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Abstract

 

We present a promising new mathematical method for tracking a
user's pose (position and orientation) for interactive computer
graphics. The method, which is applicable to a wide variety of both
commercial and experimental systems, improves accuracy by
properly assimilating sequential observations, filtering sensor
measurements, and by concurrently autocalibrating source and
sensor devices. It facilitates user motion prediction, multisensor
data fusion, and higher report rates with lower latency than
previous methods.

Tracking systems determine the user's pose by measuring
signals from low-level hardware sensors. For reasons of physics
and economics, most systems make mult iple sequential
measurements which are then combined to produce a single tracker
report. For example, commercial magnetic trackers using the
SPASYN (

 

Space Synchro

 

) system sequentially measure three
magnetic vectors and then combine them mathematically to
produce a report of the sensor pose.

Our new approach produces tracker reports as each new low-
level sensor measurement is made rather than waiting to form a
complete collection of observations. Because single observations
under-constrain the mathematical solution, we refer to our
approach as single-constraint-at-a-time or SCAAT tracking. The
key is that the single observations provide some information about
the user's state, and thus can be used to incrementally improve a
previous estimate. We recursively apply this principle,
incorporating new sensor data as soon as it is measured. With this
approach we are able to generate estimates more frequently, with
less latency, and with improved accuracy. We present results from
both an actual implementation, and from extensive simulations.

 

CR Categories and Subject Descriptors

 

: I.3.7 [Computer
Graphics] Three-Dimensional Graphics and Realism—Virtual
reality; I.4.4 [Image Processing] Restoration—Kalman filtering;
I.4.8 [Image Processing] Scene Analysis—Sensor fusion; G.0
[Mathematics of Computing] General—Numerical Analysis,
Probability and Statistics, Mathematical Software.
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: virtual environments
tracking, feature tracking, calibration, autocalibration, delay,
latency, sensor fusion, Kalman filter.

 

1 INTRODUCTION

 

The method we present requires, we believe, a fundamental change
in the way people think about estimating a set of unknowns in
general, and tracking for virtual environments in particular. Most
of us have the preconceived notion that to estimate a set of
unknowns we need as many constraints as there are degrees of
freedom at any particular instant in time. What we present instead
is a method to constrain the unknowns 

 

over time

 

, continually
refining an estimate for the solution, a 

 

single constraint at a time

 

.
For applications in which the constraints are provided by real-

time observations of physical devices, e.g. through measurements
of sensors or visual sightings of landmarks, the SCAAT method
isolates the effects of error in individual measurements. This
isolation can provide improved filtering as well as the ability to
individually calibrate the respective devices or landmarks
concurrently and continually while tracking. The method
facilitates user motion prediction, multisensor or multiple modality
data fusion, and in systems where the constraints can only be
determined sequentially, it provides estimates at a higher rate and
with lower latency than multiple-constraint (batch) approaches.

With respect to tracking for virtual environments, we are
currently using the SCAAT method with a new version of the UNC
wide-area optoelectronic tracking system (section 4). The method
could also be used by developers of commercial tracking systems
to improve their existing systems or it could be employed by end-
users to improve custom multiple modality hybrid systems. With
respect to the more general problem of estimating a set of
unknowns that are related by some set of mathematical constraints,
one could use the method to trade estimate quality for computation
time. For example one could incorporate individual constraints,
one at a time, stopping when the uncertainty in the solution
reached an acceptable level.

 

1.1 Incomplete Information

 

The idea that one might build a tracking system that generates a
new estimate with each individual sensor measurement or

 

observation

 

 is a very interesting one. After all, individual
observations usually provide only partial information about a
user’s complete state (pose), i .e. they are “incomplete”
observations. For example, for a camera observing landmarks in a
scene, only limited information is obtained from observations of
any single landmark. In terms of control theory, a system designed
to operate with only such incomplete measurements is
characterized as 

 

unobservable

 

 because the user state cannot be
observed (determined) from the measurements.

