
An Open Software Architecture for Virtual Reality
Interaction

Gerhard Reitmayr
Vienna University of Technology

Favoritenstraße 9-11/188/2
A1040 Vienna, Austria

reitmayr@ims.tuwien.ac.at

Dieter Schmalstieg
Vienna University of Technology

Favoritenstraße 9-11/188/2
A1040 Vienna, Austria

schmalstieg@ims.tuwien.ac.at

ABSTRACT
This article describes OpenTracker, an open software archi-
tecture that provides a framework for the different tasks in-
volved in tracking input devices and processing multi-modal
input data in virtual environments and augmented reality
application. The OpenTracker framework eases the develop-
ment and maintenance of hardware setups in a more flexible
manner than what is typically offered by virtual reality deve-
lopment packages. This goal is achieved by using an object-
oriented design based on XML, taking full advantage of this
new technology by allowing to use standard XML tools for
development, configuration and documentation. The Open-
Tracker engine is based on a data flow concept for multi-
modal events. A multi-threaded execution model takes care
of tunable performance. Transparent network access allows
easy development of decoupled simulation models. Finally,
the application developer’s interface features both a time-
based and an event based model, that can be used simulta-
neously, to serve a large range of applications. OpenTracker
is a first attempt towards a “write once, input anywhere“ ap-
proach to virtual reality application development. To sup-
port these claims, integration into an existing augmented
reality system is demonstrated. We also show how a proto-
type tracking equipment for mobile augmented reality can
be assembled from consumer input devices with the aid of
OpenTracker. Once development is sufficiently mature, it is
planned to make Open-Tracker available to the public under
an open source software license.

Keywords
Tracking, Mobile Augmented Reality, Virtual Reality, XML

1. INTRODUCTION
Tracking is an indispensable part of any Virtual Reality

(VR) and Augmented Reality (AR) application. While the
need for quality of tracking, in particular for high perfor-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for pro£t or commercial advantage and that copies
bear this notice and the full citation on the £rst page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior speci£c
permission and/or a fee.
VRST’01, November 15-17, 2001, Banff, Alberta, Canada.
Copyright 2001 ACM 1-58113-427-4/01/0011 ...$5.00.

mance and fidelity, have led to a large body of past and
current research, little attention is typically paid to softwa-
re engineering aspects of tracking software. Some current
systems have a modular approach that allows to substitute
one type of tracking device for another. Typically, this is
the approach taken by commercial VR products that offer
turn-key support for many popular tracking and input de-
vices, but at the cost of a limited amount of extensibility
and configuration options. In particular, they make it hard
to combine existing features in novel ways.
In contrast, research systems may offer features not found

in commercial systems, such as prediction or sensor fusion,
but are usually limited to their particular research domain
and not intended for the end user. In such systems, repla-
cing a piece of hardware or changing its configuration usually
leads to rewriting a significant portion of the tracker soft-
ware.
In the middle(-ware), there is a lack of tools that allow for

a high degree of customization, yet are easy to use and to
extend. One notable exception is the MR toolkit [21] of the
University of Alberta, which still serves as a starting point
for many VR research projects despite its aged architecture
and lack of active development. What is needed is a system
that allows mixing and matching of different features, as well
as simple creation and maintainance of possibly complex
tracker configurations.
In this article, we describe a tracking software system cal-

led OpenTracker with the following characteristics:

• An object-oriented approach to an extensive set of sen-
sor access, filtering, fusion, and state transformation
operations

• Behavior specification by constructing graphs of tracking
objects (similar in spirit to scene graphs or event cas-
cades) from user defined tracker configuration files

• Distributed simulation by network transfer of events
at any point in the graph structure

• Decoupled simulation by transparent multi-threading
and networking

• A software engineering approach based on XML [4],
which allows to use many generic tools such as [2, 11,
10] for development, documentation, integration and
configuration

• An application independent library to be integrated
into software projects

47

META 1016
META V. THALES

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Through its scripting capability (tracker configuration fi-
les) as well as easy integration of new tracking features,
OpenTracker encourages exploratory construction of com-
plex tracking setups. It is equally useful for end users, which
can fully exploit their hardware without any custom pro-
gramming, as well as developers, who can easily build test
environments. The modular approach gives instant access
to wide range of tracking related functionality for any app-
lication. Through the release under the LGPL Open Source
license [7], OpenTracker is available to a larger audience.

