
.

Google Exhibit 1008
Google v. Valtrus

cee
i

inl

i a

a0
** Virtual machines have finally arrived.
Dismissed for a number of years as
merely academic curiosities, they are
now seen as cost-effective techniques
for organizing computer systems
resources to provide extraordinary
system flexibility and support for certain
unique applications.”’

oo| IX

Survey of Virtual Machine Research
Robert P. Goldberg

Honeywell Information Systems
and Harvard University

Introduction

The complete instruction-by-instruction simulation of
one computer system on a different system is a well-known
computing technique. It is often used for software develop-
ment when a hardwarebaseis being altered. For example, if
a programmeris developing software for some new special
purpose (e.g., aerospace) computer X which is under
construction and as yet unavailable, he will likely begin by
writing a simulator for that computer on someavailable
general-purpose machine G. The simulator will provide a
detailed simulation of the special-purpose environment X,
including its processor, memory, and I/O devices. Except
for possible timing dependencies, programs which run on
the “simulated machine X” can later run on the “real

machine X”’ (whenit is finally built and checked out) with
identical effect. The programs running on X can be

34

arbitrary — including code to exercise simulated I/O
devices, move data and instructions anywhere in simulated
memory, or execute any instruction of the simulated
machine. The simulator provides a layer of software
filtering which protects the resources of the machine G
from being misused by programs on X.

If several different programmers are developing software
for X concurrently, it may be possible to run a numberof
copies of the simulator under an operating system on G.
Alternatively, a special, more powerful version of the
simulator may be developed which itself is a time-sharing
system and supports multiple users. In either case, the
result would be the illusion of multiple copies of the
hardware-software interface of machine X on machine G.

Since machines XY and G maybearbitrarily chosen, they
maybe significantly different in structure. This may imply
a very large simulation program and significant overhead for

Google Exhibit 1008
Google v. Valtrusf

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

.

the simulation of each of X’s instructions. As a result, it is
possible to find the machine slowed down by as much as
1000 to 1. Consequently, simulation is generally used only
for software development and almost never in a production
mode.

While X and G maybearbitrarily different, it is also
possible to choose them to be identical — i.e., X=G. In this
case we would be supporting many copies of the hardware-
software interface of G on one machine G. Each user would

have his own private copy of a machine G and could select
the operating system of his choice to run on his “private”
computer. He could also choose to develop or debug his
own operating system. Asbefore, since each instruction for
the simulated G is actually being interpreted by software on
the real G, there can be no way for one simulated machine
to interfere with another.

If the real and simulated machines are identical then it

may be possible to construct a simulator in which programs
run with a slow-down of only about 20 to 1.* While this
may be a considerable improvement over the more general
simulator, it seems odd that programs being run on native
hardware, i.e., the machines they were written for, should
have to be slowed down at all. Considerations of this kind

have !ed to the development of much more efficient
simulators for multiple copies of a machine onitself.** In
these systems, much of the software for the simulated
machine executes directly on the hardware without soft-
ware interpretation. Systems of this kind are called virtual
machine systems, the simulated machinesare called virtual
machines (VMs), and the simulator software is called the
virtual machine monitor (VMM).

Whether or not it is possible to construct a VMM
depends upon the subject machine’s architecture. Even for
systems in which virtual machine monitors have been
constructed, there still remain many interesting questions
concerning performance anduse.

IBM’s improved virtual machine support for System/370
(i.e., VM/370 Release 2),4°-4* the application of virtual
machine systems to significant problems in data security/
reliability,*°14°5!-°3 and the use of virtual machine tech-
niques to reduce software developmentcosts'**?” are just
some of the reasons for the widespread current interest in
virtual machines.

In this paper we will take up these issues in connection
with some of the recent work on virtual machine principles,
performance, and practice. In particular, we shall examine
the rationale for virtual machines, discuss the implications
of virtual machines on new architectural designs, consider
virtual machine performance costs, and finally explore
some of the unique applications which virtual machines
make possible. The tutorial papers by Buzen and
Gagliardi,'®*'7 Parmelee et al,°° and Meyer and
Seawright,°” as well as Chapters 1-3 of the author’s Ph.D.
dissertation?* may be read for additional background
material. Finally, the recent textbook by Madnick and
Donovan*? includes an excellent introduction to virtual

machines as part of a course on operating systems.

*The simulator is typically oriented around the use of an
execute-type instruction for simulating each central processor
instruction.

**Somewhat different considerations have led to the development
of emulators which are efficient hardware or firmware assisted
simulators for dissimilar machines. See Mallach.>?”

