
Comparative Evaluation of

Server-push and Client-pull Architectures for Multimedia Servers�

Sriram S. Rao Harrick M. Vin Ashis Tarafdar

Distributed Multimedia Computing Laboratory
Department of Computer Sciences, University of Texas at Austin

Taylor Hall 2.124, Austin, Texas 78712-1188, USA
E-mail: fsriram,vin,ashisg@cs.utexas.edu, Telephone: (512) 471-9732, Fax: (512) 471-8885

URL: http://www.cs.utexas.edu/users/dmcl

Abstract
Realizing a wide range of multimedia services will require
the development of high performance, integrated multime-
dia servers (or file systems) which can efficiently manage
the storage, access, and transmission of audio, video, and
textual objects. Traditionally storage servers have em-
ployed fundamentally different mechanisms for managing
the storage and access of each of these objects. Whereas
most conventional text file systems employ a client-pull ar-
chitecture, most video servers proposed in the literature
employ a server-push architecture. Hence, the most funda-
mental question is: what is an appropriate architecture for
integrated multimediaservers? In this paper, we take a step
towards addressing this question by outlining the qualita-
tive and quantitative differences between the server-push
and client-pull architectures.

1 Introduction
Recent advances in computing and communication tech-
nologies have made it feasible as well as economically
viable to provide on-line access to a variety of information
sources (such as books, images, video clips, newspapers,
etc.) over high speed networks. Since these sources may
contain multiple types of information (namely, imagery,
audio, video, as well as textual and numeric data), the re-
alization of such services will require the development of
high performance, integrated multimedia servers (or file
systems) which can efficiently and simultaneously manage
the storage, access, and transmission of a variety of hetero-
geneous objects.

Traditionally, storage servers have employed fundamen-
tally different mechanisms for managing the storage and
access of audio, video, and textual data. For instance, most
conventional text file systems employ a client-pullarchitec-
ture, in which the server retrieves information from disks

�This research was supported in part by IBM, Intel, the
National Science Foundation (Research Initiation Award CCR-
9409666), NASA, Mitsubishi Electric Research Laboratories
(MERL), Sun Microsystems Inc., and the University of Texas
at Austin.

only in response to an explicit read request from a client
[4]. Observe that, although such servers generally em-
ploy some prefetching and caching techniques to improve
the performance of retrieval, due to the aperiodic nature
of accesses, requests for retrieving information from the
disk subsystem are triggered only in response to explicit
access requests from the client. On the other hand, due
to the sequential and periodic nature of digital video play-
back, most video servers proposed in the literature service
client requests by proceeding in terms of periodic rounds
[1, 2, 5, 8]. During each round, the server retrieves and
transmits a fixed number of media units (i.e., frames) for
each client. The retrieval and transmission proceeds con-
tinuously, without any explicit requests from the clients,
until a request to terminate the playback is received by the
server. We refer to such servers as employing a server-push
architecture.

Given that integrated multimedia servers of the future
will be required to efficiently and simultaneously support
textual/numeric as well as audio and video objects, the most
fundamental question is: what is an appropriate architec-
ture for integrated multimedia servers? Since server-push
architecture cannot be used for unpredictable, aperiodic re-
quests, it is clear that integrated multimedia servers must
employ the client-pull architecture. Hence, the fundamen-
tal question becomes: can we adapt the client-pull architec-
ture to efficiently service audio and video requests? What
are the tradeoffs between using such an adaptation of the
client-pull architecture vs. a server-push architecture for
audio and video requests? Clearly, if the requirements
imposed by audio and video objects can be easily and ef-
ficiently met by the client-pull architecture, then the in-
tegrated multimedia server will need to support only the
client-pull architecture (i.e., a relatively small extension of
the existing file systems may suffice). If, on the other hand,
server-push architecture is both qualitatively and quantita-
tively superior to its client-pull counterpart for meeting the
requirements of audio and video objects, then both client-
pull and server-push architectures will need to co-exist in
an integrated server (i.e., a fundamental shift in paradigm
as compared to conventional file systems).