2. RELATED WORK
Ideas implemented in OpenTracker were drawn from se-

veral areas:
Device abstraction is a standard requirement for 2D gra-

phical user interfaces, (e. g. GKS [12]), and sometimes in-
corporated into 3D applications [9]. There is a number of
libraries such as VRPN [15], MRToolkit [21] implementing
device abstraction for input devices typically found in VR
and AR systems. Their main goal is to provide a fixed in-
terface to the application for different devices and provide
simple services for relaying the data over the network bet-
ween several hosts. However, these libraries mostly lack any
further means to process the data. Device abstraction is also
an important goal of OpenTracker. However, it goes beyond
pure abstraction using a static interface in that the data can
be re-combined in novel ways.
Many interactive systems employ sophisticated event hand-

ling schemes. State changes to attributes of scene objects
are either propagated through functional dependencies (e.
g. routes in VRML [5], engines in Open Inventor [22]), or
may be handled by user supplied callback functions (e. g.
script nodes in VRML [5]). These approaches inspire the
architecture of OpenTracker, although none of them deals
specifically with tracker configurations.
Finally, an important requirement for virtual environments

is support for distributed simulation, partly to support si-
multaneous users, partly to better exploit available hardwa-
re. Decoupled simulation was first introduced in MR [21],
and later used in almost any major VR software system.
Decoupled simulation can either be implemented by multi-
threading and/or symmetric multiprocessing on one host, or
by configuring a small set of hosts to work as an ensemble.
The latter approach may be inferior performance-wise be-
cause of network lag, but it is inexpensive and flexible, and
thus favored by many researchers - for example, Rekimoto’s
“hyperdragging“ system [19] uses a distributed architecture
very much like our own.

3. DATA FLOW OF TRACKING DATA
In a typical VR or AR application tracking data passes

through a series of steps. It is generated by tracking hard-
ware, read by device drivers, transformed to fit the require-
ments of the application and send over network connections
to other hosts. Different setups and applications may requi-
re different subsets and combinations of the steps described
but the individual steps are common among a wide range of
applications. Examples of such invariant steps are geometric
transformations, Kalman filters and data fusion of two data
sources.
The main concept behind OpenTracker is to break up

the whole data manipulation into these individual steps and

build a data flow network of the transformations. To descri-
be the details of this concept, we will need some theoretical
definitions which are discussed in section 3.1. Details of an
actual implementation are described in section 3.2.

3.1 Data Flow Concept
Each transformation is represented by a node in a data

flow graph. Nodes are connected by directed edges to des-
cribe the direction of flow. The originating node of a directed
edge is called the child whereas the receiving node is called
the parent. To allow more than simple linear graphs, we
introduce the following concepts.
Multiple Input Ports and References
Each node has one or more input ports and a single out-

put port. A port is a distinguished connection point for an
edge, i.e. the node can distinguish between events passing
through different node ports. The output port of one node
is connected to any of the input ports of another node. This
establishes the flow by defining directed edges in the graph.
A node receiving a new data event via one of it’s inputs
computes a new update for itself and sends the new data
event out via its output port.
Multiple input ports are desirable because computations

typically have more than one parameter. Dynamic trans-
formations, for example, are parameterized by the value of
another node and thus use the data value received by a child
to be transformed differently from the data of the parame-
terizing child. Merge nodes may select part of the data of an
event based on the input port the event used. This allows
more complex computational structures.
Additionally, an input port can be connected to several

output ports. This enables several children nodes connec-
ted to the same input port of a node. Upon receiving an
event, the parent node can only distinguish between the in-
put ports, not between the actual children.
Conversely, an output port can also be connected to other

nodes by using references within the graph. This establishes
new edges between a nodes output port and other nodes
input ports. However this is transparent to the child node.
It cannot selectively send events to only one parent, but all
events are distributed equally to all parents.
Edge types
The basic mechanism behind the data flow concept is

event passing. Data events are passed from the children no-
des upward to their parents. However, not all computations
fit well into this model: Algorithms that operate on a vec-
tor of tracker measurements or that require or compute the
tracker state at an arbitrary point in time require different
types of input or output interfaces. Examples are smoothing
algorithms that take a history of events into account, or pre-
diction algorithms that compute an expected measurement
for a given point in time.
Therefore, we also distinguish between different edge ty-

pes. Edges are typed by typing the ports of the nodes they
connect. We establish the rule that only two ports of the sa-
me type can be connected and this type is then the type of
the edge. There are three edge types: event, which is imple-
mented by event passing, event queue and time dependent.
The latter two are implemented as interfaces that are polled
by the parent node, because the data returned is paramete-
rized. In the case of the event queue interface, it is possible
to query the number of stored events and retrieve them by
index. The time dependent interface can be queried by spe-

