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sensor. Each estimate made use of a group of measure­
ments (typically twenty or more) that together overcon­
strained the solution . 

This multiple constraint method had several draw­
backs. First, it had a significantly lower estimate rate due 
to the need to collect multiple measurements per esti­
mate. Second, the system of nonlinear equations did not 
account for the fact that the sensor fixture continued to 
move tl1roughout the collection of the sequence of 
measurements. Instead, the method effectively assumes 
that the measurements were taken simultaneously. The 
violation of this simultaneity assumption could intro­
duce significant error during even moderate motion. 
Finally, the method provided no means to identify or 
handle unusually noisy individual measurements. Thus, 
a single erroneous measurement could cause an estimate 
to jump away from an otherwise smooth track. 

In contrast, the approach we use with the new HiBall 
system produces tracker reports as each new measure­
ment is made, rather than waiting to form a complete 
collection of observations. Because single measurements 
underconstrain the mathematical solution, we refer to 
the approach as single-constraint-at-a-time ( SCAAT) 
tracking (Welch, 1996; Welch & Bishop, 1997). The 
key is that the single measurements provide some infor­
mation about the HiBall's state, and tlms can be used to 
incrementally improve a previous estimate. We inten­
tionally fuse each individual "insufficient" measurement 
immediately as it is obtained. With this approach, we are 
able to generate estimates more frequently, with less 
latency, and with improved accuracy, and we are able to 

estimate the LED positions online concurrently while 
tracking the HiBall (section 5.4). 

We use a Kalman filter (Kalman, 1960) to fuse tl1e 
measurements into an estimate of the HiBall state x (the 
pose of the HiBall). We use the Kalman filter-a mini­
mum-variance stochastic estimator- both because the 
sensor measurement noise and the typical user-motion 
dynamics c·an be modeled as normally distributed ran­
dom processes, and because we want an efficient online 
method of estimation. A basic introduction to the Kal­
man filter can be found in chapter 1 of Maybeck 
(1979), and a more complete introductory discussion 
can be found in Sorenson (1970), which also contains 
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some interesting historical narrative. More-extensive 
references can be found in Brown and Hwang (1992), 
Gelb (1974), Jacobs (1993), Lewis (1986), Maybeck 
(1979), and Welch and Bishop (1995). Finally, we 
maintain a Kalman filter Web page (Welch & Bishop, 
2000) witl1 introductory, reference, and research mate­
rial. 

The Kalman filter has been used previously to address 
similar or related problems. See, for example, Az­

arbayejani and Pentland (1995), Azuma (1995), Emura 
and Tachi (1994), Fuchs (Foxlin) (1993), Mazuryk and 
Gervautz (1995), and Van Pabst and Kreke! (1993). A 
relevant example of a Kalman filter used for sensor fu ­
sion in a wide-area tracking system is given in Foxlin et 
al. ( 1998 ), which describes a hybrid inertial-acoustic 
system that is commercially available today (Intersense, 
2000 ). 

The SCJ\AT approach is described in detail by Welch 
(1996), and Welch and Bishop (1997). Included there 
is discussion of the benefits of using the approach, as 
opposed to a multiple-constraint approach such as that 
by Azuma and Ward (1991). However, one key benefit 
warrants discussion here . There is a direct relationship 
between the complexity of the estimation algorithm, the 
corresponding speed ( execution time per estimation cy­
cle), and the change in HiBall pose between estimation 
cycles (figure 12 ). As the algorithmic complexity in­
creases, the execution time increases, which allows for 
significant nonlinear HiBall motion between estimation 
cycles, which in turn implies the need for a more com­
plex estimati_on algorithm. 

The SCAAT approach, on the other hand, is an at­
tempt to reverse this cycle. Because we intentionally use 
a single constraint per estimate, the algorithmic com­
plexity is drastically reduced, which reduces the execu­
tion time, and hence the amount of motion between 
estimation cycles . Because the amount of motion is lim­
ited, we are able to use a simple dynamic (process) 
model in the Kalman filter, which further simplifies the 
computations. In short, the simplicity of tl1e approach 
means that it can run ve1y fast, which means it can pro­
duce estimates very rapidly, with low noise. 

