
The Transport Layer: Tutorial and Survey
SAMI IREN and PAUL D. AMER

University of Delaware

AND

PHILLIP T. CONRAD

Temple University

Transport layer protocols provide for end-to-end communication between two or
more hosts. This paper presents a tutorial on transport layer concepts and
terminology, and a survey of transport layer services and protocols. The transport
layer protocol TCP is used as a reference point, and compared and contrasted with
nineteen other protocols designed over the past two decades. The service and
protocol features of twelve of the most important protocols are summarized in both
text and tables.

Categories and Subject Descriptors: C.2.0 [Computer-Communication
Networks]: General—Data communications; Open System Interconnection
Reference Model (OSI); C.2.1 [Computer-Communication Networks]: Network
Architecture and Design—Network communications; Packet-switching networks;
Store and forward networks; C.2.2 [Computer-Communication Networks]:
Network Protocols; Protocol architecture (OSI model); C.2.5 [Computer-
Communication Networks]: Local and Wide-Area Networks

General Terms: Networks

Additional Key Words and Phrases: Congestion control, flow control, transport
protocol, transport service, TCP/IP

1. INTRODUCTION

In the OSI 7-layer Reference Model, the
transport layer is the lowest layer that
operates on an end-to-end basis be-
tween two or more communicating
hosts. This layer lies at the boundary
between these hosts and an internet-

work of routers, bridges, and communi-
cation links that moves information be-
tween hosts. A good transport layer
service (or simply, transport service) al-
lows applications to use a standard set
of primitives and run on a variety of
networks without worrying about differ-
ent network interfaces and reliabilities.

This work was supported, in part, by the National Science Foundation (NCR 9314056), the U.S. Army
Research Office (DAAL04-94-G-0093), and the Adv Telecomm/Info Dist’n Research Program (ATIRP)
Consortium sponsored by ARL under Fed Lab Program, Cooperative Agreement DAAL01-96-2-0002.
Authors’ addresses: S. Iren and P. D. Amer, Department of Computer and Information Sciences,
University of Delaware, Newark, DE 19716; P. T. Conrad, Department of Computer and Information
Sciences, Temple University, Philadelphia, PA 19122.
Permission to make digital / hard copy of part or all of this work for personal or classroom use is granted
without fee provided that the copies are not made or distributed for profit or commercial advantage, the
copyright notice, the title of the publication, and its date appear, and notice is given that copying is by
permission of the ACM, Inc. To copy otherwise, to republish, to post on servers, or to redistribute to
lists, requires prior specific permission and / or a fee.
© 2000 ACM 0360-0300/99/1200–0360 $5.00

ACM Computing Surveys, Vol. 31, No. 4, December 1999

Petitioners' Exhibit 1017
Page 0001

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Essentially, the transport layer isolates
applications from the technology, de-
sign, and idiosyncracies of the network.

Dozens of transport protocols have
been developed or proposed over the last
two decades. To put this research in
perspective, we focus first on the fea-
tures of probably the most well-known
transport protocol — namely the Inter-
net’s Transmission Control Protocol

(TCP) — and then contrast TCP with
many alternative designs.

Section 2 introduces the basic con-
cepts and terminology of the transport
layer through a simple example illus-
trating a TCP connection. Section 3 sur-
veys the range of different services that
can be provided by a transport layer.
Similarly, Section 4 surveys the range
of protocol designs that provide these
services. (The important distinction be-
tween service and protocol is a major
theme throughout this paper.) Section 5
briefly surveys nine widely imple-
mented transport protocols other than
TCP (UDP, TP0, TP4, SNA-APPN,
DECnet-NSP, ATM, XTP, T/TCP and
RTP) and two others that, although not
widely implemented, have been particu-
larly influential (VMTP and NETBLT).
This section also includes briefer de-
scriptions of eight experimental proto-
cols that appear in the research litera-
ture (Delta-t, MSP, SNR, DTP, k-XP,
TRUMP, POC, and TP11). Section 6
concludes the paper with an overview of
past, current, and future trends that
have influenced transport layer design
including the impact of wireless net-
works. This section also presents a few
of the debates concerning transport pro-
tocol design. As an appendix, tables are
provided summarizing TCP and eleven
of the transport protocols discussed in
Section 5. Similar tables for the experi-
mental protocols are omitted for reasons
of space, but are available on the au-
thors’ Web site: www.eecis.udel.edu/
˜amer/PEL/survey/ .

