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AbstractÐA method is developed to analyze the accuracy of the relative head-to-object position and orientation (pose) in augmented

reality systems with head-mounted displays. From probabilistic estimates of the errors in optical tracking sensors, the uncertainty in

head-to-object pose can be computed in the form of a covariance matrix. The positional uncertainty can be visualized as a 3D ellipsoid.

One useful benefit of having an explicit representation of uncertainty is that we can fuse sensor data from a combination of fixed and

head-mounted sensors in order to improve the overall registration accuracy. The method was applied to the analysis of an

experimental augmented reality system, incorporating an optical see-through head-mounted display, a head-mounted CCD camera,

and a fixed optical tracking sensor. The uncertainty of the pose of a movable object with respect to the head-mounted display was

analyzed. By using both fixed and head mounted sensors, we produced a pose estimate that is significantly more accurate than that

produced by either sensor acting alone.

Index TermsÐAugmented reality, pose estimation, registration, uncertainty analysis, error propagation, calibration.

æ

1 INTRODUCTION

AUGMENTED reality is a term used to describe systems in
which computer-generated information is superim-

posed on top of the real world [1]. One form of enhance-
ment is to use computer-generated graphics to add virtual
objects (such as labels or wire-frame models) to the existing
real world scene. Typically, the user views the graphics
with a head-mounted display (HMD), although some
systems have been developed that use a fixed monitor
(e.g., [2], [3], [4], [5]). The combining of computer-generated
graphics with real-world images may be accomplished with
either optical [6], [7], [8] or video technologies [9], [10].

A basic requirement for an AR system is to accurately

align virtual and real-world objects so that they appear to

coexist in the same space and merge together seamlessly.
This requires that the system accurately sense the position

and orientation (pose) of the real world object with respect

to the user's head. If the estimated pose of the object is
inaccurate, the real and virtual objects may not be registered

correctly. For example, a virtual wire-frame model could

appear to float some distance away from the real object.
This is clearly unacceptable in applications where the user

is trying to understand the relationship between real and

virtual objects. Registration inaccuracy is one of the most
important problems limiting augmented reality applica-

tions today [11].
This paper shows how one can estimate the registration

accuracy in an augmented reality system, based on the
characteristics of the sensors used in the system. Only

quasi-static registration is considered in this paper; that is,

objects are stationary when viewed, but can freely be

moved. We develop an analytical model and show how the
model can be used to properly combine data from multiple
sensors to improve registration accuracy and gain insight
into the effects of object and sensor geometry and
configuration. A preliminary version of this paper was
presented at the First International Workshop on Augmen-
ted Reality [12].

1.1 Registration Techniques in Augmented Reality

To determine the pose of an object with respect to the user's
head, tracking sensors are necessary. Sensor technologies
that have been used in the past include mechanical,
magnetic, acoustic, and optical [13]. We concentrate on
optical sensors (such as cameras and photo-effect sensors)
since they have the best overall combination of speed,
accuracy, and range [7], [14], [15].

There has been much work in the past in the photo-
grammetry and computer vision fields on methods for
object recognition and pose estimation from images. Some
difficult problems (which are not addressed here) include
how to extract features from the images and determine the
correspondence between extracted image features and
features on the object. In many practical applications, these
problems can be alleviated by preplacing distinctive optical
targets, such as light emitting diodes (LEDs) or passive
fiducial markings, in known positions on the object. The 3D
locations of the target points on the object must be carefully
measured, in some coordinate frame attached to the object.
In this paper, we will assume that point features have been
extracted and the correspondences known so that the only
remaining problem is to determine the pose of the object
with respect to the HMD.

One issue is whether the measured points are two-
dimensional (2D) or three-dimensional (3D). Simple passive
optical sensors, such as video cameras and photo-effect
sensors, can only sense the direction to a target point and
not its range. The measured data points are 2D, i.e., they
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represent the locations of the target points projected onto
the image plane. On the other hand, active sensors, such as
laser range finders, can directly measure direction and
range, yielding fully 3D target points. Another way to
obtain 3D data is to use triangulation; for example, by using
two or more passive sensors (stereo vision). The accuracy of
locating the point is improved by increasing the separation
(baseline) between the sensors.

