
In Proc. 1st ACM Int’l Conf. on Mobile Computing and Networking (Mobicom), November 95.
This paper won the best student paper award.

Improving TCP/IP Performance over Wireless Networks1

Hari Balakrishnan, Srinivasan Seshan, Elan Amir and Randy H. Katz
{hari,ss,elan,randy}@CS.Berkeley.EDU

Computer Science Division
University of California at Berkeley
Abstract

TCP is a reliable transport protocol tuned to perform well in
traditional networks made up of links with low bit-error
rates. Networks with higher bit-error rates, such as those
with wireless links and mobile hosts, violate many of the
assumptions made by TCP, causing degraded end-to-end
performance. In this paper, we describe the design and
implementation of a simple protocol, called the snoop pro-
tocol, that improves TCP performance in wireless networks.
The protocol modifies network-layer software mainly at a
base station and preserves end-to-end TCP semantics. The
main idea of the protocol is to cache packets at the base sta-
tion and perform local retransmissions across the wireless
link. We have implemented the snoop protocol on a wireless
testbed consisting of IBM ThinkPad laptops and i486 base
stations communicating over an AT&T Wavelan. Our exper-
iments show that it is significantly more robust at dealing
with unreliable wireless links as compared to normal TCP;
we have achieved throughput speedups of up to 20 times
over regular TCP in our experiments with the protocol.

1. Introduction

Recent activity in mobile computing and wireless networks
strongly indicates that mobile computers and their wireless
communication links will be an integral part of future inter-
networks. Communication over wireless links is character-
ized by limited bandwidth, high latencies, high bit-error
rates and temporary disconnections that must be dealt with
by network protocols and applications. In addition, proto-
cols and applications have to handle user mobility and the
handoffs that occur as users move from cell to cell in cellu-
lar wireless networks. These handoffs involve transfer of
communication state (typically network-level state) from
one base station (a router between a wired and wireless net-

work) to another, and typically last anywhere between a few
tens to a few hundreds of milliseconds.

Reliable transport protocols such as TCP [Pos81, Ste94,
Bra89] have been tuned for traditional networks made up of
wired links and stationary hosts. TCP performs very well on
such networks by adapting to end-to-end delays and packet
losses caused by congestion. TCP provides reliability by
maintaining a running average of estimated round-trip delay
and mean deviation, and by retransmitting any packet whose
acknowledgment is not received within four times the devia-
tion from the average. Due to the relatively low bit-error
rates over wired networks, all packet losses are correctly
assumed to be because of congestion.

In the presence of the high error rates and intermittent con-
nectivity characteristic of wireless links, TCP reacts to
packet losses as it would in the wired environment: it drops
its transmission window size before retransmitting packets,
initiates congestion control or avoidance mechanisms (e.g.,
slow start [Jac88]) and resets its retransmission timer
(Karn’s Algorithm [KP87]). These measures result in an
unnecessary reduction in the link’s bandwidth utilization,
thereby causing a significant degradation in performance in
the form of poor throughput and very high interactive delays
[CI94].

In this paper, we describe the design and implementation of
a simple protocol to alleviate this degradation and present
the results of several experiments using this protocol. Our
aim is to improve the end-to-end performance on networks
with wireless links without changing existing TCP imple-
mentations at hosts in the fixed network and without recom-
piling or relinking existing applications. We achieve this by
a simple set of modifications to the network-layer (IP) soft-
ware at the base station. These modifications consist mainly
of caching packets and performing local retransmissions
across the wireless link by monitoring the acknowledgments
to TCP packets generated by the receiver. Our experiments
show speedups of up to 20 times over regular TCP in the
presence of bit errors on the wireless link. We have also
found that our protocol is significantly more robust at deal-
ing with multiple packet losses in a single window as com-
pared to regular TCP.

The rest of this paper is organized as follows. In Section 2,
we describe and evaluate some design alternatives and

1. This work was supported by ARPA Contract J-FBI-93-153.
Petitioners' Exhibit 1046
Page 0001

f
Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

related work that addresses this problem. In Section 3, we
describe the details and dynamics of the protocol. We
describe our implementation and the modifications to the
router software at the base station in Section 4 and the
results of several of our experiments in Section 5. Section 6
compares our protocol with some of the other alternatives
published in the literature. We discuss our future plans in
Section 7 and conclude with a summary in Section 8.

