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High-Performance Wide-Area
Optical Tracking
The HiBall Tracking System

 

Abstract

Since the early 1980s, the Tracker Project at the University of North Carolina at
Chapel Hill has been working on wide-area head tracking for virtual and augmented
environments. Our long-term goal has been to achieve the high performancere-

quired for accurate visual simulation throughout our entire laboratory, beyond into
the hallways, and eventually even outdoors.

In this article, we present results and a complete description of our most recent
electro-optical system, the HiBall Tracking System. In particular, we discuss motiva-
tion for the geometric configuration and describe the novel optical, mechanical,
electronic, and algorithmic aspects that enable unprecedented speed, resolution,

accuracy, robustness, and flexibility.

I Introduction

Systemsfor head tracking for interactive computer graphics have been
explored for more thanthirty years (Sutherland, 1968). Asillustrated in
figure 1, the authors have been working on the problem for more than twenty
years (Azuma, 1993, 1995; Azuma & Bishop, 1994a, 1994b; Azuma & Ward,
1991; Bishop, 1984; Gottschalk & Hughes, 1993; UNC Tracker Project,
2000; Wang, 1990; Wang etal., 1990; Ward, Azuma, Bennett, Gottschalk, &
Fuchs, 1992; Welch, 1995, 1996; Welch & Bishop, 1997; Welchetal., 1999).
From the beginning, ourefforts have been targeted at wide-area applications
in particular. This focus was originally motivated by applications for which we
believed that actually walking around the environment would be superior to
virtually “flying.” For example, we wantedtointeract with room-filling virtual
molecular models, and to naturally explorelife-sized virtual architectural mod-
els. Today, we believe that a wide-area system with high performance every-
where in ourlaboratory providesincreasedflexibility for all of our graphics,
vision, and interaction research.

1.1 Previous Work

In the early 1960s, Ivan Sutherland implemented both mechanical and
ultrasonic (carrier phase) head-tracking systemsas part of his pioneering work
in virtual environments. He describes these systems in his seminal paper “A
Head-Mounted Three Dimensional Display” (Sutherland, 1968). In the

Welch et al. I

META 1007

META V. THALES



META 1007 
META V. THALES

 
 

  

2 PRESENCE: VOLUME 10, NUMBER | 

Initial wide-area

 
 
  = 
Original system
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Figure |.

ensuing years, commercial and research teams have ex-
plored mechanical, magnetic, acoustic, inertial, and op-
tical technologies. Complete surveys include Bhatnagar
(1993); Burdea & Coiffet (1994); Meyer, Applewhite,
& Biocca (1992); and Mulder (1994a, 1994b, 1998).
Commercial magnetic tracking systems for example

(Ascension, 2000; Polhemus, 2000) have enjoyed popu-
larity as a result of a small user-worn component and
relative ease of use. Recently, inertial hybrid systems

(Foxlin, Harrington, & Pfeifer, 1998; Intersense, 2000)
have been gaining popularity for similar reasons, with
the added benefit of reduced high-frequency noise and
direct measurements ofderivatives.

An early example of an optical system for tracking or
motion capture is the Twinkle Box by Burton (Burton,
1973; Burton & Sutherland, 1974). This system mea-

sured the positions of user-wornflashing lights with
optical sensors mounted in the environmentbehindro-
tating slotted disks. The Se/spot system (Woltring, 1974)
used fixed, camera-like, photodiode sensors and target-

mountedinfrared light-emitting diodes that could be

tracked in a one-cubic-meter volume. Beyond the

HiBall Tracking System, examples of current optical
tracking and motion-capture systems include the Flash-

Simpler LED panels
andoff-line calibration

SCAAT and

autocalibration

predict| |
  

 
The HiBall The HiBall system

Point and Pixsys systems by Image Guided Technologies
(IGT, 2000), the /aserBIRD system by Ascension Tech-
nology (Ascension, 2000), and the CODA Motion Cap-

ture System by B & L Engineering (BL, 2000). These
systems employ analog optical-sensor systems to achieve
relatively high sample rates for a moderate numberof
targets. Digital cameras (two-dimensional, image-forming
optical devices) are used in motion-capture systems such
as the HiRes 3D Motion Capture System by the Motion

Analysis Corporation (Kadaba & Stine, 2000; MAC,
2000) to track a relatively large numberoftargets,al-
beit at a relatively low rate because of the need for 2-D
image processing.

1.2 Previous Work at UNC-ChapelHill

As part of his 1984 dissertation on Self-Tracker,

Bishop put forward the idea of outward-looking track-

ing systems based on user-mountedsensorsthat esti-

mate user pose! by observing landmarksin the environ-
ment (Bishop, 1984). He described two kinds of

1. We use the word pose to indicate both position and orientation
(six degrees of freedom).
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Figure 2.

landmarks: high signal-to-noise-ratio beacons such as

light-emitting diodes (LEDs) and low signal-to-noise-

ratio landmarks such as naturally occurring features.

Bishop designed and demonstrated custom VLSI chips

(figure 2) that combined image sensing and processing

onasingle chip (Bishop & Fuchs, 1984). The idea was

to combine multiple instances of these chips into an

outward-looking cluster that estimated cluster motion

by observing natural features in the unmodified environ-

ment. Integrating the resulting motion to estimate pose

is prone to accumulating error, so further development

required a complementary system based oneasily de-

tectable landmarks (LEDs) at known locations. This

LED-based system was the subject of a 1990 disserta-

tion by Jih-Fang Wang (Wang, 1990).

In 1991, we demonstrated a working,scalable, elec-

tro-optical head-tracking system in the Tomorrow’s Re-

alities gallery at that year’s ACM SIGGRAPHconfer-

ence (Wanget al., 1990; Wang, Chi, & Fuchs, 1990;

Wardet al., 1992). The system (figure 3) used four,

head-worn, lateral-effect photodiodes that looked up-

ward at a regulararray of infrared LEDsinstalled in pre-

cisely machinedceiling panels. A user-worn backpack
contained electronics that digitized and communicated

the photo-coordinates of the sighted LEDs. Photo-

grammetric techniques were used to computea user’s

head pose using the known LED positions and the cor-

responding measured photo-coordinates from cach

LEPD sensor (Azuma & Ward, 1991). The system was

ground-breaking in that it was unaffected by ferromag-

 
 
Figure 3.

netic and conductive materials in the environment, and

the working volume of the system was determined

solely by the numberofceiling panels. (See figure 3,

top.)
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Figure 4.

