
Catching and Selective Catching: Efficient Latency Reduction
Techniques for Delivering Continuous Multimedia Streams ?

Lixin Gaoy Zhi-Li Zhangz Don Towsley�
Abstract

We present a novel video streaming technique called catching for on-demand delivery of “hot” (i.e.,
frequently accessed) video objects to a large number of clients. This technique not only significantly re-
duces the server and network resource requirements but also is capable of providing near-instantaneous
service to a large number of clients. We prove that the performance of catching is close to the best
achievable by any broadcasting scheme that supplies near-instantaneous service. By combining this
technique for delivery of “hot” video objects with controlled multicast [8] for delivery of “cold” video
objects, we design an efficient video delivery scheme referred to as selective catching. Extending this
scheme to a proxy-assisted video delivery environment, we also develop a proxy-assisted selective catch-
ing scheme. Through empirical studies, we demonstrate the efficacy of the proposed video delivery
schemes.

1 Introduction

The past few years have seen the dramatic growth of multimedia applications which involve video stream-
ing over the Internet. Server and network resources (in particular, server I/O bandwidth and network
bandwidth) have proved to be a major limiting factor in the widespread usage of video streaming over
the Internet. In order to support a large population of clients, techniques that can efficiently utilize server
and network resources are essential. In designing such techniques, another important factor that must
be taken into consideration is the service latency, i.e., the time a client has to wait until the object he/she

————————————-y Department of Computer Science, Smith College, Northampton, MA 01060, USA. gao@cs.smith.eduz Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN. 55455, USA.

zhzhang@cs.umn.edu� Department of Computer Science, University of Massachusetts, Amherst, MA 01030, USA. towsley@cs.umass.edu? The first author was supported in part by NSF grant NCR-9729084, and NSF CAREER Award grant ANI-9875513, and

the second author was supported in part by NSF CAREER Award grant NCR-9734428. The third author was supported in

part by NSF grant ANI-9805185. Any opinions, findings, and conclusions or recommendations expressed in this material

are those of the authors and do not necessarily reflect the views of the National Science Foundation.

1

Petitioners' Exhibit 1026
Page 0001

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

has requested is started to playback. The effectiveness of a video delivery technique must be evaluated
in terms of both the server and network resources required for delivering a video object and the expected
service latency experienced by clients. Clearly, “popularity” or access pattern of video objects (i.e., how
frequent a video object is accessed in a given time period) plays an important role in determining the
effectiveness of a video delivery technique.

In this paper we propose and develop a novel video delivery technique called catching, which can
efficiently utilize server and network resources while providing near instantaneous service to clients.
This technique is particularly suitable for “hot” (i.e., frequently access) video objects. The effective-
ness of the technique is achieved through intelligent integration of the “server-push” and “client-pull”
video delivery paradigms. Using this technique, a video server periodically “broadcasts” a video ob-
ject via a number of dedicated multicast channels. A client who wishes to watch the video immediately
joins an appropriate multicast channel without waiting for the beginning of the next broadcast period. At
the same time, the client sends a request to the server to retrieve the missing initial video data (referred
to as the prefix of the video object). The prefix is delivered by the server using a unicast channel and
played back immediately by the client. On the other hand, the video data received from the multicast
channels will be temporarily buffered at the client until they are played back. Hence, catching provides
the minimal service latency by allowing a client to join the on-going multicast channels to receive video
data “pushed” by the server while “pulling” the missing video data from the server via aunicast chan-
nel. Using a smart broadcast scheme such as the Greedy Disk-conserving Broadcast (GDB) scheme [7],
we can minimize the expected server and network channels needed to deliver a video object, given its
access pattern. This is verified through simulations. Futhermore, we prove that the number of chan-
nels required by catching is close to the minimum achievable by any broadcasting scheme that supplies
near-instantaneous service.

In order to account for the diverse access patterns for a collection of video objects in a video server,
we design an efficient video delivery scheme called selective catching which combines catching with
another video delivery technique –controlled multicast. Controlled multicast is a “client-pull” technique
which is most effective in delivering “cold” video objects. Based on video access patterns, we introduce
a simple policy for classifying “hot” and “cold” video objects and apply catching andcontrolled multi-
cast accordingly to deliver the video objects to clients. Through empirical studies, we demonstrate that
in terms of both server/network resource requirements and service latency, selective catching outper-
forms either catching or controlled multicast applied alone.

