrm{~s}, 1 \mathrm{H}), 7.11-6.85(\mathrm{~m}, 5 \mathrm{H})$, $6.66(\mathrm{~s}, 1 \mathrm{H}), 6.09(\mathrm{~s}, 2 \mathrm{H}), 4.73-4.69(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=17.6), 4.40-4.36(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=16.8), 3.66-3.61(\mathrm{~m}$, $4 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}), 2.11(\mathrm{~s}, 3 \mathrm{H}), 1.76-1.52(\mathrm{~m}, 5 \mathrm{H}), 1.52-1.06(\mathrm{~m}, 5 \mathrm{H}) ; \mathrm{MS}: 449.2(\mathrm{M}+1)^{+}$.

Compound 255

${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6): $\delta 8.14(\mathrm{~s}, 1 \mathrm{H}), 8.10-8.06(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7.6), 7.66-7.60(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=$ $7.6), 7.52-7.51(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=2.0), 7.33-6.88(\mathrm{~m}, 7 \mathrm{H}), 6.18-6.17(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=1.6), 6.09(\mathrm{~s}, 1 \mathrm{H}), 5.12-$ $5.08(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=16.8), 4.76-4.72(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=17.2), 3.65-3.55(\mathrm{~m}, 4 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}), 1.74-1.63(\mathrm{~m}$, 5H), 1.30-1.09 (m, 5H); MS:485.2 (M+1) ${ }^{+}$.
Compound 314

${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6): $\delta 8.30-8.28(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=5.2), 7.80-7.79(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=6.0), 7.40-$ $6.79(\mathrm{~m}, 9 \mathrm{H}), 6.30(\mathrm{~s}, 1 \mathrm{H}), 4.78(\mathrm{~s}, 1 \mathrm{H}), 4.51-4.47(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=16.4), 3.63-3.59(\mathrm{~m}, 1 \mathrm{H}), 2.21(\mathrm{~s}$, $3 \mathrm{H}), 1.74-1.51(\mathrm{~m}, 5 \mathrm{H}), 1.28-0.89(\mathrm{~m}, 5 \mathrm{H})$; MS:483.1 (M+1) ${ }^{+}$.
Compound 322

${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6): $\delta 8.28-8.27(\mathrm{~d}, 1 \mathrm{H} \mathrm{J}=6.4), 7.79-6.82(\mathrm{~m}, 10 \mathrm{H}), 6.56-6.53(\mathrm{~d}$, $2 \mathrm{H}, \mathrm{J}=8.4), 6.33(\mathrm{~s}, 1 \mathrm{H}), 3.81-3.42(\mathrm{~m}, 3 \mathrm{H}), 1.74-1.52(\mathrm{~m}, 5 \mathrm{H}), 1.28-0.99(\mathrm{~m}, 5 \mathrm{H}) ;$ MS: 519.0 $(\mathrm{M}+1)^{+}$.

Compound 285

${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d6): $\delta 8.21-7.69(\mathrm{~m}, 4 \mathrm{H}), 7.14-6.65(\mathrm{~m}, 9 \mathrm{H}), 6.18-6.16(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=$ $7.2)$, 5.63-5.68 (t, 1H), 5.17-5.12 (t, 1H), 3.64-3.58 (m, 1H), $2.32(\mathrm{~s}, 3 \mathrm{H}), 1.73-1.51(\mathrm{~m}, 5 \mathrm{H})$, 1.27-0.87 (m, 5H); MS:542.2 (M+1) ${ }^{+}$.

Compound 290

${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6): $\delta 9.14(\mathrm{~s}, 1 \mathrm{H}), 8.05(\mathrm{~s}, 1 \mathrm{H}), 7.90(\mathrm{~s}, 1 \mathrm{H}), 7.71-7.69(\mathrm{~d}, 2 \mathrm{H} \mathrm{J}=$ 8.4), 7.12-6.60 (m, 10H), 6.24 ($\mathrm{s}, 1 \mathrm{H}), 3.85-3.82(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=14.0), 3.63-3.42(\mathrm{~m}, 2 \mathrm{H}), 2.38(\mathrm{~s}$, $3 \mathrm{H}), 1.73-1.51(\mathrm{~m}, 5 \mathrm{H}), 1.28-0.86(\mathrm{~m}, 5 \mathrm{H})$; MS: $542.1(\mathrm{M}+1)^{+}$.
Compound 291

${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6): $\delta 9.52(\mathrm{~s}, 1 \mathrm{H}), 8.05(\mathrm{~s}, 1 \mathrm{H}), 7.89(\mathrm{~s}, 1 \mathrm{H}), 7.73-7.71(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=$ $8.8), 7.12-6.47(\mathrm{~m}, 9 \mathrm{H}), 6.24(\mathrm{~s}, 1 \mathrm{H}), 3.80-3.60(\mathrm{~m}, 3 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 1.76-1.52(\mathrm{~m}, 5 \mathrm{H}), 1.28-$ $1.05(\mathrm{~m}, 5 \mathrm{H}) ; \mathrm{MS}: 542.1(\mathrm{M}+1)^{+}$.
Compound 195

${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d6): $\delta 8.12-8.10(\mathrm{~m}, 1 \mathrm{H}), 7.18-6.22(\mathrm{~m}, 13 \mathrm{H}), 3.86-3.74(\mathrm{~m}, 3 \mathrm{H})$, 3.54-3.49 (m, 2H), 2.87-2.81 (m, 2H), 2.36 ($\mathrm{s}, 3 \mathrm{H}$), 2.01-1.67 (m, 2H), 1.29-1.17 (m, 6H); MS: $502.2(\mathrm{M}+1)^{+}$.
Compound 207

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl} 3$): $\delta 7.37-6.38(\mathrm{~m}, 11 \mathrm{H}), 5.61-5.55(\mathrm{~m}, 1 \mathrm{H}), 4.87-4.65(\mathrm{~m}, 3 \mathrm{H}), 4.07-$ $3.84(\mathrm{~m}, 3 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}), 2.18-1.92(\mathrm{~m}, 2 \mathrm{H}), 1.67-1.55(\mathrm{~m}, 2 \mathrm{H}), 1.32-1.07(\mathrm{~m}, 6 \mathrm{H})$; MS: 494.2 $(\mathrm{M}+1)^{+}$.
Compound 254

${ }^{1}$ H NMR (400 MHz, DMSO-d6): $\delta 8.60-8.48(\mathrm{~m}, 3 \mathrm{H}), 8.03-7.74(\mathrm{~m}, 2 \mathrm{H}), 7.11-6.24(\mathrm{~m}, 8 \mathrm{H})$, $3.79(\mathrm{~s}, 2 \mathrm{H}), 3.62(\mathrm{~m}, 1 \mathrm{H}), 3.21-2.89(\mathrm{~m}, 2 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 2.01(\mathrm{~m}, 1 \mathrm{H}), 1.72-1.52(\mathrm{~m}, 5 \mathrm{H})$, 1.29-0.81 (m, 5H); MS: $490.2(\mathrm{M}+1)^{+}$.

Compound 323

${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6): $\delta 8.47(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=5.6 \mathrm{MHz}$), $8.24(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7.2 \mathrm{MHz}$), 7.28-6.87 $(\mathrm{m}, 10 \mathrm{H}), 6.32(\mathrm{~s}, 1 \mathrm{H}), 3.74-3.65(\mathrm{~m}, 3 \mathrm{H}), 3.21-3.17(\mathrm{~m}, 2 \mathrm{H}), 3.01-2.95(\mathrm{~m}, 1 \mathrm{H}), 1.74-1.53(\mathrm{~m}$, $5 \mathrm{H}), 1.21-0.86(\mathrm{~m}, 5 \mathrm{H})$; MS: $493.2(\mathrm{M}+1)^{+}$.
Example 3. Preparation of Compound 302. Compound 302 was also synthesized via Scheme 2 using the following protocol.

To a solution of Compound $118(400 \mathrm{mg}, 0.96 \mathrm{mmol})$ in acetone $(10 \mathrm{ml})$ was added 6-Fluoro-pyridin-2-ylamine ($269 \mathrm{mg}, 2.4 \mathrm{mmol}$) and NaI ($288 \mathrm{mg}, 1.92 \mathrm{mmol}$). The reaction mixture was stirred at $70^{\circ} \mathrm{C}$ overnight. The resulting mixture was concentrated in vacuo and DCM (20 ml) was added. The organic solution was washed with water, brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. The solvent was evaporated in vacuo. The residue was purified by prepTLC to give the desired product as a white solid ($196 \mathrm{mg}, 41.52 \%$ yield) ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d6): $\delta 8.02(\mathrm{~s}, 1 \mathrm{H}), 7.83(\mathrm{br}, 1 \mathrm{H}), 7.52-7.46(\mathrm{~m}, 1 \mathrm{H}), 7.33-7.02(\mathrm{~m}, 5 \mathrm{H}), 6.86(\mathrm{~s}, 1 \mathrm{H})$, 6.72-6.65 (m, 2H), 6.48-6.47 (d, 1H, J=7.2), 6.23 (s, 1H), 6.12-6.10 (d, 1H, J=6.8), 3.86-3.83 (d, $1 \mathrm{H}, \mathrm{J}=13.6$), $3.62-3.61(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=6), 3.49-3.41(\mathrm{~m}, 1 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 1.70-1.52(\mathrm{~m}, 5 \mathrm{H}), 1.25-$ $0.96(\mathrm{~m}, 5 \mathrm{H})$; MS: $493.1(\mathrm{M}+1)^{+}$.

The following compounds of the invention were also synthesized via Scheme 2 following the general procedure set forth above for Compound 302 . The corresponding HCl salt was synthesized following the general procedure set forth in Example 1, step B.

Compound 237

${ }^{1} \mathrm{H}$ NMR (400MHz, MeOD-d4), $88.27-8.017(\mathrm{br}, 2 \mathrm{H}), 7.04(\mathrm{~s}, 1 \mathrm{H}), 7.11-6.99(\mathrm{~m}, 4 \mathrm{H}), 6.87-$ $6.84(\mathrm{~m}, 2 \mathrm{H}), 6.74-6.72(\mathrm{~m}, 2 \mathrm{H}), 6.21(\mathrm{~s}, 1 \mathrm{H}), 6.01(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=6), 3.78-3.73(\mathrm{~m}, 1 \mathrm{H}), 3.61(\mathrm{br}$, $1 \mathrm{H}), 3.37-3.33(\mathrm{~m}, 1 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 1.72-1.52(\mathrm{~m}, 5 \mathrm{H}), 1.28-0.96(\mathrm{~m}, 5 \mathrm{H}) ;$ MS: $493.2(\mathrm{M}+1)^{+}$.
Compound 325

${ }^{1} \mathrm{H}$ NMR (400MHz, MeOD-d4), $\delta 8.65$ (d, 1H, J=8), 8.62 (d, 1H, J=6), 8.26 (d, 1H, J=4), 8.02 $(\mathrm{br}, 1 \mathrm{H}), 7.75(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=6), 7.24-7.12(\mathrm{~m}, 4 \mathrm{H}), 7.01-6.90(\mathrm{~m}, 4 \mathrm{H}), 6.41(\mathrm{~s}, 1 \mathrm{H}), 5.64(\mathrm{~d}, 0.59 \mathrm{H}$, $\mathrm{J}=16), 3,5.41(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=16), 4.35(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=8), 2.55(\mathrm{~s}, 3 \mathrm{H}), 2.33-2.28(\mathrm{~m}, 2 \mathrm{H}), 1.75-1.69(\mathrm{~m}$, $2 \mathrm{H}), 1.38-1.26(\mathrm{~m}, 3 \mathrm{H}), 0.46(\mathrm{~m}, 1 \mathrm{H}), 0(\mathrm{~m}, 1 \mathrm{H}) ; \mathrm{MS}: 497.2(\mathrm{M}+1)^{+}$.

Compound 272

${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6): $\delta 8.02(\mathrm{~s}, 1 \mathrm{H}), 7.85(\mathrm{dr}, 1 \mathrm{H}), 7.35-7.34$ (d, 1H, J=4.8), 7.12$7.03(\mathrm{~m}, 4 \mathrm{H}), 6.87-6.85(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=6.8), 6.74-6.66(\mathrm{~m}, 2 \mathrm{H}), 6.21(\mathrm{~s}, 1 \mathrm{H}), 5.82(\mathrm{~s}, 1 \mathrm{H}), 3.81-3.79$ $(\mathrm{m}, 1 \mathrm{H}), 3.62-3.60(\mathrm{~m}, 1 \mathrm{H}), 3.47-3.42(\mathrm{~m}, 1 \mathrm{H}), 3.31-3.26(\mathrm{~m}, 1 \mathrm{H}), 2.43-2.34(\mathrm{~s}, 3 \mathrm{H}), 1.72-1.52$ $(\mathrm{m}, 5 \mathrm{H}), 1.28-0.95(\mathrm{~m}, 5 \mathrm{H}) ; \mathrm{MS}: 493.1(\mathrm{M}+1)^{+}$.

Compound 258

${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6): $\delta 8.04-8.01(\mathrm{~m}, 1 \mathrm{H}), 7.87(\mathrm{dr}, 1 \mathrm{H}), 7.55-7.53(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.4)$, 7.12-6.97 (m, 4H), 6.89-6.73 (m, 3H), 6.60-6.58 (d, 2H, J=8.8), 6.22 ($\mathrm{s}, 1 \mathrm{H}), 3.85-3.81(\mathrm{~m}, 1 \mathrm{H})$, 3.62-3.61 (d, 1H, J=6.4), 3.45-3.41 (m, 1H), 3.03 ($\mathrm{s}, 3 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 1.76-1.52(\mathrm{~m}, 5 \mathrm{H}), 1.28-$ $0.96(\mathrm{~m}, 5 \mathrm{H})$; MS: $552.1(\mathrm{M}+1)^{+}$.

Compound 280

${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6): $\delta 8.59-8.54(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=19.2), 8.07-7.88(\mathrm{~m}, 3 \mathrm{H}), 7.42-7.05(\mathrm{~m}$, $4 \mathrm{H}), 6.90-6.87(\mathrm{~m}, 1 \mathrm{H}), 6.78-6.63(\mathrm{~m}, 4 \mathrm{H}), 6.17(\mathrm{~s}, 1 \mathrm{H}), 4.95-4.74(\mathrm{~m}, 2 \mathrm{H}), 3.62-3.60(\mathrm{~d}, 1 \mathrm{H}$, $\mathrm{J}=6), 2.38(\mathrm{~s}, 3 \mathrm{H}), 1.70-1.52(\mathrm{~m}, 5 \mathrm{H}), 1.28-0.93(\mathrm{~m}, 5 \mathrm{H}) ; \mathrm{MS}: 493.1(\mathrm{M}+1)^{+}$.
Compound 308

${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6): $\delta 8.04-8.03(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=4.4), 7.79(\mathrm{dr}, 1 \mathrm{H}), 7.30(\mathrm{dr}, 1 \mathrm{H}), 7.12-$ $6.99(\mathrm{~m}, 3 \mathrm{H}), 6.89-6.85(\mathrm{~m}, 1 \mathrm{H}), 6.74-6.72(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=7.2), 6.43(\mathrm{~s}, 1 \mathrm{H}), 6.31(\mathrm{~s}, 1 \mathrm{H}), 6.19(\mathrm{~s}$, $1 \mathrm{H}), 5.07(\mathrm{~s}, 2 \mathrm{H}), 4.40-4.35(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=16.8), 4.13-4.08(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=17.6), 3.63-3.61(\mathrm{~m}, 1 \mathrm{H}), 2.38$ ($\mathrm{s}, 3 \mathrm{H}$), 1.76-1.52 (m, 5H), 1.28-0.83 (m, 5H); MS: $464.1(\mathrm{M}+1)^{+}$.

Compound 317

${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6): $\delta 8.03(\mathrm{~s}, 1 \mathrm{H}), 7.84-7.83(\mathrm{~m}, 1 \mathrm{H}), 7.59(\mathrm{~s}, 1 \mathrm{H}), 7.40-7.00(\mathrm{~m}$, $5 \mathrm{H})$, 6.88-6.85 (m, 1H), 6.73-6.54 (m, 2H), 6.22-6.20 (m, 2H), 4.87-4.83 (d, 1H, J=15.6), 4.60$4.57(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=15.2), 3.63-3.61(\mathrm{~m}, 1 \mathrm{H}), 2.38-2.34(\mathrm{~s}, 3 \mathrm{H}), 1.72-1.52(\mathrm{~m}, 5 \mathrm{H}), 1.28-0.94(\mathrm{~m}, 5 \mathrm{H})$; MS: $449.1(\mathrm{M}+1)^{+}$.

Compound 309

${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6): $\delta 8.03(\mathrm{~s}, 1 \mathrm{H}), 7.84(\mathrm{dr}, 1 \mathrm{H}), 7.32-7.00(\mathrm{~m}, 6 \mathrm{H}), 6.88-6.84(\mathrm{~m}$, $1 \mathrm{H}), 6.72-6.51(\mathrm{~m}, 2 \mathrm{H}), 6.18(\mathrm{~s}, 1 \mathrm{H}), 4.77-4.73(\mathrm{~m}, 1 \mathrm{H}), 4.51-4.47(\mathrm{~m}, 1 \mathrm{H}), 3.62-3.59(\mathrm{~m}, 1 \mathrm{H})$, 2.37-2.34 (m, 3H), 1.98-1.96 (m, 3H), 1.76-1.52 (m, 5H), 1.28-0.94 (m, 5H); MS: $463.1(\mathrm{M}+1)^{+}$. Compound 279

${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6): $\delta 8.03(\mathrm{~s}, 2 \mathrm{H}), 7.86$ (dr, 1H), 7.51-7.49 (d, 1H, J=9.2), 7.12$7.01(\mathrm{~m}, 3 \mathrm{H}), 6.87-6.74(\mathrm{~m}, 4 \mathrm{H}), 6.22(\mathrm{~s}, 1 \mathrm{H}), 3.90-3.85(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=20.4), 3.61(\mathrm{~s}, 1 \mathrm{H}), 3.48-3.44$ $(\mathrm{d}, 1 \mathrm{H}, \mathrm{J}=16), 2.37(\mathrm{~s}, 3 \mathrm{H}), 1.75-1.52(\mathrm{~m}, 4 \mathrm{H}), 1.28-0.99(\mathrm{~m}, 6 \mathrm{H}) ; \mathrm{MS}: 543.1(\mathrm{M}+1)^{+}$.

Compound 298

${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6): $\delta 8.03(\mathrm{~s}, 1 \mathrm{H}), 7.84(\mathrm{~s}, 1 \mathrm{H}), 7.45-7.00(\mathrm{~m}, 5 \mathrm{H}), 6.86-6.54(\mathrm{~m}$, $3 H), 6.18(\mathrm{~s}, 1 \mathrm{H}), 5.98(\mathrm{~s}, 1 \mathrm{H}), 4.77-4.73(\mathrm{~m}, 1 \mathrm{H}), 4.47-4.43(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=16), 3.62-3.61(\mathrm{~m}, 1 \mathrm{H})$, $2.38-2.34(\mathrm{~m}, 3 \mathrm{H}), 2.11(\mathrm{~s}, 3 \mathrm{H}), 1.72-1.51(\mathrm{~m}, 5 \mathrm{H}), 1.28-0.94(\mathrm{~m}, 5 \mathrm{H}) ; \mathrm{MS}: 463.1(\mathrm{M}+1)^{+}$.

Compound 167

${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.86-6.44(\mathrm{~m}, 14 \mathrm{H}), 5.34-4.82(\mathrm{~m}, 4 \mathrm{H}), 3.82(\mathrm{~m}, 1 \mathrm{H}), 2.29(\mathrm{~s}$, $3 \mathrm{H}), 1.91-0.87(\mathrm{~m}, 10 \mathrm{H}) ; \mathrm{MS}: 501.2(\mathrm{M}+1)^{+}$.

Compound 175

${ }^{1} \mathrm{H}$ NMR (300 MHz, MeOD-d4): $\delta 7.55-6.67(\mathrm{~m}, 11 \mathrm{H}), 6.39(\mathrm{~s}, 1 \mathrm{H}), 5.44-4.87(\mathrm{~m}, 4 \mathrm{H}), 3.73(\mathrm{~s}$, $1 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 2.14(\mathrm{~s}, 3 \mathrm{H}), 1.83-1.59(\mathrm{~m}, 5 \mathrm{H}), 1.39-1.15(\mathrm{~m}, 5 \mathrm{H}) ; \mathrm{MS}: 515.0(\mathrm{M}+1)^{+}$.

Compound 252

${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6): $\delta 13.07$ ($\mathrm{s}, 1 \mathrm{H}$), 8.66-6.78 (m, 13H), $6.18(\mathrm{~s}, 1 \mathrm{H}), 5.61-5.24$ $(\mathrm{m}, 2 \mathrm{H}), 3.59(\mathrm{~s}, 1 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 1.71-1.49(\mathrm{~m}, 5 \mathrm{H}), 1.22-1.04(\mathrm{~m}, 5 \mathrm{H}) ; \mathrm{MS}: 499.2(\mathrm{M}+1)^{+}$.
Compound 321

${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6): $\delta 8.19-8.12(\mathrm{~m}, 2 \mathrm{H}), 7.68-6.95(\mathrm{~m}, 12 \mathrm{H}), 6.26(\mathrm{~s}, 1 \mathrm{H}), 5.06(\mathrm{~d}$, $1 \mathrm{H}, \mathrm{J}=16.8 \mathrm{MHz}), 4.74(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=20.0 \mathrm{MHz}), 3.59(\mathrm{~m}, 1 \mathrm{H}), 1.74-1.52(\mathrm{~m}, 5 \mathrm{H}), 1.25-0.92(\mathrm{~m}$, 5H); MS: $503.1(\mathrm{M}+1)^{+}$.

Compound 324

${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6): $\delta 8.38-8.19(\mathrm{~m}, 4 \mathrm{H}), 7.38-6.93(\mathrm{~m}, 9 \mathrm{H}), 6.52(\mathrm{~s}, 1 \mathrm{H}), 6.27(\mathrm{~s}$, $1 \mathrm{H}), 5.45-5.03(\mathrm{~m}, 2 \mathrm{H}), 3.59(\mathrm{~m}, 1 \mathrm{H}), 1.75-1.51(\mathrm{~m}, 5 \mathrm{H}), 1.23-0.93(\mathrm{~m}, 5 \mathrm{H}) ; \mathrm{MS}: 503.2(\mathrm{M}+1)^{+}$.

Compound 240

${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6): $\delta 8.84(\mathrm{br}, 2 \mathrm{H}), 8.15-8.06(\mathrm{~m}, 2 \mathrm{H}), 7.25-6.72(\mathrm{~m}, 10 \mathrm{H}), 6.13(\mathrm{~s}$, 165
$1 \mathrm{H}), 4.88-4.78(\mathrm{~m}, 2 \mathrm{H}), 3.59(\mathrm{~m}, 1 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 1.72-1.50(\mathrm{~m}, 5 \mathrm{H}), 1.34-0.87(\mathrm{~m}, 5 \mathrm{H}) ; \mathrm{MS}:$ $493.2(\mathrm{M}+1)^{+}$.

Compound 253

${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6): $\delta 8.04(\mathrm{br}, 1 \mathrm{H}), 7.85(\mathrm{~m}, 2 \mathrm{H}), 7.37-6.65(\mathrm{~m}, 10 \mathrm{H}), 6.22(\mathrm{~s}, 1 \mathrm{H})$, $3.85(\mathrm{~m}, 1 \mathrm{H}), 3.55(\mathrm{~m}, 2 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 1.72-1.50(\mathrm{~m}, 5 \mathrm{H}), 1.34-1.07(\mathrm{~m}, 5 \mathrm{H}) ; \mathrm{MS}: 493.2$ $(\mathrm{M}+1)^{+}$.

Compound 162

${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6): 89.46(s, 1H), 8.13-6.77(m, 13H), 6.19(s, 1H), 5.41-5.12(m, $2 \mathrm{H}), 4.03(\mathrm{~m}, 1 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 1.79(\mathrm{~m}, 2 \mathrm{H}), 1.56-1.26(\mathrm{~m}, 6 \mathrm{H}) ; \mathrm{MS}: 485.6(\mathrm{M}+1)^{+}$.

Compound 266

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta 8.64-8.51(\mathrm{~m}, 2 \mathrm{H}), 7.82-7.68(\mathrm{~m}, 3 \mathrm{H}), 7.12-6.77(\mathrm{~m}, 6 \mathrm{H}), 6.39(\mathrm{~s}$, $1 \mathrm{H}), 5.89(\mathrm{~s}, 1 \mathrm{H}), 4.81-5.19(\mathrm{~m}, 2 \mathrm{H}), 3.75(\mathrm{~s}, 1 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}), 1.85-1.44(\mathrm{~m}, 4 \mathrm{H}), 1.33-0.96(\mathrm{~m}$, 6H); MS: $499.2(\mathrm{M}+1)^{+}$.

Compound 377

${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6): 7.92-7.81 (2H, br), $7.36(\mathrm{~d}, 1 \mathrm{H}, J=4.4), 7.13-7.01(\mathrm{~m}, 5 \mathrm{H})$, 6.90-6.83 (m, 2H), 6.73-6.67 (m, 2H), $6.20(\mathrm{~s}, 1 \mathrm{H}), 5.84(\mathrm{~s}, 1 \mathrm{H}), 4.19(\mathrm{~s}, 1 \mathrm{H}), 4.18(\mathrm{~d}, 1 \mathrm{H}, J=$ $4.4), 3.83(\mathrm{dd}, 1 \mathrm{H}, J=16.8,4.8), 3.46(\mathrm{~d}, 1 \mathrm{H}, J=16.0), 3.33(\mathrm{~s}, 1 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 2.19-2.13(\mathrm{~m}$, $2 \mathrm{H}), 2.10(\mathrm{~s}, 1 \mathrm{H}), 1.63(\mathrm{q}, 2 \mathrm{H}, J=13.6), 1.24-1.20(\mathrm{~m}, 3 \mathrm{H}) ; \mathrm{MS}: 490.7(\mathrm{M}+1)^{+}$.
Compound 378

${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6): 8.16 (br, 1H), 7.84 (br, 1H), 7.36 (d, 1H, $J=4.8$), 7.14-7.02 $(\mathrm{m}, 5 \mathrm{H}), 6.90-6.84(\mathrm{~m}, 2 \mathrm{H}), 6.75(\mathrm{~d}, 1 \mathrm{H}, J=8.4), 6.22(\mathrm{~s}, 1 \mathrm{H}), 5.84(\mathrm{t}, 1 \mathrm{H}, J=5.2), 3.84-3.79$ $(\mathrm{m}, 2 \mathrm{H}), 3.49(\mathrm{~d}, 1 \mathrm{H}, J=12.4), 2.39(\mathrm{~s}, 3 \mathrm{H}), 1.92-1.80(\mathrm{~m}, 6 \mathrm{H}), 151-1.49(\mathrm{~m}, 1 \mathrm{H}), 1.36-1.31(\mathrm{~m}$, 1H); MS: $528.7(\mathrm{M}+1)^{+}$.
Compound 381

${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6): $\delta 8.65(\mathrm{~s}, 1 \mathrm{H}), 7.77-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.15-7.03(\mathrm{~m}, 5 \mathrm{H}), 6.90-6.67$ $(\mathrm{m}, 4 \mathrm{H}), 6.21(\mathrm{~s}, 1 \mathrm{H}), 5.81(\mathrm{~m}, 1 \mathrm{H}), 4.08(\mathrm{~m}, 1 \mathrm{H}), 3.82-3.76(\mathrm{~m}, 1 \mathrm{H}), 3.46(\mathrm{~m}, 1 \mathrm{H}), 2.92(\mathrm{~m}, 2 \mathrm{H})$, $2.38(\mathrm{~m}, 5 \mathrm{H})$; MS: $500.9(\mathrm{M}+1)^{+}$.

Example 4. Preparation of Compound 202 and it HCl Salt. Compound 202 was also prepared by Scheme 2, using the following protocol. The corresponding HCl salt was prepared
from Compound 202 following the protocol set forth in Example 1, step B.

To a solution of Compound $118(1.3 \mathrm{~g}, 3.1 \mathrm{mmol})$ in toluene $(50 \mathrm{ml})$ was added $\mathrm{Et}_{3} \mathrm{~N}(1.9$ $\mathrm{g}, 18.7 \mathrm{mmol}$) and 3,4-Dihydro-2H-benzo[1,4]oxazine ($422 \mathrm{mg}, 3.1 \mathrm{mmol}$). The mixture was refluxed overnight under N_{2} atmosphere. The resulting mixture was concentrated and DCM (20 ml) was added. The organic liquid was washed with water, brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the solvent was concentrated in vacuo. The residue was purified by prep-HPLC to give desired product as a white solid ($70 \mathrm{mg}, 4.37 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6): $\delta 7.95$ (s, $1 \mathrm{H}), 7.87(\mathrm{dr}, 1 \mathrm{H}), 7.14-7.12(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=6.8), 7.06-6.99(\mathrm{~m}, 2 \mathrm{H}), 6.88-6.85(\mathrm{~m}, 1 \mathrm{H}), 6.72-6.63(\mathrm{~m}$, $4 \mathrm{H})$, 6.52-6.48 (m, 1H), 6.38-6.36 (d, 1H, J=8), $6.19(\mathrm{~s}, 1 \mathrm{H}), 4.12-4.09(\mathrm{~m}, 2 \mathrm{H}), 3.92-3.87(\mathrm{~d}$, $1 \mathrm{H}, \mathrm{J}=17.2$), 3.67-3.59 (m, 2H), 3.36-3.34 (m, 2H), $2.36(\mathrm{~s}, 3 \mathrm{H}), 1.73-1.51(\mathrm{~m}, 5 \mathrm{H}), 1.27-0.93$ ($\mathrm{m}, 5 \mathrm{H}$) ; LC-MS: purity > 95\%, MS: $516.3\left(\mathrm{M}^{+}+1\right)$.
HCl Salt:
${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO-d6): $87.93(\mathrm{br}, 2 \mathrm{H}), 7.13-6.18(\mathrm{~m}, 11 \mathrm{H}), 4.09(\mathrm{~m}, 1 \mathrm{H}), 3.86-3.55(\mathrm{~m}$, $3 \mathrm{H}), 3.22(\mathrm{~m}, 2 \mathrm{H}), 2.63(\mathrm{~m}, 2 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 1.72-1.50(\mathrm{~m}, 7 \mathrm{H}), 1.32-0.89(\mathrm{~m}, 5 \mathrm{H}) ; \mathrm{MS}: 514.3$ $(\mathrm{M}+1)^{+}$.

The following compounds of the invention were also synthesized via Scheme 2 following the general procedure set forth above for Compound 202. The corresponding HCl salt was synthesized following the general procedure set forth in Example 1, step B.

Compound 242

${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6): $\delta 8.01-7.99(\mathrm{~m}, 1 \mathrm{H}), 7.12-6.84(\mathrm{~m}, 7 \mathrm{H}), 6.74-6.71(\mathrm{~m}, 1 \mathrm{H})$,
6.57-6.55 (m, 1H), 6.45-6.35 (m, 1H), 6.23(s, 1H), 5.39-5.37 (m, 1H), 3.77-3.70 (m, 1H), 3.64$3.60(\mathrm{~m}, 1 \mathrm{H}), 3.46-3.34(\mathrm{~m}, 1 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 1.75-1.50(\mathrm{~m}, 5 \mathrm{H}), 1.29-0.85(\mathrm{~m}, 5 \mathrm{H}) ; \mathrm{MS}: 492.2$ $(\mathrm{M}+1)^{+}$.
Compound 265

${ }^{1} \mathrm{H}$ NMR (300MHz, CDCl3): $\delta 7.19-7.13(\mathrm{~m}, 4 \mathrm{H}), 7.00-6.91(\mathrm{~m}, 3 \mathrm{H}), 6.76(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=5.7 \mathrm{MHz})$, 6.69-6.66 (m, 1H), $6.55(\mathrm{~s}, 1 \mathrm{H}), 6.39(\mathrm{~s}, 1 \mathrm{H}), 5.25(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=5.7 \mathrm{MHz}), 5.03(\mathrm{~m}, 1 \mathrm{H}), 3.86(\mathrm{~m}$, $1 \mathrm{H}), 3.56(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=3.3 \mathrm{MHz}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 1.97-1.87(\mathrm{~m}, 2 \mathrm{H}), 1.68-1.55(\mathrm{~m}, 3 \mathrm{H}), 1.36-1.10(\mathrm{~m}$, 5H); MS: $499.1(\mathrm{M}+1)^{+}$.

Compound 278

${ }^{1} \mathrm{H}$ NMR (400MHz, CDCl3): $\delta 7.19-7.13(\mathrm{~m}, 4 \mathrm{H}), 7.00-6.89(\mathrm{~m}, 3 \mathrm{H}), 6.76(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=6.8 \mathrm{MHz})$, 6.69-6.66 (m, 1H), $6.55(\mathrm{~s}, 1 \mathrm{H}), 6.39(\mathrm{~s}, 1 \mathrm{H}), 5.25(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7.6 \mathrm{MHz}), 5.03-5.02(\mathrm{~m}, 1 \mathrm{H}), 3.87$ $(\mathrm{m}, 1 \mathrm{H}), 3.58-3.57(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=4.4 \mathrm{MHz}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 1.99-1.80(\mathrm{~m}, 2 \mathrm{H}), 1.69-1.55(\mathrm{~m}, 2 \mathrm{H})$, 1.36-1.02 (m, 6H); MS: $499.1(\mathrm{M}+1)^{+}$.