1.3 The HiBall Tracking System .

In this article, we describe a new and vastly im-

proved version of the 1991 system. Wecall the new sys-

tem the HiBall Tracking System. Thanksto significant

improvements in hardware and software, this HiBall

system offers unprecedented speed, resolution, accuracy,

robustness, and flexibility. The bulky and heavy sensors

and backpack of the previous system have been replaced
by a small HiBall unit (figure 4, bottom). In addition,

the precisely machined LED ceiling pancls of the previ-
ous system have been replaced by looser-tolerance pan-
els that are relatively inexpensive to make and simple to
install (figure 4, top; figure 10). Finally, we are using an
unusual Kalman-filter-based algorithm that generates

very accurate pose estimates at a high rate with lowla-
tency, and that simultaneouslyself-calibrates the system.

As a result of these improvements, the HiBall Track-

ing System can generate more than 2,000 poseesti-

mates per second, with less than 1 msoflatency, better

than 0.5 mmand 0.03 deg. of absolute error and noise,
everywhere in a 4.5 m X 8.5 m room (with more than
two meters of heightvariation). The area can be ex-
panded by adding more panels, or by using checker-
board configurations that spread panels overa larger
area. The weight of the user-worn HiBall is approxi-

mately 300 grams, makingit lighter than one optical
sensor in the 1991 system. Multiple HiBall units can be

daisy-chained together for head or hand tracking, pose-
aware input devices, or precise 3-D point digitization
throughoutthe entire working volume.

2 Design Considerations

In all of the optical systems we have developed
(see section 1.2), we have chosen what wecall an imside-
looking-out configuration, in which the optical sensors
are on the (moving) user and the landmarks(for in-
stance, the LEDs) arefixed in the laboratory. The corre-

sponding outside-looking-in alternative would be to
place the landmarks onthe user and to fix the optical
sensors in the laboratory. (One can think about similar
outside-in and inside-out distinctions for acoustic and

magnetic technologies.) The two configurations are de-

picted in figure 5.
There are some disadvantages to the inside-looking-

out approach. For small or medium-sized working vol-

umes, mounting the sensors on the user is more chal-
lenging than mounting them in the environment.It is
difficult to make user-worn sensor packaging small, and
communication from the moving sensors to the rest of

the system is more complex. Incontrast, there are fewer
mechanical considerations when mounting, sensors in

the environmentfor an outside-looking-in configura-

tion. Because landmarks can berelatively simple, small,
and cheap, they can often be located in numerousplaces
on the user, and communication from the user to the

rest of the system canberelatively simple or even un-
necessary. This is particularly attractive for full-body
motion capture (BL, 2000; MAC, 2000).

However, there are somesignificant advantages to the

inside-looking-out approach for head tracking. By
operating with sensors on the user rather than in the
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head-mounted landmarks

 
Outside-Looking-In

Figure 5.

environment, the system can bescaled indefinitely. The

system can evolve from using dense active landmarks to
fewer, lower signal-to-noise ratio, passive, and some day
natural features for a Self-Tracker that operates entirely

without explicit landmark infrastructure (Bishop, 1984;

Bishop & Fuchs, 1984; Welch, 1995).
Theinside-looking-out configuration is also moti-

vated by a desire to maximizesensitivity to changes in

user pose. In particular, a significant problem with an
outside-looking-in configuration is that only position
estimates can be madedirectly, and so orientation must

be inferred fromposition estimates of multiple fixed
landmarks. Theresult is that orientation sensitivity is a
function of both the distance to the landmarks from the

sensor and the baseline between the landmarks on the

user. In particular, as the distance to the user increases
or the baseline between the landmarks decreases, the

sensitivity goes down.Forsufficient orientation sensitiv-
ity, one would likely need a baseline thatis considerably
larger than the user’s head. This would be undesirable

from an ergonomic standpoint and could actually re-
strict the user’s motion.

lab-mounted

(fixed) landmarks

Welch et al. 5

head-mounted sensor

 
- Inside-Looking-Out

With respect to translation, the change in measured
photo-coordinates is the same for an environment-

mounted(fixed) sensor and user-mounted (moving)
landmarkasit is for a user-mounted sensor and an envi-

ronment-mounted landmark. In other words, the trans-

lation and corresponding sensitivity are the same for
either case.

3 System Overview

The HiBall Tracking System consists of three

main components (figure 6). An outward-looking
sensing unit we call the HiBal/is fixed to each user to
be tracked. The HiBall unit observes a subsystem of

fixed-location infrared LEDs wecall the Ceiling.”
Communication and synchronization between the

host computer and these subsystems is coordinated

2. At the present time, the LEDsare in fact entirely located in the
ceiling of our laboratory (hence the subsystem name Ceiling), but
LEDs could as well be located on walls or other fixed locations.
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Figure 6.

by the Ceiling-HiBall Interface Board (CIB). In sec-
tion 4, we describe these components in more detail.

Each HiBall observes LEDs through multiple sen-

sor-lens views that are distributed overa large solid

angle. LEDs are sequentially flashed (one at a time)
such that they are seen via a diverse set of views for
each HiBall. Initial acquisition is performed using a
brute-force search through LED space, but, once ini-

tial lock is made, the selection of LEDsto flashis tai-
lored to the views of the active HiBall units. Pose es-

timates are maintained using a Kalman-filter-based

prediction-correction approach knownas single-
constraint-at-a-time (SCAAT) tracking. This tech-
nique has been extended to provideself-calibration of

the ceiling, concurrent with HiBall tracking. In sec-
tion 5, we describe the methods we employ, includ-

ing the initial acquisition process and the SCAATap-
proach to pose estimation, with the autocalibration
extension.

