/ ﬁ Association for

v Computing Machinery Advancing Computing as a Science & Profession

DECLARATION OF SCOTT DELMAN

I, Scott Delman, am over twenty-one (21) years of age. | have never been convicted of a felony,
and I am fully competent to make this Declaration. I declare the following to be true to the best of my
knowledge, information, and belief:

1. I am Director of Publications for the Association for Computing Machinery (“ACM”).
2. Neither I nor ACM itself is being compensated for this Declaration.

3. Among my responsibilities as Director of Publications, I act as a custodian of records
forACM’s publications.

4. I make this Declaration based on my personal knowledge, information contained in the
business records of ACM, or confirmation with other responsible ACM personnel with
suchknowledge.

5. As part of its ordinary course of business, ACM publishes technical papers, including
ACM’sconference proceedings, journals, and other full-text publications. ACM
publications are distributed to ACM’s individual and institutional subscribers, ACM
members, and/or ACM conference attendees. Additionally, ACM publications are
available for public download through ACM’s Digital Library (as described further
herein), which has existed since July 1997. Prior to the creation of the Digital Library in
July 1997, members of the public could have obtained access to ACM publications by
contacting ACM directly.

6. As part of its ordinary course of business, since July 1997, ACM has maintained a Digital
Library where ACM publications are available to the public, either for free or purchase,
depending on the article. The Digital Library includes keyword search functionality
permitting users to search for articles using keyword search terms and to filter search
results by whether the term appears in the title, full-text, index terms, and/or abstract of the
article. In addition, users may search by author name, and may filter search results by the
particular typeof journal, type of proceeding, and/or the date of publication.

7. In addition to providing access to ACM publications, the Digital Library also indexes
papersby other publishers. When a non-ACM publication is indexed in the Digital
Library, the public may access “metadata” concerning the publication through the Digital
Library but cannot access the full text of the paper; instead, a member of the public who
wishes to obtainsuch a paper would have to contact the publisher of that paper directly.

8. “An Open Software Architecture for Virtual Reality Interaction” by Gerhard Reitmayr
and Dieter Schmalstieg on March 25, 2002, in Proceedings of the ACM Symposium on
Virtual Reality Software and Technology (VRST '01). Association for Computing
Machinery, New York, NY, USA, 47-54. DOI:https://doi.org/10.1145/505008.505018.
Exhibit 1 is a true and correct copy of this paper.

DOCKET

A R M Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Association for
Computing Machinery Advancing Computing as a Science & Profession

9. The conference started on November 15, 2001, and the paper would have been available to
the conference attendees on this date.

10. I hereby declare that all statements made herein of my own knowledge are true and that
allstatements made on information and belief, are believed to be true, and further that
these statements were made with the knowledge that willful false statements and the
like are punishable by fine or imprisonment, or both, under 18 U.S.C. § 1001.

I declare under penalty of perjury that the foregoing statements are true and correct.

Executed on: January 28, 2022 ,(/: &K xr—k

—=S%ott Delman, Director of Publications

DOCKET

A R M Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Exhibit 1

DOCKET

A R M Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

An Open Software Architecture for Virtual Reality
Interaction

Gerhard Reitmayr
Vienna University of Technology
Favoritenstra3e 9-11/188/2
A1040 Vienna, Austria

reitmayr@ims.tuwien.ac.at

ABSTRACT

This article describes OpenTracker, an open software archi-
tecture that provides a framework for the different tasks in-
volved in tracking input devices and processing multi-modal
input data in virtual environments and augmented reality
application. The OpenTracker framework eases the develop-
ment and maintenance of hardware setups in a more flexible
manner than what is typically offered by virtual reality deve-
lopment packages. This goal is achieved by using an object-
oriented design based on XML, taking full advantage of this
new technology by allowing to use standard XML tools for
development, configuration and documentation. The Open-
Tracker engine is based on a data flow concept for multi-
modal events. A multi-threaded execution model takes care
of tunable performance. Transparent network access allows
easy development of decoupled simulation models. Finally,
the application developer’s interface features both a time-
based and an event based model, that can be used simulta-
neously, to serve a large range of applications. OpenTracker
is a first attempt towards a “write once, input anywhere“ ap-
proach to virtual reality application development. To sup-
port these claims, integration into an existing augmented
reality system is demonstrated. We also show how a proto-
type tracking equipment for mobile augmented reality can
be assembled from consumer input devices with the aid of
OpenTracker. Once development is sufficiently mature, it is
planned to make Open-Tracker available to the public under
an open source software license.