Example 5. Preparation of Compound 161. Compound 161 was prepared according to Scheme 2 using the following protocol.

To a solution of Compound $118(200 \mathrm{mg}, 0.48 \mathrm{mmol})$ in DMF $(4 \mathrm{ml})$ was added $\mathrm{Et}_{3} \mathrm{~N}$
($0.4 \mathrm{ml}, 2.87 \mathrm{mmol}$) and Methyl-phenyl-amine ($103 \mathrm{mg}, 0.96 \mathrm{mmol}$). The mixture was stirred overnight at room temperature. Water (20 ml) was added and was then extracted with DCM $(3 \times 10 \mathrm{ml})$. The combined organic layer was washed with water, brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The residue was purified by prep-HPLC to give desired product as a white solid ($10.7 \mathrm{mg}, 4.58 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d} 6$): $\delta 7.94-7.92$ (d, $1 \mathrm{H}, \mathrm{J}=6.6), 7.15-6.51(\mathrm{~m}, 12 \mathrm{H}), 6.18(\mathrm{~s}, 1 \mathrm{H}), 3.97-3.91(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=17.1), 3.71-3.58(\mathrm{~m}, 2 \mathrm{H})$, $2.89(\mathrm{~s}, 3 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 1.73-1.50(\mathrm{~m}, 5 \mathrm{H}), 1.26-0.99(\mathrm{~m}, 5 \mathrm{H}) ; \mathrm{MS}: 488.2(\mathrm{M}+1)^{+}$.

The following compounds of the invention were also synthesized via Scheme 2 following the general procedure set forth above for Compound 161. The corresponding HCl salt was synthesized following the general procedure set forth in Example 1, step B.

Compound 182

${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d6): $\delta 8.16-7.94(\mathrm{~m}, 1 \mathrm{H}), 7.30-6.53(\mathrm{~m}, 10 \mathrm{H}), 6.40-6.38(\mathrm{~d}, 1 \mathrm{H}$, $\mathrm{J}=10.8), 6.24-5.66(\mathrm{~m}, 1 \mathrm{H}), 4.99-4.70(\mathrm{~m}, 1 \mathrm{H}), 4.36-4.06(\mathrm{~m}, 2 \mathrm{H}), 3.61-3.56(\mathrm{~m}, 1 \mathrm{H}), 3.00-2.92$ $(\mathrm{m}, 3 \mathrm{H}), 2.21-1.99(\mathrm{~m}, 3 \mathrm{H}), 1.76-1.52(\mathrm{~m}, 5 \mathrm{H}), 1.23-0.85(\mathrm{~m}, 5 \mathrm{H}) ; \mathrm{MS}: 490.2(\mathrm{M}+1)^{+}$.

Compound 183

${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d6): $88.09-8.07(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8), 7.82(\mathrm{br}, 1 \mathrm{H}), 7.15-6.98(\mathrm{~m}, 6 \mathrm{H})$, 6.89-6.84 (m, 1H), 6.72-6.51 (m, 5H), 6.19 ($\mathrm{s}, 1 \mathrm{H}), 3.98-3.92(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=22.8), 3.81-3.66(\mathrm{~m}, 4 \mathrm{H})$, $2.89(\mathrm{~s}, 3 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 1.70-1.66(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=14.8), 1.38-1.12(\mathrm{~m}, 4 \mathrm{H}) ; \mathrm{MS}: 490.2(\mathrm{M}+1)^{+}$.

Example 6. Preparation of Compound 189. Compound 189 was synthesized according to

Scheme 3 using the following protocol

To a suspension of KOH ($105 \mathrm{mg}, 1.87 \mathrm{mmol}$) in dry DMSO (5 ml) was added 3-Fluorophenol ($106 \mathrm{mg}, 0.94 \mathrm{mmol}$) and Compound 118 ($260 \mathrm{mg}, 0.62 \mathrm{mmol}$). The reaction mixture was stirred at room temperature for 3 hours. The resulting mixture was quenched by $\mathrm{H}_{2} \mathrm{O}(15$ ml) and then extracted with EtOAc ($2 \times 10 \mathrm{ml}$). The combined organic layer was washed with NaHCO_{3} solution, brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the solvent was evaporated under vacuum. The residue was purified via silica gel chromatography to give the desired product as a white solid ($122.5 \mathrm{mg}, 40 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO-d6): $\delta 8.03-8.00$ ($\mathrm{d}, 1 \mathrm{H}, \mathrm{J}=6.9$), 7.31-6.62 (m, 11H), $6.21(\mathrm{~s}, 1 \mathrm{H}), 4.69-4.23(\mathrm{~m}, 2 \mathrm{H}), 3.62-3.61(\mathrm{~m}, 1 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 1.76-1.56$ (m, 5H), 1.29-1.00 (m, 5H); MS: $493.2(\mathrm{M}+1)^{+}$.

The following compounds of the invention were also synthesized via Scheme 2 following the general procedure set forth above for Compound 189. The corresponding HCl salt was synthesized following the general procedure set forth in Example 1, step B.
Compound 136

${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d6): $\delta 8.02-8.00(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=6.9), 7.27-6.73(\mathrm{~m}, 11 \mathrm{H}), 6.22(\mathrm{~s}, 1 \mathrm{H})$, $4.63-4.20(\mathrm{~m}, 2 \mathrm{H}), 3.64-3.61(\mathrm{~m}, 1 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 1.75-1.55(\mathrm{~m}, 5 \mathrm{H}), 1.29-1.00(\mathrm{~m}, 5 \mathrm{H}) ;$ MS:
$475.2(\mathrm{M}+1)^{+}$.

Compound 194

${ }^{1}$ H NMR (300 MHz, DMSO-d6): $\delta 8.01-7.99(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7.8), 7.10-6.71(\mathrm{~m}, 10 \mathrm{H}), 6.19(\mathrm{~s}, 1 \mathrm{H})$, 4.61-4.17 (m, 2H), 3.62-3.59 (m, 1H), 2.34 ($\mathrm{s}, 3 \mathrm{H}$), 1.75-1.49 (m, 5H), 1.28-1.00 (m, 5H); MS: $493.1(\mathrm{M}+1)^{+}$.

Compound 196

${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, DMSO-d6): $\delta 8.02-8.01(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7.2), 7.21-6.73(\mathrm{~m}, 10 \mathrm{H}), 6.21(\mathrm{~s}, 1 \mathrm{H})$, 4.74-4.34 (m, 2H), 3.62-3.60 (m, 1H), 2.36 ($\mathrm{s}, 3 \mathrm{H}$), 1.75-1.49 (m, 5H), 1.25-0.95 (m, 5H); MS: $493.2(\mathrm{M}+1)^{+}$.

Compound 197 and its HCl Salt

${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO-d6): $\delta 8.17-8.14(\mathrm{~m}, 2 \mathrm{H}), 8.02-8.00(\mathrm{~m}, 1 \mathrm{H}), 7.31-6.74(\mathrm{~m}, 8 \mathrm{H})$, $6.21(\mathrm{~s}, 1 \mathrm{H}), 4.75-4.31(\mathrm{~m}, 2 \mathrm{H}), 3.63-3.61(\mathrm{~m}, 1 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 1.75-1.50(\mathrm{~m}, 5 \mathrm{H}), 1.28-0.96$ (m, 5H); MS: $476.2(\mathrm{M}+1)^{+}$.

HCl Salt:
${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d6): $88.50(\mathrm{~m}, 2 \mathrm{H}), 8.06-7.77(\mathrm{~m}, 3 \mathrm{H}), 7.15-6.74(\mathrm{~m}, 6 \mathrm{H}), 6.17(\mathrm{~s}$, 172
$1 \mathrm{H}), 4.96-4.50(\mathrm{~m}, 2 \mathrm{H}), 3.62(\mathrm{~m}, 1 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 1.72-1.50(\mathrm{~m}, 5 \mathrm{H}), 1.34-1.00(\mathrm{~m}, 5 \mathrm{H}) ;$ MS:
$476.2(\mathrm{M}+1)^{+}$.

Compound 198

${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO-d6): $\delta 8.10-8.08(\mathrm{~m}, 1 \mathrm{H}), 7.99-7.97(\mathrm{~m}, 1 \mathrm{H}), 7.73-7.67(\mathrm{~m}, 1 \mathrm{H})$, 7.15-6.70 (m, 8H), 6.21(s, 1H), 4.73-4.43 (m, 2H), 3.63-3.61 (m, 1H), $2.39(\mathrm{~s}, 3 \mathrm{H}), 1.75-1.50(\mathrm{~m}$, $5 \mathrm{H}), 1.28-0.96(\mathrm{~m}, 5 \mathrm{H}) ; \mathrm{MS}: 476.2(\mathrm{M}+1)^{+}$.

Compound 199

${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO-d6): $\delta 8.04-8.02(\mathrm{~m}, 1 \mathrm{H}), 7.47-7.43(\mathrm{~m}, 1 \mathrm{H}), 7.14-7.67(\mathrm{~m}, 6 \mathrm{H})$, $6.18(\mathrm{~s}, 1 \mathrm{H}), 6.04-6.01(\mathrm{~m}, 2 \mathrm{H}), 4.62-4.35(\mathrm{~m}, 2 \mathrm{H}), 3.62-3.61(\mathrm{~m}, 1 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 1.73-1.50$ $(\mathrm{m}, 5 \mathrm{H}), 1.28-0.96(\mathrm{~m}, 5 \mathrm{H}) ; \mathrm{MS}: 476.2(\mathrm{M}+1)^{+}$.

Compound 260

${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, DMSO-d6): $\delta 8.08-8.07(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=2.4), 8.01(\mathrm{~s}, 1 \mathrm{H}), 7.87(\mathrm{br}, 1 \mathrm{H}), 7.72-$ $7.67(\mathrm{~m}, 1 \mathrm{H}), 7.15-6.69(\mathrm{~m}, 8 \mathrm{H}), 6.21(\mathrm{~s}, 1 \mathrm{H}), 4.71-4.44(\mathrm{~m}, 2 \mathrm{H}), 3.61-3.59(\mathrm{~m}, 1 \mathrm{H}), 2.36(\mathrm{~s}$,
$3 \mathrm{H}), 2.28(\mathrm{~s}, 4 \mathrm{H}), 1.74-1.51(\mathrm{~m}, 5 \mathrm{H}), 1.28-0.94(\mathrm{~m}, 5 \mathrm{H}) ; \mathrm{MS}: 494.1(\mathrm{M}+1)^{+}$.
Example 7. Preparation of Compound 331. Compound 331 was prepared using the following protocol. The 2-[(2-Chloro-acetyl)-(3-fluoro-phenyl)-amino]-N-(4,4-difluoro-cyclohexyl)-2-o-tolyl-acetamide used in the protocol set forth below was prepared according to Scheme 4. That chloroacetyl compound was converted to Compound 331 was prepared according to Scheme 3.

Step A: (3-Fluoro-phenylamino)-o-tolyl-acetonitrile. A mixture of 2-Methyl-benzaldehyde (0.6 $\mathrm{g}, 5 \mathrm{mmol}$) and 3-Fluoro-phenylamine ($0.56 \mathrm{~g}, 5 \mathrm{mmol}$) was stirred overnight at room temperature followed by the addition of $\operatorname{TMSCN}(0.6 \mathrm{~g}, 6 \mathrm{mmol})$. The reaction mixture was stirred for another 8 hours. $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{ml})$ was added and the solid was collected by filtration and dried in vacuo to give the (3-Fluoro-phenylamino)-o-tolyl-acetonitrile, which was used directly without further purification $\left(0.9 \mathrm{~g}, 77 \%\right.$ yield). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.70(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=$ $6.9)$, 7.37-7.18 (m, 4H), 6.59-6.46 (m, 3H), $5.43(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7.8), 3.95(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7.8), 2.38(\mathrm{~s}$, 3H); MS: 214.1 (M-26) ${ }^{+}$.

Step B: (3-Fluoro-phenylamino)-o-tolyl-acetic acid. To a mixture of (3-Fluoro-phenylamino)-
o-tolyl-acetonitrile ($0.48 \mathrm{~g}, 2 \mathrm{mmol}$) and $\mathrm{K}_{2} \mathrm{CO}_{3}(0.14 \mathrm{~g}, 1 \mathrm{~mol})$ in DMSO (2.5 ml) was added $\mathrm{H}_{2} \mathrm{O}_{2}(30 \%, 0.34 \mathrm{~g})$ at $0^{\circ} \mathrm{C}$. The mixture was warmed to room temperature and stirred for 2 hours. The precipitate was collected by filtration, washed with cold water and dried in vacuo. The residue was dissolved in a mixture of $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}(4: 1,5 \mathrm{ml})$ and $\mathrm{NaOH}(0.24 \mathrm{~g}, 6 \mathrm{mmol})$ was then added. This reaction mixture was refluxed for 5 hour and concentrated. Water (30 ml) was added. The resulting mixture was extracted with EtOAc (25 ml) and the water phase adjust to $\mathrm{pH}=4$ with conc. HCl , extracted with $\mathrm{DCM}(3 \times 20 \mathrm{ml})$. The combined DCM layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the solvent was evaporated in vacuo to give the (3-Fluoro-phenylamino)-o-tolyl-acetic acid ($0.4 \mathrm{~g}, 80 \%$ yield), which was used directly for the next step. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.40(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7.2), 7.37-7.21(\mathrm{~m}, 4 \mathrm{H}), 7.05(\mathrm{~m}, 1 \mathrm{H}), 6.40-$ $6.18(\mathrm{~m}, 3 \mathrm{H}), 5.26(\mathrm{~s}, 1 \mathrm{H}), 2.53(\mathrm{~s}, 3 \mathrm{H}) ; \mathrm{MS}: 214.1(\mathrm{M}-45)^{+}$.

Step C: N-(4, 4-Difluoro-cyclohexyl)-2-(3-fluoro-phenylamino)-2-o-tolyl-acetamide. To а solution of (3-Fluoro-phenylamino)-phenyl-acetic acid ($259 \mathrm{mg}, 1 \mathrm{mmol}$) in DCM (5 ml) was added $\mathrm{HOBt}(162 \mathrm{mg}, 1.2 \mathrm{mmol})$, $\mathrm{EDCI}(240 \mathrm{mg}, 1.2 \mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}(0.5 \mathrm{ml})$ and 4,4-Difluorocyclohexylamine ($170 \mathrm{mg}, 1.52 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$. The reaction mixture was heated to $40^{\circ} \mathrm{C}$ for 48 hours. After cooling to room temperature, 30 ml of water was added. The organic layer was separated and the water phase was extracted with DCM ($3 \times 10 \mathrm{ml}$). The combined organic layer was washed with NaHCO_{3}, brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the solvent was evaporated in vacuo. The residue was washed with $\mathrm{Et}_{2} \mathrm{O}$ to give the N -(4, 4-Difluoro-cyclohexyl)-2-(3-fluoro-phenylamino)-2-o-tolyl-acetamide, which was used directly without further purification (280 mg , 68% yield).

Step D: 2-[(2-Chloro-acetyl)-(3-fluoro-phenyl)-amino]-N-(4,4-difluoro-cyclohexyl)-

2-o-tolyl-acet amide. To a mixture of N -(4,4-Difluoro-cyclohexyl)-2-
(3-fluoro-phenylamino)-2-o-tolyl-acetamide ($280 \mathrm{mg}, 0.74 \mathrm{mmol}$)) in toluene (5 ml) was added chloro-acetyl chloride ($100 \mathrm{mg}, 0.9 \mathrm{mmol}$) dropwise at $0^{\circ} \mathrm{C}$. The reaction mixture was heated to $100^{\circ} \mathrm{C}$ for 2 hours and then cooled to room temperature. 10 ml of ethyl acetate was added and the solvent was washed with NaHCO_{3} solution, brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the solvent was evaporated in vacuo. The residue was washed with $\mathrm{Et}_{2} \mathrm{O}$ to give the 2-[(2-Chloro-acetyl)-(3-fluoro-phenyl)-amino]-N-(4,4-difluoro-cyclohexyl)-2-o-tolyl-acet amide ($230 \mathrm{mg}, 68 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 7.18-7.11(\mathrm{~m}, 3 \mathrm{H}), 6.94-6.88(\mathrm{~m}, 2 \mathrm{H}), 6.75(\mathrm{~d}, 1 \mathrm{H}), 6.32(\mathrm{~s}, 1 \mathrm{H})$,
$5.33(\mathrm{~d}, 1 \mathrm{H}), 3.97(\mathrm{br}, 1 \mathrm{H}), 3.86(\mathrm{q}, \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 2.09-1.79(\mathrm{~m}, 6 \mathrm{H}), 1.56-1.39(\mathrm{~m}, 2 \mathrm{H}) ; \mathrm{MS}:$ $452.8(\mathrm{M}+1)^{+}$.

Step E: Compound 331. A mixture of 2-[(2-Chloro-acetyl)-(3-fluoro-phenyl)-amino]-N-(4,4-difluoro-cyclohexyl)-2-o-tolyl acetamide ($100 \mathrm{mg}, 0.22 \mathrm{mmol}$), $\mathrm{K}_{2} \mathrm{CO}_{3}(90 \mathrm{mg}, 0.66 \mathrm{mmol})$ and pyridin-2-ol ($42 \mathrm{mg}, 0.44 \mathrm{~mol}$) in $\mathrm{MeCN}(5 \mathrm{ml})$ was heated to $40^{\circ} \mathrm{C}$ and stirred overnight. The resulting mixture was evaporated in vacuo. The residue was suspended in water (25 ml) and extracted with DCM ($3 \times 10 \mathrm{ml}$). The combined organic layer was washed with NaHCO_{3} solution, brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated in vacuo. The crude product was purified by TLC ($\mathrm{DCM} / \mathrm{MeOH}=20 / 1$) to give the desired product ($20 \mathrm{mg}, 17 \%$ yield). ${ }^{1} \mathrm{H}-$ NMR (CDCl3, 400MHz), $\delta 8.08(\mathrm{~d}, 1 \mathrm{H}), 7.56(\mathrm{~m}, 1 \mathrm{H}), 7.26-6.82(\mathrm{~m}, 9 \mathrm{H}), 6.32(\mathrm{~s}, 1 \mathrm{H}), 5.50(\mathrm{~d}$, $1 \mathrm{H}), 4.6(\mathrm{dd}, 2 \mathrm{H}), 3.96(\mathrm{br}, 1 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 2.07-1.59(\mathrm{~m}, 6 \mathrm{H}), 1.51-1.25(\mathrm{~m}, 2 \mathrm{H}) ; \mathrm{MS}: 512.2$ $(\mathrm{M}+1)^{+}$

The following compounds of the invention were also synthesized from the appropriate chloroacetyl compound \mathbf{e} following the general procedure set forth above in step E .

Compound 351

${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), 88.07(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=4.8,12), 7.56(\mathrm{td}, 1 \mathrm{H}, \mathrm{J}=6.8,1.6), 7.18-7.10(\mathrm{~m}$, $3 \mathrm{H}), 6.93-6.83(\mathrm{~m}, 5 \mathrm{H}), 5.39(\mathrm{~s}, 1 \mathrm{H}), 4.74(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=14.8), 4.55(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=15.2)$, $2.41(\mathrm{~s}, 3 \mathrm{H})$; MS: $487.3(\mathrm{M}+1)^{+}$.

Compound 354

${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6): $\delta 8.10-7.68(\mathrm{~m}, 4 \mathrm{H}), 7.15-6.64(\mathrm{~m}, 9 \mathrm{H}), 6.20(\mathrm{~s}, 1 \mathrm{H}), 4.70(\mathrm{~d}$,
$1 \mathrm{H}, \mathrm{J}=14.4 \mathrm{MHz}), 4.43(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=15.2 \mathrm{MHz}), 4.16(\mathrm{~m}, 1 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 2.15-2.08(\mathrm{~m}, 2 \mathrm{H})$, 1.62-1.49 (m, 2H), 1.21-1.09 (m, 2H), 0.36-0.34 (m, 1H), 0.00--0.03 (m, 1H); MS: $474.2(\mathrm{M}+1)$ $+$.

The following compounds were synthesized according to Scheme 4 (and steps A-D, above), using the appropriate R^{1} amine and chloroacetyl derivative of R^{4}.

Compound 186

${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d6): $\delta 8.09(\mathrm{~m}, 1 \mathrm{H}), 7.77-6.50(\mathrm{~m}, 11 \mathrm{H}), 6.32(\mathrm{~s}, 1 \mathrm{H}), 4.01-3.89(\mathrm{~m}$, $1 \mathrm{H}), 3.65-3.56(\mathrm{~m}, 2 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 2.11-0.75(\mathrm{~m}, 10 \mathrm{H})$; MS: $477.2(\mathrm{M}+1)^{+}$.

Compound 200

${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6): $\delta 8.15(\mathrm{~s}, 1 \mathrm{H}), 7.74(\mathrm{~s}, 1 \mathrm{H}), 7.36-6.28(\mathrm{~m}, 11 \mathrm{H}), 3.76-2.87(\mathrm{~m}$, $7 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}), 1.86-1.23(\mathrm{~m}, 4 \mathrm{H})$; MS: $467.1(\mathrm{M}+1)^{+}$.

Compound 178

${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6): $\delta 8.35(\mathrm{~s}, 1 \mathrm{H}), 7.46(\mathrm{~s}, 1 \mathrm{H}), 7.36-7.34(\mathrm{~m}, 1 \mathrm{H}), 7.12-6.44(\mathrm{~m}$, $9 H), 4.25-4.23(\mathrm{~m}, 1 \mathrm{H}), 3.69-3.52(\mathrm{~m}, 2 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 2.19-2.12(\mathrm{~m}, 2 \mathrm{H}), 1.92-1.88(\mathrm{~m}, 1 \mathrm{H})$, 1.71-1.57 (m, 3H); MS: $437.1(\mathrm{M}+1)^{+}$.

Compound 159

${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d6): $\delta 8.13(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=5.4), 7.70-6.50(\mathrm{~m}, 11 \mathrm{H}), 6.25(\mathrm{~s}, 1 \mathrm{H}), 3.84-$ $3.49(\mathrm{~m}, 5 \mathrm{H}), 3.32(\mathrm{~m}, 2 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 1.74(\mathrm{~m}, 2 \mathrm{H}), 1.43(\mathrm{~m}, 1 \mathrm{H}), 1.23(\mathrm{~m}, 1 \mathrm{H}) ; \mathrm{MS}: 467.2$ $(\mathrm{M}+1)^{+}$.
Compound 211

${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d6): $\delta 8.12(\mathrm{~s}, 1 \mathrm{H}), 7.76-6.66(\mathrm{~m}, 11 \mathrm{H}), 6.27(\mathrm{~s}, 1 \mathrm{H}), 3.69-3.51(\mathrm{~m}$, $2 \mathrm{H}), 3.08-3.03(\mathrm{~m}, 1 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 1.59-0.81(\mathrm{~m}, 12 \mathrm{H}) ; \mathrm{MS}: 479.2(\mathrm{M}+1)^{+}$.

Compound 190

${ }^{1} \mathrm{H}$ NMR (300 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 7.16-6.72(\mathrm{~m}, 9 \mathrm{H}), 6.37(\mathrm{~s}, 1 \mathrm{H}), 5.59(\mathrm{~m}, 1 \mathrm{H}), 4.51(\mathrm{~m}, 1 \mathrm{H}), 3.66$ $(\mathrm{m}, 3 \mathrm{H}), 3.34-3.18(\mathrm{~m}, 3 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 2.08(\mathrm{~m}, 1 \mathrm{H}), 1.72(\mathrm{~m}, 1 \mathrm{H}), 1.43(\mathrm{~s}, 9 \mathrm{H}) ; \mathrm{MS}: 569.3$ $(\mathrm{M}+18)^{+}, 452.2(\mathrm{M}-100)^{+}$.

Example 8. Preparation of Compound 341. Compound 341 was prepared according to
Scheme 5, using the following protocol

Step A: \{[(Cyclohexylcarbamoyl-o-tolyl-methyl)-(3-fluoro-phenyl)-carbamoyl]-
methylf-methyl-carbamic acid tert-butyl ester. The title compound was synthesized via Scheme 1, as described in Step A of Example 1. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl} 3$): $87.16-7.07$ (m, 3.5H), 6.91-6.76 (m, 3.5H), $5.49(\mathrm{~d}, 0.5 \mathrm{H}), 5.29(\mathrm{~d}, 0.5 \mathrm{H}), 4.05(\mathrm{~d}, 0.5), 3.95-3.80(\mathrm{br}, 1 \mathrm{H}), 3.73(\mathrm{~d}, 0.5$ H), 3.56-3.44 (m, 1H), $2.90(\mathrm{~d}, 3 \mathrm{H}), 0.29(\mathrm{~d}, 3 \mathrm{H}), 1.97-1.89(\mathrm{~m}, 2 \mathrm{H}), 1.71-1.57(\mathrm{~m}, 4 \mathrm{H}), 1.44(\mathrm{~s}$, 9H), 1.37-1.32 (br, 2H), 1.16-1.01 (m, 4H); MS: $511.9(\mathrm{M}+1)^{+}$.

Step B: N-Cyclohexyl-2-[(3-fluoro-phenyl)-(2-methylamino-acetyl)-

amino]-2-o-tolyl-acetamide (hydrochloride). A mixture of \{[(Cyclohexylcarbamoyl-o-tolyl-methyl)-(3-fluoro-phenyl)-carbamoyl]-methyl\}-methyl-carbamic acid tert-butyl ester (150 mg , $0.29 \mathrm{mmol})$ in $\mathrm{HCl} / \mathrm{Et}_{2} \mathrm{O}(30 \% \mathrm{w} / \mathrm{w}, 5 \mathrm{ml})$ was stirred for 5 hours at room temperature. The resulting mixture was evaporated in vacuo to afford the desired product, which was used directly without further purification ($135 \mathrm{mg}, 100 \%$ yield).

Step C: Compound 341. To a mixture of N-Cyclohexyl-2-[(3-fluoro-phenyl)-(2-methylamino-acetyl)-amino]-2-o-tolyl-acetamide (hydrochloride, $132 \mathrm{mg}, 0.29 \mathrm{mmol}$) and $\mathrm{Et}_{3} \mathrm{~N}(85 \mathrm{mg}, 0.6$ $\mathrm{mmol})$ in $\mathrm{DCM}(5 \mathrm{ml})$ was added methyl chloroformate $(30 \mathrm{mg}, 0.3 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. The reaction was stirred for 3 hours at the same temperature. 10 ml of water was added and the mixture was extracted with DCM ($3 \times 5 \mathrm{ml}$). The combined organic layer was washed with saturated NaHCO_{3} solution, brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the solvent was evaporated in vacuo. The residue was purified by TLC to give the pure product ($30 \mathrm{mg}, 22 \%$ yield). ${ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta 7.17-7.07(\mathrm{~m}, 3 \mathrm{H}), 6.89-6.76(\mathrm{~m}, 4 \mathrm{H}), 6.42(\mathrm{~s}, 0.5 \mathrm{H}), 6.39(\mathrm{~s}, 0.5 \mathrm{H}), 5.53(\mathrm{~d}, 0.5 \mathrm{H}, \mathrm{J}=7.6), 5.29$ $(\mathrm{d}, 0.5 \mathrm{H}, \mathrm{J}=8.4), 4.01-3.79(3,3 \mathrm{H}), 3.65-3.48(\mathrm{~m}, 4 \mathrm{H}), 2.96(\mathrm{~s}, 3 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 1.97-1.90(\mathrm{br}$, $2 \mathrm{H}), 1.72-1.68(\mathrm{br}, 1 \mathrm{H}), 1.63-1.58(\mathrm{br}, 1 \mathrm{H}), 1.36-1.25(\mathrm{br}, 3 \mathrm{H}), 1.17-1.11(\mathrm{~m}, 3 \mathrm{H}) ; \mathrm{MS}: 470.2$ $(\mathrm{M}+1)^{+}$

The following compounds were synthesized according to Scheme 5, following the above protocol.
Compound 334

1H NMR (400 MHz, CDCl3), $\delta 7.16-6.74(\mathrm{~m}, 6 \mathrm{H}), 6.34(\mathrm{~s}, 1 \mathrm{H}), 5.54(\mathrm{~s}, 1 \mathrm{H}), 5.54-5.26(\mathrm{~m}, 1 \mathrm{H})$, 3.88-3.64 (m, 6H), 2.38 ($\mathrm{s}, 3 \mathrm{H}$), 1.98-1.62 (m, 4H), 1.42-0.98 (m, 6H); MS: $456.2(\mathrm{M}+1)^{+}$.

Compound 352

${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6): $\delta 8.08(\mathrm{~s}, 1 \mathrm{H}), 7.94-7.92(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=6.8), 7.18-7.04(\mathrm{~m}, 3 \mathrm{H})$, 6.98-6.64 (m, 5H), 6.23($\mathrm{s}, 1 \mathrm{H}), 3.58-3.56(\mathrm{~m}, 1 \mathrm{H}), 3.34-3.32(\mathrm{~m}, 1 \mathrm{H}), 3.25-3.21(\mathrm{~m}, 1 \mathrm{H}), 2.29$ $(\mathrm{s}, 3 \mathrm{H}), 1.75-1.48(\mathrm{~m}, 5 \mathrm{H}), 1.32(\mathrm{~s}, 9 \mathrm{H}), 1.28-0.89(\mathrm{~m}, 5 \mathrm{H}) ; \mathrm{MS}: 498.2(\mathrm{M}+1)^{+}$.

Compound 357

${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6): $\delta 8.15-8.11(\mathrm{~m}, 1 \mathrm{H}), 7.99-7.97(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7.6), 7.29-6.90(\mathrm{~m}$, $6 \mathrm{H}), 6.79-6.75(\mathrm{~m}, 1 \mathrm{H}), 6.68-6.66(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7.2), 6.27(\mathrm{~s}, 1 \mathrm{H}), 3.61-3.40(\mathrm{~m}, 5 \mathrm{H}), 3.30(\mathrm{~s}, 1 \mathrm{H})$, $2.34(\mathrm{~s}, 3 \mathrm{H}), 1.78-1.52(\mathrm{~m}, 5 \mathrm{H}), 1.28-0.91(\mathrm{~m}, 5 \mathrm{H}) ; \mathrm{MS}: 456.1(\mathrm{M}+1)^{+}$.
Compound 353

${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6): $\delta 7.94-7.92(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=7.2), 7.15-6.98(\mathrm{~m}, 4 \mathrm{H}), 6.82-6.78(\mathrm{~m}$, $2 \mathrm{H}), 6.63-6.56(\mathrm{~m}, 2 \mathrm{H}), 6.17(\mathrm{~s}, 1 \mathrm{H}), 3.58-3.45(\mathrm{~m}, 5 \mathrm{H}), 3.25-3.19(\mathrm{~m}, 1 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}), 1.73-$ $1.48(\mathrm{~m}, 5 \mathrm{H}), 1.25-0.88(\mathrm{~m}, 5 \mathrm{H}) ; \mathrm{MS}: 456.2(\mathrm{M}+1)^{+}$.

Compound 358

${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6): $\delta 8.21-8.19(\mathrm{~m}, 1 \mathrm{H}), 7.01-7.99(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7.6), 7.30-6.97(\mathrm{~m}$, $5 \mathrm{H}), 6.84-6.80(\mathrm{~m}, 1 \mathrm{H}), 6.66-6.64(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7.2), 6.26(\mathrm{~s}, 1 \mathrm{H}), 3.62-3.39(\mathrm{~m}, 5 \mathrm{H}), 3.34-3.32(\mathrm{~m}$, $1 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 1.77-1.52(\mathrm{~m}, 5 \mathrm{H}), 1.28-0.92(\mathrm{~m}, 5 \mathrm{H}) ; \mathrm{MS}: 474.0(\mathrm{M}+1)^{+}$.

Compound 369

${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6): 87.80-7.72 (br, 1.7H), 7.10-7.08 (d, 2H), 7.02-6.94 (m, 2H), $6.84(\mathrm{t}, \mathrm{J}=8,1 \mathrm{H}), 6.69(\mathrm{~d}, \mathrm{~J}=7.6,1 \mathrm{H}), 6.61(\mathrm{~s}, 1 \mathrm{H}), 6.22(\mathrm{~s}, 1 \mathrm{H}), 3.62(\mathrm{~m}, 1 \mathrm{H}), 3.13-2.50(\mathrm{~m}$, $2 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 2.27-2.23(\mathrm{~m}, 1.5 \mathrm{H}), 2.04-2.00(\mathrm{br}, 1.3 \mathrm{H}), 1.78-1.52(\mathrm{~m}, 5.5 \mathrm{H}), 1.52-1.11(\mathrm{~m}$, 12H); MS: $512.1(\mathrm{M}+1)^{+}$.