2. Design Alternatives and Related Work

Is TCP an appropriate protocol model for wireless net-
works? We believe it is. Since many network applications
are built on top of TCP, and will continue to be in the fore-
seeable future, it is important to improve its performance in
wireless networks without any modifications to the fixed
hosts. This is the only way by which mobile devices com-
municating on wireless links can seamlessly integrate with
the rest of the Internet.

Recently, several reliable transport-layer protocols for net-
works with wireless links have been proposed [BB94,
BB95, CI94, YB94] to alleviate the poor end-to-end perfor-
mance of unmodified TCP in the wireless medium. We sum-
marize these protocols in this section and point out the
advantages and disadvantages of each method. In Section 6.
we present a more detailed comparison of these schemes
with our protocol.

• The Split Connection Approach: The Indirect-TCP
(I-TCP) protocol [BB94, BB95] was one of the first pro-
tocols to use this method. It involves splitting a TCP
connection between a fixed and mobile host into two
separate connections at the base station -- one TCP con-
nection between the fixed host and the base station, and
the other between the base station and the mobile host.
Since the second connection is over a one-hop wireless
link, there is no need to use TCP on this link. Rather, a
more optimized wireless link-specific protocol tuned for
better performance can be used [YB94]. The advantage
of the split connection approach is that it achieves a sep-
aration of flow and congestion control of the wireless
link from that of the fixed network and hence results in
good bandwidth at the sender. However, there are some
drawbacks of this approach, including:

1. Semantics: I-TCP acknowledgments and semantics are
not end-to-end. Since the TCP connection is explicitly
split into two distinct ones, acknowledgments of TCP
packets can arrive at the sender even before the packet
actually reaches the intended recipient. I-TCP derives
its good performance from this splitting of connec-
tions. However, as we shall show, there is no need to
sacrifice the semantics of acknowledgments in order to
achieve good performance.

2. Application relinking: Applications running on the
mobile host have to be relinked with the I-TCP library
and need to use special I-TCP socket system calls in
the current implementation.

3. Software overhead: Every packet needs to go through
the TCP protocol stack and incur the associated over-
head four times -- once at the sender, twice at the base
station, and once at the receiver. This also involves
copying data at the base station to move the packet
from the incoming TCP connection to the outgoing
one. This overhead is lessened if a more lightweight,
wireless-specific reliable protocol is used on the last
link.

• The Fast-Retransmit Approach [CI94]: This approach
addresses the issue of TCP performance when communi-
cation resumes after a handoff. Unmodified TCP at the
sender interprets the delay caused by a handoff process
to be due to congestion (since TCP assumes that all
delays are caused by congestion) and when a timeout
occurs, reduces its window size and retransmits unac-
knowledged packets. Often, handoffs complete relatively
quickly (between a few tens to a couple of hundred mil-
liseconds), and long waits are required by the mobile
host before timeouts occur at the sender and packets start
getting retransmitted. This is because of coarse retrans-
mit timeout granularities (on the order of 500 ms) in
most TCP implementations. The fast retransmit
approach mitigates this problem by having the mobile
host send a certain threshold number of duplicate
acknowledgments to the sender. This causes TCP at the
sender to immediately reduce its window size and
retransmit packets starting from the first missing one
(for which the duplicate acknowledgment was sent). The
main drawback of this approach is that it only addresses
handoffs and not the error characteristics of the wireless
link.

• Link-level Retransmissions [PAL+95]: In this
approach, the wireless link implements a retransmission
protocol coupled with forward error correction at the
data-link level. The advantage of this approach is that it
improves the reliability of communication independent
of the higher-level protocol. However, TCP implements
its own end-to-end retransmission protocol. Studies have
shown that independent retransmission protocols such as
these can lead to degraded performance, especially as
error rates become significant [DCY93]. A tight cou-
pling of transport- and link-level retransmission timeouts
and policies is necessary for good performance. In par-
ticular, information needs to be passed down to the data
link layer about timeout values and policies reasonable
for co-existence with the higher transport layer policy.

In summary, several schemes have been proposed to
improve the performance of TCP in wireless networks.
Petitioners' Exhibit 1046
Page 0002

f
Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

However, they have the disadvantages described above. We
feel that it is possible to design a protocol to solve this prob-
lem without these drawbacks. The rest of the paper
describes the design, implementation, and performance of
such a protocol.

