
Live Multimedia over HTTPJonathan C. Soo �Telemedia, Networks and Systems GroupMIT Laboratory for Computer ScienceCambridge, MA 02139AbstractThe World Wide Web is currently not well oriented towards distributing stream-oriented media suchas audio and video. The limitation is not in HTTP [2] itself, but in currently existing browsers. Afteropening an HTTP connection to a server, most browsers write all data to a local �le before passing itto an external viewer. While this works well for text and graphics, it makes viewing stream-orientedmedia impractical because of the long delay before start of playback, and because the entire �le must bestored on the local host. In addition, it is not possible to send \live" streams of data.This paper describes a prototype browser designed to solve some of these problems. It supports a subsetof HTTP 1.0.1 IntroductionThe World Wide Web is a popular mechanism for distributing many types of data. In the last fewyears, it has become a major source of tra�c on Internet and an important part of the academic andcommercial information infrastructure.While it currently works very well for text and graphics, is is not as well suited for distributing stream-oriented media such as audio and video. Even for users on a local Ethernet, the time needed to downloada complete audio or video segment discourages browsing.In addition, it is currently not possible to access \live" media streams through Web browsers. Livemedia are media of possibly indeterminiate duration, where capture, transmission, and playback areoverlapped, and latency is nearly constant and relatively short; for instance, a live newscast might havelatency of a few seconds. In current browsers, such as NCSA Mosiac and tclwww, it is not possible tooverlap transmission and playback, resulting in a delay proportional to the length of the segment beingtransmitted.This paper describes a scriptable, extensible, and embeddable browser that allows live multimedia tobe transmitted using HTTP. Examples of live audio and video are presented, and approaches to livemultimedia are discussed. The paper also describes the performance of the browser on prerecordedmultimedia, and presents some applications using the browser as a platform for distributed computing.�The author can be reached at: MIT Laboratory for Computer Science, Room 503, 545 Technology Square, Cambridge,MA 02139; Tel: (617) 253-4731; Email: jcsoo@mit.edu
Petitioners' Exhibit 1042

Page 0001
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

2 Approach2.1 Current Web Browser ImplementationsMost browsers today are designed primarily for browsing through text and graphics over fast networkconnections, using a "store and forward" approach.In a typical transaction, a browser �rst generates an HTTP request on behalf of a user. The URLprovided is parsed to �nd the host and port of a server, and a TCP connection is opened. The requestheader is sent over the connection, and the browser then waits for the HTTP reply header.On the server side, the header is parsed, the appropriate data is located, a HTTP reply header with thedata type and length is generated and sent, and the data is written directly to the network connection.The browser then reads and parses the HTTP reply header, determining the length and type of the databeing sent. If the data is of a type that is supported natively by the browser, it is read and processed.If it is not, the data is copied from the TCP connection to a temporary �le on local storage, and thename of this �le is then passed to an user-de�ned application though a command line parameter.This basic model is very e�ective. Most importantly, it is extensible; adding new data types is fairlysimple, usually requiring a small modi�cation to a con�guration �le and not requiring compilation ofthe browser. Sub-applications can be designed and tested completely seperately from the browser, andthere is an established procedure to promote experimental data types to generally accepted ones.However, there are some problems with the details of the implementation. The most signi�cant is thestep where the data is copied from the network connection into a temporary �le before a sub-applicationis spawned. For small text and graphic �les where transmission time is short compared to the connectionsetup time, there is little e�ect on response time.For large audio and video �les, however, this extra copy means that the entire �le must be transferredbefore the sub-application can be spawned. Several problems result directly from this. The mostimportant is that it is not possible to send live media streams; playback cannot be overlapped withtransmission or capture.Even for prerecorded media, response times for long segments may be measured in minutes, and theclient must have enough local storage to store the entire �le whether it will be played completely ornot. Another disadvantage of this approach is that it is ine�cient; not only is the data being copied onemore time than necessary, it probably is being copied to a relatively slow mechanical storage device.As network connections become faster, this may become a serious bottleneck.2.2 Proposed ChangesThe approach taken to solve these problems was to restructure the client to avoid the copy to disk.Instead of immediately reading the data stream and writing it to a �le, the connection is passed directlyto the sub-application. The sub-application can then read data from the server as it is needed, andoverlap processing with I/O. In fact, the sub-application has a TCP connection to the HTTP serverprocess, and can send and receive data simultaneously.On the server side, no modi�cations are necessary to take advantage of this approach to playing media�les. The server sends data to the client as fast as the TCP connection will accept, and blocks whenthe TCP connection does.
Petitioners' Exhibit 1042