Compound 374

${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6): 87.80 (br, 1H), 7.72 (br, 0.8H), 7.09-7.06 (d, 2H), 7.02-6.94 $(\mathrm{m}, 3 \mathrm{H}), 6.84(\mathrm{t}, 1 \mathrm{H}), 6.70(\mathrm{~d}, 1 \mathrm{H}), 6.22(\mathrm{~s}, 1 \mathrm{H}), 3.63(\mathrm{~m}, 1 \mathrm{H}), 3.46(\mathrm{~s}, 3 \mathrm{H}), 3.20-3.08(\mathrm{~m}, 2 \mathrm{H})$, $2.34(\mathrm{~s}, 3 \mathrm{H}), 2.30-2.24(\mathrm{~m}, 1 \mathrm{H}), 2.06-2.01(\mathrm{~m}, 1 \mathrm{H}), 1.77-1.52(\mathrm{~m}, 6 \mathrm{H}), 1.29-1.23(\mathrm{br}, 1 \mathrm{H}), 1.19-$ $0.94(\mathrm{~m}, 3 \mathrm{H}) ; \mathrm{MS}: 470.1(\mathrm{M}+1)^{+}$.

Compound 372

${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d6): $\delta 8.16-8.02(\mathrm{~m}, 1 \mathrm{H}), 7.36-7.08(\mathrm{~m}, 6 \mathrm{H}), 6.81-6.62(\mathrm{~m}, 1.5 \mathrm{H})$, $6.30(\mathrm{~s}, 0.5 \mathrm{H}), 5.87(\mathrm{~s}, 0.5 \mathrm{H}), 5.62(\mathrm{~s}, 0.5 \mathrm{H}), 4.96-4.85(\mathrm{~m}, 1 \mathrm{H}), 4.72(\mathrm{~d}, \mathrm{~J}=13.2,0.5 \mathrm{H}), 4.44(\mathrm{~d}$, $\mathrm{J}=13.2,0.5 \mathrm{H}), 4.09-4.03(\mathrm{~m}, 1 \mathrm{H}), 3.84-3.80(\mathrm{~m}, 1 \mathrm{H}), 3.69-3.58(\mathrm{~m}, 4 \mathrm{H}), 2.24(\mathrm{~s}, 1.5 \mathrm{H}), 2.05(\mathrm{~s}$, $1.5 \mathrm{H}), 1.82-1.57(\mathrm{~m}, 5 \mathrm{H}), 1.37-1.00(\mathrm{~m}, 6 \mathrm{H}) ; \mathrm{MS}: 458.0(\mathrm{M}+1)^{+}$.

Compound 306

${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6): $\delta 8.02-7.94(\mathrm{~m}, 1 \mathrm{H}), 7.79-7.32(\mathrm{~m}, 1 \mathrm{H}), 7.39-6.48(\mathrm{~m}, 7 \mathrm{H})$, $6.24(\mathrm{~s}, 1 \mathrm{H}), 4.02(\mathrm{~m}, 1 \mathrm{H}), 3.61-3.58(\mathrm{~m}, 4 \mathrm{H}), 3.40-3.30(\mathrm{~m}, 2 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 1.79-1.52(\mathrm{~m}$, $7 \mathrm{H}), 1.29-1.06(\mathrm{~m}, 7 \mathrm{H})$; MS: $496.1(\mathrm{M}+1)^{+}$.
Example 9. Preparation of Compounds 225, 226, 236 and 241. The title compounds were prepared according to the following Scheme

Step A: Compound 224. Compound 224 was synthesized according to Scheme 1 and following the protocol set forth in Example 1, Step A. ${ }^{1} \mathrm{H}-\mathrm{NMR}(300 \mathrm{MHz}, ~ D M S O-d 6), ~ \delta ~ 9.48-9.25(m$, $1 \mathrm{H}), 7.99(\mathrm{~m}, 1 \mathrm{H}), 7.53-7.30(\mathrm{~m}, 4 \mathrm{H}), 7.08-6.47(\mathrm{~m}, 5 \mathrm{H}), 6.10(\mathrm{~s}, 1 \mathrm{H}), 4.98-4.62(\mathrm{~m}, 2 \mathrm{H}), 3.59$ $(\mathrm{m}, 1 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 1.73-1.46(\mathrm{~m}, 14 \mathrm{H}), 1.25-1.22(\mathrm{~m}, 5 \mathrm{H}) ; \mathrm{MS}: 560.3(\mathrm{M}+1)^{+}$.

Step B: Compound 226. Compound 226 was prepared following the protocol set forth in Example 8, step B. ${ }^{1} \mathrm{H}-\mathrm{NMR}(300 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d} 6), \delta 14.43$ (m, 1H), 7.98 ($\mathrm{s}, 1 \mathrm{H}$), 7.72-7.53 $(\mathrm{m}, 2 \mathrm{H}), 7.23-6.71(\mathrm{~m}, 6 \mathrm{H}), 6.12(\mathrm{~s}, 1 \mathrm{H}), 5.00-4.66(\mathrm{~m}, 2 \mathrm{H}), 3.59(\mathrm{~m}, 1 \mathrm{H}), 2.47(\mathrm{~s}, 3 \mathrm{H}), 2.37(\mathrm{~s}$, 3H), 1.72-1.50 (m, 4H), 1.24-1.23 (m, 6H); MS: 460.3 (M+1) +.

Step C: Compound 236. To a mixture of the HCl salt of Compound 226 in DCM (5 ml) was added acetyl chloride ($20 \mathrm{mg}, 0.24 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$. The reaction was stirred for 3 hours and the resulting mixture was washed with water, brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the solvent was evaporated in vacuo. The residue was purified by TLC ($\mathrm{DCM} / \mathrm{MeOH}=15 / 1$) to give pure product ($30 \mathrm{mg}, 31 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz , MeOD-d4): $\delta 7.95$ ($\mathrm{s}, 1 \mathrm{H}$), 7.57-6.69 (m, $10 \mathrm{H}), 6.22(\mathrm{~s}, 1 \mathrm{H}), 4.58-4.42(\mathrm{~m}, 2 \mathrm{H}), 3.65-3.61(\mathrm{~m}, 1 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 2.15(\mathrm{~s}, 3 \mathrm{H}), 2.02-1.95$ $(\mathrm{m}, 3 \mathrm{H}), 1.79-1.49(\mathrm{~m}, 5 \mathrm{H}), 1.28-0.95(\mathrm{~m}, 5 \mathrm{H}) ; \mathrm{MS}: 502.3(\mathrm{M}+1)^{+}$.

Step D: Compound 241. Compound 241 was synthesized following the protocol set forth in Example 8, step C. ${ }^{1} \mathrm{H}$ NMR (400 MHz , MeOD-d4): $\delta 8.04(\mathrm{~m}, 1 \mathrm{H}), 7.62-6.45(\mathrm{~m}, 10 \mathrm{H}), 6.34$ $(\mathrm{s}, 1 \mathrm{H}), 4.76-4.61(\mathrm{~m}, 2 \mathrm{H}), 3.76-3.73(\mathrm{~m}, 4 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 1.91-1.63(\mathrm{~m}, 5 \mathrm{H})$, 1.40-1.07 (m, 5H); MS: $518.3(\mathrm{M}+1)^{+}$.

Example 10. Preparation of Compound 328. Compound 328 was prepared according to the following scheme

Step A: (SR, RS)-2-[(Cyclohexylcarbamoyl-o-tolyl-methyl)-(3-fluoro-p henyl)-carbamoyl]-piperidine-1-carboxylic acid tert-butyl ester. Step A was carried out following Scheme 1 and the protocol set forth in Example 1, Step A and yielded two pairs of enantiomers separated via chromatography.
(SR, $R S$)-2-[(Cyclohexylcarbamoyl-o-tolyl-methyl)-(3-fluoro-p henyl)-carbamoyl]-piperidine-1carboxylic acid tert-butyl ester. (PE/EtOAc=5/1; Rf1 = 0.35). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d} 6$): $\delta 8.02(\mathrm{br}, 1 \mathrm{H}), 7.82(\mathrm{~d}, 1 \mathrm{H}), 7.10-6.82(\mathrm{~m}, 8 \mathrm{H}), 4.45-4.45(\mathrm{q}, 1 \mathrm{H}), 3.78(\mathrm{br}, 0.5 \mathrm{H}), 3.635(\mathrm{br}$, $1.5 \mathrm{H}), 3.45(\mathrm{br}, 0.5 \mathrm{H}), 2.30(\mathrm{~s}, 1 \mathrm{H}), 1.75-1.42(\mathrm{~m}, 7 \mathrm{H}), 1.42-1.02(\mathrm{~m}, 18 \mathrm{H}) ; \mathrm{MS}: 552.1(\mathrm{M}+1)^{+}$. ($R S, R S$)-2-[(Cyclohexylcarbamoyl-o-tolyl-methyl)-(3-fluoro-phenyl)-carbamoyl]-piperidine-1carboxylic acid tert-butyl ester (PE/EtOAc=5/1; Rf1 $=0.3$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d} 6$): δ 7.92-7.52 (m, 2H), 7.45-6.59 (m, 6H), 6.54-6.19 (m, 2H), 4.37-4.45 (m, 1H), 3.78-3.61 (m, 2H), 3.29-3.25 (m, 1H), $2.34(\mathrm{~s}, 3 \mathrm{H}), 3.175-1.51(\mathrm{~m}, 7 \mathrm{H}), 1.39-0.51(\mathrm{~m}, 18 \mathrm{H}) ; \mathrm{MS}: 552.1(\mathrm{M}+1)^{+}$.

Step B1: (SR, RS)Piperidine-2-carboxylic acid (cyclohexylcarbamoyl-o-tolyl-methyl)-(3-
fluoro-phenyl)-amide (hydrochloride). The title compound was synthesized from (SR, RS)-2-[(Cyclohexylcarbamoyl-o-tolyl-
methyl)-(3-fluoro-p henyl)-carbamoyl]-piperidine-1-carboxylic acid tert-butyl ester via the protocol set forth in Example 8, step B. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d6): $\delta 9.12$ (br, 1 H), 8.11 $(\mathrm{q}, 1 \mathrm{H}), 7.75(\mathrm{~d}, 1 \mathrm{H}), 7.34(\mathrm{~m}, 0.4 \mathrm{H}), 7.16(\mathrm{~m}, 0.4 \mathrm{H}), 7.07-6.73(\mathrm{~m}, 6 \mathrm{H}), 6.28(\mathrm{~d}, 1 \mathrm{H}), 6.16(\mathrm{br}$, $2 \mathrm{H}), 3.64(\mathrm{~d}, 1 \mathrm{H}), 3.15(\mathrm{~d}, 1 \mathrm{H}), 1.78(\mathrm{br}, 1 \mathrm{H}), 2.35(\mathrm{~d}, 3 \mathrm{H}), 1.75-1.56(\mathrm{~m}, 9 \mathrm{H}), 1.46-1.05(\mathrm{~m}$, 7H); MS: $452.1(\mathrm{M}+1)^{+}$.

Step B2: (RS, RS)Piperidine-2-carboxylic acid (cyclohexylcarbamoyl-o-tolyl-methyl)-(3-fluoro-phenyl)-amide (hydrochloride). The title compound was synthesized from ($R S, R S$)-2-[(Cyclohexylcarbamoyl-o-tolyl-methyl)-(3-fluoro-phenyl)-
carbamoyl]-piperidine-1-carboxylic acid tert-butyl ester via the protocol set forth in Example 8, step B also via the protocol set forth in Example 8, step B. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d6): δ $8.48(\mathrm{br}, 1 \mathrm{H}), 8.06(\mathrm{br}, 1 \mathrm{H}), 7.83(\mathrm{br}, 1 \mathrm{H}), 7.18(\mathrm{br}, 1 \mathrm{H}), 7.09-7.07(\mathrm{br}, 2.66 \mathrm{H}), 6.86(\mathrm{t}, 1 \mathrm{H}), 6.61$ $(\mathrm{d}, 1 \mathrm{H}), 6.16(\mathrm{br}, 2 \mathrm{H}), 3.63(\mathrm{br}, 1 \mathrm{H}), 3.54(\mathrm{~d}, 1 \mathrm{H}), 3.08(\mathrm{~d}, 1 \mathrm{H}), 2.73(\mathrm{br}, 1 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 1.84-$ 184
$1.43(\mathrm{~m}, 9 \mathrm{H}), 1.28-0.90(\mathrm{~m}, 6 \mathrm{H}) ; \mathrm{MS}: 452.1(\mathrm{M}+1)^{+}$.
Step C: Compound 328. To ($S R, R S$)-piperidine-2-carboxylic acid (cyclohexylcarbamoyl-o-tolyl-methyl)-(3-fluoro-phenyl)-amide ($200 \mathrm{mg}, 0.41 \mathrm{mmol}$) in DCM (10 ml) was added propionyl chloride ($50 \mathrm{mg}, 0.53 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$. The reaction was stirred for 3 hours at the same temperature. The resulting mixture was washed with water, brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the solvent was evaporated in vacuo. The residue was purified by TLC ($\mathrm{DCM} / \mathrm{MeOH}=15 / 1$) to give pure product ($60 \mathrm{mg}, 29 \%$ yield); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d} 6$): $\delta 8.03-7.77(\mathrm{~m}, 2 \mathrm{H})$, 7.26-6.72 (m, 7H), 6.26-6.23 (d, 1H, $J=13.6 \mathrm{MHz}$), 4.86-4.79 (m, 1H), 3.68-3.53 (m, 3H), 2.41$2.27(\mathrm{~m}, 5 \mathrm{H}), 1.75-0.93(\mathrm{~m}, 19 \mathrm{H}) ; \mathrm{MS}: 508.2(\mathrm{M}+1)^{+}$.

The following compounds were also synthesized according to the Scheme set forth in this Example.

Compound 293 (from (SR, RS)-2-[(Cyclohexylcarbamoyl-o-tolyl-methyl)-(3-fluoro-p henyl)-carbamoyl]-piperidine-1-carboxylic acid tert-butyl ester)

${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6): $\delta 8.05-7.79(\mathrm{~m}, 2 \mathrm{H}), 7.29-6.30(\mathrm{~m}, 8 \mathrm{H}), 4.60-4.53(\mathrm{~m}, 1 \mathrm{H})$, 3.72-3.46 (m, 6H), 2.29 ($\mathrm{s}, 3 \mathrm{H}$), 1.75-0.99 (m, 16H); MS: 510.1 (M+1) ${ }^{+}$.

Example 11: Preparation of Stereospecific Compounds of Formula A where \mathbf{R}^{4} is an

 Optionally Substituted Piperidin-2-yl._Compounds of Formula A where R^{4} is optionally substituted piperidin-2-yl were prepared according to the following scheme exemplified for specific compounds of the invention.

Step A: Compound 332. Step A was carried out according to Scheme 1 using the protocol set forth in Example 1, Step A and both Compound 332 and its isomer (R, R)-2-
[(Cyclohexylcarbamoyl-o-tolyl-methyl)-(3-fluoro-phenyl)-carbamoyl]-piperidine-1-carboxylic acid tert-butyl ester. These two isomers were separated via chromatography ($\mathrm{PE} / \mathrm{EtOAc}=5 / 1$; Rf1 $=0.35$, $\mathrm{Rf} 2=0.3$). Compound 332 was the isomer with higher polarity. ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO-d6): 87.92-7.78 (m, 2H), 7.28-6.08 (m, 8H), 6.21 (s, 1H), 4.66-4.50 (m, 1H), 3.75-3.56 $(\mathrm{m}, 2 \mathrm{H}), 2.38-2.29(\mathrm{~m}, 3 \mathrm{H}), 1.75-1.51(\mathrm{~m}, 9 \mathrm{H}), 1.39(\mathrm{~m}, 9 \mathrm{H}), 1.31-0.94(\mathrm{~m}, 9 \mathrm{H})$; MS: 552.3 $(\mathrm{M}+1)^{+}$.
Step B: (S,R)-Piperidine-2-carboxylic acid (cyclohexylcarbamoyl-o-tolyl-methyl)-(3-fluoro-phenyl)-amide (hydrochloride) (Compound 337). The title compound was synthesized via the general protocol set forth in Example 8, step B. ${ }^{1}$ H NMR (300 MHz , DMSO-d6): $\delta 8.08$ (s, 1H), 7.85-7.82 (br, 1H), 7.20-6.60 (m, 5H), 6.23-6.21 (br, 1H), 6.14 (s, 1H), 3.62-3.60 (m, 1H), 3.45$3.42(\mathrm{~m}, 1 \mathrm{H}), 3.08-3.05(\mathrm{~m}, 1 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 1.83-1.42(\mathrm{~m}, 9 \mathrm{H}), 1.31-0.95(\mathrm{~m}, 7 \mathrm{H}) ; \mathrm{MS}: 452.2$ $(\mathrm{M}+1)^{+}$.

Step C: (S, R)-2-[(Cyclohexylcarbamoyl-o-tolyl-methyl)-(3-fluoro-phenyl)-carbamoyl]-piperidine-1-carboxylic acid methyl ester ($\boldsymbol{R}=$ methyl). The title compound was synthesized via the general protocol set forth in Example 8, step C.

Step D: Compound 346

To Compound 337 (hydrochloride; $150 \mathrm{mg}, 0.31 \mathrm{mmol}$) in DCM (5 ml) was added methanesulfonyl chloride ($45 \mathrm{mg}, 0.4 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred for 3 hours. The resulting mixture was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the solvent was evaporated in vacuo. The residue was purified by TLC ($\mathrm{DCM} / \mathrm{MeOH}=20 / 1$) to give the pure product ($80 \mathrm{mg}, 48 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d} 6$): $\delta 7.96-7.78$ ($\mathrm{m}, 2 \mathrm{H}$), 7.20-6.20 $(\mathrm{m}, 7 \mathrm{H}), 6.11(\mathrm{~s}, 1 \mathrm{H}), 4.30-4.24(\mathrm{~m}, 1 \mathrm{H}), 3.82-3.77(\mathrm{~m}, 1 \mathrm{H}), 3.59-3.54(\mathrm{~m}, 1 \mathrm{H}), 3.47-3.44(\mathrm{~m}$, $1 \mathrm{H}), 2.87(\mathrm{~s}, 3 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}), 1.84-1.51(\mathrm{~m}, 8 \mathrm{H}), 1.42-0.95(\mathrm{~m}, 9 \mathrm{H}) ; \mathrm{MS}: 530.2(\mathrm{M}+1)^{+}$.

Step E: Compound 347.

Compound 347 was synthesized from Compound 337 via the protocol set forth in Example 10, step C. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, ~ D M S O-d 6$) : $\delta 8.03(\mathrm{~s}, 1 \mathrm{H}), 7.85-7.76(\mathrm{~m}, 1 \mathrm{H}), 7.30-6.72(\mathrm{~m}, 6 \mathrm{H})$, 6.35-6.34 (br, 1H), 6.29(s, 1H), 5.13-5.04 (m, 1H), 4.47-4.27 (m, 1H), 3.69-3.59 (m, 2H), 2.45$2.40(\mathrm{~m}, 3 \mathrm{H}), 2.67-1.61(\mathrm{~m}, 11 \mathrm{H}), 1.37-1.02(\mathrm{~m}, 8 \mathrm{H}), 0.91(\mathrm{~s}, 3 \mathrm{H}) ; \mathrm{MS}: 508.2(\mathrm{M}+1)^{+}$.

Step F: Compound 365

To Compound 337 (hydrochloride; $150 \mathrm{mg}, 0.31 \mathrm{mmol}$) in DCM (10 ml) was added dimethylcarbamyl chloride ($100 \mathrm{mg}, 0.93 \mathrm{mmol}$) and $\mathrm{Et}_{3} \mathrm{~N}(95 \mathrm{mg}, 0.93 \mathrm{mmol})$. The reaction was stirred over night at room temperature. The resulting mixture was washed with water, brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the solvent was evaporated in vacuo. The residue was purified by TLC ($\mathrm{PE} / \mathrm{EtOAc}=1 / 1$) to give the desired product ($100 \mathrm{mg}, 62 \%$ yield). ${ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, DMSO-d6): $\delta 7.99-7.98(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8), 7.63(\mathrm{~s}, 1 \mathrm{H}), 7.14-6.99(\mathrm{~m}, 4 \mathrm{H}), 6.84-6.80(\mathrm{~m}, 1 \mathrm{H}), 6.56(\mathrm{~s}$, $1 \mathrm{H}), 6.26(\mathrm{~s}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 1 \mathrm{H}), 3.66-3.63(\mathrm{~m}, 1 \mathrm{H}), 3.53-3.48(\mathrm{~m}, 1 \mathrm{H}), 2.89(\mathrm{~s}, 1 \mathrm{H}), 2.72(\mathrm{~s}, 6 \mathrm{H})$, $2.29(\mathrm{~s}, 3 \mathrm{H}), 1.84-1.38(\mathrm{~m}, 9 \mathrm{H}), 1.36-0.87(\mathrm{~m}, 7 \mathrm{H}) ; \mathrm{MS}: 521.1(\mathrm{M}-1)^{-}$.

Step G: Compound 364

To a mixture of $\mathrm{Et}_{3} \mathrm{~N}(160 \mathrm{mg}, 1.6 \mathrm{mmol})$ and Compound 337 ($380 \mathrm{mg}, 0.78 \mathrm{mmol}$) in THF (20 ml) was added a solution of triphosgene ($230 \mathrm{mg}, 0.78 \mathrm{mmol}$) in THF (20 ml). After stirring for 10 minutes, methylamine (1 M in THF, $1.3 \mathrm{ml}, 1.3 \mathrm{mmol}$) was added in one portion. The reaction was stirred for 1.5 hours at room temperature. Water (50 ml) was added. The resulting mixture was extracted with EtOAc ($2 \times 20 \mathrm{ml}$). The combined organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the solvent was evaporated in vacuo. The residue was purified via flash chromatography column eluted with $\mathrm{DCM} / \mathrm{MeOH}(30 / 1)$ to give the
desired product ($40 \mathrm{mg}, 10 \%$ yield); ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d6): $87.96-7.94$ (d, 1H, J=7.6), $7.67(\mathrm{~s}, 1 \mathrm{H}), 7.17-6.83(\mathrm{~m}, 4 \mathrm{H}), 6.59-6.57(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7.6), 6.34(\mathrm{~s}, 1 \mathrm{H}), 6.19(\mathrm{~s}, 1 \mathrm{H}), 4.51(\mathrm{~s}$, $1 \mathrm{H}), 3.61-3.56(\mathrm{~m}, 1 \mathrm{H}), 3.46-3.41(\mathrm{~m}, 2 \mathrm{H}), 2.54(\mathrm{~s}, 3 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 1.76-1.44(\mathrm{~m}, 9 \mathrm{H}), 1.30-$ $0.84(\mathrm{~m}, 8 \mathrm{H})$; MS: $509.2(\mathrm{M}+1)^{+}$.

The following analogs were synthesized via the general procedures set forth in this
Example

Compound 343

${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6): $\delta 8.04-7.96(\mathrm{~m}, 1 \mathrm{H}), 7.80-7.74(\mathrm{~m}, 1 \mathrm{H}), 7.33-6.27(\mathrm{~m}, 8 \mathrm{H})$, 4.09-3.94 (m, 1H), 3.61 (m, 1H), 3.40-3.26 (m, 2H), $2.37(\mathrm{~d}, 3 \mathrm{H}, J=6 \mathrm{MHz}), 1.74-0.94(\mathrm{~m}, 23 \mathrm{H})$; MS: $538.3(\mathrm{M}+1)^{+}$.

Compound 340

${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6): 88.03-7.94 (m, 2H) , 7.15-6.69(m, 6H), 6.29-6.20(m, 2H),
$3.93-3.92(\mathrm{t}, 1 \mathrm{H}), 3.60-3.58(\mathrm{t}, 1 \mathrm{H}), 3.37-3.25(\mathrm{~m}, 2 \mathrm{H}), 2.37-2.33(\mathrm{~m}, 3 \mathrm{H}), 2.08-0.95(\mathrm{~m}, 23 \mathrm{H})$; MS:
$538.3(\mathrm{M}+1)^{+}$.
Compound 376

${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6): $\delta 8.06-8.05(\mathrm{~d}, \mathrm{~J}=0.8,1 \mathrm{H}), 7.85(\mathrm{~s}, 1 \mathrm{H}), 7.16-6.82(\mathrm{~m}, 8 \mathrm{H})$, 6.66-6.12 (m, 2H), 3.62-3.58 (m, 2H), 3.33-3.29 (m, 1H), 3.10-2.81 (m, 1H), 2.45 (s, 3H), 1.77$1.52(\mathrm{~m}, 8 \mathrm{H}), 1.29-0.47(\mathrm{~m}, 6 \mathrm{H})$; MS: $437.8(\mathrm{M}+1)^{+}$.

Compound 338

${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO-d6): $\delta 7.92-7.78(\mathrm{~m}, 2 \mathrm{H}), 7.28-6.12(\mathrm{~m}, 8 \mathrm{H}), 4.74-4.49(\mathrm{~m}, 2 \mathrm{H})$, 3.79-3.41 (m, 3H), $2.38(\mathrm{~s}, 3 \mathrm{H}), 1.75-1.52(\mathrm{~m}, 7 \mathrm{H}), 1.39-0.96(\mathrm{~m}, 15 \mathrm{H}) ; \mathrm{MS}: 538.3(\mathrm{M}+1)^{+}$.

Compound 345

${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d6): $\delta 7.93-7.78(\mathrm{~m}, 2 \mathrm{H}), 7.20-6.13(\mathrm{~m}, 8 \mathrm{H}), 4.66-4.46(\mathrm{~m}, 1 \mathrm{H})$, 3.95-3.93 (m, 2H), 3.78-3.74 (m, 1H), 3.59-3.57 (m, 1H), 3.41-3.39 (m, 1H), 2.36 (s, 3H), 1.78$1.45(\mathrm{~m}, 9 \mathrm{H}), 1.31-0.95(\mathrm{~m}, 10 \mathrm{H}) ; \mathrm{MS}: 524.3(\mathrm{M}+1)^{+}$.

Compound 359

${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d6): $88.03-8.01(\mathrm{~m}, 1 \mathrm{H}), 7.81-7.78(\mathrm{~m}, 1 \mathrm{H}), 7.20-6.66(\mathrm{~m}, 7 \mathrm{H})$, $6.25(\mathrm{~s}, 1 \mathrm{H}), 4.07-4.00(\mathrm{~m}, 3 \mathrm{H}), 3.63-3.61(\mathrm{~m}, 1 \mathrm{H}), 3.38-3.37(\mathrm{~m}, 1 \mathrm{H}), 3.32-3.30(\mathrm{~m}, 1 \mathrm{H}), 2.36(\mathrm{~s}$,
$3 H), 1.83-1.52(\mathrm{~m}, 9 \mathrm{H}), 1.30-0.95(\mathrm{~m}, 9 \mathrm{H}) ; \mathrm{MS}: 510.1(\mathrm{M}+1)^{+}$.
Compound 336

${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6): $\delta 8.05-7.81(\mathrm{~m}, 2 \mathrm{H}), 7.28-6.28(\mathrm{~m}, 8 \mathrm{H}), 4.60-4.50(\mathrm{~m}, 1 \mathrm{H})$, $3.73-3.59(\mathrm{~m}, 6 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}), 1.75-0.83(\mathrm{~m}, 16 \mathrm{H})$; MS: $510.2(\mathrm{M}+1)^{+}$.
Compound 339

${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6): $\delta 8.06-7.80(\mathrm{~m}, 2 \mathrm{H}), 7.30-6.50(\mathrm{~m}, 7 \mathrm{H}), 6.34(\mathrm{~s}, 1 \mathrm{H}), 4.79-4.60$ $(\mathrm{m}, 2 \mathrm{H}), 3.81-3.45(\mathrm{~m}, 3 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}), 1.78-1.33(\mathrm{~m}, 7 \mathrm{H}), 1.27-1.10(\mathrm{~m}, 15 \mathrm{H}) ; \mathrm{MS}: 538.3$ $(\mathrm{M}+1)^{+}$.

Compound 348

${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6): $\delta 8.05-7.97(\mathrm{~m}, 1 \mathrm{H}), 7.80-7.78(\mathrm{~m}, 1 \mathrm{H}), 7.32-6.42(\mathrm{~m}, 7 \mathrm{H})$,
$6.31(\mathrm{~s}, 1 \mathrm{H}), 4.60-4.53(\mathrm{~m}, 1 \mathrm{H}), 4.06-4.01(\mathrm{~m}, 2 \mathrm{H}), 3.80-3.51(\mathrm{~m}, 2 \mathrm{H}), 3.47-3.39(\mathrm{~m}, 1 \mathrm{H}), 2.29(\mathrm{~s}$, $3 \mathrm{H}), 1.75-1.52(\mathrm{~m}, 8 \mathrm{H}), 1.44-0.96(\mathrm{~m}, 11 \mathrm{H}) ; \mathrm{MS}: 524.3(\mathrm{M}+1)^{+}$.

Compound 355

${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d6): $\delta 7.96-6.15(\mathrm{~m}, 10 \mathrm{H}), 3.97-3.88(\mathrm{~m}, 1 \mathrm{H}), 3.63-3.57(\mathrm{~m}, 4 \mathrm{H})$, 3.32-3.25 (, 2H), 2.35-2.08 (m, 3H), 1.94-1.49 (m, 9H), 1.28-0.85 (m, 5H); MS:496.2 (M+1) ${ }^{+}$.

Compound 360

${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6): $\delta 8.03-7.95(\mathrm{~m}, 1 \mathrm{H}), 7.81-7.74(\mathrm{~m}, 1 \mathrm{H}), 7.33-6.52(\mathrm{~m}, 7 \mathrm{H})$, $6.25(\mathrm{~s}, 1 \mathrm{H}), 4.09-4.00(\mathrm{~m}, 3 \mathrm{H}), 3.63-3.41(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=2.8), 3.41-3.29(\mathrm{~m}, 2 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 1.87-$ $1.52(\mathrm{~m}, 9 \mathrm{H}), 1.29-0.98(\mathrm{~m}, 8 \mathrm{H}) ; \mathrm{MS}: 510.2(\mathrm{M}+1)^{+}$.

Compound 356

${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6): $\delta 8.00-7.94(\mathrm{~m}, 1 \mathrm{H}), 7.79-7.74(\mathrm{~m}, 1 \mathrm{H}), 7.35-6.48(\mathrm{~m}, 7 \mathrm{H})$, 4.05-4.02 (m, 1H), 3.61-3.58 (m, 4H), 3.39-3.30 (m, 2H), 2.37 (s, 3H), 1.84-1.52 (m, 9H), 1.290.96 (m, 5H); MS: $496.2(\mathrm{M}+1)^{+}$.

Compound 350

${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6): $\delta 8.03-7.95(\mathrm{~m}, 1 \mathrm{H}), 7.77-7.75(\mathrm{~m}, 1 \mathrm{H}), 7.26-6.70(\mathrm{~m}, 7 \mathrm{H})$, 6.27-6.24 (m, 1H), 4.88-4.78(m, 1H), 3.68-3.53(m,3H), 2.43-2.20(m,5H), 1.75-0.99(m, 16H), $0.85(\mathrm{t}, 3 \mathrm{H}, J=7.4 \mathrm{~Hz})$; MS: $508.3(\mathrm{M}+1)^{+}$.

Compound 371

${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6): $\delta 7.81-7.79(\mathrm{~d}, \mathrm{~J}=10.41 \mathrm{H}), 7.10-6.61(\mathrm{~m}, 8 \mathrm{H}), 6.22(\mathrm{~s}, 1 \mathrm{H})$, $4.04-3.99(\mathrm{~d}, \mathrm{~J}=22.4,1 \mathrm{H}), 3.64-3.33(\mathrm{~m}, 3 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 1.99-1.53(\mathrm{~m}, 12 \mathrm{H}), 1.32-0.63(\mathrm{~m}$, 5H); MS: $480.1(\mathrm{M}+1)^{+}$.

Compound 370

${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6): $\delta 7.99-7.75(\mathrm{~m}, 2 \mathrm{H}), 7.29-6.59(\mathrm{~m}, 7 \mathrm{H}), 6.22(\mathrm{~s}, 1 \mathrm{H}), 4.12-4.04$ $(\mathrm{m}, 1 \mathrm{H}), 3.63-3.62(\mathrm{~m}, 1 \mathrm{H}), 3.51-3.42(\mathrm{~m}, 2 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 1.99(\mathrm{~s}, 3 \mathrm{H}), 1.73-1.52(\mathrm{~m}, 8 \mathrm{H})$, 1.29-0.85 (m, 7H); MS: $480.1(\mathrm{M}+1)^{+}$.