3. The Snoop Protocol

Most current network applications that require reliable
transmission use TCP. Therefore, it is desirable to achieve
our goal of improving its performance in our network with-
out changing existing TCP implementations in the fixed net-
work. The only components of the network we can expect to
have administrative control over are the base stations and
the mobile hosts. For transfer of data from a fixed host to a
mobile host, we make modifications only to the routing
code at the base station. These modifications include cach-
ing unacknowledged TCP data and performing local
retransmissions based on a few policies dealing with
acknowledgments (from the mobile host) and timeouts. By
using duplicate acknowledgments to identify packet loss
performing local retransmissions as soon as this loss is
detected, the protocol shields the sender from the vagaries
of the wireless link. In particular, transient situations of very
low communication quality and temporary disconnectivity
are hidden from the sender. This results in significantly
improved performance of the connection, without sacrific-
ing any of the end-to-end semantics of TCP, modifying host
TCP code in the fixed network or relinking existing applica-
tions. This combination of improved performance, pre-
served protocol semantics and full compatibility with
existing applications is the main contribution of our work.

A preliminary design of a protocol based on these ideas
appeared in [ABSK95]. Simulations of the protocol indi-
cated that it was capable achieving the same throughput as
unmodified TCP at 10 times higher bit-error rates. These
promising results indicated that an implementation would
be worthwhile. The simulated protocol was used as the basis
of the initial implementation. Several parts of the protocol
were changed based on measurements and our experience
with it.

3.1 Data Transfer from a Fixed Host

We first describe the protocol for transfer of data from a
fixed host (FH) to a mobile host (MH) through a base sta-
tion (BS). The base station routing code is modified by add-
ing a module, called the snoop, that monitors every packet
that passes through the connection in either direction. No
transport layer code runs at the base station. The snoop
module maintains a cache of TCP packets sent from the FH
that haven’t yet been acknowledged by the MH. This is easy
to do since TCP has a cumulative acknowledgment policy
for received packets. When a new packet arrives from the
FH, snoop adds it to its cache and passes the packet on to

the routing code which performs the normal routing func-
tions. The snoop module also keeps track of all the acknowl-
edgments sent from the mobile host. When a packet loss is
detected (either by the arrival of a duplicate acknowledg-
ment or by a local timeout), it retransmits the lost packet to
the MH if it has the packet cached. Thus, the base station
(snoop) hides the packet loss from the FH by not propagat-
ing duplicate acknowledgments, thereby preventing unnec-
essary congestion control mechanism invocations.

T h e sn o o p mo d u l e h a s tw o l i n k ed p r o ce d u r e s ,
snoop_data() and snoop_ack(). Snoop_data() processes
a n d ca c h es p a c ke ts i n t e n d ed f o r th e M H w h i le
snoop_ack() processes acknowledgments (ACKs) coming
from the MH and drives local retransmissions from the base
station to the mobile host. The flowcharts summarizing the
algorithms for snoop_data() and snoop_ack() are shown
in Figures 3 and 2 and are described below.

3.1.1 Snoop_data().

Snoop_data() processes packets from the fixed host. TCP
implements a sliding window scheme to transmit packets
based on its congestion window (estimated from local com-
putations at the sender) and the flow control window (adver-
tised by the receiver). TCP is a byte stream protocol and
each byte of data has an associated sequence number. A
TCP packet (or segment) is identified uniquely by the
sequence number of its first byte of data and its size. At the
BS, snoop keeps track of the last sequence number seen for
the connection. One of several kinds of packets can arrive at
the BS from the FH, and snoop_data() processes them in
different ways:

Yes

Packet arrives

New pkt?
No

1. Forward packet
2. Reset local rexmit
 counter

In-sequence?

Yes

1. Cache packet
2. Forward to
 mobile

1. Mark as cong. loss
2. Forward pkt

Congestion loss

Common case

Sender rexmission

No

Figure 1. Flowchart for snoop_data().