June 1974

Principles

Virtual machine systems were originally developed to
correct some of the shortcomings of the typical third-
generation architectures and multi-programming operating
systems — e.g., OS/360.?? The principal architectural char-
acteristics of these systems was the dual-state hardware
organization with a privileged and a non-privileged mode. In
privileged modeall instructions are available to software,
whereas in non-privileged mode they are not. The operating
system provided a small resident program called the
privileged software nucleus. User programs could execute
the non-privileged hardware instructions or make super-
visory calls — eg., SVCs — to the privileged software
nucleus in order to have privileged functions — e.g., I/O —
performed on their behalf. The set of non-privileged
instructions together with the supervisory calls effectively
defines an extended machine which is similar to but not

identical to the bare machine. (See Figure 1.) The extended
machine is, in theory, better human-engineered and easier
to program than the original bare machine.

The extended machine approach has been quite suc-
cessful in many computer systemsinstallations, but there
still are a number of problems associated with it. While
Figure | illustrates multiple extended machine interfaces,
only one bare machine interface is provided. Thus, only one
privileged software nucleus can be run at a given time.
Consequently, it is not possible to run other operating
systems, certain diagnostic programs, or any software which
requires a bare machine interface instead of an extended
machine interface. This rigidity may have significant impact
on the transportability of user software (written for other
operating systems), modification and testing of the oper-
ating system (privileged software), and the running of test
and diagnostic (T&D) programs. In the face of these
obstacles the installation’s management usually solves this
problem with shift scheduling: operating system debugging,

BARE

MACHINE BASIC
— MACHINE

INTERFACE PRIVILEGED
SOF TWARE
NUCLEUS

 EXTENDED

MACHINES

EXTENDED
MACHINE
INTERFACE

USER USER
PROGRAM PROGRAM

Figure 1. Conventional Extended Machine Organization

f

Find authenticated court documents without watermarks at docketalarm.com.

mrush
Sticky Note
None set by mrush

mrush
Sticky Note
MigrationNone set by mrush

mrush
Sticky Note
Unmarked set by mrush

https://www.docketalarm.com/

.

T&D, unusual or old release operating systems, and
normal system use scheduled for separate blocks of time
during the day (and night).

The major innovation of virtual machines (VMs) was to
solve the above problem. The heart of a VM system is the
virtual machine monitor (VMM) software which transforms
the single machine interface into the illusion of many. Each
of these interfaces (virtual machines) is an efficient replica
of the original computer system, complete with all of the
processor instructions (i.e., both privileged and non-
privileged instructions) and system resources (i.e., memory
and I/O devices). By running each operating system onits
own virtual machine it becomes possible to run several
different operating systems (privileged software nuclei)
concurrently. (See Figure 2.)

Perhaps the best known virtual machine system is IBM’s
VM/370.*3>** On each virtual 370 a user may run any of
the System/360 or System/370 operating systems, such as
DOS/360, OS/VS1, OS/VS2, or any version of OS/360. The
user may also run the Conversational Monitor System
(CMS), a simple monoprogramming operating system which
was developed specifically for use on virtual machines.

Other virtual machine and virtual machine-like systems
which have been developed include:

e M44/44X — A virtual machine-like system devel-
oped for a specially modified IBM 7044.58 -6°>°7

BARE
MACHINE

 PRIVILEGED
SOFTWARE

NUCLEUS’

Figure 2. Virtual Machine Organization

36

UAL.

ee—MACHINE
INTERFACE

EXTENDED
MACHINES

e CP-40 — A virtual machine system developed for a
specially modified IBM 360/40, forerunner of
CP-67.1>4°

e CP-67 — A virtual machine system developed for
the IBM 360/67, forerunner of VM/370.° 24 57

e 360/30 — A single virtual machine supported on a
specially modified IBM 360/30, used for system
measurement.* §

e HITAC 8400 —Asingle virtual machine supported
on a HITAC 8400 (RCA Spectra 70/45), used for
special software development.’ °

e@ UMMPS — Oneor several virtual machines (360)
supported concurrently with UMMPS on 360/67,
normally used to provide OS/360 support. 41 >7°

e PDP-10 — A virtual machine-like system running
under the ITS operating system on a special
PDP-10 at MIT.?°

Other virtual machine systems currently under devel-
opmentinclude:

e UCLA-VM — A virtual machine system being
developed for specially modified PDP-11/45. Will
be used for data security studies.°? »°*

e Newcastle Recursive VM — Burroughs B1700 is
being microprogrammed to define a machine
architecture for which a VMM is_ being
written.*7 48

BASIC
——— MACHINE

INTERFACE

PRIVILEGED
SOFTWARE
NUCLEUS
#2

COMPUTER

a|

f

Find authenticated court documents without watermarks at docketalarm.com.

mrush
Sticky Note
None set by mrush

mrush
Sticky Note
MigrationNone set by mrush

mrush
Sticky Note
Unmarked set by mrush

https://www.docketalarm.com/

.