Compound 366

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 87.71(\mathrm{br}, 1 \mathrm{H}), 7.10(\mathrm{br}, 2 \mathrm{H}), 6.87-6.68(\mathrm{~m}, 4 \mathrm{H}), 6.36-6.32(\mathrm{br}$, $2 \mathrm{H}), 4.68-4.66(\mathrm{~m}, 0.5 \mathrm{H}), 4.64-4.59(\mathrm{br}, 0.5 \mathrm{H}), 3.85-3.84(\mathrm{br}, 1 \mathrm{H}), 3.60(\mathrm{~s}, 2 \mathrm{H}), 3.40-3.34(\mathrm{br}$, $1 \mathrm{H}), 2.90-2.88(\mathrm{br}, 3 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 1.96-1.93(\mathrm{br}, 2 \mathrm{H}), 1.68-1.65(\mathrm{br}, 2 \mathrm{H}), 1.36-1.26(\mathrm{br}, 6 \mathrm{H})$,
1.11-1.07 (br, 3H); MS: $484.1(\mathrm{M}+1)^{+}$.

Compound 335

${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d6): $\delta 7.92(\mathrm{~s}, 1 \mathrm{H}), 7.76-7.70(\mathrm{br}, 1 \mathrm{H}), 7.30-6.83(\mathrm{~m}, 5 \mathrm{H}), 6.64-6.62$ $(\mathrm{d}, 1 \mathrm{H}, \mathrm{J}=5.7), 6.32(\mathrm{br}, 1 \mathrm{H}), 6.15(\mathrm{~s}, 1 \mathrm{H}), 4.68-4.62(\mathrm{~m}, 1 \mathrm{H}), 3.73-3.70(\mathrm{~m}, 1 \mathrm{H}), 3.59-3.58(\mathrm{~m}$, $1 \mathrm{H}), 3.47(\mathrm{~s}, 3 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 1.80-1.45(\mathrm{~m}, 9 \mathrm{H}), 1.31-0.95(\mathrm{~m}, 7 \mathrm{H}) ; \mathrm{MS}: 510.3(\mathrm{M}+1)^{+}$.
Compound 396

${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6): $\delta 8.20-7.81(\mathrm{~m}, 2 \mathrm{H}), 7.36-6.39(\mathrm{~m}, 8 \mathrm{H}), 4.40-4.25(\mathrm{~m}, 1 \mathrm{H})$, 3.82-3.51 (m, 5H), 3.28-3.21 (m, 2H), 2.33-2.32 (m, 3H), 1.77-0.94 (m, 19H); MS: 554.1 $(\mathrm{M}+1)^{+}$.

Compound 395

${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6): $\delta 9.86(\mathrm{~m}, 1 \mathrm{H}), 9.30(\mathrm{~s}, 1 \mathrm{H}), 8.21-8.13(\mathrm{~m}, 1 \mathrm{H}), 7.73-7.71(\mathrm{~m}$,
$1 \mathrm{H}), 7.36-6.79(\mathrm{~m}, 6 \mathrm{H}), 6.28-6.25(\mathrm{~m}, 1 \mathrm{H}), 3.99(\mathrm{~m}, 1 \mathrm{H}), 3.78-3.44(\mathrm{~m}, 5 \mathrm{H}), 3.14(\mathrm{~m}, 2 \mathrm{H}), 2.36-$ $2.34(\mathrm{~d}, 3 \mathrm{H}, J=8.8), 1.76-1.74(\mathrm{~m}, 4 \mathrm{H}), 1.30-1.11(\mathrm{~m}, 6 \mathrm{H}) ; \mathrm{MS}: 454.1(\mathrm{M}+1)^{+}$.

Compound 349

${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6): $\delta 8.09-8.00(\mathrm{~m}, 1 \mathrm{H}), 7.84-7.79(\mathrm{~m}, 1 \mathrm{H}), 7.32-6.96(\mathrm{~m}, 4 \mathrm{H})$, 6.89-6.65 (m, 3H), 6.31-6.27 (m, 1H), 4.43-4.36 (m, 1H), 3.77-3.61 (m, 2H), 3.41-3.38 (m, 1H), $2.90(\mathrm{~s}, 3 \mathrm{H}), 2.31(\mathrm{~s}, 1 \mathrm{H}), 2.30(\mathrm{~s}, 2 \mathrm{H}), 1.75-1.46(\mathrm{~m}, 8 \mathrm{H}), 1.40-0.86(\mathrm{~m}, 8 \mathrm{H}) ; \mathrm{MS}: 530.2$ $(\mathrm{M}+1)^{+}$.

Compound 363

${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6): $87.78-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.13-6.08(\mathrm{~m}, 7 \mathrm{H}), 5.94(\mathrm{~s}, 1 \mathrm{H}), 3.79(\mathrm{~s}$, $1 \mathrm{H}), 3.40-3.39(\mathrm{~m}, 1 \mathrm{H}), 3.17-3.11(\mathrm{~m}, 2 \mathrm{H}), 2.63(\mathrm{~s}, 3 \mathrm{H}), 2.14(\mathrm{~s}, 3 \mathrm{H}), 1.78-1.29(\mathrm{~m}, 9 \mathrm{H}), 1.08-$ $0.61(\mathrm{~m}, 5 \mathrm{H})$; MS: $516.2(\mathrm{M}+1)^{+}$.
Compound 362

${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6): $\delta 8.04-7.95(\mathrm{~m}, 1 \mathrm{H}), 7.78-7.75(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=10), 7.14-6.23(\mathrm{~m}$, $8 \mathrm{H}), 4.06-4.02(\mathrm{~m}, 1 \mathrm{H}), 3.62(\mathrm{~s}, 1 \mathrm{H}), 3.39-3.36(\mathrm{~m}, 1 \mathrm{H}), 3.28-3.26(\mathrm{~m}, 1 \mathrm{H}), 2.89-2.86(\mathrm{~m}, 3 \mathrm{H})$, 2.36-2.34 (d, 3H, J=6), 1.93-1.52 (m, 9H), 1.30-0.85 (m, 6H); MS: $516.0(\mathrm{M}+1)^{+}$.

Compound 367

${ }^{1} \mathrm{H}$ NMR (400 MHz, MeOD-d4): $\delta 8.03(\mathrm{~m}, 0.77 \mathrm{H}), 7.77(\mathrm{~m}, 0.65 \mathrm{H}), 7.31(\mathrm{br}, 1 \mathrm{H}), 7.10-7.01$ $(\mathrm{m}, 3 \mathrm{H}), 6.86(\mathrm{~m}, 1 \mathrm{H}), 6.72(\mathrm{~m}, 1 \mathrm{H}), 6.22(\mathrm{~s}, 1 \mathrm{H}), 3.66-3.62(\mathrm{~m}, 2 \mathrm{H}), 2.99-2.93(\mathrm{q}, 2 \mathrm{H}), 2.36(\mathrm{~s}$, 3H), 1.79-1.52 (m, 4H), 1.29-0.98 (9H); MS: $490.2(\mathrm{M}+1)^{+}$.
Compound 375

${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6): $\delta 8.23-8.22(\mathrm{~d}, \mathrm{~J}=6.41 \mathrm{H}), 7.57-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.10-7.02(\mathrm{~m}$, $4 \mathrm{H}), 6.81(\mathrm{~s}, 1 \mathrm{H}), 6.58(\mathrm{~s}, 1 \mathrm{H}), 6.29-6.21(\mathrm{~m}, 3 \mathrm{H}), 3.92-3.91(\mathrm{~m}, 1 \mathrm{H}), 3.71-3.69(\mathrm{~m}, 1 \mathrm{H}), 3.36-$ $3.22(\mathrm{~m}, 2 \mathrm{H}), 2.63-2.62(\mathrm{~d}, \mathrm{~J}=4.0,3 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}), 2.08-1.33(\mathrm{~m}, 9 \mathrm{H}), 1.29-0.51(\mathrm{~m}, 5 \mathrm{H}) ; \mathrm{MS}:$ $494.8(\mathrm{M}+1)^{+}$.

Compound 385

${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6): $\delta 8.06-7.89(\mathrm{~m}, 2 \mathrm{H}), 7.31-6.34(\mathrm{~m}, 8 \mathrm{H}), 4.31-4.23(\mathrm{~m}, 1 \mathrm{H})$, 3.84-3.48 (m, 8H), 3.29-3.26(m, 2H), 2.30(s, 3H), 1.77-1.53 (m, 5H), 1.30-0.94 (m, 5H); MS: $512.0(\mathrm{M}+1)^{+}$.

Example 12. Preparation of Compound 248. Compound 248 was produced using the
following protocol.

Step A: 2-[(2-Chloro-acetyl)-(3-fluoro-phenyl)-amino]-N-cyclohexyl-2-o-tolyl-
acetamide. The title compound was synthesized using Scheme 1 and the general procedure set forth in Example 1, step A.

Step B: N-Cyclohexyl-2-[(3-fluoro-phenyl)-(2-piperazin-1-yl-acetyl)-amino]-
2-o-tolyl-acetamide. The title compound was synthesized using Scheme 2 and the general procedure set forth in Example 2. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d} 6$): $89.12(\mathrm{br}, 2 \mathrm{H}), 8.02(\mathrm{~s}, 1 \mathrm{H})$, 7.11-6.71 (m, 6H), 6.23 (s, 1H), 3.64-3.62 (m, 1H), 3.08-3.03 (m, 2H), $2.89(\mathrm{~m}, 4 \mathrm{H}), 2.59(\mathrm{~s}$, $4 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 1.78-1.54(\mathrm{~m}, 5 \mathrm{H}), 1.31-0.98(\mathrm{~m}, 6 \mathrm{H})$; MS: $467.1(\mathrm{M}+1)^{+}$.
Step C: Compound 248. To a mixture of $\mathrm{Et}_{3} \mathrm{~N}(40 \mathrm{mg}, 0.39 \mathrm{mmol})$ and S-tetrahydro-furan-3-ol ($35 \mathrm{mg}, 0.39 \mathrm{mmol}$) in THF (10 ml) was added a solution of triphosgene ($115 \mathrm{mg}, 0.39 \mathrm{mmol}$) in THF (10 ml). After stirring for 10 minutes, N-Cyclohexyl-2-[(3-fluoro-phenyl)-(2-piperazin-1-yl-acetyl)-amino]-2-o-tolyl-acetamide ($300 \mathrm{mg}, 0.64 \mathrm{mmol}$) was added in one portion. The reaction was stirred for 1.5 hours at room temperature. Water (15 ml) was added. The resulting mixture was extracted with EtOAc ($2 \times 20 \mathrm{ml}$) and the combined organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the solvent was evaporated in vacuo. The residue was purified via flash chromatography column eluted with $\mathrm{DCM} / \mathrm{MEOH}(30 / 1)$ to give the desired product ($28033 \mathrm{mg}, 15 \%$ yield); ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO-d6): $\delta 7.99(\mathrm{~s}, 1 \mathrm{H}), 7.74(\mathrm{br}, 1 \mathrm{H})$, $7.21-6.56(\mathrm{~m}, 7 \mathrm{H}), 6.22(\mathrm{~s}, 1 \mathrm{H}), 5.09(\mathrm{~s}, 1 \mathrm{H}), 3.77-3.63(\mathrm{~m}, 5 \mathrm{H}), 3.24(\mathrm{~s}, 4 \mathrm{H}), 3.00-2.84(\mathrm{~m}, 2 \mathrm{H})$, $2.33(\mathrm{~s}, 3 \mathrm{H}), 2.28(\mathrm{~s}, 4 \mathrm{H}), 2.10-1.52(\mathrm{~m}, 7 \mathrm{H}), 1.30-0.96(\mathrm{~m}, 5 \mathrm{H}) ; \mathrm{MS}: 581.3(\mathrm{M}+1)^{+}$.

The following compounds were synthesized from N-Cyclohexyl-2-[(3-fluoro-phenyl)-(2-piperazin-1-yl-acetyl)-amino]-2-o-tolyl-acetamide via step C of this example

${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d6): $\delta 7.99(\mathrm{~s}, 1 \mathrm{H}), 7.73(\mathrm{br}, 1 \mathrm{H}), 7.09-6.56(\mathrm{~m}, 7 \mathrm{H}), 6.22(\mathrm{~s}, 1 \mathrm{H})$, 4.03-3.09 (m, 1H), 3.63-3.61 (m, 1H), 3.24 ($\mathrm{s}, 4 \mathrm{H}), 2.99-2.84(\mathrm{~m}, 2 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 2.28(\mathrm{~s}, 4 \mathrm{H})$, 1.78-1.52 (m, 5H), 1.29-0.95 (m, 8H); MS: $539.3(\mathrm{M}+1)^{+}$.

Compound 250

${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d6): $\delta 7.98(\mathrm{~s}, 1 \mathrm{H}), 7.74(\mathrm{br}, 1 \mathrm{H}), 7.09-6.70(\mathrm{~m}, 6 \mathrm{H}), 6.55(\mathrm{br}, 1 \mathrm{H})$, $6.22(\mathrm{~s}, 1 \mathrm{H}), 4.76-4.70(\mathrm{~m}, 1 \mathrm{H}), 3.63-3.61(\mathrm{~m}, 1 \mathrm{H}), 3.56(\mathrm{~s}, 3 \mathrm{H}), 3.23(\mathrm{~s}, 4 \mathrm{H}), 2.99-2.83(\mathrm{~m}, 2 \mathrm{H})$, $2.34(\mathrm{~s}, 3 \mathrm{H}), 2.28(\mathrm{~s}, 4 \mathrm{H}), 1.78-1.52(\mathrm{~m}, 5 \mathrm{H}), 1.30-0.96(\mathrm{~m}, 11 \mathrm{H}) ; \mathrm{MS}: 553.3(\mathrm{M}+1)^{+}$.

Compound 185 and its HCl Salt

${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d6): $\delta 7.98(\mathrm{~s}, 1 \mathrm{H}), 7.74(\mathrm{br}, 1 \mathrm{H}), 7.09-6.70(\mathrm{~m}, 6 \mathrm{H}), 6.22(\mathrm{~s}, 1 \mathrm{H})$, 3.63-3.61 (m, 1H), $3.56(\mathrm{~s}, 3 \mathrm{H}), 3.25(\mathrm{~s}, 4 \mathrm{H}), 2.99-2.83(\mathrm{~m}, 2 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 2.28(\mathrm{~s}, 4 \mathrm{H}), 1.78-$ $1.52(\mathrm{~m}, 5 \mathrm{H}), 1.30-0.96(\mathrm{~m}, 5 \mathrm{H})$; MS: $525.3(\mathrm{M}+1)^{+}$.
HCl Salt:
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6): $\delta 10.25(\mathrm{~s}, 1 \mathrm{H}), 8.15(\mathrm{~s}, 1 \mathrm{H}), 7.87(\mathrm{~m}, 1 \mathrm{H}), 7.36-6.62(\mathrm{~m}, 8 \mathrm{H})$, $6.22(\mathrm{~s}, 1 \mathrm{H}), 4.05-3.83(\mathrm{~m}, 4 \mathrm{H}), 3.42-3.38(\mathrm{~m}, 7 \mathrm{H}), 3.00(\mathrm{~m}, 2 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 1.72-1.50(\mathrm{~m}, 5 \mathrm{H})$,
1.38-1.00(m, 5H); MS: $525.3(\mathrm{M}+1)^{+}$.

Compound 208

${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d6): $\delta 8.04-7.91(\mathrm{~m}, 1 \mathrm{H}), 7.29-6.98(\mathrm{~m}, 5 \mathrm{H}), 6.73-5.66(\mathrm{~m}, 3 \mathrm{H})$,
$5.12-4.17(\mathrm{~m}, 2 \mathrm{H}), 3.64-3.06(\mathrm{~m}, 10 \mathrm{H}), 2.43-2.34(\mathrm{~m}, 4 \mathrm{H}), 2.17(\mathrm{~s}, 0.82 \mathrm{H}), 2.13(\mathrm{~s}, 2.33 \mathrm{H}), 1.84-$
$1.51(\mathrm{~m}, 5 \mathrm{H}), 1.32-1.04(\mathrm{~m}, 5 \mathrm{H})$; MS: $527.2(\mathrm{M}+1)^{+}$.
Example 13. Preparation of Compound 299. Compound 299 was prepared according to the following protocol

Step A: 2-\{(3-Bromo-phenyl)-[2-(2-methyl-imidazol-1-yl)-acetyl]-amino\}-N-
cyclohexyl-2-o-tolyl-acetamide. The title compound was synthesized via Scheme 1 and the protocol set forth in Example 1, step A. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d6): $\delta 8.22-8.00(\mathrm{~m}, 2 \mathrm{H})$, $7.38-6.88(\mathrm{~m}, 7 \mathrm{H}), 6.73-6.66(\mathrm{~m}, 2 \mathrm{H}), 6.19(\mathrm{~s}, 1 \mathrm{H}), 4.66-4.34(\mathrm{~m}, 2 \mathrm{H}), 3.60(\mathrm{~s}, 1 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H})$, $2.10(\mathrm{~s}, 3 \mathrm{H}), 1.73-1.52(\mathrm{~m}, 5 \mathrm{H}), 1.28-0.92(\mathrm{~m}, 5 \mathrm{H})$; MS: $523.1(\mathrm{M}+1)^{+}$.
Step B: Compound 299. A mixture of 2-\{(3-Bromo-phenyl)-[2-(2-methyl-imidazol1 -yl)-acetyl]-amino\}-N-cyclo-hexyl-2-o-tolyl-acetamide ($209 \mathrm{mg}, 0.4 \mathrm{mmol}$), (3methoxyphenyl) boronic acid $(0.3 \mathrm{~g}, 2 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(0.17 \mathrm{~g}, 1.2 \mathrm{mmol})$ and $\mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2}(66 \mathrm{~m}$ $\mathrm{mg}, 0.08 \mathrm{mmol}$) in DME (5 ml) was stirred at $80^{\circ} \mathrm{C}$ overnight under nitrogen atmosphere. The resulting mixture was filtered and the filtrate was concentrated. The residue was purified via flash chromatography to give desired product as a yellow powder ($130 \mathrm{mg}, 59 \%$). ${ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{DMSO}-\mathrm{d} 6): \delta 8.26-7.97(\mathrm{~m}, 2 \mathrm{H}), 7.46-6.72(\mathrm{~m}, 13 \mathrm{H}), 6.24(\mathrm{~s}, 1 \mathrm{H}), 4.66-4.35(\mathrm{~m}, 2 \mathrm{H})$, 3.84-3.74 (m, 3H), 3.63-3.61 (m, 1H), 2.46-2.39 (m, 3H), 2.10 (s, 3H), 1.73-1.50 (m, 5H), 1.25$0.89(\mathrm{~m}, 5 \mathrm{H})$; MS: $551.1(\mathrm{M}+1)^{+}$.

The following compounds were synthesized according to the procedures set forth in this Example.

Compound 286

${ }^{1} \mathrm{H}$ NMR (400 MHz, CD3OD): $\delta 8.16-6.69(\mathrm{~m}, 15 \mathrm{H}), 6.29(\mathrm{~d}, 1 \mathrm{H}, J=9.6 \mathrm{~Hz}), 4.73-4.45(\mathrm{~m}, 2 \mathrm{H})$, 3.64-3.62 (m, 1H), $2.40(\mathrm{~d}, 3 \mathrm{H}, J=24.4 \mathrm{~Hz}), 2.16(\mathrm{~s}, 3 \mathrm{H}), 1.84-1.50(\mathrm{~m}, 5 \mathrm{H}), 1.28-1.02(\mathrm{~m}, 5 \mathrm{H})$; MS: $521.2(\mathrm{M}+1)^{+}$.

Compound 300

${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6): $\delta 9.25-9.09(\mathrm{~m}, 2 \mathrm{H}), 8.81(\mathrm{~s}, 1 \mathrm{H}), 8.35-8.03(\mathrm{~m}, 2 \mathrm{H}), 7.64-7.23$ $(\mathrm{m}, 2 \mathrm{H}), 7.18-6.71(\mathrm{~m}, 7 \mathrm{H}), 6.26(\mathrm{~s}, 1 \mathrm{H}), 4.76-4.45(\mathrm{~m}, 2 \mathrm{H}), 3.63-3.61(\mathrm{~m}, 1 \mathrm{H}), 2.45(\mathrm{~s}, 2 \mathrm{H})$, $2.41(\mathrm{~s}, 1 \mathrm{H}), 2.17(\mathrm{~s}, 3 \mathrm{H}), 1.78-1.55(\mathrm{~m}, 5 \mathrm{H}), 1.28-0.98(\mathrm{~m}, 5 \mathrm{H}) ; \mathrm{MS}: 523.1(\mathrm{M}+1)^{+}$.
Compound 292

${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6): $\delta 8.28-7.34(\mathrm{~m}, 8 \mathrm{H}), 7.24-6.69(\mathrm{~m}, 7 \mathrm{H}), 6.24(\mathrm{~d}, 1 \mathrm{H}, J=6.8$
$\mathrm{Hz}), 4.86-4.56(\mathrm{~m}, 2 \mathrm{H}), 3.61-3.59(\mathrm{~m}, 1 \mathrm{H}), 2.47-2.35(\mathrm{~m}, 3 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}), 1.72-1.50(\mathrm{~m}, 5 \mathrm{H})$,
1.28-0.96 (m, 5H); MS: $605.1(\mathrm{M}+1)^{+}$.

Compound 315

${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6): $\delta 8.14-8.01(\mathrm{~m}, 2 \mathrm{H}), 7.49-7.03(\mathrm{~m}, 6 \mathrm{H}), 6.89-6.73(\mathrm{~m}, 4 \mathrm{H})$,
6.38-6.14 (m, 2H), 4.69-4.40 (m, 2H), 3.83-3.53 (m, 4H), 2.42-2.40 (m, 3H), 2.17 (s, 3H), 1.73$1.51(\mathrm{~m}, 5 \mathrm{H}), 1.28-0.95(\mathrm{~m}, 5 \mathrm{H})$; MS: $525.1(\mathrm{M}+1)^{+}$.

Example 14. Preparation of Compound 344.

Step A: N-Cyclohexyl-2-\{(3-fluoro-phenyl)-[2-(2-iodo-imidazol-1-yl)-
acetyll-amino\}-2-o-tolyl-acetamide. The title compound was synthesized using Scheme 2, and the protocol set forth in Example 2, step A. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d6): $\delta 8.03-7.93$ (m, $2 \mathrm{H}), 7.28-7.06(\mathrm{~m}, 5 \mathrm{H}), 6.90-6.48(\mathrm{~m}, 4 \mathrm{H}), 6.22(\mathrm{~s}, 1 \mathrm{H}), 4.48-4.45(\mathrm{~m}, 2 \mathrm{H}), 3.61-3.60(\mathrm{~m}, 1 \mathrm{H})$, $2.33(\mathrm{~s}, 3 \mathrm{H}), 1.76-1.51(\mathrm{~m}, 5 \mathrm{H}), 1.28-0.93(\mathrm{~m}, 5 \mathrm{H}) ; \mathrm{MS}: 575.1(\mathrm{M}+1)^{+}$.

Step B: Compound 344. A mixture of N-Cyclohexyl-2-\{ (3-fluoro-phenyl)-[2-(2-iodo-imidazol-1-yl)-acetyl]-amino \}-2-o-tolyl-acetamide ($144 \mathrm{mg}, 0.25 \mathrm{mmol}$), KF (dry, 25 mg , $0.43 \mathrm{~mol}), \mathrm{CuI}(75 \mathrm{mg}, 0.39 \mathrm{mmol})$ and $\mathrm{CF}_{3} \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}(60 \mathrm{mg}, 0.43 \mathrm{mmol})$ in dry NMP (2.5 ml) was stirred at $50^{\circ} \mathrm{C}$ for 27 hours under N_{2} atmosphere. The resulting mixture was cooled to room temperature and diluted with $\mathrm{DCM}(15 \mathrm{ml})$, washed with water, brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the solvent was evaporated in vacuo. The residue was purified with prep-HPLC to give desired product as a solid ($40 \mathrm{mg}, 31$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d6): $\delta 8.05-7.89$ $(\mathrm{m}, 2 \mathrm{H}), 7.42-6.38(\mathrm{~m}, 9 \mathrm{H}), 6.19(\mathrm{~s}, 1 \mathrm{H}), 4.76-4.74(\mathrm{~m}, 2 \mathrm{H}), 3.60-3.57(\mathrm{~m}, 1 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 1.74-$ $1.51(\mathrm{~m}, 5 \mathrm{H}), 1.28-0.93(\mathrm{~m}, 5 \mathrm{H}) ; \mathrm{MS}: 517.2(\mathrm{M}+1)^{+}$.
Compound 373

Compound 373 was synthesized via the procedure set forth in this example. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6): $\delta 8.17-8.13(\mathrm{~m}, 1 \mathrm{H}), 7.89-7.86(\mathrm{~m}, 1 \mathrm{H}), 7.41-7.07(\mathrm{~m}, 6 \mathrm{H}), 6.87(\mathrm{t}, 1 \mathrm{H}$, $\mathrm{J}=7.6 \mathrm{~Hz}), 6.70-6.69(\mathrm{~m}, 1 \mathrm{H}), 6.51-6.50(\mathrm{~m}, 1 \mathrm{H}), 6.20(\mathrm{~s}, 1 \mathrm{H}), 4.82-4.76(\mathrm{~m}, 2 \mathrm{H}), 3.84(\mathrm{~s}, 1 \mathrm{H})$, $2.38(\mathrm{~s}, 3 \mathrm{H}), 2.01-1.76(\mathrm{~m}, 6 \mathrm{H}), 1.51-1.43(\mathrm{~m}, 1 \mathrm{H}), 1.31-1.23(\mathrm{~m}, 1 \mathrm{H})$; MS: $552.6(\mathrm{M}+1)^{+}$.

Example 15. Preparation of Compound 326.

Step A: N-Cyclohexyl-2-\{(3-fluoro-phenyl)-[2-(2-nitro-imidazol-1-yl)-
acetyll-amino\}-2-o-tolyl-acetamide. The title compound was synthesized using Scheme 2, and the protocol set forth in Example 2, step A.
Step B: Compound 326. A suspension of N-Cyclohexyl-2-\{(3-fluoro-phenyl)-[2-(2-nitro-imidazol-1-yl)-acetyl]-amino\}-2-o-tolyl-acetamide ($110 \mathrm{mg}, 0.22 \mathrm{mmol}$) and $10 \% \mathrm{Pd} / \mathrm{C}(30 \mathrm{mg})$ in $\mathrm{MeOH}(8 \mathrm{ml})$ was stirred under 1 atm of hydrogen gas at room temperature for 16 h . The solids were removed by filtration and the solvent was concentrated, purified by prep-HPLC to get 30 mg product ($30 \mathrm{mg}, 30 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO-d6): $\delta 8.05-7.75(\mathrm{~m}, 2 \mathrm{H}$), 7.11-6.98 (m, 4H), 6.88-6.67 (m, 3H), 6.43 (d, 1H), $6.31(\mathrm{~d}, 1 \mathrm{H}), 6.19(\mathrm{~s}, 1 \mathrm{H}), 5.07(\mathrm{~s}, 2 \mathrm{H}), 4.39-$ $4.35 \mathrm{~d}, 1 \mathrm{H}), 4.13-4.08(\mathrm{~d}, 1 \mathrm{H}), 3.63-3.58(\mathrm{~m}, 1 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 1.76-1.49(\mathrm{~m}, 5 \mathrm{H}), 1.31-0.85(\mathrm{~m}$, 5H); MS: $464.2(\mathrm{M}+1)^{+}$.

Example 16. Preparation of Compound 319.

Step A: Compound 368. The title compound was synthesized using Scheme 1 and the protocol set forth in Example 1, step A. ${ }^{1} \mathrm{H}$ NMR (400 MHz, MeOD-d4): $\delta 7.73$ (br, 1H), 7.15 (d, J = 7.6, $1 \mathrm{H}), 7.09-7.09(\mathrm{~m}, 1), 6.99-6.94(\mathrm{~m}, 1 \mathrm{H}) .6 .80-6.78(\mathrm{~m}, 1 \mathrm{H}), 6.57(\mathrm{br}, 0.7 \mathrm{H}), 6.38(\mathrm{~s}, 1 \mathrm{H}), 3.78-$ $3.68(\mathrm{~m}, 2 \mathrm{H}), 3.50-3.39(\mathrm{~d}, 1 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 1.9-1.93(\mathrm{~m}, 1 \mathrm{H}), 1.80-1.71(\mathrm{~m}, 4 \mathrm{H}), 1.46-1.04(\mathrm{~m}$, 12H); MS: $498.1(\mathrm{M}+1)^{+}$.

Step B: 2-[(2-Amino-acetyl)-(3-fluoro-phenyl)-aminol-N-cyclohexyl-2-
o-tolyl-acetamide (hydrochloride). The title compound was synthesized using the protocol set forth in Example 8, step B. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{MeOD}-\mathrm{d} 4$): $\delta 8.1$ (br, 1 H), 7.66 (br, 1H), 7.03$6.70(\mathrm{~m}, 6 \mathrm{H}), 6.29(\mathrm{~s}, 1 \mathrm{H}), 4.16(\mathrm{~m}, 1 \mathrm{H}), 3.43(\mathrm{~d}, 1 \mathrm{H}), 3.26(\mathrm{~d}, 1 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 1.69-1.64(\mathrm{~m}$, $1 \mathrm{H}), 1.52-1.50(\mathrm{~m}, 3 \mathrm{H}), 1.29-1.00(\mathrm{~m}, 3 \mathrm{H}), 0.80-0.76(\mathrm{~m}, 3 \mathrm{H}) ; \mathrm{MS}: 398.1(\mathrm{M}+1)^{+}$.
Step C : N-Cyclohexyl-2-[\{2-[3-(2,2-dimethoxy-ethyl)-ureido]-acetyl]-(3-fluoro-phenyl)-
aminol-2-o-tolyl-acetamide. To a mixture of 2-[(2-Amino-acetyl)-(3-fluoro-phenyl)-amino]-N-cyclohexyl-2-o-tolyl-acet-amide ($433 \mathrm{mg}, 1 \mathrm{mmol}$) and $\mathrm{Et}_{3} \mathrm{~N}(0.2 \mathrm{ml}, 1.5 \mathrm{mmol})$ in DCM was added 2-Isocyanato-1, 1-dimethoxy-ethane ($231 \mathrm{mg}, 1.3 \mathrm{mmol}$). The reaction mixture was stirred for 8 hours. The resulting mixture was washed with $\mathrm{HCl}(1 \mathrm{~N})$, water, brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. The solvent was evaporated in vacuo and the residue was washed with $\mathrm{Et}_{2} \mathrm{O}$ to give the crude N-Cyclohexyl-2-[\{2-[3-(2,2-dimethoxy-ethyl)-ureido]-acetyl \}-(3-fluoro-phenyl)-amino]-2-o-tolyl-acetamide, which was used directly without further purification (350 $\mathrm{mg}, 66 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6): $\delta 8.12-7.78(\mathrm{~m}, 2 \mathrm{H}), 7.35-6.20(\mathrm{~m}, 10 \mathrm{H}), 4.41$ $(\mathrm{m}, 1 \mathrm{H}), 3.66(\mathrm{~m}, 2 \mathrm{H}), 3.30-3.24(\mathrm{~m}, 7 \mathrm{H}), 3.05(\mathrm{~m}, 2 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 1.78-1.50(\mathrm{~m}, 5 \mathrm{H}), 1.25-$ $0.95(\mathrm{~m}, 5 \mathrm{H})$; MS: $529.1(\mathrm{M}+1)^{+}$.

Step D: Compound 319. A mixture of N-Cyclohexyl-2-[\{2-[3-(2,2-dimethoxy-ethyl)-ureido]-acetyl\}-(3-fluoro-phenyl)-amino]-2-o-tolyl-acetamide ($100 \mathrm{mg}, 0.19 \mathrm{mmol}$) in $\mathrm{AcOH}(1 \mathrm{ml})$ and $\mathrm{HCOOH}(0.7 \mathrm{ml})$ was heated to $65^{\circ} \mathrm{C}$ for 1 hour. The resulting mixture was concentrated in
vacuo and the residue was suspended in saturated $\mathrm{NaHCO}_{3}(10 \mathrm{ml})$. The precipitate was collected by filtration and washed with $\mathrm{Et}_{2} \mathrm{O}$ to give the desired product ($25 \mathrm{mg}, 28 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d6): $\delta 9.90$ (s, 1H), 8.04-7.81 (m, 2H), 7.05-6.57 (m, 7H), 6.28-6.19 $(\mathrm{m}, 3 \mathrm{H}), 4.02(\mathrm{~m}, 2 \mathrm{H}), 3.58(\mathrm{~m}, 1 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 1.70-1.50(\mathrm{~m}, 5 \mathrm{H}), 1.34-1.02(\mathrm{~m}, 5 \mathrm{H}) ;$ MS: $465.1(\mathrm{M}+1)^{+}$.

Example 17. Preparation of Compound 163.

To a solution of 2-[(2-Chloro-acetyl)-(3-fluoro-phenyl)-amino]-N-cyclohexyl-2-o-tolylacetamide ($208 \mathrm{mg}, 0.50 \mathrm{mmol}$) in 1, 2-dichloroethane (10 ml) was added thiourea ($54 \mathrm{mg}, 0.71$ $\mathrm{mmol})$. The reaction mixture was stirred at $80^{\circ} \mathrm{C}$ for 8 h and then cooled to room temperature. The precipitate was collected by filtration and purified by prep. HPLC to give the byproduct as a white solid (60 mg , yield $=26 \%$). ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO-d6): $\delta 9.02(\mathrm{br}, 4 \mathrm{H}$), 8.06-6.57 (m, $9 \mathrm{H}), 6.17(\mathrm{~s}, 1 \mathrm{H}), 4.16-3.85(\mathrm{~m}, 2 \mathrm{H}), 3.63-3.60(\mathrm{~m}, 1 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 1.78-1.51(\mathrm{~m}, 5 \mathrm{H}), 1.32-0.93$ (m, 5H); MS: $457.2(\mathrm{M}+1)^{+}$.