Once the locations of the target points have been
determined (either 2D or 3D), the next step is to determine
the full six degree-of-freedom (DOF) pose of the object with
respect to the sensor. Again, we assume that we know the
correspondence of the measured points to the known 3D
points on the object model. If one has 3D point data, this
procedure is known as the ªabsolute orientationº problem
in the photogrammetry literature. If one has 2D target
points, this procedure is known as the ªexterior orientationº
problem [16].

Another issue is where to locate the sensor and target.
One possibility is to mount the sensor at a fixed known
location in the environment and put targets on both the
HMD and on the object of interest (a configuration called
ªoutside-inº [14]). We measure the pose of the HMD with
respect to the sensor, and the pose of the object with respect
to the sensor, and derive the relative pose of the object with
respect to the HMD. Another possibility is to mount the
sensor on the HMD and the target on the object of interest (a
configuration called ªinside-outº). We measure the pose of
the object with respect to the sensor and use the known
sensor-to-HMD pose to derive the relative pose of the object
with respect to the HMD. Both approaches have been tried
in the past and each has advantages and disadvantages.

With a fixed sensor (outside-in approach), there is no
limitation on size and weight of the sensor. Multiple
cameras can be used, with a large baseline, to achieve
highly accurate 3D measurements via triangulation. For
example, commercial optical measurement systems, such as
Northern Digital's Optotrak, have baselines of approxi-
mately 1 meter and are able to measure the 3D positions of
LED markers to an accuracy of approximately 0.15 mm. The
orientation and position of a target pattern is then derived
from the individual point positions. A disadvantage with
this approach is that head orientation must be inferred
indirectly from the point positions.

The inside-out approach has good registration accuracy
because a slight rotation of a head-mounted camera causes
a large shift of a fixed target in the image. However, a
disadvantage of this approach is that large translation
errors occur along the line of sight of the camera. To avoid
this, additional cameras could be added with lines of sight
orthogonal to each other.

1.2 Need for Accuracy Analysis and Fusion

In order to design an augmented reality system that meets
the registration requirements for a given application, we
would like to be able to estimate the registration accuracy
for a given sensor configuration. For example, we would
like to estimate the probability distribution of the 3D error
distance between a generated virtual point and a corre-
sponding real object point. Another measure of interest is
the overlay error; that is, the 2D distance between the

projected virtual point and the projected real point on the
HMD image plane, which is similar to the image alignment
error metrics that appear in other work [7], [9], [17].

Another reason to have an analytical representation of
uncertainty is for fusing data from multiple sensors. For
example, data from head-mounted and fixed sensors might
be combined to derive a more accurate estimate of object-to-
HMD pose. The uncertainties of these two sensors might be
complementary so that, by combining them, we can derive a
pose that is much more accurate than that from each sensor
used alone. In order to do this, a mathematical analysis is
required of uncertainties associated with the measurements
and derived poses. Effectively, we can create a hybrid
system that combines the ªinside-outº and ªoutside-inº
approaches.

1.3 Relationship to Past Work and Specific
Contributions

Augmented reality is a relatively new field, but the problem
of registration has received ample attention, with a number
of authors taking an optical approach. Some researchers
have used photocells or photo-effect sensors which track
light-emitting diodes (LEDs) placed on the head, object of
interest, or both [7], [14], [15]. Other researchers have used
cameras and computer vision techniques to detect LEDs or
passive fiducial markings [5], [8], [18], [19], [20], [21]. The
resulting detected features, however they are obtained, are
used to determine the relative pose of the object to the
HMD. A number of researchers have evaluated their
registration accuracy experimentally [17], [7], with Monte-
Carlo simulations [19], or both [18]. However, no one has
studied the effect of sensor-to-target configuration on
registration accuracy. In this paper, we develop an
analytical model to show how sensor errors propagate
through to registration errors, given a statistical distribution
of the sensor errors and the sensor-to-target configuration.