While virtual machines, multiprogramming, and virtual
storage are independent concepts,’' they form a very
powerful construct when combined together.°° A virtual)
machine provides an efficient, isolated replica of a com-
puter system’s environment. With multiprogramming it
becomes possible to multiplex among several virtual
machines concurrently on a single hardware system.>°
Finally, with virtual storage, it is possible to supportvirtual
machines whose memory requirements exceed the actual
resources available.°

Despite the powerof the virtual machine concept, only a
very limited number of virtual machine systems have
actually been implemented. This situation is in part due to
the architectural characteristics of third-generation
machines which were not designed to support virtual
machines.°°°?°®> Consequently, these systems do not
provide the appropriate architectural support and force the
existing VMMs to rely on somewhat contrived software
techniques.

As with the purely simulated machine discussed in the
introduction, support of a virtual machine requires faithful
reproduction of the processor, memory, I/O system, and
even the operator’s console. Furthermore, to satisfy the
efficiency requirements which are an essential part of the
virtual machine concept, it is necessary to execute a
significant portion of the virtual CPU’s instructions directly
on the host hardware. Since the instructions to be executed

on the virtual machine might include the privileged instruc-
tions which can alter the mode of the machine, perform
VO, etc., complete direct execution of software by the
virtual machine might permit it to interfere with the VMM
or other virtual machines. In order to prevent this situation
from occurring it is necessary for the VMM to maintain
proper control over the state of the real processor.

Third-Generation Implementation Issues The solution
that was adopted in third-generation architectures involved
running all software for virtual machines in the non-
privileged mode and having the virtual machine monitor
maintain a virtual mode bit in a software table.!®»17>5°
The virtual mode bit indicated the state which the machine

would be in if the software were executing directly on the
bare machine. Instructions which were insensitive to the
actual mode of the machine were allowed to execute

directly on the bare machine without VMM intervention.
All other instructions were trapped by the VMM and
simulated in software using the virtual mode bit to
determine the appropriate action in each case.

In general, the non-privileged instructions are executed
directly and certain privileged instructions must be trapped
and simulated. However, this cannot always be donesince
there may be some instructions which are sensitive to the
processor mode mapping yet are not privileged — i.e., not
automatically trapped when executed in non-privileged
mode. As a result, it is often impossible to support virtual
machine systems using this partial software
construction. ® 3? >33

On third-generation virtual machine systems, the virtual
machine’s memoryis usually supported through use of the
system’s memory mapping mechanism. The memoryofthe
virtual machine must retain the properties of real memory,
such as linear addresses from zero and special meanings to
certain interrupt control locations. Memory mapping used
in current systems has been both simple relocation and
paging. If the host machine is paged, the virtual machines

June 1974

may include the paging mechanism as well.?°*©° In this
case, the VMM must manipulate the page tables in order to
map paged addresses within the virtual machines into their
corresponding real addresses. Current techniques utilize
some awkward and unnecessary software overhead but
recent advances have been madein this area.°?>34

Since I/O instructions are usually privileged, attempted
execution by software on a virtual machine causes a trap to
the VMM. At this point the VMMis able to translate device
and memory addresses before issuing an I/O instruction on
behalf of the virtual machine. When an I/O completion
interrupt returns to the VMM,it is reflected back to the
appropriate virtual machine. Since I/O operations may
occur with a “relatively low frequency,” the performance
degradation introduced by this VMM software intervention
should be tolerable. Current computer architectures require
VMM software intervention to maintain system integrity
since an improperly written channel program can interfere
with other virtual machines or the VMMitself.? A side

benefit of software intervention is the ability to map I/O
requests for one device into requests for another! *?® or to
provide a virtual machine with special devices which have
no real counterpart. 4°?5

The considerations of how the virtual machine mapsare
constructed for various systems and which machines admit
of such a mapping has been discussed in the liter-
ature.1°>!7-39:31,33 A recent study has even used formal
mathematical techniques to establish sufficient architec-
tural conditions for third-generation virtual machine
support.°® These results have led a numberof researchers
to make hardware modifications to current machines in

order to support virtual machines.° * °*

Virtualizable Architectures Recently, a number of
researchers have proposed newarchitectures — i.e., virtual-
izable architectures — which provide features to directly
support virtual machines.?* 334 47>48 The arguments for
these architectures include:

e System hygiene. There is no intrinsic reason why
virtual machine support must be based on the trap
and simulation approach since it is clumsy and
awkward.

e Software simplicity. Virtualizable architectures
would make the VMManeven smaller and simpler
program and further contribute to the reliability/
security appeal of VM’s.

e System performance. Machines designed to sup-
port virtual machines should operate even more
efficiently than third-generation VM systems.