Although the problem of designing multimedia servers

Petitioners' Exhibit 1028 
Page 0001

f 

 

Find authenticated court documents without watermarks at docketalarm.com. 

https://www.docketalarm.com/


has received substantial attention over the past few years,
almost no effort has been devoted to the evaluation of these
two architectures. In this paper, we take a step towards
addressing this limitation by outlining the qualitative and
quantitative differences between the server-push and client-
pull architectures. Since digital video is more demanding
with respect to storage space and bandwidth requirement
as compared to audio, we will compare these architectures
with respect to their ability to meet the requirements of
video streams.

The rest of this paper is organized as follows: we de-
scribe the operational semantics of a video server employ-
ing the server-pull and the client-pull architectures in Sec-
tions 2 and 3, respectively. A comparative evaluation of
the two architectures is presented in Section 4, and finally,
Section 5 summarizes our results.

2 Server-push Architecture
A multimedia server using the server-push architecture ex-
ploits the sequential and periodic nature of media playback
and services multiple streams by proceeding in fixed du-
ration rounds. To maintain playback continuity, the server
accesses sufficient number of media units to sustain play-
back at the clients for the duration of a round, and ensures
that the total time spent in retrieving the media units does
not exceed the duration of a round.

To formulate these requirements, consider a multimedia
server that is servicing n clients, each retrieving a video
stream S�� S�� � � � � Sn, respectively. Let Pi denote the
playback rate (expressed in frames/sec) for stream Si, and
letR denote the duration of a round (expressed in seconds).
Then, the number of frames fi of stream Si accessed during
a round is given by:

fi � Pi � R ���

Assuming that the storage of media units is organized on
disk in terms of media blocks (each containing several me-
dia units), the server can: (1) exploit the sequentiality of
video playback to determine the set of media blocks to be
accessed in a round; (2) batch all of these requests; and (3)
employ disk scheduling algorithms (e.g., SCAN, greedy
[9]) to minimize the seek time and rotational latency in-
curred during the retrieval.

Determination of the round duration R is governed by
the following tradeoffs. Increasing the duration of the round
increases the number of media units, and hence the num-
ber of media blocks, accessed during a round. In a disk
array based server, since successive blocks of a stream are
stored on different disks, increasing the number of blocks
to be accessed during a round decreases the average seek
time and rotational latency overhead per block (since it is
amortized over a larger number of blocks). Consequently,
increasing the round duration yields an effective increase
in the throughput of the server, which, in turn, increases
the number of clients that can be serviced simultaneously.
The rate of increase in the effective throughput, however,
monotonically decreases with increase in the round dura-
tion, and saturates beyond a certain value. The threshold
beyond which any increase in the round duration does not
yield an increase in the number of clients is a function of
the disk performance characteristics (i.e., seek time, rota-
tional latency, data transfer rate, etc.), the media block size,

as well as the number of disks in the array. A multime-
dia server can select the round duration to be equal to this
threshold value to maximize the number of clients that can
be serviced simultaneously. On the other hand, since the
round duration also determines the amount of information
that is pre-fetched, the server may determine the round du-
ration based on the buffer space availability at the server
and client sites.

3 Client-pull Architecture
In the client-pull architecture, a server retrieves informa-
tion from disk subsystem only in response to explicit read
requests from clients. Consequently, if such an architecture
is employed by a multimedia server, then to ensure play-
back continuity, clients must issue retrieval requests such
that the requested media units are available at the client
sites prior to their scheduled playback instants. To meet
this objective, the client must: (1) determine the playback
instants of media units and (2) estimate the time instants at
which retrieval requests for media units must be issued.