The notion of observability can also be described in terms of
constraints on the unknown parameters of the system being
estimated, e.g. constraints on the unknown elements of the system
state. Given a particular system, and the corresponding set of
unknowns that are to be estimated, let  be defined as the minimal
number of independent simultaneous constraints necessary to
uniquely determine a solution, let  be the number actually used
to generate a new estimate, and let  be the number of

 

independent

 

 constraints that can be formed from the 
constraints. For any  constraints, if  the
problem is 

 

well constrained

 

, if  it is 

 

over constrained

 

,
and if  it is 

 

under-constrained

 

. (See Figure 1.)
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1.2 Landmark Tracking

 

Consider for example a system in which a single camera is used to
observe known scene points to determine the camera position and
orientation. In this case, the constraints provided by the
observations are multi-dimensional: 2D image coordinates of 3D
scene points. Given the internal camera parameters, a set of four
known coplanar scene points, and the corresponding image
coordinates, the camera position and orientation can be uniquely
determined in closed-form [16]. In other words if 
constraints (2D image points) are used to estimate the camera
position and orientation, the system is completely observable. On
the other hand, if  then there are multiple solutions. For
example with only  non-collinear points, there are up to 4
solutions. Even worse, with  or  points, there are
infinite combinations of position and orientation that could result
in the same camera images.

In general, for closed-form tracking approaches, a well or
over-constrained system with  is observable, an under-
constrained system with  is not. Therefore, if the individual
observat ions provide only part ia l  information, i .e.  the
measurements provide insufficient constraints, then multiple
devices or landmarks must be excited and (or) sensed prior to
estimating a solution. Sometimes the necessary observations can
be obtained simultaneously, and sometimes they can not. Magnetic
trackers such as those made by Polhemus and Ascension perform
three 

 

sequential

 

 source excitations, each in conjunction with a
complete sensor unit observation. And while a camera can indeed
observe multiple landmarks simultaneously in a single image, the
image processing to identify and locate the individual landmarks
must be done sequentially for a single CPU system. If the
landmarks can move independently over time, for example if they
are artificial marks placed on the skin of an ultrasound patient for
the purpose of landmark-based tracking [41], batch processing of
the landmarks can reduce the effectiveness of the system. A
SCAAT implementation might grab an image, extract a 

 

single

 

landmark, update the estimates of both the camera 

 

and

 

 landmark
positions, and then throw-away the image. In this way estimates
are generated faster and with the most recent landmark
configurations.

 

1.3 Putting the Pieces Together

 

Given a tracker that uses multiple constraints that are each
individually incomplete, a 

 

measurement model

 

 for any one of
incomplete constraints would be characterized as 

 

locally
unobservable

 

. Such a system must incorporate a sufficient set of
these incomplete constraints so that the resulting overall system is
observable. The corresponding aggregate measurement model can
then be characterized as 

 

globally observable

 

. Global observability
can be obtained over 

 

space

 

 or over 

 

time

 

. The SCAAT method
adopts the latter scheme, even in some cases where the former is
possible.

 

2 MOTIVATION

2.1 The Simultaneity Assumption

 

Several well-known virtual environment tracking systems collect
position and orientation constraints (sensor measurements)
sequentially. For example, tracking systems developed by
Polhemus and Ascension depend on sensing a sequence of
variously polarized electromagnetic waves or fields. A system that
facilitated simultaneous polarized excitations would be very
difficult if not impossible to implement. Similarly both the original
UNC optoelectronic tracking system and the newer HiBall version
are designed to observe only one ceiling-mounted LED at a time.
Based on the available literature [25,27,37] these systems currently
assume (mathematically) that their sequential observations were
collected simultaneously. We refer to this as the 

 

simultaneity
assumption

 

. If the target remains motionless this assumption
introduces no error. However if the target is moving, the violation
of the assumption introduces error.