The Kalman filter requires both a model of the pro­
cess dynamics and a model of the relationship between 
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Figure 12. 

the process state and the available measurements. In 

part due to the simplicity of the SCAAT approach, _we 

are able to use a simple position-velocity (PV) process 

model (Brown & Hwang, 1992). Consider the simple 
. T 

example state vector x( t) = [ xp( t), x.( t)] , where the 

first element xp(t) is the pose (position or orientation) 

and the second element x.(t) is the co1-responding ve­

locity; that is, x.( t) = ( d/ dt) xp( t). We model the con­
tinuous change in the HiBall state with the simple dif-

ferential equation 

component of the linear and angular HiBall velocities as 

a random walk, and then use these ( assuming constant 

interrneasurement velocity) to estimate the HiBall pose 

at time t + 8t as follows: 

) [
l o

1
t]-;,.tt) x(t + 8t = O ""\ (2) 

for each of the six pose elements. In addition to a rela­

tively simple process model, the HiBall measurement 

model is relatively simple. For any ceiling LED (section 

4.2) and HiBall view (section 4.1), the 2-D sensor mea­

surement can be modeled as 

[ U] = [c_./ Cz] 
V Cy/Cz (3) 

where 

(4) 

Vis the camera viewing matrix from section 5 .1, l xyz is 

the position of the LED in the world, x."J'z is the posi­
tion of the HiBall in the world, and R is a rotation ma­

trix corresponding to the orientation of the HiBall in 

the world. In practice, we maintain the orientation of 

the HiBall as a combination of a global ( external to the 

state) quaternion and a set of incremental angles as de-

scribed by Welch (1996) and Welch and Bishop (1997). 

Because the measurement model ( 3) and ( 4) is non­
( l) lin,.;ir, UJt" 11 .~,. ::in t"YtPnrlPrl K::i lm::in filtPr, m::i king 11~,. nf 

where u(t) is a normally distributed white (in the fre­
quency spectrum) scalar noise process, and the scalarµ, 
represents the magnitude or spectral density of the 
noise. We use a similar model with a distinct noise pro­

cess for each of the six pose elements. We determine the 

individual noise magnitudes using an offiine simulation 

of the system and a nonlinear optimization strategy that 

seeks to minimize the variance between the estimated 

pose and a known motion path. (See section 6.2.2.). 

The differential equation ( 1) represents a continuous 

integrated random walk, or an integrated Wiener or 

Brownian-motion process. Specifically, we model each 

the Jacobian of the nonlinear HiBall measurement 

model to transform the covariance of the Kalman filter . 

Although this approach does not preserve the presumed 

Gaussian nature of the process, it has been used success­

folly in countless applications since the introduction of 

the (linear) Kalman filter. Based on observations of the 

statistics of the HiBall filter residuals, the approach also 

appears to work well for the HiBall. In fact, it is reason­

able to expect that it would, as the speed of the SCAAT 

approach minimizes the distance (in state space) over 

which we use the Jacobian-based linear approximation. 

This is another example of the importance of the rela­
tionship shown in figure 12. 
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At each estimation cycle, the next of the 26 possible 
views is chosen randomly. Four points corresponding to 
the corners of the LEPD sensor associated with that 
view are projected into the world using the 3 X 4 view­
ing matrix for that view, along with the current esti ­
mates of the HiBall pose. This projection, which is the 
inverse of the measurement relationship described 
above, results in four rays extending from the sensor 
into the world. The intersection of these rays and the 
approximate plane of the ceiling determines a 2-D 
bounding box on the ceiling, within which are the can­
didate LEDs for the current view. One of the candidate 
LEDs is then chosen in a least-recently-used fashion to 
ensure a diversity of constraints. 

Once a particular view and LED have been chosen in 
this fashion, the CIB (section 4.3) is instructed to flash 
the LED and take a measurement as described in sec­
tion 5.2. This single measurement is compared with a 
prediction obtained using equation ( 3), and the differ­
ence ( or residual) is used to update the filter state and 
covariance matrices using the Kalman gain matrix. The 
Kalman gain is computed as a combination of the cur­
rent filter covariance, tl1e measurement noise variance 
(section 6.2 .1), and tl1e Jacobian of the measurement 
model. This recursive prediction-correction cycle con­
tinues in an ongoing fashion, a single constraint at a 
time. 

A more detailed discussion of tl1e HiBall Kalman filter 
and the SCAAT approach is beyond the scope of this 
paper. For additional information see Welch (1996) and 
Welch and Bishop (1997). 