Example 18. Preparation of Compounds 263 and 212.

Step A: Compound 217. N-Cyclohexyl-2-\{(3-fluoro-phenyl)-[2-(4-hydroxy-phenyl)-acetyl]-amino\}-2-o-tolyl-acetamide (Compound 217) was synthesized according to Scheme 1, via the general procedure set forth in Example 1, step A. ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, DMSO-
d6): $\delta 9.21(\mathrm{~s}, 1 \mathrm{H}), 7.96-7.71(\mathrm{~m}, 2 \mathrm{H}), 7.09-6.23(\mathrm{~m}, 12 \mathrm{H}), 3.62-3.57(\mathrm{~m}, 1 \mathrm{H}), 3.33-3.21(\mathrm{~m}$, $2 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}), 1.76-1.52(\mathrm{~m}, 5 \mathrm{H}), 1.29-0.93(\mathrm{~m}, 5 \mathrm{H}) ; \mathrm{MS}: 475.2(\mathrm{M}+1)^{+}$.

Step B: Compound 263. A mixture of N-Cyclohexyl-2-\{(3-fluoro-phenyl)-
[2-(4-hydroxy-phenyl)-acetyl]-amino \}-2-o-tolyl-acetamide ($100 \mathrm{mg}, 0.21 \mathrm{mmol}$),
Dimethylcarbamyl chloride ($46 \mathrm{mg}, 0.42 \mathrm{mmol}$) $\mathrm{Et}_{3} \mathrm{~N}(64 \mathrm{mg}, 0.42 \mathrm{mmol}$) and DMAP (26 mg , $0.21 \mathrm{~mol})$ in DCM (15 ml) was heated to $50^{\circ} \mathrm{C}$ for 10 hours. After cooling to room temperature, the resulting mixture was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the solvent was evaporated in vacuo. The residue was purified by TLC ($\mathrm{DCM} / \mathrm{MeOH}=20 / 1$) to give the pure product ($45 \mathrm{mg}, 40 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, ~ D M S O-d 6$): $\delta 7.99-7.65$ (m, 2H), 7.26-6.24 $(\mathrm{m}, 12 \mathrm{H}), 3.81-3.32(\mathrm{~m}, 3 \mathrm{H}), 3.03(\mathrm{~s}, 3 \mathrm{H}), 2.90(\mathrm{~s}, 3 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 1.76-1.52(\mathrm{~m}, 5 \mathrm{H}), 1.29-$ $0.96(\mathrm{~m}, 5 \mathrm{H})$; MS: $546.1(\mathrm{M}+1)^{+}$.

Step C: Compound 212. A mixture of N-Cyclohexyl-2-\{(3-fluoro-phenyl)-[2-(4-
hydroxy-phenyl)-acetyl]-amino \}-2-o-tolyl-acetamide ($200 \mathrm{mg}, 0.42 \mathrm{mmol}^{2}$), $\mathrm{Et}_{3} \mathrm{~N}$ ($260 \mathrm{mg}, 0.84$ $\mathrm{mmol})$ and acetyl chloride ($70 \mathrm{mg}, 0.84 \mathrm{mmol}$) in $\mathrm{DCM}(15 \mathrm{ml})$ was stirred for 10 hours at room temperature. The resulting mixture was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the solvent was evaporated in vacuo. The residue was purified by TLC $(\mathrm{PE} / \mathrm{EtOAc}=2 / 1)$ to give the pure product ($180 \mathrm{mg}, 82 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d6): $\delta 7.98-7.75$ (m, 2H), 7.10$6.24(\mathrm{~m}, 12 \mathrm{H}), 3.63-3.61(\mathrm{~m}, 1 \mathrm{H}), 3.47-3.37(\mathrm{~m}, 2 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H}), 1.77-1.52(\mathrm{~m}$, $5 \mathrm{H}), 1.28-0.83(\mathrm{~m}, 5 \mathrm{H})$; MS: $517.3(\mathrm{M}+1)^{+}$.

The following compounds were synthesized via the general procedure set forth in this example.
Compound 264

${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6): $\delta 7.99-7.75(\mathrm{~m}, 2 \mathrm{H}), 7.25-6.24(\mathrm{~m}, 12 \mathrm{H}), 3.65-3.42(\mathrm{~m}, 11 \mathrm{H})$, $2.34(\mathrm{~s}, 3 \mathrm{H}), 1.73-1.51(\mathrm{~m}, 5 \mathrm{H}), 1.28-0.89(\mathrm{~m}, 5 \mathrm{H}) ; \mathrm{MS}: 588.1(\mathrm{M}+1)^{+}$.

Compound 313

${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6): $\delta 8.15(\mathrm{~m}, 1 \mathrm{H}), 7.64-6.31(\mathrm{~m}, 13 \mathrm{H}), 3.63(\mathrm{~m}, 1 \mathrm{H}), 3.45-3.36$ $(\mathrm{m}, 2 \mathrm{H}), 3.03(\mathrm{~s}, 3 \mathrm{H}), 2.89(\mathrm{~s}, 3 \mathrm{H}), 1.74-1.51(\mathrm{~m}, 5 \mathrm{H}), 1.25-0.95(\mathrm{~m}, 5 \mathrm{H}) ; \mathrm{MS}: 550.1(\mathrm{M}+1)^{+}$.
Example 19. Preparation of Compounds 215 and 216

Acetic acid 4-[(cyclohexylcarbamoyl-o-tolyl-methyl)-(3-fluoro-phenyl)-carbamoyl]phenyl ester (Compound 215) was synthesized via Scheme 1, following the general procedure set forth in Example 1, step A and some de-Ac byproduct (Compound 216) was isolated from the reaction.

Compound 215

${ }^{1}$ H NMR (300 MHz , DMSO-d6): $\delta 8.12(\mathrm{~d}, 1 \mathrm{H}, J=8.1 \mathrm{MHz}$), $7.29-6.75(\mathrm{~m}, 12 \mathrm{H}), 6.47(\mathrm{~s}, 1 \mathrm{H})$, $3.66(\mathrm{~m}, 1 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 1.98(\mathrm{~s}, 3 \mathrm{H}), 1.79-1.51(\mathrm{~m}, 5 \mathrm{H}), 1.29-1.03(\mathrm{~m}, 5 \mathrm{H})$; MS: 503.2
$(\mathrm{M}+1)^{+}$.
Compound 216

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, ~ D M S O-\mathrm{d} 6$) : $\delta 8.13(\mathrm{~d}, 1 \mathrm{H}, J=7.6 \mathrm{MHz}$), 7.11-6.49 (m, 12H), 3.68-3.66 (m, $1 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 1.78-1.54(\mathrm{~m}, 5 \mathrm{H}), 1.31-1.01(\mathrm{~m}, 5 \mathrm{H}) ; \mathrm{MS}: 461.2(\mathrm{M}+1)^{+}$.

Example 20. Synthesis of 3-Isocyano-bicyclo[3.1.0]hexane. The title intermediate was synthesized following the scheme below and used for synthesis of Compound 333 and Compound 377 following Scheme 1

Step
A: For Cyclopent-3-enyl-carbamic acid benzyl ester. To a solution of Cyclopent-3-
enecarboxylic acid ($5 \mathrm{~g}, 44.6 \mathrm{mmol}$) in toluene (50 ml) was added a solution of DPPA $(13.5 \mathrm{~g}$, $49 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(5.4 \mathrm{~g}, 53.5 \mathrm{mmol})$ in toluene $(50 \mathrm{ml})$ dropwise at room temperature. The mixture was heated to reflux for 2 hours and then benzyl alcohol ($7 \mathrm{ml}, 66.9 \mathrm{mmol}$) was added.
The reaction mixture was refluxed overnight then cooled to room temperature, washed with NaHCO_{3} solution, brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and filtered. The organic solvent was evaporated in vacuo and the residue was purified via flash chromatography column eluted with $\mathrm{PE} / \mathrm{EtOAc}$ (from $50 / 1$ to $5 / 1$) to give the pure cyclopent-3-enyl-carbamic acid benzyl ester ($5 \mathrm{~g}, 52 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6): $\delta 7.46(\mathrm{~d}, J=8.0,1 \mathrm{H}), 7.36-7.30(\mathrm{~m}, 5 \mathrm{H}), 5.66(\mathrm{~s}, 2 \mathrm{H}), 5.00(\mathrm{~s}$, $2 \mathrm{H}), 4.11(\mathrm{~m}, 1 \mathrm{H}), 2.59-2.49(\mathrm{~m}, 2 \mathrm{H}), 2.19-2.14(\mathrm{~m}, 2 \mathrm{H})$

Step B: Bicyclo[3.1.0]hex-3-yl-carbamic acid benzyl ester. To a solution of Cyclopent-3-enylcarbamic acid benzyl ester in $\mathrm{DCM}(30 \mathrm{ml})$ was added $\mathrm{ZnEt}_{2}(1 \mathrm{M}, 30.4 \mathrm{ml}, 30.4 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$ under N_{2} atmosphere. $\mathrm{CH}_{2} \mathrm{I}_{2}(2.5 \mathrm{ml}, 30.4 \mathrm{mmol})$ was added dropwise under the same condition. The reaction mixture was warmed to room temperature and stirred for 4 hours. The resulting mixture was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the solvent was concentrated.

The residue was purified via flash chromatography column eluted with $\mathrm{PE} / \mathrm{EtOAc}$ (from 50/1 to $5 / 1$) to give the pure Bicyclo[3.1.0]hex-3-yl-carbamic acid benzyl ester ($1.5 \mathrm{~g}, 46 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6): $\delta 7.37-7.31(\mathrm{~m}, 5 \mathrm{H}), 7.50(\mathrm{~d}, \mathrm{~J}=4.6,1 \mathrm{H}), 4.99(\mathrm{~s}, 2 \mathrm{H}), 3.98-$ $3.96(\mathrm{~m}, 1 \mathrm{H}), 1.59-1.55(\mathrm{~m}, 2 \mathrm{H}), 1.23-1.14(\mathrm{~m}, 2 \mathrm{H}), 0.50(\mathrm{~m}, 1 \mathrm{H}), 0.27(\mathrm{~m}, 1 \mathrm{H})$.
Step C: For Bicyclo[3.1.0]hex-3-ylamine. A solution of Bicyclo[3.1.0]hex-3-yl-carbamic acid benzyl ester $(1.5 \mathrm{~g}, 6.5 \mathrm{mmol})$ in $\mathrm{MeOH}(20 \mathrm{ml})$ was hydrogenated with $\mathrm{Pd} / \mathrm{C}(10 \%, 0.3 \mathrm{~g})$ as a catalyst under atmospheric pressure for 2 hours. The resulting mixture was filtered and the filtrate was evaporated in vacuo to give the Bicyclo[3.1.0]hex-3-ylamine as a white solid which was used directly without further purification $\left(0.45 \mathrm{~g}, 71 \%\right.$ yield). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta 4.35-3.64(\mathrm{~m}, 3.8 \mathrm{H}), 2.23-2.18(\mathrm{~m}, 2 \mathrm{H}), 1.53-1.50(\mathrm{~m}, 2 \mathrm{H}), 1.23-1.13(\mathrm{~m}, 4 \mathrm{H}), 0.56-0.51(\mathrm{~m}$, $2 \mathrm{H}), 0.00(\mathrm{br}, 1 \mathrm{H})$.

Step D: N-Bicyclo[3.1.0]hex-3-yl-formamide. A mixture of Bicyclo[3.1.0]hex-3-ylamine (0.45 $\mathrm{g}, 4.6 \mathrm{mmol}$) in ethyl formate (2 ml) was reflux for 8 hours. The resulting mixture was evaporated in vacuo and the residue was purified via chromatography eluted with $\mathrm{PE} / \mathrm{EtOAc}$ (from $20 / 1$ to $2 / 1$) to give the N -Bicyclo[3.1.0]hex-3-yl-formamide. ($460 \mathrm{mg}, 80 \%$ yield) ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6): $\delta 7.67-7.59(\mathrm{~m}, 2 \mathrm{H}), 3.93(\mathrm{~m}, 1 \mathrm{H}), 1.94-1.88(\mathrm{~m}, 2 \mathrm{H})$, 1.32$1.28(\mathrm{~m}, 2 \mathrm{H}), 1.03-1.00(\mathrm{~m}, 2 \mathrm{H}), 0.30-0.26(\mathrm{~m}, 1 \mathrm{H}), 0.00(\mathrm{~m}, 1 \mathrm{H})$.

Step E: 3-Isocyano-bicyclo[3.1.0]hexane. A mixture of N-(Tetrahydro-pyran-4-yl)-formamide $(0.46 \mathrm{~g}, 3.7 \mathrm{mmol}), \mathrm{PPh}_{3}(1.06 \mathrm{~g}, 4 \mathrm{mmol}), \mathrm{CCl}_{4}(0.57 \mathrm{~g}, 3.7 \mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}(0.38 \mathrm{~g}, 3.7 \mathrm{mmol})$ in DCM (10 ml) was heated to $45^{\circ} \mathrm{C}$ for 8 hours. The resulting mixture was evaporated in vacuo and the residue was suspended in $\mathrm{Et}_{2} \mathrm{O}(25 \mathrm{ml})$. The solid was filtered off and the solvent was concentrated and purified via flash chromatography column eluted with $\mathrm{PE} / \mathrm{EtOAc}$ (from 100/1 to 20/1) to give the pure 3-Isocyano-bicyclo[3.1.0]hexane ($0.1 \mathrm{~g}, 25 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 4.01(\mathrm{~m}, 1 \mathrm{H}), 2.22-2.17(\mathrm{~m}, 2 \mathrm{H}), 2.08-2.04(\mathrm{~m}, 2 \mathrm{H}), 0.66-0.60(\mathrm{~m}, 2 \mathrm{H})$. The following intermediates were synthesized via Steps D and E of the procedure set forth in this example and purified via flash chromatography eluted with $\mathrm{Et}_{2} \mathrm{O}$ or PE to afford the desired product as an $\mathrm{Et}_{2} \mathrm{O}$ or PE solution, which was concentrated under 1atm pressure and used directly.

1, 1-Difluoro-4-isocyano-cyclohexane (PE solution) used for synthesis of Compound 342

D_{11}-Isocyano-cyclohexane ($\mathrm{Et}_{2} \mathrm{O}$ solution) used for synthesis of Compound 361

Example 21. Synthesis of 4-Isocyano-tetrahydro-pyran. The title compound was synthesized following the scheme below and used for synthesis of Compound 179 following Scheme 1.

Step A: N-(Tetrahydro-pyran-4-yl)-formamide. A mixture of Tetrahydro-pyran-4-ylamine (25 $\mathrm{g}, 247.5 \mathrm{mmol}$) in ethyl formate ($25 \mathrm{~g}, 338 \mathrm{mmol}$) was reflux for 8 hours. The resulting mixture was evaporated in vacuo to give the crude N -(Tetrahydro-pyran-4-yl)-formamide, which was used directly without further purification $(29 \mathrm{~g}, 90 \%$ yield $) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.10$ (br, 1H), 5.77 (br, 1H), 4.19-4.02 (m, 1H), 3.98-3.90 (m, 2H), 3.50-3.84 (m, 2H), 1.92-1.80 (m, $2 \mathrm{H}), 1.62-1.41(\mathrm{~m}, 2 \mathrm{H})$.

Step B: For 4-Isocyano-tetrahydro-pyran. A mixture of N-(Tetrahydro-pyran-4-yl)-formamide $(29 \mathrm{~g}, 224 \mathrm{mmol}), \mathrm{PPh}_{3}(64.8 \mathrm{~g}, 247 \mathrm{mmol}), \mathrm{CCl}_{4}(34.5 \mathrm{~g}, 224 \mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}(22.6 \mathrm{~g}, 224 \mathrm{mmol})$ in DCM (300 ml) was heated to $45^{\circ} \mathrm{C}$ for 8 hours. The resulting mixture was evaporated in vacuo and the residue was suspended in $\mathrm{Et}_{2} \mathrm{O}(250 \mathrm{ml})$. The solid was filtered off and the solvent was purified via flash chromatography column eluted with $\mathrm{PE} / \mathrm{EtOAc}$ to give the 4-Isocyano-tetrahydro-pyran ($15 \mathrm{~g}, 60 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 3.90-3.82(\mathrm{~m}, 3 \mathrm{H})$, 3.57-3.50 (m, 2H), 1.95-1.91 (m, 2H), 1.84-1.77 (m, 2H).

Example 22. Synthesis of 1,1-Difluoro-3-isocyano-cyclobutane. The title compound was synthesized following scheme below and used for synthesis of Compound 379 according to Scheme 1.

Step A: (3-Oxo-cyclobutyl)-carbamic acid benzyl ester. A solution of 3-Oxocyclobutanecarboxylic acid $(1.01 \mathrm{~g}, 8.8 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(1.5 \mathrm{ml}, 10.5 \mathrm{mmol})$ in THF/Toluene $(1: 1,30 \mathrm{ml})$ was treated with DPPA $(1.9 \mathrm{ml}, 8.8 \mathrm{mmol})$. The mixture was stirred for 3 hours at $60^{\circ} \mathrm{C}$ and then $\mathrm{BnOH}(1 \mathrm{ml}, 9.7 \mathrm{mmol})$ added. The reaction mixture was stirred for another 3 hours at the same temperature. The resulting mixture was concentrated under vacuum to remove most THF and then diluted with EtOAc (5020 ml). This so-obtained mixture was washed with saturated NaHCO_{3} solution, brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. The solvent was evaporated and the residue was purified via chromatography eluted with $\mathrm{PE} / \mathrm{EtOAc}(4: 1)$ to give the desired product as a white solid (yield: $0.48 \mathrm{~g}, 25 \%$ yield). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.35(\mathrm{~m}, 5 \mathrm{H})$, $5.12(\mathrm{~m}, 3 \mathrm{H}), 4.33(\mathrm{~m}, 1 \mathrm{H}), 3.41(\mathrm{~m}, 2 \mathrm{H}), 3.07(\mathrm{~m}, 2 \mathrm{H})$.
Step B: For (3,3-Difluoro-cyclobutyl)-carbamic acid benzyl ester. To a solution of (3-Oxo-cyclobutyl)-carbamic acid benzyl ester ($0.3 \mathrm{~g}, 1.37 \mathrm{mmol}$) in $\mathrm{CHCl}_{3}(3 \mathrm{ml})$ was added DAST ($0.88 \mathrm{~g}, 5.48 \mathrm{mmol}$) dropwise. The reaction mixture was stirred overnight at room temperature and then quenched with saturated NaHCO_{3} solution (25 ml). The resulting mixture was extracted with DCM ($3 \times 15 \mathrm{ml}$) and the combined organic layer was washed with water, brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the solvent was evaporated in vacuo. The residue was purified by TLC (PE/EA $=5: 2$) to give the desired product ($0.23 \mathrm{~g}, 69 \%$ yield). ${ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, CDCl_{3}): $\delta 7.35(\mathrm{~m}, 5 \mathrm{H}), 5.10(\mathrm{~s}, 2 \mathrm{H}), 4.97(\mathrm{br}, 1 \mathrm{H}), 4.11(\mathrm{~m}, 1 \mathrm{H}), 2.97(\mathrm{~m}, 2 \mathrm{H}), 2.47(\mathrm{~m}, 2 \mathrm{H})$.
Step C: 3,3-Difluoro-cyclobutylamine (hydrochloride). A mixture of (3,3-Difluoro-cyclobutyl)carbamic acid benzyl ester $(1.47 \mathrm{~g}, 6.1 \mathrm{mmol})$ and $10 \% \mathrm{Pd} / \mathrm{C}(1 \mathrm{~g})$ in $\mathrm{MeOH}(20 \mathrm{ml})$ was stirred overnight under H_{2} atmosphere (1 atm) at room temperature. The resulting mixture was filtered through a pad of celite and washed with MeOH . The filtration combined with 2 ml of conc. HCl and evaporated in vacuo to afford the desired product ($0.81 \mathrm{~g}, 85 \%$ yield). ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, DMSO-d6): $\delta 8.60(\mathrm{~m}, 3 \mathrm{H}), 3.64(\mathrm{~m}, 1 \mathrm{H}), 2.89(\mathrm{~m}, 4 \mathrm{H})$.

Step D: N-(3,3-Difluoro-cyclobutyl)-formamide. The title compound was synthesized via general procedure set forth in Example 20, step D. ${ }^{1}$ H NMR (400 MHz , DMSO-d6): $\delta 8.53$ (br, $1 \mathrm{H}), 8.01(\mathrm{~s}, 1 \mathrm{H}), 4.11(\mathrm{~m}, 1 \mathrm{H}), 2.96-2.87(\mathrm{~m}, 2 \mathrm{H}), 2.63-2.51(\mathrm{~m}, 2 \mathrm{H})$.
Step E: 1,1-Difluoro-3-isocyano-cyclobutane. The title compound was synthesized via general procedure set forth in Example 20, step E and purified via chromatography eluted with $\mathrm{Et}_{2} \mathrm{O}$ to give the desired product as an $\mathrm{Et}_{2} \mathrm{O}$ solution, which was concentrated under 1atm pressure and used directly. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-6): $\delta 4.28$ (m, 1H), 3.19-3.12 (m, 2H), 2.96-2.91 (m, $2 \mathrm{H})$.

Example 23. Synthesis of (4-Fluoro-benzyloxy)-acetic acid. The title compound was synthesized following the scheme below and used for synthesis of Compound 214 according to Scheme 1

Step A: (4-Fluoro-benzyloxy)-acetic acid tert-butyl ester. To a mixture of (4-Fluoro-phenyl)methanol ($0.6 \mathrm{~g}, 5.12 \mathrm{mmol}$) and $\mathrm{Bu}_{4} \mathrm{~N}^{+} \mathrm{Cl}^{-}(174 \mathrm{mg}, 0.512 \mathrm{mmol})$ in toluene $(100 \mathrm{ml})$ as added NaOH solution $(50 \%, 100 \mathrm{ml})$ at $0^{\circ} \mathrm{C}$. Bromo-acetic acid tert-butyl ester $(2.0 \mathrm{~g}, 10.25 \mathrm{mmol})$ was added. The reaction mixture was warmed to room temperature and stirred overnight. The organic phase was separated, washed with water, brine, dried over Na 2 OS 4 , filtered and the solvent was evaporated in vacuo. The residue was purified via flash chromatography column eluted with PE/EtOAc (3/1) to give the (4-Fluoro-benzyloxy)-acetic acid tert-butyl ester as colorless oil ($1.18 \mathrm{~g}, 96 \%$ yield) ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.36-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.01(\mathrm{t}, 2 \mathrm{H})$, $4.56(\mathrm{~s}, 2 \mathrm{H}), 3.96(\mathrm{~s}, 2 \mathrm{H}), 1.47(\mathrm{~s}, 9 \mathrm{H})$.

Step B: (4-Fluoro-benzyloxy)-acetic acid. A solution of (4-Fluoro-benzyloxy)-acetic acid tertbutyl ester ($1.1 \mathrm{~g}, 4.58 \mathrm{mmol}$) in TFA/DCM ($1 / 1,30 \mathrm{ml}$) was stirred for 3 hours at room temperature. The resulting mixture was evaporated in vacuo and the residue was washed with a mixture of EtOAc/hexane to give the (4-Fluoro-benzyloxy)-acetic acid as a solid, which was used directly without further purification ($0.8 \mathrm{~g}, 94 \%$ yield).

The following carboxylic acid intermediates were synthesized via the general procedures set forth in this example.
(2-Fluoro-cyclohexyloxy)-acetic acid used for synthesis of Compound 235

(Tetrahydro-pyran-4-yloxy)-acetic acid was used for synthesis of Compound 259

(S)-(Tetrahydro-furan-3-yloxy)-acetic acid was used for synthesis of Compound 251

(2-Fluoro-benzyloxy)-acetic acid was used for synthesis of Compound 222

(Pyridin-4-ylmethoxy)-acetic acid was used for synthesis of Compound 229

Cyclopentyloxy-acetic acid was used for synthesis of Compound 230

(Pyridin-3-ylmethoxy)-acetic acid was used for synthesis of Compound 233

(3-Fluoro-benzyloxy)-acetic acid was used for synthesis of Compound 234

(Pyridin-2-ylmethoxy)-acetic acid was used for synthesis of Compound 281

(Pyrazin-2-ylmethoxy)-acetic acid was used for synthesis of Compound 282

(4-Trifluoromethyl-pyridin-3-ylmethoxy)-acetic acid was used for synthesis of Compound 303

(6-Trifluoromethyl-pyridin-3-yloxy)-acetic acid was used for synthesis of Compound 274

(Pyridazin-3-yloxy)-acetic acid was used for synthesis of Compound 273

Example 24. Synthesis of 3-Fluoro-pyridin-2-ylamino)-acetic acid. The title compound was synthesized following the scheme below and used for the synthesis of Compound 361,
Compound 342, Compound 333, Compound 301 and Compound 379.

Step A: (3-Fluoro-pyridin-2-ylamino)-acetic acid methyl ester. To a mixture of 40% glyoxal aqueous solution $(1.5 \mathrm{ml})$ in $\mathrm{MeOH}(10 \mathrm{ml})$ was added a slurry of 3-Fluoro-pyridin-2-ylamine $(1.17 \mathrm{~g}, 10.5 \mathrm{mmol})$ in $\mathrm{HClO}_{4}(3 \mathrm{ml})$. The reaction mixture was heated to $70^{\circ} \mathrm{C}$ for 48 hours. The resulting mixture was adjusted to $\mathrm{pH}>8$ with saturated NaHCO_{3} solution after being cooled to room temperature. The basic solution was extracted with ethyl acetate ($3 \times 10 \mathrm{ml}$). The combined organic layer was washed with brine, dried over MgSO_{4}, filtered and the solvent was evaporated in vacuo. The residue was purified by flash column to give the (3-Fluoro-pyridin-2-ylamino)-acetic acid methyl ester as a white solid ($600 \mathrm{mg}, 31 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 7.88(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=4.8), 7.17(\mathrm{~m}, 1 \mathrm{H}), 6.59(\mathrm{~m}, 1 \mathrm{H}), 5.12(\mathrm{br}, 1 \mathrm{H}), 4.26(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=6.4)$,
3.78 ($\mathrm{s}, 3 \mathrm{H}$).

Step B: (5-Fluoro-pyridin-2-ylamino)-acetic acid. A mixture of (3-Fluoro-pyridin-2-ylamino)acetic acid methyl ester ($280 \mathrm{mg}, 1.5 \mathrm{mmol}$) in $5 \mathrm{~N} \mathrm{HCl}(5 \mathrm{ml})$ was heated to reflux for 3 hours. The resulting mixture was evaporated in vacuo to give the (5-Fluoro-pyridin-2-ylamino)-acetic acid, which was used directly without further purification ($300 \mathrm{mg}, 97 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6): $\delta 7.82(\mathrm{~m}, 2 \mathrm{H}), 7.68(\mathrm{~m}, 1 \mathrm{H}), 6.75(\mathrm{~m}, 1 \mathrm{H}), 4.13(\mathrm{~s}, 2 \mathrm{H})$.

The following carboxylic acid intermediates were synthesized via the general procedure set forth in this example
(5-Fluoro-pyridin-2-ylamino)-acetic acid (hydrochloride) was used for Compound 287

(Pyridin-2-ylamino)-acetic acid (hydrochloride) was used for Compound 316

${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6): $\delta 13.65(\mathrm{br}, 2 \mathrm{H}), 8.94(\mathrm{br}, 1 \mathrm{H}), 7.94(\mathrm{~m}, 2 \mathrm{H}), 7.17(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=$ 7.2), $6.91(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=6.4)$.

Example 25. Synthesis of 1H-Pyrrolo[2,3-b]pyridin-3-yl)-acetic acid (hydrochloride). The title compound was synthesized following scheme below and used for synthesis of Compound 276, Compound 203 and Compound 213.

Step A: Oxo-(1H-pyrrolo[2,3-blpyridin-3-yl)-acetic acid ethyl ester (bb). To a solution of aluminum chloride ($28.2 \mathrm{~g}, 0.212 \mathrm{~mol}$) in DCM (50 ml) was added 7-azaindole (aa; $5.0 \mathrm{~g}, 0.042$ $\mathrm{mol})$ in one portion at room temperature $\left(25^{\circ} \mathrm{C}\right)$ under N_{2}. After 1 h at room temperature the
resulting mixture was cooled to $0^{\circ} \mathrm{C}$ and a solution of chloro-oxo-acetic acid ethyl ester $(28.9 \mathrm{~g}$, 0.212 mol) in DCM (20 ml) was added dropwise for 1 h . After stirring 30 min at the same temperature, the reaction was warmed to rt and stirred overnight. The reaction was cooled to $0^{\circ} \mathrm{C}$ and ethanol $(100 \mathrm{ml})$ was added dropwise. After a period of 30 min at rt , the solvent was evaporated. DCM $(250 \mathrm{ml})$ and saturated $\mathrm{NaHCO}_{3}(300 \mathrm{ml})$ were added, the aqueous phase was extracted with DCM twice, the organics were combined, washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated to give crude product. The crude product was washed with PE (20 ml), filtered and the filter cake was dried to give bb ($2.1 \mathrm{~g}, 23 \%$ yield) as yellow solid. ${ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 12.51(\mathrm{~s}, 1 \mathrm{H}), 8.77-8.69(\mathrm{~m}, 2 \mathrm{H}), 8.46-8.44(\mathrm{~m}, 1 \mathrm{H}), 7.37-7.33(\mathrm{~m}, 1 \mathrm{H}), 4.49-4.42(\mathrm{q}$, 2H), 1.48-1.43 (t, 3H); MS: $219.0(\mathrm{M}+1)^{+}$.

Step B: (1H-Pyrrolo[2,3-blpyridin-3-yl)-acetic acid ethyl ester (cc). To a mixture of triethylsilane $(2.0 \mathrm{~g}, 17.2 \mathrm{mmol})$ in TFA $(20 \mathrm{ml})$ was added $\mathbf{b b}(1.0 \mathrm{~g}, 4.9 \mathrm{mmol})$ in one portion at room temperature. After a period of 16 h at $55^{\circ} \mathrm{C}$, the solvent was removed and saturated NaHCO_{3} was added, followed by DCM. The organic layer was collected, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to give cc ($400 \mathrm{mg}, 43 \%$ yield) as yellow solid without further purification for next step. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 12.81(\mathrm{~s}, 1 \mathrm{H}), 8.42-8.37(\mathrm{~m}, 2 \mathrm{H}), 7.45(\mathrm{~s}, 1 \mathrm{H}), 7.37-7.32$ $(\mathrm{m}, 1 \mathrm{H}), 4.18-4.16(\mathrm{q}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 2 \mathrm{H}), 1.28-1.24(\mathrm{t}, 3 \mathrm{H}) ; \mathrm{MS}: 205.0(\mathrm{M}+1)^{+}$.

Step C: (1H-Pyrrolo[2,3-blpyridin-3-yl)-acetic acid (dd). A mixture of cc (0.4 g, 2.1 mmol) and $\mathrm{LiOH} \cdot \mathrm{H}_{2} \mathrm{O}(0.35 \mathrm{~g}, 8.4 \mathrm{mmol})$ in $\mathrm{THF} / \mathrm{H}_{2} \mathrm{O}(10 \mathrm{ml}, \mathrm{v} / \mathrm{v}=1: 1)$ was stirred at rt for 1 h .4 M HCl aq was added at $0^{\circ} \mathrm{C}$ until $\mathrm{pH}=5$, the solvent was removed and the residue was washed with methanol, filtered and the organic layer was dried and concentrated to give crude dd (400 mg) without further purification for next step. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6): $\delta 12.06(\mathrm{~s}, 1 \mathrm{H}), 8.29-$ $8.15(\mathrm{~m}, 2 \mathrm{H}), 7.45-7.44(\mathrm{~m}, 1 \mathrm{H}), 7.23-7.18(\mathrm{~m}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 2 \mathrm{H}) ; \mathrm{MS}: 177.1(\mathrm{M}+1)^{+}$.

The following carboxylic acid reagents were synthesized via the general procedure of this example
(1H-Pyrrolo[3,2-b]pyridin-3-yl)-acetic acid was used for synthesis of Compound 275

(1H-Pyrrolo[2,3-c]pyridin-3-yl)-acetic acid was used for synthesis of Compound 276

(1H-Pyrrolo[3,2-c]pyridin-3-yl)-acetic acid was used for synthesis of Compound 261

Example 26. Synthesis of 2-Methyl-imidazol-1-yl)-acetic acid. The title compound was synthesized following scheme below and used for synthesis of Compound 176 following Scheme 1.