Since the storage of media units is organized on disk
in terms of fixed size blocks, clients can reduce the com-
munication overhead associated with the read requests by
accessing information from the server in terms of media
blocks (instead of media units). In such a scenario, the
client can define the playback instant of a media block as
the time at which the first frame stored in that media block
has to be displayed. Thus, if T pl

�
and T

pl
k denote the time at

which playback was initiated at the client and the playback
instant of block k, respectively, then we have:

T
pl
k � T

pl
�

�

jPk��

j�� Fj

k

Pi

���

where, Fj denotes the number of frames (including the
fractional frames) stored in the jth media block, and Pi

denotes the playback rate of stream Si.
Having determined the playback instant of a media

block, the client has to estimate response time (i.e., the
network transmission delay as well as the queuing delay
incurred at the server) of a request, and then issue the re-
quest appropriately. Specifically, if� denotes the response
time estimate, then the time at which retrieval request for
media block k is issued (denoted by T re

k ) must satisfy:

T re
k � T

pl

k �� ���

Whereas the queuing delay at the server depends on the
number of clients being serviced, the rate at which requests
are issued by the clients, and the service rate (or throughput)
of the disk subsystem; the queuing delays at the network
depend on the traffic mix, the specifics of the network pro-
tocol, and the scheduling algorithms employed in the net-
work. Consequently, the estimate of � may widely vary
over time. Moreover, the process of deriving an accurate
estimate is non-trivial. Consequently, a client may utilize a
worst-case estimate of � derived by assuming a maximum
load scenario (e.g., maximum number of clients that may
need to be serviced simultaneously by the server). This
will certainly simplify the implementation of clients, al-
beit at the expense of larger buffer space requirement and
increased initiation latency.

Petitioners' Exhibit 1028 
Page 0002

f 

 

Find authenticated court documents without watermarks at docketalarm.com. 

https://www.docketalarm.com/


4 Comparative Evaluation
In what follows, we highlight the qualitative and quantita-
tive differences between the server-push and the client-pull
architectures.

4.1 Qualitative Differences
To provide QoS guarantees, both server architectures must
employ admission control algorithms. These admission
control algorithms utilize information regarding the cur-
rent load as well as estimates for the data rate requirement
of the new client, and determine whether the new client can
be admitted for service without violating the requirements
of the clients already in service. Once admitted, the server
must ensure that the QoS guarantees provided to the clients
are realized. Observe that deterministic admission control
algorithms, which provide deterministic service guaran-
tees to clients by making worst-case assumptions during
the admission control process, ensure that the system re-
sources (e.g., network and disk bandwidth) are never over-
subscribed. This simplifies the task of providing service
that meets the QoS guarantees, albeit at the expense of
lower server and network utilization. On the other hand, if
the server employs statistical admission control algorithms
to improve utilization, then the system resources may be-
come overloaded during transient periods.

By exploiting the sequentiality and periodicity of media
playback, a server-push architecture is able to predict the
bit rate requirement of each round, and thereby detect such
overload prior to its occurrence. This makes it possible for
the server to take corrective actions (e.g., read-ahead blocks
from the bottleneck disks in prior rounds, reduce the reso-
lution level of each object being accessed, etc.) to eliminate
the transient overload, while ensuring that the QoS require-
ments of the none of the clients being serviced are violated
[3, 10]. However, to achieve this objective, the server must
maintain the state of each of the client (for instance, for a
client retrieving a video stream, the state information being
maintained at the server may include the playback rate at
the client, the next frame to be accessed, the QoS desired by
the client, and the QoS being provided). The client-pull ar-
chitecture, on the other hand, migrates the complexity and
the task of maintaining continuous playback (or in general,
meeting the QoS requirements of the applications) to the
clients. The server is relatively simple and maintains very
little state information. Since a client does not possess in-
formation regarding the QoS requirements of all the other
clients, development of overload control policies, which
can ensure that the QoS requirements of all the clients are
met, poses a formidable task. In fact, the literature to-date
does not contain any schemes for achieving this objective.

A fundamental advantage of the client-pull architecture
is that it is inherently suitable for supporting adaptive appli-
cations over heterogeneous computing and communication
environments (e.g., shared inter-networks) with dynami-
cally changing resource availability. This is because, with
changes in resource availability, the client can alter its re-
quest rate so as to ensure that it can keep pace with the
server. To illustrate, when the load on CPU increases or
when the response time estimates indicate that the network
is congested, then an adaptive media playback application
can reduce its bandwidth requirements by requesting only

a subset of blocks, or by requesting the delivery of a lower
resolution version of the same object.

