
Improving Round-Trip Time Estimates in Reliable Transport Protocols

Phil Karn
Bell Communications Research, Incorporated

Craig Partridge
Harvard University/BBN Laboratories Incorporated

1. Abstract

As a reliable, end-to-end transport protocol, the
ARPA Transmission Control Protocol (TCP) uses
positive acknowledgements and retransmission to
guarantee delivery+ TCP implementations are
expected to measure and adapt to changing network
propagation delays so that its retransmission behavior
balances user throughput and network efficiency.
However, TCP suffers from a problem we call
retransmission ambiguity: when an acknowledgment
arrives for a segment that has been retransmitted,
there is no indication which transmission is being
acknowledged. Many existing TCP implementations
do not handle this problem correctly.

This paper reviews the various approaches to
retransmission and presents a novel and effective
approach to the retransmission ambiguity problem.

2. Introduction
Dynamically estimating the round-trip time, the

interval between the sending of a packet and the
receipt of its acknowledgement, is a key function in
many reliable transport protocols [5,15,22]. Such
estimates are used to ensure that data is reliably
delivered. If a packet remains unacknowledged for
too long, it is assumed to have been lost and is
retransmitted. Estimated round-trip times are used to
determine when these retransmissions will occur.

Three developments in IP networking [19,20,21]
have led to increased interest in the problems of
estimating round-trip times.

First, there has been an explosive growth in the
size and complexity of IP internetworks, built by

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of
the publication and its date appear, and notice is given that copying
is by permission of the Association for Computing Machinery. To
copy otherwise, or to republish, requires a fee and/or specfic
permission.

interconnecting existing subnetworks. The best
known example is the ARPA Internet. (The
ARPANET is just one component subnetwork in the
ARPA Internet.) The ARPA Internet has highly vari-
able round-trip times. Because its paths are very
complex, it also tends to lose more packets.

Second, there has been a large increase in traffic
on some of the major IP networks. Higher traffic
loads have led to serious network congestion on
some parts of the ARPA Internet [16,18]. Like net-
work size, congestion is known to cause highly vari-
able round-trip times and higher packet loss rates.

Finally, recent research has shown that the stan-
dard approaches to estimating round-tip times for the
Transmission Control Protocol (TCP) are inaccurate
if packets are lost or round-trip times are highly vari-
able [9,24]. This discovery is distressing because it
suggests that the mechanism reliable protocols
depend upon to handle loss and variable round-trip
times, namely the estimation of round-trip times, may
not work well.

Concern about the accuracy of estimated round-
tip times has led to some interesting research into
reliability mechanisms which are less dependent on
round-trip estimates [2,24]. The authors, however,
take a different approach that tries to improve the
data used to compute round-trip time estimates. In
this paper we present an analysis of this work.

3. The TCP Algorithm

TCP implementations attempt to predict future
round-trip times by sampling the behavior of packets
sent over a connection and averaging those samples
into a “smoothed” round-trip time estimate, SR7T.

When a packet is sent over a TCP connection,
the sender times how long it takes for it to be ack-
nowledged, producing a sequence, S, of round-trip
time samples: SI,S;?,S~....

0 1988 ACM O-89791-245-4/88/ &01/0002 $1.50

Petitioners' Exhibit 1045
Page 0001

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

With each new sample, Si, the new SRTT is
computed from the formula:

SR~i+l = (aXSRrri)+(l-ol)XSi

where SR~i is the current estimate of the round-trip
time, SR7Ti+l is the new computed value, and ~1 is a
constant between 0 and 1 that controls how rapidly
the SRTT adapts to change.

The retransmission time-out (RTO,), the amount
of time the sender will wait for a given packet to be
acknowledged, is computed from SR7Tp The for-
mula is:

RTO, = ~xSR?T,

where p is a constant, greater than 1, chosen such
that there is an acceptably small probability that the
round-trip time for the packet will exceed RTO;.