Petitioners' Exhibit 1046
Page 0003

f
Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

1. A new packet in the normal TCP sequence: This is the
common case, when a new packet in the normal
increasing sequence arrives at the BS. In this case the
packet is added to the snoop cache and forwarded on to
the MH. We do not perform any extra copying of data
while doing this. We also place a timestamp on one
packet per transmitted window in order to estimate the
round-trip time of the wireless link. The details of
these steps are described in Section 4.

2. An out-of-sequence packet that has been cached ear-
lier: This is a less common case, but it happens when
dropped packets cause timeouts at the sender. It could
also happen when a stream of data following a TCP
sender fast retransmission arrives at the base station.
Different actions are taken depending on whether this
packet is greater or less than the last acknowledged
packet seen so far. If the sequence number is greater
than the last acknowledgment seen, it is very likely that
this packet didn’t reach the MH earlier, and so it is for-
warded on. If, on the other hand, the sequence number
is less than the last acknowledgment, this packet has
already been received by the MH. At this point, one
possibility would be to discard this packet and con-
tinue, but this is not always the best thing to do. The
reason for this is that the original ACK with the same
sequence number could have been lost due to conges-
tion while going back to the FH. In order to facilitate
the sender getting to the current state of the connection
as fast as possible, a TCP acknowledgment corre-
sponding to the last ACK seen at the BS is generated
by the snoop module (with the source address and port
corresponding to the MH) and sent to the FH.

3. An out-of-sequence packet that has not been cached
earlier: In this case the packet was either lost earlier
due to congestion on the wired network or has been
delivered out of order by the network. The former is
more likely, especially if the sequence number of the
packet (i.e, the sequence number of its first data byte)
is more than one or two packets away from the last one
seen so far by the snoop module. This packet is for-
warded to the MH, and also marked as having been
retransmitted by the sender. Snoop_ack() uses this
information to process acknowledgments (for this
packet) from the MH.

3.1.2 Snoop_ack().

Snoop_ack() monitors and processes the acknowledgments
(ACKs) sent back by the MH and performs various opera-
tions depending on the type and number of acknowledg-
ments it receives. These ACKs fall into one of three
categories:

1. A new ACK: This is the common case (when the con-
nection is fairly error-free and there is little user move-
ment), and signifies an increase in the packet sequence
received at the MH. This acknowledgment initiates the
cleaning of the snoop cache and all acknowledged
packets are freed. The round-trip time estimate for the
wireless link is also updated at this time. This estimate
is not done for every packet, but only for one packet in
each window of transmission, and only if no retrans-
missions happened in that window. The last condition
is needed because it is impossible in general to deter-
mine if the arrival of an acknowledgment for a retrans-
mitted packet was for the original packet or for the
retransmission [KP87]. Finally, the acknowledgment is
forwarded to the FH.

2. A spurious ACK: This is an acknowledgment less than
the last acknowledgment seen by the snoop module
and is a situation that rarely happens. It is discarded
and the protocol continues.

3. A duplicate ACK (DUPACK): This is an ACK that is
identical to a previously received one. In particular, it
is the same as the last ACK seen so far. In this case the
next packet in sequence from the DUPACK has not
been received by the MH. However, some subsequent
packets in the sequence have been received, since the
MH generates a DUPACK for each TCP segment
received out of sequence. One of several actions is
taken depending on the type of duplicate acknowledg-
ment and the current state of snoop:

• The first case occurs when we receive a DUPACK
for a packet that is either not in the snoop cache or
has been marked as having been retransmitted by

Figure 2. Flowchart for snoop_ack().

Ack arrives

No

Dup ack?
No

New ack?
Yes

Yes

Discard

First one?
No

Discard
Yes

Common case

Spurious ack

Next pkt lost
Later dup acks

 for lost packet

Retransmit lost
packet with high
priority

1. Free buffers
2. Update RTT

estimate
3. Propagate ack

to sender
Petitioners' Exhibit 1046
Page 0004

f
Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

the sender. If the packet is not in the cache, it needs
to be resent from the FH, perhaps after invoking
the necessary congestion control mechanisms at
the sender. If the packet was marked as a sender-
retransmitted packet, the DUPACK needs to be
routed to the FH because the TCP stack there
maintains state based on the number of duplicate
acknowledgments it receives when it retransmits a
packet. Therefore, both these situations require the
DUPACK to be routed to the FH.