Some researchers avoid the problem of determining pose
altogether and instead concentrate on aligning the 2D image
points using affine projections [22], [23]. Although this
approach works well for video-based augmented reality
systems, in optical see-through HMD systems, it would not
work as well because the image as seen by the head-
mounted camera may be different than the image seen by
the user directly through the optical combiner.

A number of researchers have developed error models
for HMD-based augmented reality systems. Some research-
ers have looked at the optical characteristics of HMDs in
order to calculate viewing transformations and calibration
techniques [24], [25]. Holloway [17] analyzed the causes of
registration error in a see-through HMD system, due to the
effects of misalignment, delay, and tracker error. However,
he did not analyze the causes of tracker error, merely its
effect on the overall registration accuracy. This work, on the
other hand, focuses specifically on the tracker error and
does not look at the errors in other parts of the system, or
attempt to derive an overall end-to-end error model.

In the computer vision field, the problem of determining
the position and orientation from a set of given point or line
correspondences has been well-studied. Some researchers
have developed analytical expressions for the uncertainty of
a 3D feature position as derived from image data [26]. Other
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researchers have evaluated the accuracy of pose estimation

algorithms using Monte Carlo simulations [27], [28], [29],

[30]. Few researchers have addressed the issue of error

propagation in pose estimation. We follow the method

suggested by Haralick and Shapiro [16], who outline how to

derive the uncertainty of an estimated quantity (such as a

pose) from the given uncertainties in the measured data.
Kalman filtering [31] is a standard technique for optimal

estimation. It has been used to estimate head pose in

augmented and virtual reality applications [7], [32], [33].

From a sequence of sensor measurements, these techniques

also estimate the uncertainty of the head pose. This is

similar to the work described in this paper in the sense that

a Kalman filter can be interpreted as a method for obtaining

a maximum likelihood estimate of the state in a dynamic

system, given input-output data [34]. Our system is static

and so we do not have a model of the state dynamics. We

fuse data from two measurements, rather than data from a

measurement and a prediction from past data.
In this work, a method is developed to explicitly

compute uncertainties of pose estimates, propagate these

uncertainties from one coordinate system to another, and

fuse pose estimates from multiple sensors. The contribution

of this work is the application of this method to the

registration problem in augmented reality. Specifically:

. The method shows how to estimate the uncertainty
of object-to-HMD pose from the geometric config-
uration of the optical sensors and the pose estima-
tion algorithms used. To help illustrate the method,
we describe its application to a specific augmented
reality system.

. We show how data from multiple different sensors
can be fused, taking into account the uncertainties
associated with each, to yield an improved object-to-
HMD pose. In particular, it is shown that a hybrid
sensing system combining both head-mounted and
fixed sensors can improve registration accuracy over
that from either sensor used alone.

. We demonstrate mathematically some insights re-
garding the characteristics of registration sensors. In
particular, we show that the directions of greatest
uncertainty for a head-mounted and fixed sensor are
nearly orthogonal and that these can be fused in a
simple way to improve the overall accuracy.

The remainder of this paper is organized as follows:

Section 2 provides a background on pose estimation, with a

description of the terminology used in the paper. Section 3

develops the method for estimating the uncertainty of a

pose, transforming it from one coordinate frame to another,

and fusing two pose estimates. Section 4 describes the

particular experimental augmented reality system that was

used to test the registration methodÐthat of a surgical aid.

Section 5 illustrates the application of the method to the

surgical aid system. A typical configuration is analyzed and

the predicted accuracy of the combined (hybrid) pose

estimate is found to be much improved over that obtained

by either sensor alone. Finally, Section 6 provides a

discussion.

2 BACKGROUND ON POSE ESTIMATION

2.1 Representation of Pose

The pose of a rigid body {A} with respect to another

coordinate system {B} can be represented by a six element

vector B
Ax � �BxAorg; ByAorg; BzAorg; �; �; 
�T , where BpAorg �

�BxAorg; ByAorg; BzAorg�T is the origin of frame {A} in

frame {B}, and (�, �, 
) are the angles of rotation of {A}

about the (z, y, x) axes of {B}. An alternative representation

of orientation is to use three elements of a quaternion; the

conversion between Euler angles and quaternions is

straightforward [35].
Equivalently, pose can be represented by a 4 � 4

homogeneous transformation matrix [35]:

B
AH �

B
AR BpAorg
0 1

� �
; �1�

where B
AR is the 3 � 3 rotation matrix corresponding to the

angles (�, �, 
). In this paper, we shall use the letter x to
designate a six-element pose vector and the letter H to
designate the equivalent 4 � 4 homogeneous transforma-
tion matrix.