5.4 Online LED Autocalibration 

Along with the benefit of simplicity and speed, the 
SCAAT approach offers the additional capability ofbe-
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ing able to estimate the 3-D positions of the LEDs in 
the world concurrently with the pose of the HiBall, on­
line, in real time. This capabili ty is a tremendous benefit 
in terms of the accuracy and noise characteristics of the 
estimates . Accurate LED position estimates are so im­
portant that, prior to the introduction of the SCAA T 
approach, a specialized offline approach was developed 
to address the problem (Gottschalk & Hughes, 1993). 

The method we now use for autocalibration involves 
defining a distinct SCAAT Kalman filter for each LED. 
Specifically, for each LED, we maintain a state 7 ( esti­
mate of the 3-D position) and a 3 X 3 Kalman filter 
covariance . At the beginning of each estimation cycle, 
we form an augmented state vector x using the 
appropriate LED state and the current HiBall state: 
x = [xr, Y] T. Similarly, we augment the Kalman filter 
error covariance matrix with that of the LED filter. We 
then follo.}v the normal steps outlined in section 5.3, 
with the result being that tl1e LED portion of the filter 
state and covariance is updated in accordance witl1 the 
measurement residual. At the end of the cycle, we ex­
tract the LED portions of tl1e state and covariance from 
the augmented filter, and save them externally. The ef­
fect is that, as the system is being used, it continually 
refines its estimates of the LED positions, thereby con­
tinually improving its estimates of the HiBall pose. 
Again , for additional information, see Welch ( 1996) 
and Welch and Bishop (1997). 

5.5 Initialization and Reacquisition 

The recursive nature of the Kalman filter ( section 
5 .3) requires that tl1e filter be initialized with a known 
state and corresponding covariance before steady-state 
operation can begin. Such an initialization ( or acquisi­
tion) must take place prior to any tracking session, but 
also upon the (rare) occasion when the filter diverges 
and "loses lock" as a result of blocked sensor views, for 
example. 

The acquisition process is complicated by the fact that 
each LEPD sees a number of different widely separated 
views (section 4.1 ). Therefore, detecting an LED pro­
vides at best an ambiguous set of potential LED direc­
tions in HiBall coordinates. Moreover, before acquisition, 
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no assumptions can be made to limit the search space of 
visible LEDs. As such, a relatively slow brute-force algo­
rithm is used to acquire lock. 

We begin with an exhaustive LED scan of sufficiently 
fine granularity to ensure tl1at the central primary field 
of view is not missed. For the present ceiling, we flash 
every iliirteentl1 LED in sequence, and look for it with 
ilie central LEPD until we get a hit. Then, a sufficiently 
large patch of LEDs, centered on the hit, is sampled to 

Figure 13. 

ensure that several of the views of tl1e central LEPD will ward, and more natural, than boili virtual flying and 
be hit. The fields of view are disambiguated by using the walking in place. The unprecedented combination of 
initial hits to estimate the yaw of the HiBall (rotation large working volume and the high performance of ilie 
about vertical); finally, more-selective measurements are HiBall system led the researchers to claim that there was 
used to refine the acquisition estimate sufficiently to nowhere else that iliey could have meaningfully per-
switch into tracking mode. formed the experiments. 

6 Results 

Three days after ilie individual pieces of hardware 
were shown to be functioning properly, we dei:non­
strated a complete working system. After months of 
subsequent tuning and optimization, tl1e system contin­
ues to perform boili qualitatively and quantitatively as 
well-or, in some respects, better-than we had antici­
pated (section_ 6.1 ). The articulatipn of iliis success is 
not meant to be self-congratulatory, but to give credit 
to the extensive and careful modeling and simulation 
performed prior to assembly (section 6.2). In fact, the 
Kalman filter parameters found by the optimization pro­
cedure described in section 6.2 .2 were, and continue to 
be, used directly in the working system. Likewise, much 
of the software written for ilie original simulations con­
tinues to be used in the working system. 

6. I Online Operation 

The HiBall system is in daily use as a tool for edu­
cation and research. For example, it was used by Martin 

6.1 . I Robustness. As a result of a mechanical 
design tradeoff, each sensor field of view is less than six 
degrees. The focal length is set by the size of the sensor 
housing, which is set by ilie diameter of tl1e sensors 
iliemselves . Energetics is also a factor, limiting how 
small the lenses can be while maintaining sufficient 
light-collecting area. As a result of these design 
t:radeoffs, even a momentary small error in ilie HiBall 
pose estimate can cause the recursive estimates to di ­
verge and ilie system to lose lock after only a few LED 
sightings. And yet ilie system is quite robust. In prac­
tice, users can jump around, crawl on the floor, lean 
over, even wave their hands in front of the sensors, and 
the system does not lose lock. During one session, we 
were using the HiBall as a 3-D digitization probe, a Hi­
Ball on the end of a pencil-shaped fiberglass wand (fig­
ure 14, left ). We laid ilie probe down on a table at one 
point, and were amazed to later notice that it was still 
tracking, even though it was observing only three or 
four LEDs near the edge of the ceiling. We picked up 
ilie probe and continued using it, without it ever losing 
lock. 