• The second case occurs when snoop gets a
DUPACK that it doesn’t expect to receive for the
packet. This typically happens when the first
DUPACK arrives for the packet, after a subsequent
packet in the stream reaches the MH. The arrival of
each successive packet in the window causes a
DUPACK to be generated for the lost packet. In
order to make the number of such DUPACKs as
small as possible, the lost packet is retransmitted as
soon as the loss is detected, and at a higher priority
than normal packets. This is done by maintaining
two queues at the link layer for high and normal
priority packets. In addition, snoop also estimates
the maximum number of duplicate acknowledg-
ments that can arrive for this packet. This is done
by counting the number of packets that were trans-
mitted after the lost packet prior to its retransmis-
sion.

• The third case occurs when an “expected”
DUPACK arrives, based on the above maximum
estimate. The missing packet would have already
been retransmitted when the first DUPACK arrived
(and the estimate was zero), so this acknowledg-
ment is discarded. In practice, the retransmitted
packet reaches the MH before most of the later
packets do and the BS sees an increase in the ACK
sequence before all the expected DUPACKs arrive.

Retransmitting packets at a higher priority using a fast
queue improves performance at all error rates. The benefits
of this approach are most visible at low to medium bit-error
rates. This is a consequence of the average queue lengths in
the retransmission queue. At high bit-error rates, most pack-
ets need to be retransmitted, and there is no significant
advantage to be derived from maintaining two queues. How-
ever, at low and medium error rates, the fast queue enables
retransmitted packets to reach the mobile host sooner than if
there were only one queue, leading to improved throughput.

Snoop keeps track of the number of local retransmissions
for a packet, but resets this number to zero if the packet
arrives again from the sender following a timeout or a fast
retransmission. In addition to retransmitting packets
depending on the number and type of acknowledgments, the
snoop protocol also performs retransmissions driven by tim-
eouts. This is described in more detail in the section on

Implementation (Section 4).

3.2 Data Transfer from a Mobile Host

It is unclear that a protocol with modifications made only at
the base station can substantially improve end-to-end per-
formance of reliable bulk data transfers from the mobile
host to other hosts on the network, while preserving the pre-
cise semantics of TCP acknowledgments. For example, sim-
ply caching packets at the base station and retransmitting
them as necessary will not be very useful, since the bulk of
the packet losses are likely to be from the mobile host to the
base station. There is no way for the mobile sender to know
if the loss of a packet happened on the wireless link or else-
where in the network due to congestion. Since TCP per-
forms retransmissions on the basis of round-trip time
estimates for the connection, sender timeouts for packets
lost on the (first) wireless link will happen much later than
they should.

Our design involves a slight modification to the TCP code at
the mobile host. At the base station, we keep track of the
packets that were lost in any transmitted window, and gener-
ate negative acknowledgments (NACKs) for those packets
back to the mobile. This is especially useful if several pack-
ets are lost in a single transmission window, a situation that
happens often under high interference or in fades where the
strength and quality of the signal are low. These NACKs are
sent when either a threshold number of packets (from a sin-
gle window) have reached the base station or when a certain
amount of time has expired without any new packets from
the mobile. Encoding these NACKs as a bit vector can
ensure that the relative fraction of the sparse wireless band-
width consumed by NACKs is relatively low.

Our implementation of NACKs is based on using the Selec-
tive Acknowledgment (SACK) option in TCP [JB88].
Selective acknowledgments, currently unsupported in most
TCP implementations, were introduced to improve TCP
performance for connections on “long fat networks”, or
LFNs. These are networks where the capacity of the net-
work (the product of bandwidth and round-trip time) is
large. SACKs were proposed to handle multiple dropped
packets in a window, but the current TCP specification
(JBB92) does not include this feature. The basic idea here is
that in addition to the normal cumulative ACKs the receiver
can inform the sender which specific packets it didn’t
receive. The snoop protocol uses SACKs to cause the
mobile host to quickly (relative to the round-trip time of the
connection) retransmit missing packets. The only change
required at the mobile host will be to enable SACK process-
ing. No changes of any sort are required in any of the fixed
hosts.

We have implemented the ability to generate SACKs at the
base station and process them at the mobile hosts to retrans-
mit lost packets and are currently measuring the perfor-
Petitioners' Exhibit 1046
Page 0005

f
Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
 Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

 Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
 With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

 Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
 Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

 Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