Page 0002
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

For live multimedia, some server-side scripts are necessary to create live media sources from mediacapture applications. Fortunately, both the NCSA and CERN HTTP servers have a gateway interfacethat make it easy to do this by passing TCP sockets directly to sub-applications.2.3 GoalsThe design goal of this project was to create a client that would implement the above approach, as wellas form a platform for future research in related areas. It was desired to have a client that would beeasily understandable, portable, extensible, and embeddable. Although an existing browser could havebeen modi�ed, this was not done for several reasons.� Most browsers have a large fraction of code dedicated to HTML presentation and user interfaces,and support of alternate protocols such as FTP and NNTP. Excluding this code simpli�es devel-opment, reduces bugs, and reduces the number of constraints put on the HTTP implementation.� Most browsers are written in C. While this may provide good performance, it makes experimen-tation more di�cult compared to using an interpreted language.� Most browsers are designed as stand-alone programs, controlled only by human users. Modifyingone to be embedded in another program or to be otherwise controlled by other programs or scriptswould have been di�cult.3 ImplementationThe implementation was divided into two parts; an HTTP library and a simple browser. The HTTPlibrary implements a subset of HTTP, and the browser supports several of the common data typesfound on the Web, and several common sub-applications used to view those types.The language platform that was chosen was TCL 7.3b [4], with the TCL-DP networking extensionsand some C extensions to handle HTTP header parsing. The computing platform was a DEC Alpharunning OSF/1 1.2.The size of the �nal code was approximately 300 lines of TCL, and 50 lines of C.3.1 HTTP LibraryThe HTTP library is written almost completely in TCL. It uses the socket management functions ofTCL-DP to establish TCP connections to HTTP servers, and generates an HTTP header. BecauseTCL has di�culty using non-UNIX line delimiters, it also uses a function written in C to read theHTTP reply header.When called with an URL and method, the http function �rst parses the URL to determine the nameof the server to access, and the port number to use. The library then opens a TCP connection andsends and receives the appropriate HTTP headers.The TCP connection is read only until the end of the HTTP header, so that the next byte read wouldbe the start of the data requested. At that point, the HTTP library returns the handle of the TCPconnection and passes the parsed list of MIME headers to the calling function.
Petitioners' Exhibit 1042

Page 0003
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

3.2 BrowserThe browser accepts user input and determines how to present the data received from the server to theuser. After calling the HTTP library, a dispatch function determines the type of data being received byexamining the Content-type entry of the MIME header. For each type, there is a user-de�ned handlerprocedure that the dispatcher calls.For some types of data, such as "text/plain" and "app/x-tcl-script", the data may be read and processedwithin the browser. For others, a sub-application is started.Here, instead of writing the data to a �le before starting the sub-application, the sub-application isstarted as a child process, and the exisiting TCP connection that was returned to the browser isredirected to be the sub-application's standard input and output.At this point, the browser's handle to the TCP connection is closed, and there is no further interactionwith the server by the browser.Most applications in the UNIX environment can easily be con�gured to read from standard input. Inmany cases, this is the default behavior. In TCL, starting these applications with a socket redirectedstandard input and output can be handled in a single command.The browser currently supports most of the common content-types typically found on the Web, includingtext/plain and text/html, image/ti�, image/jpeg and image/gif, audio/basic, and video/mpeg. Inaddition, it supports VuSystem [3] streams, which are interleaved audio, video, and text streams usedin the MIT TNS VuSystem project.3.3 ServerAt the server side, no modi�cations are needed for sending existing �les. For live media, however, somescripts are neccesary to run the live media capture applications.3.3.1 The Common Gateway InterfaceBoth the NCSA and CERN HTTP servers have a sub-application interface known as the CommonGateway Interface (CGI) [1]. This interface provides a standard way of passing details of HTTPtransactions to sub-applications. Two slightly di�erent variants exist on each server. A regular CGIscript needs only to write a short content-type header before sending data to the client. The data fromthe CGI script is �rst read by the server, which calcluates it's length before sending it to the client.The data is not sent to the client until the CGI script signals the end of the data by terminating itself.Live media sources are not implementable using regular CGI scripts.3.3.2 NPH-Header ScriptsAn NPH-Header script is similar to the regular CGI script except that the sub-application is requiredto generate a complete HTTP header itself, and the sub-application is given the direct TCP connectionto the client rather than a pipe to the server. This makes live media possible.The NPH-Header scripts used to invoke the media capture applications are very similar to those usedin the browser. Most UNIX applications are easily con�gured through command line options to writetheir output to standard output rather than a �le.
Petitioners' Exhibit 1042

Page 0004
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

3.3.3 Content-lengthIt is important to note that in many cases, no use is made of the content-length value returned by theserver. In fact, none of the sub-applications used have a provision for a length parameter.Some data formats such as the various image formats such as GIF and JPEG have the content lengthessentially encoded in the header, or may have some other way of determining end-of-�le. Some otherapplications such as audio stream players may simply accept data until the connection is closed, whichhappens when the HTTP server has no more data to send.For completeness, a convention was adopted where a negative content-length signi�ed an inde�nite-length data stream.3.4 Distributed ApplicationsTwo simple distributed applications were also created. Both of these used the direct TCP connectionto transfer live data.3.4.1 A simple access log monitorThe �rst application written was a simple access log monitor. A simple server-side nph-header scriptwas written to copy data written to the server's access log to standard output. On the client side, thedata was written to the user display as it was received.3.4.2 A complex access log monitorThe second application was similar to the access log monitor, but was implemented using RPC and wasinteractive. A server-side nph-script was written with a new output content-type of x-tcl-rpc. On theclient side, a handler was written that read from the connection, and evaluated the TCL code.For this application, the browser was run with the TK extensions, a popular windowing system builtaround TCL. The server application transferred a program to the client that created the user interface.Then, for every log access, it sent a TCL command to the client, modifying the client's state andupdating the client's display.The server application also monitored the connection for commands sent by the client. For instance, theclient could specify to the server whether it was interested in all connections logged, or only connectionsmade by previously unseen hosts.4 Preliminary ResultsThe browser was tested with a variety of sub-applications, �le types, and servers over a local Ethernetand the Internet. Due to time restrictions, detailed measurements could not be made; however, thesubjective results are fairly clear and reported here.
Petitioners' Exhibit 1042

Page 0005
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
	� Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

	� Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
	� With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

	� Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
	� Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

	� Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