3.1. General Observations

There are several things to observe about the
algorithm. First, it can be viewed as an attempt to
approximate the next value from a function R, where
R(i) is the actual round-trip time for packet i. Given
the sequence of measured round-trip times,

S = SlJ2S3,...Ji-l

which correspond to the values of R:

we hope that the RTO computed from those values
will be a good upper bound on R(i), the round-trip
time for the next packet. Notice that if the measured
round-trip times, S, are inaccurate then the RTO is
probably incorrect; this problem is examined in the
next section.

One should also observe that the values of the
constants CL and /3 have important effects on the
behavior of the algorithm.

The value of a controls how rapidly the SRTT
adjusts to changing round-trip times. Mills [ll] has
measured network round-trip times and recommends
that there be two values for a, depending on the rela-
tive values of the sample, Si, and SRi’Tp Mills

observed that round-trip times are roughly Poisson
distributed, but with brief periods of high delay.
During these periods, he found that the standard way
of computing SRTT and RTO often did not adapt
swiftly enough, and the TCP sender would unneces-
sarily retransmit packets because the RTO was set
too low. As a result, he suggested a nonlinear filter
where a is smaller when SR7T,~Si, allowing the
SRTT to adapt more swiftly to sudden increases in
network delay.

Choosing a value for p is harder because it has
important and conflicting effects on individual user
throughput and overall network efficiency [IS]. To

achieve optimal throughput p should be only a little
greater than 1. This keeps the RTO very close to the
SRTT and ensures that packet loss will be quickly
detected. Detecting lost packets quickly is important
for good throughput, since the end-to-end flow con-
trol mechanisms in reliable protocols like TCP will
cause the sender to stop transmitting new packets if a
packet remains unacknowledged for much longer
than the round-trip time.

Unfortunately, what is good for throughput is
disastrous for efficient network utilization. If the
RTO is nearly equal to the SR’IT (i.e., if p is near
unity) then a large number of packets will be
retransmitted unnecessarily because the sender times
out too soon. For example, consider the situation
where RTO = SRn, (i.e, p=l), and the SRTT is an
accurate median of the round-trip times. In this case,
roughly half of all packets will be timed out and
retransmitted because their acknowledgement took
too long, burdening the network with unnecessary
retransmissions. To minimize retransmissions, p
should be chosen such that the RTO will be a high’
upper limit on the round-trip times. The TCP
specification [21] recommends a value of p=2 as a
reasonable balance. Another possibility suggested by
Van Jacobson [7,8] is to vary p based on the
observed variance in measured round-trip times,
although this is outside the immediate scope of this
paper.

3.2. Back-off

Whenever a timeout occurs, virtually every TCP
implementation increases the RTO by some factor
before retransmitting the unacknowledged data.
Should the new, larger RTO expire yet again before
the retransmission is acknowledged, it is increased
still further. This technique is known as back-@.
(Back-off is performed independently of SRTT calcu-
lation, since without an acknowledgment there is no
new timing information to be fed into the calcula-
tion). A variety of algorithms are used since the
TCP specification does not prescribe one. Some
(e.g., Berkeley UNIX’) step through a table of
arbitrary back-off factors for each successive
retransmission; others simply double the RTO (i.e.,
perform binary exponential back-off) for each con-
secutive attempt. Whatever the algorithm, TCP
back-off is essential in keeping the network stable
when sudden overloads cause packets to be dropped.
When the overload condition disappears, packet loss
stops and the TCPs reduce their RTO to their normal
SRI-T-based values.

1 UNIX is a trademark of AT&T Bell Laboratories.

Petitioners' Exhibit 1045
Page 0002

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

4. Sampling Round-Trip Times

A key assumption of the TCP algorithm is that
the sequence of round-trip samples is an accurate
measurement of the true network round-trip times
(i.e., that s,=R(l),s,=R(2), etc.). It has recently been
shown that the two standard sampling methods,
measuring from the first transmission and measuring
from the most recent transmission, give inaccurate
results [9,24].