This survey concentrates on unicast
service and protocols — that is, commu-
nication between exactly two hosts (or
two host processes). Multicast protocols
[Armstrong et al. 1992; Bormann et al.
1994; Braudes and Zabele 1993; Deer-
ing 1989; Floyd et al. 1995; McCanne et
al. 1996; Smith and Koifman 1996] pro-
vide communication among n $ 2
hosts. Multicast represents an impor-
tant research area currently undergoing
significant change and development,
and is worthy of a separate survey.

CONTENTS

1. Introduction
2. Transport Layer Concepts and Terminology

2.1 Introduction to TCP
2.2 General Role of the Transport Layer
2.3 Terminology: SDUs, PDUs, and the like
2.4 Example TCP Connection, Step-by-Step
2.5 What this example shows. . . and does not show

3. Transport Service
3.1 CO-message vs. CO-byte vs. CL
3.2 Reliability
3.3 Blocking vs. Non-Blocking
3.4 Multicast vs. Unicast
3.5 Priority vs. No-priority
3.6 Security vs. No-security
3.7 Status-reporting vs. No-status-reporting
3.8 Quality-of-service vs. No-quality-of-service

4. Transport Protocol Features
4.1 Connection-oriented vs. Connectionless
4.2 Transaction-oriented
4.3 CO Protocol Features
4.4 Error Control: Sequence Numbers, Acks, and

Retransmissions
4.5 Flow/Congestion Control
4.6 Multiplexing/Demultiplexing
4.7 Splitting/Recombining
4.8 Concatenation/Separation
4.9 Blocking/Unblocking
4.10 Segmentation/Reassembly

5. Transport Protocol Examples
5.1 UDP
5.2 TP4
5.3 TP0
5.4 NETBLT
5.5 VMTP
5.6 T/TCP
5.7 RTP
5.8 APPN (SNA)
5.9 NSP (DECnet)
5.10 XTP
5.11 SSCOP/AAL5 (ATM)
5.12 Miscellaneous Transport Protocols

6. Future Directions and Conclusion
6.1 Impacts of Trends and New Technologies
6.2 Wireless Networks
6.3 Debates
6.4 Final Observations

APPENDIX

Transport Layer • 361

ACM Computing Surveys, Vol. 31, No. 4, December 1999

Petitioners' Exhibit 1017
Page 0002

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

A previous study surveying eight
transport protocols can be found in Do-
eringer et al. [1990].

2. TRANSPORT LAYER CONCEPTS AND
TERMINOLOGY

From an application programmer’s per-
spective, the transport layer provides
interprocess communication between
two processes that most often are run-
ning on different hosts. This section in-
troduces some basic transport layer con-
cepts and terminology through an
example: a simple document retrieval
over the World Wide Web (herein Web)
utilizing the TCP transport protocol.

2.1 Introduction to TCP

Although we provide a broad survey of
the transport layer, the service and pro-
tocol features of TCP are used through-
out this paper as a point of reference.

Over the last two decades the Inter-
net protocol suite (also called the
TCP/IP protocol suite) has come to be
the most ubiquitous form of computer
networking. Hence, the most widely
used transport protocols today are TCP
and its companion transport protocol,
the User Datagram Protocol (UDP). A
few other protocols are widely used,
mainly because of their connection to
the proprietary protocol suites of partic-
ular vendors. Examples include the
transport protocols from IBM’s SNA,
and Digital’s DECnet. However, the
success of the Internet has led nearly all
vendors in the direction of TCP/IP as
the future of networking.

The Internet’s marked success would
not alone be sufficient justification for
organizing a survey around a single pro-
tocol. Also important is that TCP pro-
vides examples of many significant is-
sues that arise in transport protocol
design. The design choices made in TCP
have been the subject of extensive re-
view, experimentation, and large-scale
experience, involving the best research-
ers and practitioners in the field. TCP
represents the culmination of many

years of thought about transport proto-
col design.