Ceiling-HiBall Interface
Board (CIB)

4 System Components

4.1 The HiBall

The original electro-optical tracker (figure 3, bot-
tom) used independently housed latcral-effect photo-
diode units (LEPDs)attached to a lightweight tubular
framework. As it turns out, the mechanical framework

would flex (distort) during use, contributing to estima-
tion errors. In part to address this problem, the HiBall

sensor unit was designedasasingle, rigid, hollow ball

having dodecahedral symmetry, with lenses in the upper

six faces and LEPDsontheinsides of the opposing six

lower faces (figure 7). This immediately gives six pri-

mary “camera” views uniformly spaced by 57 deg. The

viewsefficiently share the sameinternal air space and are
rigid with respect to each other. In addition,light enter-
ing anylens sufficiently off-axis can be scen by a neigh-
boring LEPD,givingrise to five secondary views through
the top or central lens, and three secondary views
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Figure 7.

through the five other lenses. Overall, this provides 26

fields of view that are uscd to sense widely separated

groups of LEDsin the environment. Although the extra
views complicate theinitialization of the Kalmanfilter as

described in section 5.5, they turn out to be ofgreat

benefit during steady-state tracking by effectively in-

creasing the overall HiBallfield of view withoutsacrific-

ing optical-sensorresolution.

Thelenses are simple plano-convex fixed-focus lenses.

Infrared (IR) filtering is provided by fabricating the
lenses themselves from RG-780 Schottglass filter mate-
rial which is opaque to better than 0.001% forall visible

wavelengths and transmissive to better than 99% for IR

wavelengths longer than 830 nm. The longwavefilter-

ing limit is provided by the DLS-4 LEPDsilicon photo-

detector (UDT Sensors, Inc.) with peak responsivityat
950 nm butessentially blind above 1150 nm.

The LEPDsthemselves are not imaging devices;

rather, they detect the centroid of the luminous flux

incident on the detector. The x-position of the centroid

determines the ratio of two output currents, and the

Figure 8.

y-position determinesthe ratio of two other output cur-
rents. Thetotal output current of each pair are com-
mensurate and are proportional to the total incident

flux. Consequently, focusis not an issue, so the simple
fixed-focus lenses work well over a range of LED dis-
tances from about halfa meter to infinity. The LEPDs
and associated electronic components are mounted on a
custom rigid-flex printed circuitboard (figure 8). This
arrangement makesefficient use of the internal HiBall

volume while maintaining isolation between analog and
digital circuitry, and increasingreliability by alleviating
the need for intercomponent mechanical connectors.

Figure 9 shows the physical arrangementof the
folded electronics in the HiBall. Each LEPD has four

transimpedance amplifiers (shown together as one

“Amp”in figure 9), the analog outputs of which are
multiplexed with those of the other LEPDs, then sam-

pled, held, and converted by four 16-bit Delta-Sigma
analog-to-digital (A/D) converters. Multiple samples
are integrated via an accumulator. The digitized LEPD
data are organized into packets for communication back
to the CIB. The packets also contain information to

assist in error detection. The communication protocolis
simple, and, while presently implemented by wire, the
modulation schemeis amenable to a wireless implemen-
tation. The present wired implementation allows multi-

ple HiBall units to be daisy-chained, so a single cable
can support a user with multiple HiBall units.

Ce
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4.2 The Ceiling

As presently implemented, the infrared LEDsare
packaged in 61 cm square panelstofit a standard false-
ceiling grid (figure 10, top). Each panel usesfive printed
circuit boards: a main controller board and four identi-

cal transverse-mountedstrips (bottom). Eachstrip is

populated with eight LEDsfor a total of 32 LEDs per
panel. We mount the assembly on top of a metal panel

such that the LEDsprotrude through 32 corresponding

holes. The design results in a ceiling with a rectangular
LED pattern with periods of 7.6 cm and 15.2 cm. This

spacing is used forthe initial estimates of the LED posi-
tions in the lab; then, during normal operation, the

SCAATalgorithm continually refines the LED position

 
 

 
 
 

rao}verter

Accumulator
 

 

Controller

estimates (section 5.4). The SCAATautocalibration not

onlyrelaxes design andinstallation constraints, but pro-

vides greater precision in the face of initial and ongoing
uncertainty in the ceiling structure.

Wecurrently have enough panels to cover an area

approximately 5.5 m by 8.5 m with a total of approxi-
mately 3,000 LEDs.* Thepanels are daisy-chained to
each other, and pancl-selection encodingis position
(rather than device) dependent. Operational commands
are presentedto thefirst panel of the daisy chain. At

each panel, if the panel-select code is zero, the

3. The area is actually L-shaped; a small storage room occupies onecorner.
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Figure 10.

controller decodes and executes the operation; other-
wise, it decrements the panel-select code andpassesit
along to the next panel (controller). Upon decoding, a
particular LEDis selected and the LEDis energized.
The LED brightness (power)is selectable for automatic
gain control as described in section 5.2.

Wecurrently use Siemens SFH-487P GaAs LEDs,

which provide both a wide-angle radiation pattern and
high peak power, emitting at a center wavelength of
880 nm in the near IR. These devices can be pulsed up
to 2.0 Amps for a maximum duration of 200 ys with a

1:50 (on:off) duty cycle. Although the currentceiling
architecture allows flashing of only one LED ata time,
LEDs maybeflashed in any sequence. As such, nosin-

gle LED can be flashed too long or too frequently. We
include both hardware and software protection to pre-
ventthis.

4.3 The Ceiling-HiBall Interface Board

The Ceiling-HiBall Interface Board (CIB)
(figure 11) provides communication and synchroniza-
tion between a host personal computer, the HiBall

(section 4.1), and the ceiling (section 4.2). The CIB has
four ceiling ports allowing interleaving of ceiling panels
for up to four simultaneous LED flashes and/or higher

Welch etal. 9

 
Figure II.

ceiling bandwidth. (The ceiling bandwidth is inherently
limited by LED powerrestrictions as described in sec-

tion 4.2, but this can be increased byspatially multiplex-
ing the ceiling panels.) The CIB has twotether inter-

faces that can communicate with up to four daisy-
chained HiBall units. The full-duplex communication

with the HiBall units uses a modulation scheme (BPSK)
allowing future wireless operation. The interface from
the CIB to the host PC is the stable IEEE1284C ex-

tended parallel port (EPP) standard.