The server-push architecture, in its simplest form, does
not assume any feedback from the clients at all. In fact,
admission of a client for service constitutes a “contract” be-
tween the server and the client: the server guarantees that it
will access and transmit sufficient information during each
round so as to meet the QoS requirements of the client; and
the client guarantees that it will keep pace with the server
by consuming all the data transmitted by a server during
a round within a round duration. Note that such contrac-
tual requirements can be easily met by clients and servers
in video-on-demand environments, in which the server is
connected to dedicated hardware (e.g., set-top boxes) at
client sites over dedicated communication links. How-
ever, in an integrated multimedia computing environment,
in which the computing and the communication resources
may be shared by a wide range of clients and applications,
the server and clients may not always be able to maintain
respective ends of their contract (and may need to alter
their requirements and service based on the availability of
resources). Supporting such adaptive applications will re-
quire the development of additional protocols.

Finally, in both architectures, a real-time communication
channel for transmitting media streams must be established
from the server to the client sites when a client is admitted
for service. However, in the client-pull architecture, an
additional guaranteed real-time channel must be established
from clients to server so as to obtain some delay guarantees
for the delivery of retrieval request messages. Even though
the bandwidth requirement of such a channel is low, it
represents an additional cost to the system.

4.2 Quantitative Comparison
To evaluate the performance of servers that employ ei-
ther of these architectures, we have carried out extensive
trace-driven simulations. Trace data from several MPEG
encoded VBR video streams were used for the simulations,
and the performance of both architectures was evaluated
under similar load conditions. We used the following three
metrics for evaluating the two server architectures: (1) the
number of clients that can be supported by the server, (2)
the playback initiation latency, and (3) the buffer space
requirement.

� Number of clients: Round-based scheduling enables
the server-push architecture to batch the set of blocks
to be accessed from the disk subsystem, and thereby
employ efficient disk scheduling algorithms (e.g.,
SCAN). On the contrary, a server employing the client-
pull architecture services client requests in the order
received, and hence, incurs high seek time and rota-
tional latency overhead. Such a server can improve the
throughput by employing disk scheduling techniques
such as SCAN-EDF [6]. However, our experiments
have demonstrated that, even in such a scenario, the
number of clients that can be supported by the client-
pull architecture were 5% to 20% (for block sizes of
256KB and 32KB, respectively) lower as compared to
the corresponding server-push architecture [7].

� Initiation latency: We define initiation latency to be
the difference between the time at which playback is

Petitioners' Exhibit 1028 
Page 0003

f 

 

Find authenticated court documents without watermarks at docketalarm.com. 

https://www.docketalarm.com/


initiated and the time at which the request is trans-
mitted by the client. Since a server-push architecture
schedules the retrieval of blocks for a client only at
round boundaries and transmit blocks accessed during
a round in the following round, the time interval be-
tween submitting a request to the server and receiving
the first packet containing the result may vary between
	R� �R
. A server employing the client-pull architec-
ture, on the other hand, may initiate the retrieval of a
block in response to a request immediately, and hence,
may yield very small initiation latencies.

Observe that a server employing the push architec-
ture can substantially reduce the initiation latency by
modifying the round schedule generated prior to the
receipt of a new request such that: (1) the new request
is serviced as soon as possible and (2) the QoS require-
ments of the clients already in service are not violated.
In fact, our experiments have demonstrated that, by
employing such a scheme, the initiation latency of a
server-push architecture can be brought within 10ms
of the client-pull architecture [7].

� Buffer space requirement: Since round-based schedul-
ing synchronizes the accesses of blocks from each
disk, and hence requires simultaneous buffer allo-
cations, the server-push architecture imposes higher
buffer space requirements at the server as compared
to its client-pull counterpart. Assuming the same net-
work transmission protocol is used in either archi-
tecture, while servicing 110 clients, the difference in
buffer requirement at the server end between the two
architectures was about 2MB - which, given the cur-
rent memory prices, is insignificant [7].