Step A: (2-Methyl-imidazol-1-yl)-acetic acid ethyl ester. To a solution of 2-Methyl-1Himidazole ($20.52 \mathrm{~g}, 250 \mathrm{mmol}$) in THF (500 ml) was added $\mathrm{K}_{2} \mathrm{CO}_{3}(41.46 \mathrm{~g}, 300 \mathrm{mmol})$. The mixture was stirred at room temperature for 0.5 hour. Bromoacetic acid ethyl ester ($27.6 \mathrm{ml}, 250$ mmol) was added and the mixture was stirred overnight at room temperature. The resulting mixture was filtered and the filtrate was evaporated in vacuo. The residue was purified via flash chromatography column eluted with PE/EtOAc (from 20/1 to 3/1) to give the (2-Methyl-imidazol-1-yl)-acetic acid ethyl ester as colorless oil ($23.4 \mathrm{~g}, 56 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\mathrm{CDCl} 3): ~ \delta 6.93(\mathrm{~s}, 1 \mathrm{H}), 6.83(\mathrm{~s}, 1 \mathrm{H}), 4.58(\mathrm{~s}, 2 \mathrm{H}), 4.25(\mathrm{q}, 2 \mathrm{H}, J=6.8), 2.35(\mathrm{~s}, 3 \mathrm{H}), 1.29(\mathrm{t}, 3 \mathrm{H}$, $J=6.8$).
Step B: (2-Methyl-imidazol-1-yl)-acetic acid. A mixture of (2-Methyl-imidazol-1-yl)-acetic acid ethyl ester ($23.4 \mathrm{~g}, 0.14 \mathrm{~mol}$) and $\mathrm{NaOH}(12 \mathrm{~g}, 0.3 \mathrm{~mol})$ in a mixture of $\mathrm{H}_{2} \mathrm{O}(100 \mathrm{ml})$, THF (150 $\mathrm{ml})$ and $\mathrm{MeOH}(150 \mathrm{ml})$ was stirred for 3 h at room temperature. The organic solvents were evaporated and the resulting aqueous solution was extracted with $10 \% \mathrm{MeOH} / \mathrm{DCM}$. The aqueous layer was acidified with conc. HCl to $\mathrm{pH}=4$ and all solvent was evaporated. The residue was extracted with $40 \% \mathrm{MeOH} / \mathrm{DCM}$ and the solvent was evaporated in vacuo to give the (2-Methyl-imidazol-1-yl)-acetic acid as a white solid. ${ }^{1}$ H NMR (400 MHz, DMSO-d6): $\delta 7.45$ (d, $1 \mathrm{H}, J=1.6$), 7.39 (d, 1H, $J=1.6$), 4.75 ($\mathrm{s}, 2 \mathrm{H}$), 2.48 ($\mathrm{s}, 3 \mathrm{H}$).
Example 27. Synthesis of 5-Fluoro-pyridin-3-ylamino)-acetic acid. The title compound was synthesized following scheme below and used for synthesis of Compound 310 .

Step A: Bis-(5-fluoro-pyridin-3-ylamino)-acetic acid ethyl ester. To a solution of 3-amino-5fluropyridine ($2.24 \mathrm{~g}, 20 \mathrm{mmol}$) in dry DMF (30 ml) was added Oxoacetic acid ethyl ester (2.04 $\mathrm{g}, 40 \mathrm{mmol})$ in toluene $(30 \mathrm{ml}) . \mathrm{HCl} /$ dioxane $(3 \mathrm{M}, 6.6 \mathrm{ml})$ was added dropwise below $15^{\circ} \mathrm{C}$. The reaction mixture was stirred at $50^{\circ} \mathrm{C}$ for 70 hours and the solvent was removed under reduced pressure. The residue was neutralized with saturated aqueous NaHCO_{3} to $\mathrm{pH}>8$, extracted with DCM, purified through silica gel chromatography with $\mathrm{MeOH} / \mathrm{DCM}$ (5\%) to give the Bis-(5-fluoro-pyridin-3-ylamino)-acetic acid ethyl ester ($1.0 \mathrm{~g}, 32 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6): $\delta 7.99(\mathrm{~s}, 2 \mathrm{H}), 7.80(\mathrm{~s}, 2 \mathrm{H}), 7.18(\mathrm{~s}, 2 \mathrm{H}, \mathrm{J}=7.2), 7.02(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=12), 5.63(\mathrm{~m}$, $1 \mathrm{H}), 4.20(\mathrm{q}, 2 \mathrm{H}, \mathrm{J}=6.8), 1.53(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=6.8)$.
Step B: (5-Fluoro-pyridin-3-ylamino)-acetic acid (hydrochloride). A mixture of Bis-(5-fluoro-pyridin-3-ylamino)-acetic acid ethyl ester ($1 \mathrm{~g}, 3.2 \mathrm{mmol}$) and $\mathrm{Pd} / \mathrm{C}(5 \%, 0.9 \mathrm{~g})$ in $\mathrm{HCl}(6 \mathrm{~N}, 20$ ml) was stirred overnight under H_{2} atmosphere at room temperature. The resulting mixture was basified with 20% aqueous NaOH to $\mathrm{pH}>8$ and extracted with ether. The aqueous phase was adjust to $\mathrm{pH}=4$ and evaporated to dryness under reduced pressure. The residual solid was triturated in $20 \% \mathrm{MeOH} / \mathrm{DCM}$, filtered and the filtrate was evaporated in vacuo to give the (5-Fluoro-pyridin-3-ylamino)-acetic acid (hydrochloride) which was used directly without further purification ($0.5 \mathrm{~g}, 74 \%$ yield).
Example 28. Synthesis of (1H-Indol-3-yl)-oxo-acetic acid. The title compound was synthesized following scheme below and used for synthesis of Compound 262 following Scheme 1.

Step A: (1H-Indol-3-yl)-oxo-acetic acid ethyl ester. The title compound was synthesized via general procedure set forth in Example 25, step A.
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6): $\delta 12.42(\mathrm{br}, 1 \mathrm{H}), 8.44(\mathrm{~s}, 1 \mathrm{H}), 8.17(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=6.4), 7.57$ (d, $1 \mathrm{H}, \mathrm{J}=6.4), 7.27(\mathrm{~m}, 2 \mathrm{H}), 4.37(\mathrm{q}, 2 \mathrm{H}, \mathrm{J}=14,5.1), 1.35(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=5.1)$.

Step B: (1H-Indol-3-yl)-oxo-acetic acid. To a mixture of (1H-Indol-3-yl)-oxo-acetic acid ethyl ester $(2.66 \mathrm{~g}, 12.2 \mathrm{mmol})$ in THF (300 ml) was added a solution of $\mathrm{NaOH}(1.0 \mathrm{~g}, 24.2 \mathrm{mmol})$ in water (20 ml). The reaction mixture was stirred for 2 h at room temperature. The resulting mixture was concentrated in vacuo to remove most THF. The aqueous phase was acidified to $\mathrm{PH}=3$ with conc. HCl and then the precipitate was collected by filtration, washed with water and dried to give the desired product ($2.3 \mathrm{~g}, 100 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d6): $\delta 13.86$ $(\mathrm{br}, 1 \mathrm{H}), 12.36(\mathrm{~s}, 1 \mathrm{H}), 8.42(\mathrm{~s}, 1 \mathrm{H}), 8.17(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=6.4), 7.54(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=6.4), 7.27(\mathrm{~m}, 2 \mathrm{H})$, $4.37(\mathrm{q}, 2 \mathrm{H}, \mathrm{J}=14,5.1), 1.35(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=5.1)$.
Example 29. Synthesis of N-Pyridin-4-ylmethyl-oxalamic acid ethyl ester. The title compound was synthesized following scheme below and used for synthesis of Compound 270 following Scheme 1.

Step A: N-Pyridin-4-ylmethyl-oxalamic acid ethyl ester. To a solution of 4aminomethypyridine ($7.5 \mathrm{~g}, 69.4 \mathrm{mmol}$) in dry THF (200 ml) was added ethyl chlorooxacetate $(8.55 \mathrm{ml}, 76.3 \mathrm{mmol})$ and $\operatorname{Et} 3 \mathrm{~N}(14.5 \mathrm{ml})$ at $0^{\circ} \mathrm{C}$. The mixture was stirred for 3 hours at the same temperature and then concentrated. The residue was diluted with saturated aqueous NaHCO 3 $(100 \mathrm{ml})$, extracted with EtOAc ($3 x 45 \mathrm{ml}$) and the combined extracts were washed with brine, dried over Na 2 SO 4 and filtered. The organic solvent was evaporated to dryness to give the N -Pyridin-4-ylmethyl-oxalamic acid ethyl ester as brown oil ($12.6 \mathrm{~g}, 87 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl} 3): \delta 8.57 \mathrm{~m}, 2 \mathrm{H}), 7.74(\mathrm{br}, 1 \mathrm{H}), 7.22(\mathrm{~m}, 2 \mathrm{H}), 4.54(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=6.4,14.4), 1.40(\mathrm{t}$, $3 \mathrm{H}, \mathrm{J}=5.1)$.

Step B: N-Pyridin-4-ylmethyl-oxalamic acid. The title compound was synthesized via general procedure set forth in Example 28, step B.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, ~ D M S O-\mathrm{d} 6$) : $\delta 9.66(\mathrm{~s}, 1 \mathrm{H}), 8.87(\mathrm{~m}, 2 \mathrm{H}), 7.93(\mathrm{~m}, 2 \mathrm{H}), 4.61(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=6)$.
Example 30. Synthesis of 1-Methyl-1H-imidazol-2-yl)-oxo-acetic acid. The title compound was synthesized following scheme below and used for synthesis of Compound 284 following

Scheme 1.

Step A: (1-Methyl-1H-imidazol-2-yl)-oxo-acetic acid ethyl ester. To a solution of 1methylimidazole $(2.65 \mathrm{~g}, 32.3 \mathrm{mmol})$ in $\mathrm{MeCN}(30 \mathrm{ml})$ was added ethyl chlorooxacetate $(4.41 \mathrm{~g}$, $32.3 \mathrm{mmol})$ dropwise at $0^{\circ} \mathrm{C}$ followed by $\mathrm{Et} 3 \mathrm{~N}(5.8 \mathrm{ml})$. The reaction mixture was stirred overnight and then filtered. The filtrate was evaporated to dryness, purified by flash chromatography eluted with $\mathrm{PE} / \mathrm{EtOAc}(2 / 1)$ to give the pure (1-Methyl-1H-imidazol-2-yl)-oxoacetic acid ethyl ester ($5.0 \mathrm{~g}, 85 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl} 3$): $\delta 7.31$ ($\mathrm{s}, 1 \mathrm{H}$), 7.17 (s , $1 \mathrm{H}), 4.47(\mathrm{q}, 2 \mathrm{H}, \mathrm{J}=6.8), 4.05(\mathrm{~s}, 1 \mathrm{H}), 1.41(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=6.8)$

Step B: (1-Methyl-1H-imidazol-2-yl)-oxo-acetic acid. The title compound was synthesized via general procedure set forth in Example 28, step B

Example 31. Synthesis of Oxo-(1H-pyrrolo[3,2-c]pyridin-3-yl)-acetic acid. The title compound was synthesized following scheme below and used for synthesis of Compound 269 following Scheme 1.

Oxo-(1H-pyrrolo[3,2-c]pyridin-3-yl)-acetic acid was synthesized via general procedure set forth in Example 25, step C. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d6): $\delta 13.71$ (br, 1 H), 9.53 (s, 1H), $9.00(\mathrm{~s}, 1 \mathrm{H}), 8.63(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=6.4), 8.14(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=6.4)$.

Example 32. Synthesis of 4,4-Difluoro-cyclohexylamine. The title compound was synthesized following scheme below and used for synthesis of Compound 331, Compound 330, Compound 378 and Compound 373 , all following Scheme 1.

Step A: (4, 4-Difluoro-cyclohexyl)-carbamic acid tert-butyl ester. To a solution of (4-Oxo-cyclohexyl)-carbamic acid tert-butyl ester ($10 \mathrm{~g}, 47 \mathrm{mmol}$) in DCM (50 ml) was added DAST
$(12.8 \mathrm{~g}, 80 \mathrm{mmol})$ dropwise at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred overnight at room temperature. The resulting mixture was washed with NaHCO 3 solution, brine, dried over Na 2 SO 4 , filtered and concentrated. The residue was re-crystallized with Et2O and PE to (4, 4-Difluoro-cyclohexyl)-carbamic acid tert-butyl ester as a solid ($4.0 \mathrm{~g}, 32 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6): $\delta 6.91-6.89(\mathrm{~d}, 1 \mathrm{H}), 3.44-3.43(\mathrm{~d}, 1 \mathrm{H}), 1.99-1.74(\mathrm{~m}, 6 \mathrm{H}), 1.49-1.36(\mathrm{~m}$, 11 H).
Step B: 4, 4-Difluoro-cyclohexylamine (hydrochloride). A mixture of (4, 4-Difluoro-cyclohexyl)-carbamic acid tert-butyl ester ($4.0 \mathrm{~g}, 17 \mathrm{mmol}$) in $\mathrm{Et} 2 \mathrm{O} / \mathrm{HCl}$ (saturated, 50 ml) was stirred for 3 hours. The precipitate was collected by filtration and dried in vacuo to give the 4, 4-Difluoro-cyclohexylamine (hydrochloride) which was used directly without further purification ($2.0 \mathrm{~g}, 67 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6): $\delta 8.30$ ($\mathrm{s}, 3 \mathrm{H}$), 3.19-3.18 ($\mathrm{s}, 1 \mathrm{H}$), 2.06-1.85 $(\mathrm{m}, 6 \mathrm{H}), 1.65-1.59(\mathrm{~m}, 2 \mathrm{H})$.
Example 33. Synthesis of 4-(1H-Tetrazol-5-yl)-phenylamine. The title compound was synthesized following the scheme below and used for synthesis of Compound 285 via Scheme 1.

To a solution of 4-amino-benzonitrile ($2.36 \mathrm{~g}, 20 \mathrm{mmol}$) in dry DMF (20 ml) was added $\mathrm{NaN} 3(1.6 \mathrm{~g}, 30 \mathrm{mmol})$ and $\mathrm{NH} 4 \mathrm{Cl}(1.6 \mathrm{~g}, 30 \mathrm{mmol})$ and the reaction mixture was refluxed overnight. After cooling to room temperature, the resulting mixture was diluted with 40 ml of water and extracted with EtOAc ($3 \times 30 \mathrm{ml}$). The organic layer was washed with brine, dried over Na 2 SO 4 , filtered and evaporated to give the $4-(1 \mathrm{H}-T e t r a z o l-5-\mathrm{yl})$-phenylamine ($1.5 \mathrm{~g}, 54 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6): $\delta 16.26$ (s, 1H), 7.70-7.68 (d, 2H, J = 8.4), 6.70-6.67 (d, $2 \mathrm{H}, \mathrm{J}=8.4$), 5.79-5.76 ($\mathrm{s}, 2 \mathrm{H}$).
Example 34. Synthesis of 4-[1,3,4]Oxadiazol-2-yl-phenylamine. The title compound was synthesized following the scheme below and used for synthesis of Compound 290 via Scheme 1

Step A: 4-Nitro-benzoic acid methyl ester. To a solution of the p-nitrobenzoic acid (8 g, 50
$\mathrm{mmol})$ in $\mathrm{MeOH}(100 \mathrm{ml})$ was added conc. $\mathrm{H} 2 \mathrm{SO} 4(10 \mathrm{ml})$ dropwise. The reaction mixture was refluxed overnight and then concentrated under vacuum. The residue was dissolved in EtOAc $(10 \mathrm{ml})$, washed with water, brine, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the solvent was concentrated to give the 4-Nitro-benzoic acid methyl ester which was used directly without further purification ($7.2 \mathrm{~g}, 84 \%$ yield).
Step B: 4-Nitro-benzoic acid hydrazide. To a solution of 4-Nitro-benzoic acid methyl ester $(3.6 \mathrm{~g}, 20 \mathrm{mmol})$ in $\mathrm{MeOH}(100 \mathrm{ml})$ was added Hydrazine hydrate $(2.0 \mathrm{~g}, 40 \mathrm{mmol})$. The reaction mixture was stirred overnight at room temperature. The resulting mixture was evaporated under vacuum to give the 4-Nitro-benzoic acid hydrazide which was used directly without further purification $(2.9 \mathrm{~g}, 81 \%$ yield $)$.

Step C: 2-(4-Nitro-phenyl)-[1,3,4]oxadiazole. A mixture of 4-Nitro-benzoic acid hydrazide (1.8 $\mathrm{g}, 10 \mathrm{mmol}$) in Orthoformic acid triethylester (30 ml) was refluxed overnight. The resulting mixture was concentrated under reduced pressure and the residue was washed with $\mathrm{Et}_{2} \mathrm{O}$ to give the pure 2-(4-Nitro-phenyl)-[1,3,4]oxadiazole ($1.2 \mathrm{~g}, 78 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSOd6): $\delta 8.60(\mathrm{~s}, 1 \mathrm{H}), 8.42-8.40(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=9.2), 8.32-8.30(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.8)$.
Step D: For 4-[1,3,4]Oxadiazol-2-yl-phenylamine. A mixture of 2-(4-Nitro-phenyl)[1,3,4] oxadiazole ($1.2 \mathrm{~g}, 6 \mathrm{mmol}$) in $\mathrm{MeOH}(10 \mathrm{ml})$ was hydrogenated overnight under atmospheric pressure with $10 \% \mathrm{Pd} / \mathrm{C}(400 \mathrm{mg})$ as a catalyst at room temperature. The resulting mixture was filtered. The filtration was concentrated and purified by flash chromatography eluted with $\mathrm{PE} / \mathrm{EtOAc}$ (from 30/1 to 2/1) to give the pure 4-[1,3,4]Oxadiazol-2-yl-phenylamine ($0.8 \mathrm{~g}, 71 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d} 6$): $\delta 10.16$ ($\mathrm{s}, 1 \mathrm{H}$), 8.25-8.23 (d, 2H, J = 9.2), 7.97-7.95 (d, 2H, J = 8.8), $6.09(\mathrm{~s}, 2 \mathrm{H})$.

Example 35. Synthesis of 4-[1,2,4]Oxadiazol-3-yl-phenylamine. The title compound was synthesized following the scheme below and used for synthesis of Compound 291 via Scheme 1.

Step A: N-Hydroxy-4-nitro-benzamidine. Hydroxylamine hydrochloride (18 g, 200 mol) and $\mathrm{K}_{2} \mathrm{CO}_{3}(5.53 \mathrm{~g}, 400 \mathrm{mmol})$ were added to a solution of 4-Nitro-benzonitrile ($8 \mathrm{~g}, 55 \mathrm{mmol}$) in
$\mathrm{EtOH}(200 \mathrm{ml})$. The reaction mixture was refluxed overnight and the hot mixture was filtered. The filtrate was collected and concentrated in vacuo to provide N-Hydroxy-4-nitro-benzamidine which was used directly without purification ($9.4 \mathrm{~g}, 87 \%$ yield).
Step B: For 3-(4-Nitro-phenyl)-[1,2,4]oxadiazole. A mixture of N-Hydroxy-4-nitrobenzamidine ($5.2 \mathrm{~g}, 30 \mathrm{mmol}$) in Orthoformic acid triethyl ester (50 ml) was refluxed overnight. The resulting mixture was concentrated in vacuo and the residue was washed with $\mathrm{Et}_{2} \mathrm{O}$ to give the 3-(4-Nitro-phenyl)-[1,2,4] oxadiazole which was pure enough to be used directly (4.6 $\mathrm{g}, 92 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6): $\delta 8.87$ (s, 1H), 8.39-8.32 (m, 4H).

Step C: For 4-[1,2,4]Oxadiazol-3-yl-phenylamine. A mixture of 3-(4-Nitro-phenyl)[1,2,4] oxadiazole ($2.3 \mathrm{~g}, 16 \mathrm{mmol}$) in $\mathrm{MeOH}(20 \mathrm{ml})$ was hydrogenated overnight under atmospheric pressure with $10 \% \mathrm{Pd} / \mathrm{C}(400 \mathrm{mg})$ as a catalyst at room temperature. The resulting mixture was filtered. The filtered was concentrated and purified by flash chromatography eluted with $\mathrm{PE} / \mathrm{EtOAc}$ (from $30 / 1$ to $2 / 1$) to give the pure $4-[1,2,4]$ Oxadiazol-3-yl-phenylamine (1.5 g , 77% yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, ~ D M S O-d 6$): $\delta 9.13(\mathrm{~s}, 1 \mathrm{H}), 7.68-7.66(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.4$), 6.69$6.67(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.4), 5.95(\mathrm{~s}, 2 \mathrm{H})$.
Example 36. Synthesis of $\mathbf{3 , 4}$-Dihydro-2H-benzo[1,4]oxazine. The title compound was synthesized following the scheme below and used for synthesis of Compound 202 via Scheme 1

Step A: For 4H-Benzo[1,4]oxazin-3-one. To a mixture of 2-aminophenol (5.45 g, 49.98 $\mathrm{mmol})$, TEBA $(11.4 \mathrm{~g}, 50.00 \mathrm{mmol})$ and $\mathrm{NaHCO}_{3}(16.8 \mathrm{~g}, 200.00 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(30 \mathrm{ml})$ was added a solution of 2-chloroacetyl chloride ($8.16 \mathrm{~g}, 72.21 \mathrm{mmol}$) in $\mathrm{CHCl}_{3}(5 \mathrm{ml})$ dropwise at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred for another 1 h at the same temperature and then heated to $55^{\circ} \mathrm{C}$ for 10 hours with stirring. The resulting mixture was concentrated under vacuum and then 50 ml of water was added. The precipitate was collected, purified by re-crystallization to give the 4 H -Benzo $[1,4]$ oxazin- 3 -one as a white solid ($3.6 \mathrm{~g}, 48 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSOd6): δ 6.97-6.86 (m, 4H), 4.55 ($\mathrm{s}, 2 \mathrm{H}$).

Step B: 3,4-Dihydro-2H-benzo[1,4]oxazine. To a mixture of LAH ($3.6 \mathrm{~g}, 94.74 \mathrm{mmol}$) in THF $(80 \mathrm{ml})$ was added a solution of 4H-Benzo[1,4]oxazin-3-one ($5.7 \mathrm{~g}, 38.22 \mathrm{mmol}$) in THF (21 ml) dropwise at room temperature. The reaction mixture was refluxed overnight. The resulting
mixture was cooled to $0^{\circ} \mathrm{C}$ and then quenched by the adding 3.6 ml of $\mathrm{H}_{2} \mathrm{O}$, followed by 10.8 ml $15 \% \mathrm{NaOH}$ solution. The precipitate was filtered off and the solvent was extracted with EtOAc $(2 \times 50 \mathrm{ml})$. The organic layer was washed with brine, dried over Na 2 SO 4 , filtered and concentrated to give the 3,4 -dihydro- 2 H -benzo $[\mathrm{b}][1,4]$ oxazine as red oil which was pure enough to be used directly ($1.5 \mathrm{~g}, 50 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO-d6): $\delta 6.67-6.41$ (m, 4H), $5.68(\mathrm{~s}, 1 \mathrm{H}), 4.11-4.07(\mathrm{~m}, 2 \mathrm{H}), 3.27-3.24(\mathrm{~m}, 2 \mathrm{H})$.

Example 37. Synthesis of 3-(1-Methyl-1H-pyrazol-4-yl)-phenylamine. The title compound was synthesized following the scheme below and used for synthesis of Compound 223 via Scheme 1.

3-Bromo-phenylamine ($0.83 \mathrm{~g}, 4.8 \mathrm{mmol}$) was dissolved in 30 ml of dry toluene with stirring, and 15 ml of EtOH was added. Then a solution of $\mathrm{Na}_{2} \mathrm{CO}_{3}(3.3 \mathrm{~g}, 31.2 \mathrm{mmol})$ in water (15 ml) was added followed by 4-(4,5-Dimethyl-[1,3,2]dioxaborolan-2-yl)-1-methyl-1H-pyrazole (1.0 g, 4.8 $\mathrm{mmol})$ and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.28 \mathrm{~g}, 0.24 \mathrm{mmol})$. The reaction mixture was heated to reflux with stirring overnight. The resulting mixture was cooled to room temperature, filtered and the solution was extracted with EtOAc ($3 \times 30 \mathrm{ml}$). The organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was purified by flash gel chromatography eluted with $\mathrm{PE} / \mathrm{EtOAc}$ (from $2 / 1$ to $1 / 3$) to give 3-(1-Methyl-1H-pyrazol-4-yl)-phenylamine as a white solid ($0.56 \mathrm{~g}, 67 \%$ yield).
Example 38. Synthesis of 6,7-Dihydro-5H-[1]pyrindin-6-ylamine. The title compound was synthesized following the scheme below and used for synthesis of Compound 318 via Scheme 1.

Step A: For (3-Hydroxymethyl-pyridin-2-yl)-methanol. To a solution of pyridine-2,3-
dicarboxylic acid dimethyl ester ($35 \mathrm{~g}, 179 \mathrm{mmol}$) in $\mathrm{EtOH}(400 \mathrm{ml})$ was added $\mathrm{NaHB} 4(35 \mathrm{~g}$, 921 mmol) portionwise. The reaction mixture was refluxed overnight and the resulting mixture was filtered and the filtrate was evaporated to give the crude product. The residue was purified by flash chromatography eluted with $\mathrm{DCM} / \mathrm{MeOH} / \mathrm{Et} 3 \mathrm{~N}$ (form $51 / 1 / 0.2$ to $100 / 1 / 0.5$) to give the pure (3-Hydroxymethyl-pyridin-2-yl)-methanol as brown oil ($6 \mathrm{~g}, 24 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl} 3): \delta 8.42(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=4), 7.74(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7.6), 7.27-7.22(\mathrm{~m}, 1 \mathrm{H}), 4.75(\mathrm{~s}, 2 \mathrm{H}), 4.66(\mathrm{~s}$, 2H), 4.19(br, 2H).

Step B: 2,3-Bis-chloromethyl-pyridine. To a mixture of (3-Hydroxymethyl-pyridin-2-yl)methanol ($5.5 \mathrm{~g}, 43 \mathrm{mmol}$) in DCM (50 ml) was added $\mathrm{SOCl} 2(5 \mathrm{ml})$ at $0^{\circ} \mathrm{C}$. The reaction was stirred for 2 hours at $75^{\circ} \mathrm{C}$ and then evaporated in vacuo to give the crude 2,3-Bis-chloromethylpyridine (hydrochloride) which was used directly without further purification ($6 \mathrm{~g}, 71 \%$ yield).
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6): $\delta 15.86(\mathrm{br}, 0.6 \mathrm{H}), 8.69(\mathrm{~d}, 1 \mathrm{H}), 7.69-7.66(\mathrm{~m}, 1 \mathrm{H}), 5.05(\mathrm{~s}, 2 \mathrm{H})$, 5.02 ($\mathrm{s}, 2 \mathrm{H}$).

Step C: For 5,7-Dihydro-[1]pyrindine-6,6-dicarboxylic acid diethyl ester. To 100 ml of EtOH was added $\mathrm{Na}(1.6 \mathrm{~g}, 68 \mathrm{mmol})$ portionwise. After the solid was dissolved, Malonic acid diethyl ester ($4.94 \mathrm{~g}, 30.86 \mathrm{mmol}$) was added, followed by a solution of 2,3-Bis-chloromethyl-pyridine (hydrochloride, $5.4 \mathrm{~g}, 30.86 \mathrm{~mol}$) in $\mathrm{EtOH}(100 \mathrm{ml})$. The reaction mixture was refluxed overnight. The resulting mixture was concentrated and diluted with water (100 ml). The soobtained mixture was extracted with EtOAc $(3 \times 30 \mathrm{ml})$ and the organic layer was washed with NaHCO 3 solution, brine, dried over Na 2 SO 4 , filtered and the solvent was evaporated in vacuo. The residue was purified by flash chromatography eluted with (PE/EtOAc from 50/1 to 10/1) to give the pure 5,7-Dihydro-[1]pyrindine-6,6-dicarboxylic acid diethyl ester as colorless oil. (2.9 g, 35% yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl} 3$): $\delta 8.38(\mathrm{~d}, 1 \mathrm{H}), 7.49(\mathrm{~d}, 1 \mathrm{H}), 7.09-7.06(\mathrm{~m}, 1 \mathrm{H}), 4.25-$ $4.20(\mathrm{q}, 4 \mathrm{H}), 3.70(\mathrm{~s}, 2 \mathrm{H}), 3.60(\mathrm{~s}, 2 \mathrm{H}), 1.27(\mathrm{t}, 3 \mathrm{H})$.
Step D: For 6,7-Dihydro-5H-[1]pyrindine-6-carboxylic acid. A mixture of 5,7-Dihydro-[1]pyrindine-6,6-dicarboxylic acid diethyl ester ($2 \mathrm{~g}, 7.6 \mathrm{mmol}$) in conc. $\mathrm{HCl}(200 \mathrm{ml})$ was refluxed for 2 hours and then evaporated in vacuo to give the crude 6,7-Dihydro-5H-[1]pyrindine-6-carboxylic acid (hydrochloride) as a black solid which was used directly without further purification $1.6 \mathrm{~g}, 100 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d6): $\delta 8.64$ (d, 1H), 834(d, $1 \mathrm{H}), 7.76(\mathrm{~m}, 1 \mathrm{H}), 3.55-3.28(\mathrm{~m}, 5 \mathrm{H})$.

Step E: For (6,7-Dihydro-5H-[1]pyrindin-6-yl)-carbamic acid tert-butyl ester. To a solution of crude 6,7-Dihydro-5H-[1]pyrindine-6-carboxylic acid (hydrochloride, $0.66 \mathrm{~g}, 3.32 \mathrm{mmol}$), Et 3 N $(1.7 \mathrm{~g}, 16.6 \mathrm{mmol})$ and t -BuOH $(15 \mathrm{ml})$ in dioxane $(15 \mathrm{ml})$ was added DPPA ($1.05 \mathrm{~g}, 4.32 \mathrm{mmol}$) dropwise. The reaction mixture was heated to $100^{\circ} \mathrm{C}$ and stirred overnight. The resulting mixture was concentrated and dissolved in EtOAc (50 ml). The organic layer was washed with NaHCO 3 , brine, dried over Na 2 SO 4 , filtered and the solvent was evaporated in vacuo. The residue was purified by flash chromatography eluted with (PE/EtOAc $5 / 1$) to give the $(6,7-$ Dihydro-5H-[1]pyrindin-6-yl)-carbamic acid tert-butyl ester ($0.35 \mathrm{~g}, 35 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6): $\delta 8.28(\mathrm{~d}, 1 \mathrm{H}), 7.56(\mathrm{~d}, 1 \mathrm{H}), 7.23(\mathrm{~d}, 1 \mathrm{H}), 7.11(\mathrm{q}, 1 \mathrm{H}), 4.24(\mathrm{~m}, 1 \mathrm{H}), 3.19-3.10$ (m, 2 H), 2.86-2.75 (m, 2H), 1.39 ($\mathrm{s}, 9 \mathrm{H}$).

Step F: For 6,7-Dihydro-5H-[1]pyrindin-6-ylamine. A mixture of (6,7-Dihydro-5H-
[1]pyrindin-6-yl)-carbamic acid tert-butyl ester ($0.2 \mathrm{~g}, 0.85 \mathrm{mmol}$) in $\mathrm{HCl} / \mathrm{Et} 2 \mathrm{O}(3 \mathrm{M}, 5 \mathrm{ml})$ was stirred overnight at room temperature, and then evaporated in vacuo to give the 6,7-Dihydro-5H-[1]pyrindin-6-ylamine (hydrochloride) as a solid ($0.16 \mathrm{~g}, 100 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d6): $\delta 8.65(\mathrm{~d}, 1 \mathrm{H}), 8.36(\mathrm{~m}, 1 \mathrm{H}), 7.783(\mathrm{~m}, 1 \mathrm{H}), 3.66-3.26(\mathrm{~m}, 5 \mathrm{H})$.
Example 39. Synthesis of 2-(1H-Indol-3-yl)-propionic acid. The title compound was synthesized following scheme below and used for synthesis of Compound 283 via Scheme 1.

Step A: For (1H-Indol-3-yl)-acetic acid ethyl ester. To a solution of (1H-Indol-3-yl)-acetic acid $(5.0 \mathrm{~g}, 28.6 \mathrm{mmol})$ in $\mathrm{EtOH}(50 \mathrm{ml})$ was added $\mathrm{SOCl} 2(6.1 \mathrm{~g}, 51.4 \mathrm{mmol})$ dropwise at room temperature. The reaction mixture was refluxed overnight. The solution was cooled to room temperature and the solvent was removed to give (1H-Indol-3-yl)-acetic acid ethyl ester as brown solid ($5.5 \mathrm{~g}, 95 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.10(\mathrm{~s}, 1 \mathrm{H}), 7.63-7.61(\mathrm{~d}, 1 \mathrm{H}$, $J=8 \mathrm{~Hz}), 7.34-7.32(\mathrm{~d}, 1 \mathrm{H}, J=8 \mathrm{~Hz}), 7.21-7.11(\mathrm{~m}, 3 \mathrm{H}), 4.19-4.14(\mathrm{q}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}), 3.76(\mathrm{~s}$, $2 \mathrm{H}), 1.28-1.24(\mathrm{t}, 2 \mathrm{H}, J=7.2)$; MS: $204.1(\mathrm{M}+1)^{+}$.

