

(12) United States Patent Ravi et al.

(10) Patent No.: US 6,292,834 B1
(45) Date of Patent: *Sep. 18, 2001

(54) DYNAMIC BANDWIDTH SELECTION FOR EFFICIENT TRANSMISSION OF MULTIMEDIA STREAMS IN A COMPUTER NETWORK

- (75) Inventors: Hemanth Srinivas Ravi, Milpitas; Anders Edgar Klemets; Navin Chaddha, both of Sunnyvale; David de Val, Mountain View, all of CA (US)
- (73) Assignee: Microsoft Corporation, Redmond, WA (US)
- (*) Notice: This patent issued on a continued prosecution application filed under 37 CFR 1.53(d), and is subject to the twenty year patent term provisions of 35 U.S.C. 154(a)(2). Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days.
- (21) Appl. No.: 08/818,127
- (22) Filed: Mar. 14, 1997
- (51) Int. Cl.⁷ G06F 15/167; G06F 15/173
- (52) U.S. Cl. 709/233; 709/216; 709/225

(56) References Cited

DOCKF

U.S. PATENT DOCUMENTS

4,862,264	8/1989	Wells et al	358/138
4,931,950	6/1990	Isle et al	364/513

(List continued on next page.)

OTHER PUBLICATIONS

Yuang, M.C. et al. "Dynamic Video Playout Smoothing Method for Multimedia Applications" IEEE ICC'96, 1996.* Feng, Wu–Chi et al. "A Comparison of Bandwidth Smoothing Techniques for the Transmission of Prerecorded Compressed Video" 16th Joint Conference of IEEE CCS, 1997.*

(List continued on next page.)

Primary Examiner—Zarni Maung Assistant Examiner—Jason D. Cardone (74) Attorney, Agent, or Firm—Lee & Hayes, PLLC

(57) ABSTRACT

An efficient transmission protocol for transmitting multimedia streams from a server to a client computer over a diverse computer network including local area networks (LANs) and wide area networks (WANs) such as the internet. The client computer includes a playout buffer, and the transmission rate is dynamically matched to the available bandwidth capacity of the network connection between the server and the client computer. If a playtime of the playout buffer, which is one measure of the number of data packets currently in the playout buffer, drops below a dynamically computed Decrease Bandwidth (DEC_BW) threshold, then the transmission rate is decreased by sending a DEC_ BW message to the server. Conversely, if the number of packets remaining in the playout buffer rises above a dynamically computed Upper Increase_Bandwidth (INC_ BW) threshold and does not drop below a Lower INC_BW threshold for at least an INC_BW wait period, then the transmission rate is incremented. The transmission rate can be selected from among a predetermined set of discrete bandwidth values or from within a continuous range of bandwidth values. In one variation, in addition to responding to changes in network connection capacity, the client computer also determines an average client computational capacity. Accordingly, if the average client computational capacity is less than the network capacity, the lower of the two capacities is the determining one, thereby avoiding a playout buffer overrun.

42 Claims, 18 Drawing Sheets

R M Find authenticated court documents without watermarks at <u>docketalarm.com</u>.

U.S. PATENT DOCUMENTS

5,025,457	*	6/1991	Ahmed 375/354
5,050,161		9/1991	Golestani 370/60
5,088,107		2/1992	Piasecki et al 375/10
5,119,474		6/1992	Beitel et al 395/154
5,208,810	*	5/1993	Park 370/230
5,231,599		7/1993	Peters et al 364/709.16
5,274,758		12/1993	Beitel et al 395/154
5,313,454		5/1994	Bustini et al 370/13
5,359,593	*	10/1994	Derby et al
5,434,848		7/1995	Chimento, Jr. et al 370/170
5,442,389		8/1995	Blahut et al 348/7
5,455,910		10/1995	Johnson et al 395/650
5,463,422	*	10/1995	Simpson et al 348/390
5,467,413		11/1995	Barrett 382/236
5,485,211		1/1996	Kuzma 348/409
5,487,167		1/1996	Dinallo et al 395/650
5,490,252		2/1996	Macera et al 395/200.1
5,504,744		4/1996	Adams et al 370/60.1
5,519,701		5/1996	Colmant et al 370/60.1
5,524,193		6/1996	Covington et al 395/154
5,533,021		7/1996	Branstad et al 370/60.1
5,537,408		7/1996	Branstad et al 370/79
5,543,850		8/1996	Pratt et al 348/617
5,544,170	*	8/1996	Kasahara 370/253
5,566,175	*	10/1996	Davis 370/468
5,574,724		11/1996	Bales et al
5,574,861	*	11/1996	Lorvig et al
5,577,258		11/1996	Cruz et al 395/800
5,583,980		12/1996	Anderson 395/173
5,594,911		1/1997	Cruz et al 395/800
5,600,775		2/1997	King et al 395/806
5,602,992		2/1997	Danneels 709/248
5,623,690		4/1997	Palmer et al 395/806
5,633,810		5/1997	Mandal et al 364/514
5,633,859	*	5/1997	Jain et al 370/234
5,666,487		9/1997	Goodman et al 395/200.76