Usoh et al. to perform virtual reality experiments com- 6.1.2 Estimate Noise. T he simplest quantitative 
paring virtual "flying," walking in place, and real walk- measurement of estimate noise is the standard deviation 
ing (Usoh et al., 1999 ). (See figure 13. ) The researchers of the estimates when a HiBall is held stationary. With a 
used the HiBall system to demonstrate that, as a mode tracker as sensitive as the HiBall , it is important to be 
of locomotion, real walking is simpler, more straightfor- certain that it really is stationary. The raised floor in our 
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laboratory allows motion, for example when a person 

walks by, that is larger than the expected error in the 

HiBall. We made careful measurements by resting the 

support for the HiBall on the concrete subfloor in our 

laboratory. The standard deviation of the HiBall esti­

mates while stationary was approximately 0.2 mm and 

0.03 deg. The distribution of the noise fit a normal dis­

tribution quite well. 

To make measurements of the noise when the HiBall 

is in motion, we rely on the assumption that almost all 

of the signal resulting from normal human motion is at 

frequencies below 2 H z. We use a high-pass filter 

(Welch, 1967) on the pose estimates, and assume the 

output is noise. The resulting statistics are comparable 

to those made with the HiBall stationary, except at 

poses for which there are very few LEDs visible in only 

one or two views. In these poses, near the edge of the 

ceiling, the geometry of the constraints results in ampli­

fication of errors. For nearly all of the working volume 

of the tracker, the standard deviation of the noise on 

measurements while the HiBall is still or moving is 

about 0.2 mm and 0.03 deg. 

6.1.3 Absolute Accuracy. We have performed 

several experiments to measure the accuracy of the Hi­

Ball system; however, the most objective experiment 

took place in July ofl999. Boeing Phantom Works sci­

entists David Himmel and David Princehouse (Associate 

Technical Fellows) visited our laboratory for two days to 

assess the accuracy of the HiBall system and its potential 

use in providing assembly workers with real-time feed-
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back on the pose of handheld pneumatic drills during 

the aircraft manufacturing process. (The right image in 

figure 14 shows the HiBall attached to a pneumatic 

drill .) 
The scieE1tists designed some controlled experiments 

to assess the accuracy of the HiBall system. They 

brought with them an aluminum "coupon" (see figure 

14 and figure 15) with 27 shallow holes drilled on I.S­

in . centers using a numerically controlled milling ma­

chine with a stated accuracy of 1/ 1000 in. The holes 

( except one) were not actually drilled through the cou­

pon, but instead formed conical dimples with a fine 

point at the center. The center-most hole (hole 14) was 

actually drilled completely through to provide a mount­

ing point. Using that hole, we attached the coupon to a 

military-grade tripod situated on the (false) floor of our 

laboratory, under the HiBall ceiling. As shown in the 

left image of figure 14, we mounted the HiBall on our 

standard probe, a rigid plastic, pencil-like object with a 

pointed steel tip . We used one of the coupon holes to 

perform our normal HiBall probe calibration procedure, 

which involves placing the tip of the probe in the hole, 

pivoting the probe about the point while collecting sev­

eral seconds of pose data, and then estimating the trans­

formation from the HiBall to the probe tip. (We have a 

standard application that assists us with this procedure.) 

Together with Himmel and Princehouse, we performed 

several experiments in which we placed the ti_p of the 

HiBall probe in each hole in succession, sampling the 

HiBall pose estimates only when we pressed the probe 

button. We performed several such sessions over the 
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course of one afternoon and the next morning. (We 

recalibrated the probe in the morning.) 