The proposed catching and selective catching techniques can also be applied in a proxy-assisted
video delivery environment [12, 13] where initial partial video data (prefixes) of some video objects can
be staged in proxy servers in a pre-determined manner. Under this proxy-assisted video delivery archi-
tecture, we can take advantage of the resources (processing and disk storage) available at proxy servers
to significantly reduce the server and (backbone wide-area) network resource requirements while at the
same time providing instantaneous or near-instantaneous service to clients. We present a brief descrip-
tion of the algorithms used by a central video server, proxy servers and clients to coordinate the video
delivery using proxy servers. Simulations are carried out to illustrate the significant reduction in server
and network resource requirements achieved using this proxy-assisted video delivery architecture.

The remainder of this paper is organized as follows. The related work is briefly surveyed in Sec-
tion 1.1. In Section 2 we describe the problem setting and the background material necessary for the
catching technique which we present in Section 3. The selective catching video delivery scheme is in-

2

Petitioners' Exhibit 1026
Page 0002

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

troduced in Section 4. In Section 5 we apply the selective catching technique to the proxy-assisted video
delivery architecture. The paper is concluded in Section 6.

1.1 Related Work

In recent years a variety of “client-pull” and “server-push” techniques for videodelivery have been pro-
posed (see, e.g., [6, 1, 3, 4, 7]). The simplest “client-pull” technique is to deliver a separate video stream
upon each client request. This technique, while providing minimal service latency to a client, is obvi-
ously not efficient in terms of server and network resource utilization. Clever “client-pull” techniques
such as batching [1, 6] and patching [5, 8] have been proposed that take advantage of the underlying
network multicasting capabilities to reduce server and network resource requirements. In the case of
batching, this reduction in server and network resource requirements is achieved through increased ser-
vice latency, as it delays earlier requests for a video object until a certain number of requests for the same
object arrive before the video object is scheduled to be delivered. Hence, batching is less effective for
“cold” video objects. On the other hand, “patching”, which allows multiple clients to share a multicast
channel whenever possible, is most effective in reducing the server and network resource requirements
for “cold” video objects.

“Server-push” techniques are typically designed for “hot” video objects. They employa fixed num-
ber of multicast channels to periodically broadcast video objects to a group of subscribers. The differ-
ence between various “server-push” techniques lies in the broadcast schemes used.These broadcast
schemes determine the server and network resources required for broadcasting a video object. “Server-
push” techniques have the advantage that they utilize server and network resources moreefficiently. But
this efficiency is achieved through increased service latency, as a client can only start receiving a video
object at the beginning of next broadcast period.

The catching technique we propose reduces service latency while taking advantage of the efficiency
of periodic broadcast schemes in utilizing server and network resources. It thus eliminates the shortcom-
ing associated with periodic-broadcast-based ”server-push” techniques. Catching is similiar in spirit to
the split and merge (SAM) protocol [14] proposed for interactive VOD systems, where a unicast stream
is scheduled on demand by a client’s request. The selective catching technique further improves the
overall performance by combining catching and controlled multicast to account for diverse user access
patterns.

The problem of delivering continuous media streams using proxy servers has been studied in a num-
ber of contexts. In [12], we develop video staging techniques to store a per-determined amount of video
streams in strategically placed proxy servers to reduce the backbone network bandwidth requirement
for delivering video streams across a wide-area network. In [13], a prefix caching scheme is proposed
to reduce the latency while delivering smoothed variable-bit-rate (VBR) continuous streams between
the proxy and clients. Proxy-assisted video delivery is also proposed in the context of the dynamic
skyscraper delivery scheme in [10].

Our proxy-assisted catching scheme can improve service latency as well as reduce server and net-
work resource requirements. Unlike [10], our scheme can handle variable object sizes, and is based
on formal analysis of multicast scheduling policies. From this analysis, the design parameters can be
derived in a straightforward manner. As a result, our solution can be optimized accordingly.

3

Petitioners' Exhibit 1026
Page 0003

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

2 Problem Overview and Preliminaries

2.1 Problem Overview

Client

Client

Client

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

DISK

DISPLAY

Client

Network
VIDEO

STORAGE

DATA

SERVER

SCHEDULER
CONTROL

CHANNEL

Video Server

CHANNEL1

CHANNEL2

CHANNEL3

Figure 1: An overview of VOD system architecture.