To put things into perspective, consider that typical arm and
wrist motion can occur in as little as 1/2 second, with typical “fast”
wrist tangential motion occurring at 3 meters/second [1]. For the
current versions of the above systems such motion corresponds to
approximately 2 to 6 centimeters of translation 

 

throughout

 

 the
sequence of measurements required for a single estimate. For
systems that attempt sub-millimeter accuracies, even slow motion
occurring during a sequence of sequential measurements impacts
the accuracy of the estimates.
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Figure 1: SCAAT and constraints on a system of simultaneous equations.  is the minimal number of independent simultaneous 
constraints necessary to uniquely determine a solution,  is the number of given constraints, and  is the number of independent 
constraints that can be formed from the . (For most systems of interest ). The conventional approach is to ensure  and 

, i.e. to use enough measurements to well-constrain or even over-constrain the estimate. The SCAAT approach is to employ the 
smallest number of constraints available at any one time, generally  constraint. From this viewpoint, each SCAAT 
estimate is severely under-constrained.
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The error introduced by violation of the simultaneity
assumption is of greatest concern perhaps when attempting any
form of system 

 

autocalibration

 

. Gottschalk and Hughes note that
motion during their autocalibration procedure must be severely
restricted in order to avoid such errors [19]. Consider that for a
multiple-measurement system with 30 mill iseconds total
measurement time, motion would have to be restricted to
approximately 1.5 centimeters/second to confine the translation
(throughout a measurement sequence) to 0.5 millimeters. For
complete autocalibration of a large (wide-area) tracking system,
this restriction results in lengthy specialized sessions.

 

2.2 Device Isolation & Autocalibration

 

Knowledge about source and sensor imperfections can be used to
improve the accuracy of tracking systems. While intrinsic sensor
parameters can often be determined off-l ine, e.g. by the
manufacturer, this is generally not the case for extrinsic
parameters. For example it can be difficult to determine the exact
geometric relationship between the various sensors of a hybrid
system. Consider that the coordinate system of a magnetic sensor
is located at some unknown location inside the sensor unit.
Similarly the precise geometric relationship between visible
landmarks used in a vision-based system is often difficult to
determine. Even worse, landmark positions can change over time
as, for example, a patient’s skin deforms with pressure from an
ultrasound probe. In general, goals such as flexibility, ease of use,
and lower cost ,  make the not ion of  sel f -cal ibrat ion or

 

autocalibration

 

 attractive.
The general idea for autocalibration is not new. See for

example [19,45]. However, because the SCAAT method 

 

isolates

 

the measurements provided by each sensor or modality, the
method provides a new and elegant means to autocalibrate
concurrently while tracking. Because the SCAAT method isolates
the individual measurements, or measurement dimensions,
individual source and sensor imperfections are more easily
identified and dealt with. Furthermore, because the simultaneity
assumption is avoided, the motion restrictions discussed in
section 2.1 would be removed, and autocalibration could be
performed 

 

while concurrently tracking a target

 

.
The isolation enforced by the SCAAT approach can improve

results even if the constraints are obtained simultaneously through
multidimensional measurements. An intuitive explanation is that if
the elements (dimensions) are corrupted by independent noise,
then incorporating the elements independently can offer improved
filtering over a batch or ensemble estimation scheme. 

 

2.3 Temporal Improvements

 

Per Shannon’s sampling theorem [24] the measurement

 

 

 

or

 

sampling

 

 frequency should be at least twice the true target motion
bandwidth, or an estimator may track an alias of the true motion.
Given that common arm and head motion bandwidth specifications
range from 2 to 20 Hz [13,14,36], the 

 

sampling

 

 rate should ideally
be greater than 40 Hz. Furthermore, the 

 

estimate 

 

rate should be as
high as possible so that normally-distributed white estimate error
can be discriminated from any non-white error that might be
observed during times of significant target dynamics, and so
estimates will always reflect the most recent user motion.