For the data from each session, we used a least­

squares optimization method to find an estimate of the 

full 6-D transformation (translation and rotation) that 

minimized the Euclidian distance from the probe data 

to a 2-D plane with 27 holes on 1.5-in. spacing. The 

resulting fit consistently corresponded to an average 

positioning error of20/1000 in. (0.5 mm) at the metal 

tip of the HiBall probe, which is within the target Boe­

ing specifications. The system might actually be more. 

accurate than our experiments indicated. For one, the 

diameter of the (rounded) tip of the HiBall probe is 0.5 

mm. In addition, at the time of the experiments, we 

unfortunately did not heed our own advice to position 

the experimental platform on the rigid c-0ncrete sub­

floor. In any case, we are encouraged by the results, and 

are excited about the possibility that the HiBall system 

has uses beyond tracking for virtual reality. 

6.1 Offline Simulation and Modeling 

During the design of the HiBall system, we made 

substantial use of simulation, in some domains to a ve1y 

detailed level. For example, Zemax (Focus Software, 

1995) was used extensively in the design and optimiza­

tion of the optical design, including the design of the 

filter glass lenses, and geometry of the optical-compo­

nent layout. AutoCAD was used to design, specify, and 

fit check the HiBall body mechanicals, to visualize the 

physical design, and to transmit the design to our col­

laborators at the University of Utah for fabrication by 

the Alpha 1 System (Thomas, 1984; University of Utah 

Computer Science, 1999). A custom ray-tracing system 

was built by Stefan Gottschalk (UNC) for the purpose 

of evaluating the optical behavior and energetics of the 

primary, secondary, and tertiary fields of view; the re­

sults were used by the noise model developed by Chi 

(1995) as described in section 6.2 .1. 

In addition, a complete simulator of the system was 

written in C+ +. This simulator, discussed further in 

section 6 .2 .2, was used to evaluate the speed, accuracy, 

and robustness of the system. In addition, it was used to 

"tune" the Kalman filter for realistic motion dynamics. 

This simulator continues to be used to evaluate me­

chanical, optical , and algorithmic alternatives. 

6.2.1 HiBall Measurement Noise Model. 
Signal-to-noise performance is a prime determiner of 

both accuracy and speed of the system, so an in-depth 

study ( Chi, 1995) was performed to develop a detailed 

noise model accounting for properties of the LED, tl1e 

LEPD (sensor), the optical system, the physical distance 

and pose, the electronics, and the dark-light-dark inte­

grations described in section 5.2. The predominant 

noise source is shot noise, with Johnson noise in the 

sheet resistivity of tl1e LEPD surfaces being the next 

most significant. Careful measurements made in the lab­

oratory with the actual devices yielded results that were 

almost identical to those predicted by the sophisticated 

model in Chi (1995). A simplified version of this model 

is used in tl1e real system with the automatic gain con­

trol ( section 5 .2) to predict the measurement noise for 

the Kalman filter (section 5.3). 

6.2.2 Complete System Simulations. To pro­

duce realistic data for developing and tuning our algo­

rithms, we collected several motion paths (sequences of 

pose estimates) from our first-generation electro-optical 

tracker (figure 3) at its 70 Hz maximum report rate. 

These paths were recorded from both naive users visit­

ing our monthly "demo days" and from experienced 

users in our labs. In the same fashion as we had done 

for Azuma and Bishop (1994a), we filtered the raw path 

data with a noncausal zero-phase-shift, low-pass filter to 

eliminate energy above 2 Hz. The output of the low­

pass filtering was then resampled at whatever rate we 

wanted to run the simulated tracker, usually 1,000 Hz. 
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For the purposes of our simulations, we considered 

these resampled paths to be the "truth"-a perfect rep­

resentation of a user's motion. Tracking error was deter­

mined by comparing the true path to the estimated path 

produced by the tracker. 

The simulator reads camera models describing the 26 

views, the sensor noise parameters, the LED positions 

and their expected error, and the motion path described 

above. Before beginning the simulation, the LED posi­

tions are perturbed from their ideal positions by adding 

normally distributed error to each axis. Then, for each 

simulated cycle of operation, the "true" poses are up­

dated using the input motion path. Next, a view is cho­

sen and a visible LED within that view is selected, and 

the image-plane coordinates of the LED on the chosen 

sensor are computed using the camera model for the 

view and the LED as described in section 5.3. These 

sensor coordinates are then perturbed based on the sen­

sor noise model (section 6.2.1) using the distance and 

angle to the LED. These noise-corrupted sensor read­

ings are then fed to the SCAAT filter to produce an up­

dated position estimate. The position estimate is com­

pared to the true position to produce a scalar error 

metric that is described next. 