Consider a typical stored video-on-demand (VOD) delivery system as shown in Figure 1. A central
video server delivers video streams from a video object store to a large number of clients across a high-
speed network. The central server organizes the server and network resources required to deliver a video
stream1 into a (logical) channel. A channel can be either a unicast channel or a multicast channel. The
server uses a unicast channel to deliver a video stream to a single client, whereas the server uses a multi-
cast channel to deliver a video stream simultaneously to a group of clients (this group of clients is referred
to as a multicast group). In addition to the logical channels used for delivering video streams (i.e., video
delivery channels), we also assume that there are control channels to deliver signaling messages to a
client or a group of clients and vice versa for control purposes (e.g., which video object is requested by
a client, which data channels a client should tune in to, when to start video play-back, etc.). The video
server has a scheduler which receives client requests for video objects via control channels, processes
client request and determine when and which video delivery channels to deliver requested video objects
to clients.

Each client contains a set-top box, a disk, and a display monitor. A client is connected to the network
via a set-top box, which selects one or more network channels to receive a requested video object ac-
cording to the instructions from the server. The received video data are either sent to the display monitor
for immediate playback, or temporarily stored on the disk which is retrieved and played back on the dis-
play monitor later. The client storage space is the maximum disk space required throughout the client
playback period. For ease of exposition, in this paper we assume that the client disk space is sufficiently1In this paper we use the term video stream to denote a continuous flow or “stream” of video data (belonging to a certain
video object) delivered from the server to a client or a group of clients. As will be clear later, a single video object can be
partitioned into segments and delivered using multiple video streams via several delivery channels.

4

Petitioners' Exhibit 1026
Page 0004

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

large to store at least half a video2. The client network bandwidth is the maximum client network band-
width required to receive video data from the network throughout the client playback period. In this
paper, we assume that client has the capability of receiving video data from two channels at the same
time3.

We assume that there is a total of C logical channels available, and there are N video objects in the
server object store. The length of the ith object, i = 1; 2; : : : ; N , is Li minutes long. We assume that the
requests for the ith video object arrive according to a Poisson distribution with an expected inter-arrival
time of 1=�i, where �i is the request rate of video i.

Given a client request for a video object, the service latency experienced by a client is the amount
of time that the client has to wait until he/she can start the playback of the requested video object. A
key issue in the design of video delivery techniques is how to efficiently utilize server and network re-
sources (i.e., use the least number of video delivery channels necessary for delivering a video object)
while keeping the (expected) service latency experienced by clients as small as possible.

2.2 Preliminaries

We briefly describe two video delivery techniques we have developed earlier to provide the necessary
background for the catching technique we will introduce in Section 3.

2.2.1 Controlled Multicast: An Optimal Patching

Controlled multicast is a patching technique which allows multiple clients to share a multicast chan-
nel without delaying a client request. As a result, it is capable of supporting a large number of clients
while providing near instantaneous service. Controlled multicast differs from the patching technique
proposed in [5] in that it employs a patching threshold to optimize the expected channels needed to de-
liver a given video object.

As a “client-pull” technique, controlled multicast allocates channels at therequest of clients. The
following example illustrates how control multicast works. Consider two requests spaced 5 minutes
apart for a 90 minute long video. A multicast channel is allocated to transmit the entire video in order
to satisfy the first request. The second request is satisfied by allocating a separate unicast channel to
“patch-up”, i.e., transmit the first five minutes of the video to the client while inthe same time requiring
the client to prefetch the rest of the video from the first channel. Because the second client is five minutes
behind, it will buffer continually five minutes of the video data.

Controlled multicast only allows clients to share a multicast channel to receive a video stream when
the later client requests for the same video object arrive within a certain time from the first client request.
Otherwise, a complete video transmission for the video object is scheduled using a new multicast chan-
nel. In other words, for each video object i, a threshold Ti is defined to control the frequency at which a2This assumption is not essential, since our proposed schemes can be easily extended to a general case where clients have
any given amount of disk storage space, as we will point out in Section 3. In all of our empirical studies, the amount of client
disk storage space used is actually only at most one third of a video object.3With the advent of high-speed access technologies such as ADSL and cable modems, this is not an unreasonable
assumption.

5

Petitioners' Exhibit 1026
Page 0005

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
 Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

 Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
 With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

 Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
 Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

 Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