In addition to increasing the estimate rate, we want to reduce
the latency associated with generating an improved estimate, thus
reducing the overall latency between target motion and visual
feedback in virtual environment systems [34]. If too high, such
latency can impair adaptation and the illusion of presence [22], and
can cause motion discomfort or sickness. Increased latency also
contributes to problems with head-mounted display registration
[23] and with motion prediction [4,15,29]. Finally, post-rendering

image deflection techniques are sometimes employed in an attempt
to address latency variability in the rendering pipeline [32,39].
Such methods are most effective when they have access to (or
generate) accurate motion predictions and low-latency tracker
updates. With accurate prediction the best possible position and
orientation information can be used to render a preliminary image.
With fast tracker updates there is higher probability that when the
preliminary image is ready for final deflection, recent user motion
has been detected and incorporated into the deflection.

With these requirements in mind, let us examine the effect of
the measurements on the estimate latency and rate. Let  be the
time needed to determine one constraint, e.g. to measure a sensor
or extract a scene landmark, let  be the number of (sequential)
constraints used to compute a complete estimate, and let  be the
time needed to actually compute that estimate. Then the estimate
latency  and rate  are

 

(1)

 

As the number of constraints  increases, equation (1) shows how
the estimate latency and rate increase and decrease respectively.
For example the Polhemus Fastrak, which uses the SPASYN
(

 

Space Synchro

 

) method for determining relative position and
orientation, employs  sequential electromagnetic
excitations and measurements per estimate [25,27,37], the original
University of North Carolina (UNC) optoelectronic tracking
system sequentially observed  beacons per estimate
[3,44], and the current UNC hybrid landmark-magnetic tracking
system extracts (from a camera image) and then incorporates

 landmarks per update. The SCAAT method seeks to
improve the latencies and data rates of such systems by updating
the current estimate with each new (individual) constraint, i.e. by
fixing 

 

 

 

at 1. In other words, it increases the estimate rate to
approximately the rate that individual constraints can be obtained
and likewise decreases the estimate latency to approximately the
time required to obtain a single constraint, e.g. to perform a single
measurement of a single sensor, or to extract a single landmark.

Figure 2 illustrates the increased data rate with a timing
diagram that compares the SPASYN (Polhemus Navigation
Systems) magnetic position and orientation tracking system with a
hypothetical SCAAT implementation. In contrast to the SPASYN
system, a SCAAT implementation would generate a new estimate
after sensing each 

 

individual

 

 excitation vector rather than waiting
for a complete pattern.
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Figure 2: A timing diagram comparing the SPASYN 
(Polhemus Navigation Systems) magnetic position and 
orientation tracking system with a hypothetical SCAAT 
implementation.
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2.4 Data Fusion & Hybrid Systems

 

The Kalman filter [26] has been widely used for data fusion. For
example in navigation systems [17,30], virtual environment
tracking systems [5,12,14], and in 3D scene modeling [20,42].
However the SCAAT method represents a new approach to
Kalman filter based 

 

multi-sensor data fusion

 

. Because constraints
are intentionally

 

 

 

incorporated one at a time, one can pick and
choose which ones to add, and when to add them. This means that
information from different sensors or modalities can be woven
together in a common, flexible, and expeditious fashion.
Furthermore, one can use the approach to ensure that each estimate
is computed from the most recently obtained constraint.

Consider for a moment the UNC hybrid landmark-magnetic
presented at SIGGRAPH 96 [41]. This system uses an off-the-shelf
Ascension magnetic tracking system along with a vision-based
landmark recognition system to achieve superior synthetic and real
image registration for augmented reality assisted medical
procedures. The vision-based component attempts to identify and
locate multiple known landmarks in a single image before
applying a correction to the magnetic readings. A SCAAT
implementation would instead identify and locate only one
landmark per update, using a new image (frame) each time. Not
only would this approach increase the frequency of landmark-
based correction (given the necessary image processing) but it
would offer the added benefit that unlike the implementation
presented in [41], no special processing would be needed for the
cases where the number of visible landmarks falls below the
number  necessary to determine a complete position and
orientation solution. The SCAAT implementation would simply
cycle through any available landmarks, one at a time. Even with
only one visible landmark the method would continue to operate as
usual, using the information provided by the landmark sighting to
refine the estimate where possible, while increasing the uncertainty
where not.