The error metric we used combines the error in pose 

in a way that relates to the effects of tracker error on a 

head-worn display user. We define a set of points ar­

rayed around the user in a fixed configuration. We com­

pute two sets of coordinates for these points: the u-i1e 

position using the true pose and their estimated position 

using the estimated pose. The error metric is then the 

sum of the distances benveen the true and estimated 

positions of these points. By adjusting the distance of 

the points from the user, we can control the relative 

importance of the orientation and the position error in 

the combined error metric. If the distance is small, then 

the position error is weighted most heavily; if the dis ­

tance is large, then the orientation error is weighted 

most heavily. Our two error metrics for the entire run 

are the square root of the sum of the squares of all the 

distances, and the peak distance. 
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is called system identification or tuning. We use Powell's 

method (Press, Teukolsky, Vetterling, & Flannery, 

1990) to minimize the error metric described above. 

Starting with a set of parameters, we run the simulator 

over a full motion run to determine the total error for 

the run. The optimizer makes a small adjustment to the 

parameters and the process is repeated. These runs re ­

quired hours of computer time and some skill (and 

luck) in choosing the initial parameters and step sizes. 

Of course, it is important to choose motion paths that 

are representative of expected target motion. For exam­

ple, a run in which the target is very still would result in 

very different tuning from a run in which the target 

moves very vigorously. 

7 Future Work 

7.1 -Improving the HiBall 

The current SCAAT filter form (section 5.3) and 

tuning values (section 6.2.3) are a compromise between 

the responsiveness desired for high dynamics, and the 

heavy filtering desired for smooth estimates during very 

slow or no motion. As such, we are investigating the use 

of a multimodal or multiple-model Kalman filter frame­

work (Bar-Shalom & Li, 1993; Brown & Hwang, 

1992). A multiple-model implementation of the HiBall 

should be able to automatically, continuously, and 

smoothly choose between one Kalman filter tuned for 

high dynamics and another tuned for little or no mo­

tion . We have this working in simulation, but not yet 

implemented in the real system. 

As mentioned in section 4.3, the system was designed 

to support wireless communication between the HiBall 

and tl1e CIB, without significant modification or added 

information overhead. Despite the fact that commercial 

head-worn displays are themselves tethered at this time, 

we are beginning work on a completely wireless HiBall 

and head-worn display system. We also intend to use 

the wireless HiBall with projector-based displays where 

the user is otherwise wearing only polarized glasses. 

Furthermore, the HiBall was designed with extra 

6.2.3 Tuning. Determining the magnitudes of built-in digital input-output capabilities. We are consid-

the SCAAT Kalman filter noise parameters (section 5.3) ering possibilities for providing access to these signals 

C 
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for (wireless) user-centered input devices and even 
body-centric limb tracking. 

Finally, we note that a private startup company called 
3rdTech (3rdTech, 2000) has negotiated a technology 
license with UNC for the existing HiBall Tracking Sys­
tem. 3rdTech is now marketing an updated system with 
simpler LED "strips" instead of ceiling panels. 

7.l Wide-Field-of-View HiBall 

Beyond improving the existing system, we con­
tinue to head down a path of research and development 
that will lead to systems with reduced dependency on 
the laboratory infrastructure. For example, our current 
ceiling-panel design with 32 LEDs per panel provides 
far more dense coverage than we believe is necessary. 
The density of ceiling LEDs is a result of design based 
on the original sensor fixture shown in figure · 3. Given a 
more sparse field of LEDs, we believe that we could 
achieve similar performance with a version of the HiBall 
that has a small number of wide-field-of-view optical 
sensor units. This would further reduce the packaging 
size of the user-worn sensor component. 

7.3 To the Hallway a'!d Beyond 

By leveraging the knowledge gained from success­
ful work in the laboratory, our long-term goal is to 

achieve similar performance with little or no explicit 
infrastructure: for example, throughout a building or 
even (some day) outdoors. Although high-performance 
6-D tracking outdoors is a tremendous challenge tl1at is 
unlikely to be solved any time soon, we believe that the 
eventual solution will involve a clever and careful com­
bination of multiple complementary technologies. In 
particular, we are pursuing the hybrid approach initially 
presented by Welch (1995 ). We look forward to a day 
when high-performance 6-D tracking outdoors enables 
pose-aware devices for work such as Feiner's outdoor 
augmented reality (Feiner, MacIntyre, Hi::illerer, & 
Webster, 1997; Hi::illerer, Feiner, Terauchi, Rashid, & 
Hallaway, 1999 ), the "WorldBoard" initiative (Spohrer, 
1999a, 19996 ), and other wonderful applications. 
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