Step B: 3-Ethoxycarbonylmethyl-indole-1-carboxylic acid methyl ester. To a solution of (1H-Indol-3-yl)-acetic acid ethyl ester ($5.5 \mathrm{~g}, 27.1 \mathrm{mmol}$) and TBAI $(0.08 \mathrm{~g}, 0.2 \mathrm{mmol})$ in a mixture of $30 \% \mathrm{NaOH}(80 \mathrm{ml})$ and $\mathrm{DCM}(80 \mathrm{ml})$ was added methyl chloroformate $(3.8 \mathrm{~g}, 40.6 \mathrm{mmol})$ at 225
$4^{\circ} \mathrm{C}$ for 15 minutes. The reaction was stirred at $0^{\circ} \mathrm{C}$ for 2 h . The two layer mixture was separated and the aqueous layer was extracted one time with DCM. The combined DCM layer was washed with brine and concentrated in vacuo, purified by flash chromatography eluted with PE/EtOAc (form 20/1 to 15/1) to give the 3-Ethoxycarbonylmethyl-indole-1-carboxylic acid methyl ester as a solid $(5.0 \mathrm{~g}, 71 \%$ yield $) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.18-8.16(\mathrm{~m}, 1 \mathrm{H})$, $7.60-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.25(\mathrm{~m}, 2 \mathrm{H}), 4.20-4.15(\mathrm{q}, 2 \mathrm{H}, J=6.8), 4.02(\mathrm{~s}, 3 \mathrm{H}), 3.70(\mathrm{~s}, 2 \mathrm{H}), 1.28-$ $1.24(\mathrm{t}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}) ; \mathrm{MS}: 262.1(\mathrm{M}+1)^{+}$.

Step C: 3-(1-Ethoxycarbonyl-ethyl)-indole-1-carboxylic acid methyl ester. To a solution of 3-Ethoxycarbonylmethyl-indole-1-carboxylic acid methyl ester ($2.0 \mathrm{~g}, 7.7 \mathrm{mmol}$) in dry THF (10 ml) was added LDA (15 ml , in THF, 11.5 mmol) dropwise at $-78^{\circ} \mathrm{C}$ for 30 min under N_{2}. Then the solution was stirred at $-78^{\circ} \mathrm{C}$ for another 1 h , a solution of Iodomethane $(1.6 \mathrm{~g}, 11.5 \mathrm{mmol})$ in dry THF (5 ml) was added dropwise at $-78^{\circ} \mathrm{C}$. After stirring at $-78^{\circ} \mathrm{C}$ for 1.5 h , the reaction was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution at room temperature, extracted with EtOAc $(2 \times 30 \mathrm{ml})$. The organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The residue was purified by flash chromatography eluted with $\mathrm{PE} / \mathrm{EtOAc}(20 / 1)$ to give the 3-(1-Ethoxycarbonyl-ethyl)-indole-1-carboxylic acid methyl ester as a white solid ($0.4 \mathrm{~g}, 19 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.18-8.17(\mathrm{~m}, 1 \mathrm{H}), 7.62-7.55\left(\mathrm{~m}, 2 \mathrm{H}_{0}, 7.36-7.24(\mathrm{~m}, 2 \mathrm{H}), 4.18-\right.$ $4.11(\mathrm{~m}, 2 \mathrm{H}), 4.03(\mathrm{~s}, 3 \mathrm{H}), 3.96-3.91(\mathrm{~m}, 1 \mathrm{H}), 1.61-1.59(\mathrm{~d}, 3 \mathrm{H}), 1.24-1.20(\mathrm{t}, 2 \mathrm{H}, J=7.2) ; \mathrm{MS}:$ $276.1(\mathrm{M}+1)^{+}$.

Step D: 2-(1H-Indol-3-yl)-propionic acid. A solution of KOH ($575 \mathrm{mg}, 8.7 \mathrm{mmol}$) in water (10 ml) was added to a solution of 3-(1-Ethoxycarbonyl-ethyl)-indole-1-
carboxylic acid methyl ester ($400 \mathrm{mg}, 1.45 \mathrm{mmol}$) in methanol (40 ml) at room temperature. The mixture was stirred at $70^{\circ} \mathrm{C}$ for 1 h and concentrated. The residual oil was adjusted to $\mathrm{pH}=1$ with aq. $\mathrm{HCl}(1 \mathrm{M})$ and the precipitate was filtered off. The water phase was extracted with EtOAc $(2 \mathrm{x}, 30 \mathrm{ml})$ and the organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filleted and concentrated to give 2-(1H-Indol-3-yl)-propionic acid as clear oil ($250 \mathrm{mg}, 89 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6): $\delta 12.12(\mathrm{~s}, 1 \mathrm{H}), 10.93(\mathrm{~s}, 1 \mathrm{H}), 7.56-7.55(\mathrm{~d}, 1 \mathrm{H}, J=7.6 \mathrm{~Hz}), 7.35-7.33$ (d, $1 \mathrm{H}, J=8.0), 7.21-7.20(\mathrm{~d}, 1 \mathrm{H}, J=2.4 \mathrm{~Hz}), 7.08-7.05(\mathrm{t}, 1 \mathrm{H}, J=6.8, J=8.0), 6.99-6.95(\mathrm{t}, 1 \mathrm{H}$, $J=7.2, J=7.6$), 3.87-3.85 (m, 1H), 1.47-1.45 (d, 3H, $J=7.2$); MS: $190.1(\mathrm{M}+1)^{+}$.

Example 40. Synthesis of Indol-1-yl-acetic acid. The title compound was synthesized
following scheme below and used for synthesis of Compound 271 via Scheme 1.

Step A: Indol-1-yl-acetic acid tert-butyl ester. Indol-1-yl-acetic acid tert-butyl ester was synthesized via general procedure 19 (step A), except for the alcohol was replaced by indole. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.631(\mathrm{~d}, 1 \mathrm{H}, J=8), 7.25-7.21(\mathrm{~m}, 2 \mathrm{H}), 7.13-7.08(\mathrm{~m}, 2 \mathrm{H}), 6.55(\mathrm{~d}$, $1 \mathrm{H}, J=3.2), 4.74(\mathrm{~s}, 2 \mathrm{H}), 1.43(\mathrm{~s}, 9 \mathrm{H})$.

Step B: Indol-1-yl-acetic acid. To a stirred of indol-1-ylacetic acid tert-butyl ester ($2 \mathrm{~g}, 8.6$ $\mathrm{mmol})$ in $\mathrm{MeOH}(12 \mathrm{ml})$ was added $\mathrm{KOH}(4 \mathrm{~g}, 71.4 \mathrm{mmol})$ and water $(0.4 \mathrm{ml})$. The reaction mixture was stirred at room temperature for 16 hours, and then diluted with water (100 ml). The resulting mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(25 \mathrm{ml})$ and the organic layer was discarded. The aqueous phase was acidified to $\mathrm{pH} 3-4$ with $\mathrm{HCl}(6 \mathrm{~N})$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 15 \mathrm{ml})$. The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated to produce indol-1ylacetic acid, which was used directly without further purification $(1.2 \mathrm{~g}, 79.7 \%$ yield).

Example 41. Synthesis of Benzenesulfonylamino-acetic acid. The title compound was synthesized following scheme below and used for synthesis of Compound 10, Compound 28 and Compound 29 via Scheme 1.

A mixture of glycine $(7.51 \mathrm{~g}, 100 \mathrm{mmol})$ and benzenesulfonyl chloride $(12.9 \mathrm{ml}, 100$ mmol) in NaOH solution ($1 \mathrm{M}, 272 \mathrm{ml}, 272 \mathrm{mmol}$) was heated to $70^{\circ} \mathrm{C}$ for 2 hours. The resulting mixture was cooled to $5^{\circ} \mathrm{C}$ and then adjust to $\mathrm{pH}=6.5$. The precipitate was collected by filtration and dried in vacuo to give the pure Benzenesulfonylamino-acetic acid ($10.5 \mathrm{~g}, 48 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{H}_{2} \mathrm{O}$): $\delta 7.78(\mathrm{~d}, 2 \mathrm{H}),, 7.62-7.53(\mathrm{~m}, 3 \mathrm{H}), 3.69(\mathrm{~s}, 2 \mathrm{H})$.
Example 42. Synthesis of (4-Cyano-phenylamino)-acetic acid. The title compound was synthesized following scheme below and used for synthesis of Compound 227 and Compound 228 via Scheme 1.

A suspension of 4-Amino-benzonitrile ($1.0 \mathrm{~g}, 8.5 \mathrm{mmol}$) and chloro-acetic acid (1.6 g , $16.9 \mathrm{mmol})$ in water $(30 \mathrm{ml})$ was refluxed for 4 h . The resulting mixture was cooled to room temperature. The precipitate was collected by filtration and washed with EtOAc to give the pure (4-Cyano-phenylamino)-acetic acid as a white solid ($300 \mathrm{mg}, 20 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d6): $\delta 12.73$ (s, 1H), 7.47-7.45 (d, 2H, $J=8.8 \mathrm{~Hz}), 6.92(\mathrm{~m}, 1 \mathrm{H}), 6.65-6.63(\mathrm{~d}, 2 \mathrm{H}, J=$ 8.8), 3.91-3.89 (d, 2H, $J=6.0$); MS: $177.1(\mathrm{M}+1)^{+}$.

Example 43. Synthesis of $[1,2,3]$ Triazol-1-yl-acetic acid. The title compound was synthesized following the scheme below and used for synthesis of Compound 329 via Scheme 1.

Step A: [1,2,3]Triazol-1-yl-acetic acid benzyl ester. A mixture of $1 \mathrm{H}-[1,2,3]$ Triazole $(2.07 \mathrm{~g}$, $30 \mathrm{mmol}), \mathrm{CbzCl}(6.9 \mathrm{~g}, 30 \mathrm{mmol})$ and DIEA ($5.1 \mathrm{ml}, 30 \mathrm{mmol}$) in DCM (40 ml) was stirred overnight at room temperature. 150 ml of $\mathrm{Et}_{2} \mathrm{O}$ was added. The precipitate was filtered off and the filtrate was concentrated. The residue was purified via flash chromatography column eluted with $\mathrm{DCM} / \mathrm{PE}(19 / 1)$ to give the pure [1,2,3]Triazol-1-yl-acetic acid benzyl ester ($1 \mathrm{~g}, 32 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6): $\delta 8.16(\mathrm{~s}, 1 \mathrm{H}), 7.77(\mathrm{~s}, 1 \mathrm{H}), 7.40-7.35(\mathrm{~m}, 5 \mathrm{H}), 5.54-$ $5.50(\mathrm{~s}, 2 \mathrm{H}), 5.29-5.10(\mathrm{~d}, 2 \mathrm{H})$.

Step B: [1,2,3]Triazol-1-yl-acetic acid. A mixture of [1,2,3]Triazol-1-yl-acetic acid benzyl ester $(1 \mathrm{~g}, 4.6 \mathrm{mmol})$ in MeOH was hydrogenated overnight under 50 psi pressure with $\mathrm{PdOH} / \mathrm{C}$ $(20 \%, 92 \mathrm{mg})$ as a catalyst. The catalyst was filtered off and the solvent was concentrated under vacuum to give the crude $[1,2,3]$ Triazol-1-yl-acetic acid as a solid which was used directly without further purification ($560 \mathrm{mg}, 95 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6): $\delta 13.37$ (s, $1 \mathrm{H}), 8.13-8.11(\mathrm{~m}, 1 \mathrm{H}), 7.77-7.74(\mathrm{~d}, 1 \mathrm{H}), 5.31-5.23(\mathrm{~d}, 2 \mathrm{H})$.
Example 44. Synthesis of Benzotriazol-1-yl-acetic acid. The title compound was synthesized following the scheme below and used for synthesis of Compound 205, Compound 5, Compound 157 and Compound 151 via Scheme 1.

To a solution of chloroacetic acid ($2.37 \mathrm{~g}, 25 \mathrm{mmol}$) and $\mathrm{NaOH}(2.0 \mathrm{~g}, 50 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}$
was added benzotriazole ($3.0 \mathrm{~g}, 25 \mathrm{mmol}$) in one portion. The reaction mixture was stirred for 30 minutes at room temperature and then heated to reflux for 2 hours. The resulting mixture was cooled to $0^{\circ} \mathrm{C}$, adjust to $\mathrm{pH}=3$ with $\mathrm{HCl}(0.5 \mathrm{M})$. The precipitate was collected by filtration, washed with water and dried in vacuo to give the Benzotriazol-1-yl-acetic acid which was pure enough to be used directly ($3.1 \mathrm{~g}, 70 \%$ yield). ${ }^{1}$ H NMR (300 MHz, DMSO-d6): $\delta 8.02(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}$ $=8.1), 7.74(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.1), 7.50-7.36(\mathrm{~m}, 2 \mathrm{H}), 5.35(\mathrm{~s}, 3 \mathrm{H})$.

Example 45. Preparation of Compound 386.

Step A: (R)-N-Cyclohexyl-2-hydroxy-2-phenyl-acetamide. To a stirred solution of D-Mandelic acid ($34 \mathrm{~g}, 223.68 \mathrm{mmol}$) in DMF (200 ml) was added HOBT ($45.2 \mathrm{~g}, 335.5 \mathrm{mmol}$), EDCI (68.4 $\mathrm{g}, 357.9 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$. Cyclohexylamine ($88 \mathrm{~g}, 894.7 \mathrm{mmol}$) was added slowly. The reaction mixture was stirred overnight at room temperature. Water (500 ml) was added to the reaction mixture below $5^{\circ} \mathrm{C}$. The resulting mixture was extracted with ethyl acetate $(2 \times 1.5 \mathrm{~L})$ and the combined organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the solvent was evaporated in vacuo. The residue was purified via column chromatography to give the $(R)-\mathrm{N}$ -Cyclohexyl-2-hydroxy-2-phenyl-acetamide ($38 \mathrm{~g}, 73.1 \%$ yield, ee $\%=100 \%$). ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d6): $\delta 7.69-7.67(\mathrm{~m}, 1 \mathrm{H}), 7.40-7.25(\mathrm{~m}, 5 \mathrm{H}), 6.07-6.05(\mathrm{~m}, 1 \mathrm{H}), 4.87-4.86(\mathrm{~m}, 1 \mathrm{H})$, $3.32(\mathrm{~s}, 1 \mathrm{H}), 1.67-1.53(\mathrm{~m}, 5 \mathrm{H}), 1.26-1.21(\mathrm{~m}, 5 \mathrm{H}) ; \mathrm{MS}: 234.2(\mathrm{M}+1)^{+}$.
Step B: (R)-Methanesulfonic acid cyclohexylcarbamoyl-phenyl-methyl ester. To a solution of (R)-N-Cyclohexyl-2-hydroxy-2-phenyl-acetamide ($38 \mathrm{~g}, 163 \mathrm{mmol}$) in pyridine (100 ml) was added $\mathrm{MsCl}(20.5 \mathrm{~g}, 179 \mathrm{mmol})$ dropwise at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred for another 1.5 hours at the same temperature and was then concentrated under vacuum. The residue was dissolved in EtOAc (200 ml), washed with water, brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the
solvent was evaporated in vacuo to give the (R)-Methanesulfonic acid cyclohexylcarbamoyl-phenyl-methyl ester which was used directly without further purification ($20 \mathrm{~g}, 39.4 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d6): $\delta 8.30-8.28(\mathrm{~m}, 1 \mathrm{H}), 7.54-7.36(\mathrm{~m}, 5 \mathrm{H}), 5.87(\mathrm{~s}, 1 \mathrm{H}), 3.54(\mathrm{~s}$, $1 \mathrm{H}), 3.18(\mathrm{~s}, 3 \mathrm{H}), 1.76-1.52(\mathrm{~m}, 5 \mathrm{H}), 1.26-1.09(\mathrm{~m}, 5 \mathrm{H}) ; \mathrm{MS}: 312.1(\mathrm{M}+1)^{+}$.
Step C: (S)-N-Cyclohexyl-2-(3-fluoro-phenylamino)-2-phenyl-acetamide. A mixture of (R)Methanesulfonic acid cyclohexylcarbamoyl-phenyl-methyl ester ($20 \mathrm{~g}, 64.3 \mathrm{mmol}$), DIEA (24.8 $\mathrm{g}, 192.9 \mathrm{mmol}$) and 3-fluoro-phenylamine ($7.13 \mathrm{~g}, 64.3 \mathrm{mmol}$) in DMF (80 ml) was heated to $80^{\circ} \mathrm{C}$ for 4 hours. The resulting mixture was cooled to room temperature and water was (150 ml) was added. This mixture was extracted with EtOAc (2 x 200 ml). The combined organic layer was washed with water, brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the solvent was evaporated in vacuo. The residue was purified via flash chromatography column eluted with $\mathrm{DCM} / \mathrm{MeOH}$ (from $20 / 1$ to $1 / 1$) to give the $(S)^{-} \mathrm{N}$-Cyclohexyl-2-(3-fluoro-phenylamino)-2-phenyl-acetamide (6 $\mathrm{g}, 28.6 \%$ yield, ee $\%=100 \%$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d} 6$): $\delta 8.27-8.13(\mathrm{~m}, 1 \mathrm{H}), 7.51-7.00$ $(\mathrm{m}, 6 \mathrm{H}), 6.50-6.27(\mathrm{~m}, 3 \mathrm{H}), 4.98(\mathrm{~s}, 1 \mathrm{H}), 3.55(\mathrm{~s}, 1 \mathrm{H}), 1.76-1.50(\mathrm{~m}, 5 \mathrm{H}), 1.27-1.03(\mathrm{~m}, 5 \mathrm{H}) ;$ MS: $327.1(\mathrm{M}+1)^{+}$.

Step D: Compound 386. To a mixture of (S)-N-Cyclohexyl-2-(3-fluoro-phenylamino)-2-phenyl-acetamide ($120 \mathrm{mg}, 0.37 \mathrm{mmol}$) and $\mathrm{NaHCO}_{3}(154 \mathrm{mg}, 1.84 \mathrm{mmol})$ in THF (6 ml) was added 2-(thiophen-2-yl)acetyl chloride ($236 \mathrm{mg}, 1.48 \mathrm{mmol}$) dropwise at $0^{\circ} \mathrm{C}$. The reaction mixture was warmed to room temperature and stirred overnight. Water (20 ml) was added and the resulting mixture was extracted with DCM $(3 \times 10 \mathrm{ml})$. The combined organic layer was washed with saturated NaHCO_{3} solution, brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the solvent was evaporated in vacuo. The residue was purified by prep-HPLC to give the desired product (35 $\mathrm{mg}, 21 \%$ yield, ee\% $=99 \%$). ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d6): $\delta 8.03-8.00(\mathrm{~d}, 1 \mathrm{H}), 7.35-7.33$ (d, $1 \mathrm{H}), 7.14-6.72(\mathrm{~m}, 10 \mathrm{H}), 6.07(\mathrm{~s}, 1 \mathrm{H}), 3.59-3.56(\mathrm{~m}, 3 \mathrm{H}), 1.70-1.55(\mathrm{~m}, 5 \mathrm{H}), 1.30-0.97(\mathrm{~m}, 5 \mathrm{H})$; MS: $451.2(\mathrm{M}+1)^{+}$.

Example 46: Preparation of Compounds 387-389.

Step A: [(Thiophen-2-ylmethyl)-amino]-o-tolyl-acetonitrile. [(Thiophen-2-ylmethyl)-amino]-o-tolyl-acetonitrile was synthesized via a procedure similar to that described in Example 7, step A. Step B: [(Thiophen-2-ylmethyl)-aminol-o-tolyl-acetic acid. [(Thiophen-2-ylmethyl)-amino]-o-tolyl-acetic acid was synthesized via a procedure similar to that described in Example 7, step B. ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d $_{6}$): $\delta 7.34-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.08-7.01(\mathrm{~m}, 3 \mathrm{H}), 9.94-6.85(\mathrm{~m}, 2 \mathrm{H})$, $4.10(\mathrm{~s}, 1 \mathrm{H}), 3.80-3.64(\mathrm{~m}, 2 \mathrm{H}), 3.61-3.60(\mathrm{~m}, 1 \mathrm{H}), 2.31(\mathrm{~s}, 1 \mathrm{H})$.

Step C: N-Cyclohexyl-2-[(thiophen-2-ylmethyl)-amino]-2-o-tolyl-acetamide. N-Cyclohexyl-2-[(thiophen-2-ylmethyl)-amino]-2-o-tolyl-acetamide was synthesized via a procedure similar to that described in Example 7, step C. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}_{6}$): $\delta 7.84-7.82(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=$ $10.8)$, 7.41-7.40 (d, $1 \mathrm{H}, \mathrm{J}=1.2$), 7.30-7.27 (m, 3 H), 6.95-6.92 (m, 2H), 4.32-4.30 (d, $1 \mathrm{H}, \mathrm{J}=$ $8.7), 3.85-3.82(\mathrm{~m}, 2 \mathrm{H}), 3.61-3.58(\mathrm{~m}, 1 \mathrm{H}), 2.88-2.85(\mathrm{~m}, 1 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H}), 1.77-1.52(\mathrm{~m}, 5 \mathrm{H})$, 1.30-1.10 (m, 5H).

Step D: Compound 387.

To a mixture of N-cyclohexyl-2-[(thiophen-2-ylmethyl)-amino]-2-o-tolyl-acetamide (170 $\mathrm{mg}, 0.5 \mathrm{mmol}$) in dioxane (5 ml) was added $\mathrm{NaHCO} 3(294 \mathrm{mg}, 3.5 \mathrm{mmol}$) and phenylchloroformate ($156 \mathrm{mg}, 1 \mathrm{mmol}$). The reaction mixture was refluxed overnight and then quenched with water (20 ml) after being cooling to room temperature. The resulting mixture was extracted with DCM (3 X 15 ml). The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the solvent was evaporated in vacuo. The residue was purified by TLC $(\mathrm{PE} / \mathrm{EtOAc}=8 / 1)$ to give the desired product $(133 \mathrm{mg}, 66 \%$ yield $) .{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, DMSO$\left.\mathrm{d}_{6}\right): \delta 8.10-8.08(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7.2), 7.46-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.30-7.20(\mathrm{~m}, 5 \mathrm{H}), 7.15-7.10(\mathrm{~m}, \mathrm{H}), 6.65-$ $6.63(\mathrm{~m}, 1 \mathrm{H}), 5.97-5.92(\mathrm{~m}, 2 \mathrm{H}), 4.92-4.56(\mathrm{~m}, 2 \mathrm{H}), 3.44-3.34(\mathrm{~m}, 1 \mathrm{H}), 2.11-2.03(\mathrm{~m}, 3 \mathrm{H}), 1.78-$ $1.54(\mathrm{~m}, 5 \mathrm{H}), 1.30-1.56(\mathrm{~m}, 5 \mathrm{H}) ; \mathrm{MS}: 463.2(\mathrm{M}+1)^{+}$.

Step E: Compound 388.

A mixture of N-cyclohexyl-2-[(thiophen-2-ylmethyl)-amino]-2-o-tolyl-acetamide (100 $\mathrm{mg}, 0.29 \mathrm{mmol}$) and isocyanatomethyl-benzene ($69.6 \mathrm{mg}, 0.58 \mathrm{mmol}$) in DMF (2 ml) was stirred overnight at room temperature. The precipitate was collected by filtration and washed with ether to give the desired product as white solid ($63 \mathrm{mg}, 46.8 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$): $\delta 7.80(\mathrm{~d}, 1 \mathrm{H}), 7.26-7.07(\mathrm{~m}, 10 \mathrm{H}), 6.76-6.67(\mathrm{~m}, 2 \mathrm{H}), 6.40(\mathrm{~d}, 1 \mathrm{H}), 6.01(\mathrm{~s}, 1 \mathrm{H}), 4.80(\mathrm{~d}, 1 \mathrm{H})$, $4.45(\mathrm{~d}, 1 \mathrm{H}), 4.40(\mathrm{~m}, 1 \mathrm{H}), 4.20(\mathrm{~m}, 1 \mathrm{H}), 3.58(\mathrm{~m}, 1 \mathrm{H}), 2.18(\mathrm{~s}, 3 \mathrm{H}), 1.75-1.52(\mathrm{~m}, 5 \mathrm{H}), 1.27-$ $0.98(\mathrm{~m}, 5 \mathrm{H})$; MS: $476.2(\mathrm{M}+1)^{+}$.
Step F: Compound 389.

A mixture of N-cyclohexyl-2-[(thiophen-2-ylmethyl)-amino]-2-o-tolyl-acetamide (86 mg , 0.25 mmol), (3-methyl-pyridin-4-yl)-carbamic acid phenyl ester ($114 \mathrm{mg}, 0.5 \mathrm{mmol}$) and DMAP ($39 \mathrm{mg}, 0.32 \mathrm{mmol}$) in $\mathrm{MeCN}(4 \mathrm{ml})$ was heated to 60 for 10 min and then cooled to room temperature. The precipitate was collected by filtration to give the pure product ($52 \mathrm{mg}, 43 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO-d d_{6}): $\delta 8.19-8.03(\mathrm{~m}, 4 \mathrm{H}), 7.65(\mathrm{~d}, 1 \mathrm{H}, J=5.7 \mathrm{~Hz}$), $7.32(\mathrm{dd}$, $1 \mathrm{H}, J=4.7,1.4), 7.24-7.15(\mathrm{~m}, 4 \mathrm{H}), 6.85-6.82(\mathrm{~m}, 2 \mathrm{H}), 5.99(\mathrm{~s}, 1 \mathrm{H}), 5.16(\mathrm{~d}, 1 \mathrm{H}, J=17.1), 4.57$ $(\mathrm{d}, 1 \mathrm{H}, \quad J=16.8), 3.64-3.61(\mathrm{~m}, 1 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}), 1.84(\mathrm{~s}, 3 \mathrm{H}), 1.79-1.52(\mathrm{~m}, 5 \mathrm{H}), 1.29-1.04$ (m, 5H); MS: $477.2(\mathrm{M}+1)^{+}$

The following compounds were synthesized from via procedures similar to those described in Example 46.

Compound 390

${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d d_{6}): $\delta 8.22-8.00(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7.2), 7.35-7.31(\mathrm{~m}, 5 \mathrm{H}), 7.26-$
$7.05(\mathrm{~m}, 5 \mathrm{H}), 6.60(\mathrm{~s}, 1 \mathrm{H}), 5.89-5.82(\mathrm{~m}, 2 \mathrm{H}), 5.27-5.16(\mathrm{~m}, 2 \mathrm{H}), 4.77-4.30(\mathrm{~m}, 2 \mathrm{H}), 3.64-3.61$
$(\mathrm{m}, 1 \mathrm{H}), 2.03-1.96(\mathrm{~m}, 3 \mathrm{H}, \mathrm{J}=27.2), 1.76-1.53(\mathrm{~m}, 5 \mathrm{H}), 1.29-1.10(\mathrm{~m}, 5 \mathrm{H}) ; \mathrm{MS}: 477.2(\mathrm{M}+1)^{+}$.
Compound 391

${ }^{1}{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 87.30-6.88(\mathrm{~m}, 14 \mathrm{H}), 6.02(\mathrm{~s}, 1 \mathrm{H}), 5.34(\mathrm{~d}, 1 \mathrm{H}), 5.19(\mathrm{~m}$, $2 \mathrm{H}), 3.86(\mathrm{~m}, 1 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 1.93-1.25(\mathrm{~m}, 5 \mathrm{H}), 1.13-0.91(\mathrm{~m}, 5 \mathrm{H})$; MS: $457.2(\mathrm{M}+1)^{+}$.
Compound 392

${ }^{1}$ H NMR (400 MHz, DMSO- d_{6}): $\delta 8.02$ (d, 1 H), 7.40-7.33 (m, 4H), 7.23-7.00 (m, 8H), 6.89-6.81 (m, 2H), 6.06(s, 1H), $2.45(\mathrm{~s}, 3 \mathrm{H}), 1.74-1.52(\mathrm{~m}, 5 \mathrm{H}), 1.29-0.98(\mathrm{~m}, 5 \mathrm{H}) ; \mathrm{MS}: 443.2$ $(\mathrm{M}+1)^{+}$.

Example 47: Preparation of Compound 393

Step A: N-(3-Fluoro-phenyl)-C-phenyl-methanesulfonamide. To a solution of 3-Fluorophenylamine ($1.15 \mathrm{~g}, 10.4 \mathrm{mmol})$ and TEA $(1.6 \mathrm{~g}, 31.2 \mathrm{mmol})$ in DCM (10 ml) was added Phenyl-methanesulfonyl chloride ($1 \mathrm{~g}, 7 \mathrm{mmol}$) dropwise at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred overnight at room temperature, concentrated and purified by chromatography to get the desired product ($1 \mathrm{~g}, 36 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.39-7.23(\mathrm{~m}, 6 \mathrm{H}), 6.94-6.82$ (m, 3H), 6.61 (brs, 1H), 4.35 ($\mathrm{s}, 2 \mathrm{H}$).

Step B: N-Cyclohexyl-2-hydroxy-2-o-tolyl-acetamide. To a stirred solution of hydroxy-o-tolylacetic acid ($500 \mathrm{mg}, 3 \mathrm{mmol}$) in DMF (5 ml) was added $\mathrm{HOBt}(610 \mathrm{mg}, 4.5 \mathrm{mmol}$), EDCI (922 $\mathrm{mg}, 4.8 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. Cyclohexylamine $(1.2 \mathrm{~g}, 12 \mathrm{mmol})$ was added slowly. The reaction mixture was stirred overnight at room temperature and then poured into 20 ml of ice-water. The
precipitate was collected by filtration, dried and triturated with ether to get the desired product ($300 \mathrm{mg}, 40 \%$ yield).

Step C: Compound 393

To a solution of triphenylphosphine ($110 \mathrm{mg}, 0.42 \mathrm{mmol}$) in THF (6 ml) was added DIAD ($85 \mathrm{mg}, 0.42 \mathrm{mmol}$) dropwise at $0^{\circ} \mathrm{C}$. After a slurry forms, a solution of N-cyclohexyl-2-hydroxy-2-o-tolyl-acetamide ($111 \mathrm{mg}, 0.42 \mathrm{mmol}$) in THF (2 ml) was added, followed by a solution of N-(3-fluoro-phenyl)-C-phenyl-methanesulfonamide ($62 \mathrm{mg}, 0.42 \mathrm{mmol}$) in THF (2 $\mathrm{ml})$. The reaction mixture was allowed to warm to room temperature and stirred overnight. The resulting mixture was concentrated and purified by chromatography to get the desired product ($65 \mathrm{mg}, 31 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.38-7.05(\mathrm{~m}, 10 \mathrm{H}), 6.89-6.85(\mathrm{~m}, 2 \mathrm{H}), 6.70$ $(\mathrm{d}, 1 \mathrm{H}), 6.28(\mathrm{~s}, 1 \mathrm{H}), 5.26(\mathrm{~d}, 1 \mathrm{H}), 4.90(\mathrm{~d}, 1 \mathrm{H}), 4.42(\mathrm{~d}, 1 \mathrm{H}), 3.89(\mathrm{~m}, 1 \mathrm{H}), 2.49(\mathrm{~s}, 3 \mathrm{H}), 2.04-$ $1.55(\mathrm{~m}, 5 \mathrm{H}), 1.42-1.03(\mathrm{~m}, 5 \mathrm{H}) ; \mathrm{MS}: 495.2(\mathrm{M}+1)^{+}$.

Example 48: In Vitro Assays for IDH1 R132H Inhibitors

Assays were conducted in a volume of $76 \mu \mathrm{l}$ assay buffer $\left(150 \mathrm{mM} \mathrm{NaCl}, 10 \mathrm{mM} \mathrm{MgCl}{ }_{2}\right.$, 20 mM Tris $\mathrm{pH} 7.5,0.03 \%$ bovine serum albumin) as follows in a standard 384 -well plate: To 25 ul of substrate mix (8 uM NADPH, 2 mM aKG) , $1 \mu \mathrm{l}$ of test compound was added in DMSO. The plate was centrifuged briefly, and then $25 \mu \mathrm{l}$ of enzyme mix was added ($0.2 \mu \mathrm{~g} / \mathrm{ml}$ IDH1 R 132 H) followed by a brief centrifugation and shake at 100 RPM. The reaction was incubated for 50 minutes at room temperature, then $25 \mu \mathrm{l}$ of detection mix ($30 \mu \mathrm{M}$ resazurin, $36 \mu \mathrm{~g} / \mathrm{ml}$) was added and the mixture further incubated for 5 minutes at room temperature. The conversion of resazurin to resorufin was detected by fluorescent spectroscopy at Ex544 Em590 c/o 590.