 

3 METHOD

 

The SCAAT method employs a 

 

Kalman filter

 

 (KF) in an unusual
fashion. The Kalman filter is a mathematical procedure that
provides an efficient computational (recursive) method for the
least-squares estimation of a linear system. It does so in a

 

predictor-corrector

 

 fashion, predicting short-term (since the last
estimate) changes in the state using a 

 

dynamic model

 

, and then
correcting them with a measurement and a corresponding

 

measurement model

 

. The 

 

extended 

 

Kalman filter (EKF) is a
variation of the Kalman filter that supports estimation of 

 

nonlinear

 

systems, e.g. 3D position and orientation tracking systems. A basic
introduction to the Kalman filter can be found in Chapter 1 of [31],
while a more complete introductory discussion can be found in
[40], which also contains some interesting historical narrative.
More extensive references can be found in [7,18,24,28,31,46].

The Kalman filter has been employed previously for virtual
environment tracking estimation and prediction. For example see
[2,5,12,14,42], and most recently [32]. In each of these cases
however the filter was applied directly and only to the 6D pose
estimates delivered by the off-the-shelf tracker. The SCAAT
approach could be applied to either a hybrid system using off-the-
shelf and/or custom trackers, or it could be employed by tracker
developers to improve the existing systems for the end-user
graphics community.

In this section we describe the method in a manner that does
not imply a specific tracking system. (In section 3.4 we present
experimental results of a specific implementation, a SCAAT wide-
area optoelectronic tracking system.) In section 3.1 we describe
the method for tracking, and in section 3.2 we describe one
possible method for concurrent autocalibration.

Throughout we use the following conventions.

 

3.1 Tracking

 

3.1.1 Main Tracker Filter

 

The use of a Kalman filter requires a mathematical (state-space)
model for the dynamics of the process to be estimated, the target
motion in this case. While several possible dynamic models and
associated state configurations are possible, we have found a
simple 

 

position-velocity

 

 model to suffice for the dynamics of our
applications. In fact we use this same form of model, with different
parameters, for all six of the position and orientation components

. Discussion of some other potential models and
the associated trade-offs can be found in [7] pp. 415-420. Because
our implementation is discrete with inter sample time  we
model the target’s dynamic motion with the following linear
difference equation:

 

. (2)

 

In the standard model corresponding to equation (2), the

 

 

 

dimensional Kalman filter 

 

state vector

 

  would completely
describe the target position and orientation at any time . In
practice we use a method similar to [2,6] and maintain the
complete target orientation externally to the Kalman filter in order
to avoid the nonl ineari t ies associated with or ientat ion
computations. In the internal state vector  we maintain the
target position as the Cartesian coordinates , and the

 

incremental 

 

orientation as small rotations  about the
 axis. Externally we maintain the target orientation as the

 

external  quaternion 

 

.  (See [9]  for
discussion of quaternions.) At each filter update step, the
incremental orientations  are factored into the external
quaternion , and then zeroed as shown below. Thus the
incremental orientations are linearized for the EKF, centered about
zero. We maintain the derivatives of the target position and
orientation internally, in the state vector . We maintain the
angular velocities internally because the angular velocities behave
like orthogonal vectors and do not exhibit the nonlinearities of the
angles themselves. The target state is then represented by the

 element internal state vector

 

(3)

 

and the four-element external orientation quaternion

 

, (4)

 

where the time designations have been omitted for clarity.