The CIB comprises analog drive and receive compo-
nents as well as digital logic components. The digital
components implementstore and forward in both direc-

tions and synchronize the timing of the LED “on”in-

terval within the HiBall dark-light-dark intervals
(section 5.2). The protocol supports full-duplex flow
control. The data are arranged into packets that incor-
porate error detection.

5 Methods

5.1 Bench-Top (Offline) HiBall
Calibration

After each HiBall is assembled, we perform anoff-
line calibration procedure to determine the correspon-
dence between image-plane coordinates and rays in
space. This involves more than just determining the
view transform for each of the 26 views. Nonlinearities

in the silicon sensor and distortions in the lens (such as
spherical aberration) cause significant deviations from a

simple pinhole camera model. We dealt with all of these

issues through the use of a two-part camera model. The

first part is a standard pinhole camera represented by a
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3 X 4 matrix. The secondpart is a table mappingreal

image-plane coordinates to ideal image-plane coordi-
nates.

Both parts of the camera model are determined using
a calibration procedure that relies on a goniometer (an
angular positioning system) of our own design. This
device consists of two servo motors mounted together

such that one motorprovides rotation aboutthe vertical
axis while the second motorprovides rotation about an
axis orthogonalto vertical. An important characteristic
of the goniometeris that the rotational axes of the two
motors intersect at a point at the center of the HiBall

optical sphere; this pointis defined as the origin of the
HiBall. (It is this origin that provides the reference for
the HiBall state during runtimeas described in section
5.3.) The rotational positioning motors were rated to
provide twenty arc-second precision; we further cali-
brated them to six arc seconds using a laboratory grade

theodolite—an angle measuring system.

To determine the mapping between sensor image-

plane coordinates and three-space rays, we use a sin-
gle LED mountedat a fixed location in the laboratory
such thatit is centered in the viewdirectly out of the

top lens of the HiBall. This ray defines the z or up
axis for the HiBall coordinate system. We sample

other rays by rotating the goniometer motors under
computercontrol. We sample each view with rays
spaced abouteverysix minutes of arc throughout the
field of view. We repeat cach measurement 100 times
to reduce the effects of noise on the individual mea-

surements and to estimate the standard deviation of

the measurements.

Given the tables of approximately 2,500 measure-
ments for each of the 26 views, wefirst determine a

3 X 4 view matrix using standard linear least-squares

techniques. Then, we determine the deviation of each
measured point from that predicted by the ideal linear

model. These deviations are resampled into a 25 x 25

grid indexed by sensor-plane coordinates using a simple
scan-conyersion procedure and averaging. Given a mea-

surement froma sensor at runtime (section 5.2), we

convert it to an “ideal” measurement by subtracting a

deviation bilinearly interpolated from the nearest four
entries in the table.

5.2 Online HiBall Measurements

Uponreceiving a command from the CIB (section
4.3), which is synchronized with a CIB commandto the
ceiling, the HiBall selects the specified LEPD andper-
forms three measurements, one before the LED flashes,

one during the LED flash, and one after the LED flash.
Knownas “dark-light-dark,” this technique is used to
subtract out DC bias, low-frequency noise, and back-

groundlight from the LED signal. We then convert the
measured sensor coordinates to “ideal” coordinates us-

ing the calibration tables described in section 5.1.
In addition, during runtime we attempt to maximize

the signal-to-noise ratio of the measurement with an
automatic gain-control scheme. For each LED, westore
a target signal strength factor. We compute the LED
current and numberofintegrations (of successive accu-

mulated A/D samples) bydividing this strength factor
bythe square ofthe distance to the LED, estimated
from the current position estimate. After a reading, we
lookat the strength of the actual measurement. Ifit is
larger than expected, we reduce the gain;if it is less than
expected, we increase the gain. The increase and de-
crease are implementedas online averages with scaling
such that the gain factor decreases rapidly (to avoid
overflow) andincreases slowly. Finally, we use the mea-
sured signal strength to estimate the noise on the signal
using (Chi, 1995), and then use this as the measure-
mentnoise estimate for the Kalmanfilter (section 5.3).

5.3 Recursive Pose Estimation

(SCAAT)

The online measurements (section 5.2) are used to
estimate the pose of the HiBall during operation. The
1991 system collected a group of diverse measurements

for a variety of LEDs and sensors, and then used a

method ofsimultaneous nonlinear equations called col-
linearity (Azuma & Ward, 1991) to estimate the pose

of the sensorfixture shownin figure 3 (bottom). There
was one equation for each measurement, expressing the

constraint that a ray fromthe front principal point of

the sensor lens to the LED must be collinear with a ray
from therear principal point to the intersection with the
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sensor. Each estimate made use of a group of measure-
ments (typically twenty or more) that together overcon-
strained the solution.

This multiple constraint method had several draw-

backs. First, it had a significantly lower estimate rate due

to the needto collect multiple measurementsperesti-
mate. Second, the system of nonlinear equations did not
accountfor the fact that the sensorfixture continued to

move throughout the collection of the sequence of
measurements. Instead, the methodeffectively assumes
that the measurements were taken simultaneously. The
violation of this simultaneity assumption could intro-
duce significant error during even moderate motion.

Finally, the method provided no meansto identify or
handle unusually noisy individual measurements. Thus,
a single erroneous measurement could cause an estimate

to jump awayfrom an otherwise smoothtrack.

In contrast, the approach we use with the new HiBall

system producestracker reports as each new measure-

mentis made, rather than waiting to form a complete
collection of observations. Because single measurements
underconstrain the mathematical solution, we refer to

the approachas single-constraint-at-a-time (SCAAT)
tracking (Welch, 1996; Welch & Bishop, 1997). The
keyis that the single measurements provide some infor-
mation about the HiBall’s state, and thus can be used to

incrementally improve a previous estimate. Weinten-
tionally fuse each individual “insufficient” measurement

immediately as it is obtained. With this approach, weare

able to generate estimates more frequently, with less
latency, and with improved accuracy, and weare able to
estimate the LED positions online concurrently while

tracking the HiBall (section 5.4).