48

META 1016
META V. THALES

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

cifying a point in time, for which the appropriate data value
is returned.

a) linear graph b) multiple ports

c) reference nodes d) putting it all together

Figure 1: Visualizations of a data flow graphs as used
in OpenTracker

Figure 1 gives some examples of data flow graphs that
can be build with OpenTracker. Part a) shows a simple li-
near graph applying a geometrical transformation to a data
source, b) shows a node with several input ports, combining
the received data. Part c) is a graph using a reference node
to get a copy of the output of a node and d) combines these
features in a more complicated graph.

3.2 Implementation Speci£c Details
In an actual implementation we distinguish source nodes,

which are leaves in the graph and receive their data values
from external sources, filter nodes, which are intermediate
nodes and modify the values received from other nodes, and
sink nodes, which propagate their data values received from
other nodes to external outputs.
Source Nodes
Most source nodes encapsulate a device driver that di-

rectly accesses a particular tracking device, such as a Pol-
hemus or Ascension tracker connected to a serial interface.
Other nodes objects form bridges to complex self-contained
systems, such as the video tracking library from ARTool-
kit [13]. A third type of source node emulates a tracker via
the keyboard, access network data (see section 5) or simply
responds with constant values (useful for development and
debugging).
Some source nodes have a multi-threaded execution model

to implement an efficient decoupled simulation model [21] (e.
g., when blocking I/O must be used).
Filter Nodes
Filter nodes receive values from one or more child nodes.

Upon receiving an update from one or more of their children,
they compute their own state based on the collected data.
A non-exhaustive list of filters includes:

• Transformation filters perform geometric transforma-
tions of their children’s values. These include pre- and

post-transformations and may be static or depend on
data values received from other children. The latter
allows to modify the filtered state relative to another
tracker state.

• Prediction filters allow to partially compensate for lag
in the measuring and processing tracker data.

• Noise and smoothing filters are handy to deal with
inherent inaccuracies of trackers.

• Undistortion filter are necessary e.g. to linearize dis-
tortions in the magnetic field of a magnetic tracking
device.

• Permutation filters are necessary to match data repre-
sentations from different hardware or software plat-
forms, such as equivalent, but incompatible quaternion
representations.

• Merge filters assemble new data values using different
parts of the data values of several children. Sample uses
include the combination of orientation from an inerti-
al tracker with position information from an acoustic
tracker, or adding a button device to a closed tracking
solution such as Polhemus Ultratrak.

• Conversion filters are able to translate one data type
into another. For example, 2D positions from a desktop
pointing device can be translated into 3D positions by
adding a constant third value.

• Clamp filter are special nonlinear transformation fil-
ters that cut off values at user-specified extrema, for
example to deliberately limit interaction to a valid ran-
ge.

• Store-and-forward filters are useful if transient loss of
tracking can be expected, for example if occlusion oc-
curs in optical tracking. The last measured value is
simply repeated to provide at least a reasonable and
valid state.

• Confidence filters select data values from different child-
ren based on some measure of confidence in the accu-
racy of the data.

Sink Nodes
Sink nodes are similar to source nodes but distribute da-

ta rather than receive it. They include output to network
multicast groups, debugging output to a user interface or
thread-safe shared memory output to integrate OpenTracker
as a library into other applications.

3.3 Time
Time is reflected in several ways in the architecture of

OpenTracker. The type system for edges supplies us with
different ways of dealing with Time, either having an event
based approach, with or without queuing of events, or by
specifying functions of tracking data as continuous functions
of time.
For the event based nodes, each event is time stamped

by the individual device driver or node that generated it.
Thus nodes can react on the temporal aspects of tracking
data. For example, a simple prediction node incorporates the
time difference between single events to correctly update its
output.