Homogeneous transformations are a convenient and

elegant representation. Given a homogeneous point
Ap � �AxP ; AyP ; AzP ; 1�T , represented in coordinate system

{A}, it may be transformed to coordinate system {B} with a

simple matrix multiplication Bp � B
AHAp. The homoge-

neous matrix representing the pose of frame {B} with

respect to frame {A} is just the inverse of the pose of {A}

with respect to {B}, i.e., ABH � B
AHÿ1. Finally, if we know the

pose of {A} with respect to {B} and the pose of {B} with

respect to {C}, then the pose of {A} with respect to {C} is

easily given by the matrix multiplication C
AH � C

BHB
AH.

2.2 Pose Estimation Algorithms

The 2D-to-3D pose estimation problem is to determine the
pose of a rigid body, given an image from a single camera
(this is also called the ªexterior orientationº problem in
photogrammetry). Specifically, we are given a set of 3D
known points on the object (in the coordinate frame of the
object) and the corresponding set of 2D measured image
points from the camera, which are the perspective projec-
tions of the 3D points. The internal parameters of the
camera (focal length, principal point, etc.) are known. The
goal is to find the pose of the object with respect to the
camera, camobj x. There are many solutions to the problem; in
this work, we used the algorithm described by Haralick and
Shapiro [16], which uses an iterative nonlinear least squares
method. The algorithm effectively minimizes the squared
error between the measured 2D point locations and the
predicted 2D point locations.

The 3D-to-3D pose estimation problem is to determine
the pose of a rigid body, given a set of 3D point
measurements1 (this is also called the ªabsolute orientationº
problem in photogrammetry). Specifically, we are given a
set of 3D known points on the object {objpi} and the
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corresponding set of 3D measured points from the sensor

{senpi}. The goal is to find the pose of the object with respect

to the sensor, senobj x. There are many solutions to the problem;

in this work we used the solution by Horn [36], which uses

a quaternion-based method.2 The algorithm effectively

minimizes the squared error between the measured 3D

point locations and the predicted 3D point locations.

3 DETERMINATION AND MANIPULATION OF POSE

UNCERTAINTY

Given that we have estimated the pose of an object using

one of the methods above, what is the uncertainty of the

pose estimate? We can represent the uncertainty of a six-

element pose vector x, by a 6 � 6 covariance matrix Cx =

E(�x�xT), which is the expectation of the square of the

difference between the estimate and the true vector.
This section describes methods to estimate the covar-

iance matrix of a pose, given the estimated uncertainties in

the measurements, transform the covariance matrix from

one coordinate frame to another, and combine two pose

estimates.

3.1 Computation of Covariance

Assume that we have n measured data points from the

sensor {pi} and the corresponding points on the object

{qi}. The object points qi are 3D; the data points pi are

either 3D (in the case of 3D-to-3D pose estimation) or 2D

(in the case of 2D-to-3D pose estimation). We assume that

the noise in each measured data point is independent and

that the noise distribution of each point is given by a

covariance matrix Cp.
Let pi = g(qi, x) be the function which transforms object

points into measured data points for a hypothesized pose x.

In the case of 3D-to-3D pose estimation, this is just a

multiplication of qi by the corresponding homogeneous

transformation matrix. In the case of 2D-to-3D pose

estimation, the function is composed of a transformation

followed by a perspective projection. The pose estimation

algorithms described above solve for xest by minimizing the

sum of the squared errors. Assume that have we solved for

xest using the appropriate algorithm (i.e., 2D-to-3D or 3D-to-

3D). We then linearize the equation about the estimated

solution xest:

pi ��pi � g qi;xest ��x� � � g qi;xest� � � @g

@x

� �T
qi;xest

�x:

�2�
Since pi � g�qi;xest�, the equation reduces to

�pi �
@g

@x

� �T
qi;xest

�x �Mi�x; �3�

where Mi is the Jacobian of g, evaluated at (qi, xest).