The compounds of Formula I set forth in Table 1 and the compounds set forth in Table 2 were tested in this assay and the results set forth below in Table 4A and 4B. As used in Table 4 A and 4 B , "A" refers to an inhibitory activity against IDH1 R132H with an $\mathrm{IC}_{50} \leq 0.1 \mu \mathrm{M}$; "B" refers to an inhibitory activity against IDH1 R 132 H with an IC_{50} between $0.1 \mu \mathrm{M}$ and $1 \mu \mathrm{M}$; "C"
refers to an inhibitory activity against IDH1 R132H with an IC_{50} between $1 \mu \mathrm{M}$ and $10 \mu \mathrm{M}$; "D" refers to an inhibitory activity against IDH1 R 132 H with an IC_{50} between $10 \mu \mathrm{M}$ and $100 \mu \mathrm{M}$; "E" refers to an inhibitory activity against IDH1 R132H with an $\mathrm{IC}_{50} \geq 100 \mu \mathrm{M}$.

Table 4A. IDH1 R132H Inhibition by Compounds of formula I

Compound No.	IC50 (uM)
1	B
2	B
3	B
4	B
5	B
6	B
7	C
8	A
9	C
10	B
11	C
12	D
13	B
14	D
15	A
16	E
17	B
18	E
19	E
20	E
21	E
22	E
23	D
24	C
25	E
26	B
27	E
28	B

Compound No.	IC50 (uM)
29	B
30	B
31	A
32	C
33	B
34	A
35	B
36	B
37	D
38	C
39	B
40	E
41	D
42	B
43	B
44	A
45	B
46	B
47	B
48	B
49	B
50	B
51	B
52	E
53	C
54	A
55	C
56	B

Compound No.	IC50 (uM)
57	C
58	C
59	C
60	B
61	C
62	B
63	C
64	C
65	B
66	E
67	B
68	E
69	E
70	C
71	C
72	C
73	B
74	C
75	C
76	C
77	E
78	B
79	B
80	A
81	C
82	C
83	D
84	E

Compound No.	IC50 (uM)
85	C
86	E
87	B
88	E
89	B
90	C

Compound No.	IC50 (uM)
91	B
92	B
93	B
94	B
95	E
96	C

Compound No.	IC50 (uM)
97	C
98	B
99	A
100	B
101	B

Table 4B. IDH1 R132H Inhibition by Representative Compounds of the Invention.

mpula.	1850	(mpd Mo.	1150	Mmpl No.	1 smo
102	B	129	B	156	B
103	B	130	B	157	B
104	A	131	B	158	B
105	B	132	B	159	B
106	B	133	B	160	A
107	B	134	B	161	A
108	B	135	A	162	B
109	B	136	B	163	B
110	B	137	B	164	B
111	B	138	B	165	A
112	B	139	B	166	B
113	B	140	A	167	B
114	B	141	B	168	C
115	B	142	B	169	B
116	B	143	B	170	B
117	B	144	B	171	B
118	B	145	B	172	B
119	B	146	B	173	A
120	B	147	B	174	B
121	B	148	B	175	B
122	B	149	B	176	B
123	B	150	A	177	B
124	B	151	B	178	B
125	B	152	B	179	B
126	A	153	B	180	B
127	B	154	B	181	B
128	B	155	A	182	B

Mupla\%.	Is50	\%mpe M	1. 50	Cmpino.	ISs0
183	B	222	B	261	B
184	B	223	B	262	B
185	A	224	B	263	B
186	A	225	B	264	B
187	B	226	B	265	A
188	B	227	A	266	B
189	B	228	A	267	B
190	B	229	B	268	B
191	B	230	B	269	B
192	B	231	B	270	B
193	B	232	B	271	A
194	B	233	B	272	A
195	B	234	B	273	B
196	B	235	B	274	B
197	A	236	B	275	A
198	A	237	A	276	A
199	B	238	B	277	C
200	B	239	B	278	B
201	A	240	A	279	B
202	A	241	B	280	B
203	A	242	B	281	B
204	B	243	B	282	B
205	B	244	B	283	B
206	B	245	B	284	B
207	B	246	B	285	B
208	B	247	A	286	B
209	B	248	B	287	A
210	A	249	B	288	A
211	B	250	B	289	A
212	A	251	B	290	A
213	A	252	B	291	A
214	B	253	A	292	B
215	B	254	B	293	A
216	B	255	B	294	B
217	A	256	B	295	B
218	A	257	B	296	B
219	B	258	B	297	A
220	B	259	B	298	B
221	B	260	A	299	B

mpil No.	1450	Mmin No	1450
300	B	332	B
301	A	333	B
302	B	334	A
303	B	335	B
304	B	336	B
305	B	337	B
306	A	338	B
307	A	339	B
308	B	340	B
309	B	341	A
310	B	342	B
311	A	343	B
312	B	344	B
313	A	345	B
314	A	346	B
315	B	347	B
316	A	348	A
317	B	349	B
318	B	350	B
319	B	351	A
320	A	352	B
321	A	353	B
322	A	354	B
323	B	355	B
324	B	356	A
325	B	357	B
326	B	358	B
327	B	359	A
328	B	360	B
329	B	361	A
330	B	362	B
331	A	363	B

M Mil M	1.50
364	B
365	B
366	A
367	B
368	B
369	B
370	B
371	B
372	B
373	B
374	B
375	B
376	B
377	B
378	A
379	B
380	B
381	A
382	B
383	A
384	B
385	A
386	A
387	C
388	B
389	B
390	C
391	B
392	B
393	B

Example 49: Cellular Assays for IDH1 R132H Inhibitors. Cells (HT1080 or U87MG) were grown in T125 flasks in DMEM containing 10% FBS, 1 x penicillin $/$ streptomycin and $500 \mathrm{ug} / \mathrm{mL}$ G418 (present in U87MG cells only). They were harvested by trypsin and seeded into 96 well white bottom plates at a density of $5000 \mathrm{cell} /$ well in $100 \mathrm{ul} /$ well in DMEM with 10% FBS. No
cells were placed in columns 1 and 12 . Cells were incubated overnight at $37^{\circ} \mathrm{C}$ in $5 \% \mathrm{CO}_{2}$. The next day test compounds were made up at 2 x the final concentration and 100 ul were added to each cell well. The final concentration of DMSO was 0.2% and the DMSO control wells were plated in row G. The plates were then placed in the incubator for 48 hours. At 48 hours, 100ul of media was removed from each well and analyzed by LC-MS for 2-HG concentrations. The cell plate was placed back in the incubator for another 24 hours. At 72 hours post compound addition, $10 \mathrm{~mL} /$ plate of Promega Cell Titer Glo reagent was thawed and mixed. The cell plate was removed from the incubator and allowed to equilibrate to room temperature. Then 100 ul of Promega Cell Titer Glo reagent was added to each well of media. The cell plate was then placed on an orbital shaker for 10 minutes and then allowed to sit at room temperature for 20 minutes. The plate was then read for luminescence with an integration time of 500 ms .

The IC_{50} for inhibition of $2-\mathrm{HG}$ production (concentration of test compound to reduce 2HG production by 50% compared to control) in these two cell lines for various compounds of the invention is set forth in Tables 5A (HT1080 cells) and 5B (U87MG cells) below. As used in Tables 5A and 5B "A" refers to an IC_{50} for inhibition of $2-\mathrm{HG}$ production $\leq 0.25 \mu \mathrm{M}$; "B" refers to an IC_{50} for inhibition of 2-HG production between $0.25 \mu \mathrm{M}$ and $1 \mu \mathrm{M}$; "C" refers to an IC_{50} for inhibition of 2-HG production between $1 \mu \mathrm{M}$ and $5 \mu \mathrm{M}$; "D" refers to an IC_{50} for inhibition of $2-\mathrm{HG}$ production $\geq 5 \mu \mathrm{M}$.

Table 5A. Inhibition of 2-HG Production in HT1080 Cells.

$\begin{aligned} & \text { Min } \\ & \text { Nor } \end{aligned}$	111 1080 1150
134	B
160	A
162	A
165	B
166	B
167	B
171	B
172	B
173	A
175	B
176	C
177	B
184	B

$\begin{aligned} & \text { Min } \\ & \text { Nol } \end{aligned}$	1110801150
185	A
190	C
191	C
192	C
193	B
194	B
195	B
196	B
197	B
198	A
199	C
200	C
201	C

240

\%mpa No.	1110801950
202	A
203	A
204	C
205	C
206	C
207	C
208	C
209	A
210	C
211	C
212	A
213	B
214	D

$\begin{aligned} & \text { (rypt } \\ & \text { No. } \end{aligned}$	$\text { M11080 } 1=50$	$\begin{aligned} & \text { Mmil } \\ & \text { Now } \end{aligned}$	IILesy Is 50	$\begin{aligned} & \text { Nim } \\ & \text { No. } \\ & \text { No. } \end{aligned}$	MID日8imse
215	B	253	A	292	C
216	C	254	C	293	B
217	A	255	A	294	C
218	B	256	B	295	C
219	C	257	B	296	C
220	C	258	B	297	B
221	C	259	B	298	B
222	B	260	A	299	C
223	B	261	B	300	C
224	B	262	C	301	A
225	C	263	A	302	A
226	C	264	B	303	A
227	A	265	A	304	D
228	B	266	D	305	B
229	B	267	B	306	B
230	C	268	C	307	B
231	C	269	C	308	C
232	C	270	C	309	B
233	B	271	A	310	B
234	C	272	A	311	A
235	C	273	B	312	C
236	D	274	C	313	A
237	B	275	A	314	A
238	B	276	A	315	C
239	B	278	A	316	A
240	B	279	C	317	B
241	C	280	C	318	B
242	C	281	A	319	C
243	B	282	B	320	B
244	B	283	B	321	A
245	B	284	B	322	A
246	C	285	D	324	C
247	A	286	B	325	C
248	C	287	A	326	B
249	B	288	B	327	C
250	C	289	A	328	C
251	B	290	A	330	B
252	C	291	A	331	A

๕ M I N\%	LISL080 I 530	《uリा Vos.	HL108\% 1 \&50
332	B	346	B
333	A	347	C
334	A	351	A
335	B	354	B
336	B	356	A
338	B	357	B
339	C	359	B
340	C	361	A
341	A	363	C
342	B	366	B
344	B	367	D
345	C	370	C

Myl Nis.	IHLOSt W W50
373	B
374	C
377	D
378	B
379	B
380	C
381	A
387	C
389	C
393	D

Table 5B. Inhibition of 2-HG Production in U87MG Cells

$\begin{aligned} & \text { Nund } \\ & \text { Nol } \end{aligned}$	Is7Me 1450
126	A
134	C
135	B
154	C
158	B
160	B
161	B
162	B
163	D
165	A
166	C
167	B
170	C
171	C
172	C
173	A
174	C
175	C
176	A
177	C
178	B
179	C

लmir Nois	187MM 1450
180	C
181	C
182	C
183	C
184	B
185	B
186	B
187	C
188	B
189	D
190	C
191	C
192	C
193	C
195	C
197	B
198	B
199	C
200	C
201	C
202	B
203	A

	187MCIL50
204	B
205	C
206	C
208	C
209	B
210	C
211	C
212	A
213	B
215	B
216	B
217	A
218	B
219	C
220	C
221	C
222	C
223	A
224	B
225	A
226	A
227	A

$\begin{aligned} & \begin{array}{l} \text { Mip } \\ \text { Noin } \end{array} \end{aligned}$	187M101550
228	B
229	C
230	C
231	A
232	A
233	C
236	C
237	C
238	C
239	A
240	C
241	B
243	B
244	C
245	C
246	B
247	B
248	C
249	B
250	C
251	B
252	B
253	B
254	C
255	B
256	C
257	B
258	B
259	B
260	B
261	C
262	C
263	B
264	B
265	B
266	D
267	C
268	A

$\begin{aligned} & \text { Mimil } \\ & \text { Nois } \end{aligned}$	187M11158
269	C
270	C
271	B
272	A
273	B
274	C
275	B
276	A
278	A
279	D
280	C
281	B
282	D
283	B
284	C
286	A
287	A
288	C
289	A
290	B
291	B
292	C
293	A
294	B
295	A
296	A
297	A
298	C
299	B
300	A
301	A
302	B
303	B
304	B
305	B
306	A
307	B
308	A

$\begin{aligned} & \text { mpil } \\ & \text { No. } \\ & \hline \end{aligned}$	187MEIE50
309	C
310	C
311	A
312	A
313	A
314	A
315	A
316	B
317	C
318	B
319	C
320	B
321	A
322	A
324	B
325	C
326	A
327	A
328	C
330	A
331	A
332	C
333	C
334	A
335	C
336	B
338	C
339	C
340	B
341	A
342	B
344	A
345	C
346	B
347	C
350	C
351	A
354	B

«\#\#d Nos.	687MISIU50
356	A
357	B
359	A
361	A
363	B
366	B

Mind No:	
370	B
373	B
374	C
378	B
379	B
380	A

$\mathrm{N}_{\mathrm{N}, \mathrm{M}}^{\mathrm{m}}$	
381	A
386	A
387	D
388	D
389	C
390	D

Claims

1. A compound of Formula II:

(II), or a pharmaceutically acceptable salt thereof, wherein:
R^{1} is a $\mathrm{C}_{4}-\mathrm{C}_{7}$ monocyclic or bicyclic cycloalkyl optionally substituted on a single carbon atom with 1 to 2 fluoro;
R^{3} is selected from 3-fluorophenyl, 3-methylphenyl, 3-chlorophenyl, and thien-2ylmethyl;
R^{4} is selected from saturated heterocyclyl, $-\mathrm{CH}_{2}$-heterocyclyl, $-\mathrm{CH}_{2}$-heteroaryl, benzyl, $-\mathrm{CH}\left(\mathrm{R}^{11}\right)-\mathrm{N}\left(\mathrm{R}^{11}\right)$-heteroaryl, $-\mathrm{CH}\left(\mathrm{R}^{11}\right)-\mathrm{N}\left(\mathrm{R}^{11}\right)$-phenyl, $-\mathrm{CH}\left(\mathrm{R}^{11}\right)-\mathrm{N}\left(\mathrm{R}^{11}\right)$-heterocyclyl, $-\mathrm{CH}\left(\mathrm{R}^{11}\right)-\mathrm{N}\left(\mathrm{R}^{11}\right)-\mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}$, and $-\mathrm{CH}_{2}$-O-heteroaryl, wherein each R^{11} is independently selected from hydrogen and methyl; and each saturated heterocyclyl, heterocyclyl, phenyl, benzyl and heteroaryl is optionally substituted; and
R^{10} is selected from methyl, hydrogen, fluoro, chloro, and bromo, wherein:
when R^{1} is cyclopentyl or cyclohexyl, and R^{3} is thien- 2 -ylmethyl, then R^{4} is other than thien-2-ylmethyl, 1H-benizimidazol-1-ylmethyl, 1H-indol-3-ylmethyl, or 1H-benzotriazol-1ylmethyl;
when R^{1} is cyclopentyl, R^{10} is hydrogen, and R^{3} is 3-fluorophenyl, 3-methylphenyl, or 3chlorophenyl, then R^{4} is other than thien-2-ylmethyl;
when R^{1} is cyclopentyl, R^{10} is methyl and R^{3} is 3 -fluorophenyl, then R^{4} is other than thien-2-ylmethyl or 1 H -benzotriazol-1-ylmethyl;
when R^{1} is cyclopentyl, R^{10} is fluoro and R^{3} is 3-methylphenyl, then R^{4} is other than thien-2-ylmethyl or 1 H -benzotriazol-1-ylmethyl;
when R^{1} is cyclopentyl, R^{10} is fluoro and R^{3} is 3 -fluorophenyl, then R^{4} is other than thien-2-ylmethyl;
when R^{1} is cyclohexyl, R^{10} is hydrogen, and R^{3} is 3-methylphenyl, or 3-chlorophenyl, then R^{4} is other than thien-2-ylmethyl; and
when R^{1} is cyclohexyl, R^{10} is hydrogen, and R^{3} is 3-fluorophenyl, then R^{4} is other than 1H-benzotriazol-1-ylmethyl.
2. The compound of claim 1, wherein R^{3} is 3-fluorophenyl.
3. The compound of claim 1 or 2 , wherein:
R^{1} is selected from cyclohexyl, cyclopentyl, cycloheptyl, 3,3-difluorocyclobutyl, 4,4,difluorocyclohexyl, and bicyclo[2.2.1]heptanyl; and
R^{4} is selected from 1-(methylmethoxycarbonylamino)ethyl,
1,2,3,4-tetrahydroquinolin-1-yl, 1-ethoxycarbonylpiperidin-2-yl,
1-ethoxycarbonylpyrrolidin-2-yl, 1H-benzimidazol-1-ylmethyl, 1H-indazol-3-ylmethyl, indolin-1-ylmethyl, 1 H -indol-3-ylmethyl, 1 H -indol-5-ylmethyl, 1H-pyrrolo[2,3-b]pyridine-3-ylmethyl, 1H-pyrrolo[3,2-b]pyridin-3-ylmethyl, 1-methoxycarbonylpiperidin-2-yl, 1-methoxycarbonylpyrrolidin-2-yl, 2-fluoropyridin-3-ylaminomethyl, 2-imino-4-fluoropyridin-1-ylmethyl, 2-methoxyphenylaminomethyl, 2-methyl-1H-benzimidazol-1-ylmethyl, 2-methylimidazol-1-ylmethyl, 2-trifluoromethyl-1H-imidazol-1-yl, 3-cyanophenylaminomethyl, 3-fluoropyridin-2-ylaminomethyl, 3-methoxyphenylaminomethyl, 4-(1,3,4-oxadiazole-2-yl)phenylaminomethyl, 4-(dimethylaminocarbonyloxy)phenylmethyl, 4,5-dichloroimidazol-1-ylmethyl, 4-cyanophenylaminomethyl, 4-fluorophenylaminomethyl, 4-fluoropyridin-2-ylaminomethyl, 4-hydroxyphenylmethyl, 4-methoxycarbonylmorpholin-3-yl, 4-methoxycarbonylpiperazin-1-ylmethyl, 4-methoxyphenylaminomethyl, 4-methylcarbonyloxyphenylmethyl, 5-fluoropyridin-2-aminomethyl, 5-fluoropyridin-2-oxymethyl, 6-fluoropyridin-3-ylaminomethyl, benzomorpholin-4-ylmethyl, methoxycarbonylaminomethyl, methylmethoxycarbonylaminomethyl, methylphenylaminomethyl, phenylaminomethyl, pyridin-2-oxymethyl, pyridin-2-ylaminomethyl, pyridin-2-yloxymethyl, pyridin-3-oxymethyl, pyridin-3-ylmethyl, pyridin-4-ylmethyl, thiazol-4-ylmethyl, and thien-2-ylmethyl.
4. The compound of claim 1, wherein the compound is selected from any one of Compound numbers $104,126,135,140,150,155,160,161,165,173,185,186,197,198,201$, $202,203,210,212,213,217,218,227,228,237,240,247,253,260,265,271,272,275,276$, $287,288,289,290,291,293,297,301,306,307,311,313,314,316,320,321,322,331,334$, $341,344,348,351,356,359,361,366,378,381$, and 385 from Table 2.
5. A method of treating a cancer characterized as having an R132X IDH1 mutation, the method comprising administering to a subject a therapeutically effective amount of a compound of formula A :

(A), or a pharmaceutically acceptable salt thereof, wherein:

V and W are independently $=\mathrm{O}$ or CF_{3};
R^{1} is selected from $\mathrm{C}_{2}-\mathrm{C}_{6}$ alkyl, $-\left(\mathrm{C}_{1}-\mathrm{C}_{3}\right.$ alkylene)-O-($\mathrm{C}_{1}-\mathrm{C}_{3}$ alkyl), carbocyclyl, -($\mathrm{C}_{1}-\mathrm{C}_{2}$ alkylene)-(carbocyclyl), aryl, -($\mathrm{C}_{1}-\mathrm{C}_{2}$ alkylene)-(aryl), -($\mathrm{C}_{1}-\mathrm{C}_{2}$ alkylene)-(heteroaryl), and -($\mathrm{C}_{1}-$ C_{2} alkylene)-(heterocyclyl);
R^{2} is selected from $\mathrm{C}_{4}-\mathrm{C}_{8}$ alkyl, carbocyclyl, aryl, heterocyclyl, heteroaryl, -($\mathrm{C}_{1}-\mathrm{C}_{4}$ alkylene)-(aryl), and -($\mathrm{C}_{1}-\mathrm{C}_{4}$ alkylene)-(heteroaryl);
R^{3} is selected from $\mathrm{C}_{2}-\mathrm{C}_{6}$ alkyl optionally substituted with $=\mathrm{O}$ or $-\mathrm{OH} ; \mathrm{C}_{2}-\mathrm{C}_{6}$ alkenyl; -($\mathrm{C}_{1}-\mathrm{C}_{3}$ alkylene)-O-($\mathrm{C}_{1}-\mathrm{C}_{3}$ alkyl); carbocyclyl; aryl; heterocyclyl; heteroaryl; -($\mathrm{C}_{1}-\mathrm{C}_{2}$ alkylene)(carbocyclyl); -($\mathrm{C}_{1}-\mathrm{C}_{2}$ alkylene)-(aryl); -($\mathrm{C}_{1}-\mathrm{C}_{2}$ alkylene)-(heterocyclyl); and -($\mathrm{C}_{1}-\mathrm{C}_{2}$ alkylene)(heteroaryl);
R^{4} is selected from $-\mathrm{CF}_{3},-\mathrm{CH}_{2}-\mathrm{O}-\mathrm{CH}_{3},-\mathrm{CH}_{2} \mathrm{Cl},-\mathrm{C}\left(\mathrm{R}^{11}\right)-\mathrm{N}\left(\mathrm{R}^{11}\right)-\mathrm{C}(\mathrm{O})-\mathrm{O}-\left(\mathrm{C}_{1}-\mathrm{C}_{4}\right.$ alkyl $)$ and $-R^{5}-R^{6}-R^{7}$, wherein:
R^{5} is selected from a bond; $C_{1}-C_{3}$ straight or branched alkyl wherein one methylene unit in the alkyl of R^{5} is optionally replaced with $-\mathrm{O}-,-\mathrm{S}-,-\mathrm{S}(\mathrm{O})-$, or $-\mathrm{S}(\mathrm{O})_{2}-$; and $\mathrm{C}_{2}-\mathrm{C}_{3}$ alkenyl or alkynyl;
R^{6} is selected from a bond, $-\mathrm{N}\left(\mathrm{R}^{11}\right)-\mathrm{C}(\mathrm{O})-,-\mathrm{C}(\mathrm{O})-\mathrm{N}\left(\mathrm{R}^{11}\right)-,-\mathrm{N}\left(\mathrm{R}^{11}\right)-\mathrm{S}(\mathrm{O})_{1-2^{-2}}$, $-\mathrm{S}(\mathrm{O})_{1-2}-\mathrm{N}\left(\mathrm{R}^{11}\right)-,-\mathrm{NH}-,-\mathrm{N}\left(\mathrm{C}_{1}-\mathrm{C}_{3}\right.$ alkyl)-, and tetrazolyl;
R^{7} is a carbocyclyl, aryl, heterocyclyl, or heteroaryl;
R^{8} is selected from hydrogen and $C_{1}-C_{4}$ alkyl; or R^{8} and R^{1} are taken together with the nitrogen atom to form a 5-12 membered heterocyclyl;
R^{9} is selected from hydrogen and $C_{1}-C_{4}$ alkyl; or R^{9} and R^{2} are taken together to form a 6-12 membered carbocyclyl or a 5-12 membered heterocyclyl; and
each R^{11} is independently hydrogen or methyl,
wherein any carbocyclyl, aryl, heterocyclyl or heteroaryl is optionally substituted with one or more substituents.
6. The method of claim 5 , wherein the compound is a compound of formula I,

(I), or a pharmaceutically acceptable salt thereof, wherein:

V and W are independently $=\mathrm{O}$ or CF_{3};
R^{1} is selected from $\mathrm{C}_{2}-\mathrm{C}_{6}$ alkyl, $-\left(\mathrm{C}_{1}-\mathrm{C}_{3}\right.$ alkylene $)-\mathrm{O}-\left(\mathrm{C}_{1}-\mathrm{C}_{3}\right.$ alkyl), carbocyclyl, - $\left(\mathrm{C}_{1}-\mathrm{C}_{2}\right.$ alkylene)-(carbocyclyl), aryl, -($\mathrm{C}_{1}-\mathrm{C}_{2}$ alkylene)-(aryl), -($\mathrm{C}_{1}-\mathrm{C}_{2}$ alkylene)-(heteroaryl), and -($\mathrm{C}_{1}-$ C_{2} alkylene)-(heterocyclyl);
R^{2} is selected from $\mathrm{C}_{4}-\mathrm{C}_{8}$ alkyl, carbocyclyl, aryl, heterocyclyl, heteroaryl, -($\mathrm{C}_{1}-\mathrm{C}_{4}$ alkylene)-(aryl), and -($\mathrm{C}_{1}-\mathrm{C}_{4}$ alkylene)-(heteroaryl);
R^{3} is selected from $\mathrm{C}_{2}-\mathrm{C}_{6}$ alkyl optionally substituted with $=\mathrm{O}$ or $-\mathrm{OH} ; \mathrm{C}_{2}-\mathrm{C}_{6}$ alkenyl; -($\mathrm{C}_{1}-\mathrm{C}_{3}$ alkylene)-O-($\mathrm{C}_{1}-\mathrm{C}_{3}$ alkyl); carbocyclyl; aryl, heterocyclyl, heteroaryl, -($\mathrm{C}_{1}-\mathrm{C}_{2}$ alkylene)(carbocyclyl), -($\mathrm{C}_{1}-\mathrm{C}_{2}$ alkylene)-(aryl), -($\mathrm{C}_{1}-\mathrm{C}_{2}$ alkylene)-(heterocyclyl), and -($\mathrm{C}_{1}-\mathrm{C}_{2}$ alkylene)(heteroaryl);
R^{4} is selected from $-\mathrm{CF}_{3},-\mathrm{CH}_{2}-\mathrm{O}-\mathrm{CH}_{3}$ and $-\mathrm{R}^{5}-\mathrm{R}^{6}-\mathrm{R}^{7}$, wherein:
R^{5} is selected from a bond; $\mathrm{C}_{1}-\mathrm{C}_{3}$ straight or branched alkyl wherein one methylene unit in the alkyl of R^{5} is optionally replaced with $-\mathrm{O}-,-\mathrm{S}-,-\mathrm{S}(\mathrm{O})-$ or $-\mathrm{S}(\mathrm{O})_{2}-$; and $\mathrm{C}_{2}-\mathrm{C}_{3}$ alkenyl or alkynyl;
R^{6} is selected from a bond, $-\mathrm{NH}-\mathrm{C}(\mathrm{O})-,-\mathrm{C}(\mathrm{O})-\mathrm{NH}-,-\mathrm{NH}-\mathrm{S}(\mathrm{O})_{1-2}-,-\mathrm{S}(\mathrm{O})_{1-2}-\mathrm{NH}-$, and tetrazolyl;
R^{7} is a carbocyclyl, aryl, heterocyclyl, or heteroaryl;
R^{8} is selected from hydrogen and $C_{1}-C_{4}$ alkyl; or R^{8} and R^{1} are taken together with the nitrogen atom to form a 5-12 membered heterocyclyl; and
R^{9} is selected from hydrogen and $C_{1}-C_{4}$ alkyl; or R^{9} and R^{2} are taken together to form a 6-12 membered carbocyclyl or a 5-12 membered heterocyclyl; or wherein any carbocyclyl, aryl, heterocyclyl or heteroaryl is optionally substituted with one or more substituents.
7. The method of claim 5, wherein the compound is a compound of Formula I-c.

(I-c), or a pharmaceutically acceptable salt thereof wherein:
R^{1} is selected from a $\mathrm{C}_{4}-\mathrm{C}_{7}$ monocyclic or bicyclic cycloalkyl optionally substituted on a single carbon atom with 1 to 2 fluoro; tetrahydropyranyl, pyrrolidinyl, phenyl, and t-butyl, wherein the phenyl and pyrrolidinyl are optionally substituted;
R^{2} is selected from phenyl, biphenyl, thien-2-yl, and furanyl, wherein R^{2} is optionally substituted; and
R^{3} is selected from phenyl, biphenyl, pyridinyl, thiazolylmethyl, thienylmethyl, cyclohexyl and pyrazolyl, wherein any phenyl, biphenyl, pyridinyl, thiazolyl, thienyl, cyclohexyl or pyrazolyl portion of R^{3} is optionally substituted.
8. The method of claim 7, wherein R^{1} is selected from cyclohexyl, cyclopentyl, cycloheptyl, cyclobutyl, 3,3-difluorocyclobutyl, 4,4,-difluorocyclohexyl, bicyclo[2.2.1]heptanyl, tertahydropyran-3-yl, tertahydropyran-4-yl, 1-t-butoxycarbonylpyrrolidin-3-yl, t-butyl, 2bromophenyl, 2-methylphenyl, and bicyclo[3.1.0]hexan-3-yl.
9. The method of claim 7 or 8 , wherein R^{2} is selected from phenyl, 2-methylphenyl, 2-fluorphenyl, 2-chlorophenyl, 2-bromophenyl, 2-bromo-5-fluorophenyl, 2,5-dichlorophenyl, 2-fluoro-5-methylphenyl, thien-2-yl, 4-fluorophenyl, 5-bromofuran-2-yl, 3-methylthien-2-yl, 2,4,5trifluorophenyl, 3-fluoro-5-chlorophenyl, 2,5-difluoro-6-chlorophenyl, 3-chlorophenyl, 3-
fluorophenyl, 3-methylphenyl, 2,6-dimethylphenyl, 3-bromopohenyl, 2-ethylphenyl, 2nitrophenyl, 3'-methoxybiphenyl-3-yl, 2,5-dibromo-6-fluorophenyl, 2-trifluoromethylphenyl, 4hydoxyphenyl, 3-hydroxyphenyl, 2-hydroxyphenyl, 2-methoxyphenyl, and 2-fluoro-5methoxyphenyl.
10. The method of any of claims 7-9, wherein R^{3} is selected from 3-fluorophenyl, 3methylphenyl, 3-chlorophenyl, thien-2-ylmethyl, 3-(1-methyl-1H-pyrazol-4-yl)phenyl, 1-methyl-1H-pyrazol-3-yl, 4-chlorophenyl, 3-acetylaminophenyl, 3'-trifluoromethoxy-biphenyl-3-yl, pyridin-3-yl, 4-fluorophenyl, thiazol-2-ylmethyl, cyclohexyl, 2-methylphenyl, 3-fluoro-4methylphenyl, 2-fluorophenyl, 2-chlorophenyl, 2-bromophenyl, phenyl, 3-bromophenyl, 2fluorophenyl, 3-chloro-4-methylphenyl, 3-(pyriminidin-5-yl)phenyl, biphenyl-3-yl, 3trifluoromethylphenyl, 3,4-methylenedioxyphenyl, 3,4-ethylenedioxyphenyl, 3-aminophenyl, 3ethylcarbonylaminophenyl, 3-t-butoxycarbonylaminophenyl, 3-chloro-4-bromophenyl, 4methlyphenyl, 3-methoxyphenyl, 3-(1-methyl-1H-pyrazol-5-yl)phenyl, 3methoxycarbonylaminophenyl, 3-cetylphenyl, 3-(morpholin-4-yl)phenyl, 3,4-difluorophenyl, and 3-(4-t-butoxycarbonylpiperazin-1-yl)phenyl.
11. The method of claim 5, wherein the compound is a compound of any one of claims 1-4.
12. The method of any one of claims 5 to 11 , wherein the compound or a pharmaceutically acceptable salt thereof is formulated into a pharmaceutical composition together with a pharmaceutically acceptable carrier.
13. The method of any one of claims 5 to 12 , wherein the subject is evaluated for the presence of an IDH1 R132X mutant allele prior to administration of the compound.
14. The method of any one of claims 5 to 12 , wherein the subject is evaluated for the presence of an elevated level of 2 HG prior to administration of the compound.
15. The method of any one of claims 5 to 12 , wherein efficacy of treatment of cancer comprises monitoring the level of 2 HG in a subject during treatment.
16. The method of any one of claims 5 to 12 , wherein efficacy of treatment of cancer comprises monitoring the level of 2 HG in a subject following termination of treatment.
17. A pharmaceutical composition comprising a compound of any one of claims 1 to 4 ; and a pharmaceutically acceptable carrier.

INTERNATIONAL SEARCH REPORT

Form PCT/ISA/210 (second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT Information on patent family members					International application No PCT/US2011/044254	
Patent document cited in search report		Publication date		Patent family member(s)		Publication date
WO 2009150248	Al	17-12-2009	$\begin{aligned} & \text { CA } \\ & \text { EP } \\ & \text { FR } \\ & \text { FR } \\ & \text { JP } \\ & \text { US } \end{aligned}$	2727296 2307017 2932483 2932478 2011523956 2011104162	$\begin{aligned} & 6 \mathrm{Al} \\ & 7 \mathrm{A1} \\ & 33 \mathrm{Al} \\ & 8 \mathrm{A1} \\ & 6 \mathrm{~A} \\ & 2 \mathrm{~A} 1 \end{aligned}$	$\begin{aligned} & 17-12-2009 \\ & 13-04-2011 \\ & 18-12-2009 \\ & 18-12-2009 \\ & 25-08-2011 \\ & 05-05-2011 \end{aligned}$