49

META 1016
META V. THALES

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

More complex aspects such as a prediction for a changing
prediction interval is satisfied by the different edge types.
An application that wants to get a calculated value for an
arbitrary point in time can query the state at that time from
a node supporting time dependent output. How this value is
calculated depends on the node’s implementation.
OpenTracker does not implement any clock synchroniza-

tion of different hosts working together in a network. There
are already well established means to solve this problem such
as the NNTP protocol.

4. SOFTWARE ARCHITECTURE OF THE
LIBRARY

The intent of OpenTracker is to provide an auxiliary li-
brary that is to be integrated into VR or AR applications.
Therefore it is kept very lightweight and customizable. The
library is designed as a class hierarchy of tracker objects,
implemented in C++. It is build around a small set of core
classes that implement the basic node interfaces, a parser
that builds the runtime structure from a configuration file
and the main loop driving the event model. Any other func-
tionality is implemented by a set of module classes that can
be easily extended or modified.
The module classes create and manage the nodes repre-

senting the functionality of the module. In the main loop
of the library each module is called to provide new events
and after an event is processed to handle results of the da-
ta flow. For example, the implementation of a network sink
node stores any event data that it received during event pro-
pagation. Afterwards the network module checks each net-
work sink node for updated data values, constructs a new
network packet and sends it to the configured destination.
Modules may be implemented multi-threaded to avoid stal-
ling the main thread during longer computations or polling
a device with blocking I/O.
There are also nodes that perform without an underlying

module. Examples are filter nodes that implement geometric
transformations on incoming events and pass the transfor-
med events to their parents.
There is no fixed interface to the integrating applicati-

on to maximize flexibility. Application programmers have
to either use on of the supplied nodes (such as a generic
call back node) or supply their own module implementing
sink nodes as interfaces to their application. Moreover, the
use of the library main loop is not mandatory. The proces-
sing can be integrated with the applications main loop to
avoid additional threads and synchronize the tracking data
processing more closely with the application. These design
decisions ensures that the library can adapted to the special
needs of every application.
The primary type of event used in the current implemen-

tation is tailored toward tracking applications. It encodes a
position in space, an orientation, button states, a time stamp
and a confidence value to describe the quality of the data.
Although this restriction to a fixed data type appears as an
limitation, it can easily be extended or generalized because
nothing in the supporting system relies on the type of the
event data.
Figure 2 shows a class diagram of the core classes. The

class Context implements the main loop and keeps refe-
rence of all modules and the data flow data structure. It
employs an object of class ConfigurationParser to parse the

Figure 2: Architecture of the OpenTracker library

configuration files. Actual node implementations are derived
from Node, for example the Transformation or the TestSour-
ce class. WrapperNode and RefNode are special nodes that
implement the port and reference functionality. State is the
default event type.

5. DISTRIBUTED TRACKING
There are several reasons why is is desirable to share

tracker data over a network:

• Using the tracker data at multiple host computers for a
distributed virtual environment (local or remote): In-
put in the form of tracker data becomes readily availa-
ble through transparent network access viaOpenTracker.
The scene database still has be to kept consistent through
a proprietary application protocol, but the task is much
simplified.

• With the same approach, multi-processing based on
inexpensive PCs becomes possible with little configu-
ration effort. This is useful to achieve some degree of
load balancing. In particular, computationally expen-
sive functions such as filtering or undistortion can be
assigned to either sender or receiver, depending on the
computational budget.

• Network support makes it easy to span multiple opera-
ting systems, in particular if a specific tracking device
or service is only available at one particular host (e.g.,
an SGI O2 has fast video hardware but a slow CPU,
whereas for a PC the opposite may be true).

Magnetic tracker Optical tracker

Rendering hosts User 1 User 2 …

Figure 3: Distributing tracking data send to different
rendering hosts

50

META 1016
META V. THALES

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

OpenTracker allows multiple senders and receivers of tracker
data to communicate asynchronously through the use of
IP multicasting (Figure 3). This approach effectively im-
plements decoupled simulation in a distributed over several
hosts, since each of the senders and receivers can operate
independently. It is even possible for a single host to opera-
te as a sender and receiver at the same time, by picking up
data, then modifying it and re-sending it to the network on
another network channel.
While there is a preferred network protocol for Open-

Tracker, support for additional formats can be easily im-
plemented. In the following, we give some examples as to
how a networked setup can be used:

• A tracker server (typically a cheap PC with lots of
serial I/O boards running Linux) samples an Ascension
Flock of Birds at highest rate and sends the resulting
data stream via multicast to several clients using this
data to animate a collaborative virtual environment.