Combining all the measurement equations:

�p1

..

.

�pn

0B@
1CA � M1

..

.

Mn

0B@
1CA�x) �P �M�x: �4�

Solving for �x in a least squares sense, we get
�x � MTM

ÿ �ÿ1
MT�P. The covariance matrix of x is given

by the expectation of the outer product:

Cx � E �x �xT
ÿ �

� E MTM
ÿ �ÿ1

MT�P�PT MTM
ÿ �ÿ1

MT
� �T� �

� MTM
ÿ �ÿ1

MTE �P�PT
ÿ �

MTM
ÿ �ÿ1

MT
� �T

� MTM
ÿ �ÿ1

MT

Cp � � � 0

..

. . .
. ..

.

0 � � � Cp

0BB@
1CCA MTM
ÿ �ÿ1

MT
� �T

:

�5�
Note that we have assumed that the errors in the data

points are independent, i.e., E(�pi�pjT) = 0, for i 6� j. If the
errors in different data points are actually correlated, our
simplified assumption could result in an underestimate of
the actual covariance matrix. Also, the above analysis was
derived assuming that the noise is small. However, we
computed the covariance matrices for the configuration
described in Section 4, using both (5) and using a Monte
Carlo simulation, and found (5) is fairly accurate even for
noise levels much larger than in our application. For
example, using input noise with variance 225 mm2

(compared to the actual 0.0225 mm2 in our application)
the largest deviation between the variances of the transla-
tional dimensions was 5.5 mm2 (out of 83 mm2).

3.2 Transformation of Covariance

We can transform a covariance matrix from one coordinate
frame to another. Assume that we have a six-element pose
vector x and its associated covariance matrix Cx. Assume
that we apply a transformation, represented by a six-
element vector w, to x to create a new pose y. Denote y =
g(x, w). A Taylor series expansion yields �y � J�x, where
J = (@g/@x). The covariance matrix Cy is found by:

Cy � E �y�yT
ÿ � � E J�x� � J�x� �T

h i
� JE �x�xT

ÿ �
JT � JCxJT :

�6�

A variation on this method is to assume that the
transformation w also has an associated covariance matrix
Cw. In this case, the covariance matrix Cy is:

Cy � JxCxJTx � JwCwJTw; �7�
where Jx = (@g/@x) and Jw = (@g/@w). The above analysis
was verified with Monte Carlo simulations, using both the
3D-to-3D algorithm and the 2D-to-3D algorithm.

3.3 Interpretation of Covariance

A useful interpretation of the covariance matrix is
obtained by assuming that the errors are jointly Gaussian.
The joint probability density for n-dimensional error
vector �x is [37]:
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p �x� � � 2�j jN=2 Cxj j1=2
� �ÿ1

exp ÿ1
2�xTCÿ1

x �x
ÿ �

: �8�

If we look at surfaces of constant probability, the
argument of the exponent is a constant, given by the
relation �xTCÿ1

x �x � z2. This is the equation of an
ellipsoid in n dimensions. For a given value of z, the
cumulative probability of an error vector being inside the
ellipsoid is P. For n = 3 dimensions, the ellipsoid defined by
z = 3 corresponds to a cumulative probability P of
approximately 97 percent.3

For a six-dimensional pose x, the covariance matrix Cx is
6 � 6 and the corresponding ellipsoid is six-dimensional
(which is difficult to visualize). However, we can select only
the 3D translational component of the pose and look at the
covariance matrix corresponding to it. Specifically, let z =
(x, y, z)T be the translational portion of the pose vector x =
(x, y, z, �, �, 
)T. We obtain z from x using the equation z =
M x, where M is the matrix