We use a Kalmanfilter (Kalman, 1960) to fuse the
measurements into an estimate of the HiBall state x (the

pose of the HiBall). We use the Kalmanfilter—a mini-
mum-variance stochastic estimator— both because the

sensor measurementnoise and the typical user-motion
dynamics can be modeled as normallydistributed ran-
dom processes, and because we want anefficient online
method of estimation. A basic introduction to the Kal-

manfilter can be found in chapter 1 of Maybeck
(1979), and a more complete introductory discussion
can be found in Sorenson (1970), which also contains

Welch et al. II

someinteresting historical narrative. More-extensive

references can be found in Brown and Hwang (1992),
Gelb (1974), Jacobs (1993), Lewis (1986), Maybeck
(1979), and Welch and Bishop (1995). Finally, we
maintain a Kalman filter Web page (Welch & Bishop,
2000) with introductory, reference, and research mate-
rial.

The Kalmanfilter has been used previously to address
similar or related problems. See, for example, Az-
arbayejani and Pentland (1995), Azuma (1995), Emura
and Tachi (1994), Fuchs (Foxlin) (1993), Mazuryk and
Gervautz (1995), and Van Pabst and Krekel (1993). A
relevant example of a Kalmanfilter used for sensorfu-
sion in a wide-area tracking system is given in Foxlin et
al. (1998), which describes a hybrid inertial-acoustic

system that is commercially available today (Intersense,
2000).

The SCAATapproachis described in detail by Welch
(1996), and Welch and Bishop (1997). Included there

is discussion of the benefits of using the approach, as
opposed to a multiple-constraint approach suchas that
by Azuma and Ward (1991). However, one key benefit
warrants discussion here. There is a direct relationship
between the complexity of the estimation algorithm, the

corresponding speed (execution time perestimation cy-
cle), and the change in HiBall pose between estimation

cycles (figure 12). As the algorithmic complexity in-
creases, the execution time increases, which allows for

significant nonlinear HiBall motion between estimation

cycles, which in turn implies the need for a more com-
plex estimation algorithm. ‘

The SCAATapproach, on the other hand,is an at-

tempt to reverse this cycle. Because we intentionally use
a single constraint per estimate, the algorithmic com-
plexity is drastically reduced, which reduces the execu-
tion time, and hence the amount of motion between

estimation cycles. Because the amount of motion is lim-

ited, we are able to use a simple dynamic (process)
model in the Kalmanfilter, which further simplifies the
computations. In short, the simplicity of the approach
meansthat it can run veryfast, which meansit can pro-
duce estimates very rapidly, with low noise.

The Kalman filter requires both a modelofthe pro-
cess dynamics and a modelof the relationship between
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Figure 12,

the process state and the available measurements. In

part due to the simplicity of the SCAAT approach, we
are able to use a simple position-velocity (PV) process

model (Brown & Hwang, 1992). Consider the simple

example state vector x(t) = [x,(¢), x,(t)]", where the
first element «,(t) is the pose (position or orientation)
and the second element x,(#) is the corresponding ve-
locity; thatis, x,(t) = (d/dt) «,(¢). We modelthe con-

_ tinuous change in the HiBall state with the simple dif-
ferential equation

fodalle
where z(t) is a normally distributed white (in the fre-

(1)

quency spectrum) scalar noise process, and the scalar p

represents the magnitudeor spectral density of the

noise. We use a similar model with a distinct noise pro-

cess for each of the six pose elements. We determine the

individual noise magnitudes using an offline simulation

of the system and a nonlinear optimizationstrategy that
sccks to minimize the variance betweenthe estimated

pose and a knownmotion path. (See section 6.2.2.).
The differential equation (1) represents a continuous
integrated random walk, or an integrated Wiener or
Brownian-motionprocess. Specifically, we model each

componentofthe linear and angular HiBall velocities as

a random walk, and then use these (assuming constant

intermeasurementvelocity) to estimate the HiBall pose
at time ¢ + d¢as follows:

wera= [4 YK (2)
for each of the six pose elements. In addition toa rela-

tively simple process model, the HiBall measurement
modelis relatively simple. For any ceiling LED (section

4.2) and HiBall view(section 4.1), the 2-D sensor mea-
surement can be modeled as

[l= Le7e] @
where

Cy

| = VR"(hs ~~ Xz) (4)cz

Vis the camera viewing matrix fromsection 5.1, /,,. is
the position of the LED in the world, %,,,.
tion of the HiBall in the world, andRis a rotation ma-

is the posi-

trix correspondingto the orientation of the HiBall in

the world. In practice, we maintain the orientation of

the HiBall as a combination of a global (external to the

state) quaternion anda set of incremental angles as de-

scribed by Welch (1996) and Welch and Bishop (1997).

Because the measurement model (3) and (4) is non-

linear, we use an extended Kalmanfilter, making use of

the Jacobian of the nonlinear HiBall measurement
model to transform the covariance of the Kalmanfilter.

Although this approach does not preserve the presumed
Gaussian nature ofthe process, it has been used success-

fully in countless applications since the introduction of
the (linear) Kalmanfilter. Based on observations ofthe

statistics of the HiBallfilter residuals, the approach also
appears to work well for the HiBall. In fact, it is reason-

able to expect that it would, as the speed of the SCAAT
approach minimizes the distance (in state space) over

which we use the Jacobian-based linear approximation.
This is another example of the importanceofthe rela-

tionship shownin figure 12.
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At each estimationcycle, the next of the 26 possible
views is chosen randomly. Four points corresponding to
the corners of the LEPD sensorassociated with that

vieware projected into the world using the 3 x 4 view-
ing matrix for that view, along with the currentesti-

mates of the HiBall pose. This projection, which is the
inverse of the measurementrelationship described
above, results in four rays extending from the sensor
into the world. Theintersection of these rays and the
approximate planeofthe ceiling determines a 2-D

bounding box onthe ceiling, within which are the can-
didate LEDsfor the current view. One of the candidate

LEDsis then choseninaleast-recently-used fashion to
ensure a diversity of constraints.