Keywords
Tracking, Mobile Augmented Reality, Virtual Reality, XML

1. INTRODUCTION

Tracking is an indispensable part of any Virtual Reality
(VR) and Augmented Reality (AR) application. While the
need for quality of tracking, in particular for high perfor-

Permission to make digital or hard copies of al or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for pro£t or commercial advantage and that copies
bear this notice and the full citation on the £rst page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specifc
permission and/or afee.

VRST’ 01, November 15-17, 2001, Banff, Alberta, Canada.

Copyright 2001 ACM 1-58113-427-4/01/0011 ...$5.00.

DOCKET

_ ARM

Dieter Schmalstieg
Vienna University of Technology
FavoritenstraBe 9-11/188/2
A1040 Vienna, Austria

schmalstieg@ims.tuwien.ac.at

mance and fidelity, have led to a large body of past and
current research, little attention is typically paid to softwa-
re engineering aspects of tracking software. Some current
systems have a modular approach that allows to substitute
one type of tracking device for another. Typically, this is
the approach taken by commercial VR products that offer
turn-key support for many popular tracking and input de-
vices, but at the cost of a limited amount of extensibility
and configuration options. In particular, they make it hard
to combine existing features in novel ways.

In contrast, research systems may offer features not found
in commercial systems, such as prediction or sensor fusion,
but are usually limited to their particular research domain
and not intended for the end user. In such systems, repla-
cing a piece of hardware or changing its configuration usually
leads to rewriting a significant portion of the tracker soft-
ware.

In the middle(-ware), there is a lack of tools that allow for
a high degree of customization, yet are easy to use and to
extend. One notable exception is the MR toolkit [21] of the
University of Alberta, which still serves as a starting point
for many VR research projects despite its aged architecture
and lack of active development. What is needed is a system
that allows mixing and matching of different features, as well
as simple creation and maintainance of possibly complex
tracker configurations.

In this article, we describe a tracking software system cal-
led OpenTracker with the following characteristics:

e An object-oriented approach to an extensive set of sen-
sor access, filtering, fusion, and state transformation
operations

e Behavior specification by constructing graphs of tracking
objects (similar in spirit to scene graphs or event cas-
cades) from user defined tracker configuration files

e Distributed simulation by network transfer of events
at any point in the graph structure

e Decoupled simulation by transparent multi-threading
and networking

e A software engineering approach based on XML [4],
which allows to use many generic tools such as [2, 11,
10] for development, documentation, integration and
configuration

e An application independent library to be integrated
into software projects

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Through its scripting capability (tracker configuration fi-
les) as well as easy integration of new tracking features,
OpenTracker encourages exploratory construction of com-
plex tracking setups. It is equally useful for end users, which
can fully exploit their hardware without any custom pro-
gramming, as well as developers, who can easily build test
environments. The modular approach gives instant access
to wide range of tracking related functionality for any app-
lication. Through the release under the LGPL Open Source
license [7], OpenTracker is available to a larger audience.

2. RELATED WORK

Ideas implemented in OpenTracker were drawn from se-
veral areas:

Device abstraction is a standard requirement for 2D gra-
phical user interfaces, (e. g. GKS [12]), and sometimes in-
corporated into 3D applications [9]. There is a number of
libraries such as VRPN [15], MRToolkit [21] implementing
device abstraction for input devices typically found in VR
and AR systems. Their main goal is to provide a fixed in-
terface to the application for different devices and provide
simple services for relaying the data over the network bet-
ween several hosts. However, these libraries mostly lack any
further means to process the data. Device abstraction is also
an important goal of OpenTracker. However, it goes beyond
pure abstraction using a static interface in that the data can
be re-combined in novel ways.

Many interactive systems employ sophisticated event hand-
ling schemes. State changes to attributes of scene objects
are either propagated through functional dependencies (e.
g. routes in VRML [5], engines in Open Inventor [22]), or
may be handled by user supplied callback functions (e. g.
script nodes in VRML [5]). These approaches inspire the
architecture of OpenTracker, although none of them deals
specifically with tracker configurations.