5,675,732		10/1997	Majeti et al 395/200.01
5,717,691	*	2/1998	Dighe et al
5,774,668		6/1998	Choquier et al 395/200.53
5,796,724	*	8/1998	Rajamani et al
5,812,788		9/1998	Agarwal 395/200.77
5,815,505		9/1998	Mills 370/522
5,822,524	*	10/1998	Chen et al 709/203
5,825,771	*	10/1998	Cohen et al
5,852,565		12/1998	Demos 364/715.02
5,859,667		1/1999	Kondo et al 348/414
5,886,995		3/1999	Arsenault et al 370/477
5,892,549		4/1999	Feng 348/422
5,916,307		6/1999	Piskiel et al 709/314
5,918,002	*	6/1999	Klemets et al 395/182.16
5,926,226		7/1999	Proctor et al 348/422
5,940,072		8/1999	Jahanghir et al 345/327
5,956,088		9/1999	Shen et al 348/385
5,978,544		11/1999	Shimada et al 386/112
5,991,307		11/1999	Komuro et al 370/473
5,995,650		11/1999	Migdal et al 382/154
5,999,906		12/1999	Mercs et al 704/500
6,012,100		1/2000	Frailong et al 709/250

OTHER PUBLICATIONS

Rosado–Sosa, Carlos et al. "Jitter Compensation Scheduling Schemes for the Support of Real–Time Communictions" IEEE ICC'98, 1998.*

"Web Theater Product User Guide, Version 2.0", Palo Alto, CA: VXtreme, Inc., (1997).

Bolot, J.C., et al., "Scalable Feedback Control for Multicast Video Distribution in the Internet", Conference Proceedings, ACM SIGCOMM '94, London, England, 58–67, (1994).

Yavatkar, R., et al., "Optimistic Strategies for Large–Scale Dissemination of Multimedia Information", Conference Proceedings, Multimedia '93, 13–20, (1993).

* cited by examiner

DOCKET A L A R M Find authenticated court documents without watermarks at <u>docketalarm.com</u>.

DOCKET A L A R M Find authenticated court documents without watermarks at <u>docketalarm.com</u>.

Α

CKET LARM Find authenticated court documents without watermarks at <u>docketalarm.com</u>.

DOCKET

Explore Litigation Insights

Docket Alarm provides insights to develop a more informed litigation strategy and the peace of mind of knowing you're on top of things.

Real-Time Litigation Alerts

Keep your litigation team up-to-date with **real-time** alerts and advanced team management tools built for the enterprise, all while greatly reducing PACER spend.

Our comprehensive service means we can handle Federal, State, and Administrative courts across the country.

Advanced Docket Research

With over 230 million records, Docket Alarm's cloud-native docket research platform finds what other services can't. Coverage includes Federal, State, plus PTAB, TTAB, ITC and NLRB decisions, all in one place.

Identify arguments that have been successful in the past with full text, pinpoint searching. Link to case law cited within any court document via Fastcase.

Analytics At Your Fingertips

Learn what happened the last time a particular judge, opposing counsel or company faced cases similar to yours.

Advanced out-of-the-box PTAB and TTAB analytics are always at your fingertips.

API

Docket Alarm offers a powerful API (application programming interface) to developers that want to integrate case filings into their apps.

LAW FIRMS

Build custom dashboards for your attorneys and clients with live data direct from the court.

Automate many repetitive legal tasks like conflict checks, document management, and marketing.

FINANCIAL INSTITUTIONS

Litigation and bankruptcy checks for companies and debtors.

E-DISCOVERY AND LEGAL VENDORS

Sync your system to PACER to automate legal marketing.