The buffer space requirement at the client site, on the
other hand, is a function of the amount of information
read-ahead by the client prior to initiating playback.
Our experiments have demonstrated that, given similar
load conditions, the buffer space requirement of the
server-push architecture is higher by 500KB [7].

5 Concluding Remarks
Realizing a wide range of multimedia services will require
the development of high performance, integrated multime-
dia servers (or file systems) which can efficiently man-
age the storage, access, and transmission of audio, video,
and textual objects. Traditionally storage servers have em-
ployed fundamentally different mechanisms for managing
the storage and access each of these objects (e.g., client-pull
architecture of conventional text file systems vs. the server-
push architecture of most video servers). In this paper, we
have taken a step towards defining the architecture of in-
tegrated multimedia storage servers. Specifically, we have
described the qualitative differences between the server-
push and client-pull architectures. We have described the
results of our preliminary experiments which demonstrate
that: (1) the server-push architecture supports 5% to 20%
larger number of clients as compared to the client-pull ar-
chitecture and (2) both architectures impose nearly the same
buffer requirement and yield similar initiating latencies. We
are currently in the process of carrying out a detailed evalu-
ation of these two architectures. We expect that the results

of our experiments will define the architecture of integrated
multimedia storage servers of the future.

6 Acknowledgments
This study was suggested, in part, by Pawan Goyal. Addi-
tionally, the analysis and the experiments presented in this
paper have immensely benefited from the discussions with
Pawan Goyal, Scott Page, C. S. Raghavendra, and Prashant
Shenoy.

References
[1] D. Anderson, Y. Osawa, and R. Govindan. A File

System for Continuous Media. ACM Transactions on
Computer Systems, 10(4):311–337, November 1992.

[2] J. Gemmell and S. Christodoulakis. Principles of De-
lay Sensitive Multimedia Data Storage and Retrieval.
ACM Transactions on Information Systems, 10(1):51–
90, 1992.

[3] P. Goyal and H.M. Vin. Network Algorithms and
Protocol for Multimedia Servers. In Proceedings of
IEEE INFOCOM96, San Francicso, CA, pages 1371–
1379, March 1996.

[4] M. K. McKusick, W. N. Joy, S. J. Leffler, and R. S.
Fabry. A Fast File System for UNIX. ACM Trans-
actions on Computer Systems, 2(3):181–197, August
1984.

[5] P. Venkat Rangan and H.M. Vin. Designing File Sys-
tems for Digital Video and Audio. In Proceedings of
the 13th Symposium on Operating Systems Principles
(SOSP’91), Operating Systems Review, Vol. 25, No.
5, pages 81–94, October 1991.

[6] A.L. Narasimha Reddy and J. Wyllie. Disk Schedul-
ing in Multimedia I/O System. In Proceedings of
ACM Multimedia’93, Anaheim, CA, pages 225–234,
August 1993.

[7] S.S.Rao, H.M.Vin, and A. Tarafdar. Comparative
Evaluation of Server-push and Client-pull Architec-
tures for Multimedia Servers. Technical report, De-
partment of Computer Sciences, University of Texas,
Austin, 1996.

[8] F.A. Tobagi, J. Pang, R. Baird, and M. Gang. Stream-
ing RAID: A Disk Storage System for Video and Au-
dio Files. In Proceedings of ACM Multimedia’93,
Anaheim, CA, pages 393–400, August 1993.

[9] H. M. Vin, A. Goyal, and P. Goyal. Algorithms for De-
signing Large-Scale Multimedia Servers. Computer
Communications, 18(3):192–203, March 1995.

[10] H.M. Vin, S.S. Rao, and P. Goyal. Optimizing the
Placement of Multimedia Objects on Disk Arrays.
In Proceedings of the Second IEEE International
Conference on Multimedia Computing and Systems,
Washington, D.C., pages 158–165, May 1995.

Petitioners' Exhibit 1028 
Page 0004

f 

 

Find authenticated court documents without watermarks at docketalarm.com. 

https://www.docketalarm.com/