• The Polhemus Ultratrak uses a proprietary network
format and IP unicast packages. Unfortunately, its clo-
sed architecture does not support input devices with
buttons such as a stylus or 3D-mouse. Therefore, we
added a tracker object to the client that is able to
decode the Ultratrak protocol. A button source reads
button values from a standard parallel interface, and
a merge filter combines these two sources to emulate a
complete VR input device.

• A combination of vision tracking and magnetic tracking
– see section 7 for details.

6. SOFTWARE ENGINEERING WITH XML
XML, the eXtensible Markup Language, is the emerging

standard primarily aimed at web-based applications and
software systems [4]. XML is a markup definition langua-
ge that allows to define hierarchical markup languages with
so-called document type definitions (DTD). With the ap-
propriate DTD, standard XML tools can be used to con-
veniently edit, type check, parse, and transform any XML
file.
Thus, providing a simple DTD for describing the data flow

graphs of tracker nodes opens access to software libraries and
tools that simplify several steps of the development cycle:

• A visual DTD editor can be used to design and main-
tain the DTD.

• An XML parser [2] enforces content format on the
tracker configuration file while building the correspon-
ding structure in memory, thus automatically perfor-
ming many of the consistency checks that have other-
wise to be hand-coded.

• The same parser implements an API to manipulate the
data structure at runtime and still keep it consistent
with the DTD. Such a runtime structure can easily be
written out to a valid configuration file again.

• A convenient XML editor such as [11, 10] with a gra-
phical user interface allows the end user to design the
tracker configuration without having to master the
syntax. It also enforces the correct content format, re-
ducing syntax and semantic errors made by users.

• Integration with high-level software engineering tools
that create code or configuration files from specificati-
ons is simplified by the use of XML. Even automatic
reverse engineering of complex configurations is easier
relying on a defined structure than from pure source
code.

• Using the extendible style language (XSL) [1, 6], auto-
matic textual and even graphical documentation can
be created from a tracker configuration file, for exam-
ple by using the free graph drawing utility dot [3] (see
Figure 1).

Markup languages are generally used to annotate textual
documents with structural information. Thus a general XML
document consists of text grouped and structured with tags.
Markup languages defined in XML consist of elements, es-
sentially expressed as tags, and a structural model (the con-
tent model) of the possible ways these elements may be ne-
sted. Moreover, elements are annotated by name-value pairs
called attributes.
OpenTracker maps elements to nodes and attributes to

members of these nodes. We are not using any textual con-
tent but purely rely on the content model provided by the
DTD. An open source XML parser [2] builds a tree of ele-
ments representing the given configuration file. OpenTracker
walks the tree and creates a new node for each element based
on the elements name. The string values of the attributes are
parsed according to the objects class and the corresponding
members are set. Attributes typically describe such data as
the parameters of a transformation. The parent - child rela-
tionship of the data flow graph is directly mapped onto the
parent - child relationship of XML elements.
The content model enforces interface and semantic cons-

traints on the specified graph. As described in section 3.1
edges and the corresponding node ports are typed and the-
refore restrict the possible combinations in the construction
of the graph. These constraints are expressed in the DTD
and are checked by an XML parser or enforced by an XML
editor. Also restrictions on the number of children are des-
cribed in the DTD. Source nodes typically do not have any
children as they rely on data from external sources to com-
pute their own data. A number of filter nodes get the value of
a single child node, transform it and pass it on. In contrast,
confidence filters use any number of children to compute
their data value.
The reference structure is created by using unique ID at-

tributes on elements and referencing these IDs in reference
elements. Again XML enforces the uniqueness of these IDs
and the parser library simplifies the search for the referenced
elements.
While children of nodes with only one input port are di-

rectly mapped to children elements in the XML file, children
of different input ports need to be addressed differently. This
is handled using wrapper elements. Any group of children
that is connected to a specific input port is wrapped by an
additional XML element. This element in turn is the direct
child of the node of interest. These elements are closely rela-
ted to the node’s element and are typically the only possible
children elements. They are mapped to special wrapper no-
des that can be distinguished by the node implementation.
Otherwise they are transparent to the actual data proces-
sing.

51

META 1016
META V. THALES

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
	� Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

	� Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
	� With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

	� Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
	� Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

	� Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