A final reason that TCP provides a
good starting point for study, is that the
history of research and development on
TCP can be traced in publicly available
documents. Ongoing research and de-
velopment of transport protocols, partic-
ularly TCP, is the focus of two working
groups of the Internet Society. The
end2end working group of the Internet
Research Task Force (IRTF, www.irtf.
org) discusses ongoing long-term re-
search on transport protocols in general
(including TCP), while the tcp-impl
group of the Internet Engineering Task
Force (IETF, www.ietf.org) focuses on
short-term TCP implementation issues.
Both groups maintain active mailing
lists where ideas are discussed and de-
bated openly. The work of these groups
can be found in journal articles, confer-
ence proceedings, and documents
known as Internet Drafts and Requests
for Comments (RFCs). RFCs contain not
only all the Internet Standards, but also
other information of historical and tech-
nical interest. It is much more difficult
for researchers to obtain similar infor-
mation concerning proprietary proto-
cols.

2.2 General Role of the Transport Layer

To illustrate the role that the transport
layer plays in a familiar application, the
remainder of Section 2 examines the
role of TCP in a simple interaction over
the Web.

The Web is an example of a client/
server application. A human interacts
with a Web browser (client) running on
a “local” machine. The Web browser
communicates with a server on some
“remote” machine. The Web uses an ap-
plication layer protocol called the Hy-
pertext Transfer Protocol (HTTP) [Bern-
ers-Lee et al. 1996]. HTTP is a simple
request/response protocol. Suppose, for
example, that you have a personal com-
puter with Internet access, and you
wish to retrieve the page “http://www.
eecis.udel.edu/research.html ”

362 • S. Iren et al.

ACM Computing Surveys, Vol. 31, No. 4, December 1999

Petitioners' Exhibit 1017
Page 0003

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

from the University of Delaware Web
site. In the simplest case,1the client
sends a request containing the filename
of the desired Web page (“GET /re-
search.html ”) to a server (“www.
eecis.udel.edu ”), and the server
sends back a response consisting of the
contents of that file.

This communication takes place over
a complex internetwork of computers
that is constantly changing in terms of
both technology and topology. A connec-
tion between two particular hosts may
involve such diverse technologies as
Ethernet, Token Ring, X.25, ATM, PPP,
SONET, just to name a few. However, a
programmer writing a Web client or
server does not want to be concerned
with the details of how communication
takes place between client and server.
The programmer simply wants to send
and receive messages in a way that does
not change as the underlying network
changes. This is the function of the
transport layer: to provide an abstrac-
tion of interprocess communication that
is independent of the underlying net-
work.

HTTP uses TCP as the transport
layer. The programmer writing code for
an HTTP client or server would access
TCP’s service through function calls
that comprise that transport layer’s Ap-
plication Program Interface (API). At a
minimum, a transport layer API pro-
vides functions to send and receive mes-
sages; for example, the Berkeley Sockets
API provides functions called write()
and read() (for more details, see
Stevens [1998]).

Because TCP is connection-oriented,
the Berkeley Sockets API also provides
a connect() function for setting up a
connection between the local and remote
processes. It also provides a close()

function for closing a connection. Note
that while TCP is connection-oriented,
not all transport services establish a
connection before data is sent. Connec-
tion-oriented and connectionless ser-
vices and protocols are discussed in Sec-
tions 3.1, 3.2.5 and 4.1.

2.3 Terminology: SDUs, PDUs, and the like

One difficulty in summarizing any topic
is the wide range of terms used for
similar concepts. Throughout this pa-
per, we use a simplified communication
model (Figure 1) that employs some OSI
terminology. At the top layer, a user
sender (e.g., a Web client) has some
messages to communicate to the user
receiver (e.g., a Web server). These so-
called application entities use the ser-
vice of the transport layer. Communica-
tion between peer entities consists of an
exchange of Protocol Data Units
(PDUs). Application peers communicate
using Application PDUs (APDUs), while
transport peers communicate using
Transport PDUs (TPDUs), etc. In our
Web example, the first APDU is the
request “GET /research.html ” sent
from the client (application entity) to
the server (its peer application entity).
The Web server will respond with an
APDU containing the entire text of the
file “research.html ”.