M �
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

0@ 1A �9�

The covariance matrix for z is given by Cz = M Cx MT

(which is just the upper left 3 � 3 submatrix of Cx). We
can then visualize the uncertainty in position using the
three-dimensional ellipsoid corresponding to the set
fzj�zÿ �z�TCÿ1

z �zÿ �z� � 9g.
We can visualize the uncertainty in the rotational

component of the pose by finding the uncertainties in the
directions of the x, y, z axes of the coordinate frame
relative to the world frame. The orientation of a particular
axis a of the coordinate frame is found using
a � R��; �; 
�e, where R��; �; 
� is the rotation matrix of
the coordinate frame in the world and e is the relevant
unit vector in the world frame. Using the results of the
previous section, the covariance of a is given by
Ca � @

@ê �R��; �; 
�e�Cê
@
@ê �R��; �; 
�e�T , where Cê is the

3 � 3 lower right submatrix of Cx corresponding to the
angular uncertainty and @

@ê �R��; �; 
�e� is the Jacobian of
R��; �; 
�e with respect to �; �; 
. Ca is of rank 2 and the
ellipsoid associated with it will be ªflatº in the direction
perpendicular to a. For visualization, these ellipsoids define
the bases of cones drawn about each axis and show how the
ends of the axis would move given the variation in the Euler
angles.

To illustrate these concepts, a simulation of a pose
estimation process was performed. A simulated target
pattern was created, attached to a coordinate frame A.
The pose of coordinate frame A with respect to a sensor S,
S
AH, was estimated using a 3D-to-3D algorithm. The
covariance matrix of the resulting pose, CA, was computed
using (5). Fig. 1 shows a rendering of the ellipsoid
corresponding to the uncertainty of the translational
component of the pose. The ellipsoid is shown centered
at the origin of frame A. The rotational uncertainty is
depicted as elongated cones about each axis. Note that,
although the ellipsoid (representing the translational
uncertainty) is almost spherical, the cones (representing

the rotational uncertainty) are asymmetrical. The uncer-
tainty is greatest for rotations about the long axis of the
target pattern and, so, the cones perpendicular to that
axis are elongated. This is because the shorter dimension
of the target pattern provides less orientation constraint
than the longer dimension.

To illustrate the effect of transformations on covariance
matrices, another simulation of a pose estimation process
was performed. The target pattern used in Fig. 1 was
attached to coordinate frame A and the uncertainty of the
pose of A with respect to sensor S was computed. As shown
in Fig. 2, the translational component of the uncertainty is
represented by a small ellipsoid centered at A and the
rotational component of the uncertainty is represented by
elongated cones about each axis of A. Next, two other
objects with coordinate frames B and C were rigidly
attached to A, at known poses with respect to A. The
poses of B and C with respect to S were derived via
S
BH � S

AHA
BH and S

CH � S
AHA

CH, respectively. The covar-
iance matrices of these poses, CB and CC, were then
estimated using (6). The uncertainties of the translational
components of CB and CC are shown by the ellipsoids
centered at B and C, respectively.

Note that the ellipsoids for CB and CC are much larger
than the ellipsoid for CA, even though the relative poses of
B and C with respect to A are known exactly. This is due to
the orientation uncertainty in the pose of A with respect to
S, which gives rise to an uncertainty in the location of B and
C. The uncertainty is greatest in the plane perpendicular to
the line to object AÐhence, the flattened shapes of the
ellipsoids associated with CB and CC. Note that the shape of
the flattened ellipsoids corresponds to the shape of the
cones about the axes perpendicular to the flattened parts.

In general, the component of translational uncertainty in
a frame B that is caused by the orientation error in A can be
estimated by �P = d ��, where �� is the orientation error
and d is the distance between A and B. Thus, the
uncertainty in the derived location of B grows with the
orientation uncertainty in A and also with the distance
between A and B. If one needs to track an object using a
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3. The exact formula for the cumulative probability in N dimensions is
1ÿ P � N

2N=2ÿ�N=2�1�
R1
z XNÿ1eÿX

2=2dX [37].

Fig. 1. A visualization of the uncertainty of the pose of a coordinate
frame. The ellipsoid, shown centered at the origin of the coordinate
frame, represents the uncertainty in the translational component of the
pose. The rotational uncertainty is depicted as elongated cones about
each axis.
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