Once a particular view and LED have been chosen in

this fashion, the CIB (section 4.3) is instructed toflash
the LED and take a measurementas describedin sec-

tion 5.2. This single measurementis compared with a
prediction obtained using equation (3), and the differ-
ence (or residual) is used to update the filter state and

covariance matrices using the Kalman gain matrix. The
Kalman gain is computed as a combinationofthe cur-
rentfilter covariance, the measurement noise variance

(section 6.2.1), and the Jacobian of the measurement

model. This recursive prediction-correction cycle con-
tinues in an ongoingfashion, a single constraint at a
time.

A moredetailed discussion of the HiBall Kalman filter

and the SCAATapproachis beyond the scope ofthis
paper. For additional information see Welch (1996) and
Welch and Bishop (1997),

5.4 Online LED Autocalibration

Along with the benefit ofsimplicity and speed, the
SCAATapproach offers the additional capability of be-
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ing able to estimate the 3-D positions of the LEDs in

the world concurrently with the pose of the HiBall, on-
linc, in real time. This capability is a tremendous benefit
in terms of the accuracy and noise characteristics of the

estimates. Accurate LED position estimates are so im-
portantthat, prior to the introduction of the SCAAT

approach,a specialized offline approach was developed
to address the problem (Gottschalk & Hughes, 1993),

The method we now use for autocalibration involves

defining a distinct SCAAT Kalmanfilter for each LED.

Specifically, for each LED, we maintainastate / (esti-
mate of the 3-D position) and a 3 X 3 Kalmanfilter

covariance. At the beginning of each estimation cycle,
we form an augmentedstate vector x using the
appropriate LED state and the current HiBallstate:

x = [x7, /"]*. Similarly, we augment the Kalmanfilter
error covariance matrix with that of the LED filter. We

then follow the normalsteps outlined in section 5.3,
with the result being that the LED portion ofthefilter
state and covariance is updated in accordance with the

measurementresidual. At the end ofthe cycle, we ex-
tract the LED portionsofthe state and covariance from

the augmentedfilter, and save them externally. Theef-
fect is that, as the system is being used,it continually
refines its estimates of the LED positions, thereby con-
tinually improvingits estimates of the HiBall pose.
Again, for additional information, see Welch (1996)
and Welch and Bishop (1997).

5.5 Initialization and Reacquisition

The recursive nature of the Kalmanfilter (section
5.3) requires that the filter be initialized with a known

state and corresponding covariance before steady-state
operation can begin. Such aninitialization (or aequisi-
tion) must take place priorto any tracking session, but
also uponthe (rare) occasion whenthe filter diverges
and “loses lock”as a result of blocked sensorviews, for
example.

The acquisition process is complicated by the fact that
each LEPD sees a numberofdifferent widely separated
views (section 4.1). Therefore, detecting an LED pro-
vides at best an ambiguousset of potential LED direc-

tions in HiBall coordinates. Moreover, before acquisition,
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no assumptions can be madeto limit the search space of
visible LEDs.As such,a relatively slow brute-force algo-
rithm is used to acquire lock.

Webegin with an exhaustive LED scan ofsufficiently
fine granularity to ensure that the central primary field
ofview is not missed. For the presentceiling, we flash
every thirteenth LED in sequence,and look forit with
the central LEPD until we get a hit. Then, a sufficiently
large patch of LEDs,centered onthehit, is sampled to
ensure that several of the views of the central LEPD will

be hit. The fields of view are disambiguated by using the
initial hits to estimate the yaw of the HiBall (rotation
aboutvertical); finally, more-selective measurementsare
usedto refine the acquisition estimate sufficiently to
switch into tracking mode.

6 Results

Three days after the individual pieces of hardware
were shownto be functioning properly, we demon-
strated a complete working system. After months of
subsequent tuning and optimization, the system contin-
ues to perform both qualitatively and quantitatively as
well—or, in some respects, better—than wehad antici-

pated(section6.1), The articulation ofthis successis
not meantto be self-congratulatory, but to give credit
to the extensive and careful modeling and simulation
performedprior to assembly (section 6.2). In fact, the
Kalmanfilter parameters found by the optimization pro-
cedure describedin section 6.2.2 were, and continue to
be, used directly in the working system. Likewise, much
of the software written for the original simulations con-
tinues to be used in the working system.

6.1 Online Operation

The HiBall system is in daily use as a tool for edu-
cation and research, For example, it was used by Martin
Usohetal. to perform virtual reality experiments com-
paring virtual “flying,” walkingin place, and real walk-
ing (Usohet al., 1999). (See figure 13.) The researchers
used the HiBall system to demonstrate that, as a mode
of locomotion, real walking is simpler, morestraightfor-

  
Figure 13.

ward, and morenatural, than both virtual flying and
walking in place. The unprecedented combination of
large working volume and the high performance of the
HiBall system led the researchers to claim that there was

nowhereelse that they could have meaningfully per-
formed the experiments. .

6.1.1 Robustness. As a result of a mechanical

design tradeoff, eachsensorfield ofview is less than six

degrees. The focal length is set by the size of the sensor
housing, which is set by the diameter of the sensors

themselves. Energetics is also a factor, limiting how
small the lenses can be while maintaining sufficient
light-collecting area. As a result of these design
tradeofts, even a momentary small error in the HiBall
pose estimate can cause the recursive estimates to di-

verge and the system to lose lock after only a few LED
sightings. And yet the systemis quite robust. In prac-
tice, users can jump around,crawlon the floor, lean
over, even wave their hands in front of the sensors, and
the system does notlose lock. During onesession, we
were using the HiBall as a 3-D digitization probe, a Hi-
Ball onthe end ofa pencil-shapedfiberglass wand(fig-
ure 14, left), We laid the probe down on a table at one
point, and were amazedto later notice thatit wasstill

tracking, even though it was observing onlythree or
four LEDsnearthe edgeofthe ceiling. We picked up
the probe and continued using it, without it ever losing
lock.