C

x scalar (lower case)=

x general vector (lower case, arrow) indexed as x r[ ]=

x̂ filter estimate vector (lower case, hat)=

A matrix (capital letters) indexed as A r c,[ ]=

A 1– matrix inverse=

I the identity matrix=

β- matrix/vector prediction (super minus)=

βT matrix/vector transpose (super T)   =

α i matrix/vector/scalar identifier (subscript)=

E •{ } mathematical expectation =

x y z φ θ ψ, , , , ,( )

δt
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x t( )
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α
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The  state transition matrix  in (2) projects the
state forward from time  to time . For our linear model, the
matrix implements the relationships

(5)

and likewise for the remaining elements of (3).
The  process noise vector  in (2) is a normally-

distributed zero-mean sequence that represents the uncertainty in
the target state over any time interval . The corresponding 
process noise covariance matrix is given by

. (6)

Because our implementation is discrete with inter sample time ,
we can use the transfer function method illustrated by [7] pp. 221-
222 to compute a sampled process noise covariance matrix.
(Because the associated random processes are presumed to be time
stationary, we present the process noise covariance matrix as a
function of the inter-sample duration  only.) The non-zero
elements of  are given by

(7)

for each pair

.

The  in (7) are the correlation kernels of the (assumed
constant) noise sources presumed to be driving the dynamic
model. We determined a set of values using Powell’s method, and
then used these in both simulation and our real implementation.
The values can be “tuned” for different dynamics, though we have
found that the tracker works well over a broad range of values. 

The use of a Kalman filter requires not only a dynamic model
as described above, but also a measurement model for each
available type of measurement. The measurement model is used to
predict the ideal noise-free response of each sensor and source
pair, given the filter’s current estimate of the target state as in
equations (3) and (4).

It is the nature of the measurement models and indeed 
the actual sensor measurements that distinguishes a 
SCAAT Kalman filter from a well-constrained one.

For each sensor type σ we define the  measurement
vector  and corresponding measurement function  such
that

. (8)

Note that in the “purest” SCAAT implementation  and the
measurements are incorporated as single scalar values. However if
it is not possible or necessary to isolate the measurements, e.g. to
perform autocalibration, then multi-dimensional measurements
can be incorporated also. Guidelines presented in [47] lead to the
following heuristic for choosing the SCAAT Kalman filter
measurement elements (constraints):

During each SCAAT Kalman filter measurement update 
one should observe a single sensor and source pair only.

For example, to incorporate magnetic tracker data as an end-user,
 for the three position and four orientation (quaternion)

elements, while if the manufacturer were to use the SCAAT
implementation,  for each 3-axis electromagnetic
response to a single excitation. For an image-based landmark
tracker such as [41] the measurement function would, given
estimates of the camera pose and a single landmark location,
transform the landmark into camera space and then project it onto
the camera image plane. In this case  for the 2D image
coordinates of the landmark.

The  measurement noise vector  in (8) is a
normally-distributed zero-mean sequence that represents any
random error (e.g. electrical noise) in the measurement. This
parameter  can be determined f rom component  design
specifications, and (or) confirmed by off-line measurement. For
our simulations we did both. The corresponding 
measurement noise covariance matrix is given by

. (9)

For each measurement function  we determine the
corresponding Jacobian function

, (10)

where  and . Finally, we note the use of the
standard (Kalman filter)  error covariance matrix 
which maintains the covariance of the error in the estimated state.

3.1.2 Tracking Algorithm
Given an initial state estimate  and error covariance estimate

, the SCAAT algorithm proceeds similarly to a conventional
EKF, cycling through the following steps whenever a discrete
measurement  from some sensor (type σ) and source becomes
available at time :

a. Compute the time  since the previous estimate.

b. Predict the state and error covariance.

(11)

c. Predict the measurement and compute the corresponding Jaco-
bian.

(12)

d. Compute the Kalman gain.

(13)

e. Compute the residual between the actual sensor measurement
 and the predicted measurement from (12).

(14)

f. Correct the predicted tracker state estimate and error covariance
from (11).

(15)
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