Finally, an important requirement for virtual environments
is support for distributed simulation, partly to support si-
multaneous users, partly to better exploit available hardwa-
re. Decoupled simulation was first introduced in MR [21],
and later used in almost any major VR software system.
Decoupled simulation can either be implemented by multi-
threading and/or symmetric multiprocessing on one host, or
by configuring a small set of hosts to work as an ensemble.
The latter approach may be inferior performance-wise be-
cause of network lag, but it is inexpensive and flexible, and
thus favored by many researchers - for example, Rekimoto’s
“hyperdragging® system [19] uses a distributed architecture
very much like our own.

3. DATA FLOW OF TRACKING DATA

In a typical VR or AR application tracking data passes
through a series of steps. It is generated by tracking hard-
ware, read by device drivers, transformed to fit the require-
ments of the application and send over network connections
to other hosts. Different setups and applications may requi-
re different subsets and combinations of the steps described
but the individual steps are common among a wide range of
applications. Examples of such invariant steps are geometric
transformations, Kalman filters and data fusion of two data
sources.

The main concept behind OpenTracker is to break up
the whole data manipulation into these individual steps and

DOCKET

_ ARM

build a data flow network of the transformations. To descri-
be the details of this concept, we will need some theoretical
definitions which are discussed in section 3.1. Details of an
actual implementation are described in section 3.2.

3.1 DataFlow Concept

Each transformation is represented by a node in a data
flow graph. Nodes are connected by directed edges to des-
cribe the direction of flow. The originating node of a directed
edge is called the child whereas the receiving node is called
the parent. To allow more than simple linear graphs, we
introduce the following concepts.

Multiple Input Ports and References

Each node has one or more input ports and a single out-
put port. A port is a distinguished connection point for an
edge, i.e. the node can distinguish between events passing
through different node ports. The output port of one node
is connected to any of the input ports of another node. This
establishes the flow by defining directed edges in the graph.
A node receiving a new data event via one of it’s inputs
computes a new update for itself and sends the new data
event out via its output port.

Multiple input ports are desirable because computations
typically have more than one parameter. Dynamic trans-
formations, for example, are parameterized by the value of
another node and thus use the data value received by a child
to be transformed differently from the data of the parame-
terizing child. Merge nodes may select part of the data of an
event based on the input port the event used. This allows
more complex computational structures.

Additionally, an input port can be connected to several
output ports. This enables several children nodes connec-
ted to the same input port of a node. Upon receiving an
event, the parent node can only distinguish between the in-
put ports, not between the actual children.

Conversely, an output port can also be connected to other
nodes by using references within the graph. This establishes
new edges between a nodes output port and other nodes
input ports. However this is transparent to the child node.
It cannot selectively send events to only one parent, but all
events are distributed equally to all parents.

Edge types

The basic mechanism behind the data flow concept is
event passing. Data events are passed from the children no-
des upward to their parents. However, not all computations
fit well into this model: Algorithms that operate on a vec-
tor of tracker measurements or that require or compute the
tracker state at an arbitrary point in time require different
types of input or output interfaces. Examples are smoothing
algorithms that take a history of events into account, or pre-
diction algorithms that compute an expected measurement
for a given point in time.

Therefore, we also distinguish between different edge ty-
pes. Edges are typed by typing the ports of the nodes they
connect. We establish the rule that only two ports of the sa-
me type can be connected and this type is then the type of
the edge. There are three edge types: event, which is imple-
mented by event passing, event queue and time dependent.
The latter two are implemented as interfaces that are polled
by the parent node, because the data returned is paramete-
rized. In the case of the event queue interface, it is possible
to query the number of stored events and retrieve them by
index. The time dependent interface can be queried by spe-

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Nsights

Real-Time Litigation Alerts

g Keep your litigation team up-to-date with real-time
alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research

With over 230 million records, Docket Alarm’s cloud-native
O docket research platform finds what other services can't.
‘ Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips

° Learn what happened the last time a particular judge,

/ . o
Py ,0‘ opposing counsel or company faced cases similar to yours.

o ®
Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

-xplore Litigation

Docket Alarm provides insights to develop a more
informed litigation strategy and the peace of mind of

knowing you're on top of things.

API

Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS

Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND

LEGAL VENDORS

Sync your system to PACER to
automate legal marketing.

WHAT WILL YOU BUILD? @ sales@docketalarm.com 1-866-77-FASTCASE