Many transport and application pro-
tocols are bidirectional; that is, both
sides can send and receive data simulta-
neously. However, it is frequently use-
ful to focus on one direction while re-
maining aware that the other direction
is also operational. As Figure 1 shows,
each application entity can assume both
the role of sender and receiver; for the
APDU “GET /research.html ”, the cli-
ent is the user sender and the server is
the user receiver (as shown by more
prominent labels). When the APDU con-
taining the contents of the file “re-
search.html ” is sent, user sender and
user receiver reverse roles (as indicated
by the dotted line boxes, and the lighter
italicized labels).

The term transport entity refers to the

1To simplify the discussion, we will assume HTTP
version 0.9 and a document containing only hyper-
text: no inline images, applets, etc. This avoids
discussion of HTTP 1.0 headers, persistent con-
nections as in HTTP 1.1, (which complicate the
issue of how and when the connection is closed,)
and the necessity for multiple connections where
inline images are involved.

Transport Layer • 363

ACM Computing Surveys, Vol. 31, No. 4, December 1999

Petitioners' Exhibit 1017
Page 0004

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

hardware and/or software within a
given host that implements a particular
transport service and protocol. Again,
even when the protocol is bidirectional,
we focus on one direction for purposes of
clarity. In this model, the user sender
submits a chunk of user data (i.e., a
Transport Service Data Unit (TSDU), or
informally, a message) to the transport
sender. The transport sender transmits
or sends this data to the transport re-
ceiver over a network which may provide
different levels of reliability. The trans-
port receiver receives the data that ar-
rives from the network and delivers it to
the user receiver. Note that even when
one transport entity assumes the role of
sender and the other assumes the role
of receiver, we use solid lines to show
TPDUs flowing in both directions. This
illustrates that TPDUs may flow in both
directions even when user data flows
only from sender to receiver. TPDUs
from receiver to sender are examples of
control TPDUs, which are exchanged
between transport entities for connec-
tion management. When the flow of
user data is bidirectional, control and
data information can be piggybacked, as
discussed in Section 4. Control TPDUs
may flow in both directions between
sender and receiver, even in the absence
of user data.

Figure 2 shows the terminology we
use to describe what happens to the
request APDU “GET /research.html ”
as it passes through the various layers

on its way from the Web client to the
Web server. When the user sender sub-
mits the request APDU to the transport
sender, that APDU becomes a TSDU.
The transport sender adds its own
header information to the TSDU, to con-
struct a TPDU that it can send to the
transport receiver. TPDUs exchanged
by the transport entities are encapsu-
lated (i.e., contained) in NPDUs which
are exchanged between the network en-
tities, as illustrated in Figure 2. The
network layer routes NPDUs between
the local and remote network entities
over intermediate links. When an
NPDU arrives, the network layer entity
processes the NPDU header and passes
the payload of the NPDU to a transport
layer entity. The transport entity either
passes the payload of the TPDU to the
transport user if it is user data, or pro-
cesses the payload itself if it is a control
TPDU.

In the previous paragraph we de-
scribe a single APDU becoming a single
TSDU, being encapsulated in a single
TPDU, which in turn becomes a single
NSDU encapsulated in a single NPDU.
This is the simplest case, and one that
is likely to occur for a small APDU such
as the HTTP request in our example.
However, there are many other possibil-
ities for the relationships between AP-
DUs, TSDUs, TPDUs, NSDUs, and NP-
DUs, as described in Step (5) of Section
2, and also in Sections 3 and 4.

Figure 2 also shows some of the ter-

Transport Sender

User Sender

Network

User Receiver

TSAP

NSAP

Host A Host B

User/Transport
Interface

Transport/Network
Interface

TPDUs

APDUs

Application (e.g. web client) Application (e.g. web server)

Transport Receiver

Arrive/Receive

Submit

Transmit/Send

Deliver

(Receiver) (Sender)

(Receiver) (Sender)

Application
Entities

Transport
Entities

Figure 1. Transport service.

364 • S. Iren et al.

ACM Computing Surveys, Vol. 31, No. 4, December 1999

Petitioners' Exhibit 1017
Page 0005

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
 Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

 Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
 With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

 Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
 Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

 Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