6.1.2 Estimate Noise. The simplest quantitative
measurementofestimate noise is the standard deviation

of the estimates when a HiBallis held stationary. With a
trackeras sensitive as the HiBall, it is important to be
certain thatit really is stationary. ‘Cheraised floor in our
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Figure 14.

laboratory allows motion, for example when a person

walks by, thatis larger than the expected error in the
HiBall. We made careful measurements by resting the

support for the HiBall on the concrete subfloor in our
laboratory. The standard deviation of the HiBall esti-

mates while stationary was approximately 0.2 mm and
0.03 deg. The distribution of the noise fit a normal dis-

tribution quite well.
To make measurements of the noise when the HiBall

is in motion, werely on the assumption that almostall

of the signal resulting from normal human motionis at

frequencies below 2 Hz. We use a high-passfilter

(Welch, 1967) on the pose estimates, and assume the
outputis noise. ‘The resulting statistics are comparable

to those made with the HiBall stationary, except at

poses for which there are very few LEDsvisible in only

one or two views. In these poses, near the edge of the

ceiling, the geometry of the constraints results in ampli-

fication oferrors. For nearly all of the working volume
of the tracker, the standard deviation of the noise on

measurements while the HiBall is still or movingis

about 0.2 mmand 0.03 deg.

6.1.3 Absolute Accuracy. We have performed

several experiments to measure the accuracy of the Hi-
Ball system; however, the most objective experiment
tookplace in July of 1999. Boeing Phantom Workssci-
entists David Himmel and David Princchouse (Associate
Technical Fellows) visited our laboratoryfor two days to
assess the accuracy of the HiBall system andits potential
use in providing assembly workers with real-time feed-
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back on the pose of handheld pneumatic drills during
the aircraft manufacturing process. (The right image in

figure 14 shows the HiBall attached to a pneumatic
drill.)

Thescientists designed some controlled experiments
to assess the accuracy of the HiBall system. They

brought with them an aluminum “coupon”(see figure
14 and figure 15) with 27 shallow holes drilled on 1.5-
in. centers using a numerically controlled milling ma-
chine with a stated accuracy of 1/1000 in. The holes

(except one) were notactually drilled through the cou-
pon, but instead formed conical dimples with a fine
point at the center. The center-most hole (hole 14) was
actually drilled completely through to provide a mount-
ing point. Using that hole, we attached the coupon to a
military-grade tripod situated on the(false) floor of our
laboratory, under the HiBall ceiling. As shownin the
left image of figure 14, we mounted the HiBall on our
standard probe,a rigid plastic, pencil-like object with a
pointed steel tip. We used one of the couponholes to
perform our normal HiBall probecalibration procedure,
which involves placing thetip of the probein the hole,
pivoting the probe about the point while collecting sev-
eral seconds of pose data, and then estimating the trans-
formation from the HiBall to the probetip. (We have a

standard applicationthatassists us with this procedure.)
Together with Himmel and Princehouse, we performed
several experiments in which weplaced the tip of the
HiBall probe in each hole in succession, sampling the
HiBall pose estimates only when wepressed the probe
button. We performedseveral such sessions over the
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Figure 15.

course of one afternoon and the next morning. (We

recalibrated the probe in the morning.)

For the data from eachsession, we useda least-

squares optimization methodto find an estimate of the
full 6-D transformation (translation and rotation) that

minimized the Euclidian distance from the probe data

to a 2-D plane with 27 holes on 1.5-in. spacing. The
resulting fit consistently corresponded to an average
positioning error of 20/1000 in. (0.5 mm) at the metal

tip of the HiBall probe, which is within the target Boe-

ing specifications. The system might actually be more
accurate than our experiments indicated. For one, the
diameter of the (rounded) tip of the HiBall probeis 0.5

mm. In addition,at the time of the experiments, we

unfortunately did not heed our own advice to position
the experimental platform on the rigid concrete sub-

floor. In any case, we are encouragedbytheresults, and

are excited about the possibility that the HiBall system

has uses beyondtracking for virtual reality.

6.2 Offline Simulation and Modeling

During the design of the HiBall system, we made
substantial use of simulation, in some domainsto a very

detailed level. For example, Zemax (Focus Software,

1995) was used extensively in the design and optimiza-

tion of the optical design, including the design of the

filter glass lenses, and geometryof the optical-compo-

nent layout. AutoCAD wasused to design, specify, and

fit check the HiBall body mechanicals, to visualize the

physical design, and to transmit the design to our col-

laborators at the University of Utah for fabrication by
the Alpha 1 System (Thomas, 1984; University of Utah

Computer Science, 1999). A custom ray-tracing system

was built by Stefan Gottschalk (UNC) for the purpose

of evaluating the optical behavior and energetics of the
primary, secondary, andtertiary fields of view; the re-

sults were used by the noise model developed by Chi
(1995) as described in section 6.2.1.

In addition, a complete simulator of the system was
written in C++. This simulator, discussed further in

section 6.2.2, was used to evaluate the speed, accuracy,

and robustness of the system. In addition, it was used to

“tune” the Kalmanfilter for realistic motion dynamics.
This simulator continues to be used to evaluate me-

chanical, optical, and algorithmic alternatives.

6.2.1 HiBall Measurement Noise Model.

Signal-to-noise performance is a prime determiner of
both accuracy and speed ofthe system, so an in-depth

study (Chi, 1995) was performed to develop a detailed
noise modelaccounting for properties of the LED, the
LEPD(sensor), the optical system, the physical distance

and pose,the electronics, and the dark-light-dark inte-

grations described in section 5.2. The predominant
noise source is shot noise, with Johnson noise in the

sheetresistivity of the LEPD surfaces being the next

mostsignificant. Careful measurements madein the lab-

oratory with the actual devices yielded results that were

almost identical to those predicted by the sophisticated
model in Chi (1995). A simplified version of this model

is used in the real system with the automatic gain con-

trol (section 5.2) to predict the measurementnoise for

the Kalmanfilter (section 5.3).

6.2.2 Complete System Simulations. To pro-

ducerealistic data for developing and tuning ouralgo-

rithms, we collected several motion paths (sequences of

pose estimates) from ourfirst-generation clectro-optical
tracker (figure 3) at its 70 Hz maximumreportrate.