IBM has recently announced VM/370 Release 2 which
includes a firmware modification, called VM-assist, to the
standard System/370.'? 4? 44 While very little information
is currently available about VM-assist, it seems to have some
of the characteristics of the virtualizable architectures.

The Hardware Virtualizer In order to illustrate the

principles of virtualizable architectures, we will sketch the
design of the author’s Hardware Virtualizer which has been
described in detail in the literature.??°?*°°° The theory is
based on the following arguments:

e The key issue involved in VM’s is the instantan-
eous relationship between the resources of the
virtual and real machines.

37

a

f

Find authenticated court documents without watermarks at docketalarm.com.

mrush
Sticky Note
None set by mrush

mrush
Sticky Note
MigrationNone set by mrush

mrush
Sticky Note
Unmarked set by mrush

https://www.docketalarm.com/

.

e We must identify the sets of resources of the
virtual machine and the real machine and define a

map between them,called an f-map.
e The f-map transformsa virtual resource name into

its corresponding real resource name.
e The f-map must be invisible to all software

executing on the virtual machine.
e The VMM software running on the real machine

manipulates and invokes the f-map, and is given
control on an f-map violation, called a VM-fault.

e The design extends directly for recursion, in which
case the f-map maps adjacent levels of virtual
resources. In order to run a VM it is necessary to
compose — i.e., combine — all the maps together.
Faults must be passed to the VMM at the
appropriate level.

e Any other structure— e.g., privileged/non-
privileged modes — is independentof virtualization
and behaves as it would on the original machine.

The resource sets relevant to the virtual machine model

are represented by the shaded areas of Figure 2, shown
earlier. These sets are the real resource set and the two

virtual resource sets. The corresponding f-maps are not
illustrated in the figure.

Figure 3 illustrates the extension of the virtual machine
model to include recursion. The model indicates how a

VMM may be run on the basic machine interface of a
virtual machine — e.g., V1. This VMM in turn creates two

BASIC
MACHINE
INTERFACE:

fy

 VIRTUAL

MACHINES

BASIC
SMACHINE

INTERFACE

EXTENDED
MACHINES

EXTENDED
MACHINE
INTERFACE
|

Figure 3. Virtual Machine Model with Recursion

38

virtual machines, V1.1 and V1.2, on which are running
conventional operating systems — i.e., privileged software
nuclei.

The virtual machine model identifies the five shaded

areas of the figure as distinct resource sets and indicates the
mapping relationship among them. Thusa resource name of
V2 must be mapped by f2 to be transformed into a real
resource of R. On the other hand, a resource of V1.1 must
be mapped consecutively by both f1 1 and fj in order to be
transformed into its corresponding resource of R.If there is
a violation in applying the mapping of f1,1, a VM-fault
passes control to the VMM in Vj}. Similarly, a violation of
fj faults to the VMM in R.Asin the nonrecursive model,
local mapping structure pertaining to user programs is
hidden within the resource sets and is ignored.

Direct application of this theory yields the design of the
Hardware Virtualizer. Goldberg discusses in detail the
development of a generic Hardware Virtualizer with arbi-
trary choices of target architecture and virtual machine

.map. There are a number ofsubtle issues which arise in
the design but the key concept is the direct mirroring
in hardware of the virtual machine model presented
above. This requires hardware/firmware supportto:

e represent the f-maps,
® activate a virtual machine,
e compose the f-maps (and possibly local maps)

together during resource referencing, and
® pass control to the correct VMM on a VM-fault.

 ¢EXTENDED
MACHINE
INTERFACE
#2

COMPUTER

TT,

f

Find authenticated court documents without watermarks at docketalarm.com.

mrush
Sticky Note
None set by mrush

mrush
Sticky Note
MigrationNone set by mrush

mrush
Sticky Note
Unmarked set by mrush

https://www.docketalarm.com/

Real-Time Litigation Alerts
 Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

 Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
 With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

 Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
 Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

 Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