This inaccuracy is caused by packet retransmis-
sion. The information carried in the packet headers
of TCP and most other reliable protocols does not
indicate if an acknowledgement is in response to the
original transmission of a packet or a retransmission.
As a result, a round-trip time measurement for a
retransmitted packet is ambiguous. We will call this
problem retransmission ambiguity.

4.1. Measuring From the First Transmission

Many TCP implementations measure round-trip
times from the first transmission of a packet. When-
ever an acknowledgement is received, the round-trip
time is computed from the first time the packet was
sent, regardless of how many times the acknowledged
packet has been retransmitted,

Sampling from the first transmission may cause
the SRlT to grow without bound when there is loss
on the network. When there is loss, the TCP sender
must retransmit lost packets. If we look at the
sequence of samples, SF, we discover that it contains
samples of two types. If pi is a boolean function
which is 0 if the acknowledgement for packet i is
acknowledging a retransmission, SF can be expressed
as:

fSi if yi#O

If we look at the values of XL those samples which
are derived from the acknowledgements of
retransmissions, we find that they are a function of
the true round-trip time, R(i), the SR’IT, and the par-
ticular retransmission of packet i, ri, where ri>O,
which is being acknowledged:

ST= R(i)+r@TOi = R(i)+-r&dRTI’i

si will be used to compute the new smoothed round-
trip time, SRTT+r, Plugging < into the SR’IT func-
tion gives:

SRTTi,l = (olxSRTT)+(l-a)X(R(i)+riXpxSRTTi)

= (CWSRTTJ+(l-a)xR(i)+((pr,-QrJXSRTTi

Since Ckcl<l the factor (pr,-c@ri) is greater than
zero and distorts the function, causing it to inflate the
value of the SRTT. Inflated round-trip time estimates
may not be a problem if the original reason for the
high loss rate was network congestion, because

congestion tends to increase round-trip times anyway.
It is also acceptable if the loss rate is very low since
the accumulated error is so small that it will probably
have no noticeable effect on the SRTT. However, if
the path is lossy (e.g., a noisy packet radio channel
operating without link level acknowledgements), the
SRTT grows and throughput unnecessarily decreases
to low levels.

4.2. Measuring From the Most Recent Transmis-
sion

Another popular method measures round-trip
time from the most recent transmission of a packet.
The implicit assumption in this method is that the
RTO is accurate; if a packet has to be retransmitted
then previous transmissions have almost certainly
been Iost.

Unfortunately, this assumption is often false. If
the RTO is smaller than the true round-trip time, ack-
nowledgements for previous transmissions may arrive
after a retransmission. If 2i is a boolean function
which returns 0 if the acknowledgement is for a pre-
vious transmission, the sequence of sampled values,
S, is:

Si

{

if 2i~
‘iZ = F ‘ if r.$l I

At first glance this doesn’t look too bad. q is a
value between 0 and the RTO, which might be
expected to distort the SRTT a bit, but doesn’t have
the growth term caused by measuring from the first
transmission.

But the picture is not quite so rosy. Recall that
the RTO is intended as an estimate of the maximum
possible round-trip time. If an acknowledgement
arrives after the RTO has expired, it is highly likely
to come very shortly afterwards. In other words,
instead of being randomly distributed between 0 and
the RTO, siis likely to be very close to 0 (recall that

the sample timer was reset when the RTO had
elapsed). This will cause the SR’IT to decline,
reducing the RTO, and increasing the likelihood that
a packet will be acknowledged just after the RTO has
expired. The SRTT stabilizes at an unreasonably
low estimate. Unnecessary data retransmissions
occur constantly, useful throughput drops sharply,
and network bandwidth is wasted.

Observe that the problem of a declining SRTT
could be avoided if the RTO were set extremely
high, so high that no packet could survive that long
unacknowledged. Recall however, that for high
throughput, the RTO cannot be much larger than the
SRTT. An algorithm which requires an extremely
high RTO will give unacceptable performance across
a lossy path.

Petitioners' Exhibit 1045
Page 0003

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

4.3. Ignoring Round-Trip Times for Packets That
Have Been Retransmitted

Some implementations simply ignore round-trip
time samples tainted by retransmission.