These paths were recorded from both naive users visit-

ing our monthly “demo days” and from experienced
users in our labs. In the same fashion as we had done

for Azuma and Bishop (1994a), wefiltered the raw path

data with a noncausal zero-phase-shift, low-passfilter to

climinate energy above 2 Hz. The output ofthe low-
pass filtering was then resampled at whatever rate we
wanted to run the simulated tracker, usually 1,000 Hz.
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For the purposes of our simulations, we considered
these resampled pathsto be the “truth”—aperfect rep-
resentation ofa user’s motion. Tracking error was deter-
mined by comparing the true path to the estimated path

produced by the tracker.
The simulator reads camera models describing the 26

views, the sensor noise parameters, the LED positions
and their expected error, and the motion path described
above. Before beginning the simulation, the LED posi-
tions are perturbed from theirideal positions by adding
normallydistributed error to cach axis. Then, for cach
simulated cycle of operation, the “true” poses are up-

dated using the input motion path. Next, a viewis cho-
sen and a visible LED within that viewis selected, and

the image-plane coordinates of the LED onthe chosen
sensor are computed using the camera model for the
view and the LEDas described in section 5.3. ‘These

sensor coordinates are then perturbed based onthe sen-

sor noise model(section 6.2.1) using the distance and

angle to the LED. These noise-corrupted sensorread-
ings are then fed to the SCAATfilter to produce an up-
dated position estimate. The position estimate is com-
pared to the true position to produceascalar error
metric that is described next.

The error metric we used combinesthe error in pose

in a waythatrelates to the effects of tracker error on a

head-worndisplay user. We define a set of points ar-
rayed aroundthe user in a fixed configuration. We com-

pute two sets of coordinates for these points: the true

position using the true pose andtheir estimated position

using the estimated pose. The error metric is then the
sumof the distances betweenthe true and estimated

positionsof these points. By adjusting the distance of
the points from the user, we can control therelative

importanceof the orientation andthe positionerror in
the combined error metric. If the distance is small, then

the position error is weighted mostheavily;if the dis-
tanceis large, then the orientation erroris weighted
most heavily. Our two error metrics for the entire run
are the square root of the sum of the squaresofall the
distances, and the peak distance.

6.2.3 Tuning. Determining the magnitudes of
the SCAAT Kalmanfilter noise parameters (section 5.3)

is called system identification or tuning. We use Powell’s

method(Press, Teukolsky, Vetterling, & Flannery,

1990) to minimize the error metric described above.

Starting with a set of parameters, we run the simulator
over a full motion run to determinethe total error for

the run. The optimizer makes a small adjustment to the
parameters and the process is repeated. These runsre-

quired hours of computer time and someskill (and
luck) in choosing the initial parameters and step sizes.
Ofcourse, it is important to choose motion paths that

are representative of expected target motion. For exam-

ple, a runin whichthetargetis very still would result in
verydifferent tuning from a run in which the target

moyes very vigorously.

7 Future Work

7.1 improving the HiBall

The current SCAATfilter form (section 5.3) and

tuning values (section 6.2.3) are a compromise between

the responsiveness desired for high dynamics, and the
heavy filtering desired for smooth estimates during very
slow or no motion. As such, weare investigating the use

of a multimodal or multiple-model Kalmanfilter frame-

work(Bar-Shalom & Li, 1993; Brown & Hwang,

1992). A multiple-model implementation of the HiBall
should be able to automatically, continuously, and

smoothly choose between one Kalmanfilter tuned for
high dynamics and another tunedforlittle or no mo-
tion. We have this working in simulation, but not yet

implementedin the real system.
As mentionedin section 4.3, the system was designed

to support wireless communication between the HiBall
and the CIB, withoutsignificant modification or added

information overhead. Despite the fact that commercial
head-worn displays are themselves tethered at this time,

we are beginning work on a completely wireless HiBall
and head-worn display system. Wealso intend to use
the wireless HiBall with projector-based displays where

the user is otherwise wearing onlypolarized glasses.

Furthermore, the HiBall was designed with extra

built-in digital input-output capabilities. We are consid-
ering possibilities for providing access to thesesignals
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for (wireless) user-centered input devices and even
body-centric limb tracking.

Finally, we note that a private startup company called
3rdTech (3rdTech, 2000) has negotiated a technology
license with UNCfor the existing HiBall Tracking Sys-
tem. 3rdTech is now marketing an updated system with
simpler LED “strips” insteadofceiling panels.

7.2 Wide-Field-of-View HiBall

Beyondimproving the existing system, we con-

tinue to head downapath of research and development
that will lead to systems with reduced dependency on
the laboratory infrastructure. For example, our current
ceiling-panel design with 32 LEDsperpanel provides
far more dense coverage than webelieveis necessary.
The density ofceiling LEDsis a result ofdesign based
on theoriginal sensor fixture shownin figure 3. Given a
moresparse field of LEDs, we believe that we could

achievesimilar performance with a version of the HiBall

that has a small number of wide-field-of-view optical
sensor units. This would further reduce the packaging
size of the user-worn sensor component.

7.3 To the Hallway and Beyond

Byleveraging the knowledge gained from success-
ful workin the laboratory, our long-termgoalis to
achieve similar performancewithlittle or no explicit
infrastructure: for example, throughouta building or
even (some day) outdoors. Although high-performance
6-D tracking outdoors is a tremendouschallenge thatis
unlikely to be solved any time soon, we believe that the
eventual solution will involve a clever and careful com-

bination of multiple complementary technologies. In
particular, we are pursuing the hybrid approachinitially
presented by Welch (1995). We look forward to a day
whenhigh-performance 6-D tracking outdoors enables
pose-aware devices for work such as Feiner’s outdoor

augmentedreality (Feiner, MacIntyre, Hollerer, &
Webster, 1997; Hollerer, Feiner, Terauchi, Rashid, &
Hallaway, 1999), the “WorldBoard”initiative (Spohrer,
1999a, 1999b), and other wonderful applications.
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