This method works, provided the true round-trip
time never grows faster than the algorithm can adapt.
If there is a sudden increase in network round-trip
time (e.g., when the failure of a primary path causes
packets to be sent via a slower secondary path), and
if the new path delay becomes larger than the RTO,
all samples will be discarded, because every packet
will be retransmitted before the acknowledgement
comes back. Note that if the RTO is reasonable (i.e.,
if p is chosen well) then the chance of a dramatic
surge is quite small. But the consequences of such a
surge are truly disastrous - the sender is stuck with
an unrealistically short RTO that it has little chance
or no chance of correcting. Once again, there are
numerous unnecessary retransmissions, throughput
drops sharply and network capacity is wasted.

4.4. Karn’s Algorithm

Very recently a new sampling method has been
suggested by one of the authors. This method
addresses the problems with ignoring round-trip times
of retransmitted packets.

The fundamental notion of I&m’s algorithm is
to use RTO back-off to collect accurate round-trip
time measurements uncontaminated by retransmission
ambiguity. The rule is as follows:

When an acknowledgement arrives for a packet
that has been sent more than once (i.e.,
retransmitted at least once), ignore any round-
trip measurement based on this packet, thus
avoiding the retransmission ambiguity problem.
In addition, the backed-off RTO for this packet
is kept for the next packet. Only when it (or a
succeeding packet) is acknowledged without an
intervening retransmission will the RTO be
recalculated from SRlT.

The last provision ensures that new and accurate
round trip measurements will be taken and fed into
the SRTT estimate regardless of any sudden increase
in round-trip delay. If the increase is large, the RTO
may oscillate between the backed-off value necessary
to avoid an unnecessary retransmission and the value
calculated from SR’IT. However, the SR’lT will con-
verge to the correct value, and unnecessary
retransmission will stop.

How quickly the SRTT converges to the new
round-trip time depends on the back-off algorithm
and the SRTT smoothing algorithm, but typically this
convergence is quite fast. To prevent unnecessary
retransmissions, the RTO must be greater than the
new round-trip time. To achieve this new RTO value

the SRTT must be at least as large as the new
round-trip time, s, divided by p. (For simplicity in
the proof, we assume that the new value for s does
not vary). Reaching the new RTO takes n valid sam-
ples, where n is the minimum value for which the
following equality in terms of the new RTT, s, and
the old SRTT, z, is true:

”

; I (zxa”) + ~((sx(l-wa(‘-‘))

In the worst case s-z is almost s (i.e., s > z), so the
z term may be ignored. Dividing the remaining terms
by s, we find that the upper limit on n is given by the
solution to:

Using typical values of CL = 0.875 and p = 2, n is
only 6. Since the number of required valid samples
is small, convergence is usually swift.

A TCP implementation using Kam’s algorithm
and Mills’ nonlinear filter has been in heavy use on
perhaps the worst medium ever used to pass IP
datagrams: amateur packet radio [lo]. Despite packet
loss rates often exceeding 50%, SRIT values remain
quite stable, changing only in response to true
changes in round-trip time. Packets lost due to noise
leave the SRTT unaffected.

4.5. Sampling RTTs in Parallel

While Kam’s algorithm is currently the best
available solution to the sampling problem, it is
worth taking a few paragraphs to discuss another
class of sampling algorithms which have been
developed recently. These algorithms depend on the
fact that most transport protocols send more than one
packet at a time, and as a result it is possible to take
multiple round-trip time samples in parallel.

One such algorithm has recently been developed
in an implementation of the Reliable Data Protocol
(RDP), which uses the TCP algorithm to estimate
round-trip times [4,17,22]. It relies on the fact that
networks almost always preserve packet ordering. If
two packets are sent close together it is-likely that
they will reach their destination in the order they
were sent, and be acknowledged in the same order.
So if an acknowledgement for packet i is received
after the acknowledgement for packet j, where j>i, it
is a strong hint that the acknowledgement is for a
retransmission of packet i. We can check the
retransmission count, ri, for packet i, so this observa-
tion gives a sampling method.

Measuring from the lirst transmission, a sample
for packet i, Si, should be discarded if:

Petitioners' Exhibit 1045
Page 0004

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

. An acknowledgement for some packet j,
j>i, has already been received, and

. r,+O

The first test can only be applied if packets can be
acknowledged when they are received out of order.
Such acknowledgements are called extended or selec-
tive acknowledgements. RDP supports extended ack-
nowledgements. TCP does not, although considera-
tion is being given to adding this facility [l].

The performance of this sampling method is
highly dependent on the number of parallel transmis-
sions a protocol implementation will support. Obser-
vations suggest that the algorithm keeps accurate
round-trip estimates at much higher loss rates than
sampling from the first transmission.

Other estimation methods that use multiple sam-
ples taken in parallel have been explored in Mills’
work on synchronizing network clocks [12,13,14].
Synchronizing clocks involves problems of handling
a certain amount of bad data, caused by noisy links
or faulty clocks. The techniques used to eliminate
such bad values can also be applied to the problem
of extracting good round-trip times from a set of
several round-trip times collected at roughly the same
time.

Parallel sampling methods tend to suffer from
two problems. First, they can be adversely affected
by the loss of an entire group of packets; all the sam-
ples become bad. Second, they often fail when a
network is congested. When a network is congested,
most protocols attempt to reduce the data they put on
the network by limiting themselves to sending one
packet at a time. Unfortunately, a network is most
likely to drop packets when it is congested. Thus the
ability to take parallel samples is lost at precisely the
time we would most like to have an accurate sam-
pling method. One could blur the notion of “paml-
lel” and simply apply these techniques after every n
samples, where n is chosen to equal the number
packets that are normally in flight. But when the pro-
tocol is in one-packet-at-a-time mode, recomputing
the SRIT must be delayed until n samples have been

collected, which could be a long time, at minimum it
is roughly nxSRTT.

5. The Perfect Sampling Method

It is worth noting for a moment that most of the
methods discussed in this section are attempts to
achieve the sampling function y discussed in section
3.2. Recall that y was a boolean function which
returned 0 if the sample was taken from the ack-
nowledgement of a retransmission. The sampling
methods want to use only those samples measuring
the time between the first transmission of a packet
and the acknowledgement of that first transmission,

i.e., those samples for which -@I. The problem is
that most sampling methods are inadequate approxi-
mations of y, and either exclude too many good sam-
ples or include too many bad samples.

Kam’s algorithm solves this problem by accept-
ing only good samples and using the retransmission
back-off strategy to ensure that good samples will
eventually be available even if round-trip times
increase dramatically.

6. Deficiencies in the TCP Algorithm

So far this paper has focussed on how to
improve round-trip estimates by using better sam-
pling methods. Before con&ding we would like to
touch briefly on some other ways that round-trip esti-
mates can be improved.

One improvement is to sample more frequently.
Some protocol implementations sample round-trips
only once per sending window, leading to poor esti-
mates because the estimator does not have enough
recent samples to detect changes in the round-trip
time.

Another possible improvement is to chose a new
algorithm for estimating the RTO. The TCP algo-
rithm assumes that a weighted average, the SRTT,
adjusted by some estimate of variance, p, is a good
approximation of the behavior of the network func-
tion, R. Recently, research by Jacobson has shown
that R is a more complex function than a simple
average can accurately model [6,8]. Encouragingly,
however, Jacobson’s work also suggests that it may
be possible to predict the values generated by R with
functions of roughly the same complexity as the
functions presented in section 2.

7. Conclusion

Much attention has recently been paid to the
question of whether one can accurately sample
round-trip times over a transport protocol connection.
The authors have shown that round-trip times can be
accurately sampled and have presented a simple
method that gives good round-trip time samples.

8. Acknowledgements

The authors would like to thank Will Leland
and Chase Cotton for their useful comments on this
paper.

Petitioners' Exhibit 1045
Page 0005

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
	� Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

	� Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
	� With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

	� Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
	� Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

	� Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

